

323

9Cookies
and Sessions
The Hypertext Transfer Protocol (HTTP) is a stateless technology, meaning that each
individual HTML page is an unrelated entity. HTTP has no method for tracking users
or retaining variables as a person traverses a site. Using a Web scripting language like
PHP, you can overcome the statelessness of the Web. You have a few options to choose
from, the most popular two being cookies and sessions.

Prior to the existence of cookies, surfing a Web site was a trip without a history.
Although your browser tracked the pages you visited, allowing you to use the back
button to return to previously visited pages, the server kept no record of who had seen
what. Without the server being able to track a user, there can be no shopping carts or
custom Web site personalization.

Sessions improve upon cookies, allowing the Web application to store and retrieve far
more information than cookies alone can. Both technologies are easy to use with PHP
and are worth knowing. In this chapter I’ll explain each, using a login system, based
upon the existing users database, as my example.

Co
o

kies an
d S

essio
n

s

09_PHPMySQL_VQP(323-374).indd 323 5/31/05 3:02:39 PM

Chapter 9

324

Using Cookies
Cookies are a way for a server to store infor-
mation on the user’s machine. This is one
way that a site can remember or track a user
over the course of a visit. Think of a cookie
like a name tag: you tell the server your name
and it gives you a sticker to wear. Then it can
know who you are by referring back to that
name tag.

Some people are suspicious of cookies
because they believe that cookies allow
a server to know too much about them.
However, a cookie can only be used to store
information that the server is given, so
it’s no less secure than most anything else
online. Unfortunately, many people still have
misconceptions about the technology, which
is a problem as those misconceptions can
undermine the functionality of your Web
application.

In this section you will learn how to set a
cookie, retrieve information from a stored
cookie, alter a cookie’s settings, and then
delete a cookie.

Testing for Cookies

To effectively program using cookies, you
need to be able to accurately test for their
presence. The best way to do so is to have
your Web browser ask what to do when
receiving a cookie. In such a case, the
browser will prompt you with the cookie
information each time PHP attempts to
send a cookie.

Different versions of different browsers on
different platforms all define their cookie
handling policies in different places. I’ll
quickly run through a couple of options
for popular Web browsers.

To set this up using Internet Explorer on
Windows XP, choose Tools > Internet
Options. Then click the Privacy tab, fol-
lowed by the Advanced button under
Settings. Click “Override automatic cookie
handling” and then choose “Prompt” for
both First- and Third-party Cookies.

Using Firefox on Windows, choose
Tools > Options. Then click Privacy and
expand the Cookies section. Finally,
select “ask me every time” in the Keep
Cookies drop-down menu. If you are
using Firefox on Mac OS X, the steps are
the same, but you must start by choosing
Firefox > Preferences.

Unfortunately, Safari on Mac OS X does
not have a cookie prompting option, but
it will allow you to view existing cookies,
which is still a useful debugging tool. This
option can be found under the Security
Preferences panel.

U
si

n
g

 C
o

o
ki

es

09_PHPMySQL_VQP(323-374).indd 324 5/31/05 3:02:39 PM

Cookies and Sessions

325

Setting cookies
The most important thing to understand
about cookies is that they must be sent from
the server to the client prior to any other
information. Should the server attempt to
send a cookie after the Web browser has
already received HTML—even an extraneous
white space—an error message will result
and the cookie will not be sent (Figure 9.1).
This is by far the most common cookie-
related error.

Cookies are sent via the setcookie() function:

setcookie (name, value);

setcookie (‘first_name’, ‘Larry’);

The second line of code will send a cookie to
the browser with a name of first_name and a
value of Larry (Figure 9.2).

You can continue to send more cookies to
the browser with subsequent uses of the
setcookie() function:

setcookie (‘ID’, 263);

setcookie (‘email’, ‘phpmysql2@
➝ dmcinsights.com’);

As when using any variable in PHP, when
naming your cookies, do not use white
spaces or punctuation, but do pay attention
to the exact case used.

Figure 9.2 If I have my browser set to ask for
permission when receiving cookies, I’ll see a message
like this when a site attempts to send one.

Figure 9.1 The headers already sent… error message
is all too common when creating cookies. Pay
attention to what the error message says in order to
find and fix the problem.

U
sin

g
 Co

o
kies

09_PHPMySQL_VQP(323-374).indd 325 5/31/05 3:02:40 PM

Chapter 9

326

To send a cookie:

1. Create a new PHP document in your text
editor (Script 9.1).

<?php # Script 9.1 - login.php

For this example, I’ll make a new login.
php script (which works in conjunction
with the scripts from Chapter 7, “Using
PHP with MySQL”).

2. Validate the form.

if (isset($_POST[‘submitted’])) {

 require_once (‘../mysql_connect.
 ➝ php’);

 $errors = array();

 if (empty($_POST[‘email’])) {

 $errors[] = ‘You forgot to enter
 ➝ your email address.’;

 } else {

 $e = escape_data($_POST
 ➝ [‘email’]);

 }

 if (empty($_POST[‘password’])) {

 $errors[] = ‘You forgot to enter
 ➝ your password.’;

 } else {

 $p = escape_data($_POST
 ➝ [‘password’]);

 }

These steps are very similar to those in
Chapter 7. The main conditional checks
if the form has been submitted. Then the
database connection is made by including
the connection script (which also defines
the escape_data() function as of Chapter
8, “Web Application Development”).
Finally, the email address and password
inputs are checked for values.

3. Retrieve the user_id and first_name for
this user from the database.

if (empty($errors)) {

 $query = “SELECT user_id,
 ➝ first_name FROM users WHERE
 ➝ email=’$e’ AND password=
 ➝ SHA(‘$p’)”;

 $result = @mysql_query ($query);

 $row = mysql_fetch_array
 ➝ ($result, MYSQL_NUM);

If both validation tests were passed, the
database will be queried, retrieving the
user_id and first_name values for the
record where the email column matches
the submitted email address and the
password matches an encrypted version
of the submitted password.

4. If the user entered the correct informa-
tion, log the user in.

if ($row) {

 setcookie (‘user_id’, $row[0]);

 setcookie (‘first_name’, $row[1]);

The $row variable will have a value only
if the preceding query returned at least
one record (indicating the submitted
email address and password match those
on file). In this case, two cookies will be
created.

continues on page 328

U
si

n
g

 C
o

o
ki

es

09_PHPMySQL_VQP(323-374).indd 326 5/31/05 3:02:40 PM

Cookies and Sessions

327

1 <?php # Script 9.1 - login.php

2 // Send NOTHING to the Web browser prior to the setcookie() lines!

3

4 // Check if the form has been submitted.

5 if (isset($_POST[‘submitted’])) {

6

7 require_once (‘../mysql_connect.php’); // Connect to the db.

8

9 $errors = array(); // Initialize error array.

10

11 // Check for an email address.

12 if (empty($_POST[‘email’])) {

13 $errors[] = ‘You forgot to enter your email address.’;

14 } else {

15 $e = escape_data($_POST[‘email’]);

16 }

17

18 // Check for a password.

19 if (empty($_POST[‘password’])) {

20 $errors[] = ‘You forgot to enter your password.’;

21 } else {

22 $p = escape_data($_POST[‘password’]);

23 }

24

25 if (empty($errors)) { // If everything’s OK.

26

27 /* Retrieve the user_id and first_name for

28 that email/password combination. */

29 $query = “SELECT user_id, first_name FROM users WHERE email=’$e’ AND password=SHA(‘$p’)”;

30 $result = @mysql_query ($query); // Run the query.

31 $row = mysql_fetch_array ($result, MYSQL_NUM); // Return a record, if applicable.

32

33 if ($row) { // A record was pulled from the database.

34

35 // Set the cookies & redirect.

36 setcookie (‘user_id’, $row[0]);

37 setcookie (‘first_name’, $row[1]);

38

(script continues on page 333)

Script 9.1 The login.php script creates cookies upon a successful login.

U
sin

g
 Co

o
kies

09_PHPMySQL_VQP(323-374).indd 327 5/31/05 3:02:41 PM

Chapter 9

328

5. Redirect the user to another page.

$url = ‘http://’ . $_SERVER
➝ [‘HTTP_HOST’] . dirname($_SERVER
➝ [‘PHP_SELF’]);

if ((substr($url, -1) == ‘/’) OR
➝ (substr($url, -1) == ‘\\’)) {

 $url = substr ($url, 0, -1);

}

$url .= ‘/loggedin.php’;

header(“Location: $url”);

exit();

Using the steps outlined in Chapter 8,
the redirection URL is first dynamically
generated. To do so, various $_SERVER
values are referenced, along with the
dirname() function. Any trailing slashes
are also chopped off should this script be
within a subdirectory (this is all covered
in Chapter 8).

Finally the header() function is called to
redirect the user and the script’s execu-
tion is terminated with exit().

6. Complete the $row conditional (started in
Step 4) and the $errors conditional, and
then close the database connection.

 } else {

 $errors[] = ‘The email address
 ➝ and password entered do not
 ➝ match those on file.’;

 $errors[] = mysql_error() .
 ➝ ‘

Query: ‘ .
$query;

 }

}

mysql_close();

The error management in this script is
much like that in the register.php script
in Chapter 8. Because nothing can be
sent to the Web browser before calling
the setcookie() and header() lines, the
errors have to be saved and printed later.

The second error message here is for
debugging purposes only and shouldn’t
be used on a live site.

7. Complete the main submit conditional,
include the HTML header, and print any
error messages.

} else {

 $errors = NULL;

}

$page_title = ‘Login’;

include (‘./includes/header.html’);

if (!empty($errors)) {

 echo ‘<h1 id=”mainhead”>Error!
 ➝ </h1>

 <p class=”error”>The following
 ➝ error(s) occurred:
’;

 foreach ($errors as $msg) {
 ➝ echo “ - $msg
\n”;

 }

 echo ‘</p><p>Please try again.
 ➝ </p>’;

}

?>

Again, this and the previous steps are
like those in Chapter 8’s register.php
script. The first else conditional sets the
$errors variable to NULL, indicating that
no errors need to be printed out when
this page is first run. Then the page’s title
is set and the template’s header file is
included (this application uses the same
template as those in Chapters 7 and 8).
Finally, any existing errors—from the
form’s submission—are printed.

continues on page 330

U
si

n
g

 C
o

o
ki

es

09_PHPMySQL_VQP(323-374).indd 328 5/31/05 3:02:41 PM

Cookies and Sessions

329

39 // Redirect the user to the loggedin.php page.

40 // Start defining the URL.

41 $url = ‘http://’ . $_SERVER[‘HTTP_HOST’] . dirname($_SERVER[‘PHP_SELF’]);

42 // Check for a trailing slash.

43 if ((substr($url, -1) == ‘/’) OR (substr($url, -1) == ‘\\’)) {

44 $url = substr ($url, 0, -1); // Chop off the slash.

45 }

46 // Add the page.

47 $url .= ‘/loggedin.php’;

48

49 header(“Location: $url”);

50 exit(); // Quit the script.

51

52 } else { // No record matched the query.

53 $errors[] = ‘The email address and password entered do not match those on file.’;

 // Public message.

54 $errors[] = mysql_error() . ‘

Query: ‘ . $query; // Debugging message.

55 }

56

57 } // End of if (empty($errors)) IF.

58

59 mysql_close(); // Close the database connection.

60

61 } else { // Form has not been submitted.

62

63 $errors = NULL;

64

65 } // End of the main Submit conditional.

66

67 // Begin the page now.

68 $page_title = ‘Login’;

69 include (‘./includes/header.html’);

70

71 if (!empty($errors)) { // Print any error messages.

72 echo ‘<h1 id=”mainhead”>Error!</h1>

73 <p class=”error”>The following error(s) occurred:
’;

74 foreach ($errors as $msg) { // Print each error.

75 echo “ - $msg
\n”;

76 }

77 echo ‘</p><p>Please try again.</p>’;

78 }

79

(script continues on next page)

Script 9.1 continued

U
sin

g
 Co

o
kies

09_PHPMySQL_VQP(323-374).indd 329 5/31/05 3:02:41 PM

Chapter 9

330

8. Display the HTML form.

<h2>Login</h2>

<form action=”login.php”
➝ method=”post”>

 <p>Email Address: <input type=
 ➝ ”text” name=”email” size=”20”
 ➝ maxlength=”40” /> </p>

 <p>Password: <input type=
 ➝ ”password” name=”password”
 ➝ size=”20” maxlength=”20” /></p>

 <p><input type=”submit” name=
 ➝ ”submit” value=”Login” /></p>

 <input type=”hidden” name=
 ➝ ”submitted” value=”TRUE” />

</form>

The HTML form takes two inputs—an
email address and a password—and
submits the data back to this same page.
You can make the email address input
sticky by presetting a value attribute, if
you’d like.

9. Include the PHP footer.

<?php

include (‘./includes/footer.html’);

?>

10. Save the file as login.php, upload it to
your Web server in the same directory
as the files from Chapter 7, and load the
form in your Web browser (Figure 9.3).

✔ Tips

■ Cookies are limited to about 4 KB of total
data, and each Web browser can remem-
ber only 20 cookies from any one server.

■ Because cookies rely upon the HTTP
header, you can set them in PHP using
the header() function. It’s very important
to remember that the setcookie() and
header() functions must be called before
any data is sent to the Web browser.

Script 9.1 continued

80 // Create the form.

81 ?>

82 <h2>Login</h2>

83 <form action=”login.php” method=”post”>

84 <p>Email Address: <input type=”text”

 name=”email” size=”20” maxlength=”40”

 /> </p>

85 <p>Password: <input type=”password”

 name=”password” size=”20” maxlength=”20”

 /></p>

86 <p><input type=”submit” name=”submit”

 value=”Login” /></p>

87 <input type=”hidden” name=”submitted”

 value=”TRUE” />

88 </form>

89 <?php

90 include (‘./includes/footer.html’);

91 ?>

Figure 9.3 The login form.

U
si

n
g

 C
o

o
ki

es

■ The setcookie() function is one of the
few functions in PHP that could gener-
ate different results in different browsers,
since browsers will treat cookies differ-
ently. Be sure to test your Web sites in
multiple browsers on different platforms
to ensure consistency.

■ In Chapter 11, “Extended Topics,” I’ll
show how to control browser output so
that cookies can be sent at nearly any
point in a script.

09_PHPMySQL_VQP(323-374).indd 330 5/31/05 3:02:42 PM

Cookies and Sessions

331

Accessing cookies
To retrieve a value from a cookie, you only
need to refer to the $_COOKIE superglobal,
using the appropriate cookie name as the key
(as you would with any array). For example,
to retrieve the value of the cookie established
with the line

setcookie (‘username’, ‘Trout’);

you would use $_COOKIE[‘username’].

In the following example, the cookies set by
the login.php script will be accessed in two
ways. First a check will be made that the
user is logged in (otherwise, they shouldn’t
be accessing this page). Next, the user will be
greeted by their first name, which was stored
in a cookie.

To access a cookie:

1. Create a new PHP document in your text
editor (Script 9.2).

<?php # Script 9.2 - loggedin.php

The user will be redirected to this page
after successfully logging in. It will print a
user-specific greeting.

2. Check for the presence of a cookie.

if (!isset($_COOKIE[‘user_id’])) {

Since I don’t want a user to access this
page unless that user is logged in, I first
check for the cookie that should have
been set (in login.php).

continues on next page

U
sin

g
 Co

o
kies

Script 9.2 The loggedin.php script prints a greeting
to a user based upon a stored cookie.

1 <?php # Script 9.2 - loggedin.php

2 # User is redirected here from login.php.

3

4 // If no cookie is present, redirect the

 user.

5 if (!isset($_COOKIE[‘user_id’])) {

6

7 // Start defining the URL.

8 $url = ‘http://’ . $_SERVER[‘HTTP_HOST’]

 . dirname($_SERVER[‘PHP_SELF’]);

9 // Check for a trailing slash.

10 if ((substr($url, -1) == ‘/’) OR

 (substr($url, -1) == ‘\\’)) {

11 $url = substr ($url, 0, -1); // Chop

 off the slash.

12 }

13 $url .= ‘/index.php’; // Add the page.

14 header(“Location: $url”);

15 exit(); // Quit the script.

16 }

17

18 // Set the page title and include the HTML

 header.

19 $page_title = ‘Logged In!’;

20 include (‘./includes/header.html’);

21

22 // Print a customized message.

23 echo “<h1>Logged In!</h1>

24 <p>You are now logged in, {$_COOKIE
 [‘first_name’]}!</p>

25 <p>

</p>”;

26

27 include (‘./includes/footer.html’);

28 ?>

09_PHPMySQL_VQP(323-374).indd 331 5/31/05 3:02:42 PM

Chapter 9

332

3. Complete the if conditional.

 $url = ‘http://’ . $_SERVER
 ➝ [‘HTTP_HOST’] . dirname($_SERVER
 ➝ [‘PHP_SELF’]);

 if ((substr($url, -1) == ‘/’) OR
 ➝ (substr($url, -1) == ‘\\’)) {

 $url = substr ($url, 0, -1);

 }

 $url .= ‘/index.php’;

 header(“Location: $url”);

 exit();

}

If the user is not logged in, they will be
automatically redirected to the main
page. This is a simple way to limit access
to logged-in users.

4. Include the page header.

$page_title = ‘Logged In!’;

include (‘./includes/header.html’);

5. Welcome the user, using the cookie.

echo “<h1>Logged In!</h1>

<p>You are now logged in, {$_COOKIE
➝ [‘first_name’]}!</p>

<p>

</p>”;

To greet the user by name, I refer to
the $_COOKIE[‘first_name’] variable
(enclosed within curly braces to avoid
parse errors).

6. Complete the HTML page.

include (‘./includes/footer.html’);

?>

7. Save the file as loggedin.php, upload to
your Web server (in the same directory
as login.php), and test in your Web
browser by logging in through login.php
(Figure 9.4).

Since these examples use the same data-
base as those in Chapter 7, you should be
able to log in using the registered username
and password submitted at that time.

Figure 9.4 If you used the correct username and
password, you’ll be redirected here after logging in.

U
si

n
g

 C
o

o
ki

es

09_PHPMySQL_VQP(323-374).indd 332 5/31/05 3:02:42 PM

Cookies and Sessions

333

8. If you like, change the cookie settings for
your browser (Figure 9.5) and test again
(Figure 9.6).

✔ Tips

■ If the submitted email address and user-
name do not match those on file, a public
message is displayed, followed by the
query (Figure 9.7). Remember to delete
the debugging message (the MySQL error
plus the query) before using this code on
a live site.

■ If your mysql_connect.php file sends
anything to the Web browser or even has
blank lines or spaces after the closing PHP
tag, you’ll see a headers already sent error.

■ With register_globals enabled, PHP will
load variables in a specific order (depend-
ing upon the setting in the php.ini file),
normally: get, post, cookie, session. If you
do not use the superglobal arrays to refer
to variables, then the value of a $username
variable in a form could be overridden by
the value of a $username variable stored
in a cookie. This is one reason why you
should program without relying upon
register_globals.

■ A cookie is not accessible until the setting
page (e.g., login.php) has been reloaded
or another page has been accessed (in
other words, you cannot set and access a
cookie in the same page).

■ If users decline a cookie or have their
Web browser set not to accept them, they
will automatically be redirected to the
home page in this example, even if they
successfully logged in. For this reason
you may want to let the user know when
cookies are required.

U
sin

g
 Co

o
kiesFigure 9.7 If no record was returned from the

database, this will be the result. The blank space
after the second dash is for the mysql_error(), which
doesn’t exist (since the query ran fine).

Figure 9.5 To see the effect of the setcookie()
function, set your Web browser to ask before storing
a cookie.

Figure 9.6 The user_id cookie with a value of 1.

09_PHPMySQL_VQP(323-374).indd 333 5/31/05 3:02:43 PM

Chapter 9

334

Setting cookie parameters
Although passing just the name and value
arguments to the setcookie() function will
suffice, you ought to be aware of the other
arguments available. The function can take
up to four more parameters, each of which
will alter the definition of the cookie.

setcookie (‘name’, ‘value’, expiration,
➝ ‘path’, ‘domain’, secure);

The expiration argument is used to set a
definitive length of time for a cookie to exist,
specified in seconds since the epoch (the
epoch is midnight on January 1, 1970). If it
is not set, the cookie will continue to be func-
tional until the user closes his or her browser.
Normally, the expiration time is determined
by adding a particular number of minutes or
hours to the current moment, retrieved using
the time() function. The following line will
set the expiration time of the cookie to be 1
hour (60 seconds times 60 minutes) from the
current moment:

setcookie (‘name’, ‘value’, time()+
➝ 3600);

The path and domain arguments are used
to limit a cookie to a specific folder within a
Web site (the path) or to a specific host. For
example, you could restrict a cookie to exist
only while a user is within the admin folder of
a domain (and the admin folder’s subfolders):

setcookie (‘name’, ‘value’, time()+
➝ 3600, ‘/admin/’);

Finally, the secure value dictates that a
cookie should only be sent over a secure
HTTPS connection. A 1 indicates that a
secure connection must be used, and a 0 says
that a standard connection is fine.

setcookie (‘name’, ‘value’, time()+
➝ 3600, ‘/admin/’, ‘’, 1);

As with all functions that take arguments,
you must pass the setcookie() values in
order. To skip any parameter, use NULL or
an empty string. The expiration and secure
values are both integers and are therefore
not quoted.

To demonstrate this information, I’ll add an
expiration setting to the login cookies so that
they last for only one hour.

U
si

n
g

 C
o

o
ki

es

09_PHPMySQL_VQP(323-374).indd 334 5/31/05 3:02:43 PM

Cookies and Sessions

335

To set a cookie’s expiration date:

1. Open login.php in your text editor (refer
to Script 9.1).

2. Change the two setcookie() lines to
include an expiration date that’s 60 min-
utes away (Script 9.3):

setcookie (‘user_id’, $row[0],
➝ time()+3600, ‘/’, ‘’, 0);

setcookie (‘first_name’, $row[1],
➝ time()+3600, ‘/’, ‘’, 0);

With the expiration date set to time() +
3600 (60 minutes times 60 seconds), the
cookie will continue to exist for an hour
after it is set. While I’m at it, I explicitly
state the other cookie parameters.

3. Save the script, upload to your Web
server, and test in your Web browser
(Figure 9.8).

U
sin

g
 Co

o
kies

Script 9.3 The login.php script now uses every
argument the setcookie() function can take.

1 <?php # Script 9.3 - login.php (2nd version

 after Script 9.1)

2 // Send NOTHING to the Web browser prior to

 the setcookie() lines!

3

4 // Check if the form has been submitted.

5 if (isset($_POST[‘submitted’])) {

6

7 require_once (‘../mysql_connect.php’);

 // Connect to the db.

8

9 $errors = array(); // Initialize error

 array.

10

11 // Check for an email address.

12 if (empty($_POST[‘email’])) {

13 $errors[] = ‘You forgot to enter your

 email address.’;

14 } else {

15 $e = escape_data($_POST[‘email’]);

16 }

17

18 // Check for a password.

19 if (empty($_POST[‘password’])) {

20 $errors[] = ‘You forgot to enter your

 password.’;

21 } else {

(script continues on next page)

Figure 9.8 Once an expiration date or time has been set,
it will be reflected in the cookie sent to the Web browser.

09_PHPMySQL_VQP(323-374).indd 335 5/31/05 3:02:44 PM

Chapter 9

336

22 $p = escape_data($_POST[‘password’]);

23 }

24

25 if (empty($errors)) { // If everything’s OK.

26

27 /* Retrieve the user_id and first_name for

28 that email/password combination. */

29 $query = “SELECT user_id, first_name FROM users WHERE email=’$e’ AND password=SHA(‘$p’)”;

30 $result = @mysql_query ($query); // Run the query.

31 $row = mysql_fetch_array ($result, MYSQL_NUM); // Return a record, if applicable.

32

33 if ($row) { // A record was pulled from the database.

34

35 // Set the cookies & redirect.

36 setcookie (‘user_id’, $row[0], time()+3600, ‘/’, ‘’, 0);

37 setcookie (‘first_name’, $row[1], time()+3600, ‘/’, ‘’, 0);

38

39 // Redirect the user to the loggedin.php page.

40 // Start defining the URL.

41 $url = ‘http://’ . $_SERVER[‘HTTP_HOST’] . dirname($_SERVER[‘PHP_SELF’]);

42 // Check for a trailing slash.

43 if ((substr($url, -1) == ‘/’) OR (substr($url, -1) == ‘\\’)) {

44 $url = substr ($url, 0, -1); // Chop off the slash.

45 }

46 // Add the page.

47 $url .= ‘/loggedin.php’;

48

49 header(“Location: $url”);

50 exit(); // Quit the script.

51

52 } else { // No record matched the query.

53 $errors[] = ‘The email address and password entered do not match those on file.’;

 // Public message.

54 $errors[] = mysql_error() . ‘

Query: ‘ . $query; // Debugging message.

55 }

56

57 } // End of if (empty($errors)) IF.

58

59 mysql_close(); // Close the database connection.

60

(script continues on next page)

Script 9.3 continued

U
si

n
g

 C
o

o
ki

es

09_PHPMySQL_VQP(323-374).indd 336 5/31/05 3:02:44 PM

Cookies and Sessions

337

U
sin

g
 Co

o
kies

✔ Tips

■ Some browsers have difficulties with
cookies that do not list every argument.
Explicitly stating every parameter—even as
an empty string, as I did here—will achieve
more reliable results across all browsers.

■ Here are some general guidelines for
cookie expirations: If the cookie should
last as long as the session, do not set
an expiration time; if the cookie should
continue to exist after the user has closed
and reopened his or her browser, set an
expiration time months ahead; and if the
cookie can constitute a security risk, set
an expiration time of an hour or frac-
tion thereof so that the cookie does not
continue to exist too long after a user has
left his or her browser.

■ For security purposes, you could set a five-
or ten-minute expiration time on a cookie
and have the cookie resent with every new
page the user visits (assuming that the
cookie exists). This way, the cookie will
continue to persist as long as the user is
active but will automatically die five or ten
minutes after the user’s last action.

■ Setting the path to ‘/’ will make the
cookie visible within an entire domain
(Web site).

■ Setting the domain to ‘.site.com’
will make the cookie visible within an
entire domain and every subdomain
(www.site.com, admin.site.com, pages.
site.com, etc.).

■ E-commerce and other privacy-related
Web applications should use an SSL
(Secure Sockets Layer) connection for all
transactions, including the cookie.

Script 9.3 continued

61 } else { // Form has not been submitted.

62

63 $errors = NULL;

64

65 } // End of the main Submit conditional.

66

67 // Begin the page now.

68 $page_title = ‘Login’;

69 include (‘./includes/header.html’);

70

71 if (!empty($errors)) { // Print any error

 messages.

72 echo ‘<h1 id=”mainhead”>Error!</h1>

73 <p class=”error”>The following error(s)

 occurred:
’;

74 foreach ($errors as $msg) { // Print

 each error.

75 echo “ - $msg
\n”;

76 }

77 echo ‘</p><p>Please try again.</p>’;

78 }

79

80 // Create the form.

81 ?>

82 <h2>Login</h2>

83 <form action=”login.php” method=”post”>

84 <p>Email Address: <input type=”text”

 name=”email” size=”20” maxlength=”40”

 /> </p>

85 <p>Password: <input type=”password”

 name=”password” size=”20” maxlength=”20”

 /></p>

86 <p><input type=”submit” name=”submit”

 value=”Login” /></p>

87 <input type=”hidden” name=”submitted”

 value=”TRUE” />

88 </form>

89 <?php

90 include (‘./includes/footer.html’);

91 ?>

09_PHPMySQL_VQP(323-374).indd 337 5/31/05 3:02:44 PM

Chapter 9

338

Deleting cookies
The final thing to understand about using
cookies is how to delete one. While a cookie
will automatically expire when the user’s
browser is closed or when the expiration date/
time is met, sometimes you’ll want to manu-
ally delete the cookie instead. For example, in
Web sites that have registered users and login
capabilities, you will probably want to delete
any cookies when the user logs out.

Although the setcookie() function can take
up to six arguments, only one is actually
required—the cookie name. If you send a
cookie that consists of a name without a
value, it will have the same effect as deleting
the existing cookie of the same name. For
example, to create the cookie first_name, you
use this line:

setcookie(‘first_name’, ‘Larry’);

To delete the first_name cookie, you would code:

setcookie(‘first_name’);

As an added precaution, you can also set an
expiration date that’s in the past.

setcookie(‘first_name’, ‘’, time()-300);

To demonstrate all of this, I’ll add logout
capability to the site, which will appear only to
logged-in users. As an added bonus, the header
file will be altered so that a Logout link appears
when the user is logged-in and a Login link
appears when the user is logged-out.

To delete a cookie:

1. Create a new PHP document in your text
editor (Script 9.4).

<?php # Script 9.4 - logout.php

Script 9.4 The logout.php script deletes the
previously established cookies.

1 <?php # Script 9.4 - logout.php

2 // This page lets the user logout.

3

4 // If no cookie is present, redirect the

 user.

5 if (!isset($_COOKIE[‘user_id’])) {

6

7 // Start defining the URL.

8 $url = ‘http://’ . $_SERVER[‘HTTP_HOST’]

 . dirname($_SERVER[‘PHP_SELF’]);

9 // Check for a trailing slash.

10 if ((substr($url, -1) == ‘/’) OR

 (substr($url, -1) == ‘\\’)) {

11 $url = substr ($url, 0, -1); // Chop

 off the slash.

12 }

13 $url .= ‘/index.php’; // Add the page.

14 header(“Location: $url”);

15 exit(); // Quit the script.

16

17 } else { // Delete the cookies.

18 setcookie (‘first_name’, ‘’,
 time()-300, ‘/’, ‘’, 0);

19 setcookie (‘user_id’, ‘’,
 time()-300, ‘/’, ‘’, 0);

20 }

21

22 // Set the page title and include the HTML

 header.

23 $page_title = ‘Logged Out!’;

24 include (‘./includes/header.html’);

25

26 // Print a customized message.

27 echo “<h1>Logged Out!</h1>

28 <p>You are now logged out, {$_COOKIE

 [‘first_name’]}!</p>

29 <p>

</p>”;

30

31 include (‘./includes/footer.html’);

32 ?>

U
si

n
g

 C
o

o
ki

es

09_PHPMySQL_VQP(323-374).indd 338 5/31/05 3:02:45 PM

Cookies and Sessions

339

3. Make the remainder of the PHP page.

$page_title = ‘Logged Out!’;

include (‘./includes/header.html’);

echo “<h1>Logged Out!</h1>

<p>You are now logged out, {$_COOKIE
➝ [‘first_name’]}!</p>

<p>

</p>”;

include (‘./includes/footer.html’);

?>

The page itself is also much like the
loggedin.php page. Although it may
seem odd that you can still refer to the
first_name cookie (that you just deleted
in this script), it makes perfect sense
considering the process:

A) This page is requested by the client.

B) The server reads the appropriate cook-
ies from the client’s browser.

C) The page is run and does its thing
(including sending new cookies).

So, in short, the original first_name
cookie data is available to this script
when it first runs. The set of cookies sent
by this page (the delete cookies) aren’t
available to this page, so the original
values are still usable.

4. Save the file as logout.php.

U
sin

g
 Co

o
kies

2. Check for the existence of a user_id cookie;
if it is present, delete both cookies.

if (!isset($_COOKIE[‘user_id’])) {

 $url = ‘http://’ . $_SERVER
 ➝ [‘HTTP_HOST’] . dirname($_SERVER
 ➝ [‘PHP_SELF’]);

 if ((substr($url, -1) == ‘/’) OR
 ➝ (substr($url, -1) == ‘\\’)) {

 $url = substr ($url, 0, -1);

 }

 $url .= ‘/index.php’;

 header(“Location: $url”);

 exit();

} else {

 setcookie (‘first_name’, ‘’,
 ➝ time()-300, ‘/’, ‘’, 0);

 setcookie (‘user_id’, ‘’,
 ➝ time()-300, ‘/’, ‘’, 0);

}

As with my loggedin.php page, if the user
is not already logged in, I want this page
to redirect the user to the home page. If
the user is logged in, these two cookies
will effectively delete the existing ones.

09_PHPMySQL_VQP(323-374).indd 339 5/31/05 3:02:45 PM

Chapter 9

340

To create the logout link:

1. Open header.html (refer to Script 7.1) in
your text editor.

2. Change the links to (Script 9.5)

<li class=”navtop”><a href=
➝ ”index.php” title=”Go to the Home
➝ Page”>Home

<a href=”register.php” title=
➝ ”Register”>Register

<?php

if ((isset($_COOKIE[‘user_id’])) &&
➝ (!strpos($_SERVER[‘PHP_SELF’],
➝ ‘logout.php’))) {

 echo ‘<a href=”logout.php” title=
➝ ”Logout”>Logout’;

} else {

 echo ‘<a href=”login.php” title=
➝ ”Login”>Login’;

}

?>

Instead of having a permanent login
link in my template, I’ll have it display
a Logout link if the user is logged in or a
Login link if the user is not. The preced-
ing conditional will accomplish just that
based upon the presence of a cookie.

Because the logout.php script would
ordinarily display a logout link (because
the cookie exists when the page is first
being viewed), I have to add a statement
to my conditional, checking that the
current page is not the logout.php script.
The strpos() function, which checks if
one string is found within another string,
is an easy way to accomplish this.

Script 9.5 The header.html file now displays either
a login or a logout link depending upon the user’s
current status.

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML

 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/

 xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml”

 xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=

 ”text/html; charset=iso-8859-1” />

6 <title><?php echo $page_title; ?></title>

7 <style type=”text/css” media=”all”>

 @import “./includes/layout.css”;</style>

8 </head>

9 <body>

10 <div id=”wrapper”><!-- Goes with the CSS

 layout. -->

11

12 <div id=”content”><!-- Goes with the CSS

 layout. -->

13

14 <div id=”nav”><!-- Links section -->

15 <h3>Menu</h3>

16

17 <li class=”navtop”><a href=

 ”index.php” title=”Go to the Home

 Page”>Home

18 <a href=”register.php” title=

 ”Register”>Register

19 <?php

20 // Create a login/logout link.

21 if ((isset($_COOKIE[‘user_id’])) &&
 (!strpos($_SERVER[‘PHP_SELF’], ‘logout.
 php’))) {

22 echo ‘<a href=”logout.php” title=
 ”Logout”>Logout’;

23 } else {

24 echo ‘<a href=”login.php” title=
 ”Login”>Login’;

25 }

26 ?>

27

28 </div>

29 <!-- Script 9.5 - header.html -->

30 <!-- Start of page-specific content. -->

U
si

n
g

 C
o

o
ki

es

09_PHPMySQL_VQP(323-374).indd 340 5/31/05 3:02:45 PM

Cookies and Sessions

341

3. Save the file, upload to the Web server
(placed within the includes directory), and
test the login/logout process in your Web
browser (Figures 9.9, 9.10, and 9.11).

✔ Tips

■ To see the result of the setcookie() calls
in the logout.php script, turn on cookie
prompting in your browser (Figure 9.12).

■ Due to a bug in how Internet Explorer on
Windows handles cookies, you may need
to set the domain parameter to false
(without quotes) in order to get the logout
process to work when developing on your
own computer (i.e., through localhost).

■ When deleting a cookie, you should
always use the same parameters that
were used to set the cookie. If you set the
domain and path in the creation cookie,
use them again in the deletion cookie.

■ To hammer the point home, remember
that the deletion of a cookie does not take
effect until the page has been reloaded
or another page has been accessed (in
other words, the cookie will still be
available to a page after that page has
deleted it). This is why I needed to add
the && (!strpos($_SERVER[‘PHP_SELF’],
‘logout.php’) clause to the header.html
conditional (because the cookie itself would
still be available on the logout.php page).

U
sin

g
 Co

o
kies

Figure 9.9 The home page with a Login link.

Figure 9.10 After the user logs in, the page now has a
Logout link.

Figure 9.11 The result after logging out.

Figure 9.12 This is how the deletion cookie appears in
a Firefox prompt.

09_PHPMySQL_VQP(323-374).indd 341 5/31/05 3:02:46 PM

Chapter 9

342

Using Sessions
Another method of making data available
to multiple pages of a Web site is to use ses-
sions. The premise of a session is that data is
stored on the server, not in the Web browser,
and a session identifier is used to locate a
particular user’s record (session data). This
session identifier is normally stored in the
user’s Web browser via a cookie, but the
sensitive data itself—like the user’s ID, name,
and so on—always remains on the server.

The question may arise: why use sessions at
all when cookies work just fine? First of all,
sessions are more secure in that all of the
recorded information is stored on the server
and not continually sent back and forth
between the server and the client. Second,
some users reject cookies or turn them off
completely. Sessions, while designed to work
with a cookie, can function without them, as
you’ll see in the next section of this chapter.

To demonstrate sessions—and to compare
them with cookies—I will rewrite the previ-
ous scripts.

Setting session variables
The most important rule with respect to
sessions is that each page that will use them
must begin by calling the session_start()
function. This function tells PHP to either
begin a new session or access an existing one.

The first time this function is used, ses-
sion_start() will attempt to send a cookie
with a name of PHPSESSID (the session
name) and a value of something like a61f867
0baa8e90a30c878df89a2074b (32 hexadeci-
mal letters, the session ID). Because of this
attempt to send a cookie, session_start()
must be called before any data is sent to the
Web browser, as is the case when using the
setcookie() and header() functions.

Allowing for Sessions
on Windows

Sessions in PHP requires a temporary
directory on the server where PHP can
store the session data. For Unix and
Mac OS X users, this isn’t a problem, as
the /tmp directory is available explicitly
for purposes such as this. For Windows
users, you also do not need to do anything
special as of version 4.3.6 of PHP. But if
you are running Windows and an earlier
version of PHP, you must configure the
server. Here’s how:

1. Create a new folder on your server,
such as C:\temp.

2. Make sure that Everyone (or just the
Web server user, if you know that
value) can read and write to this
folder.

3. Edit your php.ini file (see Appendix
A, “Installation”), setting the value
of session.save_path to this folder
(C:\temp).

4. Restart the Web server.

If you see errors about the session.
save_path when you first use sessions, pay
attention to what the error messages say.
Also double-check your path name and
that you edited the correct php.ini file.

U
si

n
g

 C
o

o
ki

es

Once the session has been started, values can
be registered to the session using

$_SESSION[‘key’] = ‘value’;

$_SESSION[‘name’] = ‘Jessica’;

$_SESSION[‘id’] = 48;

I’ll rewrite the login.php script with this
in mind.

09_PHPMySQL_VQP(323-374).indd 342 5/31/05 3:02:46 PM

Cookies and Sessions

343

U
sin

g
 S

essio
n

s

To begin a session:

1. Open login.php (refer to Script 9.3) in
your text editor.

2. Replace the setcookie() lines (36–37)
with these lines (Script 9.6):

session_start();

$_SESSION[‘user_id’] = $row[0];

$_SESSION[‘first_name’] = $row[1];

The first step is to begin the session.
Since there are no echo() statements,
include calls, or HTML prior to this
point in the script, it will be safe to use
session_start() now, although I could
have placed it at the top of the script
as well. Then, I add two key-value pairs
to the $_SESSION superglobal array to
register the user’s first name and user ID
to the session.

continues on page 346

Script 9.6 The login.php script now uses sessions
instead of cookies.

1 <?php # Script 9.6 - login.php (3rd version

 after Scripts 9.1 & 9.3)

2 // Send NOTHING to the Web browser prior to

 the session_start() line!

3

4 // Check if the form has been submitted.

5 if (isset($_POST[‘submitted’])) {

6

7 require_once (‘../mysql_connect.php’);

 // Connect to the db.

8

9 $errors = array(); // Initialize error

 array.

10

11 // Check for an email address.

12 if (empty($_POST[‘email’])) {

13 $errors[] = ‘You forgot to enter your

 email address.’;

14 } else {

15 $e = escape_data($_POST[‘email’]);

16 }

17

18 // Check for a password.

19 if (empty($_POST[‘password’])) {

20 $errors[] = ‘You forgot to enter your

 password.’;

21 } else {

22 $p = escape_data($_POST

 [‘password’]);

23 }

24

25 if (empty($errors)) { // If everything’s

 OK.

26

27 /* Retrieve the user_id and

 first_name for

28 that email/password combination. */

29 $query = “SELECT user_id,

 first_name FROM users WHERE

 email=’$e’ AND password=SHA(‘$p’)”;

(script continues on next page)

09_PHPMySQL_VQP(323-374).indd 343 5/31/05 3:02:47 PM

Chapter 9

344

30 $result = @mysql_query ($query); // Run the query.

31 $row = mysql_fetch_array ($result, MYSQL_NUM); // Return a record, if applicable.

32

33 if ($row) { // A record was pulled from the database.

34

35 // Set the session data & redirect.

36 session_start();

37 $_SESSION[‘user_id’] = $row[0];

38 $_SESSION[‘first_name’] = $row[1];

39

40 // Redirect the user to the loggedin.php page.

41 // Start defining the URL.

42 $url = ‘http://’ . $_SERVER[‘HTTP_HOST’] . dirname($_SERVER[‘PHP_SELF’]);

43 // Check for a trailing slash.

44 if ((substr($url, -1) == ‘/’) OR (substr($url, -1) == ‘\\’)) {

45 $url = substr ($url, 0, -1); // Chop off the slash.

46 }

47 // Add the page.

48 $url .= ‘/loggedin.php’;

49

50 header(“Location: $url”);

51 exit(); // Quit the script.

52

53 } else { // No record matched the query.

54 $errors[] = ‘The email address and password entered do not match those on file.’;

 // Public message.

55 $errors[] = mysql_error() . ‘

Query: ‘ . $query; // Debugging message.

56 }

57

58 } // End of if (empty($errors)) IF.

59

60 mysql_close(); // Close the database connection.

61

62 } else { // Form has not been submitted.

63

64 $errors = NULL;

65

66 } // End of the main Submit conditional.

67

68 // Begin the page now.

69 $page_title = ‘Login’;

(script continues on next page)

Script 9.6 continued

U
si

n
g

 S
es

si
o

n
s

09_PHPMySQL_VQP(323-374).indd 344 5/31/05 3:02:47 PM

Cookies and Sessions

345

70 include (‘./includes/header.html’);

71

72 if (!empty($errors)) { // Print any error messages.

73 echo ‘<h1 id=”mainhead”>Error!</h1>

74 <p class=”error”>The following error(s) occurred:
’;

75 foreach ($errors as $msg) { // Print each error.

76 echo “ - $msg
\n”;

77 }

78 echo ‘</p><p>Please try again.</p>’;

79 }

80

81 // Create the form.

82 ?>

83 <h2>Login</h2>

84 <form action=”login.php” method=”post”>

85 <p>Email Address: <input type=”text” name=”email” size=”20” maxlength=”40” /> </p>

86 <p>Password: <input type=”password” name=”password” size=”20” maxlength=”20” /></p>

87 <p><input type=”submit” name=”submit” value=”Login” /></p>

88 <input type=”hidden” name=”submitted” value=”TRUE” />

89 </form>

90 <?php

91 include (‘./includes/footer.html’);

92 ?>

Script 9.6 continued

U
sin

g
 S

essio
n

s

Sessions in Older Versions of PHP

Prior to version 4.1 of PHP (when the $_SESSION superglobal became available), session vari-
ables were set using the special session_register() function. The syntax was

session_start();

$name = ‘Jessica’;

session_register(‘name’);

It’s very important to notice that the session_register() function takes the name of a vari-
able to register without the initial dollar sign (so name rather than $name).

Once a session variable is registered, you can refer to is using $HTTP_SESSION_VARS[‘var’].

To delete a session variable, you use the session_unregister() function.

To repeat, you only need to use these functions if you are using an old version of PHP (between
4.0 and 4.1). As always, see the PHP manual for more information on these functions.

09_PHPMySQL_VQP(323-374).indd 345 5/31/05 3:02:47 PM

Chapter 9

346

3. Save the page as login.php, upload to
your server, and test in your Web browser
(Figure 9.13).

Although loggedin.php and the header
and script will need to be rewritten, you
can still test the login script and see
the resulting cookie (Figure 9.14). The
loggedin.php page should redirect you
back to the home page, though, as it’s still
checking for the presence of a $_COOKIE
variable.

✔ Tips

■ Because sessions will normally send and
read cookies, you should always try to
begin them as early in the script as pos-
sible. Doing so will help you avoid the
problem of attempting to send a cookie
after the headers (HTML or white space)
have already been sent (see Figure 9.1).

■ If you want, you can set session.auto_start
in the php.ini file to 1, making it unnec-
essary to use session_start() on each
page. This does put a greater toll on the
server and, for that reason, shouldn’t be
used without some consideration of the
circumstances.

■ You can store arrays in sessions (making
$_SESSION a multidimensional array), just
as you can strings or numbers.

Figure 9.14 This cookie, created by PHP’s
session_start() function, stores the session ID.

Figure 9.13 The login form remains unchanged to
the end user, but the underlying functionality now
uses sessions.

U
si

n
g

 S
es

si
o

n
s

09_PHPMySQL_VQP(323-374).indd 346 5/31/05 3:02:48 PM

Cookies and Sessions

347

Accessing session variables
Once a session has been started and variables
have been registered to it, you can create
other scripts that will access those variables.
To do so, each script must first enable ses-
sions, again using session_start().

This function will give the current script
access to the previously started session (if it
can read the PHPSESSID value stored in the
cookie) or create a new session if it cannot
(in which case, it won’t be able to access
stored values because a new session will have
been created).

To then refer to a session variable, use
$_SESSION[‘var’], as you would refer to any
other array.

To access session variables:

1. Open loggedin.php (refer to Script 9.2) in
your text editor.

2. Add a call to the session_start() func-
tion (Script 9.7).

session_start();

Every PHP script that either sets or
accesses session variables must use the
session_start() function. This line must
be called before the header.html file is
included and before anything is sent to
the Web browser.

continues on next page

Script 9.7 I’ve updated loggedin.php so that it refers
to $_SESSION and not $_COOKIE.

1 <?php # Script 9.7 - loggedin.php (2nd

 version after Script 9.2)

2 # User is redirected here from login.php.

3

4 session_start(); // Start the session.

5

6 // If no session value is present, redirect

 the user.

7 if (!isset($_SESSION[‘user_id’])) {

8

9 // Start defining the URL.

10 $url = ‘http://’ . $_SERVER[‘HTTP_HOST’]

 . dirname($_SERVER[‘PHP_SELF’]);

11 // Check for a trailing slash.

12 if ((substr($url, -1) == ‘/’) OR

 (substr($url, -1) == ‘\\’)) {

13 $url = substr ($url, 0, -1); // Chop

 off the slash.

14 }

15 $url .= ‘/index.php’; // Add the page.

16 header(“Location: $url”);

17 exit(); // Quit the script.

18 }

19

20 // Set the page title and include the HTML

 header.

21 $page_title = ‘Logged In!’;

22 include (‘./includes/header.html’);

23

24 // Print a customized message.

25 echo “<h1>Logged In!</h1>

26 <p>You are now logged in, {$_SESSION
 [‘first_name’]}!</p>

27 <p>

</p>”;

28

29 include (‘./includes/footer.html’);

30 ?>

U
sin

g
 S

essio
n

s

09_PHPMySQL_VQP(323-374).indd 347 5/31/05 3:02:48 PM

Chapter 9

348

3. Replace the references to $_COOKIE
with $_SESSION (lines 5 and 24 of the
original file).

if (!isset($_SESSION[‘user_id’])) {

and

echo “<h1>Logged In!</h1>

<p>You are now logged in, {$_SESSION
➝ [‘first_name’]}!</p>

<p>

</p>”;

Switching a script from cookies to ses-
sions requires only that you change uses
of $_COOKIE to $_SESSION.

4. Save the file as loggedin.php, upload to
your Web server, and test in your browser
(Figure 9.15).

5. Replace the reference to $_COOKIE with
$_SESSION in header.html (from Script
9.5 to Script 9.8).

if ((isset($_SESSION[‘user_id’]))
➝ && (!strpos($_SERVER[‘PHP_SELF’],
➝ ‘logout.php’))) {

For the Login/Logout links to function
properly (notice the incorrect link in
Figure 9.15), the reference to the cookie
variable within the header file must be
switched over to sessions. The header
file does not need to call the session_
start() function, as it’ll be included by
pages that do.

6. Save the header file, upload to the
Web server, and test in your browser
(Figure 9.16).

Figure 9.16 With the header file altered for sessions,
the proper Login/Logout links will be displayed
(compare with Figure 9.15).

Figure 9.15 After logging in, the user is redirected to
loggedin.php, which will welcome the user by name
using the stored session value.

U
si

n
g

 S
es

si
o

n
s

09_PHPMySQL_VQP(323-374).indd 348 5/31/05 3:02:49 PM

Cookies and Sessions

349

✔ Tips

■ For the Login/Logout links to work on
the other pages (register.php, index.
php, etc.), you’ll need to add the session_
start() command to each of those.

■ If you have an application where the ses-
sion data does not seem to be accessible
from one page to the next, it could be
because a new session is being created on
each page. To check for this, compare the
session ID (the last few characters of the
value will suffice) to see if it is the same.
You can see the session’s ID by viewing
the session cookie as it is sent or by using
the session_id() function:

echo session_id();

■ Session variables are available as soon as
you’ve established them. So, unlike when
using cookies, you can assign a value
to $_SESSION[‘var’] and then refer to
$_SESSION[‘var’] later in that same script.

Script 9.8 The header.html file now also references
$_SESSION.

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML

 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/

 xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml”

 xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=

 ”text/html; charset=iso-8859-1” />

6 <title><?php echo $page_title; ?></title>

7 <style type=”text/css” media=”all”>

 @import “./includes/layout.css”;</style>

8 </head>

9 <body>

10 <div id=”wrapper”><!-- Goes with the CSS

 layout. -->

11

12 <div id=”content”><!-- Goes with the CSS

 layout. -->

13

14 <div id=”nav”><!-- Links section -->

15 <h3>Menu</h3>

16

17 <li class=”navtop”><a href=

 ”index.php” title=”Go to the Home

 Page”>Home

18 <a href=”register.php” title=

 ”Register”>Register

19 <?php

20 // Create a login/logout link.

21 if ((isset($_SESSION[‘user_id’])) &&
 (!strpos($_SERVER[‘PHP_SELF’], ‘logout.
 php’))) {

22 echo ‘<a href=”logout.php” title=

 ”Logout”>Logout’;

23 } else {

24 echo ‘<a href=”login.php” title=

 ”Login”>Login’;

25 }

26 ?>

27

28 </div>

29 <!-- Script 9.8 - header.html -->

30 <!-- Start of page-specific content. -->

U
sin

g
 S

essio
n

s

09_PHPMySQL_VQP(323-374).indd 349 5/31/05 3:02:49 PM

Chapter 9

350

Deleting session variables
When using sessions—particularly with
a login/logout system as I’ve established
here—you need to create a method to delete
the session variables. In the current example,
this would be necessary when the user logs out.

Whereas a cookie system only requires that
another cookie be sent to destroy the exist-
ing cookie, sessions are more demanding,
since there are both the cookie on the client
and the data on the server to consider.

To delete an individual session variable, you
can use the unset() function (which works
with any variable in PHP):

unset($_SESSION[‘var’]);

To delete every session variable, reset the
entire $_SESSION array:

$_SESSION = array();

Finally, to remove all of the session data from
the server, use session_destroy():

session_destroy();

Note that prior to using any of these
methods, the page must begin with ses-
sion_start() so that the existing session is
accessed.

To delete a session:

1. Create a new PHP script in your text edi-
tor (Script 9.9).

<?php # Script 9.9 - logout.php

The logout script will log out the user and
delete all the session information.

2. Invoke the session.

session_start();

Anytime you are using sessions, you must
use the session_start() function, prefer-
ably at the very beginning of a page. This
is true even if you are deleting a session.

Script 9.9 Destroying a session requires special syntax.

1 <?php # Script 9.9 - logout.php (2nd

 version after Script 9.4)

2 // This page lets the user logout.

3

4 session_start(); // Access the existing
 session.

5

6 // If no session variable exists, redirect

 the user.

7 if (!($_SESSION[‘user_id’])) {

8

9 // Start defining the URL.

10 $url = ‘http://’ . $_SERVER[‘HTTP_HOST’]

 . dirname($_SERVER[‘PHP_SELF’]);

11 // Check for a trailing slash.

12 if ((substr($url, -1) == ‘/’) OR (substr

 ($url, -1) == ‘\\’)) {

13 $url = substr ($url, 0, -1); // Chop

 off the slash.

14 }

15 $url .= ‘/index.php’; // Add the page.

16 header(“Location: $url”);

17 exit(); // Quit the script.

18

19 } else { // Cancel the session.

20 $_SESSION = array(); // Destroy the
 variables.

21 session_destroy(); // Destroy the
 session itself.

22 setcookie (‘PHPSESSID’, ‘’, time()-300,
 ‘/’, ‘’, 0); // Destroy the cookie.

23 }

24

25 // Set the page title and include the HTML

 header.

26 $page_title = ‘Logged Out!’;

27 include (‘./includes/header.html’);

28

29 // Print a customized message.

30 echo “<h1>Logged Out!</h1>

31 <p>You are now logged out!</p>

32 <p>

</p>”;

33

34 include (‘./includes/footer.html’);

35 ?>

U
si

n
g

 S
es

si
o

n
s

09_PHPMySQL_VQP(323-374).indd 350 5/31/05 3:02:50 PM

Cookies and Sessions

351

4. Destroy all of the session material.

} else {

 $_SESSION = array();

 session_destroy();

 setcookie (‘PHPSESSID’, ‘’,
 ➝ time()-300, ‘/’, ‘’, 0);

}

The second line here will reset the entire
$_SESSION variable as a new array, erasing
its existing values. The third line removes
the data from the server, and the fourth
sends a cookie to replace the existing ses-
sion cookie in the browser.

5. Create the HTML and print a message.

$page_title = ‘Logged Out!’;

include (‘./includes/header.html’);

echo “<h1>Logged Out!</h1>

<p>You are now logged out!</p>

<p>

</p>”;

include (‘./includes/footer.html’);

?>

Unlike when using the cookie logout.
php script, you cannot refer to the user
by their first name anymore, as all of that
data has been deleted.

6. Save the file as logout.php, upload to
your Web server, and test in your browser
(Figure 9.17).

✔ Tips

■ If you are using an older version of PHP
(prior to version 4.1) and the $_SESSION
array is not available, use session_
unset() in lieu of $_SESSION = array().

■ Never set $_SESSION equal to NULL,
because that could cause problems on
some servers.

■ To delete just one session variable, use
unset($_SESSION[‘var’]).

3. Check for the presence of the
$_SESSION[‘user_id’] variable.

if (!($_SESSION[‘user_id’])) {

 $url = ‘http://’ . $_SERVER
 ➝ [‘HTTP_HOST’] . dirname($_SERVER
 ➝ [‘PHP_SELF’]);

 if ((substr($url, -1) == ‘/’) OR
 ➝ (substr($url, -1) == ‘\\’)) {

 $url = substr ($url, 0, -1);

 }

 $url .= ‘/index.php’;

 header(“Location: $url”);

 exit();

As with the logout.php script in the cookie
examples, if the user is not currently
logged in, he or she will be redirected.

Figure 9.17 The logout page. U
sin

g
 S

essio
n

s

09_PHPMySQL_VQP(323-374).indd 351 5/31/05 3:02:50 PM

Chapter 9

352

Changing the session behavior
As part of PHP’s support for sessions, there
are about 20 different configuration options
you can set for how PHP handles sessions.
Table 9.1 lists the most important of these.

Each of these settings, except for session.
use_trans_sid, can be set within your PHP
script using the ini_set() function (covered
in the preceding chapter):

ini_set (parameter, new_setting);

For example, to change where PHP stores the
session data, use

ini_set (‘session.save_path’,
➝ ‘/path/to/folder’);

To set the name of the session (perhaps to
make a more user-friendly one), you can use
either ini_set() or the simpler session_
name() function.

session_name(‘YourSession’);

The benefits of creating your own session
name are twofold: it’s marginally more
secure and it may be better received by
the end user (since the session name is the
cookie name the end user will see). That
being said, for session_name() to work, it
must be called before every use of session_
start() in your entire Web application. I’ll
rewrite the example with this in mind.

S e t t i n g E x a m p l e M e a n i n g

session.auto_start 0 If sessions should be automatically used (0 means no).

session.cookie_domain www.dmcinsights.com The URL wherein the session cookie should be
 accessible.

session.cookie_lifetime 0 How long, in seconds, the session cookie should exist
 (0 means for the life of the browser).

session.cookie_path / The domain path wherein the cookie should be
 accessible.

session.cookie_secure 0 Whether or not the cookie must be sent over a secure
 connection (0 means no).

session.gc_probability 1 The odds of performing garbage collection from 1 to 100.

session.gc_maxlifetime 1440 The time period in seconds a session should last.

session.name PHPSESSID The name given to all sessions.

session.save_handler files How the session data will be stored.

session.save_path /tmp Where session data will be stored.

session.serialize_handler php What method should be used to serialize the session
 variables.

session.use_cookies 1 Whether or not the session ID should be stored in a
 cookie (0 means no).

session.use_only_cookies 0 Whether or not the session ID must be stored in a cookie
 (0 means no).

session.use_trans_sid 0 Whether or not PHP should add the session ID to every
 link in an application (0 means no).

Session Configuration Settings

Table 9.1 PHP’s session configuration options, with the default setting listed as most of the examples.

U
si

n
g

 S
es

si
o

n
s

09_PHPMySQL_VQP(323-374).indd 352 5/31/05 3:02:50 PM

Cookies and Sessions

353

To use your own session names:

1. Open login.php (refer to Script 9.6) in
your text editor.

2. Before the session_start() call (line 36),
add the following (Script 9.10):

session_name (‘YourVisitID’);

Instead of having the session be named
PHPSESSID, which may be imposing
as a cookie name, I’ll use the friendlier
YourVisitID.

continues on page 356

Script 9.10 The login.php script now uses an original
session name.

1 <?php # Script 9.10 - login.php (4th

 version after Scripts 9.1, 9.3 & 9.6)

2 // Send NOTHING to the Web browser prior to

 the session_start() line!

3

4 // Check if the form has been submitted.

5 if (isset($_POST[‘submitted’])) {

6

7 require_once (‘../mysql_connect.php’);

 // Connect to the db.

8

9 $errors = array(); // Initialize error

 array.

10

11 // Check for an email address.

12 if (empty($_POST[‘email’])) {

13 $errors[] = ‘You forgot to enter your

 email address.’;

14 } else {

15 $e = escape_data($_POST[‘email’]);

16 }

17

18 // Check for a password.

19 if (empty($_POST[‘password’])) {

20 $errors[] = ‘You forgot to enter your

 password.’;

21 } else {

22 $p = escape_data($_POST

 [‘password’]);

23 }

24

25 if (empty($errors)) { // If everything’s

 OK.

26

27 /* Retrieve the user_id and

 first_name for

28 that email/password combination. */

29 $query = “SELECT user_id, first_name

 FROM users WHERE email=’$e’ AND

 password=SHA(‘$p’)”;

(script continues on next page)

U
sin

g
 S

essio
n

s

09_PHPMySQL_VQP(323-374).indd 353 5/31/05 3:02:51 PM

Chapter 9

354

30 $result = @mysql_query ($query); // Run the query.

31 $row = mysql_fetch_array ($result, MYSQL_NUM); // Return a record, if applicable.

32

33 if ($row) { // A record was pulled from the database.

34

35 // Set the session data & redirect.

36 session_name (‘YourVisitID’);

37 session_start();

38 $_SESSION[‘user_id’] = $row[0];

39 $_SESSION[‘first_name’] = $row[1];

40

41 // Redirect the user to the loggedin.php page.

42 // Start defining the URL.

43 $url = ‘http://’ . $_SERVER[‘HTTP_HOST’] . dirname($_SERVER[‘PHP_SELF’]);

44 // Check for a trailing slash.

45 if ((substr($url, -1) == ‘/’) OR (substr($url, -1) == ‘\\’)) {

46 $url = substr ($url, 0, -1); // Chop off the slash.

47 }

48 // Add the page.

49 $url .= ‘/loggedin.php’;

50

51 header(“Location: $url”);

52 exit(); // Quit the script.

53

54 } else { // No record matched the query.

55 $errors[] = ‘The email address and password entered do not match those on file.’;

 // Public message.

56 $errors[] = mysql_error() . ‘

Query: ‘ . $query; // Debugging message.

57 }

58

59 } // End of if (empty($errors)) IF.

60

61 mysql_close(); // Close the database connection.

62

63 } else { // Form has not been submitted.

64

65 $errors = NULL;

66

67 } // End of the main Submit conditional.

68

(script continues on next page)

Script 9.10 continued

U
si

n
g

 S
es

si
o

n
s

09_PHPMySQL_VQP(323-374).indd 354 5/31/05 3:02:51 PM

Cookies and Sessions

355

69 // Begin the page now.

70 $page_title = ‘Login’;

71 include (‘./includes/header.html’);

72

73 if (!empty($errors)) { // Print any error messages.

74 echo ‘<h1 id=”mainhead”>Error!</h1>

75 <p class=”error”>The following error(s) occurred:
’;

76 foreach ($errors as $msg) { // Print each error.

77 echo “ - $msg
\n”;

78 }

79 echo ‘</p><p>Please try again.</p>’;

80 }

81

82 // Create the form.

83 ?>

84 <h2>Login</h2>

85 <form action=”login.php” method=”post”>

86 <p>Email Address: <input type=”text” name=”email” size=”20” maxlength=”40” /> </p>

87 <p>Password: <input type=”password” name=”password” size=”20” maxlength=”20” /></p>

88 <p><input type=”submit” name=”submit” value=”Login” /></p>

89 <input type=”hidden” name=”submitted” value=”TRUE” />

90 </form>

91 <?php

92 include (‘./includes/footer.html’);

93 ?>

Script 9.10 continued

U
sin

g
 S

essio
n

s

09_PHPMySQL_VQP(323-374).indd 355 5/31/05 3:02:51 PM

Chapter 9

356

3. Repeat the process for loggedin.php
(compare Script 9.7 with Script 9.11).

Because every page must use the same
session name, this line of code has to be
added to the loggedin.php and logout.
php scripts for them to work properly.

Script 9.11 The same session name (YourVisitID) must
be used across every script.

1 <?php # Script 9.11 - loggedin.php (3rd

 version after Scripts 9.2 & 9.7)

2 # User is redirected here from login.php.

3

4 session_name (‘YourVisitID’);

5 session_start(); // Start the session.

6

7 // If no session value is present, redirect

 the user.

8 if (!isset($_SESSION[‘user_id’])) {

9

10 // Start defining the URL.

11 $url = ‘http://’ . $_SERVER[‘HTTP_HOST’]

 . dirname($_SERVER[‘PHP_SELF’]);

12 // Check for a trailing slash.

13 if ((substr($url, -1) == ‘/’) OR (substr

 ($url, -1) == ‘\\’)) {

14 $url = substr ($url, 0, -1); // Chop

 off the slash.

15 }

16 $url .= ‘/index.php’; // Add the page.

17 header(“Location: $url”);

18 exit(); // Quit the script.

19 }

20

21 // Set the page title and include the HTML

 header.

22 $page_title = ‘Logged In!’;

23 include (‘./includes/header.html’);

24

25 // Print a customized message.

26 echo “<h1>Logged In!</h1>

27 <p>You are now logged in, {$_SESSION

 [‘first_name’]}!</p>

28 <p>

</p>”;

29

30 include (‘./includes/footer.html’);

31 ?>

U
si

n
g

 S
es

si
o

n
s

09_PHPMySQL_VQP(323-374).indd 356 5/31/05 3:02:52 PM

Cookies and Sessions

357

4. Add the following line to logout.php
(compare Script 9.9 with Script 9.12):

session_name (‘YourVisitID’);

5. Change the setcookie() line of logout.
php so that it uses the session_name()
function:

setcookie (session_name(), ‘’,
➝ time()-300, ‘/’, ‘’, 0);

The session_name() function will set the
session name or return the current ses-
sion name (if no argument is given). Since
I want to send a cookie using the same
cookie name as was used to create the
cookie, the session_name() function will
set that value appropriately.

continues on next page

Script 9.12 The logout.php page uses the
session_name() function to also determine the
name of the cookie to be sent.

1 <?php # Script 9.12 - logout.php (3rd

 version after Scripts 9.4 & 9.9)

2 // This page lets the user logout.

3

4 session_name (‘YourVisitID’);

5 session_start(); // Access the existing

 session.

6

7 // If no session variable exists, redirect

 the user.

8 if (!($_SESSION[‘user_id’])) {

9

10 // Start defining the URL.

11 $url = ‘http://’ . $_SERVER[‘HTTP_HOST’]

 . dirname($_SERVER[‘PHP_SELF’]);

12 // Check for a trailing slash.

13 if ((substr($url, -1) == ‘/’) OR (substr

 ($url, -1) == ‘\\’)) {

14 $url = substr ($url, 0, -1); // Chop

 off the slash.

15 }

16 $url .= ‘/index.php’; // Add the page.

17 header(“Location: $url”);

18 exit(); // Quit the script.

19

20 } else { // Cancel the session.

21 $_SESSION = array(); // Destroy the

 variables.

22 session_destroy(); // Destroy the

 session itself.

23 setcookie (session_name(), ‘’,
 time()-300, ‘/’, ‘’, 0); // Destroy
 the cookie.

24 }

25

26 // Set the page title and include the HTML

 header.

27 $page_title = ‘Logged Out!’;

28 include (‘./includes/header.html’);

29

30 // Print a customized message.

(script continues on next page)

U
sin

g
 S

essio
n

s

09_PHPMySQL_VQP(323-374).indd 357 5/31/05 3:02:52 PM

Chapter 9

358

6. Save all the files, upload to your Web
server, and test in your Web browser.

7. If desired, view the cookie that was set
during the login process (Figure 9.18).

Script 9.12 continued

31 echo “<h1>Logged Out!</h1>

32 <p>You are now logged out!</p>

33 <p>

</p>”;

34

35 include (‘./includes/footer.html’);

36 ?>

Figure 9.18 The cookie’s name will correspond to the
session name.

U
si

n
g

 S
es

si
o

n
s

09_PHPMySQL_VQP(323-374).indd 358 5/31/05 3:02:52 PM

Cookies and Sessions

359

Changing the session cookie
settings
As it stands, the cookie sent by the ses-
sion_start() function uses certain default
parameters: an expiration of 0 (meaning
the cookie will last as long as the browser
remains open), a path of ‘/’ (the cookie is
available in the current folder and all of its
subfolders), and no domain name. To change
any of these settings, you can use the ses-
sion_set_cookie_params() function:

session_set_cookie_params(expiration,
➝ ‘path’, ‘domain’, secure);

The expiration setting is the only required
value and is set in seconds with 0 as the
default. This is not the number of seconds
from the epoch (as is the case with the set-
cookie() function), and therefore you would
use just 300 (for five minutes) rather than
time() + 300 (for five minutes from now).

Sessions and Cookies
In the previous examples I’ve accomplished
the same tasks (logging in and logging out)
using cookies and sessions. Obviously, both
are easy to use in PHP, but the true question
is when to use one or the other.

Sessions have the following advantages
over cookies:

◆ They are generally more secure (because
the data is being retained on the server).

◆ They allow for more data to be stored.

◆ They can be used without cookies.

Whereas cookies have the following advan-
tages over sessions:

◆ They are easier to program.

◆ They require less of the server.

In general, to store and retrieve just a couple
of small pieces of information, use cookies.
For most of your Web applications, though,
you’ll use sessions. But since sessions do rely
upon cookies by default, I’ll discuss how to
better manage this relationship. S

essio
n

s an
d Co

o
kies

09_PHPMySQL_VQP(323-374).indd 359 5/31/05 3:02:53 PM

Chapter 9

360

To change the session cookie settings:

1. Open login.php (refer to Script 9.10) in
your text editor.

2. Prior to the session_start() call (line
37), add the following (Script 9.13):

session_set_cookie_params (900,
➝ ‘/ch09/’, ‘www.domain.com’);

The session_set_cookie_params()
function must be used before ses-
sion_start() to be effective. Change the
path and domain setting to those values
that make sense for your application, or
omit the values to use the defaults. In this
example, I’ll give the cookie an expiration
time that’s 15 minutes from now.

3. Save the file as login.php, upload to your
Web server, and test in your browser.

After 15 minutes, the cookie will expire
and the PHP scripts should no longer be
able to access the session values (first_
name and user_id).

continues on page 362

Script 9.13 This version of the login.php script sets
explicit cookie parameters.

1 <?php # Script 9.13 - login.php (5th

 version after Scripts 9.1, 9.3, 9.6 & 9.10)

2 // Send NOTHING to the Web browser prior to

 the session_start() line!

3

4 // Check if the form has been submitted.

5 if (isset($_POST[‘submitted’])) {

6

7 require_once (‘../mysql_connect.php’);

 // Connect to the db.

8

9 $errors = array(); // Initialize error

 array.

10

11 // Check for an email address.

12 if (empty($_POST[‘email’])) {

13 $errors[] = ‘You forgot to enter your

 email address.’;

14 } else {

15 $e = escape_data($_POST[‘email’]);

16 }

17

18 // Check for a password.

19 if (empty($_POST[‘password’])) {

20 $errors[] = ‘You forgot to enter your

 password.’;

21 } else {

22 $p = escape_data($_POST

 [‘password’]);

23 }

24

25 if (empty($errors)) { // If everything’s

OK.

26

27 /* Retrieve the user_id and

 first_name for

28 that email/password combination. */

29 $query = “SELECT user_id,

 first_name FROM users WHERE email=

 ’$e’ AND password=SHA(‘$p’)”;

30 $result = @mysql_query ($query); //

 Run the query.

(script continues on next page)

S
es

si
o

n
s

an
d

Co
o

ki
es

09_PHPMySQL_VQP(323-374).indd 360 5/31/05 3:02:53 PM

Cookies and Sessions

361

31 $row = mysql_fetch_array ($result, MYSQL_NUM); // Return a record, if applicable.

32

33 if ($row) { // A record was pulled from the database.

34

35 // Set the session data & redirect.

36 session_name (‘YourVisitID’);

37 session_set_cookie_params (900, ‘/ch09/’, ‘www.domain.com’);

38 session_start();

39 $_SESSION[‘user_id’] = $row[0];

40 $_SESSION[‘first_name’] = $row[1];

41

42 // Redirect the user to the loggedin.php page.

43 // Start defining the URL.

44 $url = ‘http://’ . $_SERVER[‘HTTP_HOST’] . dirname($_SERVER[‘PHP_SELF’]);

45 // Check for a trailing slash.

46 if ((substr($url, -1) == ‘/’) OR (substr($url, -1) == ‘\\’)) {

47 $url = substr ($url, 0, -1); // Chop off the slash.

48 }

49 // Add the page.

50 $url .= ‘/loggedin.php’;

51

52 header(“Location: $url”);

53 exit(); // Quit the script.

54

55 } else { // No record matched the query.

56 $errors[] = ‘The email address and password entered do not match those on file.’;

 // Public message.

57 $errors[] = mysql_error() . ‘

Query: ‘ . $query; // Debugging message.

58 }

59

60 } // End of if (empty($errors)) IF.

61

62 mysql_close(); // Close the database connection.

63

64 } else { // Form has not been submitted.

65

66 $errors = NULL;

67

68 } // End of the main Submit conditional.

69

70 // Begin the page now.

71 $page_title = ‘Login’;

(script continues on next page)

Script 9.13 continued

S
essio

n
s an

d Co
o

kies

09_PHPMySQL_VQP(323-374).indd 361 5/31/05 3:02:53 PM

Chapter 9

362

4. View the cookie being sent (Figure 9.19).

5. Alter loggedin.php and logout.php so
that the setcookie() function uses the
same parameters as login.php (except
for the expiration time on the logout
page, of course).

✔ Tips

■ The session_get_cookie_params()
function returns an array of the current
session cookie settings.

■ The session cookie parameters can also
be altered using the ini_set() function.

■ The expiration time of the cookie refers
only to the longevity of the cookie in the
Web browser, not to how long the session
data will be stored on the server.

Script 9.13 continue

72 include (‘./includes/header.html’);

73

74 if (!empty($errors)) { // Print any error

 messages.

75 echo ‘<h1 id=”mainhead”>Error!</h1>

76 <p class=”error”>The following error(s)

 occurred:
’;

77 foreach ($errors as $msg) { // Print

 each error.

78 echo “ - $msg
\n”;

79 }

80 echo ‘</p><p>Please try again.</p>’;

81 }

82

83 // Create the form.

84 ?>

85 <h2>Login</h2>

86 <form action=”login.php” method=”post”>

87 <p>Email Address: <input type=”text”

 name=”email” size=”20” maxlength=”40”

 /> </p>

88 <p>Password: <input type=”password”

 name=”password” size=”20” maxlength=”20”

 /></p>

89 <p><input type=”submit” name=”submit”

 value=”Login” /></p>

90 <input type=”hidden” name=”submitted”

 value=”TRUE” />

91 </form>

92 <?php

93 include (‘./includes/footer.html’);

94 ?>

Figure 9.19 The session cookie now has an expiration
time set.

S
es

si
o

n
s

an
d

Co
o

ki
es

09_PHPMySQL_VQP(323-374).indd 362 5/31/05 3:02:54 PM

Cookies and Sessions

363

Using sessions without cookies
One of the problems with sessions is that,
by default, they rely on the use of a cookie to
work properly. When a session is started, it
sends a cookie that resides in the user’s Web
browser. Every subsequent page that calls
session_start() makes use of the cookie,
which contains the session name and ID,
to know to use an existing session and to
not create a new one. The problem is that
users may have cookies turned off in their
Web browser or may not accept the cookie
because they do not understand its purpose.
If this is the case, PHP will create a new ses-
sion for each page and none of the registered
variables will be accessible.

You can use sessions without cookies by
passing along the session name and ID from
page to page. This is simple enough to do,
but if you forget to pass the session in only
one instance, the entire process is shot.

To pass the session name from page to page,
you can use the SID constant, which stands
for session ID and has a value like session_
name=session_ID. If this value is appended
to every URL within the site, the sessions will
still work even if the user did not accept the
cookie. Note, though, that PHP only assigns a
value to SID if no session cookie is present.

Garbage Collection

Garbage collection with respect to ses-
sions is the process of deleting the session
files (where the actual data is stored).
Creating a logout system that destroys
a session is ideal, but there’s no guaran-
tee all users will formally log out as they
should. For this reason, PHP includes a
cleanup process.

Whenever the session_start() function
is called, PHP’s garbage collection kicks
in, checking the last modification date of
each session (a session is modified when-
ever variables are set or retrieved). The
server overhead of all this can become
costly for busy sites, so you can tweak
PHP’s behavior in this regard.

Two settings dictate garbage collection:
session_gc_maxlifetime and session.
gc_probability. The first states after
how many seconds of inactivity a session
is considered idle and will therefore be
deleted. The second setting determines
the probability that garbage collection is
performed, on a scale of 1 to 100. So, with
the default settings, each call to ses-
sion_start() has a 1 percent chance of
invoking garbage collection. If PHP does
start the cleanup, any sessions that have
not been used in more than 1,440 seconds
will be deleted.

With this in mind, you can alter PHP’s
garbage collection habits to better suit
your application. Twenty-four minutes
is a reasonable amount of idle time, but
you’ll want to increase the probability to
somewhere closer to 30 percent so that
there is a good balance between perfor-
mance and clutter.

S
essio

n
s an

d Co
o

kies

09_PHPMySQL_VQP(323-374).indd 363 5/31/05 3:02:54 PM

Chapter 9

364

To use sessions without cookies:

1. Open login.php (refer to Script 9.13) in
your text editor.

2. Replace the session_set_cookie_
params() line with this one (Script 9.14):

ini_set(‘session.use_cookies’, 0);

This code will tell PHP to specifically not
use any cookies.

3. Alter the final $url creation line to be

$url .= ‘/loggedin.php?’ . SID;

The addition of ? and SID to the redirect
will add ?session_name=session_ID to the
URL, effectively passing the session ID to
the loggedin.php script.

continues on page 366

Script 9.14 This version of the login.php script does
not use cookies at all, instead maintaining the state
by passing the session ID in the URL.

1 <?php # Script 9.14 - login.php (6th version

 after Scripts 9.1, 9.3, 9.6, 9.10 & 9.13)

2 // Send NOTHING to the Web browser prior to

 the session_start() line!

3

4 // Check if the form has been submitted.

5 if (isset($_POST[‘submitted’])) {

6

7 require_once (‘../mysql_connect.php’);

 // Connect to the db.

8

9 $errors = array(); // Initialize error

 array.

10

11 // Check for an email address.

12 if (empty($_POST[‘email’])) {

13 $errors[] = ‘You forgot to enter your

 email address.’;

14 } else {

15 $e = escape_data($_POST[‘email’]);

16 }

17

18 // Check for a password.

19 if (empty($_POST[‘password’])) {

20 $errors[] = ‘You forgot to enter your

 password.’;

21 } else {

22 $p = escape_data($_POST[‘password’]);

23 }

24

25 if (empty($errors)) { // If everything’s

 OK.

26

27 /* Retrieve the user_id and

 first_name for

28 that email/password combination. */

29 $query = “SELECT user_id, first_name

 FROM users WHERE email=’$e’ AND

 password=SHA(‘$p’)”;

30 $result = @mysql_query ($query); //

 Run the query.

(script continues on next page)

S
es

si
o

n
s

an
d

Co
o

ki
es

09_PHPMySQL_VQP(323-374).indd 364 5/31/05 3:02:54 PM

Cookies and Sessions

365

31 $row = mysql_fetch_array ($result, MYSQL_NUM); // Return a record, if applicable.

32

33 if ($row) { // A record was pulled from the database.

34

35 // Set the session data & redirect.

36 session_name (‘YourVisitID’);

37 ini_set(‘session.use_cookies’, 0); // Don’t use cookies.

38 session_start();

39 $_SESSION[‘user_id’] = $row[0];

40 $_SESSION[‘first_name’] = $row[1];

41

42 // Redirect the user to the loggedin.php page.

43 // Start defining the URL.

44 $url = ‘http://’ . $_SERVER[‘HTTP_HOST’] . dirname($_SERVER[‘PHP_SELF’]);

45 // Check for a trailing slash.

46 if ((substr($url, -1) == ‘/’) OR (substr($url, -1) == ‘\\’)) {

47 $url = substr ($url, 0, -1); // Chop off the slash.

48 }

49 // Add the page.

50 $url .= ‘/loggedin.php?’ . SID; // Add the session name & ID.

51

52 header(“Location: $url”);

53 exit(); // Quit the script.

54

55 } else { // No record matched the query.

56 $errors[] = ‘The email address and password entered do not match those on file.’;

 // Public message.

57 $errors[] = mysql_error() . ‘

Query: ‘ . $query; // Debugging message.

58 }

59

60 } // End of if (empty($errors)) IF.

61

62 mysql_close(); // Close the database connection.

63

64 } else { // Form has not been submitted.

65

66 $errors = NULL;

67

68 } // End of the main Submit conditional.

69

70 // Begin the page now.

71 $page_title = ‘Login’;

(script continues on next page)

Script 9.14 continued

S
essio

n
s an

d Co
o

kies

09_PHPMySQL_VQP(323-374).indd 365 5/31/05 3:02:55 PM

Chapter 9

366

4. Save the file, upload to your Web server, and
test in your Web browser (Figure 9.20).

5. Copy the URL from the browser and paste
it into another browser (Figure 9.21).

Called session hijacking, this is one of the
reasons to rely upon cookies whenever
possible. The next section of this chapter
will introduce preventive measures.

To spare you from having to review minor
modifications to the same scripts yet again
(and to save precious book space), I am not
including new versions of header.html,
loggedin.php, and logout.php. But since you
should know how to edit these files in order
to use sessions without cookies, I’ll quickly
outline the necessary changes.

Script 9.14 continue

72 include (‘./includes/header.html’);

73

74 if (!empty($errors)) { // Print any error

 messages.

75 echo ‘<h1 id=”mainhead”>Error!</h1>

76 <p class=”error”>The following error(s)

 occurred:
’;

77 foreach ($errors as $msg) { // Print

 each error.

78 echo “ - $msg
\n”;

79 }

80 echo ‘</p><p>Please try again.</p>’;

81 }

82

83 // Create the form.

84 ?>

85 <h2>Login</h2>

86 <form action=”login.php” method=”post”>

87 <p>Email Address: <input type=”text”

 name=”email” size=”20” maxlength=”40”

 /> </p>

88 <p>Password: <input type=”password”

 name=”password” size=”20” maxlength=”20”

 /></p>

89 <p><input type=”submit” name=”submit”

 value=”Login” /></p>

90 <input type=”hidden” name=”submitted”

 value=”TRUE” />

91 </form>

92 <?php

93 include (‘./includes/footer.html’);

94 ?>

Figure 9.20 When the browser is redirected to the
loggedin.php page, the session name and ID will be
appended to the URL.

Figure 9.21 By using an existing session ID in a new
browser, I can hijack another user’s session and have
access to all of that user’s registered session data.

S
es

si
o

n
s

an
d

Co
o

ki
es

09_PHPMySQL_VQP(323-374).indd 366 5/31/05 3:02:55 PM

Cookies and Sessions

367

✔ Tips

■ If you have access to your php.ini file,
you can set session.use_trans_sid to 1 or
On. Doing so will have PHP automatically
append SID to every URL as you have done
manually here. It will slow down execution
of the scripts, though, because PHP will
need to check every page for URLs.

■ The session_id() function returns the
current session value (or allows you to
specify which session to use).

■ You can also pass SID from one page to
another by storing it as a hidden input
type in a form.

■ Depending on the Web browser being
used by the client, a session may be either
browser-specific or window-specific. If
the latter is the case, a pop-up window in
your site will not be part of the same ses-
sion unless it has received the session ID.

■ Remember that using this method of
storing and passing the session ID is
less secure than using cookies for that
purpose. If security isn’t really a concern
for your Web site (for example, if you’re
not dealing with personal information or
e-commerce), then this is less of an issue.

To edit the other files:

1. Edit header.html so that every link
includes ?session_name=session_ID
(script not shown).

The other problem with using sessions
without cookies (besides the security
issue) is that you must account for every
link in your entire application. To modify
the header file, you’ll need to define the
links like so:

<a href=”index.php?<?php echo
➝ SID; ?>” title=”Go to the Home
➝ Page”>Home

2. Edit loggedin.php so that it also includes
the ini_set() line.

This script would then begin like so:

session_name (‘YourVisitID’);

ini_set(‘session.use_cookies’, 0);

session_start();

You would also need to do this step for
any other page that uses sessions.

3. Make the same changes to logout.php.

4. Remove the setcookie() line from
logout.php.

Since a session cookie is no longer being
used, there is no reason to set another
cookie deleting it.

S
essio

n
s an

d Co
o

kies

09_PHPMySQL_VQP(323-374).indd 367 5/31/05 3:02:55 PM

Chapter 9

368

Improving Session
Security
Because important information is nor-
mally stored in a session (as opposed to a
cookie), security becomes more of an issue.
Remember that with sessions there are two
considerations: the session ID, which is a
reference point to the session data, and the
session data itself, stored on the server. A
malicious person is far more likely to hack
into a session through the session ID than
the data on the server, so I’ll focus on that
side of things here.

Storing the session ID in a cookie is con-
sidered the more secure method of using
sessions, as opposed to passing the session
ID along in URLs or storing it in hidden form
inputs. Those alternatives are less secure
because the session could easily be hijacked
by another user, as you already witnessed.
If I can learn another user’s session ID, I can
easily trick a server into thinking that it is
my session ID. At that point I have effectively
taken over the original user’s entire session
and may have access to their data. So storing
the session ID in a cookie makes it somewhat
harder to steal.

One method of preventing hijacking is to
store some sort of user identifier in the ses-
sion, and then to repeatedly double-check
this value. The HTTP_USER_AGENT—a
combination of the browser and operating
system being used—is a likely candidate for
this purpose. This adds a layer of security in
that I could only hijack another user’s ses-
sion if I am running the exact same browser
and operating system. For example, a login
page would have

$_SESSION[‘agent’] = $_SERVER
➝ [‘HTTP_USER_AGENT’];

Then subsequent pages would check the
stored HTTP_USER_AGENT against the
user’s HTTP_USER_AGENT (which should
be the same).

if ($_SERVER[‘HTTP_USER_AGENT’] !=
➝ $_SESSION[‘agent’]) {

 /* The session has probably

 been hijacked! */

}

As a demonstration of this, I’ll modify the
examples one last time. While I’m focusing
on security, I’ll encrypt the $_SERVER[‘HTTP_
USER_AGENT’] information using the md5()
function to make it harder to fake.

Preventing Session Fixation

Another specific kind of session attack is
known as session fixation. This is where
one user specifies the session ID that
another user should use. This session ID
could be randomly generated or legiti-
mately created. In either case, the real
user will go into the site using the fixed
session ID and do whatever. Then the
malicious user can access that session
because they know what the session ID is.
You can help protect against these types
of attack by changing the session ID. The
session_regenerate_id() does just that,
providing a new session ID to refer to the
current session data. You can use this
function should anything of consequence
change during a user’s session.

Im
pr

o
vi

n
g

 S
es

si
o

n
 S

ec
u

ri
ty

09_PHPMySQL_VQP(323-374).indd 368 5/31/05 3:02:56 PM

Cookies and Sessions

369

To use sessions more securely:

1. Open login.php (refer to Script 9.14) in
your text editor.

2. Delete the ini_set() line and remove the
reference to SID (Script 9.15).

For security purposes, I’ll revert to using
cookies to store the session ID. I also
no longer need to append SID to the
header() redirection URL.

3. After assigning the other session vari-
ables, store the HTTP_USER_AGENT.

$_SESSION[‘agent’] = md5($_SERVER
➝ [‘HTTP_USER_AGENT’]);

The HTTP_USER_AGENT is part of the
$_SERVER array (you may recall using it
way back in Chapter 1, “Introduction to
PHP”). It will have a value like Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.0;
.NET CLR 1.1.4322). This variable is run
through the md5() function, which will
turn it into a 32-character hexadecimal
hash (although it’s just easier to say that
the data is encrypted).

4. Save the file and upload to your Web server.

continues on page 372

Script 9.15 This final version of the login.php script
also stores an encrypted form of the user’s HTTP_
USER_AGENT (the browser and operating system of
the client) in a session.

1 <?php # Script 9.15 - login.php (7th

 version after Scripts 9.1, 9.3, 9.6, 9.10.

 9.13 & 9.14)

2 // Send NOTHING to the Web browser prior to

 the session_start() line!

3

4 // Check if the form has been submitted.

5 if (isset($_POST[‘submitted’])) {

6

7 require_once (‘../mysql_connect.php’);

 // Connect to the db.

8

9 $errors = array(); // Initialize error

 array.

10

11 // Check for an email address.

12 if (empty($_POST[‘email’])) {

13 $errors[] = ‘You forgot to enter your

 email address.’;

14 } else {

15 $e = escape_data($_POST[‘email’]);

16 }

17

18 // Check for a password.

19 if (empty($_POST[‘password’])) {

20 $errors[] = ‘You forgot to enter your

 password.’;

21 } else {

22 $p = escape_data($_POST

 [‘password’]);

23 }

24

25 if (empty($errors)) { // If everything’s

 OK.

26

27 /* Retrieve the user_id and

 first_name for

28 that email/password combination. */

(script continues on next page)

Im
pro

vin
g

 S
essio

n
 S

ecu
rity

09_PHPMySQL_VQP(323-374).indd 369 5/31/05 3:02:56 PM

Chapter 9

370

29 $query = “SELECT user_id, first_name FROM users WHERE email=’$e’ AND password=SHA(‘$p’)”;

30 $result = @mysql_query ($query); // Run the query.

31 $row = mysql_fetch_array ($result, MYSQL_NUM); // Return a record, if applicable.

32

33 if ($row) { // A record was pulled from the database.

34

35 // Set the session data & redirect.

36 session_name (‘YourVisitID’);

37 session_start();

38 $_SESSION[‘user_id’] = $row[0];

39 $_SESSION[‘first_name’] = $row[1];

40 $_SESSION[‘agent’] = md5($_SERVER[‘HTTP_USER_AGENT’]);

41

42 // Redirect the user to the loggedin.php page.

43 // Start defining the URL.

44 $url = ‘http://’ . $_SERVER[‘HTTP_HOST’] . dirname($_SERVER[‘PHP_SELF’]);

45 // Check for a trailing slash.

46 if ((substr($url, -1) == ‘/’) OR (substr($url, -1) == ‘\\’)) {

47 $url = substr ($url, 0, -1); // Chop off the slash.

48 }

49 // Add the page.

50 $url .= ‘/loggedin.php’;

51

52 header(“Location: $url”);

53 exit(); // Quit the script.

54

55 } else { // No record matched the query.

56 $errors[] = ‘The email address and password entered do not match those on file.’;

 // Public message.

57 $errors[] = mysql_error() . ‘

Query: ‘ . $query; // Debugging message.

58 }

59

60 } // End of if (empty($errors)) IF.

61

62 mysql_close(); // Close the database connection.

63

64 } else { // Form has not been submitted.

65

66 $errors = NULL;

67

(script continues on next page)

Script 9.15 continued

Im
pr

o
vi

n
g

 S
es

si
o

n
 S

ec
u

ri
ty

09_PHPMySQL_VQP(323-374).indd 370 5/31/05 3:02:56 PM

Cookies and Sessions

371

68 } // End of the main Submit conditional.

69

70 // Begin the page now.

71 $page_title = ‘Login’;

72 include (‘./includes/header.html’);

73

74 if (!empty($errors)) { // Print any error messages.

75 echo ‘<h1 id=”mainhead”>Error!</h1>

76 <p class=”error”>The following error(s) occurred:
’;

77 foreach ($errors as $msg) { // Print each error.

78 echo “ - $msg
\n”;

79 }

80 echo ‘</p><p>Please try again.</p>’;

81 }

82

83 // Create the form.

84 ?>

85 <h2>Login</h2>

86 <form action=”login.php” method=”post”>

87 <p>Email Address: <input type=”text” name=”email” size=”20” maxlength=”40” /> </p>

88 <p>Password: <input type=”password” name=”password” size=”20” maxlength=”20” /></p>

89 <p><input type=”submit” name=”submit” value=”Login” /></p>

90 <input type=”hidden” name=”submitted” value=”TRUE” />

91 </form>

92 <?php

93 include (‘./includes/footer.html’);

94 ?>

Script 9.15 continued

Im
pro

vin
g

 S
essio

n
 S

ecu
rity

09_PHPMySQL_VQP(323-374).indd 371 5/31/05 3:02:57 PM

Chapter 9

372

5. Open loggedin.php (Script 9.11) in your
text editor.

6. Change the !isset($_SESSION[‘user_
id’]) conditional to (Script 9.16)

if (!isset($_SESSION[‘agent’])
➝ OR ($_SESSION [‘agent’] != md5
➝ ($_SERVER[‘HTTP_USER_AGENT’]))) {

This conditional checks for two things.
First, it sees if the $_SESSION[‘agent’]
variable is not set (this part is just as it
was before, although agent is being used
instead of user_id). The second part of
the conditional checks if the md5() ver-
sion of $_SERVER[‘HTTP_USER_AGENT’]
does not equal the value stored in
$_SESSION[‘agent’]. If either of these
conditions are true, the user will be
redirected.

Script 9.16 This loggedin.php script now confirms
that the user accessing this page has the same HTTP_
USER_AGENT as they did when they logged in.

1 <?php # Script 9.16 - loggedin.php

 (4th version after Scripts 9.2, 9.7 & 9.11)

2 # User is redirected here from login.php.

3

4 session_name (‘YourVisitID’);

5 session_start(); // Start the session.

6

7 // If no session value is present, redirect

 the user.

8 if (!isset($_SESSION[‘agent’]) OR
 ($_SESSION [‘agent’] != md5($_SERVER
 [‘HTTP_USER_AGENT’]))) {

9

10 // Start defining the URL.

11 $url = ‘http://’ . $_SERVER[‘HTTP_HOST’]

 . dirname($_SERVER[‘PHP_SELF’]);

12 // Check for a trailing slash.

13 if ((substr($url, -1) == ‘/’) OR (substr

 ($url, -1) == ‘\\’)) {

14 $url = substr ($url, 0, -1); // Chop

 off the slash.

15 }

16 $url .= ‘/index.php’; // Add the page.

17 header(“Location: $url”);

18 exit(); // Quit the script.

19 }

20

21 // Set the page title and include the HTML

 header.

22 $page_title = ‘Logged In!’;

23 include (‘./includes/header.html’);

24

25 // Print a customized message.

26 echo “<h1>Logged In!</h1>

27 <p>You are now logged in, {$_SESSION

 [‘first_name’]}!</p>

28 <p>

</p>”;

29

30 include (‘./includes/footer.html’);

31 ?>

Im
pr

o
vi

n
g

 S
es

si
o

n
 S

ec
u

ri
ty

09_PHPMySQL_VQP(323-374).indd 372 5/31/05 3:02:57 PM

Cookies and Sessions

373

7. Save this file, upload to your Web server,
and test in your Web browser by logging
in (Figure 9.22).

✔ Tips

■ For critical uses of sessions, require the
use of cookies and transmit them over a
secure connection, if at all possible. You
can even set PHP to only use cookies by
setting session.use_only_cookies to 1 (as
of PHP 4.3).

■ If you are using a server shared with other
domains, changing the session.save_path
from its default setting—which is acces-
sible by all users—to something more
local will be more secure.

■ On the server side of security, the session
data itself can be stored in a database
rather than a text file. This is a more
secure, but more programming-intensive,
option.

■ The user’s IP address (the network
address from which the user is connect-
ing) is not a good unique identifier, for
two reasons. First, a user’s IP address can,
and normally does, change frequently
(ISP’s dynamically assign them for short
periods of time). Second, many users
accessing a site from the same network
(like a home network or an office) could
all have the same IP address.

Figure 9.22 You cannot tell any difference by running
the application, but this final version of the login
system is more secure. Specifically, it helps to
prevent session hijacking.

Im
pro

vin
g

 S
essio

n
 S

ecu
rity

09_PHPMySQL_VQP(323-374).indd 373 5/31/05 3:02:57 PM

09_PHPMySQL_VQP(323-374).indd 374 5/31/05 3:02:58 PM

