
Le
ss

o
n

 4 What You Will Learn
In this lesson, you will:

Define the user interface (UI) for the e-commerce FlexGrocer application •	

Use simple controls such as the Image control, text controls, and •	
CheckBox control

Define the UI for the checkout screens•	

Use the Form container to lay out simple controls•	

Use data binding to connect controls to a data model•	

Approximate Time
This lesson takes approximately 45 minutes to complete.

Lesson Files
Media Files:

Lesson04/start/assets/dairy_milk.jpg

Starting Files:

Lesson04/start/FlexGrocer.mxml

Completed Files:

Lesson04/complete/FlexGrocer.mxml
Lesson04/complete/Checkout.mxml

04_FlexX(p1).indd   76 3/2/10   11:48:01 AM



77

Lesson 4

Using Simple Controls
In this lesson, you will add user interface elements to enable the customer to find more details 
about the grocery items and begin the checkout process. An important part of any appli-
cation is the user interface, and Adobe Flex contains elements such as buttons, text fields, 
and radio buttons that make building interfaces easier. Simple controls can display text and 
images and also gather information from users. You can tie simple controls to an underlying 
data structure, and they will reflect changes in that data structure in real time through data 
binding. You are ready to start learning about the APIs (application programming interfaces) 
of specific controls, which are available in both MXML and ActionScript. The APIs are fully 
documented in the ActionScript Language Reference, often referred to as ASDoc, which is 
available at http://help.adobe.com/en_US/AS3LCR/Flex_4.0/.

The Flex framework has many tools that make laying out simple controls easier. All controls 
are placed within containers (see Lesson 3, “Laying Out the Interface”). In this lesson, you will 
become familiar with simple controls by building the basic user interface of the application 
that you will develop throughout this book. You will also learn about timesaving functionality 
built into the framework, such as data binding and capabilities of the Form layout container. 

FlexGrocer with Image and Text controls bound to a data structure

04_FlexX(p1).indd   77 3/2/10   11:48:01 AM



78 Lesson 4: Using Simple Controls

Introducing Simple Controls
Simple controls are provided as part of the Flex framework and help make rich Internet 
application development easy. Using controls, you can easily define the look and feel of your 
buttons, text, combo boxes, and much more. Later in this book, you’ll learn how to customize 
controls to create your own unique look and feel. Controls provide a standards-based meth-
odology that makes learning how to use them easy. Controls are the foundation of any RIA.

The Flex SDK includes an extensive class library for both simple and complex controls. All 
these classes can be instantiated via an MXML tag or as a standard ActionScript class, and 
their APIs are accessible in both MXML and ActionScript. The class hierarchy comprises 
nonvisual classes as well, such as those that define the new event model, and it includes the 
display attributes that all simple controls share.

You place the visual components of your Flex application inside containers, which establish 
the size and positioning of text, controls, images, and other media elements (you learned 
about containers in the previous lesson). All simple controls have events that can be used to 
respond to user actions, such as clicking a button, or system events, such as another compo-
nent being drawn (events will be covered in detail in the next lesson). You will also learn in 
later lessons how to build your own events. Fundamentally, events are used to build easily 
maintainable applications that reduce the risk that a change to one portion of the applica-
tion will force a change in another. This is often referred to as building a “loosely coupled” 
application.

Most applications need to display some sort of text, whether it be static or dynamically driven 
from an outside source like an XML file or a database. Flex has a number of text controls that 
can be used to display editable or noneditable text:

Label: You have already used the Label control to display single lines of text. The Label •	
control cannot be edited by an end user; if you need that functionality, you can use a 
TextInput control. 

TextInput: The TextInput control, like the Label control, is limited to a single line of text. •	

RichText: The RichText control is used to display multiple lines of text, but it is not edit-•	
able and does not display scroll bars if the usable space is exceeded. 

TextArea: The TextArea component is useful for displaying multiple lines of text, either •	
editable or noneditable, with scroll bars if the available text exceeds the screen space 
available. 

All text controls support HTML 1.0 and a variety of text and font styles.

04_FlexX(p1).indd   78 3/2/10   11:48:01 AM



79Displaying Images

 Note: All four of the text controls mentioned here support Adobe’s Text Layout Framework 

(TLF). While you will not be using TLF as part of the application in this book, many new and 

interesting features are available with TLF. You can learn about TLF on Adobe’s open source site: 

http://opensource.adobe.com/wiki/display/tlf/Text+Layout+Framework

To populate text fields at runtime, you must assign an ID to the control. Once you have done 
that, you can access the control’s properties; for example, all the text controls previously men-
tioned have a text property. This property enables you to populate the control with plain text 
using either an ActionScript function or inline data binding. The following code demonstrates 
assigning an ID to the label, which enables you to reference the Label control in ActionScript:

<s:Label id=”myLabel”/>

You can populate any text control at runtime using data binding, which is denoted by curly 
bracket syntax in MXML. The following code will cause your Label control to display the 
same text as the myLabel control in the previous example:

<s:Label id = “yourLabel” text = “{myLabel.text}”/>

Also, you can use data binding to bind a simple control to underlying data structures. For 
example, if you have XML data, which might come from a server-side dataset, you can use 
data binding to connect a simple control to the data structure. When the underlying data 
changes, the controls are automatically updated to reflect the new data. This provides a power-
ful tool for the application developer.

The Flex framework also provides a powerful container for building the forms that we will 
cover in this lesson. The Form container allows developers to create efficient, good-looking 
forms with minimal effort. Flex handles the heading, spacing, and arrangement of form 
items automatically.

Displaying Images
In this exercise you will display images of grocery products. To do this, you must use the 
Image control to load images dynamically. The Image control has the capability to load JPG, 
SVG, GIF, SWF, and PNG files at runtime. If you are developing an offline application that will 
not access the Internet, you can use the @Embed directive to include the Image control in the 
completed SWF file.

04_FlexX(p1).indd   79 3/2/10   11:48:01 AM



80 Lesson 4: Using Simple Controls

 1 Open the FlexGrocer.mxml file that you created in the previous lesson.

If you didn’t complete the previous lesson, you can import the Lesson04/start files. Please 
refer to Appendix A for complete instructions on importing a project should you ever 
skip a lesson or if you ever have a code issue you cannot resolve.

 2 Switch Flash Builder to Design view by clicking the Design View button.

 3 Be sure that the Components view is open. If not, choose Window > Components.

 4 Select the Image control from the Controls folder and drag the control between the Milk 
and 1.99 Label controls you already added.

When you drag the Image control from the Components view to the container, Flash 
Builder automatically adds the MXML to place the Image control on the screen and posi-
tions it where you drop it.

04_FlexX(p1).indd   80 3/2/10   11:48:01 AM



81Displaying Images

 5 Be sure that the Flex Properties view is open. If not, choose Window > Flex Properties.

The Flex Properties view shows important attributes of the selected component—in 
this case, the Image control. You can see the Source property, which specifies the path 
to the Image file. The ID of the Image control references the instance created from the 
<mx:Image> tag or Image class in ActionScript.

 6 Click the Source folder icon and navigate to the assets directory. Select the dairy_milk.jpg 
image and click Open. 

The image you selected is displayed in Design view. The source property is also added to 
the MXML tag.

 7 Click the Scale content drop-down menu and change the value to true.

In an ideal world, all the images that you use in the application would be a perfect size, 
but this is not always the case. Flex has the capability to set the width and height of 
images and can scale the image to fit the size of the Image control.

04_FlexX(p1).indd   81 3/2/10   11:48:01 AM



82 Lesson 4: Using Simple Controls

 8 Switch back to Source view and notice that Flash Builder has added an <mx:Image> tag as 
well as the attributes you specified in the Flex Properties window.

As you can see, it is easy to switch between Source view and Design view, and each one 
has its own advantages. Notice as you switch back to Source view, that the Image tag you 
were working on is now highlighted. 

 9 In the <mx:Image> tag that you added, add an @Embed directive to the Image control:
<mx:Image source=”@Embed(‘assets/dairy_milk.jpg’)” 
 scaleContent=”true”/>

The @Embed directive causes the compiler to transcode and include the JPG in the SWF 
file at compile time. This technique has a couple of advantages over the default of load-
ing the image at runtime. First, the image is loaded at the start of the application, so the 
user doesn’t have to wait for the image to load before displaying when it is needed. Also, 
this technique can be useful if you are building offline applications that do not need to 
access the Internet because the appropriate images are included in the SWF file and will 
be correctly displayed when needed. Remember, though, that using this technique greatly 
increases the size of your SWF file.

 10 Save, compile, and run the application.

04_FlexX(p1).indd   82 3/2/10   11:48:01 AM



83Building a Detail View

You should see that the Image and Label controls and button fit neatly into the layout container.

Building a Detail View
In this exercise, you will use a rollover event to display a detailed state of the application. You 
will explore different simple controls to display text and review how application states work.

 1 Be sure that you are still in Source view in Flash Builder. Near the top of the file, locate 
the <s:states> block, which contains definitions for the State1 and cartView states. Add a 
new state definition named expanded.
<s:State name=”expanded”/>

You will define this third state for the application to show details of a product.

 2 Switch to Design view, set the state selector to expanded, and drag a VGroup from the 
Layout folder of the Components view into the application. (To position this correctly, 
you should drag the VGroup below the existing white area. In the Properties view, verify 
that the In states value is expanded, the X value is 200, and the Width value is 100 per-
cent. Leave the Y and Height values blank.

This new VGroup needs to be positioned as a child of the main application. If the 
VGroup in your Design view isn’t rendering like the one in the previous image, switch to 
Source view, and move the 
<s:VGroup includeIn=”expanded” width=”100%” x=”200”>
</s:VGroup> 

04_FlexX(p1).indd   83 3/2/10   11:48:01 AM



84 Lesson 4: Using Simple Controls

to just above the closing </s:Application> tag, so the end of the file reads like this:
</s:VGroup>
 </s:HGroup>
 <s:VGroup includeIn=”expanded” width=”100%” x=”200”>
 </s:VGroup>
 
</s:Application>

 3 Switch back to Design view. Ensure that the expanded state is selected in the States view 
and drag an instance of the RichText control from the Controls folder of the Components 
view into the new VGroup you created in the previous step.

The RichText control enables you to display multiple lines of text, which you will need 
when you display the product description that will ultimately come from an XML file. 
You will use data binding in the next section to make this RichText control functional. 
For now, you are just setting up the layout. 

 4 Drag an instance of the Label control from the Components view to the bottom part of 
the VGroup container you created. Populate the text property with the words Certified 
Organic.

The Label control allows you to display a single line of text. Later on, you will modify the 
visible property of this component so the contents of the text property are displayed 
only when a grocery item is certified organic.

04_FlexX(p1).indd   84 3/2/10   11:48:01 AM



85Building a Detail View

 5 Drag another instance of the Label control from the Components view to the bottom part 
of the VGroup container you created. Populate the text property with the words Low Fat.

Later, you will set the visible property of this label to true if the grocery item is low fat, 
or false if it is not.

 6 Switch back to Source view. Notice that Flash Builder has added the RichText and two 
Label controls you added in Design view.

Note that all the code created in Design view is displayed in Source view.

 7 Locate the <s:RichText> tag in the expanded state and set the width property to 50%.
<s:RichText text=”Text” width=”50%”/>

 8 Find the <mx:Image> tag that is displaying the milk image. Add a mouseOver event to the 
tag that will change the currentState to expanded. Remove the includeIn attribute.
<mx:Image source=”@Embed(‘assets/dairy_milk.jpg’)”
 scaleContent=”true” mouseOver=”this.currentState=’expanded’”/>

mouseOver simply means that when the user rolls the mouse anywhere over the dairy_
milk.jpg Image tag, the ActionScript will execute. In this ActionScript, you are referring 
to the expanded state, which you will create later in this lesson. You will modify this state 
so it displays more information about the item the user is interested in purchasing. 

If you had left the includeIn attribute in the image tag, the milk image would appear only 
in the initial state of State1. Therefore, when you mouse over the image and switch it to 
the expanded state, the milk bottle image will disappear. By removing the includeIn attri-
bute, you are instructing the application to allow this image to be used in all states.

 9 In the same <mx:Image> tag, add a mouseOut event that will change the currentState back 
to the initial state State1. 
<mx:Image source=”@Embed(‘assets/dairy_milk.jpg’)” scaleContent=”true”
 mouseOver=”this.currentState=’expanded’”
 mouseOut="this.currentState='State1'"/>

04_FlexX(p1).indd   85 3/2/10   11:48:01 AM



86 Lesson 4: Using Simple Controls

When the user moves the mouse away from the dairy_milk.jpg image, the detailed state 
no longer displays, and by default the application displays only the images and labels for 
the control, which is expressed with an empty string.

 10 Save and run the application.

When you roll the cursor over the milk bottle image, you see the RichText and Label controls 
you created in the expanded state.

Using Data Binding to Link a Data Structure to a Simple Control
Data binding enables you to connect controls, such as the text controls that you have already 
worked with, to an underlying data structure. Data binding is incredibly powerful because if 
the underlying data changes, the control reflects the changes. For example, suppose you create 
a text control that displays the latest sports scores; also suppose it is connected to a data struc-
ture in Flex. When a score changes in that data structure, the control that the end user views 
reflects the change. In this exercise, you will connect a basic data structure in an <mx:Model> 
tag to simple UI controls to display the name, image, and price for each grocery item. Later in 
the book, you will learn more about data models, the effective use of a model-view-controller 
architecture on the client, and how to connect these data structures with server-side data.

 1 Be sure that FlexGrocer.mxml is open, and add an <fx:Model> tag after the comment in 
the <fx:Declarations> tag pair at the top of the page.

The <fx:Model> tag allows you to build a client-side data model. This tag converts an 
XML data structure into a format that Flex can use.

 2 Directly below the opening <mx:Model> tag and before the closing <mx:Model> tag, add the 
following XML data structure. Your <mx:Model> tag should look as shown:
<fx:Model>
 <groceries>
  <catName>Dairy</catName>
  <prodName>Milk</prodName>

04_FlexX(p1).indd   86 3/2/10   11:48:01 AM



87Using Data Binding to Link a Data Structure to a Simple Control

  <imageName>assets/dairy_milk.jpg</imageName>
  <cost>1.20</cost>
  <listPrice>1.99</listPrice>
  <isOrganic>true</isOrganic>
  <isLowFat>true</isLowFat>
  <description>Direct from California where cows are 
   happiest!</description>
 </groceries>
</fx:Model>

You have defined a very simple data structure inline inside an <fx:Model> tag.

 3 Assign the <fx:Model> tag an ID of groceryInventory. The first line of your <fx:Model> tag 
should look as shown:
<fx:Model id=”groceryInventory”>

By assigning an ID to the <mx:Model> tag, you can reference the data with dot syntax. 
For example, to access the list price of the item, you could simply use groceryInventory.
listPrice. In this case, that would resolve to 1.99.

 4 Switch Flash Builder to Design view.

You can set up bindings between elements just as easily in Design view as you can in 
Source view.

 5 Select the RichText control in the expanded state and be sure that the Flex Properties 
view is open. Modify the text property to {groceryInventory.description}.

Data binding is indicated by the curly brackets {}. Whenever the curly brackets are used, 
you use ActionScript instead of simple strings. Effective use of data binding will become 
increasingly important as you begin to work with server-side data.

 6 Save and run the application.

You should see the description you entered in the data model when you roll the cursor over 
the grocery item.

04_FlexX(p1).indd   87 3/2/10   11:48:01 AM



88 Lesson 4: Using Simple Controls

Using a Form Layout Container to Lay Out Simple Controls
Forms are important in most applications that collect information from users. You will be 
using the Form container to enable the shopper to check out their products from the grocery 
store. The Form container in Flex will handle the layout of the controls in this form, automat-
ing much of the routine work. With a Form container, you can designate fields as required 
or optional, handle error messages, and perform data checking and validation to be sure the 
administrator follows designated guidelines. A Form container uses three tags: an <mx:Form> 
tag, an <mx:FormHeading> tag, and an <mx:FormItem> tag for each item on the form. To start, 
the checkout form will be built into a separate application, but later in the book, it will be 
moved into the main application as a custom component.

Form
Form Heading

Form Items

Form Item Label

 1 Create a new MXML application in your current project by choosing File > New > 
MXML Application. Name the application Checkout, and choose spark.layouts.
BasicLayout as the Layout for the new application. Then click Finish.

04_FlexX(p1).indd   88 3/2/10   11:48:02 AM



89Using a Form Layout Container to Lay Out Simple Controls

 2 Switch to Design view, and drag a Form from the Layout folder of the Components view 
to the top left of the window. A dialog box will appear asking for the Width and Height of 
the form. Leave the default values as they are.

 3 Drag a FormHeading component from the Layout folder in the Components view into 
the newly created form. Double-click the FormHeading, and change it to Customer 
Information. 

A FormHeading is a specialized label. Its left edge always aligns with the left side of the 
form controls (not the labels of the form items.)

 4 Drag a TextInput control from the Controls folder of the Components view and drop it 
just below the FormHeading. The TextInput and a label to the right of the TextInput both 
appear. Double-click the label, and change it to Customer Name.

When adding controls to a form in Design view, Flash Builder automatically surrounds 
the control in a FormItem, which is why a label is appearing to the left of the control. If 
you switch to Source view, you can see the FormItem surrounding the TextInput. Back in 
Design view, notice how the left edge of the text input is aligned with the left edge of the 
FormHeading. As noted earlier, this is a feature of the Form and FormHeading classes, 
and it allows these items to always maintain the left alignment, regardless of the size of 
the FormItem labels.

04_FlexX(p1).indd   89 3/2/10   11:48:02 AM



90 Lesson 4: Using Simple Controls

 5 Drag four more TextInputs to the form from the Components view. Change the labels 
of these to Address, City, State, and Zip. Drag a DateField below all the TextInputs, and 
change its label to Delivery Date. Drag a button below the DateField, and set its label to 
be an empty string (simply remove the default text). Double-click the button and change 
the button’s text to Continue.

Each control is surrounded in its own FormItem and has its own label. Since you don’t 
need a label next to the Continue button, you simply clear the text from the label on that 
form item.

 6 Save and run the application.

Form
Form Heading

Form Items

Form Item Label

 tip: If you tab through the various components of the form, you might wonder whether there 

is a way to control which components receive the user focus. The form itself (and each top-level 

container) has a built-in focus manager. The focus manager contains a getFocus() method that 

will return the component that currently has the focus. You can use the setFocus() method to 

set the focus to another component. Using the Focus Manager class is the preferred method to 

control the selection element in a Flex application.

04_FlexX(p1).indd   90 3/2/10   11:48:02 AM



91What You Have Learned

What You Have Learned
In this lesson, you have:

Learned how to load images at runtime with the Image control (pages xx–xx)•	

Learned how to display blocks of text (pages xx–xx)•	

Learned how to link simple controls to an underlying data structure with data binding •	
(pages xx–xx)

Learned how to build user forms with a minimum of effort using the Form container •	
(pages xx–xx)

04_FlexX(p1).indd   91 3/2/10   11:48:02 AM




