
Le
ss

o
n

 3 What You Will Learn
In this lesson, you will:

Use containers•	

Lay out an application in Source view•	

Work with constraint-based layouts•	

Work with view states•	

Control view states•	

Lay out an application in Design view•	

Refactor code as needed•	

Approximate Time
This lesson takes approximately 1 hour and 30 minutes to complete.

Lesson Files
Media Files:

None

Starting Files:

Lesson03/start/FlexGrocer.mxml

Completed Files:

Lesson03/complete/FlexGrocer.mxml

03_FlexX(p1).indd 44 1/19/10 2:41:30 PM

45

Lesson 3

Laying Out the Interface
Every application needs a user interface, and one of the strengths of Adobe Flash Builder 4
is that it enables developers to lay out their application’s interface with ease. In this lesson,
you will learn about containers and layout objects in Flex, what differentiates them, and how
to use them when laying out your applications. Finally, you will use view states to make the
applications dynamically change to react to users’ actions.

The user interface for the e-commerce application

03_FlexX(p1).indd 45 1/19/10 2:41:30 PM

46 Lesson 3: Laying Out the Interface

Learning About Layouts
Almost all the positioning of components in Flex is accomplished using containers and
layout objects.

Working with a kitchen analogy for the moment, you can think of the container as a food
processor without a blade. There are different food processors with different features on the
market, and you need to choose one that works best for your application.

You can think of layout objects as blades that can be inserted into a food processor to slice,
dice, chop, and so on. Neither of these two pieces is particularly useful without the other, but
when they’re assembled, they become a powerful tool. The same is true of containers and
layout objects.

Understanding Containers
On a technical level, containers are simply a special type of component that contains and
groups other items. These items are collectively referred to as children or, more specifically,
as LayoutElements (which is just a broad term for components such as Buttons, Checkboxes,
and the like) and GraphicalElements such as squares, circles, and so on. Although containers
know how to group and keep these items together, they do not know the position or order
of those items on the screen. When you select a container to use, you will do so based on a
number of criteria; however, the most fundamental is its ability to be skinned.

Skinning is the process of defining the visual appearance of a component. In terms of a
container, you can think of the visual appearance as including things such as backgrounds,
borders, drop shadows, and so on. Some containers in Flex can be skinned, meaning you can
define how they appear on the screen. Other containers exist only to ensure that their children
are grouped; they do not have a visual display of their own.

03_FlexX(p1).indd 46 1/19/10 2:41:30 PM

47Learning About Layouts

Container Types

Container Description

Group The simplest type of container in Flex 4, a group can be used to contain
children, but it does not have any visual appearance of its own.

skinnableContainer A skinnableContainer performs all the same functionality as the group but also
has the ability to define its visual appearance on the screen.

BorderContainer A type of skinnableContainer that can be used to quickly surround children of a
container with a border.

Panel A type of skinnableContainer, surrounded by a border, that can have a header
and a control area called a controlBar.

Application A type of skinnableContainer that is used as the root of your Flex application.
Like the Panel, it can also have a controlBar.

navigationContent A special type of skinnableContainer used with a control called a Viewstack,
which you will learn to use later in this book.

There are several more Flex containers, including DataGroup and SkinnableDataContainer,
in addition to several specialized containers, such as Form, which will be used in the coming
lessons. However, those containers follow a slightly different layout metaphor, so they will be
introduced a bit later when their specific use can be explained more clearly.

Understanding Layout Objects
Layout objects work with containers (and other types of objects, as you will learn in later les-
sons) to determine how the grouped items of a container should appear on the screen. Flex
4 provides a number of layout objects by default and allows you to create your own layout
objects for complete customization.

Layout Object Types

Layout Object Description

BasicLayout The basic layout allows for absolute positioning. When using the basic layout,
you must note the specific x and y positions of each layout element.

HorizontalLayout The horizontal layout arranges children in a row, with each child positioned to
the right of the previous one.

VerticalLayout The vertical layout arranges children in a column, with each child positioned
below the previous one.

TileLayout The tile layout arranges children in new rows and columns as necessary. You
can specify whether items proceed horizontally or vertically before beginning a
row or column.

03_FlexX(p1).indd 47 1/19/10 2:41:30 PM

48 Lesson 3: Laying Out the Interface

Combining Containers and Layout Objects
Once you have chosen a container and a layout object, you assemble them in MXML to
produce the desired effect. Look at the following examples of setting a layout object using the
layout property to control the positioning of the buttons.

<s:Group>
	 <s:layout>
	 	 <s:HorizontalLayout/>
	 </s:layout>

	 <s:Button	label=”1”/>
	 <s:Button	label=”2”/>
	 <s:Button	label=”3”/>
</s:Group>

<s:Group>
	 <s:layout>
	 	 <s:VerticalLayout/>
	 </s:layout>

	 <s:Button	label=”1”/>
	 <s:Button	label=”2”/>
<s:Button	label=”3”/>
</s:Group>

If you do not specify a layout object, BasicLayout is used, meaning you must specify x and y
positions for each button or they will all default to appear at the origin coordinates (0,0).

Scrolling Content
You will occasionally find a situation in an application where it is desirable to scroll the
contents of a group. In previous versions of Flex, every container had this functionality by
default. While extremely convenient for the developer, it also meant that every container was
burdened with this extra code even though it was hidden the vast majority of times. In Flex 4,
you need to specifically indicate when an area is scrollable. This is accomplished via a special
tag named Scroller that wraps your Group tag.

03_FlexX(p1).indd 48 1/19/10 2:41:30 PM

49Learning About Layouts

<s:Scroller	height=”65”>
	 <s:Group>
	 	 <s:layout>
	 	 	 <s:VerticalLayout/>
	 </s:layout>

	 	 <s:Button	label=”1”/>
	 	 <s:Button	label=”2”/>
	 	 <s:Button	label=”3”/>
	 </s:Group>
</s:Scroller>

Just wrapping the Group in a Scroller will not necessarily make a scroll bar appear. The
Scroller will add scroll bars (vertical, horizontal or both) as needed when there is not enough
room to display the Group at full size. In the previous example, the height of the Scroller is
specifically set to 65 pixels to ensure that a vertical scroll bar appears. If you do not set specific
width and heights, then Flex will always try to fit the whole Group on the screen first and will
resort to scrolling only if that is not possible.

Decoding MXML Tags
Before you begin the exercise in the next section, there is an important concept to learn. It is
the difference between class instances and properties in MXML. If you look at the code snippet
from the previous section, you will see a Flex button defined in MXML. Right now the label
property of that Button is defined as an attribute of the Button’s XML tag:

<s:Button	label=”3”/>

However, in MXML, you are also allowed to define this same property using child tags. In that
case, the code would appear as follows:

<s:Button>
	 <s:label>3</s:label>
</s:Button>

These two ways of defining the classes will yield identical results on the screen. After you have
used Flex for a while, it will become a natural part of your development process to choose the
correct syntax in a given situation; however, it can be very confusing when you are new to
the language.

03_FlexX(p1).indd 49 1/19/10 2:41:30 PM

50 Lesson 3: Laying Out the Interface

Now, how do you know, regardless of the definition style, which is a property and which is a
class? The key to decoding this logic is to watch the case of the first letter after the namespace
(after s: in this example). When the first letter is uppercase, such as the B in Button, the code
is referring to a new instance of a class. When the first letter is lowercase, such as the l in label,
you are setting a property of a class.

If you consider a slightly larger example from the previous code:

<s:Group>
	 <s:layout>
	 	 <s:VerticalLayout/>
	 </s:layout>

	 <s:Button	label=”1”/>
	 <s:Button	label=”2”/>
	 <s:Button>
	 	 <s:label>3</s:label>
	 </s:Button>
</s:Group>

The G in the <s:Group> tag is uppercase, so it refers to an instance of a Flex class named
Group. The l in the <s:layout> tag is lowercase, so it is a property of the Group. The V in the
<s:VerticalLayout> tag is uppercase, so it is referring to a new instance of a Flex class named
VerticalLayout.

If you were to translate the code into words, it would read as follows: Create an instance
of the Group class. Set the layout property of that Group instance to a new instance of the
VerticalLayout class. Add three Buttons to that Group with the labels 1, 2, and 3, respectively.

Make sure this section makes complete sense before continuing in the book. If you ensure you
understand these points, the rest of this lesson will be smooth sailing. If you are unsure, the
remainder can be a very disheartening experience.

Laying Out the E-Commerce Application
The e-commerce application of FlexGrocer is the means through which customers shop for
groceries. The top region of the application’s user interface displays the store logo as well as
navigation links that appear throughout the application. Below that is a series of clickable
icons that users can use to browse the various categories of groceries (dairy, meat, fruit, and so
on). Below the icons is an area for displaying products.

03_FlexX(p1).indd 50 1/19/10 2:41:30 PM

51Laying Out the E-Commerce Application

In this lesson, you will use both Design view and Source view to begin laying out the applica-
tion. Design view is a powerful feature of Flash Builder but can be a very frustrating experience,
especially when you are new to it. It is often very difficult to get objects to align correctly or to
be placed inside the intended container on the screen. Therefore, you’ll also see a code sample
for everything you do in Design view. If your interface does not look like the one in the book as
you proceed, feel free to switch to Source view and make the changes before switching back to
Design view.

Starting Your Layout in Source View
The first steps of laying out your new application will be done in Source view as you define the
area of your application that will hold the logo and some navigation elements.

 1 Open the FlexGrocer.mxml file that you created in the previous lesson.

Alternatively, if you didn’t complete the previous lesson or your code is not function-
ing properly, you can import the FlexGrocer.fxp project from the Lesson03/start folder.
Please refer to Appendix A for complete instructions on importing a project should you
ever skip a lesson or if you ever have a code issue you cannot resolve.

 2 Ensure that Flash Builder is in Source view.

To switch between Design view and Source view in Flash Builder, click the buttons in the
title bar near the top of the window.

 3 Find and delete the Label tag with the text “My First Flex Application” that you added in
the last lesson.

 4 Insert a new controlBarLayout tag pair in place of the Label tag you just removed.
<s:controlBarLayout>
</s:controlBarLayout>

This tag starts with a lowercase letter, indicating that it is a property of the
Application object.

A control bar is a section of a container that is visually distinctive. In this application,
you are going to use the control bar to hold a logo and some buttons for navigation.

 5 Immediately inside the controlBarLayout tag pair, place a self-closing <s:BasicLayout> tag.
<s:controlBarLayout>
	 <s:BasicLayout/>
</s:controlBarLayout>

03_FlexX(p1).indd 51 1/19/10 2:41:31 PM

52 Lesson 3: Laying Out the Interface

Remember, a self-closing tag simply means that instead of having an open tag and a close
tag like the controlBarLayout, you have just a single tag that ends in a forward slash and a
greater than sign (/>).

Adding the <s:BasicLayout/> tag tells the Application that you want to use absolute posi-
tioning inside the control bar for this application. In other words, you will take responsi-
bility for positioning the x- and y-coordinates of the items inside it.

 6 Directly below the controlBarLayout tag pair, add a new tag pair named
<s:controlBarContent>.

Inside this tag, you will define which items should appear in the control bar.

 7 Add a Button tag inside the controlBarContent tag pair and set its label property to
Flex Grocer.
<s:Button	label=”Flex Grocer”/>

Setting the label property of this Button will make it display “Flex Grocer” on the screen.
Because you added this Button inside the controlBarContent tag pair, the Button will
appear in the control bar area of the application.

Ensure that your code looks like the following sample before continuing:
<?xml	version=”1.0”	encoding=”utf-8”?>
<s:Application	xmlns:fx=”http://ns.adobe.com/mxml/2009”
	 	 xmlns:s=”library://ns.adobe.com/flex/spark”
	 	 xmlns:mx=”library://ns.adobe.com/flex/mx”
	 	 minWidth=”1024”	minHeight=”768”>
	 <fx:Declarations>
	 	 <!--	Place	non-visual	elements	(e.g.,	services,	value	objects)	here	-->
	 </fx:Declarations>

	 <s:controlBarLayout>
	 	 <s:BasicLayout/>
	 </s:controlBarLayout>

	 <s:controlBarContent>
	 	 <s:Button	label="Flex	Grocer"/>
	 </s:controlBarContent>

</s:Application>

 8 After verifying that your code looks like the example, save the FlexGrocer.mxml file and
make sure you do not have any errors in the Problems view.

03_FlexX(p1).indd 52 1/19/10 2:41:31 PM

53Laying Out the E-Commerce Application

 9 Choose FlexGrocer from the Run menu to execute your application in the web browser.

When your application launches, you should see a gray block near the top of the screen. This
is the control bar. Inside that control bar you should see a single button with the words “Flex
Grocer”. While the application may not do much yet, you have actually defined several prop-
erties, used a layout object, and added a child object to a container. It will get easier and faster
from here. When you are finished admiring your work, close the web browser and get ready
to learn about Design view.

Continuing Your Layout in Design View
You have already defined a portion of your application layout using MXML, but you will now
use Design view to add several more elements and to define their properties.

 1 Switch Flash Builder to Design view.

To switch between Design view and Source view in Flash Builder, click the buttons in the
title bar at the top of the window. You will see a visual representation of your work so far.

 2 Start by clicking anywhere in the large white background area of the screen.

The Properties panel on the right side of the screen should change so that s:Application is
the heading. This is where you will set all component properties while in Design view.

 Note: If the Properties panel is not currently visible on your screen, choose Window >

Perspective > Reset Perspective. This will reset your Design view options to the default settings

and display the Properties panel.

03_FlexX(p1).indd 53 1/19/10 2:41:31 PM

54 Lesson 3: Laying Out the Interface

 3 Next, click the Flex Grocer Button instance that you positioned in the previous exercise.

When you click the Button, the Properties panel on the right side of the screen will change
to read s:Button, indicating that the Button you just selected is now being configured.

 4 Toward the bottom of the Properties view (you may need to scroll down depending on
your screen resolution), there are text boxes for Width, Height, X, and Y. Use the X and Y
fields to set the x-coordinate to 5 and the y-coordinate to 5.

When you change the y-coordinate, the control bar will grow to accommodate the posi-
tion of the Button. Later in the book, you will apply styles to set the company logo colors
and size. For now, you are just placing the Button in the appropriate position. This is an
example of using absolute-coordinates positioning.

 5 Find the Components view; by default this will be in the lower-left corner of your screen.
Open the Controls folder by clicking the triangle next to the word Controls, and drag a
Button control to the control bar so the Button control is positioned near the right edge
of the control bar. In the Properties view, give the Button control the ID btnCartView
and the label View Cart.

03_FlexX(p1).indd 54 1/19/10 2:41:31 PM

55Laying Out the E-Commerce Application

 tip: A blue bar will appear, indicating where other components exist horizontally or vertically

from your position. This line will aid you in quickly lining up multiple components

Don’t worry about the exact x and y placement. Later in this lesson, you will learn how
to use a constraint-based layout to position the button so that its right edge is always 10
pixels from the right edge of the Application object.

 6 Drag a second Button control to the control bar, just to the left of the first Button control.
In the Properties view, give the new Button control the ID btnCheckout and the label
Checkout.

FlexGrocer users will click this button to indicate that they are finished shopping and
want to complete the purchase of the selected products. Again, the exact placement will
happen later in this lesson, when you learn about constraint-based layout.

 7 Drag a Label control from the Controls folder and place it near the bottom-right edge of
the screen. Double-click the Label and set the text property to (c) 2009, FlexGrocer.

Much like the Button controls you just added, you needn’t worry about the exact place-
ment of the Label control because it will be handled later with constraints.

 8 In the Components panel, collapse the Controls folder and expand the Layout folder.

 9 Drag a Group container from the Layout folder of the Components view and place it in
the large white area below the control bar. Use the Properties panel to set the ID of the
Group to bodyGroup. Then set both the height and width properties to 100% and the x-
and y-coordinates to 0.

 10 With the bodyGroup still selected, scroll to the bottom of the Properties panel. You will
see a Layout drop-down menu. Choose spark.layouts.HorizontalLayout, indicating that
you would like this Group to arrange its children horizontally.

03_FlexX(p1).indd 55 1/19/10 2:41:32 PM

56 Lesson 3: Laying Out the Interface

This Group will hold the product details and shopping cart for the application.
Remember that a Group with a HorizontalLayout displays its children horizontally. You
will have products shown on the left and the shopping cart on the right.

 11 Drag another Group container from the Layout folder of the Components view and drop
it inside the existing Group that you named bodyGroup. In the Properties view, give this
new Group the ID products and then assign a height of 150 and width of 100%.

 12 At the bottom of the Properties panel for the new Group, assign it a spark.layouts.
VerticalLayout, indicating that you would like this Group to arrange its children vertically.

This vertical group will hold the details for a product.

 13 Before continuing, switch to Source view and ensure that your code matches the follow-
ing code. If any tags are different or missing, fix them before continuing. It is okay if your
code has slightly different values for the x and y properties of the Checkout Button, View
Cart Button, and Label, as you have not set those yet.
<?xml	version=”1.0”	encoding=”utf-8”?>
<s:Application	xmlns:fx=”http://ns.adobe.com/mxml/2009”
	 	 xmlns:s=”library://ns.adobe.com/flex/spark”
	 	 xmlns:mx=”library://ns.adobe.com/flex/mx”
	 	 minWidth=”1024”	minHeight=”768”>
	 <fx:Declarations>
	 	 <!--	Place	non-visual	elements	(e.g.,	services,	value	objects)	here	-->
	 </fx:Declarations>

	 <s:controlBarLayout>
	 	 <s:BasicLayout/>
	 </s:controlBarLayout>

	 <s:controlBarContent>
	 	 <s:Button	id=”btnCheckOut”	x=”463”	y=”10”	label=”Checkout”/>
	 	 <s:Button	id=”btnCartView”	x=”541”	y=”10”	label=”View	Cart”	/>
	 	 <s:Button	label=”Flex”	x=”5”	y=”5”/>
	 </s:controlBarContent>
	 <s:Label	x=”518”	y=”320”	text=”(c)	2009,	FlexGrocer”/>
	 <s:Group	x=”0”	y=”0”	width=”100%”	height=”100%”	id=”bodyGroup”>
	 	 <s:layout>
	 	 	 <s:HorizontalLayout/>
	 	 </s:layout>
	 	 <s:Group	width=”100%”	height=”150”	id=”products”>
	 	 	 <s:layout>
	 	 	 	 <s:VerticalLayout/>
	 	 	 </s:layout>
	 	 </s:Group>
	 </s:Group>
</s:Application>

03_FlexX(p1).indd 56 1/19/10 2:41:32 PM

57Laying Out the E-Commerce Application

Defining the Product Section
Once you verify that your source code matches the example code, switch back to Design view,
where you will continue defining the product section. Now, you will begin defining the con-
trols that will eventually represent all the products in your online grocery store.

 tip: sometimes when switching between source and Design views, you can lose track of the

Flash Builder Properties panel in Design view. If this panel ever goes missing, simply choose

Windows > Properties to bring it back.

 1 Drag a Label control from the Controls folder of the Components view to the vertical
Group with the id of products that you added in the previous exercise. When looking at
Design view, this vertical group will have a faint border starting directly below the control
bar and continuing down for 150 pixels, where it crosses the screen. You can drop the
Label anywhere in this area.

 2 Set the ID of the Label control to prodName and the Text property to Milk.

 3 Drag a second Label control below the first one. Give the second one the ID price and set
$1.99 as the Text.

Because these new Label controls are children of the Group container, and the Group has
a VerticalLayout object, the product name appears above the price of the product.

 tip: If you open outline view by clicking the outline tab (this is adjacent to the Components

tab you have been using so far) you can see the hierarchy of your application. The root is the

Application tag, which contains a Label (copyright) and a Group named bodyGroup as children

along with controlBarContent and a controlBarLayout as properties. You can also see the

various children of the controlBarContent and the bodyGroup. If you expand the Group named

products, you will see the two labels you just added. This is a useful view if you want to make a

change to a component. It can be difficult to select just the products Group in Design view. You

can easily select it by clicking it in outline view.

 4 Add a Button control below the two Label controls, with an ID of add and the label
AddToCart.

For each product, you want the name of the product and its price to be displayed. The
AddToCart Button gives users the ability to add a product to their shopping cart. Because
the two Label controls and the Button control are in a group with a vertical layout, they
appear one above the other. You’ll add functionality for the Button control in a later lesson.

 5 Save the file and click Run.

03_FlexX(p1).indd 57 1/19/10 2:41:32 PM

58 Lesson 3: Laying Out the Interface

You can clearly see the difference between elements in the control bar section and those in
the body.

Working with Constraint-Based Layouts
Flex supports constraint-based layouts that let you arrange elements of the user interface with
the freedom and pixel-point accuracy of absolute positioning while being able to set con-
straints to stretch or move the components when the user resizes the window. This method of
controlling the size and position of components is different from laying out nested containers
(like the group containers in the previous exercise).

In constraint-based layouts, all the controls are positioned in relation to the edges of a par-
ent container, which has been set with a BasicLayout to allow absolute positioning. With
the exception of some specialized containers such as Form (which you will use in subse-
quent lessons), you can use the BasicLayout on any Group or SkinnableContainer, including
Application and Panel.

Containers using a BasicLayout object require that elements be positioned to absolute coor-
dinates; however, layout constraints allow users to dynamically adjust the layout based on
the window size of their browsers. For example, if you want a label to always appear in the

03_FlexX(p1).indd 58 1/19/10 2:41:32 PM

59Working with Constraint-Based Layouts

bottom-right corner of an application regardless of the browser size, you can anchor the con-
trol to the right edge of the parent container. The control’s position is then always maintained
relative to the right edge of the parent container.

In Flex, this is accomplished via layout anchors. They are used to specify how a control should
appear relative to the edge of the parent container. To ensure that a control is a certain dis-
tance from the bottom and right edges, you will select the check boxes below and to the right
of the control in the Constraints area in the Layout section of the Properties view, and use
the text boxes to specify the number of pixels away from the edge of the container where you
want the control constrained.

Flex allows constraints from the top, vertical center, bottom, left, horizontal center, or right of
a container.

 tip: All constraints are set relative to the edges of the container, as long as the container uses

absolute positioning (BasicLayout). Constraints cannot be set relative to other controls or

containers.

 1 Open the FlexGrocer.mxml file that you used in the previous exercise.

Alternatively, if you didn’t complete the previous lesson or your code is not functioning
properly, you can import the FlexGrocer-PreConstraints.fxp project from the Lesson03/
intermediate folder. Please refer to Appendix A for complete instructions on importing a
project should you ever skip a lesson or if you ever have a code issue you cannot resolve.

 2 Find and select the Checkout Button. Toward the bottom of the Properties view, in the
Constraints area of the Size and Position section, add a constraint so the right edge of the
Button is 10 pixels away from the right edge of the container. Make sure that the Y posi-
tion of this control is set to 10 pixels.

03_FlexX(p1).indd 59 1/19/10 2:41:32 PM

60 Lesson 3: Laying Out the Interface

To set a constraint from the right edge, click the rightmost check box above the button icon
in the Constraints area. In the text box that appears, enter the number of pixels away from
the edge you want the button to be. If the label seems to disappear from the screen, check
the scroll bars on the bottom of Design view. By default, Design view shows you just a por-
tion of the application and you may need to scroll occasionally to find what you need.

 3 Find and select the View Cart Button. Add a constraint so that the right edge of the but-
ton is 90 pixels from the right edge of the container. Make sure that the Y position of this
control is set to 10 pixels.

You now have it set so that, regardless of the width of the browser, the two navigation
buttons are always anchored relative to the top-right edge of the container.

 4 Find and select the Label control with the copyright notice. Constrain this Label so that it is
10 pixels above the bottom and 10 pixels away from the right edge of its container. Click the
check box in the top-right corner of the Constraints area, and enter 10 in the text box that
appears. Also, click the bottom check box and enter 10 in the text box that appears.

Because the copyright label is below other containers, it is probably easiest to select it
using the Outline view. These settings ensure that, regardless of the width of the Label
control, its bottom-right edge will always be 10 pixels above and 10 pixels to the left of the
bottom-right corner of the application.

If you switch to Source view, the entire file should look similar to the following:
<?xml	version=”1.0”	encoding=”utf-8”?>
<s:Application	xmlns:fx=”http://ns.adobe.com/mxml/2009”
	 	 xmlns:s=”library://ns.adobe.com/flex/spark”
	 	 xmlns:mx=”library://ns.adobe.com/flex/mx”
	 	 minWidth=”1024”	minHeight=”768”>
	 <fx:Declarations>
	 	 <!--	Place	non-visual	elements	(e.g.,	services,	value	objects)	here	-->
	 </fx:Declarations>
	 <s:controlBarLayout>
	 	 <s:BasicLayout/>
	 </s:controlBarLayout>

	 <s:controlBarContent>
	 	 <s:Button	id=”btnCheckout”	label=”Checkout”	right=”10”	y=”10”/>
	 	 <s:Button	id=”btnCartView”	label=”View	Cart”	right=”90”	Y=”10”/>
	 	 <s:Button	label=”Flex	Grocer”	x=”5”	y=”5”/>
	 </s:controlBarContent>
	 <s:Label	text=”(c)	2009,	FlexGrocer”	right=”10”	bottom=”10”/>
	 <s:Group	x=”0”	y=”0”	width=”100%”	height=”100%”	id=”bodyGroup”>
	 	 <s:layout>
	 	 	 <s:HorizontalLayout/>

03_FlexX(p1).indd 60 1/19/10 2:41:32 PM

61Working with Constraint-Based Layouts

	 </s:layout>
	 <s:Group	width=”100%”	height=”150”	id=”products”>
	 	 	 <s:layout>
	 	 	 	 <s:VerticalLayout/>
	 	 	 </s:layout>
	 	 	 <s:Label	text=”Milk”	id=”prodName”/>
	 	 	 <s:Label	text=”$1.99”	id=”price”/>
	 	 	 <s:Button	label=”AddToCart”	id=”add”/>
	 	 </s:Group>
	 </s:Group>
</s:Application>

Your code may differ slightly, depending on the order you added the items and set prop-
erties. Don’t worry; the order is not particularly important in this case. Every container
and control that you added in Design view is represented by a tag in Source view. When
you add elements inside a container, they appear as child tags to the container’s tag. Also
note that the layout constraints are set as attributes of the related component.

 5 Switch back to Design view and insert a second Group container in the bodyGroup con-
tainer (the bodyGroup is the first container you added whose width and height are set to
100%). Set the ID of the new Group to cartGroup, clear the Width property so it is blank,
and set the Height to 100%. Remember, you can always choose the bodyGroup from the
Outline view if you have difficulty finding it.

If you accidentally place the new Group in the wrong container, the easiest fix is to switch
to Source view and move the tags yourself. The code in Source view for this area should
look like this:
<s:Group	x=”0”	y=”0”	width=”100%”	height=”100%”	id=”bodyGroup”>
	 <s:layout>
	 	 <s:HorizontalLayout/>
	 </s:layout>
	 <s:Group	width=”100%”	height=”150”	id=”products”>
	 	 <s:layout>
	 	 	 <s:VerticalLayout/>
	 	 </s:layout>
	 	 <s:Label	text=”Milk”	id=”prodName”/>
	 	 <s:Label	text=”$1.99”	id=”price”/>
	 	 <s:Button	label=”AddToCart”	id=”add”/>
	 </s:Group>
	 <s:Group	height=”100%”	id=”cartGroup”>
	 </s:Group>
</s:Group>

03_FlexX(p1).indd 61 1/19/10 2:41:32 PM

62 Lesson 3: Laying Out the Interface

 6 In Design view, set the layout of the cartGroup container to VerticalLayout.

If you can’t find the cartGroup, remember to choose it from the Outline view and scroll
in the Design view window until you see the highlighted container.

 7 Add a Label control in the cartGroup container with the text property set to Your Cart
Total: $.

To the right of the products, there will always be a summary of the shopping cart, indicat-
ing whether there are items in the cart and what the current subtotal is.

 Note: At this point you have set the products container to take 100% of the space, but then

you added the cartGroup to its right and added a Label. Isn’t that a problem as you are now

using more than 100%? Flex enables you to assign more than 100 percent total width or height

for a container. Flex containers take this into account and divide the space proportionally based

on the requested percentages. Because more space was requested than is available, each

request receives a relative portion based on the available space. If any elements were assigned

a fixed width (that is, a number of pixels instead of a percentage), the fixed size requests are

subtracted from the available space before any relative size requests are allocated.

 8 From the Controls folder of the Components view, drag a Button control below the new-
est Label control and set the label property of the Button to View Cart.

This Button will be used to show users the full contents of their shopping cart.

If you accidentally place any of the components in the wrong container, the easiest fix is
to switch to Source view and move the tags yourself. The code in Source view for this area
should look like this:
<s:Group	x=”0”	y=”0”	width=”100%”	height=”100%”	id=”bodyGroup”>
	 <s:layout>
	 	 <s:HorizontalLayout/>
	 </s:layout>
	 <s:Group	width=”100%”	height=”150”	id=”products”>
	 	 <s:layout>
	 	 	 <s:VerticalLayout/>
	 	 </s:layout>
	 	 <s:Label	text=”Milk”	id=”prodName”/>
	 	 <s:Label	text=”$1.99”	id=”price”/>
	 	 <s:Button	label=”AddToCart”	id=”add”/>
	 </s:Group>
	 <s:Group	height=”100%”	id=”cartGroup”>
	 	 <s:layout>
	 	 	 <s:VerticalLayout/>

03_FlexX(p1).indd 62 1/19/10 2:41:32 PM

63Working with View States

	 	 </s:layout>
	 	 <s:Label	text=”Your	Cart	Total:	$”/>
	 	 <s:Button	label=”View	Cart”/>
	 </s:Group>
</s:Group>

 9 In the Outline view, choose the Application. In the Properties panel, remove the Min
width and Min height values of 1024 and 768.

As the application runs you can resize the browser and see that the buttons and bottom
text are always properly constrained. A minimum width and height would prevent this
from occurring on smaller screens.

 10 Save the file and click Run.

Working with View States
You can use Flash Builder to create applications that change their appearance based on the
task the user is performing. For example, the e-commerce application starts by showing users
the various products they can buy. When they start adding items to the cart, you want to add
something to the view, such as the total cost, so users can get a feel for what is currently in the
cart. Finally, users need a way to view and manage the full contents of the shopping cart.

Creating View States
In Flex, you can add this kind of interactivity with view states. A view state is one of several
views that you define for an application or a custom component. Every MXML page has at
least one state, referred to as the base view state, which is represented by the default layout of
the file.

03_FlexX(p1).indd 63 1/19/10 2:41:32 PM

64 Lesson 3: Laying Out the Interface

Additional states are represented in the MXML as modified versions of the base view state or
of other states.

 1 Open the FlexGrocer.mxml file that you used in the previous exercise.

Alternatively, if you didn’t complete the previous lesson or your code is not function-
ing properly, you can import the FlexGrocer-PreStates.fxp project from the Lesson03/
intermediate folder. Please refer to Appendix A for complete instructions on importing a
project should you ever skip a lesson or if you ever have a code issue you cannot resolve.

 2 If it is not already open, open the States view in Flash Builder 4.

If you don’t currently see the States view when you look at Flash Builder in Design view,
you can add it to the view by choosing Window > States. Notice that there is already one
state created to represent the default layout of the application.

 3 Create a new state named cartView, which is a duplicate of <State1>.

You can create a state by clicking the New State icon at the top of the States view or by
right-clicking in the view and selecting the New… option. The cartView state will show
users the details of all the items they have added to their cart.

 4 With the new cartView state selected, click the products container and set its height
and width to 0 then, choose the cartGroup container and set its height and width values
to 100%.

For the cartView, the shopping cart will entirely replace the products in the center of the
screen. Therefore, you will resize the products container to take up no space and resize
the cartGroup container to take up all the available space.

At this point, the controls on your screen will be quite a mess. You will likely see an ugly
combination of all the controls in the system on top of each other. This is a very impor-
tant lesson. In Flex, the width and height properties are used to compute the location of
items on the screen. In this case, you told Flex that the products container will not take

03_FlexX(p1).indd 64 1/19/10 2:41:32 PM

65Working with View States

any space, so Flex responded by moving the cartGroup container left to take the newly
available space. However, just because an item is not allocated space on the screen does
not mean it is invisible.

 5 Select the products container and change its visible property to false. You can do this
by clicking the CategoryView of the Properties panel, finding the visible property and
changing its value to false.

CategoryView

 tip: It has been said several times so far in this lesson, but it is so important it is worth repeating:

Use the outline view to find containers when they are difficult to locate on the screen.

 6 Ensure that the cartView state is still selected in States view and then drag a DataGrid
control from the Controls folder of the Components view and drop it below the View
Cart button. Set the ID of the DataGrid control to dgCart, and set the DataGrid control’s
width to 100%.

03_FlexX(p1).indd 65 1/19/10 2:41:32 PM

66 Lesson 3: Laying Out the Interface

In a later lesson, the DataGrid control will be used to show the user the full contents of
the cart.

Make sure you are adding the DataGrid control to the cartGroup container. Your applica-
tion and code will look a bit different if you accidentally add the DataGrid control before
the cartGroup container.

If you look at the file in Source view, you should see that the DataGrid has been added to
the following code:
<?xml	version=”1.0”	encoding=”utf-8”?>
<s:Application	xmlns:fx=”http://ns.adobe.com/mxml/2009”
	 	 xmlns:s=”library://ns.adobe.com/flex/spark”
	 	 xmlns:mx=”library://ns.adobe.com/flex/mx”>
	 <s:states>
	 	 <s:State	name=”State1”/>
	 	 <s:State	name=”cartView”/>
	 </s:states>
	 <fx:Declarations>
	 	 <!--	Place	non-visual	elements	(e.g.,	services,	value	objects)	here	-->
	 </fx:Declarations>
	 <s:controlBarLayout>
	 	 <s:BasicLayout/>
	 </s:controlBarLayout>

	 <s:controlBarContent>
	 	 <s:Button	id=”btnCheckout”	label=”Checkout”	right=”10”	y=”10”/>
	 	 <s:Button	id=”btnCartView”	label=”View	Cart”	right=”90”	y=”10”/>
	 	 <s:Button	label=”Flex	Grocer”	x=”5”	y=”5”/>
	 </s:controlBarContent>
	 <s:Label	text=”(c)	2009,	FlexGrocer”	right=”10”	bottom=”10”/>
	 <s:Group	x=”0”	y=”0”	width=”100%”	height=”100%”	id=”bodyGroup”>
	 	 <s:layout>
	 	 	 <s:HorizontalLayout/>
	 	 </s:layout>
	 	 <s:Group	width=”100%”	height=”150”	id=”products”
	 	 	 	 width.cartView=”0”	height.cartView=”0”	
	 	 	 	 	 visible.cartView=”false”>
	 	 	 <s:layout>
	 	 	 	 <s:VerticalLayout/>
	 	 	 </s:layout>
	 	 	 <s:Label	text=”Milk”	id=”prodName”/>
	 	 	 <s:Label	text=”$1.99”	id=”price”/>
	 	 	 <s:Button	label=”AddToCart”	id=”add”/>
	 	 </s:Group>
	 	 <s:Group	height=”100%”	id=”cartGroup”	width.cartView=”100%”>

03_FlexX(p1).indd 66 1/19/10 2:41:32 PM

67Working with View States

	 	 	 	 <s:layout>
	 	 	 	 <s:VerticalLayout/>
	 	 	 </s:layout>
	 	 	 <s:Label	text=”Your	Cart	Total:	$”/>
	 	 	 <s:Button	label=”View	Cart”/>
 <mx:DataGrid includeIn=”cartView” id=”dgCart” width=”100%”>
 <mx:columns>
 <mx:DataGridColumn headerText=”Column 1”
 dataField=”col1”/>
 <mx:DataGridColumn headerText=”Column 2”
 dataField=”col2”/>
 <mx:DataGridColumn headerText=”Column 3”
 dataField=”col3”/>
 </mx:columns>
 </mx:DataGrid>
	 	 </s:Group>
	 </s:Group>
</s:Application>

 7 Save the file.

Note some of the new syntax added during this operation. First, in the DataGrid class, you
will see the includeIn property, indicating that this control should appear on the screen
only when in the cartView state. Second, the products container now has a width of 100%
and height of 150; however, it also has width.cartView=”0” and height.cartView=”0”. This
syntax instructs Flex to set those properties in the corresponding states.

Testing the file now shouldn’t show any differences because you haven’t added any ability for the
user to toggle between the states. In the next exercise, you will add that navigational ability.

Controlling View States
Each MXML component has a property called currentState. You can use this property to
control which state of the application is shown to a user at any given time.

 1 Open the FlexGrocer.mxml file that you used in the previous exercise.

Alternatively, if you didn’t complete the previous lesson or your code is not function-
ing properly, you can import the FlexGrocer-PreControl.fxp project from the Lesson03/
intermediate folder. Please refer to Appendix A for complete instructions on importing a
project should you ever skip a lesson or if you ever have a code issue you cannot resolve.

 2 Switch to Design view and, if it is not already open, open the States view in Flash Builder
and select State1 to set the current state.

03_FlexX(p1).indd 67 1/19/10 2:41:33 PM

68 Lesson 3: Laying Out the Interface

You will add functionality to the base view state so that users can navigate to the other
states of the application.

 3 Choose the View Cart Button control from the cartGroup container. In the Properties
view, set its On	click: property to this.currentState=’cartView’.

Events such as the Button’s click will be explored in detail in Lesson 5, “Handling Events.”
The important thing to understand now is that when the user clicks the link, the view will
change to the cartView state.

 cautioN! The state name is case sensitive and must exactly match the name as you typed it in

the previous exercise. You must use single quotes around the state name when entering it in

Design view.

 4 Choose the View Cart Button control from the control bar. In the properties view, also set
its On	click: property to this.currentState=’cartView’. You now have two ways to enter
the cartView state.

 5 Switch to the cartView state. Add a new Button control below the DataGrid control with
the label set to Continue Shopping and the click property set to this.currentState=’’.

Setting currentState to an empty string resets the application to its default state.

 6 Delete the View Cart Button that is inside the cartGroup from the cartView state.

When the user is viewing the cart, there is no need for a View Cart Button. You can delete
the Button by selecting it in Design view and pressing Delete.

The completed application as shown in Source view should read as follows:
<?xml	version=”1.0”	encoding=”utf-8”?>
<s:Application	xmlns:fx=”http://ns.adobe.com/mxml/2009”
	 	 xmlns:s=”library://ns.adobe.com/flex/spark”
	 	 xmlns:mx=”library://ns.adobe.com/flex/mx”>
	 <s:states>
	 	 <s:State	name=”State1”/>
	 	 <s:State	name=”cartView”/>
	 </s:states>
	 <fx:Declarations>
	 	 <!--	Place	non-visual	elements	(e.g.,	services,	value	objects)	here	-->
	 </fx:Declarations>
	 <s:controlBarLayout>
	 	 <s:BasicLayout/>
	 </s:controlBarLayout>

03_FlexX(p1).indd 68 1/19/10 2:41:33 PM

69Working with View States

	 <s:controlBarContent>
	 	 <s:Button	id=”btnCheckout”	label=”Checkout”	right=”10”	y=”10”/>
	 	 <s:Button	id=”btnCartView”	label=”View	Cart”	right=”90”	y=”10”	
	 	 	 click.State1=”this.currentState=’cartView’”/>
	 	 <s:Button	label=”Flex	Grocer”	x=”5”	y=”5”/>
	 </s:controlBarContent>
	 <s:Label	text=”(c)	2009,	FlexGrocer”	right=”10”	bottom=”10”/>
	 <s:Group	x=”0”	y=”0”	width=”100%”	height=”100%”	id=”bodyGroup”>
	 	 <s:layout>
	 	 	 <s:HorizontalLayout/>
	 	 </s:layout>
	 	 <s:Group	width=”100%”	height=”150”	id=”products”	width.cartView=”0”
	 	 	 height.cartView=”0”	visible.cartView=”false”>
	 	 	 <s:layout>
	 	 	 	 <s:VerticalLayout/>
	 	 	 </s:layout>
	 	 	 <s:Label	text=”Milk”	id=”prodName”/>
	 	 	 <s:Label	text=”$1.99”	id=”price”/>
	 	 	 <s:Button	label=”AddToCart”	id=”add”/>
	 	 </s:Group>
	 	 <s:Group	height=”100%”	id=”cartGroup”	width.cartView=”100%”>
	 	 	 <s:layout>
	 	 	 	 <s:VerticalLayout/>
	 	 	 </s:layout>
	 	 	 <s:Label	text=”Your	Cart	Total:	$”/>
	 	 	 <s:Button	label=”View	Cart”	click=”this.currentState=’cartView’”	
	 	 	 	 includeIn=”State1”/>
	 	 	 <mx:DataGrid	includeIn=”cartView”	id=”dgCart”	width=”100%”>
	 	 	 	 <mx:columns>
	 	 	 	 	 <mx:DataGridColumn	headerText=”Column	1”
	 	 	 	 	 	 dataField=”col1”/>
	 	 	 	 	 <mx:DataGridColumn	headerText=”Column	2”
	 	 	 	 	 	 dataField=”col2”/>
	 	 	 	 	 <mx:DataGridColumn	headerText=”Column	3”
	 	 	 	 	 	 dataField=”col3”/>
	 	 	 	 </mx:columns>
	 	 	 </mx:DataGrid>
	 	 	 <s:Button	includeIn=”cartView”	label=”Continue	Shopping”
	 	 	 	 click=”this.currentState=’’”/>
	 	 </s:Group>
	 </s:Group>
</s:Application>

 7 Save and test the application. You can now navigate between the states by clicking the
buttons to which you added code.

03_FlexX(p1).indd 69 1/19/10 2:41:33 PM

70 Lesson 3: Laying Out the Interface

Refactoring
Refactoring is one of the least understood and most useful tools in a developer’s arsenal. It is
particularly relevant for a Flex and ActionScript developer, because dynamic interfaces are
often recombined with code during the prototype and development stages of a project.

Refactoring is simply the process of reorganizing your code in a way that is better suited
to a long-term goal without changing the way it functions. Long-term goals might include
increasing the maintainability of the software, modifying the architecture to make additional
development steps easier, or simply changing the location and structure of the project to make
it more understandable to a new developer. However, one thing is always true: At the end of a
successful refactoring session, the changes will be imperceptible to an individual running the
application who does not look at the source code. The application functions the same way.

Many developers find this notion and this process frustrating. Why would you want to spend
time changing code you have already written if it makes no noticeable change in the applica-
tion’s execution? The answers are varied, but here are a few important ones.

Learning:•	 Learning a new language and continuing to use it is a learning experience. You
will be learning new things and techniques every day. That often leads to the realization
that the code you wrote days, weeks, or months ago may be inefficient, or even ineffec-
tive in certain circumstances. Keeping a keen eye on what you have written in the past
and being willing to revisit it often provides a more cohesive code base and tighter, more
maintainable code.

03_FlexX(p1).indd 70 1/19/10 2:41:33 PM

71Refactoring

Duplication and redundancy:•	 As you are developing, it is extremely common to need
the same functionality in multiple places in your application. Usually due to time con-
straints, this code stays forever duplicated. One of the many problems with this is that
later, when that code needs to change, you have to be sure to hunt down and fix all the
places it is used. A willingness to avoid duplication and move shared code into new places
as you continue developing can not only eliminate large headaches down the road, but
can also make your day-to-day development more efficient and faster.

The big picture:•	 Often it is difficult, if not impossible, to know how all the pieces in a
system will fit together when you begin writing code. If these pieces written early in the
process are set in stone, you will end up bending or breaking code down the line when
you try to integrate. If you are comfortable with the idea of refactoring your code as
needed throughout the process, you can hone your vision of the system as you progress,
ending up with objects and structures that work more cohesively when they’re finished.

We have a couple of reasons for addressing refactoring here. First, many new developers to the
Flex and ActionScript world attempt to apply a rigid approach to their development that does
not include refactoring. Over the course of time, we have noticed that these developers, above
all others, struggle against the language instead of learning to use it as a tool. We simply want
you to avoid that pain.

Second, throughout this book you are going to be learning. In fact, quite often you are going
to learn multiple techniques for accomplishing the same goal. It is not always feasible to intro-
duce the one “right” way to do something from the beginning because these concepts tend to
build upon each other. So, once you have learned enough to approach writing something in a
new way, you will end up refactoring it. This provides two benefits: the ability to understand
multiple ways to accomplish a goal (and hopefully the reasons why you would or would not
use one or the other) and the ability to hone the code base into a final application with valid
examples for reference.

That said, you are going to refactor the application you have built to date, to make it easier to
maintain as you continue through this book.

Using Composed Containers
As you learned in this lesson, most containers in Flex accept a layout object that dic-
tates the orientation of their children. This layout object is generally specified by adding a
LayoutObject to a Group using the layout property, as the following example shows:

<s:Group>
	 <s:layout>
	 	 <s:HorizontalLayout/>

03_FlexX(p1).indd 71 1/19/10 2:41:33 PM

72 Lesson 3: Laying Out the Interface

	 </s:layout>

	 <s:Button	label=”1”/>
	 <s:Button	label=”2”/>
	 <s:Button	label=”3”/>
</s:Group>

While this provides the utmost flexibility, it does require a little extra typing each time you create
a new Group. In a small application this is not a very big issue; however, in a large application,
adding layout objects to tens of thousands of Groups can become tedious. To solve this problem,
Flex allows you to create new components composed of existing components and properties.
You can then use these new constructs as shortcuts to desired functionality.

The Flex framework has prebuilt a few of these shortcuts in the form of two containers called
VGroup and HGroup. In the following chart, the horizontal columns are functionally equivalent.

Alternative Shortcuts

Using layout Property Composed Version

<s:Group>	 	 <s:HGroup>	
 <s:layout>	 <s:Button	label=”1”/>	
	 	 	 	 	 <s:Button	label=”2”/>
 <s:HorizontalLayout/>	 <s:Button	label=”3”/>	
 </s:layout>	 </s:HGroup>	
	
 <s:Button	label="1"/>	
 <s:Button	label="2"/>	
 <s:Button	label="3"/>	
</s:Group>

<s:Group>	 	 <s:VGroup>	
 </s:layout>	 <s:Button	label=”1”/>	
	 	 	 	 <s:Button	label=”2”/>	
 <s:VerticalLayout/>	 <s:Button	label=”3”/>	
 </s:layout>	 </s:VGroup>	
	
 <s:Button	label="1"/>	
 <s:Button	label="2"/>	
 <s:Button	label="3"/>	
</s:Group>

03_FlexX(p1).indd 72 1/19/10 2:41:33 PM

73Refactoring

If you were to examine the VGroup and HGroup source code, you would find that they are
little more than the Group you have already learned to use with the layout property preset
for your use. In Lessons 8, “Creating Components with MXML,” and Lesson 11, “Creating
Custom Flex Components with ActionScript 3.0,” you will learn to create your own compo-
nents wherever you see a similar opportunity to reuse code.

Refactoring Your Application
In this section, you will convert all the Groups with HorizontalLayouts to HGroups, and
Groups with VerticalLayouts to VGroups. The goal of this exercise is to successfully change
the internal structure of the application without changing its functionality.

 1 Open the FlexGrocer.mxml file that you used in the previous exercise.

Alternatively, if you didn’t complete the previous lesson or your code is not functioning
properly, you can import the FlexGrocer-PreRefactor.fxp project from the Lesson03/
intermediate folder. Please refer to Appendix A for complete instructions on importing a
project should you ever skip a lesson or if you ever have a code issue you cannot resolve.

 2 Switch to Source view.

 3 Find the group named bodyGroup and change it to an HGroup. Be sure to also change
the closing tag for this group.

 4 Eliminate the tag for the layout property and the HorizontalLayout object from within
the bodyGroup.

 5 Find the products group and change it to a VGroup. Be sure to change the closing tag as well.

 6 Eliminate the tag for the layout property and the VerticalLayout object from within the
products group.

 7 Repeat this process for the cartGroup.

When you are finished refactoring the application, your code should appear as follows:
<?xml	version=”1.0”	encoding=”utf-8”?>
<s:Application	xmlns:fx=”http://ns.adobe.com/mxml/2009”
	 	 xmlns:s=”library://ns.adobe.com/flex/spark”
	 	 xmlns:mx=”library://ns.adobe.com/flex/mx”>
	 <s:states>
	 	 <s:State	name=”State1”/>
	 	 <s:State	name=”cartView”/>
	 </s:states>
	 <fx:Declarations>
	 	 <!--	Place	non-visual	elements	(e.g.,	services,	value	objects)	here	-->
	 </fx:Declarations>

03_FlexX(p1).indd 73 1/19/10 2:41:33 PM

74 Lesson 3: Laying Out the Interface

	 <s:controlBarLayout>
	 	 <s:BasicLayout/>
	 </s:controlBarLayout>

	 <s:controlBarContent>
	 	 <s:Button	id=”btnCheckout”	label=”Checkout”	right=”10”	y=”10”/>
	 	 <s:Button	id=”btnCartView”	label=”View	Cart”	right=”90”	y=”10”	
	 	 	 click.State1=”this.currentState=’cartView’”/>
	 	 <s:Button	label=”Flex	Grocer”	x=”5”	y=”5”/>
	 </s:controlBarContent>
	 <s:Label	text=”(c)	2009,	FlexGrocer”	right=”10”	bottom=”10”/>
	 <s:HGroup	x=”0”	y=”0”	width=”100%”	height=”100%”	id=”bodyGroup”>
	 	 <s:VGroup	width=”100%”	height=”150”	id=”products”	width.cartView=”0”	
	 	 	 height.cartView=”0”	visible.cartView=”false”>
	 	 <s:Label	text=”Milk”	id=”prodName”/>
	 	 	 <s:Label	text=”$1.99”	id=”price”/>
	 	 	 <s:Button	label=”AddToCart”	id=”add”/>
	 	 </s:VGroup>
	 	 <s:VGroup	height=”100%”	id=”cartGroup”	width.cartView=”100%”>
	 	 	 <s:Label	text=”Your	Cart	Total:	$”/>
	 	 	 <s:Button	label=”View	Cart”	click=”this.currentState=’cartView’”	
	 	 	 	 includeIn=”State1”/>
	 	 	 <mx:DataGrid	includeIn=”cartView”	id=”dgCart”	width=”100%”>
	 	 	 	 	 <mx:columns>
	 	 	 	 	 <mx:DataGridColumn	headerText=”Column	1”	
	 	 	 	 	 	 dataField=”col1”/>
	 	 	 	 	 <mx:DataGridColumn	headerText=”Column	2”	
	 	 	 	 	 	 dataField=”col2”/>
	 	 	 	 	 <mx:DataGridColumn	headerText=”Column	3”	
	 	 	 	 	 	 dataField=”col3”/>
	 	 	 	 </mx:columns>
	 	 	 </mx:DataGrid>
	 	 	 <s:Button	includeIn=”cartView”	label=”Continue	Shopping”	
	 	 	 	 click=”this.currentState=’’”/>
	 	 </s:VGroup>
	 </s:HGroup>
</s:Application>

 8 Save the file and click Run.

You should have the same functionality with the View Cart Button as before and see
absolutely no change in functionality, yet have slightly more maintainable code.

03_FlexX(p1).indd 74 1/19/10 2:41:33 PM

75What You Have Learned

What You Have Learned
In this lesson, you have:

Used containers and layout objects (page xx)•	

Begun an application layout in Source view (pages xx–xx)•	

Laid out an application in Design view (pages xx–xx)•	

Worked with constraint-based layouts (pages xx–xx)•	

Worked with view states (pages xx–xx)•	

Controlled view states (pages xx–xx)•	

Refactored your application (pages xx–xx)•	

03_FlexX(p1).indd 75 1/19/10 2:41:34 PM

