
E25 - DESIGN PATTERNS

Written by

Robert C. Martin
(Uncle Bob)

Segment 1 - Welcome

FRONT DOOR1 1

UNCLE BOB
Welcome, welcome, to Clean Code
episode 25, Design Patterns. Here,
let me take your hat.

Now I know what you’re thinking.
You’re thinking that I’m leaking
out on my promise to do a case
study of TDD, including GUI and DB.
Right?

Well, I’m not. It’s just that I
started thinking about trying to
fit a reasonable case study into an
hour long video and realized that
there simply wasn’t any way to do
that well.

And then it occurred to me. What
better vehicle for Design Patterns
could there be, than a significant
case study that spans multiple
episodes?

So that’s what we’re going to do.
We’re going to start a new series
that will run in parallel with this
one. In that series we will build
an application using everything
we’ve learned so far; and
everything we are about to learn.

OFFICE2 2

UNCLE BOB
So, in this episode we’re going to
begin our journey through the topic
of Design Patterns. And it’s not a
moment too soon, because we’re
going to need those patterns for
the application we’ll be developing
in the case study series.

First we’ll look at what design
patterns are; and we’ll study a few
examples from outside the software
domain.

(MORE)

E25 - Design Patterns 1.

4/3/14 S1

We’ll introduce the Design Patterns
book and take a quick walk through
it’s pages.

Then we’ll focus on just one of the
patterns -- the Command Pattern.
We’ll show you it’s structure, and
many of it’s common uses.

We’ll see how you can use the
Command Pattern to decouple what is
done from who does it and when it
is done.

We’ll also see that the Command
Pattern provides an interesting
solution to implementing Undo
behavior.

Finally we’ll look at the actor
model of concurrency, and see how
the Command Pattern helps us
implement that.

MINECRAFT3 3

Note: VO

Blowing up TNT

ENGINEER
So head for them thar hills,
pardners, ‘cuz we’re about to blast
our way into the world of design
patterns.

UNCLE BOB (CONT'D)

E25 - Design Patterns 2.

4/3/14 S1

Segment 2 - Neutron Stars

WORKSTATION4 4

UNCLE BOB
Back in Episode 19 we talked about
how massive stars end their lives
when they’ve burned through the
last of their fuel producing core
of iron. Unable to produce the
engery necessary to withstand it’s
own gravity, the iron core
collapses so tightly that the
protons and electrons react to form
neutrons, which arrange themselves
into a sphere at the center of the
star. The energy liberated by this
collapse blows the star to
smithereens as a type II supernova.

KITCHEN5 5

UNCLE BOB
Now that explosion is pretty
spectacular; and it’s also the
forge in which most of the atoms in
our everyday world are created.
But what about that ball of
neutrons? What happens to it?

OFFICE6 6

UNCLE BOB
Sometimes the explosion is so
forceful that the ball of neutrons
doesn’t survive. We’ll talk about
that in another episode. Often,
however, the ball of neutron rides
through the storm of the explosion,
and is left behind as a stable
object. We call it a neutron
star.

1737 TALL PINE WAY7 7

UNCLE BOB
Now remember, neutrons are
fermions. They obey the Pauli
Exclusion Principle.

(MORE)

E25 - Design Patterns 3.

4/3/14 S2

Two neutrons cannot be in the same
system and also be in the same
state. So, the neutrons in that
ball must arrange themselves into
an energy shell structure analogous
to the electrons in an atom.

COUCH8 8

UNCLE BOB
The more neutrons there are, the
more energy levels there must be.
The higher the energy of the
neutrons, the more momentum those
neutrons carry. That momentum
create a pressure that pushes back
against the neutron star’s gravity.
Remember that force is called
degeneracy pressure.

WHITEBOARD9 9

Note: D Density = 10^15, Surface Gravity 10^11 g.

UNCLE BOB
And what a pressure that is! A
typical neutron star has twice the
mass of our Sun, but is only about
six miles in diameter. It has the
density of an atomic nucleus, or
about a quadrillion times that of
water. That combination of mass
and density creates a gravitational
field intense enough to make a pint
of water weigh 100 billion pounds.

So this is a pretty interesting
object. But it gets better.

RECROOM10 10

Note: V spinning skater.

UNCLE BOB
Stars in general spin. Prior to
it’s collapse, the parent of the
neutron star was spinning too.

UNCLE BOB (CONT'D)

(MORE)

E25 - Design Patterns 4.

4/3/14 S2

But then the core collapsed by a
factor of 10,000 or so, which, like
a skater pulling in her arms,
caused the neutron star to spin up
to a rate of, say 60 rotations per
second.

CAR11 11

UNCLE BOB
So now we’ve got an object that’s
six miles in diameter, and twice
the mass of the sun, spinning at
3600 RPM, the speed of a standard
hard disk. Do you think there’s
some kinetic energy in this thing?

SCREEN PORCH12 12

UNCLE BOB
Oh, but it gets better. The parent
star had a big magnetic field.
When the core collapsed, that field
got compressed by a factor of
10,000 or so. So the field
intensities at the surface of the
neutron star are perhaps a trillion
times the Earth’s magnetic field.
That’s strong enough to rip most
materials apart.

WORKSTATION13 13

UNCLE BOB
Now let’s think about this for a
minute. Here’s an object, with a
truly radical magnetic field,
spinning at 3600 RPM. What do you
get when you spin a magnetic field?
That’s right, you get an electric
field. You get a voltage. In this
case a whopping big voltage!

WHITEBOARD14 14

Note: D pulsar

UNCLE BOB (CONT'D)

E25 - Design Patterns 5.

4/3/14 S2

UNCLE BOB
That voltage aligns itself with the
poles of the magnetic field and
accelerates charged particles like
electrons that happen to be within
it’s range. But don’t forget about
that magnetic field. As electrons
move through a magnetic field they
rotate around the field lines. And
what do rotating electrons do?
They give off photons. If the
field strenghts are high enough,
those photons will have frequencies
ranging from radio waves to visoble
light. And all those photons blast
outwards of the poles of the
neutron star in two intense beams.

GS15 15

Note: J Mars

Note: D neutron star lighthouse.

UNCLE BOB
Now it just so happens that the
magnetic poles of the neutron star
don’t often align with the
rotational poles of the star. So
these two beams of light swing
around the sky like some kind of
crazy lighthouse. If the Earth
happens to be in the path of those
beams, then we see that lighthouse
flashing at us.

We call such flashing objects
Pulsating Stars, or Pulsars.

SUN ROOM16 16

UNCLE BOB
Now it takes a lot of energy to
spin a stellar magnetic field and
radiate those beams of light. That
energy comes from the kinetic
energy of the neutron star’s
rotation. And so, with time, the
neutron star slows down.

(MORE)

E25 - Design Patterns 6.

4/3/14 S2

As it slows, the electric field
shrinks, the electrons slow their
rotations, and the beams gradually
decrease their energy from visible
light down toward the radio part of
the spectrum.

FRONT PORCH17 17

UNCLE BOB
But we can still see them, flashing
a way once or twice per second in
the radio spectrum. Indeed, the
very first pulsar to be found, was
a radio pulsar. And, in fact,
almost all the pulsars we know of
are radio pulsars. Visible pulsars
are short lived because they burn
through their kinetic energy pretty
quickly.

GS18 18

Note: J Crab Nebula

UNCLE BOB
Still, there is one very famous
visible pulsar in the Crab Nebula,
6000 light year away in the
constellation of Taurus.

The crab is a remnant of a type II
supernova that blew up on July 4,
1054 AD. It was reported by the
Chineese who said it was visible in
the night time for two years, and
could be seen in the daytime for
the first month.

When we look, now, at the very
center of the Crab, we see a strong
radio pulsar spinning 30 times per
second. We also see dim flashes of
visible light that are synchronized
with the radio pulses.

UNCLE BOB (CONT'D)

E25 - Design Patterns 7.

4/3/14 S2

WORKSTATION19 19

UNCLE BOB
Overall, we know of several
thousand pulsars scattered around
teh sky. Some spin at leisurely
rates of a few RPM, and others spin
crazily a thousand times per
second. The regularity of the
pulses is so consistent, that
nowadays we use them to calibrate
our atomic clocks.

E25 - Design Patterns 8.

4/3/14 S2

Segment 3 - Design Patterns

WORKSTATION20 20

UNCLE BOB
So, before we begin looking at the
requirements of our case study, it
would be a good idea if we took a
moment to talk about design
patterns. Can anyone tell me what
they are?

GS21 21

RUBY ROD
Well, like, y’know, about a million
years ago these four dudes wrote
this book named Design Patterns;
and it was all about patterns of
design.

WORKSTATION22 22

Note: P Design Patterns Book.

Note: 2

UNCLE BOB
(Sarcastic)

Thank you for that, Ruby, that was
very helpful. Yes, here’s that
book. It was written in 1995 by
Erich Gamma, John Vlissides, Ralph
Johnson, and Richard Helm --
affectionately known as the Gang of
Four.

This book is probably the most
important book written about
software in the last thirty years.
Not because it contains anything
new; but for precisely the opposite
reason. What this book talks about
is old ideas. Ideas that have
withstood the test of time.

So, just what is a Design Pattern

GS

E25 - Design Patterns 9.

4/3/14 S3

DANNY DOTNET
Oh, I know, Uncle Bob, I know. A
design pattern is a solution to a
problem in a context.

WORKSTATION23 23

UNCLE BOB
A competent answer, Danny --
virtually a quote from the text.
But what does that mean?

GS24 24

JERRY JAVA
Yeah, yeah, it means you can solve
problems with patterns.

WORKSTATION25 25

UNCLE BOB
Well, sort of -- and sort of not.
But perhaps an example would be
useful.

Title: Bisected Oval

WHITEBOARD26 26

UNCLE BOB
Have you ever looked through one of
those “How to Draw” books that show
you the steps to draw a face?
Often they start with an oval, like
this. Then they bisect that oval
vertically and horizontally. Then
they bisect the lower vertical
here, and again here.

Now you can draw the eyes, nose,
mouth, ears, and hair.

This technique is a pattern. We
might call it the Bisected Oval
pattern. As Danny said, it is a
solution to a problem in a context.

The problem is to draw a face.
The context is a line drawing,
facing front.

E25 - Design Patterns 10.

4/3/14 S3

COUCH27 27

Note: P Green Card

UNCLE BOB
If your problem is to draw a face,
and you don’t mind a line drawing
facing front, then you can use the
Bisected Oval pattern.

KITCHEN28 28

UNCLE BOB
Notice that I gave the pattern a
name. That’s a key element to any
pattern. Danny said that a pattern
is a solution to a problem in a
context. I’ll amend that
definition to: A named solution to
a problem in a context.

GS29 29

RUBY ROD
Man, like, what’s so great about
the name? I mean what counts is
what you do, not what you call it.

WORKSTATION30 30

UNCLE BOB
The importance of the name is that
we can talk about the pattern. We
can use the name to communicate our
intended solution.

GS31 31

Note: J Washington_Crossing_the_Delaware.jpg

UNCLE BOB
Let’s say that we’re artists who
are supposed to create a oil
painting mural of George Washington
crossing the Delaware river. We
can talk about how we’re going to
solve that problem by using the
names of the patterns. We can ask:
“Shall we use Bisected Oval”

E25 - Design Patterns 11.

4/3/14 S3

GS32 32

Note: J Washington_Crossing_the_Delaware.jpg

RUBY ROD
Woah, man, you can’t use that
pattern because, like, George isn’t
facing front -- he’s in profile.

GS33 33

Note: J Washington_Crossing_the_Delaware.jpg

JERRY JAVA
Yeah, yeah, and it’s an oil
painting, not a line drawing.

WORKSTATION34 34

Note: A Bisected Oval gets crossed out on screen.

UNCLE BOB
Right. The context for the pattern
is incompatible with the task. So
the Bisected Oval pattern can’t be
used for Washington’s face.

FAMILY ROOM35 35

UNCLE BOB
That’s the value of a named
pattern. If you know the patterns
and their names then as your team
discusses design strategy, you can
refer to the patterns by name, and
quickly decide whether the context
is appropriate.

GS36 36

DANNY DOTNET
OK, Uncle Bob, I get that. But why
should I learn these patterns. I
mean, I already know how to
program.

OFFICE37 37

Note: P Chessboard

E25 - Design Patterns 12.

4/3/14 S3

UNCLE BOB
Do you play Chess, Danny?

GS38 38

DANNY DOTNET
Sure, all the time. Wanna play?

OFFICE39 39

Note: P Chessboard

UNCLE BOB
Perhaps later. Have you read any
books on chess?

GS40 40

DANNY DOTNET
Well, yes, actually, I have. I
read a book by Bobby Fisher once.
It taught me a lot.

OFFICE41 41

Note: P Chessboard

UNCLE BOB
Do you know how many books have
been written about chess. I mean
have you ever walked through the
chess section of a library or a
book store and seen the huge number
of books there?

GS42 42

DANNY DOTNET
Yes, Uncle Bob, I have. There are
so many. There are books about the
opening, books about the endgame,
books about the middle game, books
for beginners, books for masters,
there are a lot of books about
chess.

E25 - Design Patterns 13.

4/3/14 S3

OFFICE43 43

Note: P Chessboard

UNCLE BOB
Right you are. There are thousands
of them. And that’s a measure of
how much there is to know about the
game.

But consider the first time you
played a game of chess. You had
just learned a few simple rules.
You knew none of the strategy. You
hadn’t read any of the books. You
just started moving the pieces in
accordance to the rules.

GS44 44

DANNY DOTNET
Yeah, Uncle Bob. I wasn’t a very
good chess player back then.

OFFICE45 45

Note: P chessboard

UNCLE BOB
Nobody is Danny. When you first
learn the rules, you don’t know any
of the principles. You don’t
understand the value of the center
four squares. You don’t know the
relative value of the pieces. You
don’t understand the power and
threat of a lone pawn.

GS46 46

DANNY DOTNET
But I learned all that, Uncle Bob.
It took me dozens and dozens of
games, but I learned.

OFFICE47 47

Note: P Chessboard

E25 - Design Patterns 14.

4/3/14 S3

UNCLE BOB
Of course you did, Danny. It took
time, but by playing a lot, and
losing a lot, you learned enough
strategy and tactics to play a
pretty fair game.

GS48 48

DANNY DOTNET
Yeah, I got pretty good. But I got
a lot better after I read that
book.

OFFICE49 49

Note: P chessboard

UNCLE BOB
And that’s the way that works. Raw
experience can give you enough
knowledge and skill to do a fair
job. But if you want to be a
master, you have to study the
games, strategy, and tactics of
past masters. You have to read the
books. You have to master the
patterns.

FAMILY ROOM50 50

UNCLE BOB
And that’s what the Design Patterns
book is. It’s a summary of the
knowledge of past masters. It’s a
condensation of years of
experience. Each pattern is a
solution that past masters have
used to resolve issues in their
software.

GS51 51

DANNY DOTNET
Wow, I never looked at it quite
like that.

E25 - Design Patterns 15.

4/3/14 S3

CAR52 52

UNCLE BOB
And that’s why I say that the
Design Patterns book is probably
the most important book written
about software in the last thirty
or so years.

E25 - Design Patterns 16.

4/3/14 S3

Segment 4 - The GOF book

WORKSTATION53 53

Note: J GOF.jpg

Note: A highlight in order 2,3,1,4

UNCLE BOB
We call this the GOF book. GOF.
G. O. F. It stands for “Gang of
Four” and refers to the four
authors: Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides.

KITCHEN54 54

Note: 2

UNCLE BOB
The GOF monaker was awarded to them
by those of us who were reviewing
the chapters in 1993. This book
was one of the first books to
appear on the internet before it
was published. The authors
uploaded postscript files to a
special FTP site on a daily basis.
Those of us who reviewed them
eagerly awaited each upload. We
would read the uploaded chapters
and then discuss the topics in an
email group.

UNCLE BOB (CONT’D)
Soon we began referring to the
authors as the gang of four; which
was an oblique reference to the
four Chinese Communist Party
officials who came to prominence
during the Cultural Revolution in
the ‘60s and ‘70s and were
subsequently charged with a series
of treasonous crimes.

GS55 55

SPOCK
Illogical.

E25 - Design Patterns 17.

4/3/14 S4

BASEMENT BATHROOM56 56

Note: A [GOF94].

UNCLE BOB
Yes, it was a politically incorrect
joke; but it stuck. Nowadays
bibliography citings of the book
refer to it as [GOF94].

WORKSTATION57 57

UNCLE BOB
The book begins with a chapter that
both justifies and explains the
Design Pattern concepts, and also
presents the design principles that
drive those patterns. In this
chapter you will learn why it is
important to design to an interface
instead of an implementation, and
why you should prefer composition
to inheritance.

You’ll find the discussions in this
chapter to be both enlightening and
enjoyable.

SUN ROOM58 58

UNCLE BOB
Chapter 2 presents a case study of
the design of a word processor. It
shows how patterns were identified
and used to solve the interesting
problems presented by that problem.
Again, you’ll find this chapter to
be illuminating and fun to read.

RECROOM59 59

UNCLE BOB
(walking)

Then begins the catalog of
patterns. This catalog is divided
into three chapters which focus on
the three broad categories of
patterns: Creational, Structural,
and Behavioral.

(MORE)

E25 - Design Patterns 18.

4/3/14 S4

In this series, we will not be
walking through these patterns in
the order presented in the GOF
book. Rather, we’ll try to couple
the patterns we talk about here,
with the patterns being used in the
case study series.

GS60 60

MONK
Creational patterns are patterns
that help you create instances of
objects.

GS61 61

DATA
Structural patterns help you to set
up the communication pathways
between separate groups of objects.

GS62 62

SPOCK
Behavioral patterns help you
partition the behaviors of your
system into discrete sets of
classes.

WORKSTATION63 63

UNCLE BOB
But despite these classifications,
all of these patterns pursue the
same goal -- dependency management.
Each one of these patterns is a
crystalized application of the
SOLID principles. Each one of them
helps you to separate and decouple
the various concerns within your
system. And _that_ is why they are
called _Design_ patterns.

UNCLE BOB (CONT'D)

E25 - Design Patterns 19.

4/3/14 S4

Segment 5 - The Command Pattern

GS64 64

RUBY ROD
Like, man, yknow, this is really
fascinating and all; but like can
you actually show us a pattern?

WORKSTATION65 65

UNCLE BOB
Sure Ruby. For the rest of this
episode, we’re going to focus on
one my favorite design patterns.
The Command Pattern.

WHITEBOARD66 66

UNCLE BOB
Of all the design pattern out
there, Command is one of the
simplest. Most often it is nothing
more than an interface named
Command with a single method named
execute.

GS67 67

JERRY JAVA
Yeah, yeah, execute, that’s really
procedural.

GS68 68

RUBY ROD
Yeah, like, I mean, that’s just a
function man. I thought Design
Patterns were all about objects and
stuff.

KITCHEN69 69

UNCLE BOB
Don’t scoff at functions, guys.
All objects contain functions.

(MORE)

E25 - Design Patterns 20.

4/3/14 S5

But sometimes those functions need
to be decoupled in unorthodox ways -
- and that’s where the command
pattern comes in.

GS70 70

DANNY DOTNET
Gosh, Uncle Bob, what do you mean
by unorthodox decoupling?

MASSAGE CHAIR71 71

UNCLE BOB
So let me tell you a story. Back
in Episode 12, the episode about
the interface segregation
principle, I told you about my time
as a consultant for Xerox, working
on the control software for the
first digital color copier.

GS72 72

UNCLE BOB
To control this copier we had to
start and stop motors, engage and
disengage clutches, close and open
relays, and, in general, control a
large number of actuators.

WHITEBOARD73 73

UNCLE BOB
One of the design options we played
with was to use the Command pattern
for each actuation. So we would
derive a MotorOn command, a
MotorOff command, a ClutchEngage
command, a RelayClose command, and
so on. We could create instances
of these commands and pass them to
other objects as instances of
Command. For example, we had
another class named Sensor that
held a reference to a Command.

UNCLE BOB (CONT'D)

(MORE)

E25 - Design Patterns 21.

4/3/14 S5

When the sensor was triggered
(usually by a piece of paper moving
over an optical sensor) the sensor
object would call execute on it’s
command.

GS74 74

UNCLE BOB
The interesting thing about this is
that the sensors had no idea what
command they were executing. The
fact that the sensor controlled a
relay was something that the sensor
did not know.

The Command pattern allowed us to
decouple WHAT was done, from WHO
did it.

GS75 75

SPOCK
Decoupling actions from actors
seems likely to greatly enhance
flexibility.

MASTER BATH76 76

UNCLE BOB
Absolutely, but decoupling what
from who is just the beginning of
the Command Pattern’s ability to
decouple.

WHITEBOARD77 77

Note: J employee class diagram.graffle

Note: J AddEmployeeClassDiagram.graffle

UNCLE BOB
Take, for instance, the payroll
application from Episodes 7 and 18.
Remember all those interactors that
encapulated the use cases? Well
the interactors were just instances
of the Command pattern, weren’t
they?

UNCLE BOB (CONT'D)

E25 - Design Patterns 22.

4/3/14 S5

GS78 78

Note: J FactoriesBuilders.graffle

ENGINEER
Dang betcha they were. All we did
was fetch ‘em from a factory and
then execute ‘em. So, yep. All
them use-case interactors were
commands, jus’ like ya said.

WHITEBOARD79 79

UNCLE BOB
So, now, Imagine that we have a web
based GUI that allows users to add,
change, or delete employees from
the database. That GUI would
create instances of those commands,
wouldn’t they.

GS80 80

Note: J Architecture.jpg

DANNY DOTNET
That’s right. Users would enter
data into web forms, and then the
controllers would use the
appropriate factory to create the
correponding interactor - er -
command. And then the controller
would execute that command.

EXERCIZE BIKE81 81

UNCLE BOB
Right. But now imagine that the
controller did everything but that
last step. Imagine that instead of
executing the command, the
controller put the command instance
into a list and left it unexecuted.

MASTER BEDROOM82 82

Note P in bed. Lights out.

E25 - Design Patterns 23.

4/3/14 S5

UNCLE BOB
And then. At midnight, we have
some scheduled process walk through
that list executing all those
commands.

GS83 83

RUBY ROD
Woah, like you decoupled what was
done from WHEN it was done.
That’s like a temporal decoupling!

GS84 84

Note: A K9

DOCTOR WHO
A Temporal Decoupling? K-9 remind
me to check the temporal couplers
the next time we land.

K9
Affirmative Master.

E25 - Design Patterns 24.

4/3/14 S5

Segment 6 - Do and Undo

GS85 85

DANNY DOTNET
OK, Uncle Bob, I can see that by
using the Command pattern, we can
decouple the behavior of a task
from who invokes that task; and
also from when that task is
invoked. That’s pretty cool. But
is there more?

WORKSTATION86 86

UNCLE BOB
There sure is! Consider the fact
that instances of the command
pattern are objects; and objects
have state. When you call execute
on command objects, they could
record details about what they did.
Now what do you think you could you
do with that information, eh?

GS87 87

SHERLOCK
What indeed! Obviously an object
that remembers the relevant details
about the actions it preforms; has
all the information it needs to
undo those actions at a later time.

MASSAGE CHAIR88 88

UNCLE BOB
Precisely. Command objects are the
perfect way to implement undo
functionality. And that reminds me
of another story.

GS89 89

UNCLE BOB
Long ago I took a contract to
develop a software system that
involved the creation of 18
different desktop GUI applications.

(MORE)

E25 - Design Patterns 25.

4/3/14 S6

They were all specialized drawing
applications meant to help
architects draw building plans,
property lines, roof plans,
landscaping plans, structural
integrity plans, among many other
things.

WHITEBOARD90 90

Note: D Wire-frame diagram of GUI.

UNCLE BOB
The applications were pretty
traditional 90s style palette and
canvas applications. The palette
consisted of a set of buttons down
the left side of the screen. The
canvas was at the right. Users
would click on the palette buttons
to choose a function like “Draw
Window”, and would then click on
the canvas to place that window
into their drawing.

MAC 12891 91

UNCLE BOB
Among the buttons in the palette
were buttons like move and erase.
If you wanted to move an object
around on the screen, you’d click
on the move button and then click
the element on the canvas you
wanted to move. If you wanted to
erase an object, you clicked on the
erase button and then on the object
you wanted to erase.

GS92 92

JERRY JAVA
Yeah, yeah, that sounds kinda
clunky.

KITCHEN93 93

Note: P eating sandwich.

UNCLE BOB (CONT'D)

E25 - Design Patterns 26.

4/3/14 S6

UNCLE BOB
Hey! What can I tell you? It was
the ‘90s. Jeez!

OFFICE94 94

UNCLE BOB
Anyway, one of the buttons on the
palette was the undo button. When
you clicked that, it would undo the
last operation the user performed.
So if the last operation was to
place a door, or a window, or draw
a property line, clicking undo
would erase what you had created.
If your last operation was to erase
or move an item, clicking undo
would restore that item to it’s
original position.

CAR95 95

UNCLE BOB
And, of course, you could click
undo as many times as you liked.
It would simply keep undoing
previous operations all the way
back to the beginning of time.

GS96 96

DOCTOR WHO
I been there. It’s a pleasant
enough place to visit. Though I
can’t recommend the night life.

GS97 97

DANNY DOTNET
Gosh, Uncle Bob, did you use the
command pattern to implement undo?
How did that work?

WORKSTATION98 98

UNCLE BOB
We did, indeed, use the command
pattern Danny. It worked like
this.

E25 - Design Patterns 27.

4/3/14 S6

WHITEBOARD99 99

UNCLE BOB
We wrote this in C++, which doesn’t
have interfaces. So we created an
abstract class named Task and gave
it an abstract method named
execute.

GS100 100

RUBY ROD
Hey, man, like why didn’t you name
it Command? I mean, I thought the
names were so important and all.

GS101 101

UNCLE BOB
The names _are_ important, Ruby.
But we wrote this code long before
the Design Patterns book was
published. So we didn’t have a
standard name to use. If we were
writing that application today,
we’d certainly name that class
Command.

WHITEBOARD102 102

UNCLE BOB
Anyway, we created derivatives of
the Task class for each of the
functions on the palette. Every
palette button corresponded to one
of the task derivatives. When you
clicked a button on the palette,
our system would create the
appropriate task instance, and then
execute it.

GS103 103

DANNY DOTNET
OK, I think I understand. If the
user clicked the ‘Add window’
button, you’d create the
AddWindowTask and then execute it
right?

E25 - Design Patterns 28.

4/3/14 S6

WORKSTATION104 104

UNCLE BOB
Right.

GS105 105

DANNY DOTNET
And if the user clicked on the
‘Erase’ button, you’d create an
instance of the EraseTask and
execute it right?

WORKSTATION106 106

UNCLE BOB
Right.

GS107 107

DANNY DOTNET
So then, how did you do Undo?

WHITEBOARD108 108

UNCLE BOB
We added another method to the Task
class. This method was named undo.
When execute was called on a task
that task would perform the
appropriate action, and it would
also store in it’s fields, the
information necessary for the undo
function to undo that action.

GS109 109

DANNY DOTNET
OK, wait, let me see if I’ve got
this right. When the user clicked
on the AddWindow button, the system
created a instance of
AddWindowTask, and executed it.
The AddWindowTask allowed the user
to click in the canvas where they
wanted the window. The task would
add that window, but would also
remember that it had added that
window.

(MORE)

E25 - Design Patterns 29.

4/3/14 S6

Later, if you called undo on that
task, it would find that the window
it remembered, and erase it.
Right?

WORKSTATION110 110

UNCLE BOB
Yes, right.

GS111 111

DANNY DOTNET
Or if the user clicked on the Erase
button, you’d create an instance of
the EraseTask and execute it. The
Erase Task allowed the user to
click in the canvas on the item
they wanted to delete. The task
deleted that item, but also
remembered that item, and it’s
location on the canvas in some of
it’s fields. If you called undo on
that task, it would put the
remembered item back where it was,
right?

WORKSTATION112 112

UNCLE BOB
Yes, that’s exactly right. I think
you understand it quite well.

GS113 113

DANNY DOTNET
Hee hee.

GS114 114

RUBY ROD
Yeah, that’s cool and all; but,
like, what about redo?

DANNY DOTNET (CONT'D)

E25 - Design Patterns 30.

4/3/14 S6

WHITEBOARD115 115

UNCLE BOB
Well, an object that has undone an
action, can store the information
necessary to redo that action,
can’t it.

GS116 116

RUBY ROD
Yeah, but then like what if the
user does five things, and undoes
three, and then redoes one and then
does something else, and then
redoes, and, like that could get
really confusing.

GS117 117

DATA
I believe it would be wise, when
implementing redo, to keep close
control over the stack of executed
command objects; lest they get
badly out of hand.

E25 - Design Patterns 31.

4/3/14 S6

Segment 7 - The Actor Model

GS118 118

RUBY ROD
OK, so like, with the Command
Pattern we can decouple what from
who, and what from when; and we can
implement undo and redo; and that’s
a lot. Is there, like, anything
else.

WORKSTATION119 119

UNCLE BOB
Well, there’s always the actor
model.

GS120 120

DARTH VADER
To be, or not to be. That is the
question. Whether tis nobler....

TV STATIC

MASSAGE CHAIR121 121

UNCLE BOB
So, I think we have time for one
more story, don’t we?

WORKSTATION122 122

UNCLE BOB
OK, so, back to that contract I had
with Xerox in the early ‘90s. We
were using C++ to control the
internal hardware of a color
copier. And, as I told you before,
there were lots of devices to
control. Motors, clutches, relays,
solenoids, you name it. These
devices had really strict real-time
deadlines; and they all had to be
controlled asychronously. And that
meant threads. Lots and lots of
threads.

E25 - Design Patterns 32.

4/3/14 S7

MAC 128123 123

UNCLE BOB
Now the problem with threads is
that, in most cases, each thread
has to have it’s own stack. And
that means you have to allocate
memory for every stack for every
thread. Now if you’ve ever done
this, you know that the most
important question is, how much
memory to allocate for each stack.

WHITEBOARD124 124

Note: D memory map of lots of stacks.

UNCLE BOB
The reason that’s important is
that, on the 68000 microprocessor
that we were using, there was no
good way to detect if a thread had
exceeded the capacity of it’s
stack. Now imagine all these
stacks in memory. If a thread did
exceed the capacity of it’s stack,
it could overwrite the data on some
other thread’s stack. That poor
thread, whenever it’s turn came to
resume execution, would likely
behave erratically and
unpredictably.

GS125 125

JERRY JAVA
Yeah, yeah, like Boom!

GS126 126

SPOCK
In light of the fact that a stack
overwrite like this has recently
been determined as the cause of the
uncontrollable rapid acceleration
of certain automobiles, the word
“crash” might be more appropriate.

E25 - Design Patterns 33.

4/3/14 S7

OFFICE127 127

UNCLE BOB
Or maybe not. This is serious
stuff. Stack overwrite defects have
killed innocent and unsuspecting
people who were simply trying to
drive their cars.

GS128 128

DANNY DOTNET
Gosh, Uncle Bob, so how much space
do you allocate for a thread’s
stack?

MAC 128129 129

UNCLE BOB
That’s a tough question to answer.
At first you might think that you
could simply count all the function
call arguments, and all the local
variables, and all the function
call stack frames in the thread,
and determine the most possible
stack usage. But then you have to
remember that there are interrupts
running, and those interrupt heads
use the stack of the currently
running thread. Those interrupts
might just happen at the moment
where your thread was at maximum
stack usage. What’s more, it’s
possible that one interrupt could
be interrupted by another, higher
priority, interrupt.

GS130 130

RUBY ROD
Woah, that sounds like really
complicated. So why don’t you just
make the stack really really big.

COUCH131 131

UNCLE BOB
Yeah, well, in fact, that’s what
most people do.

(MORE)

E25 - Design Patterns 34.

4/3/14 S7

They simply allocate unreasonably
large stacks to make sure they have
a big safety buffer -- and then
they cross their fingers.

GS132 132

SHERLOCK
A decidedly questionable practice
is you ask me.

WHITEBOARD133 133

UNCLE BOB
Quite. But even that option wasn’t
open to us, because we needed
hundreds of thread. And in an
embedded machine with limited RAM,
you simply cannot allocate huge
stacks for hundreds of threads.
You don’t have the memory.

GS134 134

DANNY DOTNET
Gosh, Uncle Bob, so what did you
do?

GS135 135

UNCLE BOB
We used the actor model, Danny.
The actor model is a simple idea
that has been used for decades in
systems that require hundreds or
thousands of threads in a
constrained memory environment. It
works like this.

WHITEBOARD136 136

Note: D actor model code on board.

UNCLE BOB
Look at this code. You see the
Command interface up at the top?
You see the list of commands?

UNCLE BOB (CONT'D)

(MORE)

E25 - Design Patterns 35.

4/3/14 S7

You see the run method with that
loop in it. Look carefully now.
What does that run method do.

ZOOM IN ON BOARD
AND FREEZE

GS137 137

Note: A picture in picture on top of last frame of previous
scene.

DANNY DOTNET
Gosh, Uncle Bob, it just executes
every command in the list and then
exits.

WORKSTATION138 138

Note D: actor model code on screen

UNCLE BOB
OK, so if you put one command in
the list and called run, how many
commands would be executed before
run returned?

GS139 139

DANNY DOTNET
One.

WORKSTATION140 140

Note D: actor model code on screen

UNCLE BOB
Are you sure about that? Is there
a way that more commands could be
executed than just that one?

GS141 141

DANNY DOTNET
Well, gosh, Uncle Bob, there’s only
one command in the list. If you
call run, only one command will be
executed. Right?

UNCLE BOB (CONT'D)

E25 - Design Patterns 36.

4/3/14 S7

WHITEBOARD142 142

Note: D actor model on board

UNCLE BOB
Well, Danny, what if the execute
method of the command in the list,
puts another command in the list?

GS143 143

DANNY DOTNET
Oh. Oh! OH! Gosh, Uncle Bob, if
you did that, then _anything_ could
happen. I mean, the run method
might _never_ return. It could
create dozens and dozens of new
commands, and each of them could
create even more, and... Oh wow!

WORKSTATION144 144

Note: D ButtonCommand and Light Command code on screen.

UNCLE BOB
Wow indeed. So, now, imagine that
I have a command named
ButtonCommand. When execute it
called it looks at the state of a
button. If that button has not
been pressed, then the execute
method puts itself back on the
list.

But, if the button _has_ been
pressed, then the execute method
create an instance of LightCommand
and puts that on the list.

The execute method of the Light
command simply turns on a light and
then returns.

Now, if you put just that one
ButtonCommand on the list, and then
call run, what will it do?

E25 - Design Patterns 37.

4/3/14 S7

GS145 145

RUBY ROD
Man, like, it’ll wait for you to
push the button. When you do, the
light will turn on, and then the
run method will return.

MAC 128146 146

UNCLE BOB
Right. In the actor model, threads
wait by having a command check for
an event that puts itself back on
the list if that event has not
occurred.

GS147 147

JERRY JAVA
Yeah, yeah, that doesn’t look much
like a thread to me.

GS148 148

Note: D new ButtonCommand code

UNCLE BOB
Well then consider this. I change
the ButtonCommand constructor to
take two arguments. The first is
the io address of the button to
check, the second is a command to
execute if the button has been
pressed.

I create five button commands, one
for each of five different buttons,
each with a light command that will
turn on a different light.

I call run. What happens?

GS149 149

DANNY DOTNET
The system will wait for all five
buttons. Every time you push one
of those buttons, the corresponding
light will go on.

E25 - Design Patterns 38.

4/3/14 S7

WORKSTATION150 150

UNCLE BOB
Let me stop you right there. Yes,
you’re right. As soon as you push
a button, the corresponding light
will go on. But then, how many
commands are left in the list.

GS151 151

RUBY ROD
Four. There’s only the four
ButtonCommands left. The
LightCommand just exited.

WORKSTATION152 152

UNCLE BOB
Right. So the thread for that
button and light, died.

GS153 153

DANNY DOTNET
Oh! I get it, I get it. There
were five threads at first, and one
of them just died. So every time
you push a button, the
corresponding light will go on, and
the thread for that button will
die. When the last thread dies,
the list will be empty, and the run
method will return.

GS154 154

JERRY JAVA
Yeah, yeah, but I don’t see any
threads.

GS155 155

DANNY DOTNET
Well there aren’t any real threads,
like a Java thread. But there is a
sequence of command executions that
are threaded together. That
sequence is kind of like a thread.

E25 - Design Patterns 39.

4/3/14 S7

WORKSTATION156 156

UNCLE BOB
Right you are! The thread is
nothing more than the sequence of
command executions. And you can
make that sequence as simple, or as
complex as you like. And since the
commands for all the threads are in
the list, the execution of those
threads is asychronous.

GS157 157

RUBY ROD
Heh, that’s really cool.

GREAT ROOM158 158

UNCLE BOB
It gets better. What stack are all
those threads using?

GS159 159

DANNY DOTNET
Oh, gosh, wow, Uncle Bob, they’re
all using the same stack that the
run method uses -- just the one
normal system stack.

GREAT ROOM160 160

UNCLE BOB
Right! And why is it that those
threads can all use the same stack?

GS161 161

RUBY ROD
Well, because the commands are just
functions, I mean, they all return
back to the run method without
blocking or waiting.

E25 - Design Patterns 40.

4/3/14 S7

GREAT ROOM162 162

UNCLE BOB
Right. And because of that, this
type of threading is sometimes
called the Run to Completion model,
because all the commands run to
completion before any other command
can run.

GS163 163

JERRY JAVA
Yeah, run to completion, so all
those threads run, and yet there’s
just one stack?

GREAT ROOM164 164

UNCLE BOB
Right. And that means we can have
hundreds, even thousands, of
threads, without allocating
separate stacks for them. We can
keep our stack very large, without
fear of crashing some other thread.

GS165 165

SPOCK
Simple and Logical. It would seem
advisable for the manufacturers of
automobiles to consider using the
actor model for their embedded
software systems.

OFFICE166 166

UNCLE BOB
Indeed it would. After all, the
telecommunications industry has
been using this model for their
switching systems for decades.

E25 - Design Patterns 41.

4/3/14 S7

Segment 8 - Conclusion

WORKSTATION167 167

UNCLE BOB
So that’s it. That’s the episode
on the Command Patterns, and the
introduction to Design patterns.

GS168 168

JERRY JAVA
Yeah, yeah. We started out by
defining what design patterns were.
Solutions to problems in contexts.

GS169 169

DANNY DOTNET
Then we walked through the
structure of the GOF book, and
encouraged everyone to read it
carefully.

GS170 170

RUBY ROD
Yeah, man, and then we, like talked
about the structure of the Command
Pattern, and how it was good at
decoupling what from who, and what
from when; and, man, that’s a lot
of w’s.

GS171 171

DATA
Then we discussed the utillity of
the command pattern for
implementing undo and redo.

E25 - Design Patterns 42.

4/3/14 S8

GS172 172

SPOCK
And finally we looked at how the
command pattern can be used to
implement the actor model, allowing
systems with large numbers of
asychronous threads to share a
common stack.

OFFICE173 173

UNCLE BOB
Before we close, let’s take a
moment to reflect on the fact that
people have died because of
improperly constructed software.
The more our civilization depends
on the software we write; the more
people’s lives will hang in the
balance.

FRONT DOOR174 174

Note: p With dogs.

UNCLE BOB
And with that, it’s time to close
the episode. But we’ve still got
loads and loads to talk about.
There are a couple of dozen design
patterns yet to discuss; and then
there’s professionalism, acceptance
testing, functional programming,
and more. And keep an eye out for
that case study series. You won’t
want to miss the next exciting
episode of Clean Code. Factory
Patterns. Come on you dogs.

E25 - Design Patterns 43.

4/3/14 S8

