
There are three technical requirements
for executing all of this book’s examples:
MySQL (the database application), PHP
(the scripting language), and the Web
server application (that PHP runs through).
This appendix describes the installation of
these tools on two different platforms—
Windows 7 and Mac OS X. If you are using
a hosted Web site, all of this will already
be provided for you, but these products
are all free and easy enough to install, so
putting them on your own computer still
makes sense.

After covering installation, the appendix
discusses related issues that will be of
importance to almost every user. First, I
introduce how to create users in MySQL.
Next, I demonstrate how to test your PHP
and MySQL installation, showing tech-
niques you’ll want to use when you begin
working on any server for the first time.
Then, you’ll learn how to configure PHP
to change how it runs. Finally, and new in
this edition of this book, I introduce how to
change the Apache Web server’s behavior,
in order to address common needs.

A
Installation

Installation on Windows
Although you can certainly install a Web
server (like Apache, Abyss, or IIS), PHP,
and MySQL individually on a Windows
computer, I strongly recommend you use
an all-in-one installer instead. It’s simply
easier and more reliable to do so.

There are several all-in-one installers
out there for Windows. The two men-
tioned most frequently are XAMPP
(www.apachefriends.org) and WAMP
(www.wampserver.com). For this appendix,
I’ll use XAMPP, which runs on most ver-
sions of Windows.

Along with Apache, PHP, and MySQL,
XAMPP also installs:

n	 PEAR (PHP Extension and Application
Repository), a library of PHP code

n	 Perl, a very popular programming
language

n	 phpMyAdmin, the Web-based interface
to a MySQL server

n	 A mail server (for sending email)

n	 Several useful extensions

Thanks for downloading this
bonus appendix to PHP and
MySQL for Dynamic Web
Sites: Visual QuickPro Guide,
Fourth Edition, by Larry Ullman
(Peachpit Press, 2011).

A2 Appendix A

At the time of this writing XAMPP (Version
1.7.4) installs PHP 5.3.5, MySQL 5.5.8,
Apache 2.2.17, and phpMyAdmin 3.3.9.

I’ll run through the installation process in
these next steps. Note that if you have any
problems, you can use the book’s support-
ing forum (www.LarryUllman.com/forums/),
but you’ll probably have more luck turning
to the XAMPP site (it is their product, after
all). Also, the installer works really well and
isn’t that hard to use, so rather than detail
every single step in the process, I’ll high-
light the most important considerations.

On Firewalls
A firewall prevents communication over ports (a port is an access point to a computer). Versions
of Windows starting with Service Pack 2 of XP include a built-in firewall. You can also download
and install third-party firewalls. Firewalls improve the security of your computer, but they may also
interfere with your ability to run Apache, MySQL, and some of the other tools used by XAMPP
because they all use ports.

When running XAMPP, if you see a security prompt indicating that the firewall is blocking Apache,
MySQL, or the like, choose Unblock or Allow, depending upon the version of Windows in use.
Otherwise, you can configure your firewall manually (for example, on Windows 7, it’s done through
Control Panel > System and Security). The ports that need to be open are as follows: 80 (for
Apache), 3306 (for MySQL), and 25 (for the Mercury mail server). If you have any problems starting
or accessing one of these, disable your firewall and see if it works then. If so, you’ll know the
firewall is the problem and that it needs to be reconfigured.

Just to be clear, firewalls aren’t found just on Windows, but in terms of the instructions in this
appendix, the presence of a firewall will more likely trip up a Windows user than any other.

A From the Apache
Friends Web site, grab the
latest installer for Windows.

To install XAMPP on Windows:
1. Download the latest release of XAMPP for

Windows from www.apachefriends.org.

You’ll need to click around a bit to find
the download section, but eventually
you’ll come to an area where you can
find the download A. Then click EXE,
which is the specific item you want.

2. On your computer, double-click the
downloaded file in order to begin the
installation process.

3. If prompted, install XAMPP somewhere
other than in the Program Files directory.

Installation A3

You shouldn’t install it in the Program
Files directory because of a permissions
issue on some versions of Windows. I
recommend installing XAMPP in your
root directory (e.g., C:\).

Wherever you decide to install the
program, make note of that location,
as you’ll need to know it several
other times as you work through this
appendix.

4. If you want, create Desktop and Start
Menu shortcuts B.

5. Continue through the remaining
prompts, reading them and pressing
Enter/Return to continue.

6. After the installation process has done
its thing C, click Yes to start the control
panel.

continues on next page

B Select what additional installation options
you want.

C The installation of XAMPP is complete!

A4 Appendix A

7. To start, stop, and configure XAMPP,
use the XAMPP control panel D.

8. As needed, using the control panel,
start Apache, MySQL, and Mercury.

Apache has to be running for every
chapter in this book. MySQL must be
running for about half of the chapters.
Mercury is the mail server that XAMPP
installs. It needs to be running in order
to send email using PHP (see Chapter 11,
“Web Application Development”).

9. Immediately set a password for the root
MySQL user.

How you do this is explained later in
the appendix.

 The XAMPP control panel’s various
admin links will take you to different Web
pages (on your server) and other resources E.

 See the “PHP Configuration” section
to learn how to configure PHP by editing the
php.ini file.

 Your Web root directory—where your
PHP scripts should be placed in order to test
them—is the htdocs folder in the directory
where XAMPP was installed. Following
these installation instructions, this would
be C:\xampp\htdocs.

 When starting the XAMPP Control Panel
using XAMPP 1.7.4 on a 64-bit version of Win-
dows 7, I consistently saw an error message
about a “Status Check Failure.” I never figured
out the cause, but the error didn’t prevent
XAMPP from being completely usable.

D The XAMPP control panel, used to manage
the software.

E The Web-based splash page for XAMPP, linked
from the control panel.

Installation A5

you can use the book’s supporting forum
(www.LarryUllman.com/forums/), but
you’ll probably have more luck turning to
the MAMP site (it is their product, after all).
Also, the installer works really well and isn’t
that hard to use, so rather than detail every
single step in the process, I’ll highlight the
most important considerations.

To install MAMP on Mac OS X:
1. Download the latest release of MAMP

from www.mamp.info.

On the front page, click Downloads, and
then click Download: MAMP & MAMP
PRO 1.9.6.1 A. (As new releases of
MAMP come out, the link and filename
will obviously change accordingly.)

The same downloaded file is used for
both products. In fact, MAMP Pro is
just a nicer interface for controlling and
customizing the same MAMP software.

continues on next page

A Download MAMP from this page at www.mamp.info.

Installation on Mac OS X
Although Mac OS X comes with Apache
built in, and installing MySQL is not that
hard, I recommend that beginners take
a more universally foolproof route and
use the all-in-one MAMP installer (www.
mamp.info). It’s available in both free and
commercial versions, is very easy to use,
and won’t affect the Apache server built
into the operating system.

Along with Apache, PHP, and MySQL,
MAMP also installs phpMyAdmin, the Web-
based interface to a MySQL server, along
with lots of useful PHP extensions. As of
this writing, MAMP (Version 1.9.6.1) installs
both PHP 5.2.13 and 5.3.2, in addition
to MySQL 5.1.44, Apache 2.0.63, and
phpMyAdmin 3.2.5.

I’ll run through the installation process in
these next steps. If you have any problems,

A6 Appendix A

2. On your computer, double-click the
downloaded file in order to mount the
disk image B.

3. Copy the MAMP folder from the disk
image to your Applications folder.

If you think you might prefer the
commercial MAMP PRO, copy that
folder as well (again, it’s an interface to
MAMP, so both folders are required).
MAMP PRO comes with a free 14-day
trial period.

Whichever folder you choose, note
that you must place it within the
Applications folder. It cannot go in a
subfolder or another directory on your
computer.

4. Open the /Applications/MAMP (or /
Applications/MAMP PRO) folder.

5. Double-click the MAMP (or MAMP PRO)
application to start the program C.

It may take just a brief moment to start
the servers, but then you’ll see a result
like that in C for MAMP or D for
MAMP PRO.

When starting MAMP, a start page
should also open in your default Web
browser E. Through this page you can
view the version of PHP that’s running,
as well as how it’s configured, and
interface with the MySQL database
using phpMyAdmin.

With MAMP PRO, you can access that
same page by clicking the WebStart
button D.

B The contents of the downloaded MAMP
disk image.

C The simple MAMP application, used to control
and configure Apache, PHP, and MySQL.

D The MAMP PRO application, used to control
and configure Apache, PHP, MySQL, and more.

Installation A7

6. To start, stop, and configure MAMP, use
the MAMP or MAMP PRO application C
or D.

There’s not much to the MAMP
application itself (which is a good thing),
but if you click Preferences, you can
tweak the application’s behavior F, set
the version of PHP to run, and more.

MAMP PRO also makes it easy to create
different virtual hosts (i.e., different
sites; discussed separately later in
this appendix), adjust how Apache is
configured and runs, use dynamic DNS,
change how email is sent, and more.

7. Immediately change the password for
the root MySQL user.

How you do this is explained later in
the appendix.

 Personally, I appreciate how great MAMP
alone is, and that it’s free. I also don’t like
spending money, but I’ve found the purchase
of MAMP PRO to be worth the relatively little
money it costs.

 See the “PHP Configuration” section
to learn how to configure PHP by editing the
php.ini file.

 MAMP also comes with a Dashboard
widget you can use to control the Apache
and MySQL servers.

 Your Web root directory—where your
PHP scripts should be placed in order to test
them—is the htdocs folder in the directory
where MAMP was installed. For a standard
MAMP installation without alteration, this
would be Applications/MAMP/htdocs.

 You may want to change the Apache
Document Root G to the Sites directory in
your home folder. By doing so, you assure that
your Web documents will be backed up along
with your other files (and you are performing
regular backups, right?).

E The MAMP Web start page.

F These options dictate what happens when you
start and stop the MAMP application.

G MAMP allows you to change where the Web
documents are placed.

A8 Appendix A

Managing MySQL Users
Once you’ve successfully installed MySQL,
you can begin creating MySQL users. A
MySQL user is a fundamental security
concept, limiting access to, and influence
over, stored data. Just to clarify, your
databases can have several different users,
just as your operating system might. But
MySQL users are different from operating
system users. While learning PHP and
MySQL on your own computer, you don’t
necessarily need to create new users,
but live production sites need to have
dedicated MySQL users with appropriate
permissions.

The initial MySQL installation comes with
one user (named root) with no password
set (except when using MAMP, which sets a
default password of root). At the very least,
you should create a new, secure password
for the root user after installing MySQL.
After that, you can create other users with
more limited permissions. As a rule, you
shouldn’t use the root user for normal, day-
to-day operations.

I’ll walk you through both of these
processes over the next couple of pages.
Note that if you’re using a hosted server,
they’ll likely create the MySQL users for
you. These instructions require use of
either the command-line mysql client or
phpMyAdmin. If you don’t know how to
access either of these on your computer,
quickly read the Accessing MySQL section
of Chapter 4, “Introduction to MySQL.”

A Updating the root user’s
password using SQL within
the MySQL client.

Setting the root user password
When you install MySQL, no value—or no
secure password—is established for the
root user. This is certainly a security risk
that should be remedied before you begin
to use the server (as the root user has
unlimited powers).

You can set any user’s password using either
phpMyAdmin or the mysql client, so long as
the MySQL server is running. If MySQL isn’t
currently running, start it now using the steps
outlined earlier in the appendix.

Second, you must be connected to MySQL
as the root user in order to be able to
change the root user’s password.

To assign a password to the root
user via the MySQL client:
1. Connect to the MySQL client.

See Chapter 4 for detailed instructions,
if needed.

2. Enter the following command, replacing
thepassword with the password you
want to use A:

SET PASSWORD FOR 'root'@'
➝ localhost' = PASSWORD
➝ ('thepassword');

Keep in mind that passwords in
MySQL are case-sensitive, so Kazan
and kazan aren’t interchangeable.
The term PASSWORD that precedes the
actual quoted password tells MySQL to
encrypt that string. And there cannot
be a space between PASSWORD and
the opening parenthesis.

Installation A9

5. Change the root user’s password in
phpMyAdmin’s configuration file,
if necessary.

The result of changing the root
user’s password will likely be that
phpMyAdmin is denied access to
the MySQL server. This is because
phpMyAdmin, on a local server, nor-
mally connects to MySQL as the root
user, with the root user’s password
hard-coded into a configuration file.
After following Steps 1–4, find the
config.inc.php file in the phpMyAdmin
directory—likely /Applications/
MAMP/bin/phpMyAdmin (Mac OS X
with MAMP) or C:\xampp\phpMyAdmin
(Windows with XAMPP). Open that file
in any text editor or IDE and change this
next line to use the new password:

$cfg['Servers'][$i]['password']
➝ = 'the_new_password';

Then save the file and reload
phpMyAdmin in your Web browser.

B The list of MySQL users, as shown in phpMyAdmin.

C The form for updating
a MySQL user’s password
within phpMyAdmin.

3. Exit the MySQL client:

exit

4. Test the new password by logging in to
the MySQL client again.

Now that a password has been estab-
lished, you need to add the -p flag to
the connection command. You’ll see an
Enter password: prompt, where you
enter the just-created password.

To assign a password to the
root user via phpMyAdmin:
1. Open phpMyAdmin in your Web browser.

See the preceding set of steps for
detailed instructions.

2. On the home page, click the Privileges tab.

You can always click the home icon, in the
upper-left corner, to get to the home page.

3. In the list of users, click the Edit Privi-
leges icon on the root user’s row B.

4. Use the Change Password form C,
found farther down the resulting page,
to change the password.

A10 Appendix A

Creating users and privileges
After you have MySQL successfully up
and running, and after you’ve established
a password for the root user, you can add
other users. To improve the security of your
databases, you should always create new
users to access your databases rather than
using the root user at all times.

The MySQL privileges system was
designed to ensure proper authority for
certain commands on specific databases.
This technology is how a Web host, for
example, can let several users access sev-
eral databases without concern. Each user
in the MySQL system can have specific
capabilities on specific databases from
specific hosts (computers). The root user—
the MySQL root user, not the system’s—has
the most power and is used to create
subusers, although subusers can be given
rootlike powers (inadvisably so).

When a user attempts to do something
with the MySQL server, MySQL first
checks to see if the user has permission
to connect to the server at all (based on
the username, the user’s host, the user’s
password, and the information in the mysql
database’s user table). Second, MySQL
checks to see if the user has permission
to run the specific SQL statement on the
specific databases—for example, to select
data, insert data, or create a new table.
Table A.1 lists most of the various privileges
you can set on a user-by-user basis.

There are a handful of ways to set users
and privileges in MySQL, but I’ll start by
discussing the GRANT command. The
syntax goes like this:

GRANT privileges ON database.* TO
➝'username'@'hostname' IDENTIFIED BY
➝'password';

For the privileges aspect of this statement,
you can list specific privileges from
Table A.1, or you can allow for all of them
by using ALL (which isn’t prudent). The
database.* part of the statement specifies
which database and tables the user can
work on. You can name specific tables
using the database.tablename syntax or
allow for every database with *.* (again,
not prudent). Finally, you can specify the
username, hostname, and a password.

The username has a maximum length of
16 characters. When creating a username,
be sure to avoid spaces (use the under-
score instead), and note that usernames
are case-sensitive.

TAbLe A.1 MySQL Privileges

PRIVILEGE ALLOWS

SELECT Read rows from tables.

INSERT Add new rows of data to tables.

UPDATE Alter existing data in tables.

DELETE Remove existing data from tables.

INDEX Create and drop indexes in
tables.

ALTER Modify the structure of a table.

CREATE Create new tables or databases.

DROP Delete existing tables or
databases.

RELOAD Reload the grant tables (and
therefore enact user changes).

SHUTDOWN Stop the MySQL server.

PROCESS View and stop existing MySQL
processes.

FILE Import data into tables from
text files.

GRANT Create new users.

REVOKE Remove users’ permissions.

Installation A11

To create new users:
1. Log in to the MySQL client as a root user.

Use the steps explained in Chapter 4 to
do this, if you don’t already know. You
must be logged in as a user capable of
creating databases and other users.

2. Create the temp database:

CREATE DATABASE temp;

Creating a database is quite easy, using
the preceding syntax. This command
will work as long as you’re connected
as a user with the proper privileges.

3. Create a user that has basic-level
privileges on the temp database D:

GRANT SELECT, INSERT, UPDATE,
➝ DELETE
ON temp.* TO
'webuser'@'localhost'
IDENTIFIED BY 'BroWs1ng';

The generic webuser user can browse
through records (SELECT from tables)
and add (INSERT), modify (UPDATE),
or DELETE them. The user can only
connect from localhost (from the same
computer) and can only access the
temp database.

continues on next page

The hostname is the computer from which
the user is allowed to connect. This could
be a domain name, such as www.example.
com, or an IP address. Normally, localhost is
specified as the hostname, meaning that the
MySQL user must be connecting from the
same computer that the MySQL database
is running on. To allow for any host, use the
hostname wildcard character (%) :

GRANT privileges ON database.*
➝TO 'username'@'%' IDENTIFIED BY
➝'password';

But that is also not recommended. When
it comes to creating users, it’s best to be
explicit and confining.

The password has no length limit but
is also case-sensitive. The passwords
are encrypted in the MySQL database,
meaning they can’t be recovered in a plain
text format. Omitting the IDENTIFIED BY
'password' clause results in that user not
being required to enter a password (which,
once again, should be avoided).

As an example of this process, you’ll create
two new users with specific privileges on a
new database named temp. Keep in mind
that you can only grant permissions to users
on existing databases. This next sequence
will also show how to create a database.

D Creating a user that can perform basic tasks on one database.

A12 Appendix A

4. Apply the changes E:

FLUSH PRIVILEGES;

The changes just made won’t take
effect until you’ve told MySQL to
reset the list of acceptable users and
privileges, which is what this command
does. Forgetting this step and then
being unable to access the database
using the newly created users is a
common mistake.

 Any database whose name begins with
test_ can be modified by any user who has
permission to connect to MySQL. Therefore,
be careful not to create a database named this
way unless it truly is experimental.

 The REVOKE command removes users
and permissions.

E Don’t forget this step before you
try to access MySQL using the newly
created users.

Creating Users in phpMyAdmin
To create users in phpMyAdmin, start
by clicking the Privileges tab on the
phpMyAdmin home page. On the
Privileges page, click Add A New User.
Complete the Add A New User form to
define the user’s name, host, password,
and privileges. Then click Go. This
creates the user with general privileges
but no database-specific privileges.

On the resulting page, select the
database to apply the user’s privileges
to and then click Go. On the next page,
select the privileges this user should
have on that database, and then click
Go again. This completes the process
of creating rights for that user on that
database. Note that this process allows
you to easily assign a user different
rights on different databases.

Finally, click your way back to the
Privileges tab on the home page and
then click the reload the privileges link.

Installation A13

To test PHP:
1. Create the following PHP document

in a text editor or IDE (Script A.1):

<?php
phpinfo();
?>

The phpinfo() function returns the
configuration information for a PHP
installation in a table. It’s the perfect
tool to test that PHP is working properly.

You can use almost any application to
create your PHP script as long as it can
save the file in a plain text format.

2. Save the file as phpinfo.php.

You need to be certain that the file’s
extension is just .php. Be careful when
using Notepad on Windows, as it will
secretly append .txt. Similarly, TextEdit
on Mac OS X wants to save everything
as .rtf.

3. Place the file in the proper directory on
your server.

What the proper directory is depends
upon your operating system and your
Web server. If you are using a hosted
site, check with the hosting company.
For Windows users who installed
XAMPP, the directory is called htdocs
and is within the XAMPP directory. For
Mac OS X users who installed MAMP,
the default directory is called htdocs,
found within the MAMP folder.

4. Test the PHP script by accessing it in
your Web browser A.

Run this script in your Web browser
by going to http://your.url.here/
phpinfo.php. On your own computer,
this may be something like http://
localhost/phpinfo.php (Windows with
XAMPP) or http://localhost:8888/
phpinfo.php (Mac OS X with MAMP).

Script A.1 The phpinfo.php script tests and
reports upon the PHP installation.

1	 <?php
2	 phpinfo();
3	 ?>

Testing Your Installation
Now that you’ve installed everything and
created the necessary MySQL users, you
should test the installation. Two quick PHP
scripts can be used for this purpose. In all
likelihood, if an error occurred, you would
already know it by now, but these steps will
allow you to perform tests on your (or any
other) server before getting into complicated
PHP, or PHP and MySQL, programming.

The first script being run is phpinfo.php. It
both tests if PHP is enabled and shows a
ton of information about the PHP installa-
tion. As simple as this script is, it is one of
the most important scripts PHP developers
ever write, in my opinion, because it pro-
vides so much valuable knowledge.

The second script will serve two purposes.
It will first see if support for MySQL has
been enabled. If not, you’ll need to see the
next section of this chapter to change that.
The script will also test if the MySQL user
has permission to connect to a specific
MySQL database.

A The information for this server’s PHP configuration.

A14 Appendix A

To test PHP and MySQL:
1. Create a new PHP document in your

text editor or IDE (Script A.2):
<?php
mysqli_connect ('localhost',
'webuser', 'BroWsIng', 'temp');
?>

This script will attempt to connect to
the MySQL server using the username
and password just established in this
appendix.

2. Save the file as mysqli_test.php, place
it in the proper directory for your Web
server, and test it in your Web browser.

If the script was able to connect, the
result will be a blank page. If it could not
connect, you should see an error mes-
sage like B. Most likely this indicates a
problem with the MySQL user’s privi-
leges or the provided information (see
the preceding section of this chapter).

If you see an error like in C, this means
that PHP does not have MySQL support
enabled. See the next section of this
chapter for the solution.

 For security reasons, you should not
leave the phpinfo.php script on a live server
because it gives away too much information.

 If you run a PHP script in your Web
browser and it attempts to download the file,
then your Web server is not recognizing that
file extension as PHP. Check your Apache (or
other Web server) configuration to correct this.

 PHP scripts must always be run from a
URL starting with http://. They cannot be run
directly off a hard drive (as if you had opened
it in your browser).

 If a PHP script cannot connect to a MySQL
server, it is normally because of a permissions
issue. Double-check the username, password,
and host being used, and be absolutely certain
to flush the MySQL privileges.

Script A.2 The mysqli_test.php script tests for
MySQL support in PHP and if the proper MySQL
user privileges have been set.

1	 <?php
2	 mysqli_connect	('localhost',	'webuser',		
	 'BroWs1ng',	'temp');
3	 ?>

B The script was not able to connect to the
MySQL server.

C The script was not able to connect to the
MySQL server because PHP does not have MySQL
support enabled.

Installation A15

n	 SMTP values for sending emails

What each of these means—if you don’t
already know—is covered in the book’s
chapters and in the PHP manual. But for
starters, I would highly recommend that you
make sure that display_errors is on and that
you set error reporting to its highest level.

Changing PHP’s configuration is really
simple. The short version is: edit the
php.ini file and then restart the Web
server. But because many different prob-
lems can arise, I’ll cover configuration in
more detail. If you are looking to enable
support for an extension, like the MySQL
functions, the configuration is more compli-
cated (see the sidebar).

enabling extension Support
Many PHP configuration options can be altered by just editing the php.ini file. But enabling
(or disabling) an extension—in other words, adding support for extended functionality—requires
more effort. To enable support for an extension for just a single PHP page, you can use the
dl() function. To enable support for an extension for all PHP scripts requires a bit of work.
Unfortunately, for Unix and Mac OS X users, you’ll need to rebuild PHP with support for this
new extension (a process that’s not for the faint of heart). Windows users have it easier:

First, edit the php.ini file (see the steps in this section), removing the semicolon before the
extension you want to enable. For example, to enable Improved MySQL Extension support,
you’ll need to find the line that says

;extension=php_mysqli.dll

and remove that semicolon.

Next, find the line that sets the extension__dir and adjust this for your PHP installation. Assuming
you installed PHP using XAMPP into C:\xampp, then your php.ini file should say

extension_dir = "C:/xampp/php/ext"

This tells PHP where to find the extension.

Next, make sure that the actual extension file, php_mysqli.dll in this example, exists in the
extension directory.

Save the php.ini file and restart your Web server. If the restart process indicates an error finding
the extension, double-check to make sure that the extension exists in the extension_dir and that
your pathnames are correct. If you continue to have problems, search the Web or use the book’s
corresponding forum for assistance.

Configuring PHP
One of the benefits of installing PHP on
your own computer is that you can config-
ure it however you prefer. How PHP runs
is determined by the php.ini configura-
tion file, which is normally created when
PHP is installed.

Changing PHP’s behavior is very simple
and will most likely be required at some
point in time. Just a few of the things you’ll
want to consider adjusting are

n	 Whether or not display_errors is on

n	 The default level of error reporting

n	 Support for the Improved MySQL
Extension functions

A16 Appendix A

To alter PHP’s configuration:
1. In your Web browser, execute a script

that invokes the phpinfo() function.

The phpinfo() function, discussed in
the previous section of the appendix
(see A), reveals oodles of information
about the PHP installation.

2. In the browser’s output, search for
Loaded Configuration File A.

The value next to this text is the
location of the active configuration file.
This will be something like C:\xampp\
php\php.ini or / /Applications/
MAMP/conf/php5.3/php.ini. Your server
may have multiple php.ini files on it,
but this is the one that counts.

If there is no value for the Loaded
Configuration File, your server has no
active php.ini file. In that case, you’ll
need to download the PHP source
code, from www.php.net, to find a
sample configuration file.

3. Open the php.ini file in any text editor.

If you go to the directory listed and
there’s no php.ini file there, you’ll need
to download this file from the PHP Web
site (it’s part of the PHP source code).

4. Make any changes you want, keeping
in mind the following:

>	 Comments are marked using a semi-
colon. Anything after the semicolon
is ignored.

>	 Instructions on what most of the set-
tings mean are included in the file.

>	 The top of the file lists general infor-
mation with examples. Do not change
these values! Change the settings
where they appear later in the file.

A Use a phpinfo() script
to confirm the active PHP
configuration file to be edited.

Installation A17

>	 For safety purposes, don’t change
any original settings. Just comment
them out (by preceding the line with
a semicolon) and then add the new,
modified line afterward.

>	 Add a comment (using the semicolon)
to mark what changes you made and
when. For example:

; display_errors = Off
; Next line added by LEU
08/28/2011
display_errors = On

5. Save the php.ini file.

6. Restart your Web server.

You do not have to restart the entire
computer, just the Web serving
application (Apache, IIS, etc.). How you
do this depends upon the application
being used, the operating system, and
the installation method. Windows users
can use the XAMPP Control Panel.
Mac OS X users can use the MAMP
Control Panel. Unix users can normally
just enter apachectl graceful in a
Terminal window.

7. Rerun the phpinfo.php script to make
sure the changes took effect.

 If you edit the php.ini file and restart
the Web server but your changes don’t take
effect, make sure you’re editing the proper
php.ini file (you may have more than one
on your computer).

 MAMP PRO on Mac OS X uses a tem-
plate for the php.ini file that must be edited
within MAMP PRO itself. To change the PHP
settings when using MAMP PRO, select File >
Edit Template > PHP X.X.X php.ini.

enabling Mail
The PHP mail() function works only if
the computer running PHP has access
to sendmail or another mail server. One
way to enable the mail() function is
to set the smtp value in the php.ini
file (for Windows only). This approach
works, for example, if your Internet
provider has an SMTP address you can
use. Unfortunately, you can’t use this
value if your ISP’s SMTP server requires
authentication.

For Windows, there are also a number
of free SMTP servers, like Mercury. It’s
installed along with XAMPP, or you
can install it yourself if you’re not using
XAMPP.

Mac OS X comes with a mail server
installed—postfix and/or sendmail—that
needs to be enabled. Search Google for
instructions on manually enabling your
mail server on Mac OS X.

Alternatively, you can search some of
the PHP code libraries to learn how
to use an SMTP server that requires
authentication.

A18 Appendix A

Configuring Apache
New in this edition of this book is this
section, providing an introduction to
configuring the Apache Web server.
Like PHP, Apache is an open-source
technology, and has become a dominant
force in Web technologies. If you installed
either XAMPP or MAMP on your computer,
you now have a functional version of
Apache. If you’re using a hosted Web site,
more than likely you’re being provided with
Apache there as well.

Once Apache with support for PHP has
successfully been installed, many PHP
programmers never think twice about the
Web server. But as you continue to learn
about Web development, picking up a bit
more knowledge of Apache is a logical
next step.

The most common reasons you’ll need to
know more about Apache include being
able to do the following:

n	 Create virtual hosts

n	 Add Secure Sockets Layer (SSL)
support

n	 Protect directories

n	 Enable URL rewrites

These, and other changes to Apache’s
behavior, can be made in two ways: by
editing the primary configuration file or by
creating directory-specific files. The primary
configuration file is httpd.conf, found
within a conf directory, and it dictates how
the entire Apache Web server runs. An
.htaccess file (pronounced “H-T access”)
is placed within the Web directories and is
used to affect how Apache behaves within
just that folder and subfolders.

Generally speaking, it’s preferred to make
changes in the httpd.conf file, as this file
only needs to be read by the Web server
each time the server is started. Conversely,
.htaccess files must be read by the Web
server once for every request to that
which an.htaccess file might apply. For
example, if you have www.example.com/
somedir/.htaccess, any request to www.
example.com/somedir/whatever requires
reading the .htaccess file, as well as
reading an .htaccess file that might exist
in www.example.com/. On the other hand,
in shared hosting environments, individual
users are not allowed to customize the
entire Apache configuration, but may
be allowed to use .htaccess to make
changes that only affect their sites.

Over the next few pages, I’ll explain some
of the fundamentals for working with
these two types of files. In the process,
you’ll learn how to perform some standard
Apache customizations.

 To be safe, I’d recommend making
a backup copy of your original Apache
configuration file, before pursuing any of
the subsequent edits.

 In this book, I cannot adequately explain
how to enable HTTPS (HTTP over an SSL) as
the key component—obtaining and installing
an SSL certificate varies too much from one
person and server to the next. Look online
for specific details, or post a message in my
support forums (www.LarryUllman.com/
forums/), if you need assistance. If you have
a hosted account wherein you want to enable
SSL, speak with your hosting company.

Installation A19

a request of www.example.com, documents
from X directory should be served, but
requests of www.example.net should be
pointed to the documents from Y directory B.

Understand that setting up virtual hosts
does not, in fact, make www.example.
com or www.example.net a valid domain
name, accessible over the Internet.
Accomplishing that requires use of DNS
(Domain Name System), a much more
complicated subject. You can, however,
use virtual hosts to create different hosts
for your own development projects on
your home computer, as explained in the
following sequence.

A The Web server associates a URL or hostname with a directory
or file on the computer.

B Thanks to virtual hosts, different directories on the computer can be
associated with different hostnames.

Creating Virtual Hosts
When you install Apache on a computer,
Apache is set up to serve one Web site,
such as www.example.com. For the Web site
being served, Apache associates a host-
name (and/or an IP address) with a directory
on the server, called the Web document
root. When a user visits www.example.com,
Apache provides files from that site’s
directory A.

But Apache can easily be configured to
serve several different sites, all hosted on
the same computer, by creating virtual hosts.
After establishing one or more virtual hosts,
Apache will know that when a user makes

A20 Appendix A

To create a virtual host:
1. Open httpd.conf in any text editor

or IDE.

If you’re using XAMPP on Windows,
the file to open is C:\xampp\apache\
conf\httpd.conf (assuming XAMPP
is installed in the root of the C drive). If
you’re using MAMP on Mac OS X, the
file to open is /Applications/MAMP/
conf/apache/httpd.conf. Note that if
you’re using MAMP Pro, virtual hosts
are created within that application’s
control panel.

2. At the very end of the configuration
file, add:

NameVirtualHost 127.0.0.1

Virtual hosts are conventionally defined
at the end of the configuration file (or in a
separate configuration file, to be included
by this one). This line says that Apache
should watch for named virtual hosts
(as opposed to IP address-based virtual
hosts) on the 127.0.0.1 IP address. This is
a special IP address, always equating to
localhost (i.e., this same computer).

Depending upon your server, this line
may already be present in the configu-
ration file, but prefaced by a #, which
makes it a comment (i.e., renders it inef-
fectual). In that case, just remove the #.

3. On the next line, add:

<VirtualHost 127.0.0.1>
</VirtualHost>

The VirtualHost tags are used to
create a new virtual host. For each

opening tag, there needs to be a
closing one. Within the opening tag,
the IP address or hostname to watch
for is identified, here: 127.0.0.1. This
value needs to match that used on the
NameVirtualHost line.

The rest of the virtual host definition
will go between these opening and
closing tags.

4. Within the virtual host tags, add:

DocumentRoot /path/to/folder
ServerName servername

The DocumentRoot directive indicates
the Web root directory for the virtual
host: in other words, where the actual
files for this site can be found. On
XAMPP on Windows, this value might
be C:/xampp/htdocs/something. On
MAMP on Mac OS X, this value might
be /Applications/MAMP/htdocs/
something.

The ServerName is where you put the
hostname: what you’ll enter into the
browser to access this site.

As an example, if you wanted to create
a virtual host for the forums site from
Chapter 17, “Example—Message Board,”
you could create a new folder within
htdocs, called forums, and copy all of
the applicable scripts there. Then you
would use C:/xampp/htdocs/forums
or /Applications/MAMP/htdocs/
forums as the DocumentRoot value.
For the ServerName value, I would use
something meaningful, such as forums.
local: a local version of a forums site.

Installation A21

 The default Apache configuration file,
httpd.conf, has comments in it indicating
what each section of code does. You can
browse through it to learn some things about
configuring Apache.

 The DocumentRoot value, or any value
in the httpd.conf file, must be quoted if it
contains spaces.

 The definition of a virtual host can con-
tain other directives, but I’m trying to intro-
duce these fundamental Apache concepts as
simply as possible.

 It’s actually preferable to have Apache
only listen for activity on a specific port,
commonly 80. In that case, the virtual hosts
configuration would start

NameVirtualHost 127.0.0.1:80
<VirtualHost 127.0.0.1:80>

But as MAMP on Mac OS X, and XAMPP,
depending upon possible conflicts, don’t
always use port 80, I’m using code that’s
most foolproof.

 On a full-scale Web server, it’s preferable
to create multiple configuration files, which
will then be read and used by the primary
configuration file. On your own personal
computer, without too much customization,
a single configuration file is fine.

5. Add a second virtual host for localhost C:

<VirtualHost 127.0.0.1>
 DocumentRoot "C:/xampp/htdocs"
 ServerName localhost
</VirtualHost>

The previous set of steps created a new
virtual host, but in the process, the one
original Web site (localhost, the default
for your own computer) will become
unusable. The fix is to create another
virtual host for that site.

6. Save the configuration file.

7. Restart Apache.

Any changes to the configuration file will
not take effect until the Web server is
restarted. You can restart Apache using
the XAMPP or MAMP control panel.

If there is an error in the configuration
file, Apache will not be able to start and
you’ll need to check the error logs to
find out why.

Note that you can’t access the virtual
host using your browser yet, as you still
need to update your computer’s list
of hosts.

C The new directives added to the end of the
Apache configuration file.

A22 Appendix A

Updating Your Computer’s Hosts
The previous sequence of steps created
a virtual host in Apache, allowing you to
access, in this example, the forums Web site
by going to http://forums.local in your
Web browser. There is a catch, however:
if you were to enter that URL into your
browser, the browser would attempt to find
forums.local on the Internet, and would be
unable to do so D. To solve this dilemma,
you need to tell your browser(s) that forums.
local can be found on your computer.
This is done by modifying your operating
system’s hosts file, per these directions.

To update your computer’s hosts:
1. Open your computer’s hosts file in any

text editor or IDE.

This is the only tricky part of this pro-
cess: finding and opening the hosts
file. On Mac OS X and Unix, the hosts
file is /etc/hosts (there’s no file exten-
sion), where / refers to the computer’s
root directory. On Mac OS X, /etc is a
hidden directory, making hosts a hid-
den file. There are three easy ways of
finding this file:

>	 Use your editing application to open
it directly, if the application is capable
of opening hidden files.

>	 In the Finder, select Go > Go To
Folder, and enter /etc in the prompt E
to open the /etc directory in the
Finder. Then drag the hosts file onto
the editing application in the Dock.

>	 Use the Terminal to find and open
the file.

D The error that Internet Explorer displays when
it can’t find the local virtual host.

E The Finder’s Go > Go to Folder option can be
used to access hidden directories.

Installation A23

On Windows, baring a nonstandard
installation, the file in question is C:\
Windows\System32\drivers\etc\
hosts. Unfortunately, you may have
permissions issues in trying to edit
this file. I had good luck by opening
Notepad in administrator mode (right-
click on Notepad in the Start Menu
to be given this option F), and then
opening the file within Notepad.

2. At the very end of the file, add:

127.0.0.1 forums.local

This associates the name forums.local
with the IP address 127.0.0.1, which is to
say the same computer.

3. Save the file.

4. Load http://forums.local in your Web
browser G.

 Repeat these two sequences of steps—
creating the virtual host in Apache and adding
the host to your hosts file—any time you want
to create a new Web site project with its own
associated hostname.

Using .htaccess Files
As already stated, all Apache configuration
can actually be accomplished within
the httpd.conf file. In fact, doing so is
preferred. But the configuration file is not
always available for you to edit, so it’s
worth also knowing how to use .htaccess
files to change how a site functions.

An .htaccess file is just a plain-text file,
with the name .htaccess (again, no file
extension, and the initial period makes
this a hidden file). When placed within a
Web directory, the directives defined in the
.htaccess file will apply to that directory
and its subdirectories.

continues on next page

F You can open Notepad in administrator mode
in order to edit system files.

G The forums site, available locally through the
URL http://forums.local.

A24 Appendix A

A common hang-up when using .htaccess
files is that permission has to be granted to
allow .htaccess to make server behavior
changes. Depending upon the installation
and configuration, Apache, on the strictest
level of security, will not allow .htaccess
files to change Apache behavior. This is
accomplished with code like the following,
in httpd.conf:

<Directory />
AllowOverride None
</Directory>

The Directory directive is used within
httpd.conf to modify Apache’s behavior
within a specific directory. In the above
code, the root directory (/) is the target,
meaning that Apache will not allow
overrides—changes—made within any
directories on the computer at all. Prior to
creating .htaccess files, then, the main

configuration file must be set to allow
overrides in the applicable Web directory
(or directories).

The AllowOverride directive takes one or
more flags indicating what, specifically, can
be overridden:

n	 AuthConfig, for using authorization and
authentication

n	 FileInfo, for performing redirects and
URL rewriting

n	 Indexes, for listing directory contents

n	 Limit, for restricting access to the
directory

n	 Options, for setting directory behav-
ior, such as the ability to execute CGI
scripts or to index folder contents

n	 All

n	 None

Setting the Default Directory Page
Commonly, Web browsers make requests without specifying a file, such as www.example.com/
or www.example.com/folder/. In these cases, Apache must make a decision as to what to do.
Historically, Apache provides an index.htm or index.html file, if one exists in the directory. If no
index file exists, and if directory browsing is allowed by the server, Apache will instead reveal a list
of files in the directory (this is not secure, but you’ve no doubt seen this online before).

The applicable directive to tell Apache what to do in these situations is DirectoryIndex.
Following it, you list the file to use as the folder’s index, with multiple options placed in order
of preference. For example, the following will attempt to load index.htm, then index.html,
if index.htm does not exist, then index.php, if index.html does not exist:

DirectoryIndex index.htm index.html index.php

Similarly, the ErrorDocument directive tells Apache what file to provide when a server error
occurs. Its syntax is

ErrorDocument error_code /page.html

The error code value comes from the server status codes, such as 401 (Unauthorized),
403 (Forbidden), and 500 (Internal Server Error). For each code you can dictate what page
should be served. Note that you’ll want to provide an absolute path to the error files
(i.e., start them with /, which is the Web root directory).

Installation A25

absolute path to the directory in
question, such as C:\xampp\htdocs\
somedir or /Applications/MAMP/
htdocs/somedir.

3. Within the Directory tags, add H:

AllowOverride All

This is a heavy-handed solution, but
will do the trick. On a live, publicly
available server, you’d want to be more
specific about what exact settings
can be overridden, but on your home
computer, this won’t be a problem.

4. Save the configuration file.

5. Restart Apache.

 The Directory directive does not have
to go within the VirtualHost tag for the
involved site, but it makes sense to place it
there.

 If a directory is not allowed to over-
ride a setting, the .htaccess file will just
be ignored.

 Anything accomplished within an
.htaccess file can also be achieved using
a Directory tag within httpd.conf.

H The updated virtual hosts configuration,
now allowing for overrides within the forums
Web directory.

For example, to allow AuthConfig and
FileInfo to be overridden within the forums
directory (just created), the httpd.conf file
should include:

<Directory /path/to/forums>
AllowOverride AuthConfig FileInfo
</Directory>

As long as this code comes after any
AllowOverride None block, an .htaccess
file in the forums directory will be able to
make some changes to Apache’s behavior
when serving files from that directory (and
its subdirectories).

To allow .htaccess overrides:
1. Open httpd.conf in any text editor

or IDE.

2. Within the VirtualHost tag for the site
in question, add:

<Directory /path/to/directory>
</Directory>

The Directory tag is how you
customize Apache behavior within a
specific directory or its subdirectories.
Within the opening tag, provide an

A26 Appendix A

Protected Directories
A common use of an .htaccess file is to
protect the contents of a directory. There
are two possible scenarios:

n Denying all access

n Restricting access to authorized users

Strange as it may initially sound, there
are plenty of situations in which files and
folders placed in the Web directory should
be made unavailable. For example, you
could create an includes directory that
has sensitive PHP scripts or an uploads
directory for storing uploaded files. In both
cases, the contents of the directory would
not be meant for direct access, but rather
PHP scripts in other directories would
reference that content as needed. To deny
all access to a directory, place the code in
Script A.3 in an .htaccess file in that folder
(comments indicate what each line does).

Again, this code just prevents direct
access to that directory’s contents via a
Web browser. A PHP script could still use
include(), require(), readfile(), and
other functions to access that content.
In fact, the show_image.php script from
Chapter 11 does exactly that: acting as a

Script A.3 This code, in an .htaccess file, will
deny all access to the contents of a directory,
and its subdirectories.

1		 #	Disable	directory	browsing:
2		 Options	All	-Indexes		
3		
4		 #	Prevent	folder	listing:
5		 IndexIgnore	*		
6		
7		 #	Prevent	access	to	any	file:
8		 <FilesMatch	"̂ .*$">
9		 Order	Allow,Deny		
10		 Deny	from	all	
11		 </FilesMatch> I This prompt, as displayed in Internet Explorer

on Windows, is generated by Apache to limit
access to authenticated users.

proxy script to display an image stored
outside of the Web document root (i.e.,
otherwise unavailable in the Web browser).

There are a couple of ways of restricting
access to authorized users, with the mod_
auth module being the most basic and
common. This module creates prompts in
the browser wherein the user can enter her
or his credentials I. Apache will compare
those credentials to those stored in a file
on the server, allowing or denying access
accordingly. It’s not hard to use mod_auth,
but you have to invoke a secondary
Apache tool to create the credentials file.
If you want to pursue this route, just do a
search online for Apache mod_auth.

 Apache will not display .htaccess files
in the Web browser, by default, which is a
smart security approach.

 When creating .htaccess files, make
sure your text editor or IDE is not secretly
adding a .txt extension. Notepad, for
example, will do this. You can confirm this
has happened if you can load www.example.
com/.htaccess.txt in your Web browser. In
Notepad, you can prevent the added exten-
sion by quoting the file name and saving it as
type “All files”.

Installation A27

For example, you could do the following
(although it’s not a good use of mod_rewrite):

RewriteRule somepage.php otherpage.php

Part of the complication with performing
URL rewrites is that Perl-Compatible
Regular Expressions (PCRE) are needed
to most flexibly find matches. If you’re
not already comfortable with regular
expressions, you’ll need to read Chapter
14, “Perl-Compatible Regular Expressions,”
to follow the rest of this material.

For example, to treat www.example.com/
category/23 as if it were www.example.
com/category.php?id=23, you would have
the following rule:

RewriteRule ^category/([0-9]+)/?$
➝ category.php?id=$1

The initial caret (^) says that the expression
must match the beginning of the string.
After that should be the word category,
followed by a slash. Then, any quantity of
digits follows, concluding with an optional
slash (allowing for both category/23 and
category/23/). The dollar sign closes the
match, meaning that nothing can follow the
optional slash. That’s the pattern for the
example match (and it’s a simple pattern at
that, really).

The rewrite part is what will actually
be executed, unbeknownst to the Web
browser and the end user. In this line,
that’s category.php?id=$1. The $1 is a
backreference to the first parenthetical
grouping in the match (e.g., 23). Thus,
 www.example.com/category/23 is treated
by the server as if the URL was actually
www.example.com/category.php?id=23.

continues on next page

enabling URL Rewriting
The final topic to be discussed in this
appendix is how to perform URL rewriting.
URL rewriting has gained attention as
part of the overbearing focus on Search
Engine Optimization (SEO), but URL
rewriting has been a useful tool for years.
With a dynamically driven site, like an
e-commerce store, a value will often be
passed to a page in the URL to indicate
what category of products to display,
resulting in URLs such as www.example.
com/category.php?id=23. The PHP script,
category.php, would then use the value of
$_GET['id'] to know what products to pull
from the database and display. (There are
oodles of similar examples in this book.)

With URL rewriting applied, the URL
shown in the browser, visible to the end
user, and referenced in search engine
results, can be transformed into something
more obviously meaningful, such as
www.example.com/category/23/ or,
better yet, www.example.com/category/
garden+gnomes/. Apache, via URL
rewriting, takes the more user-friendly URL
and parses it into something usable by the
PHP scripts. This is made possible by the
Apache mod_rewrite module. To use it,
the .htaccess file must first check for the
module and turn on the rewrite engine:

<IfModule mod_rewrite.c>
RewriteEngine on
</IfModule>

After enabling the engine, and before
the closing IfModule tag, you add rules
dictating the rewrites. The syntax is:

RewriteRule match rewrite

A28 Appendix A

This is the underlying premise with
mod_rewrite. Unfortunately, mastering
mod_rewrite requires mastery, or near
mastery, of PCRE, which can be daunting.
If you want to practice this, you can take
the simple example just explained and
apply it to any of the examples in the book
in which a value is passed in the URL.
For example, in Chapter 10, “Common
Programming Techniques,” a user ID is
passed in the URL to delete_user.php and
edit_user.php. Both could be transformed
into “prettier” URLs, such as www.example.
com/delete/45/ or www.example.com/
edit/895/.

As always, search online for more
information on this subject, should you
be interested, and post a question in the
supporting forums (www.LarryUllman.com/
forums/) if you run into problems.

Changing PHP’s Configuration
If PHP is running as an Apache module,
you can also change how PHP runs
within specific directories using an
Apache .htaccess file. The directives
to use are php_flag and php_value:

php_flag item value
php_value item value

The php_flag directive is for any setting
that has an on or off value; php_value is
for any other setting. For example:

php_flag display_errors on
php_value error_reporting 30719

Note that you cannot use PHP constants,
such as E_ALL for the highest level of
error reporting, as this code is within
Apache configuration files, not within
PHP scripts.

(You can also change how PHP runs by
editing the httpd.conf file, but if you’re
going to make a global server change
that requires a restart of Apache anyway,
you might as well just edit the PHP
configuration file instead).

