
Begin
to Code
with
C#

Rob Miles

Part 4
Creating

applications
In Part 4, you are going take another huge step on the road to becom-
ing a full-fledged developer. By the end of this part, you will be creating
programs that you can go on to sell. Remember that the only difference
between our examples and “real” programs is that someone pays money

for the real ones.
At this point, we are going to start moving away from the Snaps frame-
work, which has been hiding some of the underlying complexity of
Windows 10 program development. But we will not be discarding Snaps
entirely. You’ll find out how Snaps elements work and how you can use
their abilities in programs that you write. You are going to start by learn-
ing about designing user interfaces, and then you'll move on to consider

how modern programs deal with external events.

Part 4
Creating

applications
In Part 4, you are going take another huge step on the road to becom-
ing a full-fledged developer. By the end of this part, you will be creating
programs that you can go on to sell. Remember that the only difference
between our examples and “real” programs is that someone pays money

for the real ones.
At this point, we are going to start moving away from the Snaps frame-
work, which has been hiding some of the underlying complexity of
Windows 10 program development. But we will not be discarding Snaps
entirely. You’ll find out how Snaps elements work and how you can use
their abilities in programs that you write. You are going to start by learn-
ing about designing user interfaces, and then you'll move on to consider

how modern programs deal with external events.

		 475

16
Creating a user
interface using

objects

Start

What you will learn
The user interface is a program’s shop window. In the same way
that an inviting window display can entice you into a store to buy
products, a well-designed user interface can do a lot to encour-
age users to engage with a piece of software. In this chapter, we
are going to consider how modern application user interfaces are
created. You’ll find out how you use software elements to
represent the items a user interacts with. Then you are going
to discover how programs interact with these elements and
how these elements respond to actions performed by the user.
Throughout the chapter, we will work with a language named
XAML (Extensible Application Markup Language; pronounced
“zamel” to rhyme with “camel”), which can be used to describe
the design of a user interface. You'll see how you can use XAML
with Visual Studio to build a great experience for users

Making an adding machine . 478

Creating a new application . 485

What you have learned .508.

16
Creating a user
interface using

objects

Start

		 477

Making an adding machine
Given the success of the talking times-table tutor we created in Chapter 6, you’ve
been asked to develop an adding machine that people can use to practice addition
or in other ways. What your friends tell you they want is something like what’s shown
in Figure 16-1. Users enter numbers into the two top boxes, press the Equals button,
and see the results.

Figure 16-1 Adding machine tutor.

This is a simple Windows application, but it is actually beyond what we can do with
Snaps. The programs that we have written up until now used the behaviors from the
Snaps library to interact with users. Snaps work very well, but they are not very flexi-
ble. To create an adding machine tutor, we need to discover how to create graphical
user interfaces (a GUI).

Toward a graphical user interface using
XAML
A user interface is a posh name for what people see when they use your program.
It comprises the buttons, text fields, labels, and pictures that users work with to get
their job done. Part of the job of the programmer is to create this front end and then
put the appropriate behaviors behind the screen display to allow users to drive the
program and get what they want from it.

This section is not as much about programming with C# as it is about how to cre-
ate user interfaces using XAML, which was designed by Microsoft to make it easy to
create a good-looking application. You use XAML to describe what is displayed and

478	 Chapter 16  Creating a user interface using objects

C# to provide the behaviors. (You can create programs that use a XAML-based user
interface with other programming languages as well—Visual Basic, for example.)
To understand this process, you are going to have to learn a few things about how
markup languages work, but this knowledge is extremely useful because lots of mod-
ern user-interface systems work in a similar way.

An extensible application markup language lets you use the rules of the language to
create constructions that can describe essentially anything. English is a lot like this.
There are letters and punctuation that are the symbols of English. We also have rules
(grammar) that set out how to make up words and sentences, and we have different
kinds of words—nouns that describe things and verbs that describe actions. When
something new comes along, we invent a whole new set of words to describe it.
Someone had to come up with the word computer when the computer was invented,
along with phrases like boot up, system crash, too slow, and deleted all my work.

XML-based languages are extensible in that we can invent new words and phrases
that fit within the rules of the language and use these new constructions to describe
anything we like. These are called markup languages because they can be used to
describe the arrangement of items on a page. The word markup was originally used
in printing, when you wanted to say something like “Print the name Rob Miles in a
very large font.” The most famous markup language is probably HTML (for Hypertext
Markup Language), which is used on the World Wide Web to describe the format of
webpages. Programmers frequently invent their own data storage formats using XML.
XAML takes the rules of an extensible markup language and uses them to create a
language that describes components to be displayed on a page.

Take a look at the XAML description of a text box:

<TextBox Name="firstNumberTextBox" Width="100" Margin="4" TextAlignment="Center">

</TextBox>

You can see that the designers of XAML created words with meanings that match their
requirements. You can give the TextBox element a name, it must have a particular
width and margin, and you want to specify how the text in the box is to be aligned.

XAML and page design
When you use Visual Studio to create a brand-new Universal Windows application,
you get a page that contains just a few elements. As you put more elements on the
page, the file grows as each description is added. Some elements, like a text box, can
stand alone. Other elements work as containers. This means that they can hold other
elements. Containers are very useful when you want to lay out a page. For example,
the StackPanel element can hold a set of other elements in a stacked arrangement. A

479Making an adding machine

XAML file can also contain the descriptions of animations and transitions that can be
applied to items on the page to make more impressive user interfaces.

We are not going to spend too much time on the layout aspects of XAML; suffice it to
say that you can create incredibly impressive front ends for your programs using this
language. But it turns out that many programmers (including me) are not that good
at designing attractive user interfaces (although you might be). In real life, a company
often employs graphic designers who create artistic-looking front ends. The role of
the programmer is to put the code behind these displays to get the required job done.

XAML was developed with this issue in mind. It enforces a strong separation between
the screen-display design and the code that is controlled by it. This makes it easy for
a programmer to create an initial user interface that is subsequently changed by a
designer to become a much more attractive one. And it is also possible for a program-
mer to take a complete user interface design and then fit the behaviors to each of the
display components.

Describing XAML elements
We’ll start to discover how XAML lets us design an application by using it to create our
adding machine. Look back at Figure 16-1 to recall what the user interface will look
like. This display is made up of six components:

1.	 The title Adding Machine. This block of text is slightly larger than the rest of the
text so that it stands out.

2.	 The top text box, in which a user enters a number.

3.	 A text item holding the character +.

4.	 The bottom text box, in which a second number is entered.

5.	 A button that a user presses to perform the addition.

6.	 A result text box that changes to show the result when the button is pressed. (At
the moment, this text box is empty because we haven’t done any sums yet.)

In XAML terms, each individual item on the screen is called a UIElement (or user inter-
face element). I’m going to call these items elements from now on. Each elements has
a particular position on the screen, a particular size for its label, and lots of other prop-
erties, too. For example, you can change the color of the text in a text box, whether it
is aligned to the left, right, or center, by updating the XAML that describes the page.
The XAML I used to describe the display for the adding machine is as follows:

480	 Chapter 16  Creating a user interface using objects

<StackPanel>

 <TextBlock Text="Adding Machine" TextAlignment="Center" Margin="8"

 FontSize="16"></TextBlock>

 <TextBox Name="firstNumberTextBox" Width="100" Margin="8" TextAlignment="Center">

 </TextBox>

 <TextBlock Text="+" TextAlignment="Center" Margin="8"></TextBlock>

 <TextBox Name="secondNumberTextBox" Width="100" Margin="8"

 TextAlignment="Center"></TextBox>

 <Button Content="Equals" Name="equalsButton" HorizontalAlignment="Center"

 Margin="8"></Button>

 <TextBlock Name="resultTextBlock" Text="" TextAlignment="Center" Margin="8">

 </TextBlock>

</StackPanel>

Investigating XAML
If you look carefully, you can map each of the elements shown in Figure 16-1 and listed
above to items in the XAML file. But there are some elements that we should consider in
more detail.

Question: What does the StackPanel element do?

Answer: The StackPanel is very simple, and very useful. A StackPanel lets us arrange a
series of display elements in a stack—which means you don’t need to define the position
on the screen of each of the elements individually. The default arrangement is to stack
the items down the screen, but you can also stack items across the screen. You can—and
this is really useful—put a StackPanel inside a StackPanel to make up a stack of rows.
The nesting of elements is a recurring theme inside XAML documents.

Question: What is the difference between a TextBox and a TextBlock?

Answer: A TextBox is a display element in which a user can type text. The two numbers
that are going to be added will be entered into the TextBoxes named firstNumber-
TextBox and secondNumberTextBox. A TextBlock is simply a block of text that is
displayed. We use the TextBlock to tell the user things. In this case, we use TextBlocks
to show the title of the application, the + sign for the addition, and the actual result of
the calculation. The user can’t interact with the content of a TextBlock.

Question: Just to check that you understand how this works, what is the text presently being
displayed in the resultTextBlock?

Answer: You can work this out by looking through the XAML and finding the TextBlock
with the name resultTextBlock and looking for the Text property of that TextBlock.

CODE ANALYSIS

481Making an adding machine

It turns out that when the program starts, the Text property is set to “”, or an empty
string.

PROGRAMMER’S POINT

Use automatic layout as much as you can
I always worry when I start positioning elements on the screen in absolute positions. As
soon as you do this, you are making assumptions about the size of the screen that you are
using and the dimensions of the element. Modern computers are supplied in a huge range
of different screen sizes, and users can also change the size of the text on the screen to
zoom into the display. Users might also change the orientation of their screen from land-
scape to portrait while using your program. If you fix the position of things on the screen,
this means that it may work well for one particular device, but it will look very awkward on
another. For this reason, you should use automatic layout features such as a StackPanel
to dynamically position things for you. This makes your program much less likely to have
display problems.

XAML elements and software objects
From a programming point of view, each XAML element on the screen is actually a
software object in the program. You have already seen that objects are a great way
to represent things we want to work with. It turns out that objects are also great for
representing other things, too—such as items on a display. If you think about it, a box
displaying text on a screen will have properties such as its position on the screen, the
color of the text, the text itself, and so on.

When a program that uses a XAML user interface is compiled, the system also “com-
piles” the XAML description to create a set of C# objects, each of which represents
a user-interface element. There are three different types of element in the adding
machine tutor:

●● TextBox  Allows the user to enter text into the program.

●● TextBlock  A block of text that just conveys information.

●● Button  Something we can press to cause events in our program.

Our program will manipulate these elements as though they are C# objects, although
they are actually defined in a XAML source file. This works because when the program
is built, the XAML system will create objects that match elements described in the
XAML source file.

482	 Chapter 16  Creating a user interface using objects

Managing elements by their names
When you want to use the user interface elements in a program, you need a way of
referring to them. If you take a look at the XAML that describes the adding machine
tutor, you can see that some of the components have a name property:

<TextBox Name="firstNumberTextBox" Width="100" Margin="4" TextAlignment="Center">

 </TextBox>

I gave this text box the name firstNumberTextBox. (You’ll never guess what the
second text box is called.) Note that the name of an element in this context is actu-
ally going to define the name of a TextBox variable that’s declared inside the adding
machine program. In other words, there will now be the following statement in the
program somewhere:

TextBox firstNumberTextBox;

These declarations are created by Visual Studio when the program is built, so you
don’t need to worry about where this statement is. You just have to remember that
this is how the program works.

XAML element names
Question: Why don’t all the display elements have names?

Answer: We only need to give names to elements that our program needs to interact
with. There’s no point in giving a name to the TextBlock that holds the “+” charac-
ter because users will never need to interact with this when the program runs—it just
holds something that will be displayed for the user. Of course, if you want to change this
element later (perhaps to make it possible for the user to select a version of the program
that will perform subtraction), you can give it a name.

Properties in elements
Some of the properties of a TextBlock are set in the XAML that declares it. Others
must be changed by the program as it runs. All the properties can be set in the decla-
ration and then changed by software as well.

CODE ANALYSIS

483Making an adding machine

Here is the XAML that describes the part of the screen where the result of the addition
is displayed:

<TextBlock Name="resultTextBlock" Text="" TextAlignment="Center" Margin="4">

 </TextBlock>

Note that there is a Text property that is currently set to an empty string. When we
talk about the “properties” of XAML elements on the page, we are actually talking
about property values in the class that implements the TextBlock. In other words,
suppose a program contains a statement such as this:

resultTextBlock.Text = "0";

This statement would cause the text 0 to appear inside the resultTextBlock on the
display. It will also cause a Set property assignment to run inside the resultTextBlock
object, which sets the text on the TextBlock to the appropriate value. In other words,
the Text property of the TextBlock is the same property, whether you set its value in
XAML or within a C# program.

Page design with XAML
XAML turns out to be very useful. Once you get the hang of the information needed
to describe components, it becomes much quicker to add elements to a page and
move them about by just editing the text in the XAML file rather than dragging text
boxes and other elements around the screen. I find it particularly useful when I want
a large number of similar elements on the screen. Visual Studio is aware of the syntax
used to describe each type of element and provides IntelliSense support as you go
along.

If you read more about the XAML specification, you’ll find that you can give elements
graphical properties that can make them transparent, add images to their back-
grounds. and even animate them. At this point, you have moved beyond program-
ming and entered the realm of graphical design—and I wish you the best of luck.

Now that you know that items on the screen are in fact the graphical realization of
software objects, the next thing you need to know is how to get control of these
objects and make them do useful things in an application. To do this you need to add
some C# code that will perform the calculation that the adding machine needs. But
first let’s build the application itself.

484	 Chapter 16  Creating a user interface using objects

Build our first Universal Windows Application
This is the point at which we build our first Universal Windows Application. Up until now, we
have built everything inside the Snaps environment. Now we are about to create a brand-
new, completely empty application. This is the same step that every application developer
takes when he or she decides to build a new program.

Creating a new application
To begin, start Visual Studio 2015. Once Visual Studio is running, click the File tab,
move to New, and then click Project, as shown in Figure 16-2, to open the New
Project dialog box.

Figure 16-2  Visual Studio New Project menu.

There are lots of different kinds of projects that you can create. We want to choose
Blank App (Universal Windows). On the left of Figure 16-3, you can see how to
navigate to Templates>Visual C#>Windows>Universal to get to this set of project
templates.

MAKE SOMETHING HAPPEN

485Creating a new application

Figure 16-3  Naming our new AddingMachineTutor project.

During the solution-creation process, you might be asked which versions of Windows
you want the application to work with, as shown in Figure 16-4. Just select OK to use
the default versions.

Figure 16-4  Keep the default settings when prompted for which versions of Windows to use.

You don’t see Universal Windows Application
templates
If you can’t find any Universal Windows templates in the New Project dialog box, you may
be using the wrong version of Visual Studio. You must be using Visual Studio 2015. If you’re
using Visual Studio 2015 but you still can’t see this project type, make sure that you have
the Universal Tools installed for Visual Studio 2015. These are usually installed as part of the
overall installation of Visual Studio 2015, but you may have an older installation that doesn’t
have them. Take a look at the instructions online (see the link in Chapter 1) that describe how
to fix this.

Once you find the required project type, enter a name for this project (I called my
project AddingMachineTutor), and then click OK. By default, Visual Studio will create

WHAT COULD GO WRONG

486	 Chapter 16  Creating a user interface using objects

the new solution in a subfolder of your Documents folder. You can change where the
solution is created by clicking Browse and navigating to a different location on your
machine before you click OK.

Picking the wrong template never ends well
It’s kind of embarrassing to admit this, but in the past I’ve been known to pick the wrong
template at the start of my projects. I usually do this during a demonstration to at least 200
students. This results in a lot of confusion for me, and much amusement for them, so I’d
advise you to check very carefully that you select the right one unless you want to look as silly
as I do.

Creating an empty program
After you click OK, Visual Studio 2015 goes to work and creates a new empty project
for you. Figure 16-5 shows you what Visual Studio displays after it has created a new
application.

Figure 16-5  An empty Universal Windows Application.

This looks very confusing, and it is. Visual Studio is showing you the contents of a file
in your application named App.xaml.cs. This is an important file—it is the part of
the application that gets control when the program starts running—but for now we
can leave it as it is. (We can always reopen it later if we need to make any changes.) To
close the view of the file App.xaml.cs, click the X next to the file’s name, as shown in
Figure 16-6.

WHAT COULD GO WRONG

Figure 16-3  Naming our new AddingMachineTutor project.

During the solution-creation process, you might be asked which versions of Windows
you want the application to work with, as shown in Figure 16-4. Just select OK to use
the default versions.

Figure 16-4  Keep the default settings when prompted for which versions of Windows to use.

You don’t see Universal Windows Application
templates
If you can’t find any Universal Windows templates in the New Project dialog box, you may
be using the wrong version of Visual Studio. You must be using Visual Studio 2015. If you’re
using Visual Studio 2015 but you still can’t see this project type, make sure that you have
the Universal Tools installed for Visual Studio 2015. These are usually installed as part of the
overall installation of Visual Studio 2015, but you may have an older installation that doesn’t
have them. Take a look at the instructions online (see the link in Chapter 1) that describe how
to fix this.

Once you find the required project type, enter a name for this project (I called my
project AddingMachineTutor), and then click OK. By default, Visual Studio will create

WHAT COULD GO WRONG

487Creating a new application

Figure 16-6  Closing a window.

We can run our empty application in the same way as we have been running Snaps
applications. Click the run button (the green arrow) on the top row of controls (being
sure that the text next to it shows Local Machine). When you click the run button,
the program is compiled, loaded into memory, and then allowed to run. Figure 16-7
shows the result.

Figure 16-7  Running an empty program.

The empty program looks pretty much as you would expect, although you might
be curious about the two numbers in the top-left corner of the application window.
These are performance counters that tell you the demands your application is placing
on the host computer and the rate that the display is being updated. They are not
particularly important just at the moment, so you can ignore them for now.

Bearing in mind that all we have done is make an empty program, we do have a lot of
functionality. We can drag the window around the screen, change its size, maximize
and minimize it, and close the application down. We could even submit the solution
to be sold on the Windows Store, although it is unlikely it would be approved for sale
because it currently doesn’t do anything.

488	 Chapter 16  Creating a user interface using objects

Stopping a Windows application
Question: How do we stop a Windows application?

Answer: In the programs that we have written up until now, the StartProgram method
from Snaps has been called at the start of the program, and when this method finishes,
the program ends. A Windows 10 application doesn’t work like this, however. The pro-
gram will “run” until the user closes it or the computer is switched off.

Of course, a Windows 10 application is not really running in the same sense as our earlier
programs, in that most of the time it is asleep until the user actually does something. Our
Adding Machine Tutor program will spend most of its time waiting for the user to type in
some numbers or press the button to trigger the calculation behavior.

If you need a program to get control when the user closes the program—perhaps to save
some data—you can connect a method to the event that occurs when the user closes the
program.

Creating the user interface using XAML
The next step is to add some elements to the user interface. We’ll do this by adding
some content to the XAML file that describes the page. The XAML that describes the
main page of the application is held in a file named MainPage.xaml. First, you need
to stop the application if it still running. Then open MainPage.xaml by double-
clicking it in Solution Explorer, as shown in Figure 16-8.

Figure 16-8  Opening the MainPage.xaml file.

CODE ANALYSIS

489Creating a new application

Opening the file displays it in an editing view that lets you see the XAML that defines
the design along with a preview of how the page will look, as you can see in Figure
16-9.

Figure 16-9  Editing XAML in Visual Studio.

The editing area is split into two regions. At the top you have a preview of the inter-
face as the user will see it. At the bottom you have the XAML that describes the ele-
ments on the page. We are going to start by editing the XAML file.

At the very bottom of the XAML file is the Grid element that contains the elements
that appear on the screen. You can see the top row of the Grid description at the
bottom of Figure 16-9. We can add an element to the screen by adding XAML to the
Grid:

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

 <StackPanel>

 <TextBox Name="firstNumberTextBox" Width="100" Margin="8"

 TextAlignment="Center"></TextBox>

 </StackPanel>

</Grid>

This is the definition of the first TextBox on the display. If we run the application again,
the TextBox is displayed at the top of the application, as shown in Figure 16-10.

490	 Chapter 16  Creating a user interface using objects

Figure 16-10  A single TextBox on the screen.

You can enter text into the TextBox. The text you enter is centered inside the TextBox
because the TextAlignment property for the TextBox has been set to Center. Now go
ahead and add the other elements to the display at this point.

<StackPanel>

 <TextBlock Text="Adding Machine" TextAlignment="Center" Margin="8"

 FontSize="16"></TextBlock>

 <TextBox Name="firstNumberTextBox" Width="100" Margin="8"

 TextAlignment="Center"></TextBox>

 <TextBlock Text="+" TextAlignment="Center" Margin="8"></TextBlock>

 <TextBox Name="secondNumberTextBox" Width="100" Margin="8"

 TextAlignment="Center"></TextBox>

 <Button Content="Equals" Name="equalsButton" HorizontalAlignment="Center"

 Margin="8"></Button>

 <TextBlock Name="resultTextBlock" Text="" TextAlignment="Center" Margin="8">

 </TextBlock>

</StackPanel>

These XAML statements define the elements that make up the adding machine tutor
display. This XAML looks a bit like a program, but it is actually quite different. It is a
declaration of all the display elements that the program will be using. Visual Studio
will work through this file and create the display elements when the program is com-
piled. If you enter this text into MainPage.xaml, you can see the elements appear in

491Creating a new application

the preview window above the text. If you run the program, you will see the elements
displayed on the screen as you have specified, which you can see in Figure 16-11.

Figure 16-11  Adding machine tutor.

If you change the size of the program window by dragging a corner of it on the
screen, you’ll notice that the elements always stay in the center. Windows will auto-
matically update the layout if the size of the enclosing window changes. The nice thing
about this kind of design is that it will display correctly on any device, from an 84-inch
Surface Hub screen to a much smaller Windows Phone.

Positioning elements on a XAML display
I’ve been advising you to use storyboards to set out what a program should look like, and
XAML provides a great way to take storyboard designs and build them into the application.
However, when you are planning your designs, you need to have an understanding of how
dimensions are specified within XAML.

Question: How do we measure things within a XAML design?

Answer: Simple question, complicated answer. In the old days, it was easy to express
dimensions on displays. We just measured everything in pixels. (Pixel is an abbreviation of
“picture element” and is a single addressable dot on a display.) A dimension of 100 meant
100 actual dots on the screen. This approach worked well because screens were low reso-
lution and there weren’t many different sizes in use. In addition, a program would only be
expected to work on one platform.

Nowadays, there are many different sizes of display, from tiny tablets to enormous wall-
mounted screens. And just to make things worse, the displays themselves vary greatly in
the number of pixels they contain. Some devices have LCD panels with hundreds of pixels
per inch; others make do with a much lower resolution. Sizing everything in pixels no
longer works.

CODE ANALYSIS

492	 Chapter 16  Creating a user interface using objects

The dimensions used in Universal Windows Applications have been created to make applica-
tions portable across different screens. When we considered the size of sprites in our games,
we observed that the “pixel” values you use in XAML are scaled by Windows to reflect the
underlying hardware, so that 96 of them are equivalent to one inch on the display. But it’s
slightly more complicated than this. The pixel values, called effective pixels, are actually scaled
to take account of viewing distance, display size, and display resolution so that they “look
right.” This means that something specified as 100 pixels wide may be drawn using 150, 175, or
200 physical pixels, depending on the target device.

In addition to effective pixels, Windows 10 also provides a feature called Adaptive User Inter-
face, which lets you create alternative designs for different display sizes. The idea is that when
your program runs, it automatically picks the design that works on the display in use. On a
large screen, the user will see multiple panels, and on a smaller screen a single panel design
will be used, with the user navigating between them.

Question: Is the firstNumberTextBox in the center of the screen because I’ve set the prop-
erty TextAlignment="Center" on it?

Answer: No. The TextAlignment property refers to the alignment of the text inside a
TextBox. Setting this property to Center means that when a user enters text into the
TextBox, the cursor will be placed in the center of that box. It turns out that, unless you
specify otherwise, elements are naturally centered by XAML. However, you can add a
property to an element to tell it to position itself differently. For example, if you add
HorizontalAlignment="Left" to the firstNumberTextBox element, it will move itself
to the left edge of the screen. There are lots of interesting properties that you can set
for elements. You can find out about them by using the IntelliSense feature of the XAML
editor, which will suggest the properties and also the values that they can have.

Previewing XAML screen display sizes
If you look at the preview screen in Visual Studio and the display you get when the
application runs, you’ll notice that the pages are completely different shapes and
sizes. The TextBox looks bigger on the preview screen in Visual Studio, too. Visual Stu-
dio provides a range of preview environments with different sizes. You can see them
if you open the combo-box at the top-left corner of the XAML editor. Figure 16-12
shows the device types that are preset in Visual Studio.

the preview window above the text. If you run the program, you will see the elements
displayed on the screen as you have specified, which you can see in Figure 16-11.

Figure 16-11  Adding machine tutor.

If you change the size of the program window by dragging a corner of it on the
screen, you’ll notice that the elements always stay in the center. Windows will auto-
matically update the layout if the size of the enclosing window changes. The nice thing
about this kind of design is that it will display correctly on any device, from an 84-inch
Surface Hub screen to a much smaller Windows Phone.

Positioning elements on a XAML display
I’ve been advising you to use storyboards to set out what a program should look like, and
XAML provides a great way to take storyboard designs and build them into the application.
However, when you are planning your designs, you need to have an understanding of how
dimensions are specified within XAML.

Question: How do we measure things within a XAML design?

Answer: Simple question, complicated answer. In the old days, it was easy to express
dimensions on displays. We just measured everything in pixels. (Pixel is an abbreviation of
“picture element” and is a single addressable dot on a display.) A dimension of 100 meant
100 actual dots on the screen. This approach worked well because screens were low reso-
lution and there weren’t many different sizes in use. In addition, a program would only be
expected to work on one platform.

Nowadays, there are many different sizes of display, from tiny tablets to enormous wall-
mounted screens. And just to make things worse, the displays themselves vary greatly in
the number of pixels they contain. Some devices have LCD panels with hundreds of pixels
per inch; others make do with a much lower resolution. Sizing everything in pixels no
longer works.

CODE ANALYSIS

493Creating a new application

Figure 16-12  Display size options in XAML.

I’d really love to write a program that displays on the 84-inch Surface Hub. Or one that
runs on the Xbox One. If you have a particular device in mind for your application,
you can select it so that the preview in the editor reflects this.

Note that to the right of this list is some useful information about the preview win-
dow in use. As you can see in Figure 16-13, you can read off the effective number of
pixels available on the screen setting that you have selected for the preview page. This
means that if I created a TextBox that was 360 pixels wide, it would spread across the
entire screen.

Figure 16-13  Effective sizes in XAML.

PROGRAMMER’S POINT

Design your user interface for maximum flexibility
This material on sizes and design is beyond the true scope of our programing book, but I
think there is one very important point to remember here—and that is that fixed dimen-
sions and positions are not really your friends. You can use the designer in Visual Studio to
precisely place items on the screen, but I think that this is a very bad idea in a world with
so many different device formats available. If you position things on the screen using too
many fixed values, you are going to have a very inflexible display. At some point you are

494	 Chapter 16  Creating a user interface using objects

going to be faced with an irate user who is complaining that they can’t see the Submit
button when they use your program on their particular tablet PC. I make use of the Stack-
Panel container to lay out simple items, and I suggest that you do the same.

Adding the program behaviors
You can use XAML to create rich and interesting user interfaces, but none of them will
actually do anything for your users. To get things done, you need to run some pro-
gram code. Whenever Visual Studio makes a XAML file that describes a page on the
display, it also makes a C# program file, called the code-behind file, to go with it, and
this is where we can put code that will make our application work. The C# program
file for a particular XAML page is located under its entry in Solution Explorer. You can
open it by clicking the arrow to the left of the page name and then double-clicking
the name of the source file, as shown in Figure 16-14.

Figure 16-14  Locating the C# code-behind file.

If you actually take a look in the file named MainPage.xaml.cs, you will find that it
seems not to contain much code:

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Runtime.InteropServices.WindowsRuntime;

using Windows.Foundation;

using Windows.Foundation.Collections;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Controls.Primitives;

using Windows.UI.Xaml.Data;

495Creating a new application

using Windows.UI.Xaml.Input;

using Windows.UI.Xaml.Media;

using Windows.UI.Xaml.Navigation;

// The Blank Page item template is documented at http://go.microsoft.com/

fwlink/?LinkId=402352&clcid=0x409

namespace AddingMachineTutor

{

 /// <summary>

 /// An empty page that can be used on its own or navigated to within a Frame.

 /// </summary>

 public sealed partial class MainPage : Page

 {

 public MainPage()

 {

 this.InitializeComponent();

 }

 }

}

Most of the file consists of using statements that allow our program to make direct
use of XAML classes without having to give the fully formed name for each of them.
For example, rather than writing Windows.UI.Xaml.Controls.Button, we can write
Button because the file contains the statement using Windows.UI.Xaml.Controls.

Taking a look at the MainPage class
While the MainPage class looks a lot like other classes you have seen, some things about it
are new.

Question: What does the namespace mean?

Answer: Namespaces let us give unique names to items in applications. You have seen
that the C# using keyword allows you to tell the C# compiler to search a namespace for
items that you use in your programs. The namespace statement in the program shows
how a namespace is created. The effect of this statement is that the full name of the
MainPage class is AddingMachineTutor.MainPage. Visual Studio uses the name of the
application being created as an enclosing namespace for all the classes that are part of
that application.

Namespaces that contain the XAML objects.

Namespace thay contains our application.

Page is the parent class for the
MainPage class.

The constructor for MainPage.

This method call sets up the page.

CODE ANALYSIS

496	 Chapter 16  Creating a user interface using objects

Question: Why is the class definition for MainPage so complicated?

Answer: When we made a class, it was very simple. We just wrote the class keyword
followed by the name we had chosen for the class, as we did for the start of the Contact
class declaration:

class Contact

If you take a look at the declaration of the MainPage class, you’ll see lots of extra text:

public sealed partial class MainPage : Page

The first item worthy of note is : Page at the end of the declaration. This tells the C#
compiler that the MainPage class is an extension of the Page class. You have seen this done
before, when we made a set of sprite classes for Space Rockets in Space. We created different
kinds of sprites by extending a parent type. Here we are creating a new kind of XAML page
by extending the parent Page class. The Page class is provided as part of the set of resources
used to create Universal Windows Applications.

Question: What does sealed mean?

Answer: You have seen that you can create new classes by extending parent ones.
However, a class marked with sealed cannot be extended in this way. There is no reason
for anyone to extend the MainPage class, so it is marked with sealed so that this cannot
happen.

Question: What does partial mean?

Answer: You saw the keyword partial when you investigated how Snaps behaviors
are created. The partial keyword tells the compiler that there may be other parts of
this class in the application, stored in separate source files. In other words, this file holds
part of the MainPage class. Partial classes make it easier to navigate large classes, which
can be spread over several shorter files rather than stored in one large one. When the
program is built, the contents of the C# code-behind file are combined with C# produced
from the XAML page description to produce a C# object that represents the page on the
screen.

The only method in the program is the constructor of the MainPage class. As you
know, the constructor of a class is called when an instance of the class is created. All
this constructor does is call the method InitializeComponent. If you took a look
inside InitializeComponent, you would find the code that actually creates the
instances of the display elements. This code is automatically created for you by Visual
Studio, based on the XAML that describes your page. It is important that you leave this
call as it is and not change the content of the method itself, as doing so would most

using Windows.UI.Xaml.Input;

using Windows.UI.Xaml.Media;

using Windows.UI.Xaml.Navigation;

// The Blank Page item template is documented at http://go.microsoft.com/

fwlink/?LinkId=402352&clcid=0x409

namespace AddingMachineTutor

{

 /// <summary>

 /// An empty page that can be used on its own or navigated to within a Frame.

 /// </summary>

 public sealed partial class MainPage : Page

 {

 public MainPage()

 {

 this.InitializeComponent();

 }

 }

}

Most of the file consists of using statements that allow our program to make direct
use of XAML classes without having to give the fully formed name for each of them.
For example, rather than writing Windows.UI.Xaml.Controls.Button, we can write
Button because the file contains the statement using Windows.UI.Xaml.Controls.

Taking a look at the MainPage class
While the MainPage class looks a lot like other classes you have seen, some things about it
are new.

Question: What does the namespace mean?

Answer: Namespaces let us give unique names to items in applications. You have seen
that the C# using keyword allows you to tell the C# compiler to search a namespace for
items that you use in your programs. The namespace statement in the program shows
how a namespace is created. The effect of this statement is that the full name of the
MainPage class is AddingMachineTutor.MainPage. Visual Studio uses the name of the
application being created as an enclosing namespace for all the classes that are part of
that application.

Namespaces that contain the XAML objects.

Namespace thay contains our application.

Page is the parent class for the
MainPage class.

The constructor for MainPage.

This method call sets up the page.

CODE ANALYSIS

497Creating a new application

likely break your program. At this point we are deep in the engine room of XAML. I’m
telling you about this so that you can understand that there is actually no magic here.
The nice thing, as far as we are concerned, is that we don’t need to worry about how
these objects are created and displayed; we can just use the high-level tools or write
statements in XAML to design and build our display.

Calculating the result
At the moment our program looks good, but it doesn’t actually do anything. We need
to create some code that will perform the required calculation and display the result.
Something like this:

private void displayResult()

{

 float v1 = float.Parse(firstNumberTextBox.Text);

 float v2 = float.Parse(secondNumberTextBox.Text);

 float result = v1 + v2;

 resultTextBlock.Text = result.ToString();

}

The TextBox display elements expose a property called Text, which can be read from
or written to. Setting a value for the Text property will change the text in the TextBox
on the screen. Reading the Text property allows our program to read what has been
typed into the TextBox.

The text is given as a string, which must be converted to a numeric value if our pro-
gram is to do any calculations on the value. You have seen the Parse method before.
It takes a string and returns the number that the string describes. Each of the numeric
types (int, float, double, etc.) has a Parse behavior that takes a string and returns
the numeric value that it describes. The adding machine that we are creating can work
with floating-point numbers, so the method parses the text in each of the input text
boxes and then calculates a result by adding the values together.

Finally, the method takes the number that was calculated, converts it to a string, and
then sets the text of the resultTextBlock to this string. ToString is the reverse of
Parse (the “antiparse” if you like). It provides the text that describes the contents of an
object. In the case of the float type, this is the text that describes that value.

Now we have our code that works out the answer. We just have to find a way of get-
ting the code to run when the user presses the Equals button.

Method called to
display the result.

Get the values that
we are adding.

Calculate the result
and then display it.

498	 Chapter 16  Creating a user interface using objects

Events and programs
In Chapter 15, you saw how programs are made up of components that send mes-
sages to one another. When an alien collided with a rocket, the alien sent a message to
the rocket saying, “You must now take damage.” It did this by calling the TakeDamage
method for the rocket. An event is a form of a message. When you talk to computer
folk, opinions vary about the difference between an event and a message. My take is
that an event is a kind of message that components in a program can subscribe to.

If this is confusing, think about the problem we are trying to solve. We want the
program to display the result of the addition when a button on the screen is used.
A button is a kind of display element that can generate events (in this case, “I have
been clicked”), and our program would like to receive these events. Methods that run
in response to events like these are called event handlers. From a C# point of view,
there is nothing special about these methods. The important difference between an
event-handler method and an “ordinary” one is that the event handler is called only
when an event occurs.

It turns out that connecting a button to an event-handler method is actually quite
easy, and Visual Studio will do most of the work for us. Start by returning to the XAML
graphical editor in Visual Studio and selecting the button element (by clicking it with
the mouse), as shown in Figure 16-15. With the button selected, you can move it
around the screen or change its size, but what we want to do is edit the properties of
the button and add an event handler for the Click event—in other words, specify a
method that runs each time the button is clicked.

Figure 16-15  Selecting the button in the XAML editor.

Visual Studio provides a Properties pane where you can change the appearance and
behavior of each object on the screen. This pane is usually in the bottom-right corner
of the Visual Studio window. Selecting the button in the editor makes it the selected
item in the Properties pane, too. (You can tell that the Properties pane is showing
the correct properties because the value of the Name box displayed at the top is
“equalsButton” and the Type is “Button.”) Figure 16-16 shows the properties of the
equalsButton item.

499Creating a new application

Figure 16-16  The button properties.

The properties are organized in categories. You can use them to change the appear-
ance of the button, but we want to manage the events that the button can generate,
so click the lightning bolt at the top right of the Properties pane to select the event
panel, shown in Figure 16-17, which displays the events a button can generate.

Figure 16-17  The list of button events.

If you wanted to, you could connect an event handler to every single one of these
events, but we don’t really have time for that just now. The event we want to connect
to is at the top of the panel—the Click event. We can connect an event handler to this
event by double-clicking in the empty text box next to Click. When you double-click,
you’ll see the method name appear, as shown in Figure 16-18.

Figure 16-18  Click event handler added for the Equals button.

500	 Chapter 16  Creating a user interface using objects

Two other things happen as well. First, Visual Studio adds a description of the event
handler to the XAML for the Equals button:

<Button Content="Equals" Name="equalsButton" HorizontalAlignment="Center"

Margin="4" 	Click="equalsButton_Click" ></Button>

Second, Visual Studio adds an empty event-handler method to the code behind the
page:

private void equalsButton_Click(object sender, RoutedEventArgs e)

{

}

When the program is compiled, the event described in the XAML is linked to the
event-handler method so that when the button is pressed, the event-handler method
runs. To make the calculator work, we just have to make the event handler call the
method that will perform the calculation.

private void equalsButton_Click(object sender, RoutedEventArgs e)

{

 displayResult();

}

Demo 16-01 AddingMachineTutor

When the user clicks the Equals button, the equalsButton_Click method runs and
calls the displayResult method to display the result.

Event-handler methods
The event-handler method is provided for us automatically, but there are some things about
it that you might want to consider.

Question: What are the parameters to the event-handler method?

Answer: The event-handler method has two parameters. The first, named sender, is a
reference to the object on the display that actually produces the event. In the case of the
adding machine, this reference refers to the equalsButton object that the user clicked.

CODE ANALYSIS

501Creating a new application

The second parameter, called e, provides details of the event that has occurred. In the
case of a button click, there is not much information that can be added, but if events are
generated by other actions—for example, pointer movement—the arguments parameter
can provide details such as the position of the pointer when the event was produced.

Question: When does our program call the event-handler method?

Answer: The event-handler method is never called by our program. If the user clicks the
button, the method is called, but our program will never actually call this method itself.
This is quite a different model from the one what you are used to. Most of the time, our
adding machine program will be doing nothing; it will just be waiting for the user to
perform an action.

Question: What happens if the event-handler method takes a long time to complete?

Answer: It is very important that an event handler completes as quickly as possible.
As long as the event handler is running, the rest of the user interface is unable to do
anything. We have all experienced the awful feeling of loss of control when an appli-
cation becomes unresponsive. The cause of this unresponsiveness is always one of the
event-handler methods in the application getting stuck.

Dealing with errors
The solution that we have come up with does work, and it will provide a working
adding machine. However, it is not a very user-friendly program. For example, the user
might type text into the numbers text boxes as shown in Figure 16-19.

Figure 16-19  Invalid numbers have been entered here.

We already know that this will cause problems with the Parse method, which will
promptly throw an exception and stop the program. We also know that we can catch
exceptions and deal with them (you saw this in Chapter 11). In the case of the add-
ing machine program, the best way to deal with these kinds of errors is to display a
message:

502	 Chapter 16  Creating a user interface using objects

private void displayResult()

{

 try

 {

 float v1 = float.Parse(firstNumberTextBox.Text);

 float v2 = float.Parse(secondNumberTextBox.Text);

 float result = v1 + v2;

 resultTextBlock.Text = result.ToString();

 }

 catch

 {

 resultTextBlock.Text = "Invalid number";

 }

}

Demo 16-02 AddingMachineTutorErrors

If either of the calls to the Parse method in the try block throws an exception, the
program transfers execution to the catch block, which displays the message “Invalid
number” in resultTextBlock, as shown in Figure 16-20.

Figure 16-20  Invalid numbers error display.

Using TextBox properties to improve the
user interface
The error handling for our adding machine tutor is not perfect. While the program
catches errors, it doesn’t actually tell the user which of the values is wrong when it
runs. We can improve on this user interface by using some more properties of the
TextBox. There are lots and lots of things that we could do. What we are going to do

503Creating a new application

is change the background of a text box with an invalid entry so that it is red. The text
box will appear as shown in Figure 16-21.

Figure 16-21  Highlighting invalid entries by using a property.

If an entry is invalid, it will be colored red. In the XAML universe, elements that are
drawn on the screen are drawn with a brush object. There are a number of differ-
ent brush classes available; in fact, the XAML Brush is a nice example of class-based
design. Brush is the parent class of a number of different kinds of brushes that can
draw patterns or images. The brush we want to use is the SolidColorBrush. We can
use it to create a brush with a particular color:

Brush errorBrush = new SolidColorBrush(Colors.Red);

This creates a Brush reference named errorBrush, which is set to a solid red brush. We
can now set the background of a TextBox to be drawn with this brush:

firstNumberTextBox.Background = errorBrush;

This statement sets the background of firstNumberTextBox to red to indicate that an
error has been detected. This might seem like a long way around setting a color value,
but it actually gives you a lot of flexibility. You could create an image that represents
an error and then use it as the background of the TextBox instead.

We can set the background color of the text box when the Parse method throws an
exception, but there is also a way to convert text to a number that doesn’t use excep-
tions to indicate that an error has occurred. The TryParse method tries to parse the
string and returns false if the attempt fails. You can see how to use it in the following
statements:

float v1;

if (float.TryParse(firstNumberTextBox.Text, out v1) == false)

Adding “out” means the
method must put a value

into this argument.

504	 Chapter 16  Creating a user interface using objects

{

 firstNumberTextBox.Background = errorBrush;

}

This code will set the background of the TextBox to red if the text entered is not a
valid number.

Brush errorBrush = new SolidColorBrush(Colors.Red);

private void displayResult()

{

 float v1;

 float v2;

 bool validValues = true;

 if (float.TryParse(firstNumberTextBox.Text, out v1)==false)

 {

 validValues = false;

 firstNumberTextBox.Background = errorBrush;

 }

 if (float.TryParse(secondNumberTextBox.Text, out v2)==false)

 {

 validValues = false;

 secondNumberTextBox.Background = errorBrush;

 }

 if (validValues)

 {

 float result = v1 + v2;

 resultTextBlock.Text = result.ToString();

 }

 else

 {

 resultTextBlock.Text = "Invalid number";

 }

}

Demo 16-03 AddingMachineTutorFaultyErrorDisplay

If TryParse fails, the background
of the TextBlock is set to red.

This flag indicates whether all
values are valid.

Try to parse the
first value.

If the parse fails, set the flag to
indicate this input is invalid.

Repeat for the
second value.

505Creating a new application

Faults in displayResult
This dislayResult method looks like it should work, but unfortunately it has a serious bug.

Question: What’s wrong with displayResult?

Answer: The problem with displayResult is not apparent the first time you use it. If
you test the program just once, you find that if you enter valid information, the program
displays the correct result. If you run the program again and enter invalid values, the
appropriate TextBox turns red to indicate an error. However, if you enter some valid
values after you have tried some invalid ones, the background stays red. This is not par-
ticularly surprising, as there is nothing in the program that resets the backgrounds for the
text boxes once they have been turned red to indicate that a value is invalid.

 Question: How do we fix the background colors?

Answer: We can fix this error by restoring the background color to the usual one if a
value in a TextBox is found to be okay. We do have to be careful here, though, because
we can’t just assume that everyone uses the color white as the background for their text.
Some people might be using fancy color schemes on their PCs. The good news is that we
can read and store the original background color of a TextBox and just put the original
background brush back when the value is found to be valid. The program can sample the
original TextBox background color in the constructor for the page and then use this to
set the background color of correct entries.

Brush errorBrush = new SolidColorBrush(Colors.Red);

Brush correctBrush;

public MainPage()

{

 this.InitializeComponent();

 correctBrush = firstNumberTextBox.Background;

}

private void displayResult()

{

 float v1;

 float v2;

CODE ANALYSIS

Brush used to indicate “correct.”

Copy original background color
into the correct brush.

506	 Chapter 16  Creating a user interface using objects

 bool validValues = true;

 if (float.TryParse(firstNumberTextBox.Text, out v1) == false)

 {

 validValues = false;

 firstNumberTextBox.Background = errorBrush;

 }

 else

 firstNumberTextBox.Background = correctBrush;

 if (float.TryParse(secondNumberTextBox.Text, out v2) == false)

 {

 validValues = false;

 secondNumberTextBox.Background = errorBrush;

 }

 else

 secondNumberTextBox.Background = correctBrush;

 if (validValues)

 {

 float result = v1 + v2;

 resultTextBlock.Text = result.ToString();

 }

 else

 {

 resultTextBlock.Text = "Invalid number";

 }

}

Demo 16-04 AddingMachineTutorFixedErrorDisplay

Make some different tutors
You can use the pattern for the adding machine to create programs to do subtraction, multi-
plication, and division. You could even make one “monster tutor” that had different areas of
the screen for doing each of these calculations, or make a version that took in two numbers
and displayed their sum, product, and difference.

This code runs if the value is valid.
Set the background
color to indicate the

value is correct.

MAKE SOMETHING HAPPEN

Faults in displayResult
This dislayResult method looks like it should work, but unfortunately it has a serious bug.

Question: What’s wrong with displayResult?

Answer: The problem with displayResult is not apparent the first time you use it. If
you test the program just once, you find that if you enter valid information, the program
displays the correct result. If you run the program again and enter invalid values, the
appropriate TextBox turns red to indicate an error. However, if you enter some valid
values after you have tried some invalid ones, the background stays red. This is not par-
ticularly surprising, as there is nothing in the program that resets the backgrounds for the
text boxes once they have been turned red to indicate that a value is invalid.

 Question: How do we fix the background colors?

Answer: We can fix this error by restoring the background color to the usual one if a
value in a TextBox is found to be okay. We do have to be careful here, though, because
we can’t just assume that everyone uses the color white as the background for their text.
Some people might be using fancy color schemes on their PCs. The good news is that we
can read and store the original background color of a TextBox and just put the original
background brush back when the value is found to be valid. The program can sample the
original TextBox background color in the constructor for the page and then use this to
set the background color of correct entries.

Brush errorBrush = new SolidColorBrush(Colors.Red);

Brush correctBrush;

public MainPage()

{

 this.InitializeComponent();

 correctBrush = firstNumberTextBox.Background;

}

private void displayResult()

{

 float v1;

 float v2;

CODE ANALYSIS

Brush used to indicate “correct.”

Copy original background color
into the correct brush.

507Creating a new application

What you have learned
In this chapter you moved away from the Snaps environment and created your
first Windows 10 Universal Application. You saw how to use XAML to describe the
arrangement and properties of the elements on the application page and how to use
Visual Studio to edit and preview your XAML designs. You discovered that elements
described in the XAML file are revealed as objects inside the C# program file that
sits behind the user interface. Programs can update display elements by writing to
properties in the elements, and read information from the display by reading from the
elements. We identified three XAML elements to start with: a TextBlock that displays
text, a TextBox into which users can enter raw text, and a Button element that can be
used to trigger events.

The Button element has events that can be used to run C# methods in response to
user actions. Unlike in previous programs, where our code starts running when the
program begins, a XAML application has C# code that is bound to events generated
by elements in the display. The XAML that describes a button can contain a Click
property that identifies the C# method that will run when the button is clicked. You
have seen how programs can be created to work in this way and how outputs can be
generated in response to user actions.

Finally, we investigated some simple error handling and took our first steps toward
creating properly user-friendly interfaces.

Here are some questions you might want to ponder about XAML-based user
interfaces.

How different are our programs from professional ones?

The programs that we are now writing use all the same techniques and display
elements as full-size professional ones. As I said much earlier in this book, the only
difference between the programs we are writing and professional programs is that we
are not selling our programs yet. The use of XAML to design the program and the way
that methods in the code respond to the events generated by XAML display elements
are exactly the same in our programs as they are in larger ones.

Can I create my own elements to place on the display?

Yes. Learning how to do this is beyond the scope of this book, but the fact that all
the elements on the screen have been built from a class hierarchy means that you
can extend them to add your own behaviors. You can also create your own custom
controls that contain a number of control elements that can then be manipulated by
Visual Studio.

508	 Chapter 16  Creating a user interface using objects

How can I make really good-looking user interfaces?

The XAML that we have created so far is very utilitarian. It does the job, but it is not
very pretty. Fortunately, there is a tool called Blend that is supplied as part of a Visual
Studio installation. Blend provides a designer-focused view of the user interface
design. You can use Blend to create graphical effects and animations that are applied
to your components and create and use display templates that can be applied to
elements in your user-interface designs. It’s important to remember that, at the end
of the day, the output will still be a text file that contains XAML descriptions of the
display elements. The XAML language gives an incredible level of control over how
you display elements, and Blend provides a great place to do the design work. You
can explore Blend (but it is a very complex program) by right-clicking any of the XAML
files in Solution Explorer and selecting Design in Blend.

509What you have learned

17
Applications and

objects

What you will learn
In the last chapter, we created a very simple adding machine that showed
how applications can communicate with their users. You saw how to use
objects to represent elements in a user interface and how a program can
change the properties of the objects to update information that is displayed
to users.

In this chapter, you are going to examine how user interfaces and objects
can be made to interact in a well-structured application You’ll also have
some fun adding pictures and sounds to a Universal Application and find
out how to use the ComboBox element to allow a user to make a choice.

 

Making a calculation quizzer . 512

Supporting multiple quizzes .524

What you have learned .530

17
Applications and

objects

		 511

Making a calculation quizzer
The adding machine we made in Chapter 16 is a good program if you want to perform
calculations and view the results, but it is not a very good tool for practicing how to do
addition. A better practice program would be one that displays a question, asks for an
answer, and then indicates whether the answer is correct.

As a starting point, we could use an application design such as you see in Figure
17-1. The question appears at the top, there’s a text box where the user types in an
answer, and the Check Answer button is used to verify the answer (when the button
is pressed, the program indicates whether the answer is correct). The user can press
Next Question to move to another question.

Figure 17-1  The Calculation Quizzer.

This program looks similar to the adding machine program that we got working in the
last chapter, so it seems like it should be easy to write. We just have to change the way
the program works behind the buttons on the page.

Objects and user displays
In the Time Tracker application, we used a Contact object to hold information about
each contact. For example, a Contact object holds the name of the contact. But the
Contact class doesn’t contain any code that actually displays that object on a screen.
Programs are frequently structured to make a strong distinction between objects that
manage business information (such as a contact’s name) and objects that perform
input and output. We call objects like the Contact object business objects because
their job is to store business information, not interact with the user.

For the Calculation Quizzer, we can regard the “quizzing” behavior as a form of
business object and separate it from the part of the program that drives the display.
The display asks the quiz object, “Give me a question.” Then, when the user enters an
answer, the display asks the quiz object, “Is this answer correct?” There are two huge
benefits in making the quiz application work this way: it becomes easier to test, and
it’s much more flexible.

512	 Chapter 17  Applications and objects

Testability
If we make quiz behaviors part of the display page, we can’t test them automatically.
I like programs that can test themselves, not ones where I have to sit at the computer,
type things in, press buttons, and see what comes back. In the case of our simple quiz
program, there is not a great deal to test, but if we were working on a more compli-
cated application—for a bank, for example—we would not want to perform thou-
sands of transactions by hand to see whether the program works correctly. We would
want to check the bank balance, pay money in, and then check again to see whether
the balance changed correctly, without having do this via the screen. Testing this
functionality would be much easier if the bank account transactions were performed
by an object external to the display page, because then we could write some code that
would perform lots of transactions and check the results for us.

Similarly, if we know what the addition quiz object is supposed to do, we can ask it for
a question, evaluate the answer ourselves, and then see whether the quiz object thinks
the answer is correct. All this can be performed automatically.

Flexibility
After people work with our program for a while, they’ll see that it makes practicing
addition very easy. You might find that they now want a program to test their knowl-
edge of subtraction and also multiplication. And then they’ll want to expand the
program again to cover subjects such as history. If the testing behavior is built into the
display, we have to make a new display for each type of quiz. But if the quiz and the
display are separate objects, we can swap one quiz object for a different one, and the
user-interface design can remain the same. If we make good use of C# interfaces, the
mechanism you saw in Chapter 15, we can create lots of new quiz types and just plug
them into our application. We could even create a general-knowledge quiz that used
questions from all our different quiz objects.

Creating a quiz object
When the quiz program starts, the display page will create a quiz object and then use
this object to display questions and answers to the user. We can think of the relation-
ship between the quiz object and the display page in terms of the messages that are
sent when the quiz takes place. There are three things that the display page needs:

●● It needs to get the text to display in the question part of the page.

●● It needs to check the answer that the user has entered.

●● It needs to move on to the next question.

513Making a calculation quizzer

These actions correspond broadly to the buttons on the page, as shown in Figure
17-2.

Figure 17-2  A quiz object and its relationship to the display page.

We can express these actions in a C# interface:

/// <summary>

/// An object that can be used to generate

/// and test quiz questions

/// </summary>

interface IQuizObject

{

 /// <summary>

 /// Gets the text for a question

 /// </summary>

 /// <returns>the question text</returns>

 string GetQuestion();

 /// <summary>

 /// Checks to see if an answer is correct

 /// </summary>

 /// <param name="answer">answer to be tested</param>

 /// <returns>true if the answer is correct</returns>

 bool CheckAnswer(string answer);

 /// <summary>

 /// Moves onto the next question

 /// </summary>

 void NextQuestion();

}

You have seen interfaces before. A class can implement this interface and then be
regarded in terms of this ability. In other words, we can take any class we like, give it

514	 Chapter 17  Applications and objects

the three methods identified in the interface, and it can then be referred to by a refer-
ence of type IQuizObject.

Professional comments
Earlier in this book, we considered what makes a program “professional.” I think one
thing that distinguishes a professional program is the level and quality of the com-
ments in the source code. You can see that the IQuizObject interface actually has
more comments than C# statements. The comments themselves are in the XML-like
format introduced in the section “Adding IntelliSense comments to your methods,”
back in Chapter 8. Recall that the comments are designed to be read by Visual Studio
and used to provide IntelliSense information that pops up when the program is being
edited.

In Figure 17-3, I’m using the Visual Studio code editor to create a new class, named
FakeWrongQuiz, that implements the IQuizObject interface. When I rest the cursor
over the name of the interface, I get a pop-up window that includes the information
about the interface that was added in the comment.

Figure 17-3  IntelliSense help is part of making a program professional.

Having information like this available to a programmer makes it much easier to create
and use objects developed by other people. Remember that Visual Studio even
creates the comment templates for you; all you have to do is type three slashes (///)
into the Visual Studio editor above the method or class that you want to document.
When you add comments to methods, you can provide a summary of the method, a
description of each parameter, and a description of what the method returns. When I
see a program that contains comments like these I start to consider it a “professional”
piece of work.

Making a fake object
The class FakeWrongQuiz, shown in the following code, provides implementations of
all the methods defined in IQuizObject, but they don’t do anything much. The ques-
tion is always the same string, and the answer is always wrong.

515Making a calculation quizzer

class FakeWrongQuiz : IQuizObject

{

 public bool CheckAnswer(string answer)

 {

 return false;

 }

 public string GetQuestion()

 {

 return "The answer to this question is always wrong";

 }

 public void NextQuestion()

 {

 }

}

This class doesn’t look very useful, but actually it is. A programmer can use this class
to test the user interface that she is developing. She can have this fake quiz ready well
before the real quiz objects are finished, which means that the display page and the
quizzes can be developed at the same time. Perhaps a team of friends could create
the quiz objects and you could build the user interface. When all of you have finished
writing your code, you can plug your classes together and have a working program.
Figure 17-4 shows the “fake wrong” quiz being used.

Figure 17-4  A fake object can be used for testing.

We could also create a “fake right” quiz object that could be used to test the behavior
of the program when the user gets the answer right.

Implements IQuizObject

Always returns false.

Always returns the
same question.

No next question, so this
method does nothing.

516	 Chapter 17  Applications and objects

Creating an addition quiz object
The addition quiz object picks two random numbers, which it then uses to generate a
question. The random numbers are produced by a random-number generator, which
is a member of the object.

/// <summary>

/// A quiz object that implements an addition quiz

/// </summary>

class AdditionQuizObject : IQuizObject

{

 /// <summary>

 /// Random number generator used by the quiz

 /// </summary>

 private Random rand = new Random();

 /// <summary>

 /// Current question being asked by the object, as a string

 /// </summary>

 private string currentQuestion;

 /// <summary>

 /// Answer value, which is an integer

 /// </summary>

 private int currentAnswer;

 public string GetQuestion()

 {

 //Just return the current question

 return currentQuestion;

 }

 public bool CheckAnswer(string answer)

 {

 int answerValue;

 // Convert the parameter into a number

 if (int.TryParse(answer, out answerValue))

 {

 // If the number conversion succeeds

 // check against the answer

 if (answerValue == currentAnswer)

 // return true if the answer is correct

517Making a calculation quizzer

 return true;

 }

 // Either the answer was wrong or the user did

 // not enter a number. Return false

 return false;

 }

 public void NextQuestion()

 {

 // Generate two numbers in the range 0 to 9

 int firstNum = rand.Next(0, 10);

 int secondNum = rand.Next(0, 10);

 // Store the question string

 currentQuestion = "What is " + firstNum + " + " + secondNum;

 // Store the correct answer

 currentAnswer = firstNum + secondNum;

 }

 public AdditionQuizObject()

 {

 // When the object is created, set up

 // the first question

 NextQuestion();

 }

}

Taking a look at AdditionQuizObject
Question: Why does the CheckAnswer method check a string rather than a number?

Answer: The CheckAnswer method in the quiz object is given answers to compare
with the correct one. If the answer that is supplied does not match the correct one, the
method returns false to indicate that the answer is wrong. This object is implementing
a mathematical quiz, which works with numbers, but the CheckAnswer method checks a
string rather than a number. However, this is not a mistake. It means that we could make
a quiz that accepted text as answers—for example, the surname of the first president of
the United States—as well as numbers. It makes for slightly more work for the addition
quiz object because the quiz object must convert the text that is being checked into a
number, but it makes the quiz much more flexible.

CODE ANALYSIS

518	 Chapter 17  Applications and objects

Question: Is there anything to stop a cunning programmer from peeking at the results in the
quiz?

Answer: Yes, there is. The question text and the all-important answer have been
designed as private data members of the AdditionQuizObject class. Only methods
running inside AdditionQuizObject have access to them, which means that there is no
way that a sneaky programmer could read the answers out of the quiz object. This is one
of those situations where protecting the data in an object is a very good idea.

Question: How can we make the addition problems more difficult?

Answer: One way would be to extend the range of numbers that the program produces.
This is controlled by the range of the random numbers that are used by NextQuestion.
At the moment, the method uses values in the range 0 to 9, but this could be extended
(and even start with a negative number) if you wanted to make the problems harder.

Creating the quiz display page
The quiz display page is described in XAML. We can use the StackPanel container to
stack up the elements on the screen. We can also use a horizontal StackPanel so that
we can put the answer the user enters and the Check Answer button on the same line
on the screen.

<StackPanel VerticalAlignment="Center">

 <TextBlock Text="Calculation Quizzer" TextAlignment="Center" Margin="4"

 FontSize="16"></TextBlock>

 <TextBlock Name="questionTextBlock" Text="" TextAlignment="Center" Margin="4">

 </TextBlock>

 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center" Margin="4">

 <TextBox Name="answerTextBox" Width="100" Margin="4"

 TextAlignment="Center"></TextBox>

 <Button Content="Check Answer" Name="checkAnswerButton"

 HorizontalAlignment="Center Margin="4"

 Click="checkAnswerButton_Click" ></Button>

 </StackPanel>

 <Button Content="Next Question" Name="getNextQuestionButton"

 HorizontalAlignment="Center"Margin="4"

 Click="getNextQuestionButton_Click" ></Button>

 <TextBlock Name="resultTextBlock" Text="" TextAlignment="Center" Margin="4">

 </TextBlock>

</StackPanel>

The code behind the XAML page sets up the quiz in the constructor for the class and
then provides event handlers for the two buttons on the screen:

 return true;

 }

 // Either the answer was wrong or the user did

 // not enter a number. Return false

 return false;

 }

 public void NextQuestion()

 {

 // Generate two numbers in the range 0 to 9

 int firstNum = rand.Next(0, 10);

 int secondNum = rand.Next(0, 10);

 // Store the question string

 currentQuestion = "What is " + firstNum + " + " + secondNum;

 // Store the correct answer

 currentAnswer = firstNum + secondNum;

 }

 public AdditionQuizObject()

 {

 // When the object is created, set up

 // the first question

 NextQuestion();

 }

}

Taking a look at AdditionQuizObject
Question: Why does the CheckAnswer method check a string rather than a number?

Answer: The CheckAnswer method in the quiz object is given answers to compare
with the correct one. If the answer that is supplied does not match the correct one, the
method returns false to indicate that the answer is wrong. This object is implementing
a mathematical quiz, which works with numbers, but the CheckAnswer method checks a
string rather than a number. However, this is not a mistake. It means that we could make
a quiz that accepted text as answers—for example, the surname of the first president of
the United States—as well as numbers. It makes for slightly more work for the addition
quiz object because the quiz object must convert the text that is being checked into a
number, but it makes the quiz much more flexible.

CODE ANALYSIS

519Making a calculation quizzer

public sealed partial class MainPage : Page

{

 IQuizObject activeQuiz;

 public MainPage()

 {

 this.InitializeComponent();

 activeQuiz = new FakeWrongQuiz();

 questionTextBlock.Text = activeQuiz.GetQuestion();

 }

 private void checkAnswerButton_Click(object sender, RoutedEventArgs e)

 {

 if (activeQuiz.CheckAnswer(answerTextBox.Text))

 {

 resultTextBlock.Text = "Correct! Well done.";

 }

 else

 {

 resultTextBlock.Text = "Sorry, that is not correct.";

 }

 }

 private void getNextQuestionButton_Click(object sender, RoutedEventArgs e)

 {

 activeQuiz.NextQuestion();

 questionTextBlock.Text = activeQuiz.GetQuestion();

 answerTextBox.Text = "";

 resultTextBlock.Text = "";

 }

}

Demo 17-01 Simple Quiz

The complete program
The code here is quite compact, but it’s still interesting.

Question: Which particular quiz is this program using?

Quiz that the display
page is using.

Constructor

Set up the active quiz.

Put the question into
the text block.

Runs when the answer is
being checked.

Check whether
correct answer

entered.

Advance to the next question.
Set text for the next

question.

CODE ANALYSIS

520	 Chapter 17  Applications and objects

Answer: The variable activeQuiz is set to the currently active quiz. When this version of
the quiz is started, it is set to an instance of FakeWrongQuiz.

Question: How do we make this into an addition quiz?

Answer: We just have to set activeQuiz to refer to an instance of AdditionQuiz.

Adding sound and pictures
The quiz program works very well, but the display is a bit boring. You could add some
sounds to start with and maybe some pictures, too.

Adding sound
Let’s start with sound. We’ve used Snaps to make sounds in the past, but now you are
going to find out how to add sound effects to a Windows 10 Universal Application.
The range of XAML display elements is not restricted to ones that can display images;
we also have elements that can make sounds and even play videos.

Here is the XAML that creates a media element with the name soundMediaElement.
We can use this to play sounds in our programs. We can put it anywhere on the screen
because it is just providing sound output. You can also use the MediaElement type to
play video, but we don’t need to for this program.

<MediaElement Name="soundMediaElement"></MediaElement>

We add sounds to Windows 10 applications in the same way as we have added sounds
to Snaps programs in the past. We use .WAV sound files and drag them into our pro-
gram’s assets, as shown in Figure 17-5.

Figure 17-5  Adding sound items to the Calculation Quizzer.

public sealed partial class MainPage : Page

{

 IQuizObject activeQuiz;

 public MainPage()

 {

 this.InitializeComponent();

 activeQuiz = new FakeWrongQuiz();

 questionTextBlock.Text = activeQuiz.GetQuestion();

 }

 private void checkAnswerButton_Click(object sender, RoutedEventArgs e)

 {

 if (activeQuiz.CheckAnswer(answerTextBox.Text))

 {

 resultTextBlock.Text = "Correct! Well done.";

 }

 else

 {

 resultTextBlock.Text = "Sorry, that is not correct.";

 }

 }

 private void getNextQuestionButton_Click(object sender, RoutedEventArgs e)

 {

 activeQuiz.NextQuestion();

 questionTextBlock.Text = activeQuiz.GetQuestion();

 answerTextBox.Text = "";

 resultTextBlock.Text = "";

 }

}

Demo 17-01 Simple Quiz

The complete program
The code here is quite compact, but it’s still interesting.

Question: Which particular quiz is this program using?

Quiz that the display
page is using.

Constructor

Set up the active quiz.

Put the question into
the text block.

Runs when the answer is
being checked.

Check whether
correct answer

entered.

Advance to the next question.
Set text for the next

question.

CODE ANALYSIS

521Making a calculation quizzer

Now that we have the sound item and the XAML element to actually make the sound,
we have to create the C# code that will play the sound.

private void checkAnswerButton_Click(object sender, RoutedEventArgs e)

{

 if (activeQuiz.CheckAnswer(answerTextBox.Text))

 {

 resultTextBlock.Text = "Correct! Well done.";

 Uri soundsouce = new Uri("ms-appx:///Sounds/right.wav");

 soundMediaElement.Source = soundsouce;

 soundMediaElement.Play();

 }

 else

 {

 resultTextBlock.Text = "Sorry, that is not correct.";

 Uri soundsouce = new Uri("ms-appx:///Sounds/wrong.wav");

 soundMediaElement.Source = soundsouce;

 soundMediaElement.Play();

 }

}

Demo 17-02 Simple Quiz with Sound

The key to understanding how the sound works is to understand the use of Uri (or
uniform resource indicator). This is an element that refers to a particular resource. A
program can use lots of kinds of resources, including sounds, images, and files. The
resources can be local to the computer, held inside the application itself, or available
via a network connection. The uniform resource indicator is a way to create refer-
ences to these resources that can be used by the XAML elements. The Uri can be
created from a string that specifies the location of the resource. Adding the prefix
“ms-appx://” to a resource’s location means that the resource is content that is stored
within the application.

In Figure 17-5, you can see that I’ve put the sounds in a folder named Sounds in the
project, so the address of my sounds in the program must include this folder in the
path to the resource.

Once I have the Uri that provides the address of the resource, I can then set the
Source property of the soundMediaElement to this address. (Some XAML elements
have a Source property that specifies where they are going to get their content from.)
The Source is set to the Uri of the item that is to be played by the MediaElement. The
final statement, the Play method call, makes a MediaElement play the media item that
is assigned to its source. In this case, the appropriate sound effect is played. You can
change the sound that is played by just changing the source element.

Create the Uri,
set the source,

and play the
media element.

Use a different
sound for wrong

answers.

522	 Chapter 17  Applications and objects

Adding images
You can add images to XAML pages by using the Image element. You could just add
a picture to the user interface, but what I’d like to do is add a background behind the
entire application so that the page appears as shown in Figure 17-6.

Figure 17-6  Adding a background to the page.

The background should fill the entire screen. I can achieve this by exploiting the way
that the Grid display element works in XAML. We can use the Grid display element to
lay out a screen of items. It is slightly harder to use than the StackPanel control, but it
gives you a lot of control over what portion of the display is allocated to each element.

When you create a XAML project, the display is made up of a grid containing just one
cell, which forms the entire screen. All the items in this grid are drawn on top of one
another in the order that they are given in the Grid element. So if I make an Image
item and expand it to fill the entire screen, it will provide a rather nice background. I
can actually do all this from within the XAML design. Here is how a background image
is added to the page:

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

 <Image Source="ms-appx:///Images/kingscross.jpg"

 Opacity="0.3"

 Stretch="Fill">

 </Image>

 <StackPanel VerticalAlignment="Center">

 </StackPanel>

</Grid>

Demo 17-03 Simple Quiz with Background

The Opacity value, which is given in the range 0 to 1, is useful because it controls how
much of the background shows through the image. If I just put the image behind
the controls, they become hard to see against the picture. The smaller the value, the
fainter the image is. An Opacity setting of 1 is a solid image, but a value of 0 would

StackPanel that makes up
the application display.

523Making a calculation quizzer

make the image completely transparent. From my tests I found that a value of 0.3
works well. The image is visible, but you can still see the controls.

Create an impressive quiz
You can use images and sounds to make a very interesting quiz display. You can change the
source of an Image from within the program as well as from the XAML, so you could make
the background of the program change if the user gets the answer wrong. You can also lay
images on top of each other and use their opacity settings to merge them together. Try mak-
ing a really impressive version of the quiz program, or use these techniques to improve other
programs that you have written.

Supporting multiple quizzes
Just as we expected, people now want a version of the program that supports differ-
ent types of quizzes. We can start by building a quiz to practice three more arithmetic
activities: subtraction, multiplication, and division.

Creating quiz classes
You might think it would be a good idea to extend the AdditionQuizObject to pro-
duce new classes that can perform these functions, but I don’t think this is a very good
plan. You should extend a class and then override the methods in the parent class to
produce a less-abstract version of the child, not a completely different one.

For example, in a bank application, you would extend the Account class to produce
CheckingAccount, and then extend CheckingAccount to produce CheckingAc-
countWithOverdraft. These classes all do the same fundamental thing; it is just that
the child classes serve slightly different scenarios. However, extending an addition
object to make a subtraction object seems wrong to me because the child is doing
something completely different from the parent, not providing a more specialized
version of it. What we really need to do is be more abstract and create a Calculation-
QuizObject class, which is then extended to produce the different kinds of calculation
quizzes. Figure 17-7 shows a design for a class hierarchy of quizzes.

MAKE SOMETHING HAPPEN

524	 Chapter 17  Applications and objects

PROGRAMMER’S POINT

You might not work out the best design at the start
As far as C# is concerned, the compiler doesn’t care about the meaning of your classes and
whether or not a design is perfect. And neither will users of your program. As long as they
get a quiz that works, they will be happy. There is a strong argument for having a mindset
along the lines of “As soon as you come up with a design that you know will work, you can
stop designing the program and start building it. At least that way the customer will get
something.”

My experience has been that I can spend a lot of time searching for the perfect design for
a solution, and then when I start to make the program, I realize a much better way of doing
it. This is true in many fields, where prototypes are used to test out ideas and inform the
production process. Programmers have a technique called “refactoring,” which is where
they change the arrangement of the classes in their programs during development. The
more advanced versions of Visual Studio provide powerful tools that can help program-
mers do this.

There is nothing wrong with improving the design of your software as you build it, but for
me the most important thing is that you should try very hard to make sure that your pro-
posed design will actually work before you start to build it. We’ve already discussed how
painful being blindsided can be; it is best to make sure that it doesn’t happen to you.

Figure 17-7  Quiz class hierarchy.

The only method that is different in each of the child classes is the NextQuestion
method, which sets up the question text and calculates the answer. Here is the
NextQuestion method from the MultiplicationQuizObject class. It overrides an
abstract method in the CalculationQuizObject class to provide the behavior for
multiplication questions.

make the image completely transparent. From my tests I found that a value of 0.3
works well. The image is visible, but you can still see the controls.

Create an impressive quiz
You can use images and sounds to make a very interesting quiz display. You can change the
source of an Image from within the program as well as from the XAML, so you could make
the background of the program change if the user gets the answer wrong. You can also lay
images on top of each other and use their opacity settings to merge them together. Try mak-
ing a really impressive version of the quiz program, or use these techniques to improve other
programs that you have written.

Supporting multiple quizzes
Just as we expected, people now want a version of the program that supports differ-
ent types of quizzes. We can start by building a quiz to practice three more arithmetic
activities: subtraction, multiplication, and division.

Creating quiz classes
You might think it would be a good idea to extend the AdditionQuizObject to pro-
duce new classes that can perform these functions, but I don’t think this is a very good
plan. You should extend a class and then override the methods in the parent class to
produce a less-abstract version of the child, not a completely different one.

For example, in a bank application, you would extend the Account class to produce
CheckingAccount, and then extend CheckingAccount to produce CheckingAc-
countWithOverdraft. These classes all do the same fundamental thing; it is just that
the child classes serve slightly different scenarios. However, extending an addition
object to make a subtraction object seems wrong to me because the child is doing
something completely different from the parent, not providing a more specialized
version of it. What we really need to do is be more abstract and create a Calculation-
QuizObject class, which is then extended to produce the different kinds of calculation
quizzes. Figure 17-7 shows a design for a class hierarchy of quizzes.

MAKE SOMETHING HAPPEN

525Supporting multiple quizzes

public override void NextQuestion()

{

 int firstNum = rand.Next(0, 10);

 int secondNum = rand.Next(0, 10);

 currentQuestion = "What is " + firstNum + " * " + secondNum;

 currentAnswer = firstNum * secondNum;

}

The class diagram in Figure 17-7 was actually produced by Visual Studio 2015 from
the program that I created. Figure 17-8 shows how you do this: right-click any of your
source files in Solution Explorer, select View Class Diagram, and Visual Studio draws
a diagram that shows how the classes are related. You can use such a diagram to cre-
ate new classes in your solution.

Figure 17-8  Use these options to view a class diagram.

Selecting quiz types with a ComboBox
Now that we have a set of calculation quiz classes, we need a way for users to select
the type of questions that they want to answer. We can use a XAML control called a
ComboBox to allow the user to select the quiz topic. Figure 17-9 shows how this looks
when the program runs.

526	 Chapter 17  Applications and objects

Figure 17-9  Quiz selector combo box, with the addition quiz selected.

If the user wants to change to a different quiz, she can open the combo box and pick
a new quiz type. Figure 17-10 shows the selection options when the combo box is
opened.

Figure 17-10  Users select a quiz type using the combo box.

Users will like the idea of this selection option because they will have seen it on lots
of other programs. Now we have to add the combo box to our program. Here is the
XAML that describes the ComboBox. We refer to the ComboBox in our program by the
name quizTopicComboBox.

<ComboBox Header="Quiz topic"

 Name="quizTopicComboBox"

 Width="200" Margin="4"

 HorizontalAlignment="Center"

 SelectionChanged="quizTopicComboBox_SelectionChanged">

</ComboBox>

Now we have to set up the ComboBox with the options that we want users to be able to
select.

Give the combo box a quiz topic.

Event that fires when
the selection changes.

527Supporting multiple quizzes

public MainPage()

{

 this.InitializeComponent();

 quizTopicComboBox.Items.Add(new AdditionQuizObject());

 quizTopicComboBox.Items.Add(new SubtractionQuizObject());

 quizTopicComboBox.Items.Add(new MultiplicationQuizObject());

 quizTopicComboBox.Items.Add(new DivisionQuizObject());

 quizTopicComboBox.SelectedIndex = 0;

}

A ComboBox holds a collection of Items and lets the user select one item from that col-
lection. A program can add items to the collection for the user to choose from. In the
case of the GeneralQuizzer application, the items are the different quiz objects. We
need to add each type of quiz to the items in quizTopicComboBox when the program
starts. The best place to do this is in the constructor of the page. The Items in the Com-
boBox work exactly like the List collections you have seen before. A program can add
items to the list, and they will be managed by the ComboBox.

Once we have set up the items in the quizTopicComboBox, we have to make sure that
one of the items is selected when the program starts. A program can do this by setting
a value for the SelectedIndex property of the quizTopicComboBox. In the code above,
I’ve set the SelectedIndex value for the quizTopicComboBox to the first element
(the one with the index of 0). The effect of this action is the same as though the user
had opened the quizTopicComboBox on the screen and then selected the item at the
top of the list of options. It also causes the SelectionChanged event to be raised in
quizTopicComboBox.

IQuizObject activeQuiz;

private void quizTopicComboBox_SelectionChanged(object sender,

SelectionChangedEventArgs e)

{

 activeQuiz = (IQuizObject) quizTopicComboBox.SelectedItem;

 setupNextQuestion();

}

Add quiz objects to
combo box.

Select the initial
quiz object.

The currently active
quiz.

Get selected item;
use it to set the

value of ActiveQuiz.
Get the next question from this quiz.

528	 Chapter 17  Applications and objects

Selection-changed events
We’ve not worked with a ComboBox element before. It presents some interesting questions
we need to consider.

Question: When does the SelectionChanged method run?

Answer: The answer to this is both simple and complicated. The method runs when the
user changes the selection in the ComboBox as the program is running. However, the
method also runs if anything in our program changes the selection in the ComboBox. We
use this mechanism to good effect when the program starts and we need to select an
initial quiz. One thing that always ends badly (and I have done this) is when the Selec-
tionChanged event hander changes the selected item in the ComboBox, causing another
SelectionChanged event. This ends up producing an infinite sequence of changes that
has been known to lock up my computer.

Question: Where do the names of the items come from?

Answer: In the screenshots of the program, it looks like the ComboBox shows the name
of each kind of quiz and lets the user select the one that he wants. But where does this
name come from? The answer is that the ComboBox uses the ToString behavior to get
the text that represents each item that is being selected. You have seen ToString before;
it is how we ask any object to give us a string that describes its contents. For example,
inside the MultiplicationQuizObject, we have the following ToString method.

public override string ToString()

{

 return "Multiplication quiz";

}

Question: How is the item from the ComboBox used to set the active quiz?

Answer: The ComboBox class can be used to select any kind of item. It does this by
storing a list of objects that the user can choose from. In the case of the quizTopicCom-
boBox, the items in the list are all objects that implement the IQuizObject interface
(that is, we can use them for quizzes). However, the list of items in the ComboBox must be
a list of objects. This means that the program must convert the selected item (which is a
reference to an object) into a reference to an IQuizObject that can be used in the quiz.
It uses a cast to perform this conversion. We have used casts before when we want to tell
the compiler that it is okay to convert from one type to another. The type we want to use
is given in parentheses in front of the value that we want to convert.

activeQuiz = (IQuizObject) quizTopicComboBox.SelectedItem;

CODE ANALYSIS

529Supporting multiple quizzes

Make a timed general-knowledge quiz program
You can now make a complete quiz program. You could create a set of different quiz objects
that handle different subjects and then allow the user to select them. You could even allow
the user a certain number of seconds to answer the question. A quiz program could record
the time when the question was displayed and then check the time when the answer button
is pressed. The faster the question is answered, the higher the score. It is possible to subtract
one DateTime value from another and generate a TimeSpan value that a program can use to
determine the size of a time interval.

What you have learned
In this chapter, you have learned the proper way in which a user interface should
be created for an object-oriented solution. You have seen that the user interface
should be a very thin layer of code that delivers messages to an object that provides
the behaviors of the program. Working this way brings many advantages. It is much
easier to test the object that implements the application because you can write
programs that can simulate the actions of the user interface and check the responses
of the object that makes it work. You can also create “fake” versions of either the user
interface or the business objects that can be used to test the system as it is developed.
This also makes it possible to work on both user interface and business behaviors at
the same time. We have seen that the C# interface mechanism is very useful in this
situation because it can be used to set out the nature of the method calls that will be
used to pass the messages.

You also found another use for a class hierarchy when we created a collection of dif-
ferent numeric quiz objects that differed only in the generation of the actual question
itself and were able to share all the other behaviors. From a user-interface perspective,
you learned how to add images and sounds via the MediaElement and Image ele-
ments. Finally, you saw how a user can pick from a range of options by using a combo
box.

Question: Why is the word interface used in such a confusing way?

I have a real problem with this one. Whenever we talk about interfaces, we have to be
careful about what we actually mean. The user interface is the collection of elements
that makes up the experience users have when they interact with a program. A C#

MAKE SOMETHING HAPPEN

530	 Chapter 17  Applications and objects

interface is a set of behaviors that a class can implement. I can see how the word can
be made to apply in both situations, but it is unfortunate that the same word ends up
being used in both contexts.

Do my business objects have to talk to a user interface?

No. That’s the beauty of creating objects that work this way. Once you have defined
channels that can be used to ask an object to do things, you can use these channels in
a variety of ways. An object can be accessed by messages that originate from a net-
work connection or by a program pretending to be a user sitting at the keyboard.

Make a timed general-knowledge quiz program
You can now make a complete quiz program. You could create a set of different quiz objects
that handle different subjects and then allow the user to select them. You could even allow
the user a certain number of seconds to answer the question. A quiz program could record
the time when the question was displayed and then check the time when the answer button
is pressed. The faster the question is answered, the higher the score. It is possible to subtract
one DateTime value from another and generate a TimeSpan value that a program can use to
determine the size of a time interval.

What you have learned
In this chapter, you have learned the proper way in which a user interface should
be created for an object-oriented solution. You have seen that the user interface
should be a very thin layer of code that delivers messages to an object that provides
the behaviors of the program. Working this way brings many advantages. It is much
easier to test the object that implements the application because you can write
programs that can simulate the actions of the user interface and check the responses
of the object that makes it work. You can also create “fake” versions of either the user
interface or the business objects that can be used to test the system as it is developed.
This also makes it possible to work on both user interface and business behaviors at
the same time. We have seen that the C# interface mechanism is very useful in this
situation because it can be used to set out the nature of the method calls that will be
used to pass the messages.

You also found another use for a class hierarchy when we created a collection of dif-
ferent numeric quiz objects that differed only in the generation of the actual question
itself and were able to share all the other behaviors. From a user-interface perspective,
you learned how to add images and sounds via the MediaElement and Image ele-
ments. Finally, you saw how a user can pick from a range of options by using a combo
box.

Question: Why is the word interface used in such a confusing way?

I have a real problem with this one. Whenever we talk about interfaces, we have to be
careful about what we actually mean. The user interface is the collection of elements
that makes up the experience users have when they interact with a program. A C#

MAKE SOMETHING HAPPEN

531What you have learned

18
Advanced

applications

What you will learn
You’ve come a long way since our early days using the Snaps framework to
create egg timers and party announcers. Programs started off as something
that took data in, did something with it, and then sent some more data out.
That’s still the case, but we now think of objects that accept messages, act
on them, and pass a message on to another object. Programming isn’t just
about trying to work out a solution to a problem. It is as much about orga-
nizing that solution so that it is easy to test, build, deploy, and maintain.

This chapter will serve as a great sendoff for your application-development
career. In this chapter, we will build on the calculator quizzer and find out
how to bind data in objects to elements on a display surface. You’ll also
discover how programmers can create objects whose only role is to provide
a view of the data in a system. This is powerful and tricky stuff. If you find
yourself confused, try to remember exactly why we are performing each
action and read through the "Code Analysis" sections for each sample. This
material can be hard to learn, but it is knowledge that will stand you in very
good stead if you ever apply for a job as a developer. To start, we will learn
about some nifty C# features that you can use to speed up your program
writing.

Speeding up your C# . 534

Making a Windows 10 contact editor . 536

Software design and the Time Tracker . 560

What you have learned .571

18
Advanced

applications

		 533

Speeding up your C#
This is a good place to mention some tricks that you can use to make writing C# code
quicker and easier. You don’t have to use these in all your programs, but you might
find them useful and you might find them in programs that other people write.

Making statements shorter
You can use different operators to make statements shorter. So far, we have looked at
operators that appear in expressions and work on two operands. Here’s an example:

age = age + 1;

In this case the operator is the plus sign (+) and is operating on the variable age and
the value 1. The purpose of this statement is to add 1 to the variable age. However, this
is a long-winded way of expressing this, both in terms of what you have to type and
what the computer will actually do when it runs the program. C# allows you to write
this operation more briefly by using the line:

age++;

You can express yourself more succinctly, and the compiler can generate more effi-
cient code because it now knows that you are adding one to a particular variable. The
double plus sign (++) is called a unary operator because it works on just one operand.
It causes the value in that operand to be increased by one. There is a corresponding --
operator that can be used to decrease (decrement) variables.

Another example of shorthand you can use is for adding a particular value to a vari-
able. You might make a game program where you get different scores for destroying
different aliens. You could write:

totalScore = totalScore + alienValue;

This is perfectly okay, but again it’s rather long-winded. C# has some additional oper-
ators that allow you to shorten this statement to:

totalScore += alienValue;

534	 Chapter 18  Advanced applications

The += operator combines addition and the assignment so that the value in total-
Score is increased by alienValue. Table 18-1 shows some other shorthand operators:

TABLE 18-1  Shorthand operators

OPERATOR EFFECT

a += b The value in a is replaced by a + b

a -= b The value in a is replaced by a – b

a /= b The value in a is replaced by a / b

a *= b The value in a is replaced by a * b

There are other combination operators as well. I'll leave it up to you to discover them.
Search for "msdn C# operators" to get started.

Statements and values
In C#, statements have a value, which you can use in your program if you want to. For
example, this statement assigns the value 0 to the variable score.

score = 0;

You might use this statement at the start of a video game to set the score value to 0.
However, the statement itself has the value of 0, so if you want to, you could write this:

hits = score = 0;

This statement sets the value of the hits variable to the result of the statement score
= 0. In other words, the variable hits is set to 0 as well. If you must do this kind of
thing (and I admit I am not a fan), I’d advise you to use parentheses, like this, so that it
is much clearer what is going on.

hits = (score = 0);

Using the results of unary operators in tests
When you consider operators like ++, there is possible ambiguity in that you don’t
know whether you get the statement value before or after the increment. C# provides

535Speeding up your C#

a way of getting either value, depending on which effect you want. You can change
the position of ++ to determine whether you want to see the value before or after the
addition is done:

i++  Means “give me the value before the increment”

++i  Means “give me the value after the increment”

As an example, the following code would make j equal to 3.

int i = 2, j ;

j = ++i ;

The other special operators, += and so on, all return the value after the operator has
been performed.

PROGRAMMER’S POINT

Always strive for simplicity
Don’t get carried away with this. The fact that you can produce code like:

height = width = speed = count = size = 0 ;

does not mean that you should. Nowadays, when I am writing a program, my first consid-
eration is whether the program is easy to understand. I see my duty as not to the computer,
but to the next person who has to read my code. I don’t think that the statement above is
very easy to follow, so irrespective of how much more efficient it is, I still don’t do it.

Making a Windows 10 contact
editor
Let’s go back to the contact application we built in Chapter 10. The lawyer you worked
for has seen some other applications that she thinks are better than your program,
and she is after some improvements. The first thing she would like to change is the
way she finds a contact she wants to work with. At the moment, the lawyer types in
the name of the contact, and the program searches for that name.

Figure 18-1 shows how this works. When the Enter button is pressed, the program
searches for the contact with that name.

536	 Chapter 18  Advanced applications

Figure 18-1  Finding contacts.

This works fine, and indeed the lawyer has been using it for a while, but now she wants
something a bit easier to use. What she would like is an application in which she can
pick the contact names from a list, like you see in Figure 18-2. The lawyer can type in
a search string and then press the Search button. The program will then show all the
contacts that contain the search string in their name, and she can select the one that
she wants to work with. In the example, she has typed r before pressing Search. The
list shows all the contacts whose name contains the letter r.

Figure 18-2  Improved search interface.

This seems like it might be fun to build, and we can practice our newfound XAML
skills, so let’s try it out.

537Making a Windows 10 contact editor

Make yourself a data-management application
This is a good time to start making your own full-featured, data-driven application. We are
going to spend the next few pages discovering how to make a professional-grade Windows
10 contact-management application. You can use exactly the same techniques to build an
application that works with any kind of data.

Storing contact details
To store the contact details in the application, we used a class named Contact. It held
the name, address, phone number, and number of contact minutes for a given con-
tact. This data was all held within members of the Contact class. Here we will use the
same pattern, but we are going to make one change to the way that our “old-school”
class design worked.

In the new version of the Contact class, all the data elements in the class will be held
as public properties. We used properties in Chapter 10 when you discovered that they
are a great way to get control when a program interacts with data in your object. You
can refresh your understanding of properties by taking a look at the tiny Contact class
that follows. It contains only a single member, the Name property of the contact. You’ll
see the complete class with all the data properties a little bit later.

public class Contact

{

 // Private string holding the name value

 private string name;

 // Public name string

 public string Name

 {

 // Get the name value

 get

 {

 // Return the value of the name

 return name;

 }

 // Set the name value

 set

MAKE SOMETHING HAPPEN

This code runs when a program writes to the property.

538	 Chapter 18  Advanced applications

 {

 // Set the private name to the incoming value

 name = value;

 }

 }

}

Once we have our class, we can use it in our programs, like this:

Contact rob = new Contact();

rob.Name = "Rob";

These two statements create a new Contact and then set the name of the contact to
“Rob”. When the assignment is made to the Name property, the set behavior inside the
class runs and sets the value of the name to “Rob”. This is a very important aspect of
our new design. It means that code inside our object can gain control when some-
thing happens to the data in the object. Another important aspect of this change is
that data objects can interact with the display system on the basis of properties that
they expose.

In C#, you can write much shorter property definitions if all you want to do is make a
value a property. These are called auto-implemented properties because the compiler
automatically makes the private variable behind the property for you.

public class Contact

{

 public string Name { get; set; }

}

This code makes the Name member of the Contact class a property and provides get
and set behaviors. However, if you want to actually get control when the property is
used, you have to expand this property to the full version you saw before. Here is the
complete Contact class that we will use for our new Time Tracker application, with all
the data items as auto-implemented properties.

public class Contact

{

 // Data values as auto-implemented properties

 public string Name { get; set; }

 public string Address { get; set; }

Make yourself a data-management application
This is a good time to start making your own full-featured, data-driven application. We are
going to spend the next few pages discovering how to make a professional-grade Windows
10 contact-management application. You can use exactly the same techniques to build an
application that works with any kind of data.

Storing contact details
To store the contact details in the application, we used a class named Contact. It held
the name, address, phone number, and number of contact minutes for a given con-
tact. This data was all held within members of the Contact class. Here we will use the
same pattern, but we are going to make one change to the way that our “old-school”
class design worked.

In the new version of the Contact class, all the data elements in the class will be held
as public properties. We used properties in Chapter 10 when you discovered that they
are a great way to get control when a program interacts with data in your object. You
can refresh your understanding of properties by taking a look at the tiny Contact class
that follows. It contains only a single member, the Name property of the contact. You’ll
see the complete class with all the data properties a little bit later.

public class Contact

{

 // Private string holding the name value

 private string name;

 // Public name string

 public string Name

 {

 // Get the name value

 get

 {

 // Return the value of the name

 return name;

 }

 // Set the name value

 set

MAKE SOMETHING HAPPEN

This code runs when a program writes to the property.

539Making a Windows 10 contact editor

 contacts.Add(contact);

 }

 // Remove a contact from the store

 public void RemoveContact(Contact contact)

 {

 // Remove the contact from the list

 contacts.Remove(contact);

 }

}

The preceding code shows the ContactStore behaviors that let a program add and
remove contacts in the storage. The StoreContact method, shown next, is given a
reference to the contact that is to be stored and adds it to the list. The RemoveContact
method removes the given contact from the list.

// Create a new contact store

ContactStore store = new ContactStore();

// Create a new contact

Contact rob = new Contact(name: "Rob", address: "Rob's house", phone: "0000 11111

2222");

// Put the new contact in the store

store.StoreContact(contact: rob);

Responsibilities in classes
Question: There are no commands in the ContactStore class that let a programmer edit
the content of a contact. Is this right?

Answer: Yes. This is all about proper allocation of responsibility. The ContactStore
class does not have responsibility for the data in the contacts; it is the job of the Contact
object to look after all the data relating to a contact in the program.

Question: How hard would it be to convert ContactStore to work with other kinds of data?

Answer: Because of our sensible design, it would be very easy. All you’d have to do is
change the type of the list and the parameters to the StoreContact and RemoveCon-
tact methods—the underlying behaviors would be exactly the same.

CODE ANALYSIS

 public string Phone { get; set; }

 public int MinutesSpent { get; set; }

 // Constructor for a contact instance

 public Contact(string name, string address, string phone)

 {

 // Copy the incoming values into the properties

 this.Name = name;

 this.Address = address;

 this.Phone = phone;

 }

}

The class also has a constructor that is used to set up an instance with name, address,
and phone number.

Contact rob = new Contact(name:"Rob", address:"Rob's house", phone: "0000 11111

2222");

This statement creates a new contact named rob from values that I entered into
the program code. The completed program will read this information from TextBox
elements.

Storing lots of contacts
The program that we created earlier held all the contact items in a List that was
stored inside the application. This time we are going to create a class that will manage
the storage. It will contain the contact List, provide behaviors that will let programs
manage the contacts and search them, and also create a test data set for us to play
with.

public class ContactStore

{

 // List of contacts being stored

 private List<Contact> contacts = new List<Contact>();

 // Store a contact in the store

 public void StoreContact(Contact contact) 	

 {

 // Add the contact to the list

540	 Chapter 18  Advanced applications

 contacts.Add(contact);

 }

 // Remove a contact from the store

 public void RemoveContact(Contact contact)

 {

 // Remove the contact from the list

 contacts.Remove(contact);

 }

}

The preceding code shows the ContactStore behaviors that let a program add and
remove contacts in the storage. The StoreContact method, shown next, is given a
reference to the contact that is to be stored and adds it to the list. The RemoveContact
method removes the given contact from the list.

// Create a new contact store

ContactStore store = new ContactStore();

// Create a new contact

Contact rob = new Contact(name: "Rob", address: "Rob's house", phone: "0000 11111

2222");

// Put the new contact in the store

store.StoreContact(contact: rob);

Responsibilities in classes
Question: There are no commands in the ContactStore class that let a programmer edit
the content of a contact. Is this right?

Answer: Yes. This is all about proper allocation of responsibility. The ContactStore
class does not have responsibility for the data in the contacts; it is the job of the Contact
object to look after all the data relating to a contact in the program.

Question: How hard would it be to convert ContactStore to work with other kinds of data?

Answer: Because of our sensible design, it would be very easy. All you’d have to do is
change the type of the list and the parameters to the StoreContact and RemoveCon-
tact methods—the underlying behaviors would be exactly the same.

CODE ANALYSIS

541Making a Windows 10 contact editor

Creating test contacts
I’m very keen that we should be able to test our program without typing in lots and
lots of contacts. To help, I’ve added a method to the ContactStore class that will make
a contact store with a set of contacts already in it.

public class ContactStore

{

 // Static method that returns a test contact store

 public static ContactStore GetTestStore()

 {

 // This is the ContactStore that will hold the result

 ContactStore result = new ContactStore();

 // Array of test name strings

 string[] testNames = {

"Rob", "Mary", "David", "Jenny", "Chris"

"Simon", "Kevin", "Helen", "Neil",

"Amanda", "Sally", "Rory", "Robin" };

 // Work through each name in the list

 foreach (string name in testNames)

 {

 // Create a test contact from that name

 Contact newContact = new Contact(name: name,

 address: name + "'s house",

 phone: name + "'s phone");

 // Add the contact to the result

 result.contacts.Add(newContact);

 }

 // Return the new contact store

 return result;

 }

}

Finding contacts
We now have a ContactStore that we can use to hold contacts, but at the moment
we have no way that our lawyer friend can find any of the contacts to work with.

542	 Chapter 18  Advanced applications

Remember, she wants to type in part of a name–for example, Ro—and then have the
program display a list of all the people with Ro in their name so that she can then pick
from “Robert”, “Rory”, “Robin,” and so on. This means that the Find method can’t just
find one contact; it actually returns a collection as the result of its search. This is some-
thing we’ve not done before. Up until now our methods have returned single items,
but there’s no reason why a method can’t return a list or an array.

public class ContactStore

{

 // Returns a list of contacts where the name contains the

 // the search name

 public List<Contact> FindContactsWithName(string searchName)

 {

 // Convert the search name into capial letters

 searchName = searchName.ToUpper();

 // Create the list of contacts that will be returned

 List<Contact> result = new List<Contact>();

 // Loop through all the contacts in the store

 foreach (Contact contact in contacts)

 {

 // Create a capital-letter version of the contact name

 string contactName = contact.Name.ToUpper();

 // Test if the name contains the serach string

 if (contactName.Contains(searchName))

 {

 // Add the contact to the list if we have a match

 result.Add(contact);

 }

 }

 // Return the list of contacts with matching names

 return result;

 }

}

You can think of the FindContactsWithName method as a kind of filter. It takes in the
list of all the contacts and builds a new list with only the matching contacts in it.

543Making a Windows 10 contact editor

The FindContactsWithName method
Question: What happens if the search string isn’t found in the contacts?

Answer: In this case the result would be a list that contains no elements, which is fine. It
would mean that there is no contact in the list with the matching characters. If the search
string appears in every contact’s name, the result would be a copy of all the contacts in
the store, which is fine, too.

Question: What is all the ToUpper() stuff for?

Answer: We’ve seen this method before. The method ToUpper returns a version of a
string as all uppercase. In other words, “Rob” would become “ROB”. It is very important
that the string comparisons are all performed using characters of the same case because
the lawyer will complain if she searches for “Rob” and the program doesn’t find “rob”.

Question: Isn’t building a new list each time we do a search inefficient?

Answer: Not really. Remember that the list contains references to the contacts, not the
contacts themselves, and references are actually very small amounts of data. The libraries
underneath our programs are very good at creating lists.

Displaying a list of found contacts
The FindContactsWithName method returns a list of contacts for the lawyer to view.
Now we need to display this list so that she can select the contact she wants to work
with. To do this we can use a very powerful feature of XAML—data binding. Data
binding does what the term implies—it makes a connection between a piece of data
(in this case the list of contacts) and a display element.

Creating a data binding template
We’d like to bind a Contact to a display element, but we can’t bind one directly
because the value of a contact includes a bunch of different components. A Contact
value contains a Name, an Address, and a PhoneNumber value. What we’d like to do
is design a template that sets out how the contact is to be displayed. This will let us
choose which parts of a contact we want to display on the screen (we might omit the
phone number) and how the data will be formatted. Perhaps something like this:

<DataTemplate>

CODE ANALYSIS

544	 Chapter 18  Advanced applications

 <StackPanel Margin="4">

 <TextBlock Text="{Binding Name}"/>

 <TextBlock Text="{Binding Address}"/>

 </StackPanel>

</DataTemplate>

A data template is a lump of XAML that describes how some data is to be displayed.
Here we indicate that we want to display the data in the form of a StackPanel that
contains two items, the name and the address. It should result in a display a bit like the
following, with the two text strings stacked:

Rob Miles

Rob Miles's house

Note that we want to display only the name and address of a Contact in the search
list. There is no data binding for the phone number value, so it will not be shown.

Using a DataTemplate in a ListBox
We use a data template to indicate how to display properties of an object. We are
going to use this template to display each of the contacts in the list. We do this by
placing the DataTemplate inside the ItemTemplate for the ListBox that will display our
customers:

<ListBox Name="ContactListBox" Margin="4" Height="300">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel Margin="4">

 <TextBlock Text="{Binding Name}"/>

 <TextBlock Text="{Binding Address}"/>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

</ListBox>

Time to step back a little. The ListBox display element called ContactListBox will
display a list of contacts that FindContactsWithName returns. To do this it needs to
know how to lay out the display of a single Contact. A ListBox uses an ItemTemplate
element to get the design of a list item, and in this case it will be using a DataTemplate
to do this.

The FindContactsWithName method
Question: What happens if the search string isn’t found in the contacts?

Answer: In this case the result would be a list that contains no elements, which is fine. It
would mean that there is no contact in the list with the matching characters. If the search
string appears in every contact’s name, the result would be a copy of all the contacts in
the store, which is fine, too.

Question: What is all the ToUpper() stuff for?

Answer: We’ve seen this method before. The method ToUpper returns a version of a
string as all uppercase. In other words, “Rob” would become “ROB”. It is very important
that the string comparisons are all performed using characters of the same case because
the lawyer will complain if she searches for “Rob” and the program doesn’t find “rob”.

Question: Isn’t building a new list each time we do a search inefficient?

Answer: Not really. Remember that the list contains references to the contacts, not the
contacts themselves, and references are actually very small amounts of data. The libraries
underneath our programs are very good at creating lists.

Displaying a list of found contacts
The FindContactsWithName method returns a list of contacts for the lawyer to view.
Now we need to display this list so that she can select the contact she wants to work
with. To do this we can use a very powerful feature of XAML—data binding. Data
binding does what the term implies—it makes a connection between a piece of data
(in this case the list of contacts) and a display element.

Creating a data binding template
We’d like to bind a Contact to a display element, but we can’t bind one directly
because the value of a contact includes a bunch of different components. A Contact
value contains a Name, an Address, and a PhoneNumber value. What we’d like to do
is design a template that sets out how the contact is to be displayed. This will let us
choose which parts of a contact we want to display on the screen (we might omit the
phone number) and how the data will be formatted. Perhaps something like this:

<DataTemplate>

CODE ANALYSIS

545Making a Windows 10 contact editor

Once we have set up this XAML, the ListBox just needs to be told the collection of
data it should display:

// Event handler that runs when the search button is clicked

private void SearchButton_Click(object sender, RoutedEventArgs e)

{

 // Get the search string from the search text box

 string searchName = searchTextBox.Text;

 // Get the list of matching contacts

 List<Contact> foundList = contacts.FindContactsWithName(searchName);

 // Display the found list

 ContactListBox.ItemsSource = foundList;

}

Demo 18-01 Finding Contacts

This code runs when the user presses the Search button on the display. The FindCon-
tactsWithName method returns a list of contacts to display and then displays it in the
ContactListBox. The ListBox will display each object in the collection as an element
in the list. Figure 18-3 shows how this works. The lawyer has used the search string a,
and the program has displayed every contact with the letter a in his or her name.

Figure 18-3  Find Filter

This is the binding point for the list.

546	 Chapter 18  Advanced applications

To generate this display, our program doesn’t have to do anything other than just set
the ItemsSource property of the ListBox. Everything else is done by the display. The
ListBox even provides scroll bars automatically; if the list is too large for the screen,
the user can scroll up and down within it.

ListBox and ItemSource
Question: How does this work? What is Windows doing to display the items?

Answer: If you run the sample code for this program, it looks a lot like magic. You type in
some letters, press the Search button, and the contact list magically fills up with match-
ing contacts. How does it really work? The key is the assignment:

ContactListBox.ItemsSource = foundList;

On the right of the assignment is a collection that contains references to all the matching
contacts. On the left is the ItemsSource property of the ListBox that is going to show the
list of contacts. The ItemsSource property expects to be given a collection of things to
display. When the ContactListBox is given a collection, it works through each item in the
collection, adding it to the list to display. It uses the DataTemplate element of the ListBox
to determine what to display on the screen. Items in the DataTemplate are matched up with
properties in the objects being added to the list and then displayed. In this case, the Name
and Address properties are located and displayed.

What you might find confusing is that the ContactListBox is never explicitly told that it is
displaying a Contact value. The ContactListBox is given something that happens to con-
tain Name and Address properties, which are then displayed according to the data template
in the XAML.

This is achieved by using a C# technology called reflection. Reflection allows a program to
ask an object, “What properties do you have?” The object replies with a list of properties, and
these can be matched up with the bindings in the template.

It means that the ListBox template we are using would work with a list that contains any
elements that have Name and Address properties, not just Contact objects.

Question: What happens if the template refers to properties that don’t exist in the list
objects?

Answer: The template for the ListBox tells it what to display for each item in the list:

CODE ANALYSIS

547Making a Windows 10 contact editor

<DataTemplate>

 <StackPanel Margin="4">

 <TextBlock Text="{Binding Name}"/>

 <TextBlock Text="{Binding Address}"/>

 </StackPanel>

</DataTemplate>

When the list is displayed, the reflection process matches up the template, binding names
with properties in the objects. However, if we used “Binding Namey”—in other words, got the
template wrong—the program would run perfectly fine; it would just fail to display anything
for the Name. This can be a source of annoying bugs, so if something is not displayed prop-
erly, check that the template names are correct.

Question: How do I make the list look nicer?

Answer: You can improve the list display by using different colors and text sizes for the
name and address TextBox elements. You can also add any other stylistic elements you
like—for example, images and shapes—to the template.

Editing a contact
We can now display a list of items really easily. The next thing we want to do is make a
data-editing application. When the lawyer selects one of the items in the list, we want
to display a screen that allows this item to be edited. To make this work, we have to
detect when the selected element in the list changes. For this, we can use code that’s
very similar to the code we wrote for the ComboBox that’s used for selecting quizzes in
the previous chapter. Our program can detect when the selected item in a ListBox has
changed by connecting some code to the event that is generated when the change
happens.

The Properties page for the ContactListBox shown in Figure 18-4 has the Selection-
Changed event bound to a method that will run when the user selects one of the items
in the ListBox.

548	 Chapter 18  Advanced applications

Figure 18-4  ContactListBox selection-changed handler.

Here is the method’s code:

// Event handler runs when the user changes the selection in the contact list

private void ContactListBox_SelectionChanged(object sender,

 SelectionChangedEventArgs e)

{

 // If the change involves unselecting item, just return

 if (ContactListBox.SelectedItem == null)

 return;

 // Get the selected item as a contact

 Contact contact = (Contact) ContactListBox.SelectedItem;

 // Load the selected contact into the editor

 selectContactForEdit(contact);

}

Selecting items
Question: Why do we have to check whether the SelectedItem is null?

Answer: Think about what happens when the ListBox is being used. There are two situ-
ations when the selected item might change. The first is the obvious one, where the user

CODE ANALYSIS

549Making a Windows 10 contact editor

selects an item in the list. When she does this, the event handler runs and the
SelectedItem in the ListBox will refer to the item that was selected.

The second context in which the selected item might change is when the ListBox is loaded
with a new list to display. When this happens, nothing is selected because the user hasn’t
chosen anything at that point. At this point, the SelectedItem reference is set to null, which
is a value that a reference can have when it doesn’t refer anywhere useful. Since a change to
null is actually a change, the SelectionChanged method runs.

When the user selects a contact, the method selectContactForEdit is called by our
program. The next step is to add behavior to this method that will let the lawyer edit a
contact.

PROGRAMMER’S POINT

The ListBox selection mechanism is very powerful
You have just learned a very important principle in user-interface design. You now know
how to display a list of items and get the user to select from that list. You will see this
behavior in lots of applications, from social media applications as well as music players. You
can use the ListBox to display any kind of item that you can express using XAML, and you
can bind any of the properties of the items in a template to elements in your data.

The contact editor
You and the lawyer have been talking about user-interface design. Actually, talk is a
polite way of putting it. The discussion has gotten heated, which is not surprising. In
my experience, users have strong opinions about the way they want their programs
to work, and these opinions are not always shared by the programmer. However, you
have agreed on the design for the user interface shown in Figure 18-5.

Figure 18-5  The user interface for editing a contact.

550	 Chapter 18  Advanced applications

When the lawyer selects a contact, it’s displayed on the right side of the page. The
lawyer can edit the contact, and if she moves to a different contact, the changes are
automatically saved. You have said, quite rightly in my opinion, that if the user of
the program tries to move away from a contact that they have edited, the program
should display a prompt such as, “Do you want to move away from this item? You
have changed it. Do you want to save your changes?” The lawyer doesn’t like this idea
though; she says that she always gets her changes right, and she can easily put them
back if she needs to. The lawyer doesn’t want to be pestered by warning messages, so
she has asked you not to display them.

PROGRAMMER’S POINT

The customer may not always be right, but they are always the
customer
I’ve had discussions like this with customers. I’ve designed what I think are perfect inter-
faces, only to be told, “That’s not how it should work.” It hurts. There are three things I think
you should remember if you find yourself in this situation.

First, never get yourself in a situation where you show the customer something that you
have built and they say that they don’t like it. Really important things like the user interface
should be designed with the customer in the room with you. Interfaces should be the prod-
uct of debate, not show and tell.

Second, from an ethical point of view, if you think something is wrong in a dangerous way,
you should point it out to the customer and formally request them to take responsibility for
the behavior. This program doesn’t fall into this category, but if you were writing an appli-
cation with a medical purpose, you really must point out any design errors that you think
might result in invalid data being displayed.

Finally, even if the customer is wrong, they are still the customer. They are paying you to
make something that they want. At the end of the day, you want them to be happy with
what you have made. And sometimes, in my experience, they may even be right.

When you select a contact, the edit pane is filled with the contact's details, which you
can use or edit. Here is the code for the selectContactForEdit method:

// This is the currently selected contact, initially null

Contact selectedContact = null;

// Selects a particular contact for editing

private void selectContactForEdit(Contact contactToEdit)

{

 // Check to see if we are currently editing a contact

Selects a different
contact for editing.

551Making a Windows 10 contact editor

 if (selectedContact != null)

 {

 // We are about to move off a contact - save it

 saveContactFromPage(selectedContact);

 }

 // Display the contact that we are moving to

 placeContactOnPage(contactToEdit);

 // Remember the selected contact so it can be saved later

 selectedContact = contactToEdit;

}

It’s important to understand the context in which the selectContactForEdit method
runs:

1.	 The user searches for a contact (types Ro in the Search text box, for example, and
presses the Search button). The list fills with contacts that have the search string in
their name.

2.	 The user selects a contact in the ListBox (clicks on Rob in the list of contacts that
are displayed).

3.	 The SelectionChanged method runs because it is connected to the selec-
tion-changed event in the ListBox, and we have just selected a different contact.

4.	 The selectionChanged method then calls selectContactForEdit to get ready for
editing.

The selectContactForEdit method has to do two jobs. If must save the contact
currently being edited (if there is one), and it must then select the new contact for
editing. The variable selectedContact is used by the program to keep track of the
contact currently being edited. When the program starts, this variable is set to null, to
indicate that no contact is being edited.

Next, here are the methods that move data between a contact and the TextBox
elements on the page that the user sees. Each method is given a contact as a param-
eter and either moves contact information from the contact onto the screen (place-
ContactOnPage) or moves contact information from the page back into the contact
(saveContactFromPage).

// Place a contact on the page and make it ready for editing

private void placeContactOnPage(Contact source)

{

 // Copy the data from the source contact into the display elements

552	 Chapter 18  Advanced applications

 NameTextBox.Text = source.Name;

 AddressTextBox.Text = source.Address;

 PhoneTextBox.Text = source.Phone;

}

// Load contact data from the display elements into the destinatioon contact

private void saveContactFromPage(Contact destination)

{

 // Copy the display element into the destination contact

 destination.Name = NameTextBox.Text;

 destination.Address = AddressTextBox.Text;

 destination.Phone = PhoneTextBox.Text;

}

Demo 18-02 Contact Editor

Editing contacts
Question: Is there any data validation in this process?

Answer: The two methods, placeContactOnPage and saveContactFromPage, don’t
validate any data. If the lawyer leaves any of the TextBoxes empty or enters invalid infor-
mation, the program will not display any errors. The lawyer is fine with this, but if your
application needs to ensure that the data held is valid, it would be sensible to put some
validation in here.

Data binding in the user interface
If you run the contact editor that we have made so far, you’ll find that it works quite
well. You can select a contact, edit it, move to another contact, and then move back to
the original. You will find that your edits are being saved on the contacts, but the user
interface is not as good as it could be. Figure 18-6 shows the problem.

CODE ANALYSIS

553Making a Windows 10 contact editor

Figure 18-6  Displaying updates.

Here, I’ve changed the name of the first contact to Rob Miles, but the entry in the
selection list on the left hasn’t changed to reflect this. We are fairly sure that our law-
yer customer will spot this and won’t like it. So we need to fix it.

Making objects observable
To do this, we have to make the display system “aware” of changes in data that needs
to be updated. The display system for the list needs to be informed that a name has
changed so that it can update the ListBox. In XAML, we do this by making objects
“observable.”

In the context of XAML, observable means, “I can ask you to tell me when you have
changed.” Most C# objects are not observable because nothing wants to know
whether their value changes. The list of contacts being displayed by the ContactList-
Box is not observable. This is fine if all we want to do is view the content of a list, but
as we have seen, if any elements in the list change, there is no way the display can dis-
cover this and update. What we need is a more specialized form of collection that can
be “observed” by the display system so that changes to the collection can be reflected
in the display.

The ObservableCollection class
This is what the ObservableCollection class was created for. It can be used to hold
a collection of items and provides notification support so that if the content of the col-
lection changes, the display system can be notified of this. We can create an Observa-
bleCollection of contacts very easily:

// Observable version of the contact list

554	 Chapter 18  Advanced applications

ObservableCollection<Contact> contactList;

// Event handler for the search button

private void SearchButton_Click(object sender, RoutedEventArgs e)

{

 // Get the name to search for from the search textbox

 string searchName = searchTextBox.Text;

 // Get the list of matching contacts

 List<Contact> foundList = contacts.FindContactsWithName(searchName);

 // Use the found list to create an observable collection

 contactList = new ObservableCollection<Contact>(foundList);

 // Connect the collection to the contct listbox to display it

 ContactListBox.ItemsSource = contactList;

 // Clear the edit display

 clearContactEdit();

}

ObservableCollection
Question: What is the difference between ObservableCollection and List?

Answer: From a user’s point of view, there is no difference between the two collection
classes. They work in the same way. The difference is that the Windows management
system can connect to events that ObservableCollection generates if the contents of
the list change. The clue is in the name. One class can be watched, the other can’t.

Question: Why don’t we make all the collections observable?

Answer: We could use ObservableCollection for all our data storage, but this might
slow down our programs. An observable collection has to check to see whether anyone
is interested in any changes that it is making to the data it’s managing. This slightly slows
down the operation of the collection, and it’s why the type is reserved for items that we
are displaying.

Unfortunately, if we add the new version of the Search button event handler, shown
in the preceding code, the program still doesn’t reflect changes we want. If the user
updates a name in a contact, this will not be reflected by the text in the list. This

CODE ANALYSIS

555Making a Windows 10 contact editor

happens because ObservableCollection responds to the changes in the contents of
the list, not to changes to the data in an element in the list. If we added or deleted a
contact, the list would change, but just changing the content of an element in the list
is not detected. In other words, the list currently has no way of knowing when the data
in it has changed.

Making observable contacts
Each of the XAML display elements that make up the Time Tracker user interface is
displaying a view of a data object in our program. The editor has created that view by
setting values on properties in the display elements.

The placeContactOnPage method shown next takes the name, address, and phone
information from the contact referred to by source and sets the Text properties of
the appropriate TextBox values so that the contact details are displayed. The snag is
that this is a one-time operation. If anything in the Contact changes, the display will
not be updated because at the moment the Contact class is not observable. We have
to give the Contact class some behaviors that allow other objects (in this case, the
display system) to be notified when properties in a Contact are changed.

// Place the contact on the page

private void placeContactOnPage(Contact source)

{

 // Copy the contact information from the contact onto

 // display components

 NameTextBox.Text = source.Name;

 AddressTextBox.Text = source.Address;

 PhoneTextBox.Text = source.Phone;

}

The XAML environment has a protocol by which this notification is performed. It is
called INotifyPropertyChanged. With INotifyPropertyChanged, an object contains
a “list of people to tell” if something changes in the object. It’s a little like when you
are planning a party. Somewhere you’ll have a list of folks you’ve invited. If you need
to change the venue or the starting time (in other words, if any of the “properties” of
your party changes), you will run through the invitation list, call the people on it, and
tell them that, for example, the party now starts at 8:00 not 8:30.

The “list of people to tell” in our object is a list of delegate objects. A delegate is a C#
feature we’ve not seen before. Delegates are extremely powerful. You can regard a
delegate as an object that contains a reference to a method in an object. If the dele-
gate is “called,” the method that the delegate refers to will be called.

556	 Chapter 18  Advanced applications

Delegates
Question: Where have we seen delegates already?

Answer: We’ve seen delegates in action, but we’ve not created them ourselves. Dele-
gates provide the mechanism by which a XAML button is connected to a method in our
program. The Search button in the Time Tracker program “knows” which method to call
when it is clicked because it has been given a delegate that refers to that method. We
have discussed the way that an event is just a method call—a delegate allows one object
(the receiver) to hand a delegate to another (the transmitter) so that if the event happens,
the transmitter can call that method.

You can think of a delegate as something like a “business card” for a method. If another
object has the business card, it can call the method. When the Time Tracker application starts,
the XAML system creates a delegate for the SearchButton_Click method and then hands it
to the SearchButton object. This is how our method gets called when the button is clicked.
When property change notifications are being used, the display system gives a “business
card” to the data item so that the data item knows whom to call if the data in it changes.

Delegates provide a way that objects can bind themselves together and create paths for
messages when the program runs.

Here is what the “list of people to tell” looks like in an object that wants to become
observable. The event type is a delegate type that is built into C# specifically for
event handling. Anything that is interested in changes to an object—that is, an object
that wants to observe me—can attach a delegate to the PropertyChanged item in the
class. We actually never assign anything to this variable, but the display system will.

public event PropertyChangedEventHandler PropertyChanged;

Now that you know how to keep a “list of people to tell,” we have to discover how to
actually tell someone that the value has changed. We do this by calling the delegate:

PropertyChanged(this, new PropertyChangedEventArgs("Address"));

A method that is connected to the PropertyChanged delegate accepts two argu-
ments. This information is fed into the display system to tell the display that some-
thing has changed and needs to be redrawn. The first item of data is a reference to the
actual object that contains the property that is changing. The second is a Property-
ChangedEventArgs value, which is set with the name of the property that is changing.

CODE ANALYSIS

557Making a Windows 10 contact editor

The code above tells an observer that the Address property of the contact is being
changed.

We want this code to run every time the address in a contact changes, so we put it in
the set behavior of the address property.

// Contact class that implements the INotifyPropertyChanged methods

public class Contact :INotifyPropertyChanged

{

 // Private data value for the address

 private string address;

 // Binding point for objects that want to receive

 // notifications when this property changes

 public event PropertyChangedEventHandler PropertyChanged;

 // Public address property

 public string Address

 {

 // Read the property

 get

 {

 // Just return the address value if the property is read

 return address;

 }

 // Set the property

 set

 {

 // Store the incoming address value

 address = value;

 // Test if anything has connected to the

 // property changed event

 if(PropertyChanged != null)

 {

 // Fire the property changed event

 PropertyChanged(this, new PropertyChangedEventArgs("Address"));

 }

 }

 }

}

Demo 18-03 Updating Contact Editor

558	 Chapter 18  Advanced applications

INotifyPropertyChanged
This is probably the most complicated piece of C# you have seen so far. And, of course, you
have some questions.

Question: Tell me again why are we doing this?

Answer: This code provides a way to tell the display system when data in our object
changes. The display system needs to know when a value changes so that it can update
the view of the data. This is extremely powerful. It means that if our program makes a
change to a contact being displayed—for example, by assigning a new address to the
contact—the display will update automatically, without us having to do anything else.

Question: Why does PropertyChanged not provide the new value of the property?

Answer: It seems a bit silly for the PropertyChanged method not to provide the new
value of the property. It is a bit like me calling you and saying, “The time of the party has
changed” and then ending the call. Of course, if I did that you’d instantly call me back
and ask me, “Okay, what’s the new time then?” That’s what’s supposed to happen in the
case of the display system. The PropertyChanged event doesn’t deliver the new value; it
triggers the display system to fetch the updated value and display it at some time in the
future.

Question: What happens if you get the name of the property wrong?

Answer: If the program uses Adress rather than Address in the parameters to the
PropertyChanged event, the program would run without an error, but the update
would not take place.

Question: How can a class implement an interface that doesn’t seem to contain any
methods?

Answer: The Contact class must implement the INotifyPropertyChanged interface
so that the display system knows it can be observed. An interface is a “shopping list” of
methods. Any class that implements the interface must contain the methods that the
interface describes—except the Contact class doesn’t seem to implement any extra
method, just the PropertyChanged event.

An interface can contain events as well as methods, which makes really good sense. If you
use interfaces to describe how objects can be connected, it should be possible to use event
delegates to do this.

If we make all the properties perform the appropriate notification, we get an edit
application that actually updates correctly, as you can see in Figure 18-7.

CODE ANALYSIS

559Making a Windows 10 contact editor

Figure 18-7  Correct updates.

If you run and work with the demo application in Demo 18-03 Updating Contact
Editor, you’ll note that the text in the ListBox doesn’t update until the user moves to
a different item in the list. This is because the content of the Contact is only updated
at that point, and that is the action that triggers the update of the ListBox contents.
It is possible to make a version that updates the list every time the text in the contact
changes, but I think this would be rather distracting to use.

Observability
Question: Why did we have to make the list an ObservableCollection if it is actually
changes in the data in the list that need to be displayed?

Answer: The list has to be observable because the bindings for “observability” are passed
down from the container to the objects that it contains. The display system is bound to
the ListBox. But when contacts are added to the ListBox, each of them is bound to the
ObservableCollection in the ListBox so that changes are propagated correctly. You
can think of this as a “chain of command” that has to be connected continuously from the
top to the bottom.

Software design and the Time
Tracker
Your younger brother is quite impressed with the Time Tracker program and has plans
to convert it into a “cupcake recipe tracker” for his cupcake-manufacturing friend. But

CODE ANALYSIS

560	 Chapter 18  Advanced applications

he’s also been reading some software development articles online and has decided
that the Time Tracker is not very good because it “doesn’t use Model-View-View-
Model.” You suspect that he actually has no idea what this means, but we might as
well take a look at the technology since he mentioned it. It turns out that he is right,
and there are a number of reasons why Model-View-ViewModel (or MVVM) is worth
investigating.

Model-View-ViewModel
A program with a graphical user interface can be very hard to test. The only way that
we can discover whether everything on the display works is to type things in, press
the buttons, and watch what happens. You might get your programs tested once or
twice by paying your younger brother to run through a test sequence, but if you want
to test your program frequently, this could get very expensive. Testing user interfaces
is a big problem for software developers because they really want their tests to be
completely automatic. The reason our contact editor is hard to test is that the editing
behaviors are mixed in with the display elements on the page, and there is no sepa-
ration between the display and the processes behind it. To test the system we have to
write code that talks to lots of different elements in the program.

PROGRAMMER’S POINT

Learn about design patterns
A design pattern is a way of structuring a solution. Every profession has its own design
patterns that are learned from experience. For example, if you are painting a room, one
“pattern” is to paint the walls first and then paint the door and window frames last. Design
patterns have been created based on the experience of many developers and projects.
From a professional perspective, you should investigate design patterns as you build your
programming skills. Model-View-ViewModel is not the only pattern that you will need to
have some knowledge of.

Oh, and one word of warning. Just like you can find decorators who swear that you should
paint the door and window frames first, you will find developers with different opinions
about the different patterns. The best advice I can think of given this situation is to build up
your experience and knowledge so that you can find your own voice on the subject. And
remember that your opinion is at least as valuable as that of other people.

Our program would be much easier to test if we had a single object that looked after
just the editing process. Model-View-ViewModel has been designed to provide this.
A solution that has been structured using the MVVM pattern has a view-model class
that provides the link between the XAML, which provides the view of the data, and
the Contact class (in our program), which provides the model of the data that we are
working with.

Figure 18-7  Correct updates.

If you run and work with the demo application in Demo 18-03 Updating Contact
Editor, you’ll note that the text in the ListBox doesn’t update until the user moves to
a different item in the list. This is because the content of the Contact is only updated
at that point, and that is the action that triggers the update of the ListBox contents.
It is possible to make a version that updates the list every time the text in the contact
changes, but I think this would be rather distracting to use.

Observability
Question: Why did we have to make the list an ObservableCollection if it is actually
changes in the data in the list that need to be displayed?

Answer: The list has to be observable because the bindings for “observability” are passed
down from the container to the objects that it contains. The display system is bound to
the ListBox. But when contacts are added to the ListBox, each of them is bound to the
ObservableCollection in the ListBox so that changes are propagated correctly. You
can think of this as a “chain of command” that has to be connected continuously from the
top to the bottom.

Software design and the Time
Tracker
Your younger brother is quite impressed with the Time Tracker program and has plans
to convert it into a “cupcake recipe tracker” for his cupcake-manufacturing friend. But

CODE ANALYSIS

561Software design and the Time Tracker

You can think of a view-model class as a bit like a waiter in a very posh restaurant. The
diner (the view) is sitting at a table selecting items to eat, and the cook (the model) is
in the kitchen preparing the food. The diner will ask the waiter (the view model) for
items from the menu, and the waiter will create requests to the cook for meals. When
the meal is ready, the waiter takes it from the kitchen and delivers it to the diner. The
diner has no idea how the food is prepared; she just knows what she wants to eat. The
waiter has knowledge of the commands that the cook understands and will translate
the diner’s requests as required.

There are a lot of advantages to this structure. Different diners (views) can order
meals. The cook can be replaced with a different cook, and as long as the new cook
and the waiter use the same commands to communicate, the restaurant will continue
to function. The huge benefit from a programmer’s pointer of view is that one of our
views can be a “test” view that makes requests and can then check the response from
the view model.

Figure 18-8 shows how the objects communicate. The connection between the
view and the view model (diner and waiter) is achieved by data binding. The view is
a page of XAML, and the view model contains all the code that actually drives the
user interface. The job of the model is to provide access to the data that the system is
managing.

Figure 18-8  Model-View-ViewModel pattern.

Data binding in Model-View-ViewModel
In the earlier versions of the XAML contact manager, our program explicitly moved
data in and out of the display elements for editing. But there is a much easier way
of doing this, which is to use XAML data binding to connect properties in the view-
model class to elements on the screen.

<TextBox Name="NameTextBox" Width="200" Margin="4"

Text="{Binding Name,Mode=TwoWay,UpdateSourceTrigger=PropertyChanged}"></TextBox>

This XAML describes a data-bound TextBox called NameTextBox, in which the text in
the box is bound to a Name property in the view-model class. That sounded pretty
sophisticated, didn’t it? Let’s take it again in slow motion. We can start with the way
that we have performed editing up until now.

562	 Chapter 18  Advanced applications

<TextBox Name="NameTextBox" Width="200" Margin="4" Text="Robert"></TextBox>

The XAML above defines a TextBox named NameTextBox, which contains the fixed text
“Robert”. When the program runs, it displays “Robert” in the TextBox. This is a great
way to display my name, but not what we want to do. We want to display the name of
the contact that the lawyer is working with. We can work with the name of a contact
by loading it into this TextBox:

private void placeContactOnPage(Contact source)

{

 NameTextBox.Text = source.Name;

}

We use the placeContactOnPage method to make a contact visible for editing. You
can see a shortened version of it just above. The statement in the method puts the
name of the source contact into the NameTextBox so that the user can see and edit the
name. At the end of the editing, the program must put the edited text back so that
any changes that are made are reflected in the contact being edited.

private void saveContactFromPage(Contact destination)

{

 destination.Name = NameTextBox.Text;

}

Demo 18-02 Contact Editor

We call the saveContactFromPage method when we complete an edit. This shortened
version contains a statement that puts the edited name back into a destination Con-
tact at the end of editing. You can see the code in action in the Demo 18-02 Contact
Editor.

We have to do this for all the items being edited. But we can remove the need for this
code by using data binding in the XAML. We specify the source of a XAML property as
being bound to a property in the view-model class.

This is a data-bound version of the NameTextBox:

<TextBox Name="NameTextBox" Width="200" Margin="4"

Text="{Binding Name,Mode=TwoWay,UpdateSourceTrigger=PropertyChanged}"></TextBox>

563Software design and the Time Tracker

Everything about the TextBox is the same, except that the text for the name comes
from a data-bound property in the view-model class. We will see this Name property in
the next section.

Let’s go through the details of the binding, looking at each item in turn.

Text="{Binding Name,Mode=TwoWay,UpdateSourceTrigger=PropertyChanged}"

The first item, the Binding, identifies the property in the class we are binding to. We
could also have a binding to an Address property for the TextBox that lets the user
edit the address of a contact.

The second item, Mode, specifies the mode of the binding. The mode can be OneTime,
OneWay, or TwoWay. If the mode is OneTime, the source data is read once when Text-
Box is initially displayed. If the data in the TextBox is updated by the program, this will
not be reflected on the screen.

A OneWay binding means that the XAML control will change if the property changes
(in other words, if the program changes the content of the Name property, the display
will change to match), but if the user types something into the TextBox, this change
is not reflected in the view-model class. The mode that we want to use is TwoWay.
This means that if our program changes the data, the display updates, and if the user
changes the displayed name, the data is updated as well.

The final item specifies when the source item (the property in our view model) is
updated. I think this is a very badly named item. It makes you think that you are defin-
ing something that will update the source trigger. In fact, what the statement means
is, “This is the trigger that will cause the source property to be updated.” In the case of
our editor, we want the display manager to update the information in our view-model
class whenever the property changes (that is, when the user types something into the
TextBox or when the program changes the property), so we use the PropertyChanged
setting.

Making sense of data binding
Question: Data binding looks complicated. Can you remind me again why we are doing it?

Answer: We implement data binding because we want the view element of our design to
contain no program code at all. We want changes in the display to be reflected in proper-
ties in our view model without us having to do anything. In other words, the value of the
Name property inside our view-model class should be automatically visible to the user in

CODE ANALYSIS

564	 Chapter 18  Advanced applications

the display, and changes that are made in the display should be reflected in the content
of the property.

Binding is a very good term for what is happening. When two items are bound, changes in
one object are automatically reflected in the other without us doing anything, which is a
good thing.

Question: How does data binding actually work?

Answer: You can think of data binding as a set of instructions to the display environment
that sets up a connection between two objects. We have already seen a fundamental ele-
ment of the process in the INotifyPropertyChanged mechanism. This provides a way
that one object can say to another, “Hey! I’ve changed!”, which can then use that informa-
tion to update something in the system. Data binding uses INotifyPropertyChanged
to cause changes in one item to propagate through objects in a system.

Question: Can you only bind to text properties?

Answer: No. In fact, this is one of the most powerful aspects of data binding. You can
bind program properties to lots of other properties of elements on the display, including
their position, their color, or even their size. The process is exactly the same..

The view-model class
The view-model class manages the interaction between the view and the data objects
(otherwise known as the model). The property that the XAML is connected to is
defined in our view-model class, and the view model also contains all the behaviors
that make the editing work.

public class ContactManagerViewModel : INotifyPropertyChanged

{

 // Private name string

 private string name;

 // Public name property

 public string Name

 {

 get

 {

 // Return the private value for a get

 return name;

 }

 set

Everything about the TextBox is the same, except that the text for the name comes
from a data-bound property in the view-model class. We will see this Name property in
the next section.

Let’s go through the details of the binding, looking at each item in turn.

Text="{Binding Name,Mode=TwoWay,UpdateSourceTrigger=PropertyChanged}"

The first item, the Binding, identifies the property in the class we are binding to. We
could also have a binding to an Address property for the TextBox that lets the user
edit the address of a contact.

The second item, Mode, specifies the mode of the binding. The mode can be OneTime,
OneWay, or TwoWay. If the mode is OneTime, the source data is read once when Text-
Box is initially displayed. If the data in the TextBox is updated by the program, this will
not be reflected on the screen.

A OneWay binding means that the XAML control will change if the property changes
(in other words, if the program changes the content of the Name property, the display
will change to match), but if the user types something into the TextBox, this change
is not reflected in the view-model class. The mode that we want to use is TwoWay.
This means that if our program changes the data, the display updates, and if the user
changes the displayed name, the data is updated as well.

The final item specifies when the source item (the property in our view model) is
updated. I think this is a very badly named item. It makes you think that you are defin-
ing something that will update the source trigger. In fact, what the statement means
is, “This is the trigger that will cause the source property to be updated.” In the case of
our editor, we want the display manager to update the information in our view-model
class whenever the property changes (that is, when the user types something into the
TextBox or when the program changes the property), so we use the PropertyChanged
setting.

Making sense of data binding
Question: Data binding looks complicated. Can you remind me again why we are doing it?

Answer: We implement data binding because we want the view element of our design to
contain no program code at all. We want changes in the display to be reflected in proper-
ties in our view model without us having to do anything. In other words, the value of the
Name property inside our view-model class should be automatically visible to the user in

CODE ANALYSIS

565Software design and the Time Tracker

 {

 // Set the private property to the incoming value

 name = value;

 if (PropertyChanged != null)

 {

 // If an object has registered an interest in the property,

 // call the PropertyChanged event to indicate the name has changed

 PropertyChanged(this,

 new PropertyChangedEventArgs("Name"));

 }

 }

 }

}

The preceding code shows the Name property in the view-model class. If you think
you have seen this arrangement before, you have. We have the same code inside the
Contact object so that the display system can bind to the contact and detect when
the name of the contact changes. The actual view model in our application will have
properties like this for each data item that the view model is presenting to the view.
In our case, that is the Address, the Phone number, the search ListBox, and the search
text.

Connecting the view model to the view
We now have a XAML view and a C# view model. The next step is to connect the two.
We do this by setting the DataContext for the edit page to the view-model class. The
data context defines the object into which all the bindings will be mapped. In the case
of our editor, we want this context to be an instance of the ContactManagerViewModel
class.

<Page

 x:Class="ContactManager.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:ContactManager"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d">

 <Page.DataContext>

 <local:ContactManagerViewModel x:Name="contactManagerViewModel"/>

 </Page.DataContext>

Standard XAML header for the editor page.
Start of the DataContext information for the page.

Identifies the class to use
and the local name.

566	 Chapter 18  Advanced applications

The local:ContactManagerViewModel part of the description identifies the class that
is to be created. The x:Name="contactManagerViewModel" part of the description
names the instance that is created.

Using a DataContext
Question: What is a DataContext exactly?

Answer: The XAML bindings contain the names of items that we want to bind to. For
example, we are binding the Name of our contact to a TextBox on the display. The
DataContext is the link between the XAML and the C# object that actually contains a
Name property that holds the value that will be bound. It is the “context in which the data
exists.” We could use any class we like as the DataContext for the XAML page as long as
the class contains properties that match up with the ones on the page.

Question: How is a DataContext used when the program runs?

Answer: When the page is loaded, the system creates an instance of the view-model
class. In this case, it creates an instance of the ContactManagerViewModel class, which
will be called contactManagerViewModel. We’ve seen this kind of object creation
before. Each of the display elements in the XMAL is also created when the page is loaded.

Question: Where does the connection to the data get set up?

Answer: The view-model class has the job of connecting the view to the data. This
happens when the view-model instance is created. This is when the application would
load the data from whatever storage is being used and then make it ready for use by the
editor.

Passing commands to the view model
Data binding lets us connect properties in the view-model class to display elements
in the view. But it doesn’t provide a means by which we can pass command actions
into the view model. We need to get one command into our view model, and that is
the one that initiates a search of the stored contacts to find contacts with a name that
contains a particular string. In the earlier application, we created an event handler that
runs when the Search button is pressed. We can do the same thing in our view-model
application, except that this time the event handler just calls a method in the view
model:

CODE ANALYSIS

567Software design and the Time Tracker

namespace ContactManager

{

 /// <summary>

 /// An empty page that can be used on its own or navigated to within a Frame.

 /// </summary>

 public sealed partial class MainPage : Page

 {

 // Constructor for the page

 public MainPage()

 {

 this.InitializeComponent();

 }

 // Search behavior bound to the button

 private void SearchButton_Click(object sender, RoutedEventArgs e)

 {

 // Ask the view model to perform the search

 contactManagerViewModel.DoSearch();

 }

 }

}

When the user presses the Search button, the event handler makes a call to the
DoSearch method inside the view-model class.

public class ContactManagerViewModel : INotifyPropertyChanged

{

 public void DoSearch()

 {

 List<Contact> foundList = contacts.FindContactsWithName(SearchText);

 FoundList = new ObservableCollection<Contact>(foundList);

 }

}

This is the entire content of the DoSearch method in the view model. It asks the model
(the contacts store) to produce a List of all the contacts that contain the search text in
their name. Then it makes an ObservableCollection from this list and sets the Found-
List property to the list it has found. What the code does is exactly the same as in the
previous version of the editor, but it is much, much, simpler.

568	 Chapter 18  Advanced applications

Model-View-ViewModel Magic
Question: How does the event handler find the view-model class to call?

Answer: When we set the DataContext in the XAML, we say, in effect, “All the data
bindings in this design are bound to properties in a class named ContactManagerView-
Model.” The instance of that class that you are going to create is called contactMan-
agerViewModel. This instance is created when the page loads and can then be used in
code that runs inside the view class.

Question: How does the DoSearch method get hold of the string to search for?

Answer: In the previous version, the program had to go and find the TextBox that con-
tains the part of the name to search for. In this case, we just use the property Search-
Text. This property is bound to the view and delivers the text that we want to search for.
The view model doesn’t know where the binding takes place, or even what control the
property is bound to; it just knows that this property will hold the text to search for. This
illustrates the magic of MVVM.

Question: How do we set the contents of the ListBox to the results of the search?

Answer: This is more view-model magic. The FoundList property in the view model is
bound to the ItemsSource property of the ListBox that displays the list of contacts.
When the assignment is performed by the second statement in the DoSearch method,
the ListBox automatically updates.

If you learn more about the Model-View-ViewModel pattern, you will find a way of
using a command mechanism that allows events to be directly bound to methods in
the view-model class. However, for our purposes, this design is fine.

Detecting changes in the view
The way the program works, the lawyer will select contacts from the ListView when
she wants to work with them. We can use data binding to detect when the selected
contact changes.

<ListBox ItemsSource="{Binding FoundList}" Name="ContactListBox" Margin="4"

Height="273" SelectedItem="{Binding SelectedContact,Mode=TwoWay}" >

CODE ANALYSIS

569Software design and the Time Tracker

When the selected item changes—in other words, when the lawyer selects an item in
the ListBox—the selected item will change. The binding will cause the SelectedCon-
tact property in the view-model class to change.

public class ContactManagerViewModel : INotifyPropertyChanged

{

 private Contact selectedContact;

 public Contact SelectedContact

 {

 get

 {

 return selectedContact;

 }

 set

 {

 if (selectedContact != null)

 saveContactFromPage (selectedContact);

 selectedContact = value;

 if (selectedContact != null)

 {

 placeContactOnPage(SelectedContact);

 }

 if (PropertyChanged != null)

 {

 PropertyChanged(this,

 new PropertyChangedEventArgs("SelectedContact"));

 }

 }

 }

}

Demo 18-04 MVM ContactEditor

The set behavior in a property lets a program get control when a property is
changed. When a contact is selected, we want to save the contact we were previously
editing and then select the new one for editing. That is what the preceding code does.
If you run the demo program, you will find that it works exactly as it should, but all the
behaviors are managed in the view-model class.

570	 Chapter 18  Advanced applications

PROGRAMMER’S POINT

Some things you learn by studying code
The Model-View-ViewModel principle is an important one when creating programs.
However, it is not something that will come to you just by reading descriptions of how it
works. The only way that you can really understand how it works is by considering what the
programmer is trying to do and then looking at the code that actually does it.

I have learned some great programming lessons from studying code written by other peo-
ple. I go from, “Why on earth did they do that?” to “Blimey, that is rather clever.” If the past
few sections have been hard to get your head around (and I would quite understand that),
you can learn a lot from studying the code.

Remember that you don’t just have to look at the text though. You can perform “experi-
ments” on it by inserting break points using Visual Studio and then stepping through the
code as it runs.

Investigate MVVM
Now that you are starting to understand how MVVM works, take some time to build some-
thing simple using the pattern. You can take an existing program and try to work out what
would go into the view, what would be in the view model, and what the model itself should
contain. You could also build an experimental application that links an input TextBox to an
output TextBlock by just using data binding.

Remember that you can use data binding to control every aspect of items on a XAML page,
including images and sounds.

What you have learned
You have spent a lot of time in this chapter learning about the Model-View-View-
Model design pattern, which is used to build user interfaces that are easy to test and
manage. You have found out about patterns, which set out a way of doing things. You
have also discovered the principle of data binding, through which, behind the scenes,
code can be used to enable the changes in one object to cause changes in another.
You have seen how properties are an important part of data binding, as they allow

MAKE SOMETHING HAPPEN

571What you have learned

us to trigger code actions when data in a class is changed. You have also investigated
delegates, objects that allow a program to manipulate references to methods.

This has been a great chapter for exercising your skills with objects, and for learning
the importance of design. And, of course, here are some questions.

Is Model-View-ViewModel the only way to structure applications?

No. There are lots of ways to create an application with a user interface. The
Model-View-ViewModel design was created with the XAML page-description lan-
guage in mind. The principle of data binding is used in many different applications;
knowing how it works is very useful. However, if you want to create all your applica-
tions by using the “code in the page” techniques that you saw in the previous chapter,
that is fine by me, and it will be fine by your users, too.

How do we actually test applications built using view models?

Once you have your view-model class, you can test this as you treat any other soft-
ware object. You can trigger behaviors on the object and compare what happens
with what should happen. For example, you can test the search behavior of our editor
by creating a test data set, setting some text in the SearchText property, calling the
DoSearch method, and then looking at the content of the FoundList collection. The
beauty of this is that at no point does anyone have to look at the screen to test, and
there is no chance of there being any bugs in the code for the view because the view
does not contain any code at all.

Can a program contain more than one view model?

Yes it can. A given view model is usually associated with a particular activity in an
application. In a banking application, you might have a different view model for each
type of transaction that the system will perform.

Why are delegates so useful?

You can regard a delegate as a reference that can refer to methods. You have seen
them used to implement buttons in a user interface. The Button object is given a
delegate object that identifies a method to call when the button is activated. The
INotifyPropertyChanged mechanism uses delegates, too; they are how an object can
register an interest in changes to a property. The observing object gives the property
a delegate that can be called if a change occurs. However, the power of delegates
extends beyond these two applications.

You can turn a list of delegate references into a “program inside a program.” Each
delegate could be called in turn to provide a sequence of actions. I’ve used this to very
good effect in games to provide “scripts” for my game elements to follow. Under-
standing how delegates work and how to use them is a really powerful skill.

572	 Chapter 18  Advanced applications

	Part 4:
Creating applications
	Chapter 16 -
Creating a user interface using objects
	Making an adding machine
	Toward a graphical user interface using XAML
	XAML elements and software objects

	Creating a new application
	Creating an empty program
	Creating the user interface using XAML
	Previewing XAML screen display sizes
	Adding the program behaviors
	Calculating the result
	Events and programs
	Using TextBox properties to improve the user interface

	What you have learned

	Chapter 17 -
Applications and objects
	Making a calculation quizzer
	Objects and user displays
	Creating a quiz object
	Creating the quiz display page
	Adding sound and pictures

	Supporting multiple quizzes
	Creating quiz classes

	What you have learned

	Chapter 18 -
Advanced applications
	Speeding up your C#
	Making statements shorter

	Making a Windows 10 contact editor
	Storing contact details
	Storing lots of contacts
	Creating test contacts
	Finding contacts
	Displaying a list of found contacts
	Editing a contact
	Data binding in the user interface
	Making objects observable

	Software design and the Time Tracker
	Model-View-ViewModel

	What you have learned

