

E

MBEDDED

 S

OFTWARE

D

EVELOPMENT

WITH

E

C

OS

™

Anthony J. Massa

PRENTICE HALL
P

ROFESSIONAL

 T

ECHNICAL

 R

EFERENCE

U

PPER

 S

ADDLE

 R

IVER

, NJ 07458

WWW

.

PHPTR

.

COM
WWW

.

PHPTR

.

COM

/

MASSA

/

E

MBEDDED

 S

OFTWARE

D

EVELOPMENT

WITH

E

C

OS

Anthony J. Massa

Library of Congress Cataloging-in-Publication Data

Massa, Anthony J.
Embedded software development with eCos / Anthony J. Massa

p. cm.--(Bruce Perens' Open source series)
ISBN 0-13-035473-2

1. Embedded computer systems--Programming. 2. Application
software--Development. 3. Real-time data processing. I. Title. II. Series.
QA76.6 .M364317 2002
005.26--dc21

 2002035507

Editorial/production supervision:

Techne Group

Cover design director:

Jerry Votta

Cover design:

Anthony Gemmellaro

Art director:

Gail Cocker-Bogusz

Interior design:

Meg Van Arsdale

Manufacturing buyer:

 Maura Zaldivar

Editor-in-Chief:

Mark L. Taub

Editorial assistant:

Kate Wolf

Marketing manager:

Bryan Gambrel

Full-service production manager:

Anne R. Garcia

© 2003 Pearson Education, Inc.
Publishing as Prentice Hall Professional Technical Reference
Upper Saddle River, New Jersey 07458

This material may be distributed only subject to the terms and conditions set forth in the Open Publication
License, v1.0 or later (the latest version is presently available at <http://www.opencontent.org/openpub/>).

Prentice Hall books are widely used by corporations and government agencies
for training, marketing, and resale.

For information regarding corporate and government bulk discounts please contact:
Corporate and Government Sales (800) 382-3419 or corpsales@pearsontechgroup.com

Other company and product names mentioned herein are the trademarks or registered trademarks of their
respective owners.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission
in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-035473-2

Pearson Education LTD.
Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.
Pearson Education Canada, Ltd.
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education—Japan
Pearson Education Malaysia, Pte. Ltd

.

This book is dedicated to my girls,
Katie and Deanna.

You mean the world to me.
I love you.

vii

C O N T E N T S

Foreword xv

Preface xvii

 Chapter 1

An Introduction to the eCos World 1

1.1 Where It All Started—Cygnus Solutions 1
1.2 The Origins of eCos 2

1.2.1 In a Word: Configurability 3
1.2.2 The eCos Configuration Method 4
1.2.3 eCos Core Components 5
1.2.4 Processor and Evaluation Platform Support 6
1.2.5 eCos Support 6

1.3 Architecture Overview 8
1.3.1 eCos Terminology 8

1.3.1.1 Component Framework 8
1.3.1.2 Component Repository 10
1.3.1.3 Configuration Options 13
1.3.1.4 Components and Packages 14
1.3.1.5 Targets 14
1.3.1.6 Templates 15

1.4 Summary 16

viii Contents

 Chapter 2

The Hardware Abstraction Layer 17

2.1 Overview 17
2.1.1 HAL Directory Structure 19

2.1.1.1 Example HAL Function Call Trace 22
2.1.2 HAL Macro Definitions 23
2.1.3 HAL Configuration 24

2.1.3.1 Common Configuration Components 25
2.1.3.2 Architecture-Specific Configuration Components 25

2.1.4 HAL Startup 26
2.2 Summary 29

 Chapter 3

Exceptions and Interrupts 31

3.1 Exceptions 31
3.1.1 HAL and Kernel Exception Handling 32
3.1.2 Application Exception Handling 38

3.2 Interrupts 40
3.2.1 eCos Interrupt Model 40

3.2.1.1 Interrupt and Scheduler Synchronization 41
3.2.2 Interrupt Configuration 42
3.2.3 Interrupt Handling 44
3.2.4 Interrupt Control 50

3.2.4.1 Interrupt Service Routine Management 51
3.2.4.2 Interrupt State Management 53
3.2.4.3 Interrupt Controller Management 54

3.3 Summary 58

 Chapter 4

Virtual Vectors 59

4.1 Virtual Vectors 59
4.1.1 Virtual Vector Configuration 63
4.1.2 Virtual Vector Table Initialization 64

4.1.2.1 Communication Channels 67
4.2 Summary 71

 Chapter 5

The Kernel 73

5.1 The Kernel 73
5.1.1 Kernel Directory Structure 74
5.1.2 Kernel Startup 75
5.1.3 The Scheduler 77

5.1.3.1 Multilevel Queue Scheduler 79

Contents ix

5.1.3.2 Bitmap Scheduler 81
5.1.3.3 Priority Levels 81
5.1.3.4 Scheduler Configuration 83

5.2 Summary 84

 Chapter 6

Threads and Synchronization Mechanisms 85

6.1 Threads 85
6.1.1 Thread Stacks and Stack Sizes 94

6.2 Synchronization Mechanisms 95
6.2.1 Mutexes 95
6.2.2 Semaphores 101
6.2.3 Condition Variables 105
6.2.4 Flags 110
6.2.5 Message Boxes 113
6.2.6 Spinlocks 118

6.3 Summary 120

 Chapter 7

Other eCos Architecture Components 121

7.1 Counters, Clocks, Alarms, and Timers 121
7.1.1 Counters 125
7.1.2 Clocks 129
7.1.3 Alarms 130
7.1.4 Timers 133

7.2 Asserts and Tracing 134
7.3 ISO C and Math Libraries 138
7.4 I/O Control System 140

7.4.1 I/O Sub-System 142
7.4.2 Device Drivers 146

7.5 Summary 148

 Chapter 8

Additional Functionality and Third-Party Contributions 149

8.1 Compatibility Layers 150
8.1.1 POSIX 150

8.1.1.1 EL/IX 151
8.1.2

µ

ITRON 152
8.2 ROM Monitors 152

8.2.1 CygMon 153
8.2.2 RedBoot 153
8.2.3 GDB Stub 154

x Contents

8.3 File Systems 155
8.3.1 ROM File System 157
8.3.2 RAM File System 158
8.3.3 Journalling Flash File System Version 2 160

8.4 PCI Support 160
8.4.1 PCI Library API 161

8.5 USB Support 165
8.6 Networking Support 167

8.6.1 OpenBSD 168
8.6.2 FreeBSD 169
8.6.3 lwIP 170
8.6.4 Networking Threads 170
8.6.5 Networking Configuration 171
8.6.6 Networking Tests 176
8.6.7 DNS Support 178

8.7 SNMP Support 179
8.8 The GoAhead Embedded WebServer 180
8.9 Symmetric Multi-Processing Support 182

8.10 Additional Features 183
8.11 Summary 184

 Chapter 9

The RedBoot ROM Monitor 185

9.1 Overview 185
9.2 RedBoot Directory Structure 187
9.3 Installation and Configuration 188

9.3.1 RedBoot Configuration 189
9.3.2 Host Configuration 193

9.3.2.1 Serial 193
9.3.2.2 Ethernet 194

9.4 User Interface and Command Set 195
9.4.1 RedBoot Commands 196

9.4.1.1 Boot Scripting 204
9.5 Summary 206

 Chapter 10

The Host Development Platform 207

10.1 Overview 207
10.2 Configuring the Windows Host 209

10.2.1 Installing the Cygwin Native Tools 210

Contents xi

10.2.1.1 Cygwin Tools Directory Structure 217
10.2.1.2 Upgrading the Cygwin Tools 219

10.2.2 Installing the Platform-Specific Cross-Development Tools 220
10.2.3 Installing the eCos Development Kit 223

10.2.3.1 eCos Development Kit Directory Structure 229
10.2.4 Accessing the Online eCos Source Code Repository 229

10.2.4.1 Installing WinCVS 230
10.2.4.2 Setting WinCVS Preferences 235
10.2.4.3 WinCVS Update Commands 236

10.3 Summary 238

 Chapter 11

The eCos Toolset 239

11.1 Packages 239
11.1.1 Package Directory Structure 240
11.1.2 The Component Definition Language Overview 243

11.1.2.1 CDL Script Files 243
11.2 The Configuration Tool 248

11.2.1 Screen Layout 248
11.2.1.1 Saving Configurations 251
11.2.1.2 Importing and Exporting Configurations 253
11.2.1.3 Configuration Window 254
11.2.1.4 Conflicts Window 255
11.2.1.5 Properties Window 256
11.2.1.6 Short Description Window 256
11.2.1.7 Output Window 256
11.2.1.8 Memory Layout Window 256
11.2.1.9 Memory Layout Manipulation 257

11.2.2 eCos Repository Database 264
11.2.3 Graphical Representation of CDL Script Files 266
11.2.4 Using Templates 270

11.2.4.1 Conflicts and Resolutions 272
11.2.5 Package Control 274

11.3 Other eCos Tools 274
11.3.1 The Package Administration Tool 275
11.3.2 The Command-Line Configuration Tool 277

11.4 Building the eCos Tools 277
11.5 Additional Open-Source Tools 277

11.5.1 Source-Navigator 278

xii Contents

11.5.2 Splint 279
11.6 Summary 280

 Chapter 12

An Example Application Using eCos 281

12.1 The eCos Build Process 281
12.1.1 A Closer Look 282

12.2 Examples Overview 285
12.2.1 Development Hardware Setup 286
12.2.2 eCos Tools 288

12.3 RedBoot 288
12.3.1 Building RedBoot 288
12.3.2 Installing RedBoot 292
12.3.3 Booting RedBoot 293

12.4 eCos 295
12.4.1 Building eCos 295

12.5 Application 298
12.5.1 Building the Application 299
12.5.2 Loading the Application 303
12.5.3 Debugging the Application 305

12.5.3.1 Using the GDB Command-Line Interface 309
12.6 The eCos Tests 310
12.7 Simulators 311
12.8 Summary 313

 Chapter 13

Porting eCos 315

13.1 Overview of Porting 315
13.2 A Platform Porting Example 317

13.2.1 PowerPC HAL Directory and File Structure 320
13.2.2 Porting Hints 334

13.3 Summary 335

 Appendix A

Supported Processors and Evaluation Platforms 337

 Appendix B

eCos License 345

B.1 eCos License 345
B.2 GNU General Public License 346

B.2.1 Version 2, June 1991 346
B.2.2 Preamble 346
B.2.3 How to Apply These Terms to Your New Programs 352

Contents xiii

 Appendix C

Cygwin Tools Upgrade Procedure 355

 Appendix D

Building the GNU Cross-Development Tools 361

About the Author 369

Index 371

About the CD-ROM 392

xv

F O R E W O R D

n 1997, there were over 100 commercially supported embedded operating systems, none of
which had more than a minority share of the overall embedded OS market, not to mention

countless thousands of others developed for specific projects (cell phones, radar arrays, net-
working equipment, etc.) that had no application developer base beyond that specific project.
In short, the embedded operating systems market was highly fragmented, and the cost of this
fragmentation was beginning to seriously limit the viability of many embedded software
projects and the OEMs who funded those software projects.

While it was clear to many that the major embedded software companies needed to change
their business models in radical ways, each company believed that it could somehow outlast its
competition, and that it could consolidate the market through a strategy of attrition rather than a
strategy of innovation. At Cygnus Solutions, we couldn’t wait for 90 percent of the market to
give up; moreover, we weren’t sure we wanted to serve a market that was 90-percent dead.
Therefore, we took up our own challenge to create an embedded operating system that could
address the incredible variety of possible embedded system designs, from the very small to the
highly complex, using a single source base.

In our market research, we found two primary reasons why people wrote their own
RTOSes: first, they didn’t want to pay per-unit royalties to a third party, and second, they didn’t
want to suffer the indirect cost of code that they didn’t write/control/understand using up
resources within their systems. The fact that writing and debugging an RTOS is expensive (in
time and money), and the fact that most custom RTOSes required a complete understanding of
the entire system in order to make the smallest manual changes, often resulted in systems that
were both more expensive to maintain and inferior in functionality to commercial alternatives,
but such were the compromises required to avoid direct and indirect per-unit costs.

I

xvi Foreword

The design philosophy of eCos was to augment an open-source RTOS (which meant no
per-unit royalties) with source-level configuration tools that would enable embedded developers
to scale their RTOS from hundreds of bytes to hundreds of kilobytes without needing to manu-
ally change a line of source code. Of course, if some code needed to be rewritten to meet some
unique requirement, open-source licensing meant the option was there. However, for most cases
the 200+ configuration points supported by eCos resulted in systems that were faster to build (all
the hard work was coded into the configuration rules) and resulted in smaller systems than man-
ual methods could produce (because the automated rules were more all-seeing and all-knowing
than most embedded developers could afford to be).

Since releasing eCos in 1998, we have seen it develop both a healthy user base and a
strong base of talented contributors. With the publication of this book, eCos reaches a new mile-
stone: a completely independent source of technical information about eCos, and a rather com-
plete one at that. While this book is primarily targeted at RTOS engineers, it remains accessible
to both technical managers and developers who might use, but not actually maintain, an RTOS.

The scope of the book covers the very latest information about eCos, including a section
on using eCos compatibility layers to provide POSIX,

µ

Itron, and even embedded Linux API
compatibility with the EL/IX. Indeed, as high-end embedded system design consolidates around
embedded Linux, eCos is becoming even more important for two reasons: because it provides a
platform for migrating to Linux APIs without the overhead of running a full Linux-based sys-
tem, and because eCos is the basis of RedBoot, the new standard ROM monitor that Red Hat
supports for its embedded Linux ports.

Anthony’s book is easily the most complete treatment of eCos system development. I
believe it is destined to become part of every eCos developer’s library.

Michael Tiemann
CTO, Red Hat, Inc.

xvii

P R E F A C E

hether you’re working on an existing project or moving on to a new development,
eventually you’re going to have to decide on what Real-Time Operating System

(RTOS) to use. Numerous questions arise, including how much does it cost to get started, are
there royalties associated with using the RTOS, what is the quality of the tools, is source code
available, what features are available for the RTOS, and so on. In most situations, the lowest-cost
solution in both upfront costs and royalties is the best solution, as long as it works. Eliminating
royalties is very important for high-volume products, where every nickel counts.

There are also concerns of previous investments made, both in developer knowledge and
financially, for the current solution. Anxiety can occur when considering moving existing code
to a new software platform, which can be intimidating depending on the size of the project. Port-
ing a new RTOS to your hardware platform can create more trepidation.

Decisions about whether to develop your own RTOS or use an off-the-shelf solution sur-
face in some cases as well; especially when specific functionality is needed for a specialized
hardware platform. In some cases, rolling your own RTOS might be the only solution. However,
you can put your development way ahead by leveraging software that is already implemented,
tested on numerous platforms and in various situations, and, most importantly, proven because it
is successfully running on other shipping products. This eliminates the need for implementing
functionality that is readily available.

This book focuses on one solution to these concerns: the Embedded Configurable Oper-
ating System (eCos). The open-source and royalty-free nature of eCos allows it to be down-
loaded, set up, and used, and here’s the key: at no cost. When finished with this book, you will
have a complete embedded software development environment—all the tools necessary to
tackle any project.

W

xviii Preface

Since eCos is open source, you, the developer, are in complete control over your embed-
ded software destiny. Even the tools described in the eCos development system are open source,
thereby allowing you to become completely self sufficient—although the eCos development
community is out there available to lend help when needed.

Book Layout and Overview

Let’s take a look at the layout of the book and get an overview of what is covered and where it is
located. This enables you to focus on the specific aspects of eCos that you need to understand.

The layout of the book is intended to build on information covered in earlier chapters. We
start with understanding the key components within eCos, then move to additional functionality
offered in the system, and finally, get down to using eCos and the development environment.

For developers new to the eCos world, or embedded software altogether, it is helpful to
understand the components that make up the eCos system by starting at the beginning. This
gives the baseline understanding of the different features provided by eCos. You can then imple-
ment these software components in an actual system.

More experienced developers looking for an evaluation of eCos can skip to the later chap-
ters and begin experimenting right away. The format of the development platform installation
and examples allow a quick setup of the tools and immediate results. This lets you answer the
question, “will eCos work for me?”

Current eCos users can fill in any holes that might be present in their eCos knowledge, by
looking at some of the eCos concepts from a different point of view.

Chapter 1,

An Introduction to the eCos World

, begins with a brief introduction to eCos,
which includes a background about the eCos open-source project and the company behind its
start. A description of the eCos terminology is detailed as well. This terminology is used
throughout the book and in the eCos development community. The beginning of the book is
intended to provide developers who are unfamiliar with eCos a means to become acquainted
with the eCos open-source project.

Next, we discuss the key components within the eCos system, presenting a closer look
under the hood of these major software modules. The key component chapters offer an under-
standing about how the different software modules work independently and together to provide
functionality required by the system.

Chapter 2,

The Hardware Abstraction Layer

, focuses on the software closest to the hard-
ware that enables higher-level software modules to be unaware of the low-level functioning of
the hardware.

In Chapter 3,

Exceptions and Interrupts

, we detail exceptions and interrupts and show how
they are set up and handled in the eCos system. We discuss virtual vectors in Chapter 4,

Virtual
Vectors

, which provide a means to share services between ROM and RAM applications.
The heart of the eCos RTOS, the kernel, is the focus in Chapter 5, The Kernel. The kernel

supplies the scheduling functionality and the synchronization mechanisms for the software.
Moving on to Chapter 6, Threads and Synchronization Mechanisms, we discuss the basic unit of

Preface xix

execution in eCos, the thread, and provide a detailed look at the various synchronization mecha-
nisms supported by eCos.

Chapter 7, Other eCos Architecture Components, continues with our look at the different
eCos components by focusing on timing components, asserts and tracing functionality, and the I/O
control system.

Chapter 8, Additional Functionality and Third-Party Contributions, includes a broader
look at some of the additional features available for eCos developed by the eCos project main-
tainers and third-party contributors. These include networking support, ROM monitors, file sys-
tems, PCI support, USB support, and the GoAhead WebServer.

In Chapter 9, The RedBoot ROM Monitor, we focus on the RedBoot ROM monitor. This
standalone program is designed for embedded systems to provide a debugging and bootstrap
environment. RedBoot is an eCos-based application and uses the eCos Hardware Abstraction
Layer (HAL) for its foundation.

We begin our hands-on experience in Chapter 10, The Host Development Platform, with
the installation of the host development tools. We discuss the Cygwin native tools, the GNU
cross-development tools, and the eCos development kit. We also cover the installation of a Con-
current Versions System (CVS) client, WinCVS, to enable access to the online eCos source code
repository. This gives you the ability to take advantage of any bug fixes or extended functionality
contributed to the eCos source code.

In Chapter 11, The eCos Toolset, we delve into the eCos toolset with a detailed look at
how the tools operate on the eCos source code, and the layout of the tools. Also included are
some other open-source tools to round out and complete our open-source embedded develop-
ment system. This prepares us for the next step, putting the tools to work to build our applica-
tion.

Chapter 12, An Example Application Using eCos, lets you put your knowledge to work.
The chapter starts with an overview of the eCos build process, followed by a build of the Red-
Boot ROM monitor. We then do a build of the eCos real-time operating system, and, finally, put
it all together by building an application. This chapter provides a baseline on which you can then
add additional components to assemble a system to meet your embedded software requirements.

Finally, Chapter 13, Porting eCos, closes with a look at porting eCos onto another hard-
ware platform. This is key to getting your application running on your new target hardware plat-
form, which is typically the main goal in embedded software development.

Development System and Examples

As mentioned previously, in Chapter 10 we go through the process of setting up an eCos devel-
opment system. This development system includes the native Cygwin tools for Windows, the
GNU cross-development tools (binutils, compiler, and debugger), the eCos configuration and
management tools, a CVS client, and a lint program.

This system enables you to configure and build the eCos library, which is then linked with
an application to run the eCos RTOS. The RedBoot ROM monitor is also built using this system.

xx Preface

After following the steps in Chapter 10, a complete open-source embedded software develop-
ment environment is configured.

We go through examples of building RedBoot, the eCos library, and an application in
Chapter 12. Rather than requiring a specific development board to run the examples, a second
PC is needed for the target platform. This is a better approach to becoming familiar with the
development tools since it’s typically pretty easy to find a spare PC lying around.

Although GNU cross-development tools binary files are included on the CD-ROM for the
Intel x86 and PowerPC processor architectures, the instructions for configuring and building the
GNU cross-development tools for other processor architectures are provided in Appendix D,
Building the GNU Cross-Development Tools.

The embedded software development tools are installed, and examples are built, on a Win-
dows development system. However, the necessary files to get an embedded software develop-
ment system up and running on a Linux system are included on the CD-ROM. Since the eCos
configuration tools are able to run on both Linux and Windows, the procedure for building and
running the examples applies to both host operating systems.

The CD-ROM accompanying this book contains the files needed to set up the complete
embedded software development system for eCos as detailed in Chapter 10. The examples in
Chapters 12 and 13 are also contained on the CD-ROM under the examples directory.

A web site is available to download the source code and updates. The site is located online at:

www.phptr.com/massa/

If you find any errors that need correction, feel free to contact me and I will update the
source code accordingly.

Some Notes about the Book

All example code in this book is in C or assembly language. eCos also uses the Component Def-
inition Language (CDL), an extension of the existing Tool Command Language (Tcl) scripting
language. We cover this in Chapter 11.

In the text where a 32-bit hexadecimal value is shown, the most significant 16 bits and least
significant 16 bits are separated by an underscore (“_”) (e.g., 0xABCD_EF12) for readability.

Sidebars are also included, which are used to point out important or additional informa-
tion. The sidebars look like the following:

This book includes several Uniform Resource Locator (URL) links showing where addi-
tional information can be obtained on the Internet. The most up-to-date links are included in the
text; however, we all know that links can have a finite existence.

Item lists throughout the book detail the eCos kernel API functions. These lists contain a
field named “Context.” This field shows the context from where the specified function can be

N O T E Example of a sidebar.

Preface xxi

called. The different contexts are Initialization, Thread, ISR, and DSR. “Any” is used to desig-
nate that the function can be called from any of the contexts.

A Brief Take on Open Source Development

There have always been “agnostics” in the debate of open source versus closed source—it some-
times comes down to whether the funding is available to purchase software tools and support.
Each has its benefits and shortcomings, so let’s take a brief look at some of the pros and cons
developers have found when working on both sides of the open-source and closed-source fence.
What it ultimately comes down to is, does the product work, and can the schedule and cost bud-
get be met using this solution?

Open source can be a confusing term. In an article written by Daniel Benenstein,1 he
states that open source is free software in the sense of freedom of knowledge exchange. Much
more reliance is placed on the individual developer to find problems, correct the problems, and
make the solution available to others in the open-source community. This iterative process is the
method that creates a more robust and bug-free code base.

Presumably, because the draw of talent is worldwide, the best and brightest developers are
working to make the product better. With closed source, a development support team is assem-
bled to work on fixing problems for code they probably did not create. The team assembled
might be very talented; however, the pool of talent from which to draw is very small compared
to a worldwide talent pool.

Often times, closed-source, or proprietary, software and open-source software work hand in
hand to complement each other. Many proprietary products are derived from open-source projects.
Proprietary software must be innovative and differentiate itself from the open-source alternative;
otherwise, why would people pay for something that they can get for free? Looking at things from
this point of view, open source pushes proprietary software to the extreme of innovation.

There are some general advantages and disadvantages to using open-source software.
One advantage is that since the source is available if you are not able to get support from the
open-source community, you can dive right in and find out exactly what is going on with the code.
There is no need to wait for support from an external source, which can reduce debug time
drastically.

Another advantage of open-source software is that it is not tied to any one specific company.
In the case of proprietary software, if the owning company changes direction, or disappears, then
the application developers using that solution are left out in the cold. Open-source software pre-
vents this because developers have full access to the code and can choose the path for their own
system software.

Sometimes vendors selling proprietary software are not always the most responsive to all
customers using their product. In cases where a project is not destined to produce large volumes,
the vendor’s response to questions might not be as rapid as needed. The reality is that a company
with higher revenue products will get the preferential treatment.

1 Benenstein, Daniel. “Galleo Linux Multimedia Communicator.” Embedded Linux Journal (July/August 2001): 14–19.

xxii Preface

Having the source also gives you the ability to implement your own changes and custom-
ize the code exactly the way you need to for your specific application. In addition, only with
open-source can the source-level configuration method, as we find in eCos, be used.

Although some proprietary software vendors offer their source code to developers, there is
often a fee associated with getting said code.

Security is often looked at as a negative aspect of open-source developments. Because all
of the source code is available to everyone, malicious developers can exploit security holes. On
the other hand, the community of developers supporting the open-source project work quickly
on a fix because it is in their best interest as well. You are not at the mercy of a single source pro-
viding a fix to the security problem.

A great source for getting viewpoints from some of the leading figures behind the open-
source movement is Open Sources: Voices from the Open Source Revolution.2

Acknowledgments

This book could not have been completed without the hard work and tremendous effort of other
people. I would like to start by thanking the technical reviewers, Jonathan Larmour (a.k.a. Jifl)—
I appreciate your very insightful comments—and the technical support (occasionally real-time)
throughout the development of this book. Other reviewers I am indebted to for sharing their keen
comments and extremely valuable views include Grant Edwards, Bart Veer, Bill Gatliff, Larry
Mittag, and Paul Beskeen. I would like to thank Michael Tiemann for writing the Foreword for
this book.

I would like to thank the editor, Mark Taub—I appreciate the feedback and support you
gave throughout this process.

Many thanks to the companies and open-source projects whose software is included on
this CD-ROM—some brilliant stuff there.

Closing on a Personal Note

I would like to thank my Nonno and Nonna for all their support throughout my life. They are
always there for me providing whatever is needed whether it’s encouragement, a getaway to the
backcountry for a ride and lunch, or a trip to the Boll Weevil. I sure miss Nonna. I love you both
very much.

I would like to thank my brother, Laurie, and sister, Catherine, for their encouragement
and understanding. You two are the best brother and sister anyone can ask for. By the way, I’d
also like to congratulate my sister on passing the CPA exam, although I do believe the score is
now 2 to 1—in my favor. :) I love you guys.

Thank you Mom and Dad for your never-ending support and encouragement for things I
attempt in my career, and especially for things I attempt throughout my life. You are always
there for me in whatever I do. I am very thankful to have such wonderful parents. I love you with
all my heart.

2 DiBona, Chris; Ockman, Sam; Stone, Mark. Open Sources: Voices from the Open Source Revolution (O’Reilly, 1999).

Preface xxiii

I would like to thank my wonderful daughter, Katie. You always could sense when I
needed to take a break while working on this book. You not only knew that I should take a break,
but you insisted that I leave the office immediately and forced me to watch one of your shows—
although my preference is Seinfeld. Thanks for that; it really helped me to clear my head and
refocus. You are very special to me and I love you with all my heart.

And, last but certainly not least, a big thank you to my wife, Deanna. Well, it’s all over
now. Thank you for supporting me on this effort and all efforts I undertake for us. Thank you for
giving me the time to work on the book. I know it was difficult at times and put a lot of responsi-
bility on you, but I hope the journey was worth it. Thank you not only for being a wonderful
wife, but also for being my best friend. I love you, always.

Finally, I hope you all enjoy this book.
Anthony J. Massa

amassa@san.rr.com

1

C H A P T E R 1

An Introduction to
the eCos World

n this first chapter, we take a brief look at the origins of the Embedded Configurable Operat-
ing System (eCos) and the people and company behind it. We then get an overview of the

configurable architecture of eCos, the core functionality, the different processors and evaluation
platforms supported, and technical assistance options available.

Lastly, we get an overview of the eCos architecture and a look at the terminology used to
describe the different pieces of the configuration system. The overview gives us a general idea of
the components we detail in later chapters, and the terminology described in this chapter is used
throughout the book.

1.1 Where It All Started—Cygnus Solutions
Michael Tiemann, David Henkel-Wallace, and John Gilmore founded Cygnus Solutions in 1989.
The idea behind Cygnus Solutions was to provide high-quality support and development for
open source software. It was initially unclear whether this business model would work out; how-
ever, by the end of the first year it was obvious from the value of the support and development
contracts that the business was real. The workload was enormous for the five-person company
(the three founders, a salesperson, and a part-time graduate student).

It was clear that the engineering support model worked; however, the costs to fulfill these
contracts were very high. In order to generate income at a lower cost, the engineers had to put
their heads together to come up with an idea. The plan was to focus their development efforts on
a small set of open-source technology that could be sold. The key to maintaining this develop-
ment on an order that could be handled by the group was to keep the focus very small. What they
came up with was selling the GNU compiler (GCC) and debugger (GDB) as shrink-wrapped
software. This was the right team of people to do the job. Michael Tiemann, who contributed

I

2 Chapter 1 • An Introduction to the eCos World

numerous GNU compiler ports and also wrote the first native C++ compiler (GNU C++ or
G++), took on the task of working on GCC; David Henkel-Wallace worked on the binary utili-
ties (binutils) and the library; and John Gilmore worked on GDB.

This task grew to monumental proportions. One advantage, or so it seemed, was that John
Gilmore decided to become the new GDB maintainer. Making this known to the Internet com-
munity immediately flooded him with different versions of GDB. Now came the task of integrat-
ing these new version features.

Eventually, the hard work paid off in what today is called the GNUPro Developers Kit.
The kit includes:

• GCC—the highly optimized ANSI-C compiler.

• G++—ANSI-tracking C++ compiler.

• GDB—source- and assembly-level debugger.

• GAS—GNU assembler.

• LD—GNU linker.

• Cygwin—UNIX environment for Windows.

• Insight—a graphical user interface (GUI) for GDB.

• Source-Navigator—source code comprehension tool.

1.2 The Origins of eCos

Initial design discussions for eCos began in the spring of 1997. The primary goal was to bring a
cost-effective, high-quality embedded software solution to the marketplace. This new develop-
ment would also complement the existing GNUPro tools, thereby expanding Cygnus’ product
offering.

Another essential requirement was that eCos needed to be designed in such a way that a
small resource footprint could be constructed. By working with different semiconductor compa-
nies, Cygnus was able to architect a real-time operating system (RTOS) that abstracted the hard-
ware layer and was highly configurable. This enabled the RTOS to fit into many diverse
embedded systems. The highly configurable nature of eCos also allowed companies to reduce
time to market for embedded products.

Reducing cost is always a concern in embedded systems. By using the open-source model,
eCos was available with no initial costs. It could be downloaded and “test driven” free of charge.
In addition to eliminating startup costs, another attractive cost-saving feature was that eCos had
no backend charges—it had to be royalty-free.

Developers have full access to the entire software source code, including the tools, which
can be modified as necessary (see Appendix B, eCos License, for the eCos license). There are no
up-front license fees for the eCos run-time source code or any of the associated tools; everything
needed to set up a complete embedded software development environment can be accomplished

The Origins of eCos 3

for free. Developers do not have to contribute back any additional components or applications
developed; however, they are required to contribute back modifications to the eCos code itself.
These contributions help the open-source community develop a better product.

Today, numerous companies are using eCos, and many successful products have been
launched running eCos, including the Brother HL-2400 CeN network color laser printer, Delphi
Communiport, and the Iomega Hip Zip Digital Audio Player.

1.2.1 In a Word: Configurability

In order to get an understanding of the eCos architecture, it is important to appreciate the com-
ponent framework that makes up the eCos system. This component framework is specifically
targeted at embedded systems and meeting the requirements associated in embedded design.
Using this framework, an enormous amount of functionality for an application can be built from
reusable software components or software building blocks. The eCos component framework has
been designed to control components to minimize memory use, allow users to control timing
behavior to meet real-time requirements, and use usual programming languages (e.g., C, C++,
and assembly for certain implementations in the Hardware Abstraction Layer [HAL]).

Most embedded software today provides more functionality than what might actually be
needed for a particular application. Often, extra code is included in a software system that gives
generic support for functionality that embedded developers are not concerned with and is not
needed. This extra code makes the software unnecessarily more complex. Furthermore, the more
code, the greater the chance of something going wrong. An example would be a simple “Hello
World” program. With most RTOSes, full support for mutexes, task switching, and other fea-
tures would be included, even though it is not necessary for such a simplistic application. eCos
gives the developer ultimate control over run-time components where functionality that is not
needed can easily be removed. eCos can be scaled from a few hundred bytes up to hundreds of
kilobytes when features such as networking stacks are included and third-party contributions
such as Web servers are used.

Developers are able to select components that satisfy basic application needs, and config-
ure that particular component for the specific implementation requirements for the application.
This could mean enabling or disabling a particular feature within a component, or selecting a
particular implementation for the component. An example of this is in the kernel scheduler con-
figuration. eCos offers the developer options such as the ability to select the number of priority
levels and whether time slicing is used. Any code unnecessary to meeting the developer’s
requirements is eliminated in the final image of the application.

Configurability allows a company to build an internal foundation of reusable components
with access to the source code of the component. This can reduce development time and time to
market because the components are highly portable and can be used in a wide range of applica-
tions. The eCos framework encourages third-party development to extend the features and func-
tionality of the core eCos components. As more and more developers work toward extending the
functionality on products and contribute these components back to the eCos project, the growth

4 Chapter 1 • An Introduction to the eCos World

in functionality of eCos is limitless. Moreover, if the functionality is presently not available, the
source code is there to accomplish the task yourself.

1.2.2 The eCos Configuration Method

As embedded systems are pushed to be smaller, faster, cheaper, and more sophisticated, control
over all software in the system is necessary. There are different methods to control the behavior
of components included in an application image. The philosophy of the eCos component control
implementation is to reduce the size for systems that have resource limitations, even to the detri-
ment of systems that do not have strict resource constraints. With this design philosophy in mind,
minimal systems do not suffer from additional code necessary to support advanced features only
used in more complex systems.

One method to control software components is at run time. In this method, no up-front
configuration of the component is done. The code linked to the application provides support for
all behaviors of the component whether it is required by the application or not, causing the code
size to be much larger. An example of run-time control is an application that runs on a desktop.
When the application is executed from the disk drive, the shared libraries (Dynamic Link Libraries
[DLL], etc.) needed by the application are loaded when the application starts.

Another method for component control is at link time. In this case, the code can use only
the specific functions of a component that it needs, and the code that supports functionality not
needed by the application is left out. Many linkers, such as the GNU linker (ld), offer link-time
control, or commonly called, selective linking. With selective linking, unreferenced functions
and data are removed from the application image. However, this is still insufficient because only
entire functions can be removed—an all-or-nothing approach.

Compile-time control gives the developer control of the component behavior at the earliest
stage, allowing the implementation of the component itself to be built for the specific application
for which it is intended. Compile-time control gives the best results in terms of code size
because the control is at the individual statement level in the source code rather than at the
function or object level. This makes compile-time control very well suited for embedded
development.

eCos uses compile-time control methods for its software components, along with selective
linking provided by the GNU linker. Using compile-time control or source-level configuration is
achieved by using the C preprocessor. An example of source-level configuration is shown in
Code Listing 1.1. The flag INCLUDE_FUNCTIONALITY is either enabled or disabled by the
developer. When this section of the code is compiled, only the code that is needed is included in
the application image.

1 #ifdef INCLUDE_FUNCTIONALITY
2
3 ...
4
5 #else

The Origins of eCos 5

6
7 ...
8
9 #endif

Code Listing 1.1 Example code of source-level configuration.

With source-level configuration, very specific options can be applied in the code, which is
appropriate for embedded systems since the majority of embedded applications compile into
static images.

In addition to generating smaller code, source-level configuration offers many other
advantages important in embedded software development:

• Applications are faster because variables do not have to be checked during run time to
determine what action to take.

• The code is more responsive and latencies are reduced, which aids in creating a more
deterministic system that is important in real-time devices.

• A simpler code base is generated, making verification and testing easier.
• The code is tailored for the application, creating an application-specific RTOS.
• Costs can be reduced because resource usage is optimized and processor cycles are

efficiently used, thereby enabling less expensive hardware to be specified in the design.

The Configuration Tool, provided with the eCos release, eases the selection and configura-
tion of the software components. The tool also provides the capability to build the eCos frame-
work from the software building blocks selected, which are then linked with the application. The
Configuration Tool runs on both Windows and Linux platforms. A detailed look at the Configu-
ration Tool is presented in Chapter 11, The eCos Toolset.

1.2.3 eCos Core Components

Certain standard functionality is expected in a real-time embedded operating system,
including interrupt handling, exception and fault handling, thread synchronization, scheduling,
timers, and device drivers. eCos delivers these standard components with the real-time kernel as
the central core. The core components are:

• Hardware Abstraction Layer (HAL)—providing a software layer that gives general
access to the hardware.

• Kernel—including interrupt and exception handling, thread and synchronization
support, a choice of scheduler implementations, timers, counters, and alarms.

• ISO C and math libraries—standard compatibility with function calls.
• Device drivers—including standard serial, Ethernet, Flash ROM, and others.
• GNU debugger (GDB) support—provides target software for communicating with a

GDB host enabling application debugging.

6 Chapter 1 • An Introduction to the eCos World

Both eCos and the application run in supervisor mode. In the eCos system, there is no
division between user and kernel mode.

A minimal test infrastructure is included with eCos. The tests are configured in a similar
way to the application, which ensures that the exact configuration selected is tested. The Config-
uration Tool provides the facilities for administering the tests. Expanding the current test infra-
structure is planned in future eCos releases.

1.2.4 Processor and Evaluation Platform Support

eCos supports a wide variety of popular embedded processor architectures. This makes eCos a
great choice for companies using many diverse hardware architectures on different product lines.
Once the eCos HAL has been ported to a new architecture, the application layer can be moved
over seamlessly to support the new application requirements.

The eCos software support is for standard commercial evaluation platforms on the market
today. The main processor architectures supported include:

• ARM

• Fujitsu FR-V

• Hitachi H8/300

• Intel x86

• Matsushita AM3x

• MIPS

• NEC V8xx

• PowerPC

• Samsung CalmRISC16/32

• SPARC

• SPARClite

• SuperH

Appendix A, Supported Processors and Evaluation Platforms, lists the specific processor
ports and evaluation platforms supported by eCos. Since many ports are contributed back to the
eCos project for the benefit of others to use, the eCos Web site, at http://sources.redhat.com/ecos/
hardware.html, is the best source for finding the most recent contributions for the eCos project.

1.2.5 eCos Support

Getting support is always a concern when trying to determine whether a certain product should
be used. There are different means for getting support with eCos. The route used for obtaining
support will greatly depend on the amount of assistance needed.

There are six different mailing lists available for the eCos project:

The Origins of eCos 7

• Discussion List—contains support and technical assistance on various topics about the
eCos project from developers. The list can be found online at http://sources.redhat.com/
ml/ecos-discuss, and the email address for the list is ecos-discuss@sources.redhat.com.

• Patches List—used for submitting eCos patches for approval by the maintainers before
they are committed to the source code repository. The list also hosts discussions about
the different patches submitted. This list can be found online at http://sources.redhat.com/
ml/ecos-patches, and the email address for posts is ecos-patches@sources.redhat.com.

• Development List—includes discussions about current enhancements being
developed, such as new ports and new features. General requests for help and
information about eCos should be kept to the discussion list. This list can be found online
at http://sources.redhat.com/ml/ecos-devel, and the email address is ecos-devel@sources
.redhat.com.

• Announcement List—a low-volume list for significant news about eCos that is also
used to announce new eCos releases or major feature enhancements. This list can be
found online at http://sources.redhat.com/ml/ecos-announce, and the email address is
ecos-announce@sources.redhat.com.

• CVS Web Pages List—contains notifications of changes to the eCos Web pages that
are maintained in Concurrent Versions System (CVS). This read-only list can be found
online at http://sources.redhat.com/ml/ecos-webpages-cvs.

• CVS List—a read-only list that gives notifications of changes made to the eCos source
code repository. This list can be found online at http://sources.redhat.com/ml/ecos-cvs.

As with all mailing lists, it is generally a good idea to dig in and try to find the answer to your
problem before posting a previously reported, and solved, question to the list. To assist with this
process, the eCos mailing lists provide a means for searching previous messages posted to the list.

Through my development using eCos, I have found that the discussion list is very respon-
sive, compared to facilities provided by other companies in the past. I have found a two to three-
day turnaround on getting answers to questions I have posted to the list from developers in the
eCos community. However, it should be understood that not all questions asked on the discus-
sion list are answered. Having questions that are very specific and detailed often helps the main-
tainers, and other developers, to lend support.

A great advantage of open-source development, and an open discussion list, is that the
community for the project is there to assist in answering questions. Quite often, users who have
encountered similar problems will post answers to aid their developer colleagues.

Users are able to subscribe to any of the lists and receive emails for all messages posted to
a particular list or a digest form that contains a collection of messages from the particular list.
Receiving individual messages can be somewhat overwhelming; therefore, subscription to the
digest version of the discussion list might be better. To sign up for any of the mailing lists, you
can go online at:

http://sources.redhat.com/ecos/intouch.html

8 Chapter 1 • An Introduction to the eCos World

Bug tracking for the eCos project is contained in a Bugzilla database. The Bugzilla database
has an advanced search engine that allows searches based on keywords, for particular platforms,
and specific versions of eCos. The Bugzilla database search engine can be found online at:

http://bugzilla.redhat.com/bugzilla/query.cgi?product=Red%20Hat%20eCos

Additional information about other features about the Bugzilla bug tracking software,
including a new bug report form, can be found online at:

http://bugzilla.redhat.com/bugzilla

If there are private technical issues to discuss about eCos development and collaboration,
the maintainers have an email address to reach them directly at:

ecos-maintainers@redhat.com

1.3 Architecture Overview

eCos is designed as a configurable component architecture consisting of several key software
components such as the kernel and the HAL. The fundamental goal is to allow construction of a
complete embedded system from these reusable software components. This allows you to select
different configuration options within the software component, or remove unused components
altogether, in order to create a system that specifically matches the requirements of your applica-
tion. By creating an eCos image that closely matches your system requirements, the size of the
software is compact, only including used components. The software application is also faster
because extra code is not executed, compared to other real-time operating systems that do not
offer configurability and, therefore, incorporate all functionality regardless if it is required by the
application.

Figure 1.1 shows an example of how the core building blocks, and some of the optional
components available in the eCos system, can be layered together to incorporate the functional-
ity needed for a specific application.

Since configuration is a key aspect of the eCos system, tools are provided to manage the
complexity of the different configuration options. These tools also allow components to be
added or removed as needed. The tools build the main end product of an eCos configuration,
which is a library that can be linked with application code.

1.3.1 eCos Terminology

The eCos configuration system involves some key terms that are important to understand. These
terms are used in eCos documentation and throughout this book.

1.3.1.1 Component Framework
The collection of tools that allow users to configure the eCos system and manage different pack-
ages in the repository is called the component framework. Included in the component framework
are the command-line configuration tool, the graphical Configuration Tool, the Memory Layout

Architecture Overview 9

Tool, and the Package Administration Tool. How these tools are used to manage and build an
eCos configuration image is detailed in Chapter 11.

The component framework saves the collection of choices into a configuration. A configu-
ration contains the packages that have been selected, as well as the status of options within the
package describing whether the option is enabled, disabled, or set to a particular value. The
framework tools operate on the configuration as a whole using the properties of configuration
options to determine things such as default values and valid option ranges. The configuration is
saved in a file with a .ecc extension. The relationship between a configuration and the values in
the .ecc file is described in Chapter 11.

Figure 1.1 Example embedded software system showing layering of eCos packages.

Target Hardware

Hardware Abstraction Layer Device Drivers

Kernel Networking
Stack

Compatibility

RedBoot
ROM Monitor

File
System

Application

Libraries

C
Web Server

P
O

S
IX

µI
T

R
O

N

M
at

h

E
th

er
n

et

S
er

ia
l

F
la

sh

V
ir

tu
al

V
ec

to
rs

E
xc

ep
ti

o
n

s

In
te

rr
u

p
ts

10 Chapter 1 • An Introduction to the eCos World

Figure 1.2 shows a portion of the eCos Kernel package from the Configuration Tool. The
figure shows how the building blocks are encapsulated within each other to create a complete
and independent package. We can see the hierarchy of the configuration from packages to com-
ponents to configuration options to suboptions. Building blocks are grouped together in a pack-
age based on the functionality they include. In Figure 1.2, we see the eCos Kernel package,
which contains the Kernel Exception Handling component and the Kernel Schedulers compo-
nent; the other eCos Kernel components are not shown in this figure. We can see in Figure 1.2
the nesting of configuration options, such as Scheduler Timeslicing, and suboptions that com-
pose the components. The different modules, components, and options are described further
later in this section. Additional information about the Configuration Tool can be found in
Chapter 11.

1.3.1.2 Component Repository
The component repository is a directory structure containing all packages from an eCos installa-
tion. The component framework includes a Package Administration Tool for adding new pack-
ages, updating current packages, and removing old packages within the repository. The main
directory, ecos, contains the eCos distribution files. The subdirectory that contains the compo-
nent repository is packages. A database file, ecos.db (located in the packages directory),
is maintained by the Package Administration Tool and contains the details about the various
packages in the component repository.

Occasionally, the database file needs to be hand edited. For example, when porting a HAL
to your own hardware platform, editing the database file allows the new HAL to be recognized
and controlled by the configuration tools. We will go through the process for editing the database
file in Chapter 13, Porting eCos. In general, application developers can treat the repository as a
read-only resource that can be reused for different applications. Figure 1.3 gives a high-level
overview of the component repository directory structure.

Because eCos is an evolving code base with new contributions available all the time, the
directory structure shown in Figure 1.3 is a snapshot of the eCos version 2 component reposi-
tory. It is intended to show the overall layout of the eCos source code components rather than

Figure 1.2 Example of the configuration building blocks that compose a package.

eCos Kernel
Package

Kernel Exception Handling
Component

Kernel Schedulers
Component

Configuration Options

Configuration Suboption

11

F
ig

u
re

 1
.3

H
ig

h-
le

ve
l c

om
po

ne
nt

 r
ep

os
ito

ry
 d

ire
ct

or
y

st
ru

ct
ur

e
sn

ap
sh

ot
.

se
rv

ic
es

ne
t

la
ng

ua
ge

io
ha

l
fs

de
vs

co
m

pa
t

pa
ck

ag
es

po
si

x

ui
tr

on

cy
gm

on

et
h

fla
sh

kb
d

pc
m

ci
a

se
ria

l

to
uc

h

us
b

w
al

lc
lo

ck

w
at

ch
do

ger
ro

r

jff
s2

ra
m

ar
m

co
m

m
on

i3
86

m
ip

s

m
n1

03
00

in
fr

a

et
h

fil
ei

o

fla
sh

pc
m

ci
a

se
ria

l

pc
i

us
b

w
al

lc
lo

ck

w
at

ch
do

g

co
m

m
on

is
oi

nf
ra

ke
rn

el

c

sn
m

p

tc
pi

p

re
db

oo
t

co
m

pr
es

s

gf
x

ro
m

ca
lm

ris
c1

6

ca
lm

ris
c3

2

fr
v

h8
30

0

bs
d_

tc
pi

p

co
m

m
on

ftp
cl

ie
nt

ns
m

em
al

lo
c

lo
ad

er

po
w

er

po
w

er
pc

sh sp
ar

cl
ite

sy
nt

h

sp
ar

c

v8
5x

12 Chapter 1 • An Introduction to the eCos World

specifics about the directories. When new contributions to the eCos project are made, the main-
tainers decide if the contribution belongs under an existing subdirectory or requires the start of a
new subdirectory. The latest eCos repository can be found online at:

http://sources.redhat.com/cgi-bin/cvsweb.cgi/?cvsroot=ecos

The details about configuring a system to use the latest source code found in the online
repository are covered in Chapter 10, The Host Development Platform.

A description of the component repository directory structure is given in Table 1.1. Details
of the directory structure and file contents for packages can be found in Chapter 11.

Table 1.1 Component Repository Directory Structure Descriptions

Directory Description

compat Contains packages for the POSIX (IEEE 1003.1) and µITRON 3.0 compatibility.

cygmon Package contents for Cygmon standalone debug monitor.a

devs Includes all device driver hardware-specific components such as serial, Ethernet, and
PCMCIA.

error Contains common error and status code packages. This allows commonality among
packages for error and status reporting.

fs Includes the ROM and RAM file system packages.

hal Incorporates all HAL target hardware packages.

infra Contains the eCos infrastructure such as common types, macros, tracing, assertions,
and startup options.

io Packages for all generic hardware-independent Input/Output (I/O) system support,
such as Ethernet, flash, and serial, which is the basis for system device drivers.

isoinfra Contains package that provides support for ISO C libraries (such as stdlib and stdio)
and POSIX implementations.

kernel Includes the package that provides the core functionality (such as the scheduler,
semaphores, and threads) of the eCos kernel.

language Incorporates the packages for the ISO C and math libraries, which allows the
application to use well-known standard C library functions and the floating-point
mathematical library.

Architecture Overview 13

1.3.1.3 Configuration Options
The configuration option is the fundamental unit of configurability in the eCos system. Typi-
cally, a configuration option corresponds to a single choice you can make. This choice might be
to enable, disable, or to set a value for the option. Configuration options have a macro associated
with them. The macro is used in the source-level configuration control. Each macro has a sensi-
ble default value that can be used as a baseline. Once the application is built and running, the
options can be tuned to meet the specific requirements of the system. The configuration options
selected can affect which files are built into the eCos library, or cause certain values to be set in a
particular file. In turn, selection of certain configuration options allows you to have control down
to a particular source code line in some circumstances.

The component framework uses a Component Definition Language (CDL) to describe the
package. Within each package is at least one CDL script file. This script file describes the package
to the component framework. Detailed information about the CDL can be found in Chapter 11.

The configuration options detailed in this section are text names used by the graphical
Configuration Tool. At this time, the configuration option and the relationship with its associated
CDL name are unimportant. Throughout the book, the CDL names for specific components or
options are given as reference.

The nesting of configuration options is used to give finer control over the system. This
nesting of configuration options is shown in Figure 1.2. The configuration option Scheduler
Timeslicing contains the configuration suboption Number of Clock Ticks Between Time Slices. If
Scheduler Timeslicing is enabled, a value, in this case 5, for the suboption can then be selected.
If Scheduler Timeslicing is disabled, the suboption setting is irrelevant and cannot be set within
the Configuration Tool.

A particular configuration option might have dependencies on other options in the config-
uration. These dependencies, or constraints, are sometimes straightforward where one configu-
ration option requires that another option be enabled. For example, in Figure 1.2, selecting the
Bitmap Scheduler configuration option requires that Scheduler Timeslicing be disabled.

net Packages for basic networking support including TCP, UDP and IP, and the SNMP
protocol and agent support libraries based on the UCD-SNMP project.

redboot Contains package for the RedBoot standalone debug ROM monitor.

services Includes packages for dynamic memory allocation and support for compression and
decompression library.

a The RedBoot ROM monitor has replaced the Cygmon debug monitor.

Table 1.1 Component Repository Directory Structure Descriptions (Continued)

Directory Description

14 Chapter 1 • An Introduction to the eCos World

Other times, configuration options cannot be modified. Take the case of processor endian-
ness. Some processors are hard-wired to operate in a specific endian mode, and others can be
programmed to operate in either big-endian or little-endian mode at runtime. Depending on the
hardware selected, endianness might not be a configuration option that can be modified. In other
configuration options, the constraint might be a range for a particular value. For example, the
configuration option Number Of Priority Levels has a constraint range of 1 to 32, which is cur-
rently set to 32 in Figure 1.2. Specifying a value out of this range is not allowed in the Configu-
ration Tool.

As configuration options are modified, conflicts might arise because certain constraints are
not satisfied. The configuration tools report these conflicts allowing us to take corrective action.
These conflicts can be bypassed; however, compile-time or link-time failure might occur. Con-
flicts should be resolved before continuing with the system configuration. The configuration
tools try to resolve conflicts that arise during the configuration process. The tools might apply a
solution automatically or ask us for intervention in solving the conflict. Additional information
about conflicts can be found in Chapter 11.

1.3.1.4 Components and Packages

A component is a configuration option that encapsulates more detailed options within it. Entire
components can be enabled or disabled, depending on the needs of a particular application. For
example, in Figure 1.2, the Kernel Exception Handling component can be disabled by uncheck-
ing the box next to the component. Disabling the component causes all configuration options
under that component, as well as any files associated with the component, to be irrelevant and
not included in the build. This hierarchy of encapsulation gives us control of the configuration at
a higher level. Eliminating unused components also reduces the compile time of the eCos image.

Another example where component control is useful is in the case where a particular device
on the target hardware, such as an Ethernet port, is not going to be used in the application. Elimi-
nating the device driver component for the Ethernet port reduces memory usage in the system.

A package is a type of component that is ready for distribution. Incorporated in a package
are all necessary source code files, header files, configuration description files, documentation,
and other relevant files. A package is often contained in a single file, allowing it to be installed
with the appropriate tool or updated in the future when changes are made. Having a distribution
package as a standalone unit allows third-party developers to extend the functionality offered in
the eCos system. Enabling a package loads the configuration data into the appropriate tool. You
also have control over the version of the packages that are used in the system.

1.3.1.5 Targets

A target is the piece of hardware on which the application will be executed. The target might be
an off-the-shelf evaluation board, your own hardware platform, or a simulator. When creating a
configuration, you select a target so that the component framework can load particular packages
to support the devices and HAL relevant to the target. In addition, configuration options are
changed from their default values to settings appropriate for the target.

Architecture Overview 15

The process is more automated for evaluation boards supported by eCos, whereas using
your own hardware requires more involvement to determine what packages are to be loaded and
the value of configuration option settings.

1.3.1.6 Templates
A template is a partial configuration that gives us a valid starting point. Templates are a combi-
nation of a hardware target and a group of packages. The group of packages is given a name, as
shown in Table 1.2, to describe the functionality included. eCos comes with a small number of
default templates. When a new configuration is created, a template is used as a starting point to
match the general needs of the application. Configuration options can then be fine-tuned to meet
more specific requirements you have. The configuration tools show the specific packages
included in the template.

Table 1.2 eCos Templates

Template Name Description

All Provides all packages for a particular hardware target.

Cygmon Includes packages necessary to build eCos with Cygmon.

Cygmon_No_Kernel Incorporates packages for building Cygmon without eCos kernel support.

Default Contains the infrastructure, kernel, C and math libraries, plus necessary
support packages.

Elix Provides packages for supporting EL/IX compatibility.

Kernel Includes the HAL, infrastructure, and eCos kernel packages.

Minimal Incorporates the HAL and infrastructure packages only.

Net Contains necessary support packages for using the OpenBSD networking
stack.

New_Net Provides support packages for using the FreeBSD networking stack.

Posix Provides HAL, infrastructure, eCos kernel, and POSIX packages.

RedBoot Used for building the RedBoot ROM monitor image.

16 Chapter 1 • An Introduction to the eCos World

1.4 Summary
This chapter gave us a brief background of eCos and the company behind it. We looked at the
compile-time or source-level configuration eCos uses and the advantages it brings to embedded
applications. Next, we examined the different mailing lists available for getting support with eCos.

Finally, we went through the eCos terminology used in this book and eCos documentation,
which gives us a baseline of the elements that compose the eCos system. We are now ready to take
an in-depth look at the eCos system, the software components available, and how we use eCos.

Stubs Includes packages necessary to build eCos GDB stubs.

Uitron Provides full level S (standard) compliance with version 3.02 of the
µITRON standard, plus many level-E (extended) features.

Table 1.2 eCos Templates (Continued)

Template Name Description

17

C H A P T E R 2

The Hardware
Abstraction Layer

his is the first of eight chapters that describe the eCos architecture and its components.
The eight eCos architecture chapters provide an explanation of the core software com-

ponents, which are the building blocks for the eCos system. Many of these building blocks are
common to several real-time operating systems; however, we need to understand how these
components operate and interact with each other in the eCos system. This will prepare us for
the next part of the book, which enables us to set up and configure the eCos tools to build an
image for use in your applications.

In this chapter, we get into the details of the Hardware Abstraction Layer (HAL). It is par-
ticularly important to understand the architecture of the HAL, because when the time comes to
port eCos onto your own hardware, the HAL is the software component that will need to be
adapted to support the new hardware platform.

In Chapter 3, we cover exceptions and interrupts. Chapter 4 describes virtual vectors. In
Chapter 5, we look at the core of the eCos system: the kernel. Chapter 6 details threads and syn-
chronization mechanisms. Chapter 7 covers the other eCos components such as counters, timers,
libraries, and the I/O control system. Next, Chapter 8 describes other functionality and contribu-
tions available for eCos, such as networking support, file systems, and PCI support. Finally, we
conclude the eCos architecture with Chapter 9, which details the RedBoot ROM Monitor.

2.1 Overview
The HAL isolates architectural-dependent features and presents them in a general form to allow port-
ability of other infrastructure components. Basically, the HAL is a software layer, with generalized
Application Programming Interfaces (API), which encapsulates the specific hardware operations
needed to complete the desired function.

T

18 Chapter 2 • The Hardware Abstraction Layer

An example that demonstrates how the HAL abstracts hardware-specific implementations
for the same API call is shown in Code Listing 2.1 for the ARM architecture, and in Code
Listing 2.2 for the PowerPC architecture.

1 #define HAL_ENABLE_INTERRUPTS() \

2 asm volatile (\

3 "mrs r3,cpsr;" \

4 "bic r3,r3,#0xC0;" \

5 "msr cpsr,r3" \

6 : \

7 : \

8 : "r3" \

9);

Code Listing 2.1 ARM architecture implementation of HAL_ENABLE_INTERRUPTS() macro.

1 #define HAL_ENABLE_INTERRUPTS() \

2 CYG_MACRO_START \

3 cyg_uint32 tmp1, tmp2; \

4 asm volatile (\

5 "mfmsr %0;" \

6 "ori %1,%1,0x8000;" \

7 "rlwimi %0,%1,0,16,16;" \

8 "mtmsr %0;" \

9 : "=r" (tmp1), "=r" (tmp2)); \

10 CYG_MACRO_END

Code Listing 2.2 PowerPC architecture implementation of HAL_ENABLE_INTERRUPTS() macro.

In Code Listings 2.1 and 2.2, we see that the call HAL_ENABLE_INTERRUPTS(), as
shown on line 1 of both listings, is the same regardless of the architecture. However, the process
for actually executing an interrupt enable varies from architecture to architecture, as shown on
lines 2 through 9 in Code Listing 2.1 and on lines 2 through 10 in Code Listing 2.2. The HAL
allows the application layer to directly access hardware and any architectural features and does
not assume it is the only controller of all hardware in the system.

General design principles were followed during the architecting of the HAL. First, the
entire HAL is implemented in C and assembly language. This allows the HAL to have the widest
range of applicability.

Second, interfaces to the HAL are implemented in C macros. This allows the most effi-
cient implementation to be used and yet the interface is not affected. The interfaces can be
implemented as inline assembly code, inline C code, or external function calls to C or assembler
code. By using the inline approach, the run-time overhead associated with a function call is
eliminated; however, the size of the code can grow.

Overview 19

Finally, an emphasis on the ease of platform porting was made because the developers
themselves typically perform this task.

The HAL consists of three separate modules (or submodules); however, the boundary
between each module is intentionally fuzzy:

• Architecture
• Platform
• Variant

The first HAL submodule defines the architecture. Each processor family supported by
eCos is considered a different architecture. Each architecture submodule contains the code nec-
essary for CPU startup, interrupt delivery, context switching, and other functionality specific to
the instruction set architecture of the associated processor family.

A second HAL submodule defines the variant. A variant is a specific processor within the
processor family described by the architecture. An example of a feature that might be included at
this level is support for an on-chip peripheral such as a Memory Management Unit (MMU).

The third HAL submodule defines the platform. A platform is a specific piece of hardware
that includes the selected processor architecture and, possibly, a variant. This module typically
includes code for platform startup, chip select configuration, interrupt controllers, and timer devices.

2.1.1 HAL Directory Structure

All HAL packages included in the repository are found under the hal subdirectory. Figure 2.1
shows a snapshot of the HAL directory structure for eCos version 2. At this point, the architectures
included in the directory structure are not important; however, it is important to get an overview of
where files containing certain HAL functionality are located within the repository. It is also impor-
tant to understand that not all HAL architectures follow the same directory structure. We discuss
the details about specific files within the directory structure in Chapter 11, The eCos Toolset.

The subdirectories under the HAL are broken down by processor architecture. As seen in
Figure 2.1, the architecture subdirectories include:

• arm

• calmrisc16 (for the Samsung CalmRISC16)
• calmrisc32 (for the Samsung CalmRISC32)
• frv (for the Fujitsu FR-V)
• h8300 (for the Hitachi H8/300)
• i386 (for the Intel x86)
• mips

• mn10300 (for the Matsushita AM3x)
• powerpc

• sh (for the Hitachi SuperH)

20

F
ig

u
re

 2
.1

H
A

L
di

re
ct

or
y

st
ru

ct
ur

e
sn

ap
sh

ot
.

sp
ar

c
m

ip
s

h3
80

0
fr

v
ca

lm
ris

c1
6

co
m

m
on

ha
l

ar
ch

ae
b

ar
m

ar
ch

ce
b

co
re

i3
86

m
n1

03
00

po
w

er
pc

sp
ar

cl
ite

ar
m

9

at
91

cm
a2

30

e7
t

eb
sa

28
5

ed
b7

xx
x

in
te

gr
at

or

iq
80

31
0

pi
d

sa
11

x0

sn
ds

xs
ca

le

ca
lm

ris
c3

2
sh

sy
nt

h
v8

5x

ar
ch

ce
b

co
re

ar
ch

fr
v4

00

ar
ch

ak
i3

06
8n

et

h8
30

0h

si
m

ar
ch

ge
ne

ric

pc pc
m

b

ar
ch

at
la

s

jm
r3

90
4

m
al

ta

m
ip

s3
2

re
f4

95
5

rm
70

00

si
m

tx
39

tx
49

up
d9

85
xx

vr
43

00

m
ip

s6
4

vr
c4

37
3

vr
c4

37
5

vr
c4

37
x

ar
ch

am
31

am
33

as
b

as
b2

30
5

si
m

st
b

st
de

va
l1

ar
ch

cm
e5

55

co
ge

nt

ec
55

5

fa
ds

m
bx

m
pc

5x
x

m
pc

8x
x

pp
c4

0x

pp
c6

0x

qu
ic

c

si
m

vi
pe

r

ar
ch

cq
77

08

dr
ea

m
ca

st

ed
k7

70
8

hs
77

29
pc

i

se
77

51

se
77

x9

sh
2

cq
77

50

sh
3

sh
4

ar
ch

er
c3

2

le
on

ar
ch

si
m

sl
eb

ar
ch

i3
86

lin
ux

ar
ch

ce
b_

v8
50

v8
50

Overview 21

• sparc
• sparclite
• synth (for the i386 Linux kernel)
• v85x (for the NEC V8xx)

Each architecture subdirectory includes the platform and variant support related to that
particular processor.

For example, under the powerpc subdirectory is the mbx subdirectory that contains the
platform package for the Motorola PowerPC MBX860 development board support. Included in
the MBX package subdirectory is the code needed for platform-specific initialization such as the
memory layout files, clock configuration, and chip select programming. In addition, under the
powerpc subdirectory is the mpc8xx subdirectory, which contains files necessary for the dif-
ferent series of MPC8xx variants (including the MPC823, MPC850, and MPC860). The
MPC8xx variants of the PowerPC contain code for MMU and interrupt control.

As new platform and architecture ports are developed, the package contents are inserted in
the appropriate place in the HAL directory structure. Since new ports are made available at vari-
ous times, the directory structure can change often to accommodate new additions.

A few subdirectories, and a description of their contents, within the HAL structure are
worth noting. First is the subdirectory common, located under the main HAL directory. This
subdirectory contains the package configuration files general to all HAL architectures, including
files for general interrupt configuration, virtual vector layout, and HAL debugging control.
Function wrappers are contained in this subdirectory to create the commonality found among all
HAL implementations.

Another subdirectory to notice is arch, located under every architecture tree. The arch
subdirectory contains files for generic support for the processor architecture. Functionality
included in this generic support consists of exception vector initialization, ROM and RAM star-
tup configuration, common interrupt and exception handling, thread context switch handling, a
generic linker script file, and common debugging functions.

Some HAL architectures include a subdirectory to contain the variant code. This subdirec-
tory is named var. An example of an architecture that contains this subdirectory is the ARM
SA11x0.

Last is the sim subdirectory, which can be found under the architecture trees that support
processor simulators. The architecture simulators provide a simple model of the processor rather
than detailed operation of a particular evaluation board. When using a simulator, it is impossible
to use any of the device drivers. The simulators are best used as interim targets when you need to
start testing application functionality. The simulators can keep the software development task on
schedule while an evaluation board or your own hardware target is under development. The
architectures that have simulators are:

• Hitachi H8/300
• MIPS

22 Chapter 2 • The Hardware Abstraction Layer

• Matsushita AM3x
• PowerPC
• SPARClite

2.1.1.1 Example HAL Function Call Trace
To get a better understanding of the relationship of the submodules in the HAL and how the dif-
ferent functionality is split among the directory structure, let us trace a function call into the
HAL. The function call we will trace is the __reset() function defined in the common sub-
directory of the HAL. For this example, we will use the MIPS Atlas Evaluation board as the tar-
get hardware platform. The submodules that implement the functionality of the reset function
can vary for different HAL architectures. Figure 2.2 is a graphical representation of the
__reset() function call trace.

A description for each of the steps numbered in Figure 2.2 follows.

1. The __reset() routine is the generically defined reset function for all HAL pack-
ages. The source code for this routine is found in the hal_stub.c file under the
common\current\src subdirectory.

2. Next, the hal_atlas_reset() routine, defined in plf_misc.c under the
mips\atlas\current\src subdirectory, is executed for the MIPS Atlas platform.

3. Finally, the platform reset routine uses the architecture macros defined in plf_io.h
under the mips\atlas\current\include subdirectory to toggle the appropriate
register within the processor. The HAL_REG() macro causes the write to the MIPS
Atlas reset register.

Figure 2.2 HAL reset function call trace.

hal

hal_stub.c

plf_misc.c

plf_io.h

1

2

3

common

mips

atlas

src

include

src

current

current _reset()

hal_atlas_reset()

HAL_REG()

Overview 23

The execution trace of this reset call shows us how the implementation is split from the
generic definition of the reset function common to all HAL architectures—to the platform-
specific reset code—and finally, to the specific processor register manipulation code.

2.1.2 HAL Macro Definitions

The HAL defines architecture macros that make a common API for encapsulating the processor-
specific implementation functionality. The HAL macros are used to control the interrupt, cache,
memory management, I/O, diagnostics, debugging, and architectural features for the processor,
given that the processor provides the functionality. This section gives a general overview of
these HAL macros and their location within the HAL architectures. Additional detailed descrip-
tions of the HAL macros containing specific functionality (e.g., exception, interrupt, and clock
macros) are described in their associated chapters.

Generally, HAL architecture macros are enclosed within #ifndef statements to allow
the macro to be overridden in the platform or variant submodules. Code Listing 2.3 shows an
example of this.

1 #ifndef CYGHWR_HAL_INTERRUPT_VECTORS_DEFINED

2

3 #define CYGNUM_HAL_INTERRUPT_0 0

4 #define CYGNUM_HAL_INTERRUPT_1 1

5 #define CYGNUM_HAL_INTERRUPT_2 2

6 #define CYGNUM_HAL_INTERRUPT_3 3

7 #define CYGNUM_HAL_INTERRUPT_4 4

8 .

9 .

10 .

11 #endif

Code Listing 2.3 Example HAL interrupt vector macro definitions.

In Code Listing 2.3 we see part of the interrupt vector definitions; in this case, for the
MIPS processor architecture. Line 1 checks for the definition of the macro CYGHWR_HAL_
INTERRUPT_VECTORS_DEFINED. The variant or platform-specific code within the HAL can
override the interrupt vector definitions provided by the architecture submodule, shown on lines
3 through 7, by simply defining CYGHWR_HAL_INTERRUPT_VECTORS_DEFINED. The
variant or platform submodule can then define the interrupt vectors appropriately.

The location of the HAL architecture code is under the arch subdirectory, as we see in
Figure 2.1. Typically, the macros are located in .h files under the include subdirectory;
however, the specific location of this functionality might differ for different HAL architec-
tures. Table 2.1 lists some of the general HAL architecture macro filenames and describes the
functionality included in the file.

24 Chapter 2 • The Hardware Abstraction Layer

2.1.3 HAL Configuration

As mentioned in Chapter 1, eCos uses source-level configuration control, which determines the
software components included in a particular eCos image. Source-level configuration sets values
for specific macros based on options you select. Then, the HAL is built according to the specifi-
cations set in the configuration.

The HAL configuration options can be split into two different parts, common and architecture-
specific components. The common configuration components contain general options for most or
all HAL packages within the eCos system. The architecture-specific configuration components can
be further broken down into general architecture options and platform-specific options, which are
relevant to a particular hardware target.

Table 2.1 HAL Architecture Macro Descriptions

Filename Description

hal_arch.h Abstracts the architecture-specific functionality that includes macros
for breakpoint support, thread control, and stack control. The
HAL_SavedRegisters structure is also defined in this file.
This structure defines the processor-specific registers to store the
machine state. These registers are stored during context switches,
exception handling, and interrupt handling.

hal_cache.ha Provides instruction and data cache control macros, such as size defi-
nitions, synchronization, enable/disable, lock/unlock, and flushing.

hal_intr.h Contains the interrupt and clock support macros. The interrupt macros
include interrupt vector definitions, exception vector definitions,
enable/disable control, attach/detach control, and mask/unmask con-
trol. The clock macros include control for initialization, reset, and
reading.

hal_io.h Includes the I/O register reading and writing macros. For example,
HAL_READ_XXX and HAL_WRITE_XXX, where XXX defines
the size of the read or write operation.

hal_mem.h or
hal_mmu.ha

Contains the macros for defining and controlling the MMU.

xxx-stub.h or
xxx_stub.h, where xxx
defines the architecture; for
example, mips-stub.h.

Provides the definition and control macros for GDB support. This
includes functionality for getting trap information, get/set register
contents, setting the program counter, single stepping, and various
breakpoint controls.

a Might not be supported by all HAL architectures.

Overview 25

2.1.3.1 Common Configuration Components
The common configuration components are standard across all HAL packages. There are six
components included in the HAL common configuration. Each component contains configura-
tion options for setting up the HAL to meet the needs of a specific application. Item List 2.1
gives a description of the six components. The CDL component name is also shown in the list
for reference. More information about the CDL and how it is used within a package can be
found in Chapter 11.

Item List 2.1 HAL Common Configuration Components

Component Name Platform-Independent HAL Options
CDL Name CYGPKG_HAL_COMMON
Description Controls the general interfacing to the kernel and other broad options, including HAL

exception support, MMU table installation, and diagnostic output routing control.

Component Name HAL Interrupt Handling
CDL Name CYGPKG_HAL_COMMON_INTERRUPTS
Description Allows overall configuration of the interrupt structure, such as using separate inter-

rupt stacks maintained by the HAL, whether nested interrupts are enabled, and inter-
rupt stack size configuration.

Component Name HAL Context Switch Support
CDL Name CYGPKG_HAL_COMMON_CONTEXT
Description Enables context switch code to exploit the calling conventions for a specific architec-

ture to reduce the amount of state information saved during a context switch.

Component Name Cache Startup Behavior
CDL Name CYGPKG_HAL_CACHE_CONTROL
Description Allows data and instruction cache enabling during the startup process. If additional

platform-specific cache configuration is needed, these options should be disabled.

Component Name Source-Level Debug Support
CDL Name CYGPKG_HAL_DEBUG
Description Determines the level of debug support included in the HAL. This allows the GDB

debug support to be provided by a ROM monitor or contained in the HAL build itself.

Component Name ROM Monitor Support
CDL Name CYGPKG_HAL_ROM_MONITOR
Description Defines the interaction between the application and a ROM monitor. The application

can either be built to work with a ROM monitor or behave as a ROM monitor. This
determines the initialization process for exceptions, interrupts, and virtual vectors
between the ROM monitor and the application.

2.1.3.2 Architecture-Specific Configuration Components
The architecture-specific components can vary greatly from platform to platform. The architecture-
specific components present for configuration are dependent on the template hardware selected.

26 Chapter 2 • The Hardware Abstraction Layer

For example, using the graphical configuration tool and selecting the Motorola MBX860/
821 board hardware template enables the following packages to be enabled for configuration
(CDL package names are in parentheses):

• PowerPC Architecture (CYGPKG_HAL_POWERPC)
• PowerPC MPC8xx Variant HAL (CYGPKG_HAL_POWERPC_MPC8xx)
• Motorola MBX PowerPC Evaluation Board (CYGPKG_HAL_POWERPC_MBX)
• Motorola MBX PowerQUICC Support (CYGPKG_HAL_QUICC)

Some configuration suboptions for this hardware template include the development board
clock speed selection and the ROM boot device to use.

In another case, selecting the ARM PID Development Board as the hardware template
enables the following packages (CDL package names are in parentheses):

• ARM Architecture (CYGPKG_HAL_ARM)
• ARM PID Evaluation Board (CYGPKG_HAL_ARM_PID)

Configuration suboptions such as Thumb instruction set enabling, processor endian mode
selection, and hardware diagnostic port control are available under the ARM architecture
components.

One configuration suboption present for all architecture-specific components is the Startup
Type (CYG_HAL_STARTUP). The Startup Type imposes constraints on the ROM Monitor Support
common configuration component, and vice versa, which might cause conflicts when configuring
these configuration suboptions. The Startup Type can be either ROM or RAM, and for some plat-
forms ROMRAM—where the code is stored in ROM but copied to RAM at startup for execution.

HAL configurations with ROM startup selected must be self-contained, meaning that all
initialization of the hardware is performed by the HAL contained in the application. Two general
development scenarios use a ROM Startup Type. In the first, the eCos library is built for use
within a ROM monitor, allowing applications to be loaded into RAM for debug. The other scenario
is typically used after the application has been debugged and is ready for release.

HAL configurations with RAM startup selected typically assume the existence of a debug
environment or ROM monitor. In this startup configuration, the application can rely on the ROM
monitor to provide support for various interrupt and exception handling processes. You can find
more information about the RedBoot ROM Monitor and how it uses the HAL in Chapter 9, The
RedBoot ROM Monitor.

2.1.4 HAL Startup

To get a better understanding of the functionality provided by the HAL, we need to take a look at
the startup process the software goes through to initialize the hardware. The different submod-
ules of the HAL take care of different aspects of the initialization process, such as coordinating

Overview 27

operation with a ROM monitor, invoking static and C++ constructors, and jumping to the start of
the application code.

Figure 2.3 is a flowchart of the routines involved during the initialization of the HAL for
the PowerPC-based Motorola MBX860 development board. The startup procedure might differ
slightly depending on the architecture and platform used, as far as when certain initialization
steps are completed and the name of the routine that accomplishes the initialization task. In addi-
tion, note that the startup procedure might also deviate from what is shown in the flowchart
depending on the configuration options selected for the HAL. The routines described in
Figure 2.3 are implemented in either assembly language or C.

Figure 2.3 HAL startup procedure.

Hardware Powerup

Setup C function call stack

reset_vector

_start

hal_cpu_init

hal_hardware_init

Setup interrupt stack

hal_mon_init

Clear bss section

hal_platform_init

hal_MMU_init

hal_enable_caches

hal_IRQ_init

cyg_hal_invoke_constructors

initialize_stub

cyg_start On to kernel startup...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

28 Chapter 2 • The Hardware Abstraction Layer

A description of each step numbered in the HAL startup process shown in Figure 2.3 follows:

1. The starting point for the system startup is after a power cycle has occurred, labeled
Hardware Powerup. This startup process also applies for a soft reset startup.

2. After a hard or soft reset occurs, the processor jumps to its reset vector (cleverly called
reset_vector in the diagram). The reset vector is found in the file vectors.S
under the arch subdirectory for each HAL architecture. This file contains the starting
point for all HAL packages. The reset vector performs the minimum processor register
configuration to allow the system to continue with the initialization process.

3. Next, the reset vector jumps to _start. This is also found in vectors.S and is the
main starting point for all HAL initialization.

4. Next, the routine hal_cpu_init is called, which is located in either variant.inc
or arch.inc depending on the architecture. This function handles setting processor-
specific registers, such as disabling instruction and data caches, to ensure that the
processor is in a known state for the remainder of the initialization process.

5. The next routine called is hal_hardware_init. The functionality contained in this
routine is platform specific and therefore found in the platform assembly file (for the
Motorola MBX board, this is the mbx.S file). Hardware setup in this routine includes
cache configuration, setting interrupt registers to a default state, disabling the processor
watchdog, setting real-time clock registers, and configuring chip select registers based
on the platform-specific hardware.

6. The next step is to set up an interrupt stack area. This reserves a storage area for saving
processor state information when an interrupt occurs. The amount of space to reserve is
configurable in the common configuration component. The startup context temporarily
uses the interrupt stack to perform its initialization; for example, to make calls into C
routines. Since interrupts are not enabled during this startup procedure, this does not
create a conflict.

7. The code executed in the hal_mon_init function, which is located in the file
variant.inc or platform.inc, is configuration dependent. When executing as
a ROM monitor or ROM application, the main task for this routine is to ensure that
default exception handlers are installed for every exception condition supported by the
processor. You can find more information on exception vector configuration in
Chapter 3, Exceptions and Interrupts.

8. The next step in the HAL initialization process is to clear the BSS section, which con-
tains all noninitialized local and global variables with static storage class.

9. The stack is then set up so that C function calls can be made from within the vectors.S
assembly code.

10. Next, the hal_platform_init routine is called, located in the hal_aux.c file, for
a specific platform. This, in turn, calls hal_if_init, found in the file hal_if.c of
the HAL common subdirectory. hal_if_init initializes the virtual vector table based

Summary 29

on the configuration options selected. See Chapter 4, Virtual Vectors, for detailed infor-
mation on the virtual vector table initialization and how it is used within the eCos system.

11. Initialization of the MMU, which handles translations of logical addresses to physical
addresses also providing protection and caching mechanisms, is handled in the routine
hal_MMU_init located in the file hal_misc.c. This file is under the arch subdi-
rectory.

12. The next step is to enable the data and instruction caches. This is done in
hal_enable_caches, which can be found in the file hal_misc.c under the
arch subdirectory for the given processor.

13. Now, the routine hal_IRQ_init is executed in order to set up the Communications
Processor Module (CPM), which accepts and prioritizes internal and external inter-
rupts. This is specific to the PowerPC processor and is located in the file hal_intr.c
under the arch subdirectory.

14. Next, all global C++ constructors are called from cyg_hal_invoke_constructors.
This routine is in the file hal_misc.c under the arch subdirectory. The linker handles
the generation of the list of global constructors. The file cyg_type.h, under the infra
subdirectory, contains macros that define the order in which constructors are called.

15. If the configuration is set up for a debug environment and a ROM monitor is not pro-
viding debug support, the next routine called is initialize_stub, located in the
HAL common subdirectory in the file generic_stub.c. initialize_stub,
which installs the standard trap handlers and initializes the hardware for debug.

16. Finally, the last step in the HAL initialization process is to turn control over to the ker-
nel for its initialization. The routine cyg_start is the place for the HAL-to-kernel
transition. We discuss the kernel initialization process in Chapter 5, The Kernel.

2.2 Summary
In this chapter, we focused on the HAL, which gives our application a generalized API to the
underlying hardware. We looked at the HAL directory structure, the macros supplied by the HAL,
and the configuration of the HAL. Finally, we went through the startup procedure of the
HAL, allowing us to see how a target platform is initialized.

31

C H A P T E R 3

Exceptions and
Interrupts

n this chapter, we begin with a look at exceptions and how they are handled at the HAL and
application layers within the eCos system. Next, we cover the eCos interrupt model, including

interrupt configuration, handling, and control. The exception and interrupt information prepares us
for managing software and hardware events that occur.

3.1 Exceptions
An exception is a synchronous event that occurs during the execution of a thread that disrupts the
normal flow of instructions. If exceptions are not properly processed during program execution,
severe consequences, such as system failures, can occur. Exception handling is extremely important,
especially in embedded systems, to avoid these failures, and improves the robustness of the soft-
ware. Properly implemented exception handling can also aid in software execution recovery so
that an application can proceed with its task after an exception has occurred.

Examples of exceptions that can occur in a system include those raised by hardware
(such as a memory access error) and those raised by software (such as a divide by zero error).
After the exception causes an interruption, the processor will jump to a defined address (or
exception vector) and begin to run the instructions at that location. The address that the pro-
cessor jumps to contains the exception handling code to process the error. Different processor
architectures might locate the exception handlers at various places and implement this jump
process in a variety of methods.

The method for implementing exception handling can vary. eCos does not provide an
implementation similar to the throw and catch facilities provided in C++. For an embedded sys-
tem, the simplest and most flexible method for handling exceptions is to call a function. This
function needs a context or an area to do its work, and is typically passed in information, such as

I

32 Chapter 3 • Exceptions and Interrupts

the exception number and possibly some optional parameters, to process the exception. After
returning from this exception handler function, the thread can continue its execution.

There are two main methods for exception handling in eCos. The first is a combination of
HAL and Kernel Exception Handling. The HAL provides the general hardware-level exception
processing and then passes control on to the application for any extended exception support
needed. This is the default configuration method.

The second exception handling method is Application Exception Handling. This allows
the application to take full control over any or all of the exceptions and attaches a vector service
routine directly to the hardware. The exception handler routine needs to be written in assembly
language when using this configuration method.

The configuration option names described are found in the graphical configuration tool. In
parentheses are the CDL names for the given option. For example, using the graphical configuration
tool you could look up the configuration option name HAL Exception Support, which is located in the
configuration window. This configuration option has a CDL macro associated with it—in this case,
CYGPKG_HAL_EXCEPTIONS—which is located in the Properties window of the graphical configu-
ration tool. We cover the graphical configuration tool in Chapter 11, The eCos Toolset.

The configuration options that control the exception handling are the HAL Exception Sup-
port (CYGPKG_HAL_EXCEPTIONS) option, located under the Platform-Independent HAL
Options (CYGPKG_HAL_COMMON) component, and the Exception Handling
(CYGPKG_KERNEL_EXCEPTIONS) component under the eCos Kernel package. Each of these
configuration components requires the other to be enabled. Enabling these options allows HAL
and Kernel Exception Handling. If both of these configuration options are disabled, it is up to
you to provide exception handlers for Application Exception Handling.

Figure 3.1 shows the exception handling execution flow for the two main configuration
options. The gray boxes illustrate, using a system call exception as an example, the HAL and
Kernel Exception Handling execution flow. The white boxes show the execution flow for Appli-
cation Exception Handling using an alignment exception as an example. We look at the execu-
tion flow shown in Figure 3.1 later in this chapter.

As another option, all exception handling can be disabled in the system. If this configura-
tion is selected and an exception occurs, the macro CYG_FAIL is called and an assertion is
raised. If assertions are not enabled, the state of the processor is restored; however, the cause of
the exception might still exist. This is not a very elegant method for exception handling and can
lead to undefined system behavior when an exception occurs. However, if code space is
extremely important, it might be necessary to eliminate any extended exception processing.

3.1.1 HAL and Kernel Exception Handling

It is important that an exception handler is installed for each exception supported by the processor.
If a handler is not installed for a particular exception and it occurs during execution, the proces-
sor will jump to the exception address to begin execution only to find no code to execute. This can
cause erratic behavior that can be very difficult to debug and might lead to system failures.

Exceptions 33

The eCos HAL uses a Vector Service Routine (VSR) table that is defined in each HAL
package as hal_vsr_table. The VSR table is an array of pointers to the exception handler
routines. The VSR table is the first place the processor looks to determine where to jump to exe-
cute the exception handler.1 The size and base address of the hal_vsr_table is architecture

Figure 3.1 eCos exception handling execution flow.

1 Certain HAL processor architectures, such as the i386, perform decoding of the exception vector number in order to
determine where to look in the VSR table.

hal_vsr_table

HAL Level

Kernel Level

HAL default
exception
handler

cyg_hal_exception_handler

__handle_exception cyg_hal_deliver_exception

Application
Installed

Alignment
Exception

Vector
Service
Routine

Hardware
Get handler from vector

service routine table

Application
Installed

System Call
Exception
Handler

Application Level

Include GDB
Stubs in HAL

HAL Exception
Support and Kernel
Exception Handling

System Call
Exception

Alignment
Exceptionrestore_state

34 Chapter 3 • Exceptions and Interrupts

specific. For example, the PowerPC architecture has the option of locating the VSR table at
either address 0x0000_0000 or 0xFFF0_0000, based on the configuration option settings of
certain processor registers. The MIPS architecture specifies that the exception vector location be
at address 0xBFC0_0000. Linker script files are used to define the location of the exception
vector table. Linker script files are located under the arch subdirectory for a given HAL archi-
tecture and have a .ld extension.

The VSR table is located at a fixed memory location. This allows an application running
from RAM, which is a typical debug configuration, to take control over certain exception service
routines while keeping the ROM monitor in charge of debug exception handlers.

The eCos HAL ensures that a default exception VSR is installed during the HAL startup
process for each exception supported by a given architecture. Installation of the default excep-
tion VSR takes place in the routine hal_mon_init. There is one default exception VSR
defined in each HAL package. Different architectures have different names for the default
exception VSR, as shown in Table 3.1.

The ARM architecture is not listed in Table 3.1 because it does not use the
hal_vsr_table. Instead, the ARM architecture defines separate handler routines for each
exception it supports. These routines can be found in the file vectors.S.

The job of the default exception VSR is to perform the common processing of all exceptions,
which includes saving the processor’s state, calling any kernel-level handler routine to perform

Table 3.1 Default Exception Vector Service Routines

Architecture Default Exception Vector Service Routine Name

CalmRISC16a

a The CalmRISC16 processor contains two different default exception routines, one for a swi exception and one for
a trace exception.

__default_swi_vsr and
__default_trq_vsr

Fujitsu FR-V _exception

Hitachi H8/300 __default_trap_vsr

i386 (including Synth), PowerPC, SuperH cyg_hal_default_exception_vsr

CalmRISC32, MIPS, MN10300 __default_exception_vsr

V8x do_exception

SPARC, SPARClite hal_default_exception_vsr

Exceptions 35

additional processing, and restoring the state of the processor prior to returning to normal program
execution.

After the HAL has completed the common exception processing, control is passed to the
kernel level. The routine that is called to handle this HAL-to-kernel transition is
cyg_hal_exception_handler. This routine is found in the file hal_misc.c under the
HAL arch subdirectory. The cyg_hal_exception_handler routine has two different
execution paths possible, based on configuration option settings. If we look at Figure 3.1, we can
follow the execution path for a system call exception, shown in the gray boxes. At the kernel
level, the two possible configuration options are labeled on the lines leading from the
cyg_hal_exception_handler routine.

The first kernel-level configuration option we see in Figure 3.1 is Include GDB Stubs in
HAL (CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS), which is under the Source-Level
Debug Support HAL (CYGPKG_HAL_DEBUG) common component. This option is typically
used in a HAL package for a ROM monitor build to allow the debug stub code to process the
exception. This exception processing occurs in the routine __handle_exception. The
__handle_exception routine manages all debug exception processing such as breakpoints,
single stepping, and debug packet protocol communication. Additional information about GDB
and the GDB protocol can be found online at:

http://sources.redhat.com/gdb/onlinedocs/gdb_toc.html

The second kernel-level configuration option we see in Figure 3.1 is HAL Exception Support
(CYGPKG_HAL_EXCEPTIONS), under the General Platform-Independent HAL common com-
ponent. This HAL option requires the Kernel Exception Handling to be enabled in the eCos Ker-
nel package. In this configuration, an application can install its own handler for exceptions to
take care of any further processing, such as displaying or logging an error message.

Within the kernel Exception Handling (CYGPKG_KERNEL_EXCEPTIONS) option is the
configuration suboption Use Global Exception Handlers (CYGSEM_KERNEL_EXCEPTIONS_
GLOBAL), which allows installation of handlers to be either global—one set of handlers for all
exceptions in the entire system—or on a per-thread basis. The default configuration for this sub-
option setting is to enable global exception handlers. In this configuration, the HAL exception
handler calls the routine cyg_hal_deliver_exception, which is located in the file
except.cxx under the kernel package subdirectory.

Item List 3.1 Kernel Exception Handler API Functions

Syntax: void
cyg_exception_set_handler(
 cyg_code_t exception_number,
 cyg_exception_handler_t *new_handler,
 cyg_addrword_t new_data,
 cyg_exception_handler_t **old_handler,
 void **old_data
);

36 Chapter 3 • Exceptions and Interrupts

Context:2 Thread
Parameters: exception_number—HAL architecture-specific exception definition number. Each

HAL defines, in the file hal_intr.h, all exceptions supported starting from 0.
new_handler—address of application exception handler routine to be called after HAL
has completed its exception processing.
new_data—data to be passed into exception handler.
old_handler—address of previously installed exception handler, or NULL if this is the
first handler installed for the exception.
old_data—data of previously installed exception handler, or NULL if this is the first
handler installed for the exception.

Description: Replace the current exception handler either globally or on a per thread basis, depending
on the kernel exception handling configuration.

Syntax: void
cyg_exception_clear_handler(
 cyg_code_t exception_number,
);

Context: Thread
Parameters: exception_number—HAL architecture-specific exception definition number. Each

HAL defines, in the file hal_intr.h, all exceptions supported starting from 0.
Description: Restores the default handler.

Syntax: void
cyg_exception_call_handler(
 cyg_handle_t thread,
 cyg_code_t exception_number,
 cyg_addrword_t exception_info
);

Context: Thread
Parameters: thread—current handle for the executing thread allowing the thread to call the global or

thread exception handler.
exception_number—HAL architecture-specific exception definition number. Each
HAL defines, in the file hal_intr.h, all exceptions supported starting from 0.
exception_info—this parameter is the third parameter passed into the exception han-
dler routine.

Description: Invokes the installed exception handler for the given exception number. The return value is
void for this function.

To control the exception service routines from the application, the eCos kernel defines
functions within its API. Item List 3.1 shows the details of these functions.

1 #include <cyg/kernel/kapi.h>
2 #include <cyg/infra/diag.h>
3 #include <cyg/hal/hal_intr.h>

2 If global exception handlers are used, by enabling the Use Global Exception Handlers configuration option, the set
and clear functions can also be called during initialization.

Exceptions 37

4
5 //
6 // New System Call exception handler.
7 //
8 void system_call_exception_handler(
9 cyg_addrword_t data,
10 cyg_code_t number,
11 cyg_addrword_t info)
12 {
13 diag_printf("ERROR: System Call Exception\n");
14 }
15
16
17 //
18 // Main starting point for the application.
19 //
20 void cyg_user_start(
21 void)
22 {
23 cyg_exception_handler_t *old_handler;
24 cyg_addrword_t old_data;
25
26 //
27 // Install the exception handler for error output.
28 //
29 cyg_exception_set_handler(
30 CYGNUM_HAL_VECTOR_SYSTEM_CALL,
31 &system_call_exception_handler,
32 0,
33 &old_handler,
34 &old_data);
35 }

Code Listing 3.1 Example using the eCos kernel API for installing an exception handler within
an application.

In Code Listing 3.1, we see an example of an application setting up the routine
system_call_exception_handler, shown on line 8, for the PowerPC system call excep-
tion, CYGNUM_HAL_VECTOR_SYSTEM_CALL. CYGNUM_HAL_VECTOR_SYSTEM_CALL is
defined in the PowerPC HAL package in the file hal_intr.h, which is included on line 3.

In this example, the exception handler simply writes out a message to the diagnostic port
when this particular exception occurs, as shown on line 13. The function used is
diag_printf, which is defined in the file diag.h included on line 2. When the call is made
to install the handler, line 29, it can apply to either the thread or globally, depending on the con-
figuration of the Use Global Exception Handlers (CYGSEM_KERNEL_EXCEPTIONS_GLOBAL)
exception handling configuration suboption.

38 Chapter 3 • Exceptions and Interrupts

The cyg_user_start function, on line 20, is the main application entry point. The
kernel startup process describing the cyg_user_start function is detailed in Chapter 5. To
use the kernel API, the application must include the file kapi.h. The parameters passed into
system_call_exception_handler, lines 9, 10, and 11, are:

• data—the parameter setup in the cyg_exception_set_handler call (0 in this
example). It is often useful to use this parameter to pass a pointer to a structure for the
exception handler routine to have information needed.

• number—the exception number that occurred.

• info—the processor-specific saved machine state. Currently, a pointer to the
HAL_SavedRegisters structure is passed in this parameter. If this structure is
modified, the saved state of the processor is altered. This allows the exception handler
to correct the condition in order to allow the processor to continue. See the HAL macro
definitions in Chapter 2 for an explanation of this architecture-specific structure.

If we look at Figure 3.1, the gray boxes illustrate the execution flow after setting up the
exception handler in Code Listing 3.1.

The final routine that is called from the HAL is restore_state, as shown in Figure 3.1.
This routine restores the processor registers to the state they were in prior to entering the default
exception VSR. The state of the processor is contained in the HAL_SavedRegisters structure,
which is passed in as a pointer. After restore_state returns, the processor can continue with
its normal execution of the program.

3.1.2 Application Exception Handling

eCos provides a means for an application to completely take over all or some of the exception
handling. This eliminates the HAL and kernel processing and allows the processor to vector
directly to an application’s VSR when an exception occurs. The application exception handler is
then responsible for saving and restoring the processor’s state, the same functionality provided
by the HAL default exception VSR. It is also important to note that the VSR must be written in
assembly language.

As we see in Figure 3.1, the white boxes illustrate how the application can take over
exception handling. After the alignment exception occurs the VSR installed by the application is
called to handle the exception condition. After the VSR completes, the handler must restore the
processor’s state so that the program can continue running.

The HAL defines macros to give the application access to the VSR table directly. These
macros are described in Item List 3.2.

Item List 3.2 HAL Exception Vector Service Routine Macros

Syntax: HAL_VSR_GET(

 vector,

Exceptions 39

 pvsr
)

Parameters: _vector_—exception vector to retrieve from the VSR table. Each HAL defines, in the
file hal_intr.h, all exceptions supported starting from 0. This value is used to deter-
mine the index into the VSR table.
pvsr—returned address of the VSR from the table.

Description: Get the current VSR set in the hal_vsr_table and return it in the location pointed to
by _pvsr_.

Syntax: HAL_VSR_SET(
 vector,
 vsr,
 poldvsr
)

Parameters: _vector_—exception vector to set in the VSR table. Each HAL defines, in the file
hal_intr.h, all exceptions supported starting from 0. This value is used to determine
the index into the VSR table.
vsr—new vector service routine address to set in the VSR table.
poldvsr—returned address of the previously installed VSR.

Description: Replace the routine in the hal_vsr_table with the new vector service routine.

When installing a vector service routine, it is not necessary to call the HAL set and get mac-
ros directly. The eCos kernel API defines functions for the application to use instead. Item List 3.3
shows the kernel API functions for accessing the VSR table. These functions call the respective get
and set HAL macros defined in Item List 3.3. For example, cyg_interrupt_get_vsr calls
the HAL macro HAL_VSR_GET.

Item List 3.3 Kernel Exception Vector Service Routine API Functions

Syntax: void
cyg_interrupt_get_vsr(
 cyg_vector_t vector,
 cyg_VSR_t **vsr
);

Context: Any
Parameters: vector—exception vector to retrieve from the VSR table. Each HAL defines, in the file

hal_intr.h, all exceptions supported starting from 0. This value is used to determine
the index into the VSR table.
vsr—returned pointer to vector service routine currently set in the VSR table.

Description: Return the pointer for the given exception vector from the VSR table.

Syntax: void
cyg_interrupt_set_vsr(
 cyg_vector_t vector,
 cyg_VSR_t *vsr
);

Context: Any

40 Chapter 3 • Exceptions and Interrupts

Parameters: vector—exception vector to set in the VSR table. Each HAL defines, in the file
hal_intr.h, all exceptions supported starting from 0. This value is used to determine
the index into the VSR table.
vsr—address of the vector service routine to be set in the VSR table.

Description: Set the vector service routine directly into the VSR table. This vector service routine must
be written in assembly and handle all exception processing, such as saving and restoring
the processor state information.

3.2 Interrupts

An interrupt is an asynchronous external event that occurs during program execution, causing a
break in the normal program execution. Typically, these external events are hardware related,
such as a button press or timer expiration. Interrupts can happen at any time. Interrupts allow
time-critical operations to be performed with higher precedence over normal program execution.

Similar to exception processing, when an interrupt occurs, the processor jumps to a specific
address for execution of the Interrupt Service Routine (ISR). Hardware support for interrupts varies
among different architectures. Each processor has its own number of interrupt pins to trigger the ISR.

The methods for vector handling among different architectures are also diverse. Some pro-
cessor architectures support vectoring interrupts to individual vectors, while others have a single
vector for all interrupts. When individual vectors are supported, an ISR can be attached directly
to the vector for processing when the interrupt occurs. For single vector support, the software
must determine which interrupt occurred before proceeding to the appropriate ISR.

One of the key concerns in embedded systems with respect to interrupts is latency.
Latency is the interval of time from when an interrupt occurs until the ISR begins to execute.
eCos employs an interrupt handling scheme to reduce interrupt latency in the system.

3.2.1 eCos Interrupt Model

eCos uses a split interrupt handling scheme where the interrupt processing is divided into two
parts. The first part is the ISR, and the second part is the Deferred Service Routine (DSR). This
scheme allows for the minimal amount of interrupt latency in the system by reducing the amount
of time spent inside interrupt service routines. The idea is to keep the processing done in the ISR
to a bare minimum. In this scheme, the DSR is executed with interrupts enabled, allowing other
higher priority interrupts to occur and be processed in the midst of servicing a lower priority
interrupt.

In some cases, where very little interrupt processing needs to be done, the interrupt can be
handled in the ISR completely. If more complex servicing is required, a DSR should be used.
The DSR is executed at a later time when thread scheduling is allowed. Executing the DSR at a
later time allows the DSR to use kernel synchronization mechanisms; for example, to signal
a thread, via a semaphore, that an interrupt has occurred. However, there are periods where
thread scheduling is disabled by the kernel, although these periods are kept as small as possible.
User threads can suspend scheduling as well. This prevents the DSR from executing. Preventing
the DSR from executing in a timely manner can lead to system failures from an interrupt source

Interrupts 41

overrunning. These issues should be kept in mind when designing the interrupt structure and
how it interacts with the threads in the system.

In most cases, the DSR is executed immediately after the ISR completes. However, if a
thread has locked the scheduler, the DSR is delayed until the thread unlocks it. The priority scheme
is that ISRs have absolute priority over DSRs, and DSRs have absolute priority over threads.

For the split interrupt handling scheme to work, the ISR must ensure the interrupt that just
occurred does not recur until the DSR has finished its processing. To accomplish this, the ISR masks
the current interrupt and the DSR will unmask the current interrupt after it has been serviced.

Some HAL implementations offer an interrupt nesting scheme. In this scenario, higher pri-
ority interrupts can interrupt, and be processed before, lower priority interrupts. A configuration
option is available to enable this nesting functionality, as shown in Item List 3.5.

3.2.1.1 Interrupt and Scheduler Synchronization
It is important to understand the interaction between the interrupt (ISR and DSR) and the sched-
uler. Certain guidelines must be followed during interrupt processing to ensure proper operation.

First, ISRs cannot make any scheduler-related synchronization function calls. These
include kernel API functions for semaphores, mutexes, and condition variables. Kernel synchro-
nization functions cause interaction with the scheduler, which is disabled during ISR execution.
Making such calls causes undefined behavior in the system and can lead to system failures. The
eCos interrupt scheme allows these synchronization calls to be made from the DSR.

Typically, the DSR will execute immediately after the ISR finishes. DSRs are only delayed
if the thread that was interrupted had locked the scheduler for some reason. Since the DSR exe-
cutes when thread scheduling is enabled, certain kernel synchronization calls are allowed from
within the DSR. This enables a DSR to wake up a thread for additional processing after the
interrupt has occurred.

However, DSRs must not make a synchronization call that blocks. Blocking occurs when
code execution must wait for a resource to be released. For example, using the kernel API call
cyg_mutex_lock stops the current thread from executing until the mutex is released, with a
cyg_mutex_unlock call.

An example of a DSR that uses one of the kernel synchronization primitives is shown in
Code Listing 3.2.

N O T E eCos does not off er any configuration options to change
the interr upt pr iority scheme among the ISR, DSR, and thread.

N O T E It is worth bringing additional attention to this point
about calling functions within a DSR. Any function that blocks
cannot be called from within the DSR. This includes C library
functions, such as printf, that might use blocking calls internally.

42 Chapter 3 • Exceptions and Interrupts

3.2.2 Interrupt Configuration

The eCos interrupt configuration options affect the way interrupts are processed in the system.
Configuration options for interrupts are available at the HAL and kernel level. The configuration
options available are architecture dependent.

The HAL-level configuration options are located under the HAL Interrupt Handling
(CYGPKG_HAL_COMMON_INTERRUPTS) within the HAL Common Configuration Components.
Item List 3.4 lists the configuration options available for setting up interrupts at the HAL level.

Item List 3.4 HAL Interrupt Configuration Options

Option Name Use Separate Stack For Interrupts
CDL Name CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK
Description Allows a separate stack, maintained by the HAL, during interrupt processing. This elimi-

nates the need for every thread stack to allow space for interrupt handlers. This option is
enabled by default.

Option Name Interrupt Stack Size
CDL Name CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE
Description Specifies, in bytes, the stack size for the interrupt stack. This is the stack that will be used

for all interrupts when Use Separate Stack For Interrupts is enabled. The value for this
option is dependent on the architecture and application, as well as other interrupt configu-
ration options, such as interrupt nesting. This stack is also used during the HAL startup
process. The default value for this option is 4096.

Option Name Allow Nested Interrupts
CDL Name CYGSEM_HAL_COMMON_INTERRUPTS_ALLOW_NESTING
Description Causes the HAL default interrupt VSR to re-enable interrupts prior to invoking the inter-

rupt handler. This allows other interrupts, typically of higher priority, to occur and be pro-
cessed. This option is disabled by default.

Option Name Save Minimum Context On Interrupt
CDL Name CYGDBG_HAL_COMMON_INTERRUPTS_SAVE_MINIMUM_CONTEXT
Description Permits the HAL interrupt handling code to use architecture-specific calling conventions,

reducing the amount of state information saved. This improves performance and reduces code
size. The drawback is that debugging is often more difficult. This option is enabled by default.

Option Name Chain All Interrupts Together
CDL Name CYGIMP_HAL_COMMON_INTERRUPTS_CHAIN
Description Allows all interrupt vectors to be chained, requiring each handler to check if it needs to

process the interrupt. The default for this option is disabled, allowing interrupts to be
attached to individual vectors.

Option Name Ignore Spurious Interrupts
CDL Name CYGIMP_HAL_COMMON_INTERRUPTS_IGNORE_SPURIOUS
Description Specifies whether to ignore an interrupt that might occur from the hardware source not being

properly de-bounced or interrupts coming from glitches. This option is disabled by default.

Interrupts 43

Careful consideration is necessary when specifying the HAL interrupt configuration set-
tings. Since the DSR executes with interrupts enabled, another interrupt might occur during the
execution of the DSR. This means that the processor state information, which can be sizeable for
certain architectures, for the current interrupt needs to be saved on the stack.

The stack used depends on the Use Separate Stack For Interrupts option. If this option is
disabled, every thread in the system needs to be able to store the interrupt state information on
its stack, since interrupts can happen at any time. If multiple interrupts occur, the stack would
need the resources to hold the state information for each of these interrupts.

If Use Separate Stack For Interrupts is enabled, the threads in the system would only need
to store a single interrupt state from the interrupt that caused the thread to de-schedule, along
with its own thread state information. Only the interrupt stack has the responsibility to store this
state information. The size of the interrupt stack should be carefully selected.

Another option that can change the way interrupts are handled is the configuration of
Allow Nested Interrupts. The default setting for this option is disabled, meaning that interrupts
are disabled during the ISR. When this option is enabled, the ISR enables interrupts to the pro-
cessing of any higher priority interrupts that might occur. Some architectures support this feature
in hardware. In most systems, the need to allow nested interrupts is nonexistent because the ISR
is kept very short and the main work is accomplished in the DSR.

The kernel-level interrupt configuration options are under the Kernel Interrupt Handling
(CYGPKG_KERNEL_INTERRUPTS) component. Within this component is the main option Use
Delayed Service Routines (CYGIMP_KERNEL_INTERRUPTS_DSRS), which enables or disables
the eCos split interrupt handling scheme.

The kernel-level interrupt suboptions available when using DSRs are listed in Item List 3.5.

Item List 3.5 Kernel Interrupt Configuration Options

Option Name Use Linked Lists For DSRs
CDL Name CYGIMP_KERNEL_INTERRUPTS_DSRS_LIST

Description Allows the kernel to keep track of pending DSRs in a linked list, preventing a table over-
flow from occurring. However, interrupts are disabled for a brief period while the kernel
traverses the list. Alternatively, a fixed-size table can be used, with the number of entries
configurable. This option is enabled by default.

Option Name Use Fixed-Size Table For DSRs
CDL Name CYGIMP_KERNEL_INTERRUPTS_DSRS_TABLE

N O T E If the Use Delayed Service Routines configuration
option is disabled, it is up to the user to accommodate synchroni-
zation between ISRs and threads. Many of the kernel API func-
tions cannot be called from an ISR context, as shown in the
kernel API function tables throughout this book.

44 Chapter 3 • Exceptions and Interrupts

Description Enables the use of a fixed-size table for keeping track of pending DSRs in the kernel. If
this option is enabled, the number of entries in the list is configurable as a suboption. This
option is disabled by default.

Option Name Chain All Interrupts Together
CDL Name CYGIMP_KERNEL_INTERRUPTS_CHAIN
Description Allows all interrupt vectors to be chained, requiring each handler to check if it needs to

process the interrupt. The default for this option is disabled, allowing interrupts to be
attached to individual vectors.

3.2.3 Interrupt Handling

An interrupt is a type of exception that can be found in a processor’s exception table. As men-
tioned previously, different architectures support interrupts in various methods; however, eCos
provides a standard method for handling interrupts across all HAL architectures. The ARM
architecture is the exception that deviates from the standard eCos interrupt handling model.

The eCos interrupt handling mechanism, described in this section, can be bypassed by
installing a vector service routine in the VSR table directly from the application layer. The appli-
cation is then solely responsible for implementing, in assembly language, all support that would
otherwise have been provided by the HAL default interrupt VSR, such as storing and restoring
the processor’s current state after the interrupt has been serviced.

We are going to take a look at the default configuration when the HAL default interrupt VSR
is used. The HAL default interrupt VSRs for the different architectures are shown in Table 3.2.
Figure 3.2 illustrates the execution flow of the eCos interrupt handling method. This figure
shows the level—application, kernel, and HAL—responsible for executing each piece of code.

Table 3.2 Default Interrupt Vector Service Routines

Architecture Default Interrupt Vector Service Routine Name

CalmRISC16a

a The CalmRISC16 processor contains two different default exception routines, one for a swi exception and one for
a trace exception.

__default_irq_vsr and
__default_fiq_vsr

Fujitsu FR-V _interrupt

i386 (including Synth), PowerPC, SuperH cyg_hal_default_interrupt_vsr

Hitachi H8/300, MIPS, MN10300 __default_interrupt_vsr

V8x do_interrupt

SPARC, SPARClite hal_default_interrupt_vsr

Interrupts 45

The following is a step-by-step description of the execution flow shown in Figure 3.2; the
numbers correspond to the events in the diagram.

1. The first item in Figure 3.2 shows the execution of a thread.
2. The next event is an external hardware interrupt.
3. Now, the processor looks into the VSR table, hal_vsr_table, to determine the

location of the interrupt vector service routine to execute. During HAL startup,
hal_mon_init installs the default interrupt VSR into the VSR table for the external
interrupt. The names of the default interrupt VSRs for the different architectures are
shown in Table 3.2. The ARM architecture is not shown in the table because it defines
separate vector service routines for each of its interrupts.

4. Next, the default interrupt VSR begins executing. The first task of the default interrupt
VSR is to save the current processor state. As mentioned before, the current processor’s
state can be saved either on a thread’s stack or on the separate interrupt stack, depend-
ing on the HAL interrupt configuration options selected.
After the processor’s state information has been stored, the default interrupt VSR incre-
ments the cyg_scheduler_sched_lock kernel variable to ensure that scheduling
does not take place.
Next, the default vector service routine needs to find out what ISR to call. ISRs are
installed by the application, as we see in the example in Code Listing 3.2.
The HAL uses three tables, implemented as arrays, to maintain the ISR information
needed. The size of these tables is architecture specific. The ISR tables are:

• hal_interrupt_handlers—contains the addresses of the interrupt service
routines installed by the application.

• hal_interrupt_data—contains the data to be passed into the ISR.
• hal_interrupt_objects—contains information that is used at the kernel level

and hidden from the application layer.
The HAL default interrupt VSR uses an architecture-specific function,
hal_intc_decode, to perform the lookup into the hal_interrupt_handlers
table. This function finds the index into the table based on the interrupt vector number
and/or through examining the hardware, such as an interrupt controller. The value is
used for indexing into the data (which is passed into the ISR) and objects (used at the
kernel level) tables as well.

5. Next, the default VSR calls the ISR installed by the application. The ISR, which executes
at the application level, performs any necessary functions for the particular interrupt. The
ISR notifies the kernel that the DSR should be posted for execution by returning
CYG_ISR_CALL_DSR. The ISR also returns CYG_ISR_HANDLED to terminate any
chained interrupt processing. An example of an application ISR and DSR is shown in
Code Listing 3.2.

46

F
ig

u
re

 3
.2

eC
os

 in
te

rr
up

t h
an

dl
in

g
ex

ec
ut

io
n

flo
w

.

H
A

L
 L

ev
el

K
er

n
el

 L
ev

el

H
ar

d
w

ar
e

A
p

p
lic

at
io

n
 L

ev
elT

h
re

ad
E

xe
cu

ti
o

n E
xt

er
n

al
H

ar
d

w
ar

e
In

te
rr

u
p

t

G
et

 d
ef

au
lt

V
S

R
 f

ro
m

ve
ct

o
r

se
rv

ic
e

ro
u

ti
n

e
ta

b
le

H
A

L
 d

ef
au

lt
 in

te
rr

u
p

t V
S

R

In
st

al
le

d
In

te
rr

u
p

t
S

er
vi

ce
R

o
u

ti
n

e

in
te

rr
u

p
t_

en
d

p
o

st
_d

sr

In
st

al
le

d
D

ef
er

re
d

S
er

vi
ce

R
o

u
ti

n
e

re
st

o
re

_s
ta

te

R
es

u
m

e
T

h
re

ad
E

xe
cu

ti
o

n

sc
h

ed
u

le
r

u
n

lo
ck

1
5

8
7

6

4

3
2

10

11
9

Interrupts 47

6. After the ISR returns, the default interrupt VSR calls the function interrupt_end.
The function interrupt_end is part of the kernel interrupt handling code and can be
found in the file intr.cxx under the kernel\current\src\intr subdirectory.

7. If a DSR needs to execute, interrupt_end calls the function post_dsr.
post_dsr, also part of the kernel interrupt handling code in the file intr.cxx,
manages the implementation of posting the DSR. The two kernel interrupt configura-
tion options Use Linked Lists For DSRs and Use Fixed-Size Table For DSRs determine
the structure for the DSR list. See the Interrupt Configuration section in this chapter for
a detailed description of these options.

8. After post_dsr returns, interrupt_end then unlocks the scheduler.

9. If the scheduler lock variable is at 0, the DSR executes. If the scheduler lock variable is
greater than 0, then the thread that locked the scheduler executes at this point. In our
case, we assume another thread has not locked the scheduler. An example of a DSR is
shown in Code Listing 3.2.

After the DSR completes, the scheduler unlock code continues execution.

10. Next, the HAL default interrupt VSR restores the processor state. This takes place in the
routine restore_state, the same function called from the default exception VSR.

11. Finally, thread execution continues.

Let’s now look at ISR and DSR functions. Both the ISR and DSR are set up in the applica-
tion using the kernel API function calls. Code Listing 3.2 shows an example of ISR and DSR
functions and how the kernel API is used to set them up.

1 #include <cyg/kernel/kapi.h>

2

N O T E It is important to realize that the thread interrupted, as
described in step 1, might not be the thread that is restored for
execution by the scheduler, detailed in step 11. This can happen
if the DSR executes, as described in step 8, and causes another
thread to become ready to run that is at a higher priority than the
thread that was interrupted.

For example, let’s say that two threads are created in a sys-
tem—thread A and thread B—where thread B is at a higher prior-
ity than thread A. Thread B waits on a semaphore indicating that
data has arrived from a device. Now suppose that thread A is
currently executing when the device causes an interrupt, indicat-
ing data has arrived, as shown in step 2. Steps 3 through 8
occur as described. However, in step 9, the DSR associated with
this interrupt posts the semaphore that thread B is waiting on.
When the scheduler unlock code continues execution, the con-
text of thread B is restored because it is at a higher priority than
thread A. Therefore, in step 11, thread B executes.

48 Chapter 3 • Exceptions and Interrupts

3 static cyg_interrupt int1;
4 static cyg_handle_t int1_handle;
5 static cyg_sem_t data_ready;
6
7 #define CYGNUM_HAL_INTERRUPT_1 1
8 #define CYGNUM_HAL_PRI_HIGH 0
9
10 //
11 // Interrupt service routine for interrupt 1.
12 //
13 cyg_uint32 interrupt_1_isr(
14 cyg_vector_t vector,
15 cyg_addrword_t data)
16 {
17 // Block this interrupt from occurring until
18 // the DSR completes.
19 cyg_interrupt_mask(vector);
20
21 // Tell the processor that we have received
22 // the interrupt.
23 cyg_interrupt_acknowledge(vector);
24
25 // Tell the kernel that chained interrupt processing
26 // is done and the DSR needs to be executed next.
27 return(CYG_ISR_HANDLED | CYG_ISR_CALL_DSR);
28 }
29
30 //
31 // Deferred service routine for interrupt 1.
32 //
33 void interrupt_1_dsr(
34 cyg_vector_t vector,
35 cyg_ucount32 count,
36 cyg_addrword_t data)
37 {
38 // Signal the thread to run for further processing.
39 cyg_semaphore_post(&data_ready);
40
41 // Allow this interrupt to occur again.
42 cyg_interrupt_unmask(vector);
43 }
44
45 //
46 // Main starting point for the application.
47 //
48 void cyg_user_start(
49 void)
50 {

Interrupts 49

51 cyg_vector_t int1_vector = CYGNUM_HAL_INTERRUPT_1;
52 cyg_priority_t int1_priority = CYGNUM_HAL_PRI_HIGH;
53
54 // Initialize the semaphore used for interrupt 1.
55 cyg_semaphore_init(&data_ready, 0);
56
57 //
58 // Create interrupt 1.
59 //
60 cyg_interrupt_create(
61 int1_vector,
62 int1_priority,
63 0,
64 &interrupt_1_isr,
65 &interrupt_1_dsr,
66 &int1_handle,
67 &int1);
68
69 // Attach the interrupt created to the vector.
70 cyg_interrupt_attach(int1_handle);
71
72 // Unmask the interrupt we just configured.
73 cyg_interrupt_unmask(int1_vector);
74 }

Code Listing 3.2 Example using the eCos kernel APIs for installing an interrupt within an
application.

As we see in Code Listing 3.2, the main function, cyg_user_start on line 48, is
called during the kernel startup procedure. We go through the kernel startup procedure in
Chapter 5. After initializing the semaphore, see line 55, which is used in the DSR, the interrupt is
created for the interrupt vector CYGNUM_HAL_INTERRUPT_1, using the kernel function
cyg_interrupt_create, on line 60. The interrupt vector (CYGNUM_HAL_INTERRUPT_1
on line 51) and priority (CYGNUM_HAL_PRI_HIGH on line 52) are defined on lines 7 and 8,
respectively. The data field, as we see on line 63, is set to zero since we do not need to pass
anything into the ISR or DSR.

Next, the main function handles attaching the interrupt just created to the vector using
cyg_interrupt_attach, shown on line 70. Finally, the interrupt 1 vector is unmasked, by
cyg_interrupt_unmask on line 73, so that it can be processed when global interrupts are
enabled. Global interrupts are enabled manually or, as in this example, when the scheduler starts
after cyg_user_start returns.

The ISR, interrupt_1_isr on line 13, masks the current interrupt vector, shown on
line 16, to ensure that it does not occur before the DSR has finished. It then acknowledges the
interrupt within the processor, as we see on line 23. Lastly, the ISR signals to the kernel to post

50 Chapter 3 • Exceptions and Interrupts

the DSR for further processing by returning CYG_ISR_CALL_DSR, on line 27. The ISR also
returns CYG_ISR_HANDLED to terminate any chained interrupt processing.

When the DSR executes, interrupt_1_dsr on line 33, it signals a semaphore, as we
see on line 39, and then unmasks the current interrupt, shown on line 42, so it can occur again.
The semaphore, data_ready, used in this example demonstrates a method of synchronization
between an interrupt and a thread. The thread, which is not included in the code listing, waits on
this semaphore before beginning its processing. You can find the kernel API function descrip-
tions for semaphores, including an example using the semaphore kernel API, in Chapter 6,
Threads and Synchronization Mechanisms.

Detailed descriptions of the kernel API functions used in Code Listing 3.2, and the under-
lying HAL macros, are found in this chapter in the Interrupt Control section.

3.2.4 Interrupt Control

The HAL and kernel offer control over interrupt configuration. The HAL controls interrupts
through the use of macros. The macro names are common across all HAL architectures; how-
ever, the implementations of these macros are architecture specific. The HAL macros are defined
in the file hal_intr.h under the arch subdirectory.

N O T E In some circumstances it might be more useful to
explicitly post a DSR, or multiple DSRs, instead of using the
CYG_ISR_CALL_DSR return value from the ISR. An ISR can e xplicitly
post a DSR by calling cyg_interrupt_post_dsr and passing in
the interrupt object returned from the cyg_interrupt_create
function call, intr. This allows a single ISR to trigger multiple
DSRs, or for an ISR to determine, at the time of the interrupt,
which specific DSR to run from a list of possible DSRs.

The function cyg_interrupt_post_dsr is not par t of the pub-
lished kernel interrupt API. The function is implemented in the fi le
intr.cxx in the intr subdirector y under the kernel source code
directory. To use this function, it m ust be declared as f ollows:

extern void
cyg_interrupt_post_dsr(CYG_ADDRWORD
intr_handle);

Attaching different DSRs to a single interrupt is accom-
plished by creating multiple interrupt objects that have the same
ISR with a different DSR. In the call to the function
cyg_interrupt_create, different interrupt objects are passed in
the intr parameter along with different DSRs in the dsr parame-
ter. However, the same ISR is passed in the isr parameter. It is
important to understand that the function cyg_interrupt_attach
only needs to be called once, with one of the interrupt handles
created for the ISR. See Item List 3.7 for details about the kernel
API for interrupts.

Interrupts 51

The kernel API contains interrupt control functions that make use of these macros. There-
fore, it is not necessary for an application to call directly into the HAL; rather, it can use the ker-
nel API to configure system interrupts. The HAL and kernel interrupt control functionality is
broken down into three groups:

• Interrupt Service Routine Management

• Interrupt State Management

• Interrupt Controller Management

3.2.4.1 Interrupt Service Routine Management
The first of the three groups, Interrupt Service Routine Management, controls the attachment
and detachment of interrupt service routines within the three HAL ISR tables (handlers, data,
and objects). The HAL ISR Management macros are described in Item List 3.6.

Item List 3.6 HAL Interrupt Service Routine Management Macros

Syntax: HAL_INTERRUPT_ATTACH(

 vector,
 isr,

 data,

 object

)

Parameters: _vector_—HAL architecture-specific interrupt definition number. Each HAL defines,
in the file hal_intr.h, all interrupts supported starting from 0. The platform or variant
can define additional interrupts. This value is used to determine the index into the ISR
tables.
isr—ISR address to install into the handler table.
data—data address to install into the data table.
object—object address to install into the object table.

Description: Places the parameters into the ISR tables for the given interrupt vector. The ISR is called
from the HAL default VSR when the interrupt occurs, the data and object are passed into
the ISR as parameters.

N O T E It is important to use the kernel API functions and
avoid using the HAL macros directly. Using the kernel API guar-
antees consistency over the underlying HAL macro implementa-
tions. An example of maintaining consistency is when using the
configuration option to chain interrupts together. By going
through the kernel API when attaching interrupts
(cyg_interrupt_attach), rather than directly using the
HAL_INTERRUPT_ATTACH macro, the algorithm for inserting the
interrupt in the chain list is handled by the kernel API function.
This ensures that the interrupts are inserted into the list using the
process each time.

52 Chapter 3 • Exceptions and Interrupts

Syntax: HAL_INTERRUPT_DETACH(
 vector,
 isr
);

Parameters: _vector_—HAL architecture-specific interrupt definition number. Each HAL defines,
in the file hal_intr.h, all interrupts supported starting from 0. The platform or vari-
ant can define additional interrupts. This value is used to determine the index into the ISR
tables.
isr—ISR address to remove from the handler table.

Description: Remove the interrupt service routine from the ISR table. The ISR is then set to a HAL
default ISR. The data and object tables are set to zero for this vector index.

The kernel API functions for Interrupt Service Routine Management are listed in Item List 3.7.

Item List 3.7 Kernel Interrupt Service Routine Management API Functions

Syntax: void
cyg_interrupt_create(
 cyg_vector_t vector,
 cyg_priority_t priority,
 cyg_addrword_t data,
 cyg_ISR_t *isr,
 cyg_DSR_t *dsr,
 cyg_handle_t *handle,
 cyg_interrupt *intr
);

Context: Thread
Parameters: vector—HAL architecture-specific interrupt definition number. Each HAL defines, in

the file hal_intr.h, all interrupts supported starting from 0. The platform or variant
can define additional interrupts.
priority—for certain HAL architectures, an interrupt priority level is supported. This
value is used when the interrupt is attached.
data—data address to install into the data table when the interrupt is attached. Often, this
parameter is used to provide context information when an ISR is attached to multiple inter-
rupt sources. For example, the parameter can be a pointer to a structure containing state
information for the interrupt source identifying which interrupt triggered.
isr—address of the interrupt service routine to install when the interrupt is attached.
dsr—address of the deferred service routine to install.
handle—pointer to the new interrupt.
intr—returned address of the new interrupt object.

Description: Construct an interrupt object in memory. The interrupt is not attached to the vector, how-
ever, until cyg_interrupt_attach is called.

Syntax: void
cyg_interrupt_delete(
 cyg_handle_t interrupt
);

Context: Thread

Interrupts 53

Parameters: interrupt—handle to the interrupt.
Description: Remove the interrupt object from memory, freeing the memory passed in the intr

parameter to cyg_interrupt_create. This call also detaches, using the
HAL_INTERRUPT_DETACH macro, the ISR, data, and object from the ISR tables.

Syntax: void

cyg_interrupt_attach(

 cyg_handle_t interrupt

);

Context: Thread
Parameters: interrupt—handle to the interrupt.
Description: Attach the interrupt to the vector allowing interrupts to be delivered to the ISR. This func-

tion makes use of the HAL_INTERRUPT_SET_LEVEL and
HAL_INTERRUPT_ATTACH macros. The interrupt is also set up in the chain list if the
configuration option is enabled.

Syntax: void

cyg_interrupt_detach(

 cyg_handle_t interrupt

);

Context: Thread
Parameters: interrupt—handle to the interrupt.
Description: Detach the interrupt from the vector preventing interrupts from being delivered to the ISR.

This function calls the HAL_INTERRUPT_DETACH macro and removes the interrupt
from the chain list if the configuration option is enabled.

3.2.4.2 Interrupt State Management
The second group, Interrupt State Management, allows control over the state of the processor’s
interrupt mask mechanism by accessing the global interrupt enable found in the processor’s reg-
ister. These functions do not access the interrupt controller, which might be present on certain
variants. The HAL Interrupt State Management macros are described in Item List 3.8.

Item List 3.8 HAL Interrupt State Management Macros

Syntax: HAL_DISABLE_INTERRUPTS(

 old

)

Parameters: _old_—returned state of the interrupt mask.

Description: Disable all interrupts. This is accomplished by using the interrupt enable found in one of
the processor’s registers.

Syntax: HAL_ENABLE_INTERRUPTS()

Description: Enable all interrupts. This is accomplished by using the interrupt enable found in one of
the processor’s registers.

54 Chapter 3 • Exceptions and Interrupts

Syntax: HAL_RESTORE_INTERRUPTS(
 old
)

Parameters: _old_—state of the interrupt mask.

Description: Restore the interrupts according to the state of the interrupt mask specified.

Syntax: HAL_QUERY_INTERRUPTS(
 old
)

Parameters: _old_—returned state of the interrupt mask.

Description: Determine state of interrupt mask and return the value.

The kernel API functions for Interrupt State Management are listed in Item List 3.9.

Item List 3.9 Kernel Interrupt State Management API Functions

Syntax: void
cyg_interrupt_disable(
 void
);

Context: Any
Parameters: None
Description: Disable all interrupts, using the HAL_INTERRUPT_DISABLE macro.

Syntax: void
cyg_interrupt_enable(
 void
);

Context: Any
Parameters: None
Description: Enable all interrupts, using the HAL_INTERRUPT_ENABLE macro.

3.2.4.3 Interrupt Controller Management
The final group, Interrupt Controller Management, provides control over any interrupt controller
that might be present for a specific variant. Not all HAL architectures have an interrupt controller.

A specific platform or variant that does contain an interrupt controller provides the imple-
mentation of these macros in its own interrupt definition file. The names of the platform or variant
files containing these override macros differ among architectures. The HAL Interrupt Controller
Management macros are defined in Item List 3.10.

Item List 3.10 HAL Interrupt Controller Management Macros

Syntax: HAL_INTERRUPT_MASK(
 vector
)

Interrupts 55

Parameters: _vector_—HAL architecture-specific interrupt definition number. Each HAL defines,
in the file hal_intr.h, all interrupts supported starting from 0. The platform or variant
can define additional interrupts.

Description: Block the designated interrupt from occurring. This is typically a platform or variant specific
implementation, which requires masking interrupts in the processor’s registers.

Syntax: HAL_INTERRUPT_UNMASK(

 vector

)

Parameters: _vector_—HAL architecture-specific interrupt definition number. Each HAL defines,
in the file hal_intr.h, all interrupts supported starting from 0. The platform or variant
can define additional interrupts.

Description: Unblock the designated interrupt. This is typically a platform- or variant-specific imple-
mentation, which requires masking interrupts in the processor’s registers.

Syntax: HAL_INTERRUPT_ACKNOWLEDGE(

 vector

)

Parameters: _vector_—HAL architecture-specific interrupt definition number. Each HAL defines,
in the file hal_intr.h, all interrupts supported starting from 0. The platform or variant
can define additional interrupts.

Description: Acknowledges the current interrupt from the specified vector. This informs the processor
that the interrupt was received and resets the interrupt to an inactive state. This is typically
a platform- or variant-specific implementation, where the HAL modifies the processor’s
interrupt acknowledge bit in a register.

Syntax: HAL_INTERRUPT_CONFIGURE(

 vector,

 level,

 up

)

Parameters: _vector_—HAL architecture-specific interrupt definition number. Each HAL defines,
in the file hal_intr.h, all interrupts supported starting from 0. The platform or variant
can define additional interrupts.
level—specifies whether the interrupt is level- or edge-triggered.
up—specifies a falling or rising edge for edge-triggered interrupts and a high or low
level for level-triggered interrupts.

Description: Programs the interrupt controller with the configuration settings for a specified interrupt.
These settings determine the method for detecting an interrupt. Not all HAL architectures
support these configuration settings.

Syntax: HAL_INTERRUPT_SET_LEVEL(

 vector,

 level

)

56 Chapter 3 • Exceptions and Interrupts

Parameters: _vector_—HAL architecture-specific interrupt definition number. Each HAL defines,
in the file hal_intr.h, all interrupts supported starting from 0. The platform or variant
can define additional interrupts.
level—priority level setting for the specified interrupt.

Description: Configures the priority level of the specified interrupt. Not all HAL architectures support
these configuration settings.

The kernel API functions for the Interrupt Controller Management group are defined in
Item List 3.11.

Item List 3.11 Kernel Interrupt Controller Management API Functions

Syntax: void

cyg_interrupt_mask(

 cyg_vector_t vector

);

Context: Any
Parameters: vector—HAL architecture-specific interrupt definition number. Each HAL defines, in

the file hal_intr.h, all interrupts supported starting from 0. The platform or variant
can define additional interrupts.

Description: Program the interrupt controller to block delivery of interrupts for the vector specified.
This function calls the HAL_INTERRUPT_MASK macro. All interrupts are disabled dur-
ing this function call.

Syntax: void

cyg_interrupt_mask_intunsafe(

 cyg_vector_t vector

);

Context: Any
Parameters: vector—HAL architecture-specific interrupt definition number. Each HAL defines, in

the file hal_intr.h, all interrupts supported starting from 0. The platform or variant
can define additional interrupts.

Description: Program the interrupt controller to block delivery of interrupts for the vector specified.
This function can be called when interrupts are currently disabled.

Syntax: void

cyg_interrupt_unmask(

 cyg_vector_t vector

);

Context: Any
Parameters: vector—HAL architecture-specific interrupt definition number. Each HAL defines, in

the file hal_intr.h, all interrupts supported starting from 0. The platform or variant
can define additional interrupts.

Description: Program the interrupt controller to unblock interrupts for the specified vector, allowing
interrupts to be delivered to the ISR. This function calls the HAL_INTERRUPT_UNMASK
macro. All interrupts are disabled during this function call.

Interrupts 57

Syntax: void
cyg_interrupt_unmask_intunsafe(
 cyg_vector_t vector
);

Context: Any
Parameters: vector—HAL architecture-specific interrupt definition number. Each HAL defines, in

the file hal_intr.h, all interrupts supported starting from 0. The platform or variant
can define additional interrupts.

Description: Program the interrupt controller to unblock interrupts for the specified vector, allowing
interrupts to be delivered to the ISR. This function can be called when interrupts are
currently disabled.

Syntax: void
cyg_interrupt_acknowledge(
 cyg_vector_t vector
);

Context: Any
Parameters: vector—HAL architecture-specific interrupt definition number. Each HAL defines, in

the file hal_intr.h, all interrupts supported starting from 0. The platform or variant
can define additional interrupts.

Description: Acknowledge the current interrupt from the specified vector. This function is called from
within the ISR to cancel the interrupt request from the processor, preventing a re-trigger of
the same interrupt. This function calls the HAL_INTERRUPT_ACKNOWLEDGE macro.

Syntax: void
cyg_interrupt_configure(
 cyg_vector_t vector,
 cyg_bool_t level,
 cyg_bool_t up
);

Context: Any
Parameters: vector—HAL architecture-specific interrupt definition number. Each HAL defines, in

the file hal_intr.h, all interrupts supported starting from 0. The platform or variant
can define additional interrupts.
level—specifies whether the interrupt is level or edge triggered.
up—specifies a falling or rising edge for edge-triggered interrupts, and a high or low level
for level-triggered interrupts.

Description: Program the interrupt controller with the method for detecting an interrupt. This function
calls the HAL_INTERRUPT_CONFIGURE macro.

The kernel API functions for Symmetric Multi-Processing (SMP) systems are defined in
Item List 3.12. eCos support for SMP is covered in Chapter 8.

Item List 3.12 Kernel SMP Interrupt API Functions

Syntax: void
cyg_interrupt_set_cpu(
 cyg_vector_t vector,

58 Chapter 3 • Exceptions and Interrupts

 cyg_cpu_t cpu
);

Context: Any
Parameters: vector—exception vector to retrieve from the VSR table. Each HAL defines, in the file

hal_intr.h, all exceptions supported starting from 0. This value is used to determine
the index into the VSR table.
cpu—processor to receive interrupt.

Description: Specifies the processor to handle the hardware interrupt. The VSR, ISR, and possibly DSR
execute on this processor as well.

Syntax: cyg_cpu_t
cyg_interrupt_get_cpu(
 cyg_vector_t vector
);

Context: Any
Parameters: vector—exception vector to set in the VSR table. Each HAL defines, in the file

hal_intr.h, all exceptions supported starting from 0. This value is used to determine
the index into the VSR table.

Description: Returns the CPU designated to handle the specified interrupt.

3.3 Summary
In this chapter, we looked at eCos exception handling. We saw how the VSR table is used by
eCos to run exception handling routines. We looked at the two options for exception handling.
One option allows the HAL and kernel to provide default exception routines. The other option
requires complete support of exception handling to be provided by the application.

Then we proceeded to examine the eCos split interrupt processing scheme using ISRs and
DSRs. This provides us with a mechanism to reduce interrupt latency and allows interrupts to
synchronize with the threads running in the system. Finally, we went through the eCos interrupt
handling process.

59

C H A P T E R 4

Virtual Vectors

his chapter details the mechanism used by the eCos HAL for various communication
methods called virtual vectors. We cover how virtual vectors are used, the services pro-

vided, and the different configuration options available. Understanding virtual vectors aids our
understanding for the different debugging methods described in later chapters.

4.1 Virtual Vectors
eCos defines a group of pointers to service functions and data called virtual vectors. The princi-
pal role of the virtual vectors is to allow services provided by a ROM startup configuration, such
as a ROM monitor, to be accessed by a RAM startup configuration, the application being
debugged.

For example, during typical application development, the target hardware boots up using a
ROM monitor, such as RedBoot. The application being debugged is built using a RAM startup
type. Then, the host running a debugger, such as GDB, uses a communication channel to down-
load the application software and exchange debug information with RedBoot. It is also useful for
the application to use this same communication channel for diagnostic messages, such as
diag_printf. The application’s diagnostic code needs to be aware of the communication
channel to use in order to output information. Therefore, either RedBoot needs to pass the com-
munication channel information to the application during startup, or a level of indirection can be
used. The level of indirection is a virtual vector, which offers a more general solution. Using this
type of configuration also eliminates the need for debug code from the user application because
the ROM monitor provides this functionality. Additional information about the RedBoot ROM
monitor can be found in Chapter 9, The RedBoot ROM Monitor.

T

60 Chapter 4 • Virtual Vectors

During typical development, the application does not need to be aware of the virtual vectors;
diagnostic output is seamlessly routed to the appropriate communication channel.

Using virtual vectors also makes it possible to debug user applications from an arbitrary
channel. For example, if an application only contains a device driver for a serial port for its own
communications, a ROM monitor can use an Ethernet port, with proper networking support, for
debug communications. The user application does not need to contain an Ethernet device driver
or networking stack because this is all handled by the ROM monitor. Since this Ethernet port
debugging functionality can be eliminated from the user application, the result is a smaller
image that only contains code used in the production release.

One issue with sharing resources between a ROM monitor and a user application is that
the two are linked separately; therefore, each is unaware of the location of objects in the other’s
address space. Virtual vectors are used to overcome this problem by providing a common struc-
ture with a defined layout that is known by the ROM monitor and user application.

Virtual vectors are contained within the Virtual Vector Table (VVT). The VVT is then
placed at a static memory location in the target address space, of which both the RAM applica-
tion and ROM monitor are aware. The VVT, defined as hal_virtual_vector_table in
the file hal_if.h under the common HAL subdirectory, is an array of 64 vectors. The actual
location of the VVT is dependent on the HAL architecture and setup in the linker script file.
Linker script files are located under the arch subdirectory and have a .ld extension. The mem-
ory, 256 bytes, for the VVT is allocated whether or not the VVT is used.

The method for using the VVT varies depending on the functionality needed by the RAM
application. Functions in the VVT can be implemented in the ROM monitor, the RAM applica-
tion, disabled by installing pointers to dummy routines at certain locations, or control can be
taken over at run time by reinitializing certain pointers in the VVT.

In general, a loose policy for governing the VVT is that the ROM monitor or the standalone
application initializes all vectors in the table. The RAM application can then reinitialize any ser-
vices it needs to provide. The default configuration is that the ROM monitor provides the console
and debugging I/O services, and the RAM application initializes all other services.

Table 4.1 lists the available virtual vectors contained in the VVT. The virtual vector num-
bers, which are defined in the file hal_if.h under the common HAL subdirectory, correspond
to the location of the vector in the VVT. Service functions that are unused are set to the
nop_service function, which returns 0, defined in the common HAL. Data services that are
unused are set to 0.

N O T E Some platf orms do not use vir tual vectors. However,
it is recommended that all ne w ports implement vir tual vector
functionality .

Virtual Vectors 61

Table 4.1 Virtual Vector Table Service Functions and Data

Service Function or Data
Virtual
Vector

Number
Description

Virtual Vector Table Version 0 Version of the table. This value contains the total num-
ber of virtual vectors in the upper 16 bits, and the defini-
tion number of the last supported virtual vectors in the
lower 16 bits. For this VVT, the total number of virtual
vectors is 64d (0x40), and the definition number of the
last virtual vector, Flash ROM Configuration, is 20d
(0x14). The version is therefore 0x4014.

Interrupt Table 1 Interrupt service routine table,
hal_interrupt_handlers, address.

Exception Table 2 Exception vector service routine table,
hal_vsr_table, address.

Debug Vector 3 UNUSED

Kill Vector 4 Function to execute when a kill instruction is received
from the debugger. This typically calls the platform-
specific reset function.

Console I/O Procedures Table 5 Communication interface procedures table used for
console I/O. This is described in further detail in the
Communication Channels section of this chapter.

Debug I/O Procedures Table 6 Communication interface procedures table used for
debugging I/O. This is described in further detail in the
Communication Channels section of this chapter.

Flush Data Cache 7 Flush processor data cache for a specified region. Uses
the HAL macros HAL_DCACHE_FLUSH and
HAL_DCACHE_INVALIDATE.

Flush Instruction Cache 8 Flush processor instruction cache for a specified
region. Uses the HAL macros HAL_ICACHE_FLUSH
and HAL_ICACHE_INVALIDATE.

CPU Data 9 UNUSED

62 Chapter 4 • Virtual Vectors

Board Data 10 UNUSED

System Information 11 UNUSED

Set Debug Communication
Channel

12 Sets the current debug communication channel.

Set Console Communication
Channel

13 Sets the current console communication channel.

Set Serial Baud Rate 14 UNUSED

Debug System Call 15 Communication vector between ROM monitor and
RAM application. The ROM monitor uses this func-
tion, which is provided by the RAM application, to
retrieve debug data about the application, such as
thread information.

Reset 16 Performs a software reset.

Console Interrupt Flag 17 This flag is set when a debugger interrupt is detected
during the processing of console I/O.

Microsecond Delay 18 Delay by the specified number of microseconds.

Debug Data 19 UNUSED

Flash ROM Configuration 20 Allows an application to access the Flash ROM config-
uration data in the ROM monitor. The information
contained in the configuration is monitor specific, but
can include the Ethernet Media Access Control (MAC)
address, for example.

Install Breakpoint 35 Installs a breakpoint at a specified address, which is
used by asynchronous breakpoint support for GDB.

Table 4.1 Virtual Vector Table Service Functions and Data (Continued)

Service Function or Data
Virtual
Vector

Number
Description

Virtual Vectors 63

4.1.1 Virtual Vector Configuration

The virtual vector configuration options affect the initialization of the VVT. The default configu-
ration options for the VVT, which can be overridden, are that the ROM monitor provides the
debugging and diagnostic I/O services, and RAM applications rely on these services. In the case
of a standalone production system, all services are provided by the application.

The virtual vector configuration options are located under the ROM Monitor Support
(CYGPKG_HAL_ROM_MONITOR) configuration option within the HAL Common Configura-
tion Components. The main virtual vector configuration option is Enable Use of Virtual Vector
Calling Interface (CYGSEM_HAL_VIRTUAL_VECTOR_SUPPORT), which is enabled by
default and can only be disabled by hand-editing configuration files. Item List 4.1 lists the vir-
tual vector configuration suboptions.

The two configuration options, Behave as a ROM Monitor (CYGSEM_HAL_ROM_MONITOR)
and Work With a ROM Monitor (CYGSEM_HAL_USE_ROM_MONITOR), determine the type of
image being built. These options are also found under the ROM Monitor Support
(CYGPKG_HAL_ROM_MONITOR) configuration option within the HAL Common Configuration
Components. The two ROM monitor options dictate where the virtual vector configuration subop-
tion settings take effect. For RAM application debugging, typically Work With a ROM Monitor is
enabled. If a ROM monitor or released application is being built, Behave as a ROM Monitor
is selected.

Item List 4.1 Virtual Vector Configuration Suboptions

Option Name Inherit Console Settings From ROM Monitor
CDL Name CYGSEM_HAL_VIRTUAL_VECTOR_INHERIT_CONSOLE

Description Allows the RAM application to inherit the console setup by the ROM monitor using the
configured channel and text encoding style.

Option Name Debug Channel Is Configurable
CDL Name CYGPRI_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_CONFIGURABLE

Description Allows the HAL startup code to make use of the debug channel configuration.

Option Name Console Channel Is Configurable
CDL Name CYGPRI_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_CONFIGURABLE

Description Allows the HAL startup code to make use of the console channel configuration.

Option Name Initialize Whole Virtual Vector Table
CDL Name CYGSEM_HAL_VIRTUAL_VECTOR_INIT_WHOLE_TABLE

Description Causes the entire VVT to be initialized a default service function, nop_service. This is
performed in hal_if_init.

Option Name Claim Virtual Vector Table Entries By Default
CDL Name CYGSEM_HAL_VIRTUAL_VECTOR_CLAIM_DEFAULT

64 Chapter 4 • Virtual Vectors

Description Allows the image to provide all services in the VVT, except Debug and Console Commu-
nication services, which will be provided by the ROM monitor. This option enables or dis-
ables the claiming of the individual virtual vector configuration options.

Option Name Claim Reset Virtual Vectors
CDL Name CYGSEM_HAL_VIRTUAL_VECTOR_CLAIM_RESET

Description Allows the image to provide the Reset and Kill Vector services.

Option Name Claim DELAY_US Virtual Vector
CDL Name CYGSEM_HAL_VIRTUAL_VECTOR_CLAIM_DELAY_US

Description Allows the image to provide the Microsecond Delay service.

Option Name Claim Cache Virtual Vectors
CDL Name CYGSEM_HAL_VIRTUAL_VECTOR_CLAIM_CACHE

Description Allows the image to provide the Instruction and Data Cache Flush services.

Option Name Claim Data Virtual Vectors
CDL Name CYGSEM_HAL_VIRTUAL_VECTOR_CLAIM_DATA

Description Allows the image to provide the Data services, which are currently unused in the VVT.

Option Name Claim COMMS Virtual Vectors
CDL Name CYGSEM_HAL_VIRTUAL_VECTOR_CLAIM_COMMS

Description Allows the image to provide the Debug and Console Communication Channels.

Option Name Do Diagnostic IO Via Virtual Vector Table
CDL Name CYGSEM_HAL_VIRTUAL_VECTOR_DIAG

Description Allows all HAL-level I/O to be performed using the configuration settings in the VVT.
This option is always enabled on platforms that contain virtual vector support.

4.1.2 Virtual Vector Table Initialization

The common HAL defines macros, in the file hal_if.h, to execute and set the services within
the VVT, hal_virtual_vector_table. There are two macros defined for each virtual
vector, a call macro—which executes the service in the VVT, and a set macro—which sets the
service in the VVT. Code Listing 4.1 shows the call and set macros for the Reset virtual vector.
The call macro has the form CYG_ACC_CALL_IF_XXX, as we see on lines 1 and 2, and set
macro has the form CYG_ACC_CALL_IF_XXX_SET, shown on lines 4 and 5, where XXX is the
defined name of the virtual vector that gives its location in the VVT. The number of parameters
passed into the call macro varies depending on the virtual vector service function. The set macro
always has a single value passed in, the address of the service function or the data value to set in
the VVT.

1 #define CYGACC_CALL_IF_RESET(_p_, _n_) \

2 (hal_virtual_vector_table[CYGNUM_CALL_IF_RESET])((_p_), (_n_))

Virtual Vectors 65

3

4 #define CYGACC_CALL_IF_RESET_SET(_x_) \

5 hal_virtual_vector_table[CYGNUM_CALL_IF_RESET]=(CYG_ADDRWORD)(_x_)

Code Listing 4.1 Common HAL VVT call and set macros for Reset virtual vector.

All HAL initialization sequences, whether running from a ROM monitor, a ROM applica-
tion, or RAM application, call the function hal_if_init, located in the file hal_if.c
under the common HAL subdirectory. Within this function, the initialization sequence for the
VVT is determined by the virtual vector configuration suboptions selected and the type of
image, ROM monitor/application or RAM application, the eCos library is built for use with.

In a typical eCos debug environment, two separate images exist, a ROM monitor and a
RAM application. Using these two images and the default virtual vector configuration subop-
tions, the steps involved in the initialization of the VVT are:

1. ROM monitor is booted, causing the HAL built into the ROM monitor image to initialize
the VVT with its own default service vectors according to the virtual vector configuration
suboption settings.

2. The RAM application is loaded into memory via the debug channel in the ROM monitor.

3. Next, the ROM monitor is given a command to execute the RAM application. This
turns control over to the RAM application; however, the VVT still contains function
and data services provided by the ROM monitor.

4. Finally, the RAM application HAL executes, reinitializing the VVT according to the
virtual vector configuration suboption settings. Any services that the RAM application
provides are set into the VVT.

Figure 4.1 shows the initialization sequence and default VVT after the common HAL has
performed its setup. The functions in the VVT, shown in Figure 4.1, are implemented in the
common HAL.

N O T E It is not possible to step through the hal_if_init
function if the RAM application is configured to initialize the
whole VVT or reconfigure the communication channels. This sce-
nario would create a problem with the RAM application HAL rein-
itializing services in the VVT while the ROM monitor is trying to
use the services already configured in the VVT for debugging I/O.
One way to debug this scenario is to leave the VVT that the ROM
monitor is using alone and use a RAM application version of the
VVT, at another address, for debugging the RAM application
code.

66

F
ig

u
re

 4
.1

V
irt

ua
l v

ec
to

r
ta

bl
e

in
iti

al
iz

at
io

n
se

qu
en

ce
.

h
al

_v
ir

tu
al

_v
ec

to
r_

ta
b

le

P
la

tf
o

rm
 S

p
ec

if
ic

 H
A

L

h
al

_p
la

tf
o

rm
_i

n
it

C
o

m
m

o
n

 H
A

L

h
al

_i
f_

in
it

V
V

T
 v

er
si

o
n

 (
0x

40
14

)
h

al
_i

n
te

rr
u

p
t_

h
an

d
le

rs
h

al
_v

sr
_t

ab
le

 U
N

U
S

E
D

 -
 D

eb
u

g
 V

ec
to

r
ki

ll_
by

_r
es

et
se

t_
co

n
so

le
_c

o
m

m
se

t_
d

eb
u

g
_c

o
m

m
fl

u
sh

_d
ca

ch
e

fl
u

sh
_i

ca
ch

e
U

N
U

S
E

D
 -

 C
P

U
 D

at
a

U
N

U
S

E
D

 -
 B

o
ar

d
 D

at
a

U
N

U
S

E
D

 -
 S

ys
te

m
In

fo
rm

at
io

n

V
ir

tu
al

 V
ec

to
r

0

V
ir

tu
al

 V
ec

to
r

63
R

E
S

E
R

V
E

D

C
o

n
so

le
 In

te
rr

u
p

t
F

la
g

d
el

ay
_u

s
U

N
U

S
E

D
 -

 D
eb

u
g

 D
at

a
fl

as
h

_c
o

n
fi

g
_o

p
V

ir
tu

al
 V

ec
to

r
20

D
eb

u
g

 C
o

m
m

C
o

n
so

le
 C

o
m

m

U
N

U
S

E
D

 -
 S

et
 S

er
ia

l B
au

d
R

at
e

d
b

g
_s

ys
ca

ll_
fu

n
c

re
se

t

R
E

S
E

R
V

E
D

V
ir

tu
al

 V
ec

to
r

35
cy

g
_h

al
_g

d
b

_i
n

te
rr

u
p

t

cy
g

_h
al

_p
lf

_c
o

m
m

s_
in

it

cy
g

_h
al

_p
lf

_s
er

ia
l_

in
it

Virtual Vectors 67

We can see in Figure 4.1 that the HAL common function hal_if_init initializes the
VVT with its default service functions and data. The platform-specific configuration of the VVT
is accomplished in the function cyg_hal_plf_comms_init, found in the file
hal_diag.c. The accesses to the VVT are shown with dashed lines in the figure. The platform-
specific function initializes the communications channels because the platform code is aware of
the number of communications channels supported on the target hardware. During this initial-
ization sequence, the console communication interface tables are allocated and configured with
the appropriate HAL platform-specific procedures for accessing the configured console port.

4.1.2.1 Communication Channels
Since the HAL controls the low-level I/O functions for diagnostic and debug communication, it is
important to understand the scheme that eCos uses to allow access to the different I/O ports. All
HAL I/O happens via the communication channels, also called COMMS channels. There are two
types of COMMS channels within the HAL, console and debug. Each channel type can be individ-
ually configured to use any physical port, such as serial or Ethernet, on the target hardware.

Console channels are used for diagnostic I/O during the debugging process; for example,
routing diag_printf function output for event logging, traces, or assertion messages. Nor-
mal I/O communication should use proper device drivers as described in the I/O Control System
section of Chapter 7. Debug channels are used for communication between the host debugger,
such as GDB, and the ROM monitor.

The number of communication channels varies among the different platforms. The config-
uration option Number of Communication Channels on the Board (CYGNUM_HAL_VIRTUAL_
VECTOR_COMM_CHANNELS), under the HAL architecture-specific components, defines how
many channels are present for a particular platform.

There is a Communication Interface Table (CIT) associated with each COMMS channel in
the system. The CIT, defined as hal_virtual_comm_table_t in the common HAL, is an
array that contains pointers to procedures or data relevant to the specific COMMS channel. A
CIT is allocated, in the file hal_if.c, for each COMMS channel supported by the platform
using the Number of Communication Channels on the Board configuration option, plus an addi-
tional CIT for the possible use of mangler procedures. The use of mangler procedures is
described later in this section. Table 4.2 lists the supported COMMS CIT procedures. The proce-
dures in the CIT allow access to various COMMS channel functionality.

Table 4.2 Console and Debug Communication Interface Table Procedures

Procedure Table Index Description

Channel Data 0 Pointer to the communication controller base address. All pro-
cedures in the table use this base address as their first argument.

Write 1 Send a buffer to a device.

Read 2 Get a buffer from a device.

68 Chapter 4 • Virtual Vectors

The console COMMS channel within a RAM application can be configured to use the
ROM monitor debug channel or an independent channel. The virtual vector configuration subop-
tion that determines the console COMMS channel used is Inherit Console Settings From ROM
Monitor (CYGSEM_HAL_VIRTUAL_VECTOR_INHERIT_CONSOLE). This option is enabled
by default when using a ROM monitor. If an independent channel is configured by the RAM
application, the configuration option Route Diagnostic Output To Debug Channel
(CYGDBG_HAL_DIAG_TO_DEBUG_CHAN) is available. This configuration option is located
under the HAL common configuration components.

Put Character 3 Write a character to a device.

Get Character 4 Read a character from a device.

Control 5 Device settings control. The second argument to this procedure
is one of the following functions:

Set Baud—Changes the baud rate.

Get Baud—Returns the current baud rate.

Install Debug ISR—Not used.

Remove Debug ISR—Not used.

IRQ Disable—Disable debugging receive interrupts.

IRQ Enable—Enable debugging receive interrupts.

Get Debug ISR Vector—Return the ISR vector for debugging
receive interrupts.

Set Timeout—Set the Get Character timeout.

Debug ISR 6 ISR used to handle receive interrupts from the device.

Get Character
With Timeout

7 Read a character from the device with a timeout.

N O T E Two scenarios will cause an Ethernet debug connec-
tion to be dropped when the application is executed. First, if the
console is not inherited by the application using the configuration
option Inherit Console Settings From ROM Monitor
(CYGSEM_HAL_VIRTUAL_VECTOR_INHERIT_CONSOLE). Second, if the
debug COMMS channel is reinitialized by the application using
the configuration option Claim COMMS Virtual Vectors
(CYGSEM_HAL_VIRTUAL_VECTOR_CLAIM_COMMS).

Table 4.2 Console and Debug Communication Interface Table Procedures (Continued)

Procedure Table Index Description

Virtual Vectors 69

To allow diagnostic messages to use the debug COMMS channel, it is necessary to wrap
the message with the protocol so that it can be properly displayed by GDB. This wrapping of the
message with the protocol is called mangling. If the text is not properly mangled, the debugger
might reject the message. The HAL provides functions to encapsulate messages according to the
selected mangler.

Debuggers, such as GDB, typically use some type of protocol to encode the commands
exchanged between the target hardware and the host debugger machine. An explanation of the
GDB protocol can be found online at:

http://sources.redhat.com/gdb/onlinedocs/gdb_toc.html

The configuration option Mangler Used on Diag Output (CYGSEM_HAL_DIAG_MANGLER),
under the HAL common configuration components, allows the selection of a mangler. The pos-
sible values for this option are GDB—in which case, the GDB protocol is applied to text mes-
sages—or None, which outputs raw text messages. The mangler procedures are contained in a
communication interface table supporting the same functionality shown in Table 4.2.

1 void cyg_hal_plf_serial_init(

2 void)

3 {

4 hal_virtual_comm_table_t *comm;

5

6 // Get the current console communication interface

7 // table so we can restore it later.

8 int cur = CYGACC_CALL_IF_SET_CONSOLE_COMM(

9 CYGNUM_CALL_IF_SET_COMM_ID_QUERY_CURRENT);

10

11 // Make sure we only go through this code once.

12 static int init = 0;

13 if (init)

14 return;

15

16 init++;

17

18 // Configure the serial port registers

19 // in the processor.

20 cyg_hal_plf_serial_init_channel();

21

22 //

23 // Setup the communication

24 // interface table routines for

25 // console I/O for channel 0.

26 //

27

70 Chapter 4 • Virtual Vectors

28 // Set the communication
29 // interface table in the VVT to
30 // console 0.
31 CYGACC_CALL_IF_SET_CONSOLE_COMM(0);
32
33 // Get a pointer to the channel 0
34 comm = CYGACC_CALL_IF_CONSOLE_PROCS();
35
36 // Set the base address of the channel 0 controller.
37 CYGACC_COMM_IF_CH_DATA_SET(*comm, eppc_base());
38
39 // Set the write function.
40 CYGACC_COMM_IF_WRITE_SET(
41 *comm,
42 cyg_hal_plf_serial_write);
43
44 // Set the read function.
45 CYGACC_COMM_IF_READ_SET(
46 *comm,
47 cyg_hal_plf_serial_read);
48
49 // Set the put character function.
50 CYGACC_COMM_IF_PUTC_SET(
51 *comm,
52 cyg_hal_plf_serial_putc);
53
54 // Set the get character function.
55 CYGACC_COMM_IF_GETC_SET(
56 *comm,
57 cyg_hal_plf_serial_getc);
58
59 // Set the serial port control function.
60 CYGACC_COMM_IF_CONTROL_SET(
61 *comm,
62 cyg_hal_plf_serial_control);
63
64 // Set the ISR for debugging receive interrupts.
65 CYGACC_COMM_IF_DBG_ISR_SET(
66 *comm,
67 cyg_hal_plf_serial_isr);
68
69 // Set the get character with timeout function.
70 CYGACC_COMM_IF_GETC_TIMEOUT_SET(
71 *comm,
72 cyg_hal_plf_serial_getc_timeout);
73

Summary 71

74 // Restore the original
75 // console communication interface
76 // table.
77 CYGACC_CALL_IF_SET_CONSOLE_COMM(cur);
78 }

Code Listing 4.2 Motorola PowerPC MBX860 platform communication interface table
initialization for console I/O.

Code Listing 4.2 shows the initialization of the console communication interface table for
the Motorola PowerPC MBX860 board. The MBX860 board contains a single serial port, desig-
nated as channel 0 in the listing. The routine cyg_hal_plf_serial_init, shown on line
1, is called from the function cyg_hal_plf_comms_init in the platform HAL. The routine
cyg_hal_plf_comms_init is called from hal_if_init, as shown in Figure 4.1.

The first step is to store the current CIT setup in the VVT, as we see on line 8. Next,
cyg_hal_plf_serial_init_channel, as shown on line 20, is called to configure the
appropriate registers in the processor to enable communication via the physical serial port. This
function can be called multiple times on other platforms that need to configure more than one
serial port.

Next, the call CYGACC_CALL_IF_SET_CONSOLE_COMM, on line 31, is made to set the
console channel to 0. This puts the CIT allocated for console channel 0 into the VVT, which a
pointer to the table is then retrieved by the CYGACC_CALL_IF_CONSOLE_PROCS call on line
34. The next eight calls, starting on line 37 and ending on line 72, use the macros
CYGACC_COMM_IF_XXX_SET, where XXX designates the CIT procedure. These macros set
the functions for channel 0 in the CIT. Finally, CYGACC_CALL_IF_SET_CONSOLE_COMM,
on line 77, is called to restore the CIT in the virtual vector table to its original setting.

The use of the CIT procedures for diagnostic I/O is enabled by the configuration option
Do Diagnostic I/O Via Virtual Vector Table (CYGSEM_HAL_VIRTUAL_VECTOR_DIAG). This
allows the console used for diagnostic I/O to be changed during run time.

4.2 Summary
In this chapter, we examined a group of pointers defined in the eCos system called virtual vec-
tors. Virtual vectors and the VVT allow different applications running from different memory to
provide varying degrees of functionality. For example, virtual vectors provide a mechanism for a
ROM monitor to offer functionality for an application running from RAM. We then looked at the
different configuration options for virtual vectors and the different communication channels.

73

C H A P T E R 5

The Kernel

he core of the eCos system is the kernel. We begin this chapter by understanding the
functionality provided by the kernel. Next, we cover the startup procedure the kernel

follows in order to start an application. Finally, we look at the different scheduling schemes
available, how they are used, and how we configure the kernel to meet the needs of different
applications.

This chapter, along with the material covered in the next chapter on threads and synchroni-
zation, prepares us for building an application that use the eCos kernel and its features.

5.1 The Kernel
The kernel is the core to the eCos system. The kernel provides the standard functionality
expected in an RTOS, such as interrupt and exception handling, scheduling, threads, and syn-
chronization. These standard functional components that comprise the kernel are fully config-
urable under the eCos system to meet your specific needs. The eCos kernel is implemented in
C++ allowing applications implemented in C++ to interface directly to the kernel; however,
there is no official C++ API provided.

There is a configuration option to allow the use of a C kernel API. The kernel API func-
tions are defined in the file kapi.h. The eCos kernel also supports interfacing to standard
µITRON and POSIX compatibility layers. Further information about the compatibility layers
can be found in Chapter 8, Additional Functionality and Third-Party Contributions.

A few criteria were the focus of the eCos kernel development to allow it to meet its real-
time goals:

T

74 Chapter 5 • The Kernel

• Interrupt latency—the time taken to respond to an interrupt and begin execution of
an ISR is kept low and deterministic.

• Dispatch latency—the time taken from when a thread becomes ready to run to the
point it begins execution is kept low and deterministic.

• Memory footprint—the memory resources required for both code and data is kept
minimal and deterministic for a given system configuration. Dynamic memory
allocation is configurable in the core components to ensure that the embedded system
does not run out of memory.

• Deterministic kernel primitives—the execution of kernel operations is predictable,
allowing an embedded system to meet real-time requirements.

The performance measurements of these real-time criteria can be found in the online doc-
umentation at:

http://sources.redhat.com/ecos/docs.html

The eCos kernel API does not return standard error codes for its functions, a practice typi-
cal in most APIs. Error return codes ensure that the application is using the functions correctly.
However, in an embedded system, processing error return codes can cause a number of problems
such as eating up valuable processing cycles and codes space to check the return value. In addi-
tion, in an embedded system, typically there is no way to recover from certain errors so the
application would be halted.

Instead, the eCos kernel provides assertions that can be enabled or disabled within the
eCos package. Typically, assertions are enabled during debugging, allowing the kernel func-
tions to perform certain error checking. If a problem is discovered, an assertion failure is
reported and the application is terminated. This allows you to debug the problem using the
various debugging facilities provided. After the debug process is complete, assertions can be
disabled in the kernel package. This approach has several advantages such as limiting error
checking overhead within the function, eliminating the need for application error checking,
and if an error occurs, the application is halted allowing immediate debugging of the problem
rather than relying on the check of a return code. Additional information about asserts and
tracing can be found in Chapter 7, Other eCos Architecture Components.

The kernel components offer methods to ease debugging. One such method, enabled by
configuration options, is kernel instrumentation. Instrumentation allows the kernel to invoke
routines, whenever certain events occur, which write event records into a circular buffer for anal-
ysis at a later time. These event records include time stamps, record type, and other supporting
data that can be used for kernel debugging or analysis of time-critical kernel events.

5.1.1 Kernel Directory Structure

The kernel package is located in the repository under the kernel subdirectory. A snapshot of
the kernel source file directories, located under kernel\current\src, is shown in

The Kernel 75

Figure 5.1. The common subdirectory consists of the implementations for the clock, exception,
thread and timer classes, as well as the kernel C API.

The debug subdirectory includes the interface calls from a ROM monitor into the kernel,
allowing thread-level debugging. The instrumentation code, which allows kernel event logging,
is found under the instrmnt subdirectory. The intr subdirectory contains the kernel inter-
rupt handling class implementation.

Next, the scheduler code, be it bitmap, lottery (which is experimental), or multilevel
queue, is in the sched subdirectory. Finally, the sync subdirectory contains the semaphore,
flag, message box, condition variable, and mutex synchronization primitive class implementations.

5.1.2 Kernel Startup

The kernel startup procedure is invoked from the HAL, after all hardware initialization is com-
plete, as shown in Figure 2.3 in Chapter 2. The last step in Figure 2.3 is to call cyg_start,
which is the beginning of the kernel startup procedure. The kernel startup procedure is contained
in one core function, cyg_start, which calls other default startup functions to handle various
initialization tasks. These default functions are placeholders for you to override the function
with necessary initialization for a specific application. The default kernel startup functions can
be overridden by simply providing the same function name in the application code.

Figure 5.1 eCos kernel source
files directory structure.

N O T E The function cyg_start can also be o verridden;
however, this should r arely be done . The kernel star tup proce-
dure pro vides suffi cient o verride points f or the installation of
application-specifi c initialization code .

src

debug

kernel

sync

common

sched

intr

instrmnt

current

76 Chapter 5 • The Kernel

Code Listing 5.1 shows the prototype functions that must be used to override the different
kernel startup routines.

1 void cyg_start(void);

2

3 void cyg_prestart(void);

4

5 void cyg_package_start(void);

6

7 void cyg_user_start(void);

Code Listing 5.1 Kernel startup function prototypes.

The kernel startup procedure is shown in Figure 5.2. The core kernel startup function,
cyg_start, is located in the file startup.cxx under the infra package subdirectory.

The next function called from within cyg_start is cyg_prestart. This default
function is located in the file prestart.cxx under the infra subdirectory. The pre-start
function does not perform any initialization tasks. cyg_prestart is the first override point in
the kernel startup process should any initialization need to be performed prior to other system
initialization.

Next, cyg_package_start is called. This function is located in the file pkgstart.cxx
under the infra subdirectory. The cyg_package_start function allows other packages, such
as µITRON and ISO C library compatibility, to perform their initialization prior to invoking the
application’s start function. For example, if the µITRON compatibility layer package is configured
for use in the system, the function cyg_uitron_start is called for initialization. It is possible to
override this function if your own package needs initialization; however, you must be sure to invoke
the initialization code for the packages included in the configuration.

Figure 5.2 Kernel startup
procedure.

HAL Startup Procedure

cyg_start

cyg_prestart

cyg_package_start

cyg_user_start

Start the scheduler

The Kernel 77

The function cyg_user_start is invoked next. This is the normal application entry
point. A default for this function, which does not perform any tasks, is provided in the file
userstart.cxx under the infra subdirectory; therefore, it is not necessary to provide this
function in your application. The cyg_user_start function is used instead of a main function.

It is recommended that cyg_user_start be used to perform any application-specific
initialization, create threads, create synchronization primitives, setting up alarms, and register
any necessary interrupt handlers. It is not necessary to invoke the scheduler from the user start
function, since this is performed when cyg_user_start returns. Code Listing 6.1, found in
Chapter 6, is an example of a cyg_user_start routine that creates a thread.

The final step in the kernel startup procedure is to invoke the scheduler. The scheduler that
is started, either multilevel queue or bitmap, depends on the configuration option settings under
the kernel component package.

5.1.3 The Scheduler

The core of the eCos kernel is the scheduler. The jobs of the scheduler are to select the appropri-
ate thread for execution, provide mechanisms for these executing threads to synchronize, and
control the effect of interrupts on thread execution. This section does not describe the implemen-
tation details of the different schedulers, but instead gives a basic understanding of how the
existing eCos schedulers operate and the configuration options available.

During the execution of the scheduler code, interrupts are not disabled. Because of this,
interrupt latency is kept low.

A counter exists within the scheduler that determines whether the scheduler is free to run
or disabled. If the lock counter is nonzero, scheduling is disabled; when the lock counter returns

N O T E The function main can be used as the user application
starting point if the ISO C library compatibility package is
included in the configuration. To accommodate this, the ISO C
library provides a default cyg_user_start function that is called if
none is supplied by the user application. This default
cyg_user_start function creates a thread that then calls the
user application main function.

N O T E Code running during initialization executes with inter-
rupts disabled and the scheduler locked. Enabling interrupts or
unlocking the scheduler is not allowed because the system is in
an inconsistent state at this point.

Since the scheduler is started after cyg_user_start returns,
it is impor tant that k ernel services are not used within this routine .
Initializing kernel primitives, such as a semaphore, is acceptable;
however, posting or waiting on a semaphore would cause unde-
fined behavior and possibly system failure.

78 Chapter 5 • The Kernel

to zero, scheduling resumes. As described in Chapter 3, the HAL default interrupt handler rou-
tine modifies the lock counter to disable rescheduling from taking place during execution of the
ISR. Threads also have the ability to lock and unlock the scheduler.

On some occasions, it might be necessary for a thread to lock the scheduler in order to
access data shared with another thread or DSR. The lock and unlock functions are atomic opera-
tions handled by the kernel. Item List 5.1 lists the supported kernel API functions.

Item List 5.1 Kernel Scheduler API Functions

Syntax: void

cyg_scheduler_start(

 void

);

Context: Init

Parameters: None

Description: Starts the scheduler, bitmap or multilevel queue, according to the configuration options
selected. This call also enables interrupts.

Syntax: void

cyg_scheduler_lock(

 void

);

Context: Thread/DSR

Parameters: None

Description: Locks the scheduler, preventing any other threads from executing. This function incre-
ments the scheduler lock counter.

Syntax: void

cyg_scheduler_unlock(

 void

);

Context: Thread/DSR

Parameters: None

Description: This function decrements the scheduler lock counter. Threads are allowed to execute when
the scheduler lock counter reaches 0.

Syntax: cyg_ucount32

cyg_scheduler_read_lock(

N O T E It is important that the kernel API functions are used to
lock and unlock the scheduler, not by accessing the lock variable
directly.

The Kernel 79

 void

);

Context: Thread/DSR

Parameters: None

Description: Returns the current state of the scheduler lock.

eCos supports two different schedulers that implement distinct policies. The eCos kernel is
built using only a single scheduler at any one time. The schedulers are:

• Multilevel queue

• Bitmap

5.1.3.1 Multilevel Queue Scheduler

The multilevel queue scheduler allows the execution of multiple threads at each of its priority
levels. The number of priority levels is a configuration option from 1 to 32, corresponding to pri-
ority numbers 0 (highest priority) to 31 (lowest priority). The scheduler allows preemption
between the different priority levels.

Symmetric Multi-Processing (SMP) is only supported when using the multilevel queue
scheduler. Additional information about SMP support under eCos can be found in Chapter 8.

Preemption is a context switch halting execution of a lower priority thread, thereby allow-
ing a higher priority thread to execute. The multilevel queue scheduler also allows timeslicing
within a priority level.

Timeslicing allows each thread at a given priority to execute for a specified amount of
time, which is controlled by a configuration option. The queue implementation for the multilevel
scheduler uses double linked circular lists to chain together threads within a priority level and
threads at different priority levels.

In Figure 5.3, we see the multilevel scheduling queue representation along with an exam-
ple of thread execution using this scheduler.

In the scenario shown in Figure 5.3, three threads—Thread A, Thread B, and Thread C—
are configured during creation of the threads at priority levels 0, 0, and 30, respectively. The
state of the scheduler queue after thread creation is shown in Figure 5.3. For this scenario,
timeslicing is enabled. The timeline is a snapshot that starts with Thread C executing.

N O T E A third scheduler exists in the eCos repository called
the lottery scheduler, which is located in the file lottery.cxx
under the kernel\current\src\sched subdirectory. The lottery
scheduler is currently an experimental implementation and not
shown in any configuration options. Only the multilevel queue
and bitmap schedulers are actively supported. To use the lottery
scheduler, hand-editing of the eCos system configuration is
needed to include the lottery code implementation.

80

F
ig

u
re

 5
.3

M
ul

til
ev

el
 q

ue
ue

 s
ch

ed
ul

er
 th

re
ad

 o
pe

ra
tio

n.

M
u

lt
ile

ve
l S

ch
ed

u
lin

g
 Q

u
eu

e

T
h

re
ad

 A

T
im

e

T
im

es
lic

e

M
ax

im
u

m
 P

ri
o

ri
ty

 0

M
in

im
u

m
 P

ri
o

ri
ty

 3
1

T
h

re
ad

 A
T

h
re

ad
 B

. . .

. . .

T
h

re
ad

 C

T
h

re
ad

 A

T
h

re
ad

 C

D
es

ch
ed

u
le

D
es

ch
ed

u
le

T
h

re
ad

 C

P
re

em
p

ti
o

n

T
h

re
ad

 B

The Kernel 81

Next, Thread A becomes able to run, causing Thread C to be preempted and a context
switch occurs. During the execution of Thread A, Thread B also becomes able to run. Thread A
continues until its timeslice period expires. Then, another context switch occurs allowing Thread
B to run. Thread B completes within its given timeslice period. The de-scheduling of a thread
can happen for various reasons; for example, by waiting on a mutex that is not free or delaying
for a specified amount of time. Since Thread A has the highest priority of tasks waiting to exe-
cute, a context switch occurs and it runs next. After Thread A has completed, a context switch
takes place allowing Thread C to execute.

5.1.3.2 Bitmap Scheduler
The bitmap scheduler allows the execution of threads at multiple priority levels; however, only a
single thread can exist at each priority level. This simplifies the scheduling algorithm and makes
the bitmap scheduler very efficient. The number of priority levels is a configuration option from
1 to 32, corresponding to priority numbers 0 (highest priority) to 31 (lowest priority).

The scheduling queue is either an 8-, 16-, or 32-bit value, depending on the number of pri-
ority levels selected. A bit in the scheduling queue represents each priority level. The scheduler
allows preemption between the different priority levels. Since only one thread is allowed at each
priority level, timeslicing is irrelevant and is disabled as a configuration option when using the
bitmap scheduler.

Figure 5.4 illustrates an example of thread execution using the bitmap scheduler.
In Figure 5.4, there are three threads created at different priority levels: Thread A—prior-

ity 0 (highest), Thread B—priority 1, and Thread C—priority 30 (lowest). The state of the bit-
map scheduler queue after the threads are created is shown above the thread execution timeline.
The timeline is a snapshot of thread execution starting with Thread C running. Next, Thread A
and Thread B are able to run, causing a context switch and Thread C is preempted. Thread A
executes next because it has the highest priority of the waiting threads. When Thread A com-
pletes, a context switch takes place, enabling Thread B to execute. After Thread B completes,
Thread C can finish its processing.

As we can see comparing the execution timelines from Figures 5.3 and 5.4, the bitmap
scheduler is a much more simplistic scheduling policy. However, the multilevel queue offers
more options for thread operation. The decision of what scheduler to use is dependent on the
specific needs of the application.

5.1.3.3 Priority Levels
Both schedulers support thread priority levels. The priority level determines which thread will
run next of the threads ready to be run. Since the bitmap scheduler only allows a single thread
per priority level, the number of priority levels determines the total number of possible threads

N O T E When using the bitmap scheduler, it is fatal to set two
threads at the same priority number. An assertion is raised if the
eCos image is built with assertion support.

82 Chapter 5 • The Kernel

in the system. The number of threads possible for the multilevel queue scheduler is independent
from the number of priority levels. The maximum number of threads for the multilevel queue
scheduler is dependent on the memory resources available.

The maximum number of priority levels allowed is 32. A smaller value for the priority
level corresponds the higher the priority of the thread. Item List 5.2 lists the kernel API functions
for priority level manipulation of a given thread.

Item List 5.2 Kernel Priority Level API Functions

Syntax: void
cyg_thread_set_priority(
 cyg_handle_t thread,
 cyg_priority_t priority
);

Context: Thread
Parameters: thread—handle to the thread.

priority—level to set the thread priority.

Figure 5.4 Bitmap scheduler thread operation.

Bitmap
Scheduling

Queue

Maximum Priority 0

Minimum Priority 31

Thread A
Thread B

.

.

.

.

.

.

Thread C

Thread A

Time

Thread C

Deschedule

Thread C

Preemption Thread B

Deschedule

The Kernel 83

Description: Set the thread to the specified priority level. The valid ranges for the priority value are
determined by the configuration option settings. The number of priority levels can be con-
figured from 1 to 32, where lower values represent higher thread priorities.

Syntax: cyg_priority_t
cyg_thread_get_current_priority(
 cyg_handle_t thread
);

Context: Thread/DSR
Parameters: thread—handle to the thread.
Description: Return the current priority level for the specified thread. This priority value might differ

from the priority set for the thread, during creation or by a
cyg_thread_set_priority function call, since a thread priority boost might have
occurred due to the thread using a mutex.

Syntax: cyg_priority_t
cyg_thread_get_priority(
 cyg_handle_t thread
);

Context: Thread/DSR
Parameters: thread—handle to the thread.
Description: Return the priority for the specified thread. This priority returned is the value last used in a

call to cyg_thread_set_priority or the value when the thread was created.

5.1.3.4 Scheduler Configuration
The scheduler configuration options are located under the Kernel Schedulers component within
eCos Kernel package. The configuration options allow you to tailor the resources used by the
scheduler according to the specific needs of the application. Item List 5.3 details the configura-
tion options available, as well as the different suboptions.

Item List 5.3 Kernel Scheduler Configuration Options

Option Name Multilevel Queue Scheduler
CDL Name CYGSEM_KERNEL_SCHED_MLQUEUE
Description Enables the multilevel queue scheduler implementation.

Option Name Bitmap Scheduler
CDL Name CYGSEM_KERNEL_SCHED_BITMAP
Description Enables the bitmap scheduler implementation.

Option Name Number of Priority Levels
CDL Name CYGNUM_KERNEL_SCHED_PRIORITIES
Description Specifies the number of available priority levels. This number determines the queue size for

the specified scheduler. For the bitmap scheduler, this number also determines total number
of threads possible. Valid values for this option are 1 to 32, with the default being set to 32. A
suboption allows the selection of the de-queue method. When enabled, threads of equal pri-
ority are de-queued with the oldest thread first. This suboption is disabled by default.

84 Chapter 5 • The Kernel

Option Name Scheduler Timeslicing
CDL Name CYGSEM_KERNEL_SCHED_TIMESLICE
Description Enables timeslicing mode for the multilevel queue scheduler. The scheduler checks to

determine if another thread at the same priority level is ready to run. If so, a context
switch will take place after the timeslice period, selectable as a suboption in clock ticks
between timeslices, expires. This option is enabled by default for the multilevel queue
scheduler. Another suboption allows timeslicing to be dynamically enabled or disabled
on a per-thread basis.

Option Name Enable ASR Support
CDL Name CYGSEM_KERNEL_SCHED_ASR_SUPPORT
Description Controls Asynchronous Service Routine (ASR) support, which is a function called from

the scheduler when it has exited the scheduler lock. This is typically used by compatibility
layer packages, such as POSIX.

5.2 Summary
In this chapter, we looked at the functionality provided by the core of eCos, the kernel. We
examined the kernel startup procedure. We also looked at the two scheduling algorithms available
for the eCos kernel: bitmap and multilevel queue.

85

C H A P T E R 6

Threads and
Synchronization
Mechanisms

he previous chapter on the eCos kernel provided us with an understanding of how the differ-
ent schedulers handle threads and their associated priority levels. In this chapter, we start by

covering threads; specifically, how we configure the operation of threads, and how we create and
use threads in an application.

Building on this, we then cover different mechanisms available for communication
between threads and other elements of a typical embedded system. These synchronization mech-
anisms provide standard tools for developing robust applications.

6.1 Threads
A thread is a single flow of execution through a program. Multiple threads can exist in a pro-
gram, allowing an individual thread to perform its own operations on the system. Each thread
defined in the eCos system contains its own context or workspace to perform its operations
and a priority level to execute. It is the job of the scheduler to determine which thread is enti-
tled to run at any given time. The kernel contains API functions for controlling threads within
an application.

eCos offers configuration options that control the behavior of threads in the system, as
well as providing additional features to support various thread operations. Item List 6.1 details
the thread configuration options available. These are located under the Thread-Related Options
component within the eCos Kernel package.

T

86 Chapter 6 • Threads and Synchronization Mechanisms

Item List 6.1 Kernel Thread Configuration Options

Option Name Allow Per-Thread Timers
CDL Name. CYGFUN_KERNEL_THREADS_TIMER
Description Enables clock- and alarm-related functions on a per-thread basis. This option is required

when using timed wait operations for semaphores and condition variables. The default for
this option is enabled.

Option Name Support Optional Name For Each Thread
CDL Name CYGVAR_KERNEL_THREADS_NAME
Description Allows a string name to be used to identify a thread for debugging purposes. Disabling this

option reduces code and data size. The default for this option is enabled.

Option Name Keep Track of All Threads Using a Linked List
CDL Name CYGVAR_KERNEL_THREADS_LIST
Description Enables the kernel to keep a list of threads for easy access when debugging. The default

for this option is enabled.

Option Name Keep Track of the Base of Each Thread’s Stack
CDL Name CYGFUN_KERNEL_THREADS_STACK_LIMIT
Description Allows the kernel to monitor, and adjust for per-thread data, the lower limit of a thread’s

stack. This does not perform any type of overflow checking for the stack. The default for
this option is enabled.

Option Name Check Thread Stacks For Overflows
CDL Name CYGFUN_KERNEL_THREADS_STACK_CHECKING
Description Causes checks for stack overflowing using signatures at the top and bottom of the thread

stacks. This option is enabled when debugging and using asserts. When enabled, suboptions
control the amount of checking performed, as well as the size of the signature used for
overflow checks. The default for this option is enabled.

Option Name Measure Stack Usage
CDL Name CYGFUN_KERNEL_THREADS_STACK_MEASUREMENT
Description Enabling this option causes a predefined value to be initialized into each thread’s stack.

The kernel API function cyg_thread_measure_stack_usage can be called to
obtain a snapshot of the amount of stack used by the thread. The default for this option is
disabled.

Option Name Support For Per-Thread Data
CDL Name CYGVAR_KERNEL_THREADS_DATA
Description Uses an area of memory to store thread-specific data. This data is often used by other

packages such as the ISO C library. A suboption defines the number of words to use for the
per-thread data, which has a default value of six. The default for this option is enabled.

Option Name Thread Destructors
CDL Name CYGPKG_KERNEL_THREADS_DESTRUCTORS
Description Enables registered destructor functions to be called when a thread exits. When enabled, a

suboption controls the number of possible destructors allowed. This has a range of 1 to

Threads 87

65535 with a default value of 8. There is also a suboption that when enabled allows each
thread to have its own list of destructors. If this suboption is disabled, there is a global
destructor list for all threads.

Option Name Stack Size For the Idle Thread
CDL Name CYGNUM_KERNEL_THREADS_IDLE_STACK_SIZE
Description Specifies the stack size, in bytes, for the idle thread. If a separate interrupt stack is not

used, this stack must be able to accommodate the requirements of all interrupt handlers.
Valid values for this option are from 512 to 65536 bytes, with a default value of 2048
bytes.

Option Name Maximal Suspend Count
CDL Name CYGNUM_KERNEL_MAX_SUSPEND_COUNT_ASSERT
Description This option aids in debugging by providing an assertion if thread suspends exceed this

count value. This option is only used when asserts are included in the configuration. The
default for this option is 500.

Option Name Maximal Wake Count
CDL Name CYGNUM_KERNEL_MAX_COUNTED_WAKE_COUNT_ASSERT
Description This option aids in debugging by providing an assertion if thread wakeups exceed this

count value. This option is only used when asserts are included in the configuration. The
default for this option is 500.

Option Name Idle Thread Must Always Yield
CDL Name CYGIMP_IDLE_THREAD_YIELD
Description If a scheduler configuration contains a single priority level, this option ensures that the idle

thread yields to the application threads. The default for this option is enabled.

Item List 6.2 lists the kernel API functions that are available for thread control. For infor-
mation about the priority-related kernel thread API functions, see Item List 5.2 in Chapter 5.

Item List 6.2 Kernel Thread API Functions

Syntax: void
cyg_thread_create(
 cyg_addrword_t sched_info,
 cyg_thread_entry_t *entry,
 cyg_addrword_t entry_data,
 char *name,
 void *stack_base,
 cyg_ucount32 stack_size,
 cyg_handle_t *handle,
 cyg_thread *thread
);

Parameters: Init/Thread
Context: sched_info—scheduler-specific information. For most schedulers, this is the priority

value for the thread.

88 Chapter 6 • Threads and Synchronization Mechanisms

entry—routine that begins execution of the thread.
entry_data—data value passed to the thread entry routine.
name—string name of the thread.
stack_base—base address of the stack for the thread.
stack_size—size, in bytes, of the stack for the thread.
handle—returned handle to the thread.
thread—thread information is stored in the thread memory object pointed to by this
parameter.

Description: Creates a thread in a suspended state. It is important to note that a thread will not run until
the cyg_thread_resume call is made for the thread and the scheduler is started.

Syntax: void
cyg_thread_delay(
 cyg_tick_count_t delay
);

Parameters: Thread
Context: delay—time for thread to sleep (in ticks).
Description: Places the thread in a sleep state for the specified number of ticks. The number of ticks per

second is dependent on the HAL configuration option settings for the real-time clock. For
example, a delay value of 1 corresponds to a sleep of 10 milliseconds for a system clock
running at 100 Hz. Since, 1 second / 100 Hz = 0.01 seconds = 10 milliseconds.

Syntax: void
cyg_thread_suspend(
 cyg_handle_t thread
);

Parameters: Thread/DSR
Context: thread—handle to the thread.
Description: Postpones the execution of a thread. If a thread is suspended multiple times, the resume

function call must be made for each suspend function call before the thread will execute.

Syntax: void
cyg_thread_resume(
 cyg_handle_t thread
);

Parameters: Thread/DSR
Context: thread—handle to the thread.
Description: Causes a thread to continue execution. This call must be made after a thread is created in

order to start the execution of the thread. Each suspend function call must correspond to a
resume function call before a thread will continue execution.

Syntax: void
cyg_thread_yield(

N O T E It is up to the caller of this create thread function to
ensure that the stack is aligned correctly based on the require-
ments of the processor.

Threads 89

 void

);

Parameters: Thread
Context: None
Description: Gives execution control to the thread that is ready to run at the same priority level. If

another thread does not exist, this call has no effect.

Syntax: void

cyg_thread_kill(

 cyg_handle_t thread

);

Parameters: Thread
Context: thread—handle to the thread.
Description: Causes a thread to exit. This does not release any memory allocated for the thread.

Syntax: cyg_bool_t

cyg_thread_delete(

 cyg_handle_t thread

);

Parameters: Thread
Context: thread—handle to the thread.
Description: Kills a thread, using the cyg_thread_kill function, and removes it from the sched-

uler. A value of false is returned if the thread cannot be killed. After this call, memory (the
thread handle, stack and thread object) created for the thread can be reused. Resources
allocated by the thread are not freed by calling this function. In addition, synchronization
objects owned by the thread are not unlocked; this is the responsibility of the programmer.

Syntax: void

cyg_thread_exit(

 void

);

Parameters: Thread
Context: None
Description: Exits the current thread, causing it to be removed from the scheduler.

Syntax: cyg_bool_t

cyg_thread_add_destructor(

 cyg_thread_destructor_fn fn,

 cyg_addrword_t data

);

Parameters: Thread. (If the configuration suboption Per-Thread Destructors is disabled, this function can
be called from Init, Thread or DSR context.)

Context: fn—destructor function called on thread termination.
data—argument passed to destructor function when it is called.

90 Chapter 6 • Threads and Synchronization Mechanisms

Description: Register a destructor function that is called when the thread terminates. TRUE is returned
on success, or FALSE on failure. This function can only be called when the configuration
option Thread Destructors is enabled. If the configuration suboption Per-Thread Destructors
is enabled, the destructor is registered for the current thread. If this suboption is disabled,
the destructor is called for when any thread exits. The configuration suboption Number of
Possible Destructors sets the maximum value for registered destructors; going over the
limit causes a return value of FALSE.

Syntax: cyg_bool_t
cyg_thread_rem_destructor(
 cyg_thread_destructor_fn fn,
 cyg_addrword_t data
);

Parameters: Thread. (If the configuration suboption Per-Thread Destructors is disabled, this function can
be called from Init, Thread or DSR context.)

Context: fn—destructor function called on thread termination.
data—argument passed to destructor function when it is called.

Description: Remove a registered destructor function. TRUE is returned on success, or FALSE on
failure. This function may only be called when the configuration option Thread Destructors
is enabled.

Syntax: cyg_handle_t
cyg_thread_self(
 void
);

Parameters: Thread
Context: None
Description: Returns the handle of the current thread.

Syntax: cyg_addrword_t
cyg_thread_get_stack_base(
 cyg_handle_t thread
);

Parameters: Any
Context: thread—handle to the thread.
Description: Returns the stack base used during thread creation.

Syntax: cyg_uint32
cyg_thread_get_stack_size(
 cyg_handle_t thread
);

Parameters: Any
Context: thread—handle to the thread.
Description: Returns the stack size used during thread creation.

Syntax: cyg_uint32
cyg_thread_measure_stack_usage(

Threads 91

 cyg_handle_t thread
);

Parameters: Any
Context: thread—handle to the thread.
Description: Returns maximum number of bytes of stack spaced used, up to that point, by the specified

thread. This function is only available if the configuration Measure Stack Usage is
enabled.

Syntax: cyg_handle_t
cyg_thread_idle_thread(
 void
);

Parameters: Thread/DSR
Context: None
Description: Returns the handle to the idle thread, which is created by the kernel.

Syntax: void
cyg_thread_release(
 cyg_handle_t thread
);

Parameters: Thread/DSR
Context: thread—handle to the thread.
Description: Break the thread out of any wait, such as a delay or synchronization object wait.

Syntax: cyg_ucount32
cyg_thread_new_data_index(
 void
);

Parameters: Init/Thread
Context: None
Description: Allocates and returns a new index from the pool for the current thread. This index is used

to access the thread-specific data. This requires the option for per-thread data support to be
enabled. If no indexes are available, an assertion is raised.

Syntax: void
cyg_thread_free_data_index(
 cyg_ucount32 index
);

Parameters: Init/Thread
Context: index—offset into the per-thread data.
Description: Returns the per-thread data index to the pool for the current thread. This requires the con-

figuration option Support For Per-Thread Data to be enabled.

Syntax: CYG_ADDRWORD
cyg_thread_get_data(
 cyg_ucount32 index
);

92 Chapter 6 • Threads and Synchronization Mechanisms

Parameters: Thread
Context: index—offset into the per-thread data.
Description: Retrieves the per-thread data at the specified index for the current thread. This requires the

configuration option Support For Per-Thread Data to be enabled.

Syntax: CYG_ADDRWORD1

cyg_thread_get_data_ptr(
 cyg_ucount32 index
);

Parameters: Thread
Context: index—offset into the per-thread data.
Description: Returns a point to the per-thread data at the specified index for the current thread. This

requires the configuration option Support For Per-Thread Data to be enabled.

Syntax: void
cyg_thread_set_data(
 cyg_ucount32 index,
 CYG_ADDRWORD data
);

Parameters: Thread
Context: index—offset into the per-thread data.

data—value to set at per-thread data index.
Description: Store data for the current thread at the specified index. This requires the configuration

option Support For Per-Thread Data to be enabled.

The code in Code Listing 6.1 is an example of how to create a thread using the kernel
thread API functions.

1 #include <cyg/kernel/kapi.h>
2
3 #define MONITOR_THREAD_STACK_SIZE (2048 / sizeof(int))
4
5 int monitor_thread_stack[MONITOR_THREAD_STACK_SIZE];
6 cyg_handle_t monitor_thread_handle;
7 cyg_thread monitor_thread_obj;
8
9 //
10 // Monitoring thread.
11 //
12 void monitor_thread(cyg_addrword_t index)
13 {
14 unsigned long monitor_counter = 0;
15
16 // Infinite loop for monitor thread.

1 If the configuration suboption Per-Thread Destructors is disabled, these functions can be called from Init, Thread or
DSR context.

Threads 93

17 while (1)
18 {
19 // Delay for 1000 ticks.
20 cyg_thread_delay(1000);
21
22 // Increment the counter.
23 monitor_counter++;
24 }
25 }
26
27 //
28 // Main starting point for the application.
29 //
30 void cyg_user_start(void)
31 {
32 // Create the Monitor thread.
33 cyg_thread_create(
34 12,
35 monitor_thread,
36 0,
37 "Monitor Thread",
38 &monitor_thread_stack,
39 MONITOR_THREAD_STACK_SIZE,
40 &monitor_thread_handle,
41 &monitor_thread_obj);
42
43 // Let the thread run when the scheduler starts.
44 cyg_thread_resume(monitor_thread_handle);
45 }

Code Listing 6.1 Thread initialization example.

In the example shown in Code Listing 6.1, a simple monitor thread, cleverly called
monitor_thread on line 12, is created in the cyg_user_start routine, shown on line
33. The monitor_thread waits for 1000 ticks, as we can see on line 20, and then increments
a local variable, shown on line 23. It is important to note that threads can be created at anytime
during the execution of an application, not just at startup.

As we see in the code, the monitor thread is created with a priority level of 12 (line 34), a
stack size of 2048 bytes (lines 3 and 39), and a name “Monitor Thread” (line 37). The applica-
tion is responsible for providing the stack space, which is monitor_thread_stack on line
5, for the thread. The thread stack is defined on line 3 so that the thread stack is aligned properly
for the processor.

There is no need for data to be passed into the monitor thread, so the entry_data
parameter is set to zero when the thread is created, as we see on line 36. The object
monitor_thread_obj (lines 7 and 41) is where the scheduler will store thread-specific
information for the monitor thread.

94 Chapter 6 • Threads and Synchronization Mechanisms

It is important to note that the kernel API call cyg_thread_resume, shown on line 44,
is needed if the monitor_thread is intended to run when the scheduler starts. The resume
thread call takes the handle of the monitor thread, monitor_thread_handle, as its param-
eter. The kernel fills in the thread handle, on line 40, after successful creation of the thread.
When the scheduler starts, it places the monitor thread in the ready queue to be executed.

6.1.1 Thread Stacks and Stack Sizes

As we learned from the example shown in Code Listing 6.1, the application is responsible for
providing the stack for a thread, which is used for local variables and tracking function calls and
returns. The stack is typically in the form of static data to eliminate the need for dynamic mem-
ory allocation functionality in the kernel.

It is important to understand the size requirements for a given thread so an accurate stack
size can be created. This eliminates wasting memory if the stack size is set too large, or, more
importantly, avoids overflowing the stack if the stack size is set too small for the thread. Stack
overflowing can be a very difficult problem to track down.

The stack size depends on a number of factors, which are determined by the characteristics
of the code executed by the thread. For example, numerous nesting function calls or large local
arrays might require larger stack sizes for a given thread.

There are also configuration options that can have an affect on a thread’s stack usage. The
interrupt configuration option Use Separate Stack For Interrupts, when disabled allows interrupt
handlers to use a thread’s stack during execution. The interrupt configuration option Allow
Nested Interrupts can compound the problem when enabled by allowing higher priority inter-
rupts to occur during execution of another interrupt; therefore, requiring additional stack space.
Additional information about the different interrupt configuration options and issues related to a
thread’s stack are in Item List 3.5 in Chapter 3, Exceptions and Interrupts.

The HAL defines two macros that can be used by an application as reasonable sizes for a
thread’s stack. The values for these macros vary among the different processor architectures.
These two macros are typically defined in the architecture HAL in the file hal_arch.h, which
also gives an explanation of how the values were derived for a particular architecture.

The first macro is CYGNUM_HAL_STACK_SIZE_MINIMUM. A thread with this stack
size is appropriate for threads that run a single function and make simple system calls. It is ille-
gal to attempt to create a thread with a stack size smaller than this value.

The other macro is CYGNUM_HAL_STACK_SIZE_TYPICAL. This value is appropriate
for a thread’s stack size when nested function execution is limited to approximately six levels
with no large arrays on the stack.

The kernel provides code, controlled by configuration options, which can help detect stack
overflows. Additional information about these and other kernel thread configuration options can
be found in Item List 6.1.

One configuration option is Check Thread Stacks For Overflows. When this option is
enabled (which is the default case for a debug build), a small amount of space at the stack limit

Synchronization Mechanisms 95

is filled with a signature. The signature is verified every time a thread context switch occurs. If
the signature is not valid, this is an indication that a stack overflow has taken place.

Another configuration option to aid in thread stack size evaluation is Measure Stack Usage.
When this option is enabled, a thread can call cyg_thread_measure_stack_usage to find
out the maximum stack used to that point. It is important to realize that this value might not be
the absolute maximum since it is possible that no interrupts occurred at the worst possible
moment while the thread was executing.

6.2 Synchronization Mechanisms

The eCos kernel provides the mechanisms for the threads in the system to communicate with
each other and synchronize access to shared resources. The mechanisms provided by the eCos
kernel are:

• Mutexes
• Semaphores
• Condition variables
• Flags
• Message boxes
• Spinlocks (for SMP systems)

The kernel also provides API functions that allow applications to make use of the synchro-
nization mechanisms. Some of the synchronization mechanism API functions provided are
either blocking or nonblocking.

Blocking function calls, such as cyg_semaphore_wait, halt execution of the thread
until the API function can complete successfully. Nonblocking function calls, such as
cyg_semaphore_trywait, attempt to complete successfully; however, if the API function
is not successful, a return code indicates the status of the call so the thread can proceed with its
execution.

Another type of blocking call, blocking with timeout, also exists for certain synchroniza-
tion mechanisms. These are API functions that halt execution of the thread for a specified period
of time, such as cyg_semaphore_timed_wait, while attempting to complete the function
call successfully. If the function does not complete successfully before the timeout period, the
function returns, indicating an unsuccessful status.

6.2.1 Mutexes

The first synchronization mechanism provided by eCos is the mutex. A mutex (mutual exclusion
object) allows multiple threads to share a resource serially. The resource can be an area of mem-
ory or a piece of hardware, such as a Direct Memory Access (DMA) controller.

A mutex is similar to a binary semaphore in that it only has two states—locked and
unlocked. However, there are a couple of differences between a binary semaphore and a mutex.

96 Chapter 6 • Threads and Synchronization Mechanisms

A mutex provides protection against priority inheritance, whereas a binary semaphore does not.
Priority inheritance is discussed further later in this section.

A mutex also has the concept of an owner, and only the owner can unlock the mutex. A
binary semaphore does not have this requirement; it is possible for one thread to lock a binary
semaphore and another thread to unlock it. Once a mutex is locked, it should not be locked
again; this might cause undefined behavior. A thread that attempts to lock a mutex that is cur-
rently owned by another thread will block until the owner unlocks the mutex.

One issue that arises in real-time systems when using mutexes is priority inversion. Pri-
ority inversion occurs when a high priority thread is incorrectly prevented from executing by a
low priority thread. An example of this is when the high priority thread is waiting on a mutex
that is currently owned by the low priority thread. Then, an unrelated medium priority thread
preempts the low priority thread, preventing the high priority thread from executing at its
proper priority level.

eCos provides two solutions to the priority inversion problem that are selectable as config-
uration options. The first solution is a priority ceiling protocol. In the priority ceiling protocol,
all threads that acquire the mutex have their priority level raised to a preconfigured value. This
value is available as a configuration option. One disadvantage to this protocol is that the priority
level for threads using the mutex must be known ahead of time so the proper ceiling value can be
set. Another disadvantage is that if the ceiling value is set too high, other unrelated threads with
priority levels below the ceiling can be locked out from executing, possibly causing real-time
deadlines to be missed. The priority ceiling protocol is used even when priority inversion is not
occurring.

A more elegant solution eCos provides is a priority inheritance protocol. The priority
inheritance protocol allows a thread that owns the mutex to be raised to the priority level equal to
the highest level of all threads waiting for the mutex. The priority inheritance protocol is only
used when a higher priority thread is waiting for the mutex. The drawback to using this protocol
is that synchronization calls are costlier because the scheduler must comply with the inheritance
protocol each time.

The configuration options for the mutex synchronization primitive can be found under the
Synchronization Primitives component within the eCos Kernel package. The main configuration
option Priority Inversion Protection Protocols (CYGSEM_KERNEL_SYNCH_MUTEX_
PRIORITY_INVERSION_PROTOCOL) controls the inversion algorithm used for mutex opera-
tions. This option enables or disables the use of one of the priority inversion protocols for
mutexes. Eliminating the use of a priority inversion protocol reduces code and data sizes. Cur-
rently, eCos defines one algorithm for protection against priority inversion called Simple, which
is only available with the multilevel queue scheduler. The Simple algorithm is designed to be
fast and deterministic. The priority protocol used within the Simple algorithm can be set by con-
figuration suboptions. The configuration suboption that specifies the inversion protocol used is
Default Priority Inversion Protocol, which can be set to INHERIT, CEILING, or NONE. Item
List 6.3 lists the configuration suboptions for the mutex priority inversion protocol.

Synchronization Mechanisms 97

Item List 6.3 Kernel Mutex Configuration Options

Option Name Enable Priority Inheritance Protocol
CDL Name CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_INHERIT
Description Enables the priority inheritance protocol, which causes the owner of a mutex to be exe-

cuted at the highest priority of all threads waiting for the mutex. The default value for this
option is enabled.

Option Name Enable Priority Ceiling Protocol
CDL Name CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_CEILING
Description Enables the priority ceiling protocol, which causes the owner of a mutex to execute at a

preset priority level. The default value for this option is enabled. The suboption Default
Priority Ceiling specifies the priority level for the ceiling. The mutex will boost the owner
of the thread to this priority level while executing. The default value for this option is 0,
which is the maximum priority level.

Option Name No Priority Inversion Protocol
CDL Name CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_NONE
Description Disables the priority inversion protocol. This option is necessary for the run-time selection

of a priority inversion protocol. The default value for this option is enabled.

Option Name Default Priority Inversion Protocol
CDL Name CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT
Description Defines the default inversion protocol to use when mutexes are created if a protocol is not

specified. The possible values for this option are INHERIT, CEILING, or NONE. The
default value for this option is INHERIT.

Option Name Specify Mutex Priority Inversion Protocol At Runtime
CDL Name CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DYNAMIC
Description Allows the priority inversion protocol used by a mutex to be specified when the mutex is

created. The default value for this option is enabled.

The eCos kernel provides API functions for creating and manipulating mutexes. The
mutex functions available in the kernel API are listed in Item List 6.4.

Item List 6.4 Kernel Mutex API Functions

Syntax: void
cyg_mutex_init(
 cyg_mutex_t *mutex
);

Context: Init/Thread
Parameters: mutex—pointer to the mutex object to initialize.
Description: Initialize a mutex in the unlocked state.

Syntax: void
cyg_mutex_destroy(

98 Chapter 6 • Threads and Synchronization Mechanisms

 cyg_mutex_t *mutex

);

Context: Thread
Parameters: mutex—pointer to the mutex object to remove.
Description: Destroys a mutex. It is important that the mutex be in the unlocked state when it is

destroyed, or else the behavior is undefined.

Syntax: cyg_bool_t

cyg_mutex_lock(

 cyg_mutex_t *mutex

);

Context: Thread
Parameters: mutex—pointer to the mutex object.
Description: Changes the state of a mutex to the locked state, allowing the thread that called this func-

tion to become the owner of the mutex. If the mutex is locked when the thread makes this
call, the thread will wait until the mutex is in the unlocked state and then continue to exe-
cute. TRUE is returned if the mutex has been locked, or FALSE if it has not been locked.

Syntax: cyg_bool_t

cyg_mutex_trylock(

 cyg_mutex_t *mutex

);

Context: Thread
Parameters: mutex—pointer to the mutex object.
Description: Attempts to change the state of a mutex to the locked state. This function call returns

immediately. TRUE is returned if the mutex has been locked, or FALSE if it has not been
locked.

Syntax: void

cyg_mutex_unlock(

 cyg_mutex_t *mutex

);

Context: Thread
Parameters: mutex—pointer to the mutex object.
Description: Allows the owner of a mutex to change the state to unlocked. This function should not be

called with a mutex that is currently unlocked.

Syntax: void

cyg_mutex_release(

 cyg_mutex_t *mutex

);

Context: Thread
Parameters: mutex—pointer to the mutex object.
Description: Releases all threads waiting on the mutex. The threads will return from the call

cyg_mutex_lock with a value of false and not claim the mutex.

Synchronization Mechanisms 99

Syntax: void
cyg_mutex_set_ceiling(
 cyg_mutex_t *mutex,
 cyg_priority_t priority
);

Context: Init/Thread
Parameters: mutex—pointer to the mutex object.

priority—new priority level for ceiling.
Description: Sets the priority level for the ceiling of the specified mutex.

Syntax: void
cyg_mutex_set_protocol(
 cyg_mutex_t *mutex,
 enum cyg_mutex_protocol protocol
);

Context: Init/Thread
Parameters: mutex—pointer to the mutex object.

protocol—protocol to use for mutex. Valid values are CYG_MUTEX_NONE,
CYG_MUTEX_INHERIT, or CYG_MUTEX_CEILING.

Description: Sets the protocol for the specified mutex.

Code Listing 6.2 is an example showing two threads using a mutex. The thread and mutex
initializations are left out in this example to focus on the use of the mutex.

1 #include <cyg/kernel/kapi.h>
2 #include <cyg/io/io.h>
3
4 cyg_io_handle_t port_handle;
5 cyg_mutex_t mut_shared_port;
6
7 //
8 // Thread A.
9 //
10 void thread_a(cyg_addrword_t index)
11 {
12 int result;
13 int write_length = 6;
14 unsigned char write_buffer[6] = {4,21,4,20,6,28};
15
16 // Run this thread forever.
17 while (1)
18 {
19 // Get the mutex.
20 cyg_mutex_lock(&mut_shared_port);
21
22 // Write data to the I/O port.
23 result = cyg_io_write(port_handle,

100 Chapter 6 • Threads and Synchronization Mechanisms

24 &write_buffer[0],
25 &write_length);
26
27 // Release the mutex.
28 cyg_mutex_unlock(&mut_shared_port);
29
30 // Get more data to send to the port...
31 }
32 }
33
34 //
35 // Thread B.
36 //
37 void thread_b(cyg_addrword_t index)
38 {
39 int result;
40 int read_length = 3;
41 unsigned char read_buffer[3];
42
43 // Run this thread forever.
44 while (1)
45 {
46 // Get the mutex.
47 cyg_mutex_lock(&mut_shared_port);
48
49 // Read data from the I/O port.
50 result = cyg_io_read(port_handle,
51 &read_buffer[0],
52 &read_length);
53
54 // Release the mutex.
55 cyg_mutex_unlock(&mut_shared_port);
56
57 // Process the data read from the port...
58 }
59 }

Code Listing 6.2 Mutex example code.

As we can see in Code Listing 6.2, Thread A and Thread B both use the same hardware I/O
port. The mut_shared_port mutex protects the port so that only one thread accesses the port
at a time. In this example, we assume Thread A acquires the mutex first by executing its
cyg_mutex_lock function call on line 20. Thread A is then able to write out its data to the I/O
port on line 23. While Thread A is writing out to the port, Thread B executes. However, Thread
B must wait when it reaches its cyg_mutex_lock function call, shown on line 47, since the
mutex is already owned by Thread A.

Synchronization Mechanisms 101

After Thread A finishes writing out its data, the function call cyg_mutex_unlock, on
line 28, releases the mutex. Then, Thread B becomes the owner of the mutex and is allowed to
access the port. Finally, after Thread B reads its data from the I/O port, on line 50, it releases the
mutex with the call cyg_mutex_unlock on line 55.

6.2.2 Semaphores

A semaphore is a synchronization mechanism that contains a count indicating whether a
resource is locked or available. There are two types of semaphores, counting and binary. Binary
semaphores are similar to counting semaphores; however, their count is never incremented past
a value of one. Binary semaphores are in either a locked or unlocked state.

Counting semaphores can be in multiple states depending on their count value. Counting
semaphore objects contain a value that is incremented when a thread posts to a semaphore, and
the value is decremented when a thread completes a wait for the semaphore. Only the highest
priority waiting thread is executed when the semaphore count is above zero. Counting sema-
phores are often used when a higher priority thread or DSR, which received data, needs to signal
another thread to continue processing the data at a lower priority.

The eCos kernel provides API functions for creating and manipulating semaphores. The
kernel API is for counting semaphores and not binary semaphores. These API functions, which
are defined in Item List 6.5, use counting semaphores.

Item List 6.5 Kernel Semaphore API Functions

Syntax: void

cyg_semaphore_init(

 cyg_sem_t *sem,

 cyg_ucount32 val

);

Context: Init/Thread
Parameters: sem—pointer to semaphore object.

val—initial count for semaphore.
Description: Initializes a semaphore with a count value specified in the val parameter.

Syntax: void

cyg_semaphore_destroy(

 cyg_sem_t *sem

);

Context: Thread
Parameters: sem—pointer to semaphore object.
Description: Destroys a semaphore. It is important that there are not any threads waiting on the sema-

phore when this function is called or the behavior is undefined.

Syntax: void

cyg_semaphore_wait(

102 Chapter 6 • Threads and Synchronization Mechanisms

 cyg_sem_t *sem
);

Context: Thread
Parameters: sem—pointer to semaphore object.
Description: When the semaphore count is zero, the thread calling this function will wait for the sema-

phore. When the semaphore count is nonzero, the count will be decremented and the
thread calling this function will continue.

Syntax: cyg_bool_t
cyg_semaphore_trywait(
 cyg_sem_t *sem
);

Context: Thread/DSR
Parameters: sem—pointer to semaphore object.
Description: Attempts to decrement the semaphore count. If the semaphore count is greater than zero,

the count is decremented and TRUE is returned. If the count is zero, the semaphore is
unchanged and FALSE is returned. In either case, the thread does not block waiting for the
semaphore.

Syntax: cyg_bool_t
cyg_semaphore_timed_wait(
 cyg_sem_t *sem,
 cyg_tick_count_t abstime
);

Context: Thread
Parameters: sem—pointer to semaphore object.

abstime—absolute time to wait for semaphore.
Description: Attempts to decrement a semaphore count. This function is only available when the Allow

Per-Thread Timers configuration option is enabled. If the semaphore count is greater than
zero, the count is decremented and TRUE is returned. If the count is zero, the function call
will wait for the amount of time specified in the abstime parameter. If the timeout
occurs before the semaphore count can be decremented, FALSE is returned and the current
thread will continue to run. The abstime parameter is an absolute time measured in
clock ticks. The following shows how to use a relative wait time:
cyg_semaphore_timed_wait(
 &sem,
 cyg_current_time() + 100);
In this example, the thread will wait for the semaphore for 100 ticks from the present time.

Syntax: void
cyg_semaphore_post(
 cyg_sem_t *sem
);

Context: Thread/DSR
Parameters: sem—pointer to semaphore object.
Description: Increment the semaphore count. If a thread is waiting on the specified semaphore, it is

awakened.

Synchronization Mechanisms 103

Syntax: void
cyg_semaphore_peek(
 cyg_sem_t *sem,
 cyg_count32 *val
);

Context: Thread/DSR
Parameters: sem—pointer to semaphore object.

val—pointer to returned semaphore count.
Description: Returns the current semaphore count in the variable pointed to by the parameter val.

Code Listing 6.3 is a simple example of the creation of a semaphore for use by two threads.

1 #include <cyg/kernel/kapi.h>
2 #include <cyg/infra/diag.h>
3
4 #define THREAD_A_STACK_SIZE (2048 / sizeof(int))
5 #define THREAD_B_STACK_SIZE (2048 / sizeof(int))
6
7 cyg_sem_t sem_get_data;
8 int thread_a_stack[THREAD_A_STACK_SIZE];
9 int thread_b_stack[THREAD_B_STACK_SIZE];
10 cyg_handle_t thread_a_handle;
11 cyg_handle_t thread_b_handle;
12 cyg_thread thread_a_obj;
13 cyg_thread thread_b_obj;
14
15 //
16 // Thread A.
17 //
18 void thread_a(cyg_addrword_t index)
19 {
20 // Run this thread forever.
21 while (1)
22 {
23 // Delay for 1000 ticks.
24 cyg_thread_delay(1000);
25
26 // Display a message.
27 diag_printf("Thread A: Signal Thread B!\n");
28
29 // Signal Thread B to run.
30 cyg_semaphore_post(&sem_get_data);
31 }
32 }
33
34 //
35 // Thread B.

104 Chapter 6 • Threads and Synchronization Mechanisms

36 //
37 void thread_b(cyg_addrword_t index)
38 {
39 // Run this thread forever.
40 while (1)
41 {
42 // Signal Thread B to run.
43 cyg_semaphore_wait(&sem_get_data);
44
45 // Display a message.
46 diag_printf("Thread B: Got the signal!\n");
47 }
48 }
49
50 //
51 // Main starting point for the application.
52 //
53 void cyg_user_start(
54 void)
55 {
56 // Initialize the get data semaphore to 0.
57 cyg_semaphore_init(&sem_get_data, 0);
58
59 // Create Thread A.
60 cyg_thread_create(
61 12,
62 thread_a,
63 0,
64 "Thread A",
65 &thread_a_stack,
66 THREAD_A_STACK_SIZE,
67 &thread_a_handle,
68 &thread_a_obj);
69
70 // Create Thread B.
71 cyg_thread_create(
72 12,
73 thread_b,
74 0,
75 "Thread B",
76 &thread_b_stack,
77 THREAD_B_STACK_SIZE,
78 &thread_b_handle,
79 &thread_b_obj);
80
81 // Let the threads run when the scheduler starts.

Synchronization Mechanisms 105

82 cyg_thread_resume(thread_a_handle);
83 cyg_thread_resume(thread_b_handle);
84 }

Code Listing 6.3 Semaphore example code.

In Item List 6.3, we can see in the function cyg_user_start, on line 53, that the
sem_get_data semaphore is initialized, shown on line 57.

When the semaphore is initialized, a parameter is passed in that determines the initial
value of the semaphore count; we can see on line 57 that this value is 0. If the count value is ini-
tialized to zero, all threads waiting on the semaphore will continue to wait until a post, which
increments the count value, to the semaphore occurs. If the count value is initialized to a value
greater than zero, the scheduler will determine which waiting thread to run based on each
thread’s priority level until the semaphore count value is zero. Each time a wait function suc-
ceeds, the semaphore count value is decremented by one.

Thread A executes a delay of 1000 ticks (line 24), outputs a message (line 27), and then posts
to the semaphore (line 30). The scheduler then wakes up Thread B because of the semaphore wait
call on line 43, outputs a message (line 46), and then returns to the waiting state (line 43).

6.2.3 Condition Variables

Another available synchronization mechanism is the condition variable. Condition variables are
used with mutexes that allow multiple threads access to shared data. Typically, there is a single
thread producing the data, and one or more threads waiting for the data to be available. The
thread producing the data can either signal a single thread to wake up or all threads to wake up,
with a broadcast signal, when the data is available. The waiting threads can then process the data
as needed. Item List 6.6 lists the kernel API condition variable control functions.

eCos contains two configuration options for condition variables. These are located in the Syn-
chronization Primitives component within the eCos Kernel package. The first configuration option is
Condition Variable Timed-Wait Support (CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT),
which allows the cyg_cond_timed_wait kernel API function to be used by applications.
This option is enabled by default.

The second configuration option is Condition Variable Explicit Mutex Wait Support
(CYGMFN_KERNEL_SYNCH_CONDVAR_WAIT_MUTEX), which permits a thread to provide a

N O T E This might be understood; however, it should be
pointed out nonetheless . It is impor tant to initializ e an y sema-
phores , and an y other synchronization mechanisms , prior to
creating and resuming the threads that use these mechanisms.
Undefined behavior will result if this rule is not followed. Careful
consideration should also be given to the initial values of syn-
chronization mechanisms to ensure that threads are running at
the proper time.

106 Chapter 6 • Threads and Synchronization Mechanisms

different mutex in a call to the wait functions. In the default case, condition variables are created
with a statically associated mutex. This configuration option is enabled by default.

Item List 6.6 Condition Variable API Functions

Syntax: void
cyg_cond_init(
 cyg_cond_t *cond,
 cyg_mutex_t *mutex
);

Context: Init/Thread
Parameters: cond—pointer to condition variable object.

mutex—pointer to mutex object to attach to condition variable.
Description: Initializes a condition variable and attaches it to the specified mutex.

Syntax: void
cyg_cond_destroy(
 cyg_cond_t *cond
);

Context: Init/Thread
Parameters: cond—pointer to condition variable object.
Description: Destroys a condition variable. It is important that this function not be called with a condi-

tion variable that is in use.

Syntax: cyg_bool_t
cyg_cond_wait(
 cyg_cond_t *cond
);

Context: Thread
Parameters: cond—pointer to condition variable object.
Description: Causes the current thread to wait on the specified condition variable and simultaneously

unlocks the mutex attached to the condition variable. Returns TRUE on success, and
FALSE if the thread is forcibly awakened. This call must be made while the thread has the
mutex attached to the condition variable locked. The condition variable signal or broadcast
functions wake up threads calling this wait function. When the thread wakes up, the mutex
is reclaimed prior to this function proceeding. Since the thread might have to wait for the
mutex, this wait function should be called within a loop because the condition might
become FALSE during the waiting period.

Syntax: cyg_bool_t
cyg_cond_timed_wait(
 cyg_cond_t *cond,
 cyg_tick_count_t abstime
);

Context: Thread
Parameters: cond—pointer to condition variable object.

abstime—absolute time to wait for condition variable.

Synchronization Mechanisms 107

Description: Causes the thread to wait on the specified condition variable for an absolute time period.
This function is only available when the Condition Variable Timed-Wait Support configu-
ration option is enabled. If a condition variable signal or broadcast is received, this func-
tion returns TRUE. If the timeout occurs before the condition variable is signaled or the
thread is forcibly awakened, FALSE is returned. The abstime parameter is an absolute
time measured in clock ticks. The following shows how to use a relative wait time:
cyg_cond_timed_wait(
 &cond,
 cyg_current_time() + 100);
In this example, the thread will wait for the condition variable for 100 ticks from the
present time.

Syntax: void
cyg_cond_signal(
 cyg_cond_t *cond
);

Context: Thread/DSR
Parameters: cond—pointer to condition variable object.
Description: Wake up exactly one thread waiting on the condition variable, causing that thread to

become the owner of the mutex. It is important to understand that a race condition could
arise if more than one thread is waiting for the condition variable. This is why it is impor-
tant for the waiting thread to retest the condition variable to ensure its proper state. If there
are no threads waiting for the condition variable when it is signaled, nothing happens. The
state of the condition variable is not stored anywhere. Therefore, the next thread that waits
on the condition variable needs to wait until the variable is signaled again. If there were a
need for the signaled state to be stored, a semaphore would be a better synchronization
mechanism to use.

Syntax: void
cyg_cond_broadcast(
 cyg_cond_t *cond
);

Context: Thread/DSR
Parameters: cond—pointer to condition variable object.
Description: Wake up all threads waiting on the condition variable. Each thread that was waiting on the

condition variable becomes the owner of the mutex when it runs.

Code Listing 6.4 shows an example using a condition variable. The thread, condition vari-
able, and mutex initializations are left out in this example to focus on the use of the condition
variable.

1 #include <cyg/kernel/kapi.h>
2 #include <cyg/infra/cyg_type.h>
3
4 unsigned char buffer_empty = true;
5 cyg_mutex_t mut_cond_var;
6 cyg_cond_t cond_var;

108 Chapter 6 • Threads and Synchronization Mechanisms

7
8 //
9 // Thread A.
10 //
11 void thread_a(cyg_addrword_t index)
12 {
13 // Run this thread forever.
14 while (1)
15 {
16 // Acquire data into the buffer...
17
18 // There is data in the buffer now.
19 buffer_empty = false;
20
21 // Get the mutex.
22 cyg_mutex_lock(&mut_cond_var);
23
24 // Signal the condition variable.
25 cyg_cond_signal(&cond_var);
26
27 // Release the mutex.
28 cyg_mutex_unlock(&mut_cond_var);
29 }
30 }
31
32 //
33 // Thread B.
34 //
35 void thread_b(cyg_addrword_t index)
36 {
37 // Run this thread forever.
38 while (1)
39 {
40 // Get the mutex.
41 cyg_mutex_lock(&mut_cond_var);
42
43 // Wait for the data and the condition variable signal.
44 while (buffer_empty == true)
45 {
46 cyg_cond_wait(&cond_var);
47 }
48
49 // Get the buffer data...
50
51 // The data in the buffer has been processed.
52 buffer_empty = true;
53
54 // Release the mutex.

Synchronization Mechanisms 109

55 cyg_mutex_unlock(&mut_cond_var);
56
57 // Process the data in the buffer...
58 }
59 }

Code Listing 6.4 Condition variable example code.

In Code Listing 6.4, Thread A is acquiring data that is processed by Thread B. First,
Thread B executes. On line 41, Thread B acquires the mutex associated with the condition variable.
Next, since there is no data in the buffer to process, and buffer_empty is true on initializa-
tion (line 4), Thread B calls cyg_cond_wait on line 46. This call to cyg_cond_wait does
two things—first, it suspends Thread B waiting for the condition variable to be set, and second,
it unlocks the mutex mut_cond_var.

Now, an event occurs causing Thread A to execute and acquire data into a buffer, as we see
on line 16. Next, buffer_empty is set to false on line 19. Thread A then locks the mutex
(line 22), signals the condition variable (line 25), and then unlocks the mutex (line 28).

Next, Thread B is able to run because the condition variable is signaled from Thread A.
Before returning from cyg_cond_wait, the mutex, mut_cond_var, is locked and owned
by Thread B. Now, Thread B can get the data buffer (line 49) and set the buffer_empty flag
to true (line 52). Finally, the mutex is released by Thread B on line 55 and the data in the
buffer is processed, as we see on line 57.

It is important to understand a couple of issues relating to the code in Code Listing 6.4.
First, the mutex unlock and wait code execution in the call to cyg_cond_wait, on line 46, is
atomic; therefore, no other thread is allowed to run between the unlock and the wait. If this code
were not atomic, then it would be possible for Thread B to miss the signal call from Thread A
even though data was in the buffer. Why? Because Thread B calls cyg_cond_wait, which
first checks to see if the condition variable is set; in this case, it is not. Next, the mutex is
released in the cyg_cond_wait call. Now, Thread A executes, putting data into the buffer and
then signaling the condition variable (line 25). Then, Thread B returns to waiting, however, the
condition variable has been set.

Another issue to keep in mind is that the call to cyg_cond_wait by Thread B is in a
while loop, on lines 44 through 47. This ensures that the condition that Thread B is waiting on
is still true after returning from the condition wait call. Take the case where other threads are
waiting on the same condition. Another thread might be queued to obtain the mutex before
Thread B; therefore, being signaled and waking up before Thread B. When Thread B finally gets
to run, the condition is then false. The while loop around the condition wait ensures the condition
is still true before a thread executes.

110 Chapter 6 • Threads and Synchronization Mechanisms

6.2.4 Flags

Flags are synchronization mechanisms represented by a 32-bit word. Each bit in the flag repre-
sents a condition, which allows a thread to wait for either a single condition or a combination of
conditions. The waiting thread specifies if all conditions or a combination of conditions are to be
met before it wakes up. The signaling thread can then set or reset bits according to specific con-
ditions so the appropriate thread can be executed. The kernel API functions for creating and con-
trolling the flags are detailed in Item List 6.7.

Item List 6.7 Kernel Flag API Functions

Syntax: void
cyg_flag_init(
 cyg_flag_t *flag
);

Context: Init/Thread
Parameters: flag—pointer to flag object.
Description: Initializes a flag variable.

Syntax: void
cyg_flag_destroy(
 cyg_flag_t *flag
);

Context: Init/Thread
Parameters: flag—pointer to flag object.
Description: Destroys the specified flag variable. Flag variables that are being waited on must not be

destroyed.

Syntax: void
cyg_flag_setbits(
 cyg_flag_t *flag,
 cyg_flag_value_t value
);

Context: Thread/DSR
Parameters: flag—pointer to flag object.

value—the bits that are set to one in this parameter are set along with the current bits set
in the flag.

Description: Sets the bits in the flag value that are set to one in the value parameter. Any threads that
are waiting on the flag and have their conditions met are woken up.

Syntax: void
cyg_flag_maskbits(
 cyg_flag_t *flag,
 cyg_flag_value_t value
);

Context: Thread/DSR

Synchronization Mechanisms 111

Parameters: flag—pointer to flag object.
value—the bits that are set to zero in this parameter are cleared in the flag.

Description: Clears the bits in the flag value that are set to zero in the value parameter. No threads
are awakened by this call.

Syntax: cyg_flag_value_t
cyg_flag_wait(
 cyg_flag_t *flag,
 cyg_flag_value_t pattern,
 cyg_flag_mode_t mode
);

Context: Thread
Parameters: flag—pointer to flag object.

pattern—bit setting that will cause the calling thread to be woken up.
mode—specifies the conditions for wake up.

Description: If the mode parameter is set to AND, the function will wait for all bits in the pattern
parameter to be set in the flag value. If the mode parameter is set to OR, the function will
wait for any bits in the pattern parameter to be set in the flag value. When this function
call returns, the condition is met and the flag value is returned. Zero is returned if the
thread is forcibly woken up or forced to exit with cyg_thread_exit. The mode
parameter can have the following possible values:
CYG_FLAG_WAITMODE_AND—wake up if all bits specified in the mask are set in the flag.
CYG_FLAG_WAITMODE_OR—wake up if any bits specified in the mask are set in the flag.
CYG_FLAG_WAITMODE_CLR—clear all bits in the flag when the condition is met. Typi-
cally, only the bits that are set in the pattern parameter are cleared. This flag is bitwise
combined with either the AND or OR wait mode flags.

Syntax: cyg_flag_value_t
cyg_flag_timed_wait(
 cyg_flag_t *flag,
 cyg_flag_value_t pattern,
 cyg_flag_mode_t mode,
 cyg_tick_count_t abstime
);

Context: Thread
Parameters: flag—pointer to flag object.

pattern—bit setting that will cause the calling thread to be woken up.
mode—modifies the conditions for wake up.
abstime—absolute time to wait for flag conditions to be met.

Description: Waits for the conditions required by the pattern and mode parameters or the timeout
specified by the abstime parameter. If the timeout occurs before the conditions are met,
zero is returned; otherwise, the flag value is returned. This function is only available when
the Allow Per-Thread Timers configuration option is enabled.

Syntax: cyg_flag_value_t
cyg_flag_poll(
 cyg_flag_t *flag,

112 Chapter 6 • Threads and Synchronization Mechanisms

 cyg_flag_value_t pattern,
 cyg_flag_mode_t mode
);

Context: Thread/DSR
Parameters: flag—pointer to flag object.

pattern—bit setting that will cause the calling thread to be woken up.
mode—modifies the conditions for returning the flag value.

Description: If the conditions required by the pattern and mode parameters are met, the flag value is
returned. If these conditions are not met, zero is returned; otherwise, the flag value is
returned. Specifying CYG_FLAG_WAITMODE_CLR in the mode parameter will clear the
flag value to zero.

Syntax: cyg_flag_value_t
cyg_flag_peek(
 cyg_flag_t *flag
);

Context: Thread/DSR
Parameters: flag—pointer to flag object.
Description: Returns the current value of the specified flag.

Syntax: cyg_bool_t
cyg_flag_waiting(
 cyg_flag_t *flag
);

Context: Thread/DSR
Parameters: flag—pointer to flag object.
Description: Returns TRUE if there are any threads waiting on the specified flag.

Code Listing 6.5 shows an example using the kernel API for flags. The thread and flag
initializations are left out in this example to focus on the use of flags.

1 #include <cyg/kernel/kapi.h>
2
3 cyg_flag_t flag_var;
4
5 //
6 // Thread A.
7 //
8 void thread_a(cyg_addrword_t index)
9 {
10 // Run this thread forever.
11 while (1)
12 {
13 // Delay for 1000 ticks.
14 cyg_thread_delay(1000);
15
16 // Set the appropriate flag bits to signal Thread B.

Synchronization Mechanisms 113

17 cyg_flag_setbits(&flag_var, 1);

18 }

19 }

20

21 //

22 // Thread B.

23 //

24 void thread_b(cyg_addrword_t index)

25 {

26 // Run this thread forever.

27 while (1)

28 {

29 // Wait for the appropriate bits to be set in the flag.

30 cyg_flag_wait(&flag_var,

31 3,

32 CYG_FLAG_WAITMODE_OR |

33 CYG_FLAG_WAITMODE_CLR

34);

35 }

36 }

Code Listing 6.5 Flags example code.

Code Listing 6.5 shows a basic example of how Thread A is using the flag, flag_var
declared on line 3, to signal Thread B. Thread B waits on the flag_var flag using the
cyg_flag_wait function call, as shown on line 30. The second parameter, on line 31, deter-
mines the bit pattern, in this case 3, that the flag variable needs to be set to in order to wake up
Thread B. The mode parameters, on lines 32 and 33, specify the conditions for wake up. In this
case, CYG_FLAG_WAITMODE_OR means that Thread B will wake up if either bit 1 or bit 2 is
set in the flag. The mode parameter CYG_FLAG_WAITMODE_CLR indicates that all bits in the
flag are cleared when the condition is met. Thread A sets bit 1 in flag_var using the function
call cyg_flag_setbits, as shown on line 17. Since Thread B is waiting on either bit 1 or bit
2 to be set, Thread B is then awakened.

6.2.5 Message Boxes

Another synchronization mechanism provided by eCos are message boxes, also called mail-
boxes. Message boxes provide a means for two threads to exchange information. Typically, one
thread will produce messages and send to another thread for processing. Message boxes offer
another method for threads to communicate more than a single byte of information. Item List 6.8
describes the kernel API message box functions.

There are two configuration options for the message box synchronization mechanism. These
are located under the Synchronization Primitives component within the eCos Kernel package. The
first configuration option is Message Box Blocking Put Support (CYGMFN_KERNEL_SYNCH_

114 Chapter 6 • Threads and Synchronization Mechanisms

MBOXT_PUT_CAN_WAIT). This option, which is enabled by default, allows the put and timed put
function calls to be used when sending messages.

The second configuration option determines the number of messages that can be queued in
a Message Box Queue Size (CYGNUM_KERNEL_SYNCH_MBOX_QUEUE_SIZE). The valid
values for this option are 1 to 65535 with a default value of 10 messages.

Item List 6.8 Kernel Message Box API Functions

Syntax: void
cyg_mbox_create(
 cyg_handle_t *handle,
 cyg_mbox *mbox
);

Context: Init/Thread
Parameters: handle—pointer to the handle for the new message box.

mbox—pointer to new message box object.
Description: Constructs a message box in the space pointed to by the mbox parameter.

Syntax: void
cyg_mbox_delete(
 cyg_handle_t mbox
);

Context: Thread
Parameters: mbox—handle to the message box.
Description: Removes the specified message box. You must not call this function if there is an outstand-

ing get operation. The contents of the message box are not cleaned up if the message box
is not empty.

Syntax: void*
cyg_mbox_get(
 cyg_handle_t mbox
);

Context: Thread
Parameters: mbox—handle to the message box.
Description: Removes a message from the specified message box when it is available and returns the

address of the data or NULL if the thread is forcibly awakened.

Syntax: void*
cyg_mbox_timed_get(
 cyg_handle_t mbox,
 cyg_tick_count_t timeout
);

Context: Thread
Parameters: mbox—handle to the message box.

timeout—absolute time to wait for message box.
Description: Attempts to retrieve a message from the specified message box when it is available and

returns the address of the data. If the timeout time passes, the message is not retrieved.

Synchronization Mechanisms 115

NULL is returned if the thread is forcibly awakened. The timeout parameter is an abso-
lute time measured in clock ticks. This function is only available when the configuration
option Allow Per-Thread Timers is enabled.

Syntax: void*

cyg_mbox_tryget(

 cyg_handle_t mbox

);

Context: Thread
Parameters: mbox—handle to the message box.
Description: Checks to see if a message is available in the specified message box. If a message is

present, it is removed from the message box and the address of the data is returned. If a
message is not available or forcibly awakened, NULL is returned.

Syntax: void*

cyg_mbox_peek_item(

 cyg_handle_t mbox

);

Context: Thread
Parameters: mbox—handle to the message box.
Description: Checks to see if a message is available in the specified message box. If a message is

present, the address of the data is returned without removing the message from the mes-
sage box. If no message is available, NULL is returned.

Syntax: cyg_bool_t

cyg_mbox_put(

 cyg_handle_t mbox,

 void *item

);

Context: Thread
Parameters: mbox—handle to the message box.

item—message to put in the message box.
Description: Attempts to place a message in the specified message box. If the message box is full, con-

figured by Message Box Queue Size, the call will block until the message can be success-
fully sent; in which case, the call will return TRUE. If the message is not sent successfully,
FALSE is returned. This function is only available if the configuration option Message Box
Blocking Put Support is enabled.

Syntax: cyg_bool_t

cyg_mbox_timed_put(

 cyg_handle_t mbox,

 void *item,

 cyg_tick_count_t abstime

);

Context: Thread

116 Chapter 6 • Threads and Synchronization Mechanisms

Parameters: mbox—handle to the message box.
item—message to put in the message box.
abstime—absolute time to wait when trying to put a message in the message box.

Description: Attempts to place a message in the specified message box. If the message is sent success-
fully, TRUE is returned. If the message could not be sent immediately, typically because
the message box is full, the function will wait until abstime before failing and returning
FALSE. This function is only available if the configuration options Message Box Blocking
Put Support and Allow Per-Thread Timers are enabled.

Syntax: cyg_bool_t
cyg_mbox_tryput(
 cyg_handle_t mbox,
 void *item
);

Context: Thread
Parameters: mbox—handle to the message box.

item—message to put in the message box.
Description: Attempts to put a message in the specified message box. If the message is sent success-

fully, TRUE is returned. If the message could not be sent immediately, typically because
the message box is full, FALSE is returned.

Syntax: cyg_count32
cyg_mbox_peek(
 cyg_handle_t mbox
);

Context: Thread
Parameters: mbox—handle to the message box.
Description: Returns the number of messages in the specified message box.

Syntax: cyg_bool_t
cyg_mbox_waiting_to_get(
 cyg_handle_t mbox
);

Context: Thread
Parameters: mbox—handle to the message box.
Description: Queries to see if other threads are waiting to receive a message in the specified message

box. If so, TRUE is returned; otherwise, FALSE is returned.

Syntax: cyg_bool_t
cyg_mbox_waiting_to_put(
 cyg_handle_t mbox
);

Context: Thread
Parameters: mbox—handle to the message box.
Description: Queries to see if other threads are waiting to send a message in the specified message box.

If so, TRUE is returned; otherwise, FALSE is returned.

Synchronization Mechanisms 117

Code Listing 6.6 shows an example using a message box to exchange data between two
tasks. The thread and message box initializations are left out in this example.

1 #include <cyg/kernel/kapi.h>
2
3 cyg_handle_t mbox_handle;
4
5 // Thread A.
6 //
7 void thread_a(cyg_addrword_t index)
8 {
9 // Run this thread forever.
10 while (1)
11 {
12 // Delay for 1000 ticks.
13 cyg_thread_delay(1000);
14
15 // Send a message to Thread B.
16 cyg_mbox_put(mbox_handle, (void *)12);
17 }
18 }
19
20 //
21 // Thread B.
22 //
23 void thread_b(cyg_addrword_t index)
24 {
25 void *message;
26
27 // Run this thread forever.
28 while (1)
29 {
30 // Wait for the message.
31 message = cyg_mbox_get(mbox_handle);
32
33 // Make sure we received the message before attempting
34 // to process it.
35 if (message != NULL)
36 {
37 // Process the message.
38 }
39 }
40 }

Code Listing 6.6 Message box example code.

Code Listing 6.6 shows an example of Thread A sending a message to Thread B using a
message box. Thread A places the message—in this case, the number 12—in the message box

118 Chapter 6 • Threads and Synchronization Mechanisms

using the handle mbox_handle, as shown on line 16. Thread B retrieves the data and stores it
in the local variable message using cyg_mbox_get, as we see on line 31. On line 35, we
verify that there is valid data in the message variable before proceeding to process the data.

6.2.6 Spinlocks

eCos kernel provides an additional synchronization mechanism for applications running on SMP
systems called spinlocks. The other synchronization mechanisms work as well on SMP systems.
Additional information about SMP support within eCos can be found in Chapter 8, Additional
Functionality and Third-Party Contributions.

A spinlock is basically a flag that a processor can check prior to executing a particular
piece of code. If the spinlock is not locked, the processor can set the flag and continue executing
the thread. If the spinlock is locked, the thread spins in a tight loop continually checking the flag
until it is released. Spinlocks operate at a lower level than other synchronization mechanisms
and the implementation is hardware specific. Some processors offer a test-and-set instruction for
implementing a spinlock.

Threads that do not acquire a spinlock are not suspended; therefore, it is important that
spinlocks are held for a short period of time, typically on the order of 10 or 12 instructions.
Understanding the consequences of using a spinlock is important. For example, since a proces-
sor does not perform any useful work waiting for a spinlock, it is important when a thread
acquires a spinlock that it does not get preempted. This could cause another processor to wait for a
timeslice period or longer for the spinlock. To avoid this, the kernel spinlock API, as shown in Item
List 6.9, provides a function to disable interrupts on the processor where the thread is executing.

Item List 6.9 Kernel Spinlock API Functions

Syntax: void

cyg_spinlock_init(

 cyg_spinlock_t *lock,

 cyg_bool_t locked

);

Context: Any

N O T E Spinlocks should only be used in SMP systems and
are not appropriate for single-processor systems. The problems
of using spinlocks on a single-processor system can be illus-
trated in an example. Let’s take the case where a high priority
thread attempts to acquire a spinlock held by a lower priority
thread. The high priority thread loops forever waiting for the lower
priority thread to release the spinlock. However, since the lower
priority thread never gets a chance to run, it can never release
the spinlock; hence, a deadlock arises. Another deadlock sce-
nario could arise if an interrupt attempted to acquire a spinlock
previously acquired by a thread.

Synchronization Mechanisms 119

Parameters: lock—pointer to spinlock object.
locked—initial state of spinlock, either locked (TRUE) or unlocked (FALSE).

Description: Initialize a spinlock.

Syntax: void
cyg_spinlock_destroy(
 cyg_spinlock_t *lock
);

Context: Any
Parameters: lock—pointer to spinlock object.
Description: Destroys the specified spinlock.

Syntax: void
cyg_spinlock_spin(
 cyg_spinlock_t *lock
);

Context: Any
Parameters: lock—pointer to spinlock object.
Description: Attempt to acquire a spinlock. This function is used when it is known that the current code

will not be preempted. For example, if interrupts are disabled or the function is called from
an interrupt handler.

Syntax: void
cyg_spinlock_clear(
 cyg_spinlock_t *lock
);

Context: Any
Parameters: lock—pointer to spinlock object.
Description: Release a spinlock obtained with the cyg_spinlock_spin function.

Syntax: cyg_bool_t
cyg_spinlock_try(
 cyg_spinlock_t *lock
);

Context: Any
Parameters: lock—pointer to spinlock object.
Description: Nonblocking attempt to acquire a spinlock. On successful acquisition of the spinlock,

TRUE is returned; otherwise, FALSE is returned immediately on failure.

Syntax: cyg_bool_t
cyg_spinlock_test(
 cyg_spinlock_t *lock
);

Context: Any
Parameters: lock—pointer to spinlock object.
Description: Determine if the spinlock is locked. Returns TRUE if the spinlock is locked; otherwise,

FALSE is returned.

120 Chapter 6 • Threads and Synchronization Mechanisms

Syntax: void
cyg_spinlock_spin_intsave(
 cyg_spinlock_t *lock,
 cyg_addrword_t istate
);

Context: Any
Parameters: lock—pointer to spinlock object.

istate—previous interrupt state.
Description: Attempt to acquire a spinlock. This function disables interrupts when the spinlock is

acquired. The previous interrupt state is returned in the istate parameter. This value
should be passed when releasing the spinlock with the
cyg_spinlock_clear_intsave function.

Syntax: void
cyg_spinlock_clear_intsave(
 cyg_spinlock_t *lock,
 cyg_addrword_t istate
);

Context: Any
Parameters: lock—pointer to spinlock object.

istate—previous interrupt state.
Description: Release a spinlock obtained with the cyg_spinlock_spin_intsave function. The

previous interrupt state, obtained with the cyg_spinlock_spin_intsave function,
is passed in the istate parameter.

6.3 Summary
We began this chapter with a look at threads and how we use them in the eCos system, including
the importance of how we set the stack size for a particular thread based on its execution flow.
We then examined the different synchronization mechanisms available in the eCos system.
Proper use of the various synchronization mechanisms is important for our applications to oper-
ate as intended.

121

C H A P T E R 7

Other eCos
Architecture
Components

his chapter details the other software components that are part of the core eCos archi-
tecture, including Timing components, Assert and Tracing functionality, and the I/O

Control System. The timing components provide different mechanisms for periodic events and
are comprised of counters, clocks, alarms, and timers. Asserts and traces provide additional
debug functionality so you can build robust embedded systems. Finally, the I/O Control Sys-
tem describes the I/O communication scheme and device driver support.

7.1 Counters, Clocks, Alarms, and Timers
Most processor architectures provide a clock or timer mechanism, typically a programmable
register, which generates a periodic interrupt. This register is programmed with an initial value
that determines how often the interrupt occurs. If the processor architecture does not support an
onboard timer mechanism, the platform will have an external source for generating the periodic
interrupt.

eCos uses the hardware timer mechanism to drive its timing features, which consist of:

• Counters
• Clocks
• Alarms
• Timers

The kernel uses these timing features to provide time-out, delay, and scheduling services
for executing threads. Applications can use the timing features for specific timing-related needs
as well.

T

122 Chapter 7 • Other eCos Architecture Components

The HAL provides macros to initialize, reset, and read the hardware device used for the
kernel timing features. The implementation of the HAL macros and hardware device used is
platform specific. Item List 7.1 describes the HAL clock control macros used for the kernel tim-
ing functions.

Item List 7.1 HAL Clock Control Macros

Syntax: HAL_CLOCK_INITIALIZE(
 period
)

Parameters: _period_—initial value to set the timing device to achieve the desired interrupt rate.
Description: Set the timing device to interrupt at the specified period.

Syntax: HAL_CLOCK_RESET(
 vector,
 period
)

Parameters: _vector_—timing device interrupt vector. On most HAL packages, this parameter is
not used.
period—initial value to set the timing device to achieve the desired interrupt rate.

Description: Reset the timing device with the specified period. This is only necessary for devices that
require a reset after the interrupt occurs.

Syntax: HAL_CLOCK_READ(
 pvalue
)

Parameters: _pvalue_—pointer to counter value read from the timing device.
Description: Reads the current value of the timing device counter since the last interrupt. The hardware

counter value is returned in the location pointed to by _pvalue_. This macro is hard-
ware dependent and the definition here is the case for most hardware platforms.

The HAL architecture-specific configuration components contain a read-only configuration
option describing the real-time clock constants. The HAL real-time clock configuration options
can be overridden in the kernel package.

The HAL real-time clock configuration option is located under the platform-specific package
and is called Real-Time Clock Constants. The read-only suboptions are Real-Time Clock Numerator
(CYGNUM_HAL_RTC_NUMERATOR), Real-Time Clock Denominator (CYGNUM_HAL_RTC_
DENOMINATOR), and Real-Time Clock Period (CYGNUM_HAL_RTC_PERIOD). Dividing the
Real-Time Clock Numerator by the Real-Time Clock Denominator gives the number of nanosec-
onds per tick. The Real-Time Clock Period is the value that is programmed into the processor’s
hardware timer such that the timer overflows once per kernel tick. This overflow generates a

N O T E Care must be taken if the HAL_CLOCK_XXX macros are
used while using the eCos kernel. The eCos kernel uses these
macro calls for its own timing-related functions.

Counters, Clocks, Alarms, and Timers 123

hardware interrupt. The Real-Time Clock Period is the value passed in the _period_ parame-
ter in the macros shown in Item List 7.1.

The values for these configuration suboptions are calculated based on the clock source
used on the specific target platform. When using an eCos-supported target platform, it is usually
not necessary to modify these values.

It might be necessary to modify the real-time clock constants when porting to a new hard-
ware platform. These options can be modified, as described later in this section, using the Over-
ride Default Clock Settings configuration option located under the eCos Kernel package. If this
is the case, the Real-Time Clock Period is modified according to the specifications of the proces-
sor and/or hardware platform. The Real-Time Clock Numerator and Real-Time Clock Denomina-
tor are also modified to reflect the new timer resolution. For example, to increase the frequency
by a factor of 10, the Real-Time Clock Period is changed in some hardware-defined way. Gener-
ally, the period is decreased by a factor of 10 and then the Real-Time Clock Denominator is
increased by a factor of 10.

The kernel uses its tick to determine the timeslicing interval (CYGNUM_KERNEL_SCHED_
TIMESLICE_TICKS). The default setting uses five clock ticks per timeslice interval. The ker-
nel real-time clock settings can be overridden by enabling the Override Default Clock Settings
(CYGPKG_KERNEL_COUNTERS_CLOCK_OVERRIDE) configuration option, which is located
under the Counters and Clocks component in the eCos Kernel package. Timeslicing is described
further in the Multilevel Queue Scheduler section of Chapter 5, The Kernel.

Since all kernel-level clock-related operations, such as delays and time-outs, use units of
ticks rather than seconds, let’s look at the steps for a simple conversion.

1. Determine the delay in nanoseconds. In our example, we want a delay of 60 millisec-
onds, which is the same as 60,000,000 nanoseconds.

2. Next, we need the clock frequency. In this case, we assume a clock running at 100Hz,
which corresponds to 1 tick every 10 milliseconds, or 1 tick every 10,000,000 nanosec-
onds. This corresponds to a numerator of 100 and a denominator of 1,000,000,000.

3. Finally, we can calculate the tick value we need to use in the call using the equation

Therefore, in our example we plug in the values and get

4. We then call the clock-related kernel function and pass it the parameter 6 for our 60-
millisecond delay.

One more thing to remember, these conversion calculations can sometimes be computa-
tion intensive. Therefore, it is usually a good idea in an embedded system to perform these cal-
culations whenever possible at compile time rather than at run time.

Delay (in nanoseconds) Numerator×
Denominator

-- Clock ticks.=

60000000 100×
1000000000

--------------------------------------- 6 .=

124 Chapter 7 • Other eCos Architecture Components

The kernel can be configured to provide a Real-Time Clock (RTC) for the system. The
RTC is necessary to support clock- and alarm-related functions such as cyg_thread_delay.
It is also needed for the multilevel queue scheduler when using timeslicing. Item List 7.2 details
the kernel clock configuration options.

The kernel uses the HAL_CLOCK_INITIALIZE macro when it initializes the real-time
clock. HAL_CLOCK_RESET is used in the ISR for the real-time clock.

Item List 7.2 Kernel Clock Configuration Options

Option Name Provide Real-Time Clock
CDL Name CYGVAR_KERNEL_COUNTERS_CLOCK
Description Allows the kernel to provide the real-time clock for clock- and alarm-related functions and

timeslicing (when using the multilevel queue scheduler). The default setting for this option
is enabled.

Option Name Override Default Clock Settings
CDL Name CYGPKG_KERNEL_COUNTERS_CLOCK_OVERRIDE
Description Allows overriding of the default clock calculations for a particular platform. The default

settings attempt to configure 100 clock interrupts per second. The default setting for this
option is disabled.

Option Name Measure Real-Time Clock Interrupt Latency
CDL Name CYGVAR_KERNEL_COUNTERS_CLOCK_LATENCY
Description Measures the latency of the real-time clock timer interrupt. This option requires the HAL

macro HAL_CLOCK_LATENCY to be defined. The default setting for this option is dis-
abled. This option is only for a performance measurement.

Option Name Measure Real-Time Clock DSR Latency
CDL Name CYGVAR_KERNEL_COUNTERS_CLOCK_DSR_LATENCY
Description Measures the DSR latency for the real-time clock timer interrupt. This option requires the

HAL macro HAL_CLOCK_LATENCY to be defined. The default setting for this option is
disabled. This option is only for a performance measurement.

The kernel contains default settings for the clock interrupt frequency that are specific to
each platform. The default RTC frequency is 100Hz; however, you should consult the documen-
tation for the specific platform you are using to verify this value. The RTC settings are derived
from the clock source provided on the target hardware. The configuration option Override
Default Clock Settings contains three configuration suboptions:

• Clock Hardware Initialization Value (CYGNUM_KERNEL_COUNTERS_CLOCK_
OVERRIDE_PERIOD)—initial value programmed into the programmable hardware
timer register that generates the periodic interrupts for the kernel timing features.

• Clock Resolution Numerator (CYGNUM_KERNEL_COUNTERS_CLOCK_OVERRIDE_
NUMERATOR)—numerator value for calculating the resolution of clock interrupts in
nanoseconds.

Counters, Clocks, Alarms, and Timers 125

• Clock Resolution Denominator (CYGNUM_KERNEL_COUNTERS_CLOCK_OVERRIDE_
DENOMINATOR)—denominator value for calculating the resolution of clock interrupts
in nanoseconds.

The resolution is represented as a numerator and denominator value to minimize the drift
for frequencies that cannot be expressed as an integer. These suboptions allow you to override
the default resolution of the hardware timing device. Overriding this value affects the operation
of the real-time clock.

7.1.1 Counters

The first eCos timing feature is a counter. A counter is an abstraction, which maintains an
increasing value that is driven by a source of ticks. The source of the tick does not have to be
from a hardware device, nor does the tick need to be periodic. However, it is up to the owner of
the counter to ensure that the counter object is being ticked.

eCos offers two different implementations of the counter object. The first implementation
uses a single linked list for maintaining alarms attached to counters. When a tick occurs, the ker-
nel goes through this linked list, usually at the DSR level. Therefore, if there is a sizeable num-
ber of alarms attached to a single counter object, the system dispatch latency is affected.

The second implementation uses a table of linked lists for maintaining alarms attached to
counters, allowing the size of the table to be set by a configuration suboption. This can improve
the responsiveness of the kernel because only one list is searched per tick; however, extra code
and data is required. The counter configuration options are described in Item List 7.3.

Item List 7.3 Counter Configuration Options

Option Name Implement Counters Using a Single List
CDL Name CYGIMP_KERNEL_COUNTERS_SINGLE_LIST

Description Uses a single linked list for maintaining alarm objects. This is a more efficient use of mem-
ory when a small number of alarms are used in the system. The default setting for this
option is enabled.

Option Name Implement Counters Using a Table of Lists
CDL Name CYGIMP_KERNEL_COUNTERS_MULTI_LIST

Description Uses a table of linked lists for alarm objects. This option reduces the amount of computa-
tion necessary when a timer triggers, which is useful when many alarms are used in the
system. This option is disabled by default. When using a table of lists the suboption Size of
Counter List Table, which has a default value of 8, can be configured. The range for the
counter list table size is from 1 to 1024.

Option Name Sort the Counter List
CDL Name CYGIMP_KERNEL_COUNTERS_SORT_LIST

Description Allows the list of alarms that are attached to counters to be sorted so that the next alarm to
trigger is at the front of the list. This reduces the amount of work that needs to be done when

126 Chapter 7 • Other eCos Architecture Components

a counter tick is processed. This option causes the operation of adding alarms to the list more
expensive because the list must be sorted. The default setting for this option is disabled.

The eCos kernel API provides functions for controlling counters. The counter API func-
tions are detailed in Item List 7.4.

Item List 7.4 Kernel Counter API Functions

Syntax: void
cyg_counter_create(
 cyg_handle_t *counter,
 cyg_counter *the_counter
);

Context: Init/Thread
Parameters: counter—pointer to new counter handle.

the_counter—pointer to the new counter object.
Description: Construct a new counter.

Syntax: void
cyg_counter_delete(
 cyg_handle_t counter
);

Context: Init/Thread
Parameters: counter—handle to the counter.
Description: Remove the specified counter. A counter should never be deleted if a clock or alarm object

is attached.

Syntax: void
cyg_counter_tick(
 cyg_handle_t counter
);

Context: Init/Thread/DSR
Parameters: counter—handle to the counter.
Description: Increment the counter value by one tick.

Syntax: cyg_tick_count_t
cyg_counter_current_value(
 cyg_handle_t counter
);

Context: Init/Thread/DSR
Parameters: counter—handle to the counter.
Description: Returns the current value, in ticks, of the specified counter.

Syntax: void
cyg_counter_set_value(
 cyg_handle_t counter,
 cyg_tick_count_t new_value

Counters, Clocks, Alarms, and Timers 127

);
Context: Init/Thread/DSR
Parameters: counter—handle to the counter.

new_value—value, in ticks, to set counter.
Description: Sets the counter to the tick value specified by new_value.

Code Listing 7.1 shows an example of a counter that causes an alarm to trigger. We dis-
cuss alarms later in this chapter.

1 #include <cyg/kernel/kapi.h>
2
3
4 cyg_counter counter_obj;
5 cyg_handle_t counter_hdl;
6
7 cyg_handle_t alarm_hdl;
8 cyg_alarm alarm_obj;
9
10 // Declare the alarm handler function so it can
11 // be passed into the alarm initialize function.
12 cyg_alarm_t alarm_handler;
13
14 unsigned long index = 0;
15
16 //
17 // Counter thread.
18 //
19 void counter_thread(cyg_addrword_t index)
20 {
21
22 // Run forever.
23 while (1)
24 {
25 // Delay for 10 ticks.
26 cyg_thread_delay(10);
27
28 // Increment the counter.
29 cyg_counter_tick(counter_hdl);
30 }
31 }
32
33 //
34 // Main starting point for the application.
35 //
36 void cyg_user_start(void)
37 {
38 // Create the counter.

128 Chapter 7 • Other eCos Architecture Components

39 cyg_counter_create(&counter_hdl,

40 &counter_obj);

41

42 // Create the alarm.

43 cyg_alarm_create(counter_hdl,

44 alarm_handler,

45 (cyg_addrword_t)index,

46 &alarm_hdl,

47 &alarm_obj);

48

49 // Initialize the alarm.

50 cyg_alarm_initialize(alarm_hdl,

51 12,

52 6);

53

54 // Create and run the counter thread.

55 }

56

57 //

58 // Alarm handler.

59 //

60 void alarm_handler(

61 cyg_handle_t alarm_handle,

62 cyg_addrword_t data)

63 {

64 (unsigned long)data++;

65 }

Code Listing 7.1 Example code using counters and alarms.

In Code Listing 7.1, a counter is created on line 39. Next, the alarm is created using the
previously created counter handle, counter_hdl, as shown on line 43. The function that is
called when the alarm triggers, alarm_handler, is passed in the parameter on line 44. The
variable index, on line 45, is passed to the alarm_handler when the alarm triggers. The
alarm handle, alarm_hdl on line 46, and alarm object, alarm_obj on line 47, are returned
after the alarm is created successfully.

Now the alarm can be initialized using the alarm handle we just created, as shown on line
50. Line 51 is the value that the counter, counter_hdl, must reach before the alarm first trig-
gers; in this case, the value is 12. On line 52 is the interval that causes the alarm to trigger again.
For this alarm initialization, the alarm triggers again when the counter reaches 18, and 24, and
30, and so on—since the interval is set at 6.

The thread creation is eliminated from this code because we covered that in previous exam-
ples. After the counter_thread is running, it delays for 10 ticks (line 26) and then increments
the counter_hdl counter (line 29) using the cyg_counter_tick function call.

Counters, Clocks, Alarms, and Timers 129

When the counter_hdl counter reaches 12 ticks, the alarm_handler function is
called on line 60. In this case, the alarm_handler function simply increments the data
parameter passed in as the second parameter, which in turn increments the variable index.

7.1.2 Clocks

A clock is a counter, with an associated resolution, which is driven by a regular source of ticks
that represent time periods. The eCos kernel implements a default system clock, the RTC, which
tracks real time. Item List 7.5 lists the kernel API functions for clock control. Code Listing 7.2
shows an example using the kernel clock API functions along with the kernel alarm API functions.

Item List 7.5 Kernel Clock API Functions

Syntax: void
cyg_clock_create(
 cyg_resolution_t resolution,
 cyg_handle_t *handle,
 cyg_clock *clock
);

Context: Init/Thread
Parameters: resolution—numerator and denominator value in nanoseconds per tick.

handle—pointer to the new clock handle.
clock—pointer to the new clock object.

Description: Construct a new clock with the specified resolution.

Syntax: void
cyg_clock_delete(
 cyg_handle_t clock
);

Context: Init/Thread
Parameters: clock—handle to the clock.
Description: Remove the specified clock.

Syntax: void
cyg_clock_to_counter(
 cyg_handle_t clock,
 cyg_handle_t *counter
);

Context: Init/Thread/DSR
Parameters: clock—handle to the clock.

counter—pointer to the new counter handle.
Description: Converts a clock handle to counter handle allowing the use of kernel counter API functions.

This gives access to the clock’s attached counter.

Syntax: void
cyg_clock_set_resolution(
 cyg_handle_t clock,

130 Chapter 7 • Other eCos Architecture Components

 cyg_resolution_t resolution
);

Context: Init/Thread/DSR
Parameters: clock—handle to the clock.

resolution—numerator and denominator value in nanoseconds per tick.
Description: Changes the resolution of the specified clock object. This function does not actually change

the behavior of the hardware driving the clock. Instead, cyg_clock_set_resolution
synchronizes the kernel clock object to match resolution of the underlying hardware clock
providing the ticks.

Syntax: cyg_resolution_t
cyg_clock_get_resolution(
 cyg_handle_t clock
);

Context: Init/Thread/DSR
Parameters: clock—handle to the clock.
Description: Returns the current resolution of the specified clock.

Syntax: cyg_handle_t
cyg_real_time_clock(
 void
);

Context: Init/Thread/DSR
Parameters: None
Description: Returns a handle to the system real-time clock.

Syntax: cyg_tick_count_t
cyg_current_time(
 void
);

Context: Init/Thread/DSR
Parameters: None
Description: Returns the real-time clock counter value in ticks.

7.1.3 Alarms

Another eCos timing feature is the alarm. An alarm is attached to a counter and provides a
means for generating events based on the value of a counter. The event can be configured to trigger
periodically or once.

When an alarm is configured, a handler function is used to perform the necessary processing
for handling the event. The alarm handler must follow the same guidelines as other DSR functions,
which are detailed in Chapter 3, Exceptions and Interrupts, in the section Interrupt and Scheduler
Synchronization.

Item List 7.6 details the kernel alarm API functions. An example, in the file simple-
alarm.c, is provided that shows an implementation of an alarm using the real-time clock. The

Counters, Clocks, Alarms, and Timers 131

eCos examples are provided as part of the installation process and discussed further in
Chapter 12, An Example Application Using eCos.

Item List 7.6 Kernel Alarm API Functions

Syntax: void
cyg_alarm_create(
 cyg_handle_t counter,
 cyg_alarm_t *alarm_fn,
 cyg_addrword_t data,
 cyg_handle_t *handle,
 cyg_alarm *alarm
);

Context: Init/Thread
Parameters: counter—handle to counter which alarm is attached.

alarm_fn—pointer to alarm handler function.
data—parameter passed into alarm handler.
handle—pointer to the new alarm handle.
alarm—pointer to the new alarm object.

Description: Construct an alarm object that is attached to the specified counter. The alarm handler is
called when the alarm triggers and executes in the context of the function that incremented
the counter. The alarm does not run until after the call to cyg_alarm_initialize.

Syntax: void
cyg_alarm_delete(
 cyg_handle_t alarm
);

Context: Init/Thread
Parameters: alarm—handle to the alarm.
Description: Disables the specified alarm and detaches it from the counter.

Syntax: void
cyg_alarm_initialize(
 cyg_handle_t alarm,
 cyg_tick_count_t trigger,
 cyg_tick_count_t interval
);

Context: Init/Thread/DSR
Parameters: alarm—handle to the alarm.

trigger—tick value that causes alarm to occur.
interval—tick value that causes alarm to reoccur. Setting this parameter to zero disables
the alarm after it occurs once.

Description: Initializes the specified alarm to trigger when the tick value is equal to the trigger
parameter. If the interval parameter is set to zero, the alarm is disabled after it occurs
once. Otherwise, the alarm reoccurs according to the interval parameter setting.

Syntax: void
cyg_alarm_enable(

132 Chapter 7 • Other eCos Architecture Components

 cyg_handle_t alarm
);

Context: Init/Thread/DSR
Parameters: alarm—handle to the alarm.
Description: Enables the specified alarm, allowing it to occur in phase with the original settings from

the cyg_alarm_initialize function.

Syntax: void
cyg_alarm_disable(
 cyg_handle_t alarm
);

Context: Init/Thread/DSR
Parameters: alarm—handle to the alarm.
Description: Disables the specified alarm preventing it from occurring. The alarm can be re-enabled

using the cyg_alarm_initialize or cyg_alarm_enable functions.

In Code Listing 7.2, we see an example using the kernel clock API along with the kernel
alarm API.

1 #include <cyg/kernel/kapi.h>
2
3 cyg_handle_t counter_hdl;
4 cyg_handle_t sys_clk;
5 cyg_handle_t alarm_hdl;
6 cyg_tick_count_t ticks;
7 cyg_alarm_t alarm_handler;
8 cyg_alarm alarm_obj;
9
10 unsigned long index;
11
12 //
13 // Main starting point for the application.
14 //
15 void cyg_user_start(void)
16 {
17 sys_clk = cyg_real_time_clock();
18
19 cyg_clock_to_counter(sys_clk,
20 &counter_hdl);
21
22 cyg_alarm_create(counter_hdl,
23 alarm_handler,
24 (cyg_addrword_t)&index,
25 &alarm_hdl,
26 &alarm_obj);
27
28 cyg_alarm_initialize(alarm_hdl,

Counters, Clocks, Alarms, and Timers 133

29 cyg_current_time() + 100,

30 100);

31 }

32

33 //

34 // Alarm handler.

35 //

36 void alarm_handler(

37 cyg_handle_t alarm_handle,

38 cyg_addrword_t data)

39 {

40 (unsigned long)data++;

41 }

Code Listing 7.2 Example code using clocks and alarms.

Code Listing 7.2 is an example of how to use an alarm with the system real-time clock. In
the cyg_user_start function, shown on line 15, a handle to the real-time clock is stored in
sys_clk using the function cyg_real_time_clock, as shown on line 17.

Next, we get access to the real-time clock’s attached counter, on line 19. The handle is
stored in the variable counter_hdl, as we see on line 20. On line 22, we use the handle to the
system real-time clock to create an alarm. When the alarm triggers, the function passed in on
line 23, alarm_handler, is called and the function is passed the variable index, shown on
line 24. The alarm handle is returned in the parameter passed in on line 25, alarm_hdl. The
alarm object is stored in the parameter passed on line 26, alarm_obj.

Finally, we initialize the alarm on line 28 using the alarm handle we just created. In the
cyg_alarm_initialize function call, we set the initial trigger of the alarm on line 29. In
this case, we use the cyg_current_time function call, which returns the current real-time
clock counter value, and add 100 to the tick value. This causes the alarm to trigger in 100 ticks
from the current time. The parameter on line 30 determines the interval to trigger the alarm after
the initial trigger. In this case, the alarm_handler function is called every 100 real-time
clock ticks.

The alarm_handler function is shown on lines 36 through 41, which simply incre-
ments the data parameter passed into the function and in turn increments the index variable
setup when the alarm was created on line 24.

7.1.4 Timers

A timer is an alarm that is attached to a clock. There is a timer object defined by the kernel. How-
ever, eCos does not provide a formal implementation, or kernel API functions, for the timer object.

Timers in the eCos system are used within the µITRON compatibility layer package. The
µITRON package uses the timer object attached to the real-time clock for performing its needed
timing related functions.

134 Chapter 7 • Other eCos Architecture Components

7.2 Asserts and Tracing
eCos supports two mechanisms to aid in debugging—asserts and tracing. An assert is a piece of
code that checks, at run time, whether a condition is expected. If the condition is not expected,
an error message can be output and the application is halted. Assertions can determine if there is
a bug in the code and isolate the problem immediately, rather than having the application fail
later during execution.

Tracing allows the output of text messages at various points in the application’s execution.
This output enables you to follow the execution flow of a program or check a particular status
when certain events occur.

The eCos assert support is complementary to the ISO C standard assert functionality
contained in the Assertions Implementation Header (CYGBLD_ISO_ASSERT_HEADER) con-
figuration option under the ISO C and POSIX Infrastructure package.

Both asserts and traces are defined as macros. The first parameter to the macro is a Bool-
ean that determines whether the message is output. Leaving the assertion and tracing code
enabled can cause performance degradation in a released image. Using macros allows the code
to be compiled in during application debug, however, the associated overhead is easily removed
for a released image. The assert macros are defined in the file cyg_ass.h within the infra
package. The trace macros are defined in the file cyg_trac.h, also within the infra pack-
age. This file also contains additional details in the comments at the top of the file about the trace
macros and their usage.

Assert and tracing messages are output on the port configured with the Diagnostic Serial
Port (CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL) configuration option located
in the architecture-specific eCos HAL package.

There are three basic assertion macros defined by eCos that can be used within an applica-
tion when assertions are enabled. Each offers control over the output message content. The first
text output by all assert macros is a standard message “ASSERT FAIL”, which might be fol-
lowed by a possible additional text message. The three basic assert macros are:

• CYG_FAIL—does not accept a condition as its first parameter. Instead, this macro
outputs the standard message along with a possible user-defined message regardless of
any conditions being met.

• CYG_ASSERT—daccepts a condition as its first parameter. Depending on the value of
the condition, this macro outputs the standard message along with a possible user-
defined message.

• CYG_ASSERTC—dcompact version of the assertion macro that outputs the standard
message along with the resulting value of the first parameter.

eCos supports four different modes for assert and trace messages. These modes determine
the format of the information that is output. The four modes are:

Asserts and Tracing 135

• Null
• Simple
• Fancy
• Buffered

The buffered tracing mode does not output the message until CYG_TRACE_PRINT is
called. Item List 7.7 gives a description of the output messages for each type of message output
mode.

There is also a mechanism for obtaining the kernel state using the CYG_TRACE_DUMP
macro, which is also defined in the file cyg_trac.h.

eCos defines five different types of trace macros. The various macros provide standard
mechanisms for outputting different trace messages. The trace macros have the form
CYG_TRACE#%%%, where # defines the number of arguments (zero through nine) passed into
the macro for outputting with the trace message, and %%% defines the format for the argument
output. eCos defines trace macros to allow up to eight arguments for output. Table 7.1 shows the
different trace macros along with a description.

Table 7.1 Trace Macros

Macro Name Description

CYG_TRACE0 through CYG_TRACE8 First parameter is a Boolean that determines
whether the trace message is output. The other
possible arguments are output using printf-style
formatting.

CYG_TRACE1X through CYG_TRACE8X

CYG_TRACE1Y through CYG_TRACE8Y

CYG_TRACE1D through CYG_TRACE8D

First parameter is a Boolean that determines
whether the trace message is output.

X—outputs arguments using %08x format.

Y—outputs arguments using %x format.

D—outputs arguments using %d format.

CYG_TRACE1XV through CYG_TRACE8XV

CYG_TRACE1YV through CYG_TRACE8YV

CYG_TRACE1DV through CYG_TRACE8DV

First parameter is a Boolean that determines
whether the trace message is output. X, Y, and D
have the same formats as defined previously. V
causes the argument name to be output in the trace
message. For example:

CYG_TRACE1XV(var);

would output the following trace message:

TRACE:file.c[8]rout(): var=12

136 Chapter 7 • Other eCos Architecture Components

The trace macros provide a means for tailoring the level of trace messages within an appli-
cation. This allows control of the amount of output messages during runtime. The trace level can
be controlled by the first parameter passed into the trace macro. Code Listing 7.3 shows an
example of using the trace-level macros to control the output messages during debugging.

1 #include <cyg/infra/cyg_trac.h>
2
3 static int trace_level = 1;
4
5 #define TL1 (0 < trace_level)
6 #define TL2 (1 < trace_level)
7
8 void my_routine(
9 unsigned long index)
10 {
11 unsigned char v1, v2, v3;
12
13 index++;
14
15 // Processing using local variables v1, v2, and v3.
16
17 CYG_TRACE1(TL1, "Index: %d", index);
18
19 CYG_TRACE3(TL2, "Locals: %d %d %d", v1, v2, v3);
20 }

Code Listing 7.3 Trace output runtime control example.

As we see from Code Listing 7.3, the variable trace_level, shown on line 3, controls
which trace messages are output. The different TLX macros, on lines 5 and 6, define the trace
levels for the messages.

CYG_TRACE1XB through CYG_TRACE8XB

CYG_TRACE1YB through CYG_TRACE8YB

CYG_TRACE1DB through CYG_TRACE8DB

B means that there is no first parameter Boolean;
therefore, using this trace macro always results in
a message output. X, Y, and D have the same for-
mats as defined previously.

CYG_TRACE1XVB through CYG_TRACE8XVB

CYG_TRACE1YVB through CYG_TRACE8YVB

CYG_TRACE1DVB through CYG_TRACE8DVB

B means that there is no first parameter Boolean;
therefore, using this trace macro always results in
a message output. X, Y, and D have the same for-
mats as defined previously. V causes the argument
name to be output in the trace message.

Table 7.1 Trace Macros (Continued)

Macro Name Description

Asserts and Tracing 137

The function my_routine is passed in a parameter named index, which is incre-
mented on line 13. The local variables are used in some processing as shown on line 15. The two
trace messages on lines 17 and 19 allow different levels of information to be output depending
on the trace-level setting.

In this example, the CYG_TRACE1 message on line 17 is output because the TL1 macro
(on line 5) has a value of 1 when trace_level is set to 1. However, the CYG_TRACE3 mes-
sage on line 19 is not output because the TL2 macro (on line 6) has a value of 0 when
trace_level is set to 1.

Changing the value of trace_level to a value of 2, which can be done at run time,
allows the CYG_TRACE3 message to be output the next time my_routine is called.

The main configuration option Asserts & Tracing (CYGPKG_INFRA_DEBUG), located
within the Infrastructure package, determines whether any assert or trace messages are included
in the application image. By default, asserts and tracing are disabled. Item List 7.7 lists the assert
and trace configuration options available in the eCos system.

Item List 7.7 Assertion and Tracing Configuration Options

Option Name Use Asserts
CDL Name CYGDBG_USE_ASSERTS
Description Enables assertion code checking and output messages.

Option Name Use Tracing
CDL Name CYGDBG_USE_TRACING
Description Enables trace code output messages.

Option Name Null Output
CDL Name CYGDBG_INFRA_DEBUG_TRACE_ASSERT_NULL
Description Disables output messages for tracing and assertion functions. This enables breakpoints to

be placed in the trace and assert routines during a debug session instead of interpreting
output messages.

Option Name Simple Output
CDL Name CYGDBG_INFRA_DEBUG_TRACE_ASSERT_SIMPLE
Description Specifies the message format for assert and trace output. This format includes the thread

identification number, the filename, line number, routine name, and any additional text
message.

Option Name Fancy Output
CDL Name CYGDBG_INFRA_DEBUG_TRACE_ASSERT_FANCY
Description Specifies the message format for assert and trace output. This format includes the thread

identification number, the filename, line number, routine name, and any additional text
message.

Option Name Buffered Tracing
CDL Name CYGDBG_INFRA_DEBUG_TRACE_ASSERT_BUFFER

138 Chapter 7 • Other eCos Architecture Components

Description Allows tracing and assertion messages to be stored in a buffer. These messages are output
when CYG_TRACE_PRINT is called. Suboptions define the buffer size and whether the
buffer wraps, halts, or outputs when it is full. The trace buffer can also be configured to
output when an assertion occurs.

Option Name Use Function Names
CDL Name CYGDBG_INFRA_DEBUG_FUNCTION_PSEUDOMACRO
Description Allows trace and assert macros to include the function name in output messages. Although

this is helpful to read during debug, this option increases the code size.

The Use Asserts configuration option defines four suboptions that enable different forms
of the assert macro. The first suboption is called Preconditions (CYGDBG_INFRA_
DEBUG_PRECONDITIONS), which is used to determine if a condition is met prior to proceeding.

The second suboption is called Postconditions (CYGDBG_INFRA_DEBUG_POST-
CONDITIONS), which checks that a condition is met at the end of a piece of code, typically
before a function returns.

Another suboption is called Loop Invariants (CYGDBG_INFRA_DEBUG_LOOP_
INVARIANTS), which is used to determine if a condition is true for every iteration through a loop.

The final suboption is called Use Assert Text (CYGDBG_INFRA_DEBUG_ASSERT_
MESSAGE). This option allows you to insert your own message within the assert macro output to
aid in debugging.

The Use Tracing configuration option also defines suboptions. The first suboption is called
Trace Function Reports (CYGDBG_INFRA_DEBUG_FUNCTION_REPORTS). This suboption
enables individual trace output messages for entry and exit of functions.

The other suboption is called Use Trace Text (CYGDBG_INFRA_DEBUG_TRACE_
MESSAGE), which, similar to the assert suboption, allows additional text to be embedded into
the trace output message.

7.3 ISO C and Math Libraries

The eCos ISO C library package provides compatibility with the International Organization for
Standardization (ISO) 9899:1990 (also known as American National Standards Institute (ANSI)
C3.159-1989) specification for the standard C library. This library does not include mathematical
functions. Instead, eCos provides a separate math library that incorporates these mathemati-
cal functions. These libraries allow you to use well-known standard C functions. By default, all
ISO C support is thread safe.

The ISO C standard output uses the diagnostic console device provided by the HAL. This
is controlled by the Default Console Device (CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE)

N O T E It is important to realize that outputting text messages
using the tracing functionality in eCos can cause a significant
increase in your application code size.

ISO C and Math Libraries 139

configuration option. The HAL diagnostic device uses a polling mode for communication. This
means that output can be slow especially when communicating with a GDB host, which involves
utilizing the GDB remote protocol. Input can be processing intensive, meaning that other threads
might not have an opportunity to run.

For better performance, an interrupt driven driver should be used. Enabling the proper
hardware device driver, such as “/dev/ser0”, using the Hardware Serial Device Drivers
(CYGPKG_IO_SERIAL_DEVICES) configuration package and then layering a TTY-mode
driver, such as “/dev/tty0”, over the hardware device driver accomplishes this. The TTY-
Mode Serial Device Drivers (CYGPKG_IO_SERIAL_TTY) configuration package controls the
TTY-mode drivers. The serial device drivers are located under the Serial Device Drivers
(CYGPKG_IO_SERIAL) package. The Default Console Device configuration option is then set
to use “/dev/tty0”. The serial and TTY device driver names might vary based on the hard-
ware platform.

It is currently not possible to receive console input when using GDB to debug an applica-
tion; for example, using scanf. Instead, either GDB should not be used or a different HAL
diagnostic device needs to be used for communication.

The source code for the ISO C library package is found under the subdirectory lan-
guages\c\libc. The math library source code is found under the languages\c\libm
subdirectory.

eCos provides configuration option packages for the ISO C library, which are described in
Item List 7.8. These configuration option packages are found under the ISO C Library package.

Item List 7.8 ISO C Library Configuration Option Packages

Option Name ISO C Library Internationalization Functions
CDL Name CYGPKG_LIBC_I18N

Description Allows configuration of ISO C internationalization functions such as ctype.h and
locale-related functions.

Option Name ISO C Library setjmp/longjmp Functions
CDL Name CYGPKG_LIBC_SETJMP

Description Allows configuration of the build options for the setjmp.h functions.

Option Name ISO C Library Signal Functions
CDL Name CYGPKG_LIBC_SIGNALS

Description Specifies the configuration of the signal functionality within the ISO C library, such as the
signal and raise functions.

Option Name ISO C Environment Startup/Termination Functions
CDL Name CYGPKG_LIBC_STARTUP

Description Controls the configuration of startup, such as the main entry point, and termination, such
as exit, for full ISO C compatibility.

140 Chapter 7 • Other eCos Architecture Components

Option Name ISO C Library Standard Input/Output Functions
CDL Name CYGPKG_LIBC_STDIO
Description Allows configuration of the input/output functions found in the stdio.h library file.

Option Name ISO C Library General Utility Functions
CDL Name CYGPKG_LIBC_STDLIB
Description Specifies the configuration options for the utility functions found in the stdlib.h

library file.

Option Name ISO C Library String Functions
CDL Name CYGPKG_LIBC_STRING
Description Controls the configuration options for the string functions found in the string.h library file.

Option Name ISO C Library Date and Time Functions
CDL Name CYGPKG_LIBC_TIME
Description Configures the ISO C date and time functions.

There are four compatibility modes, which deal with how errors are handled, available for
the math library:

• ANSI/POSIX 1003.1—the function matherr is never called; warning messages are
not printed out on the stderr output stream; errno is set correctly.

• IEEE-754—the function matherr is never called; warning messages are not printed
out on the stderr output stream; errno is never set.

• X/Open Portability Guide Issue 3 (XPG3)—the function matherr is called;
warning messages are not printed out on the stderr output stream; errno is set
correctly.

• System V Interface Definition Edition 3—the function matherr is called; warning
messages are printed out on the stderr output stream; errno is set correctly;
functions that overflow return a value, which is the maximum single precision floating-
point value.

The math library compatibility mode configuration options are found in the Compatibility
Mode component under the Math Library package. The default compatibility mode is POSIX.
The compatibility mode can be set at run time. The Compatibility Mode Setting configuration
option under the Thread Safety component allows the setting of the math library compatibility
mode, a thread-safe operation. This option is disabled by default.

7.4 I/O Control System

The eCos I/O control system is comprised of two modules, the I/O Sub-System and the Device
Drivers. The eCos design supports multiple instances of the same type of device present in the sys-
tem; for example, certain platforms might contain two serial or Ethernet ports. However, platforms

I/O Control System 141

that do not contain multiple devices do not incur any additional overhead in the system. The
eCos I/O control system is written entirely in C.

The eCos I/O control system modules are comprised of packages that are configured like
other components. These packages can be added or removed to support the specific hardware
device needs for the application. The steps for adding and removing packages are covered in
Chapter 11, The eCos Toolset.

The I/O Sub-System packages are located in the io subdirectory, and the device driver
packages are in the devs subdirectory. Each device type contains a subdirectory under both
modules. For example, the Ethernet subsystem package is located in the io\eth subdirectory,
and the different Ethernet device driver packages are located under the devs\eth subdirectory.

The device driver package subdirectories are generally separated by architecture and
device; for example, the PowerPC Fast Ethernet Controller device driver package is located
under the devs\eth\powerpc\fec subdirectory. Figure 1.3, in Chapter 1 shows the struc-
ture of the two I/O control system subdirectories. The devices supported are for specific target
platform hardware; however, the code can be adapted to other more generic devices. The device
driver packages include support for:

• Ethernet
• Flash
• Compaq IPAQ Platform-Specific Keyboard
• Compaq IPAQ Platform-Specific Touch Screen
• Personal Computer Memory Card International Association (PCMCIA)
• Serial
• Universal Serial Bus (USB)
• Watchdog
• Wallclock

The I/O control system design uses a layered approach. This enables each module to offer
basic and device-specific I/O functionality and present it to higher-level software components.
Components can be layered on top of each other, in some cases, to extend the functionality of a
particular device.

An example of this, shown in Figure 7.1, is the Terminal I/O Interface that makes use of
the simple Serial I/O Interface. The Terminal I/O Interface extends the simple serial functional-
ity by providing line buffering and editing. This modularized design also allows individual pack-
ages to be configured independently of other device components in the system. In Figure 7.1, we
can see an example of an I/O control system configuration. This example is not of any particular
platform; it is intended to show the software layers within the I/O control system. In this exam-
ple, there are three hardware devices in the system—Ethernet, serial, and flash.

Starting at the lowest level are the hardware devices. In some cases, such as a serial port,
the device might be contained within the processor itself. Above the hardware are the device
drivers. These contain the specific software implementations for controlling their respective

142 Chapter 7 • Other eCos Architecture Components

devices. Next is the I/O Sub-System, which presents a generalized interface to the application
level for controlling individual hardware devices. At the top is the application level, which con-
tains components such as the networking stack that might use the Ethernet or serial ports, or a
file system that might make use of the flash device. The application-level components can be
optionally implemented based on the functionality needed in the system. The application-level
components present their own programming interface.

7.4.1 I/O Sub-System

The I/O Sub-System provides a standard API for accessing low-level hardware devices. Access
to the device drivers is accomplished through functions called handlers. Device drivers define
specific handlers, within their device I/O table entry, based on the type of hardware device sup-
ported. These functions are contained in a device I/O table.

Figure 7.1 Example eCos I/O control system.

Hardware

Device Drivers

Application Level

Serial Port Hardware

I/O Sub-System

Flash Hardware

Ethernet I/O
Interface

Ethernet Port
Hardware

Serial Device Control Flash Device
Control

Ethernet Device
Control

File I/O
Interface

Terminal I/O
Interface

FilesystemNetworking Stack Monitor and
Control

Diagnostic
Control

Serial I/O Interface

I/O Control System 143

The I/O Sub-System functions use a handle to access the device driver. This handle is
retrieved from the device I/O table using the cyg_io_lookup function, which takes the
device name as a parameter. Device names, such as “/dev/serial0” or “/dev/eth1”, are
set up using configuration options. Once the handle for a particular device driver is retrieved, it
can be used with the I/O Sub-System API functions. Item List 7.9 defines the I/O Sub-System
API functions. These functions return eCos standard error codes that are defined in the file
codes.h under the error subdirectory.

The I/O Sub-System (CYGPKG_IO) package only has two configuration options available.
The first is Debug I/O Sub-System (CYGDBG_IO_INIT), which enables diagnostic message
output during the initialization of the I/O Sub-System interface packages. This option is dis-
abled by default.

The second configuration option, Basic Support for File Based I/O (CYGPKG_IO_
FILE_SUPPORT), enables simple file I/O functions to support configurations that include the
networking stack. This option is disabled when the File I/O (CYGPKG_IO_FILEIO) package is
incorporated into a configuration. This option is enabled by default. The suboption Number of
Open Files (CYGPKG_IO_NFILE) controls the total number of open files in the system.

Item List 7.9 I/O Sub-System API Functions

Syntax: Cyg_ErrNo

cyg_io_lookup(

 const char *name,

 cyg_io_handle_t *handle

);

Parameters: name—device name, typically has the form "/dev/serial0".
handle—returned pointer to handle of the device.

Description: Looks up the device specified by the name parameter in the device table and returns a
pointer to the handle, in the handle parameter, for the device. If the device is not found
in the table, the error ENOENT is returned.

Syntax: Cyg_ErrNo

cyg_io_write(

 cyg_io_handle_t handle,

 const void *buf,

 cyg_uint32 *len

);

Parameters: handle—handle to the device.
buf—pointer to data buffer.
len—pointer to the size of data to send. When the function returns, this parameter con-
tains the actual size of data sent.

Description: Send data to the device specified by the handle parameter. If ENOERR is returned, the
write operation completed successfully. The actual number of bytes written is returned in
the len parameter.

144 Chapter 7 • Other eCos Architecture Components

Syntax: Cyg_ErrNo
cyg_io_read(
 cyg_io_handle_t handle,
 void *buf,
 cyg_uint32 *len
);

Parameters: handle—handle to the device.
buf—pointer to the buffer to store the data.
len—pointer to the size of data to receive. When the function returns, this parameter con-
tains the actual size of data received.

Description: Receive data from the device specified by the handle parameter. If ENOERR is returned,
the write operation completed successfully. The actual number of bytes read is returned in
the len parameter.

Syntax: Cyg_ErrNo
cyg_io_get_config(
 cyg_io_handle_t handle,
 cyg_uint32 key,
 void *buf,
 cyg_uint32 *len
);

Parameters: handle—handle to the device.
key—type of information to retrieve. The key values differ for each driver and are
defined in the file config_keys.h under the io subdirectory.
buf—pointer to buffer where data is placed.
len—pointer to size of data to retrieve. When the function returns, this parameter con-
tains the actual size of data retrieved.

Description: Retrieve the run-time configuration for the device specified by the handle parameter.
The type of information retrieved is specified by the key parameter.

Syntax: Cyg_ErrNo
cyg_io_set_config(
 cyg_io_handle_t handle,
 cyg_uint32 key,
 const void *buf,
 cyg_uint32 *len
);

Parameters: handle—handle to the device.
key—type of information to set. The key values differ for each driver and are defined in
the file config_keys.h under the io subdirectory.
buf—pointer to data to configure the device.
len—pointer to size of data to set. When the function returns, this parameter contains the
actual size of data retrieved.

Description: Set the run-time configuration for the device specified by the handle parameter. The type
of configuration information is specified by the key parameter.

Code Listing 7.4 shows an example using the I/O Sub-System API.

I/O Control System 145

1 #include <cyg/kernel/kapi.h>
2 #include <cyg/io/io.h>
3 #include <cyg/infra/diag.h>
4
5 //
6 // Main starting point for the application.
7 //
8 void cyg_user_start(void)
9 {
10 cyg_io_handle_t tty_hdl;
11 int err;
12 char output_string[] = "Hello There!!!\n";
13 cyg_uint32 output_len = sizeof(output_string);
14
15 err = cyg_io_lookup("/dev/tty0", &tty_hdl);
16
17 if (err)
18 {
19 diag_printf("ERROR opening device tty0.\n");
20 return;
21 }
22
23 err = cyg_io_write(tty_hdl, output_string, &output_len);
24
25 if (err)
26 {
27 diag_printf("ERROR writing to device tty0.\n");
28 return;
29 }
30 }

Code Listing 7.4 I/O Sub-System API example code.

In Code Listing 7.4 we see an example of writing a string to an I/O device. This example
assumes the "/dev/tty0" device (CYGPKG_IO_SERIAL_TTY_TTY0) was enabled, and
configured properly for use with a hardware serial port, under the Serial Device Drivers
(CYGPKG_IO_SERIAL) package. We include the I/O Sub-System API in the header file io.h
as shown on line 2.

The first step to use an I/O device is to obtain a handle to the specified device using the
cyg_io_lookup function, as shown on line 15. This function is passed the name of the device—
in this case, "/dev/tty0"—which was configured in the CYGPKG_IO_SERIAL_TTY_TTY0
configuration option. A handle to the device is returned upon successful completion of the function
call and stored in the variable tty_hdl. Before proceeding, we ensure that a valid device handle
was returned in our device lookup by checking the error code returned as we see on line 16. If an
error occurred, we print out an error message on the diagnostic port (line 19) and return (line 20).

146 Chapter 7 • Other eCos Architecture Components

Next, we use the device handle to write out the message string in the variable
output_string on line 23. The function cyg_io_write outputs the number of bytes
passed in the third parameter, output_len, using the tty_hdl device. Again, we check to
ensure that the data was written out successfully by checking the return value from the
cyg_io_write function, as shown on lines 25 through 29.

7.4.2 Device Drivers

A device driver is a piece of code that controls a specific hardware component. eCos device
driver design focuses on efficiency, eliminating any unnecessary complex layering. It is the job
of the device driver to isolate and encapsulate the component-specific implementation. This
allows the I/O Sub-System to present a standard interface to higher-level software modules
using the device I/O table.

The device I/O table is a structure defined as cyg_devio_table_t in the file
devtab.h. This structure defines write, read, get configuration, and set configuration functions
for accessing device drivers. The device I/O table is initialized by the cyg_io_init function,
which is defined in iosys.c. This function is called during the HAL startup along with the
other constructors. In turn, each device driver initialization function, defined in the driver’s
device I/O table entry, is called.

For example, when an application needs to output a text message on a serial port, the
application simply calls the I/O Sub-System API write function, which in turn uses the appropriate
device driver to manipulate the hardware for transmission of each character on the serial line.
The application does not need to be aware of any hardware-specific details, such as the registers
to program in order to transmit a character out the serial port. Using separate device driver modules
in this manner allows the software to be portable across different hardware platforms because
the higher-level application code is not dependent on the specific hardware implementation. This
modular approach also eases the understanding and debugging of the software.

A device I/O table entry describes eCos device drivers. This structure,
cyg_devtab_entry_t located in the file devtab.h, defines the device name, the device
name layered below (if applicable), a pointer to the device I/O table handler functions, the
device initialization function, the device I/O table lookup function, and a placeholder for device
specific data.

Along with the standard control routines supplied by the device driver, additional functions
are provided that are specific to the type of device supported. The device driver also contains the
ISR and DSR functions for the device it manages.

Device drivers use an API for interacting with the kernel and HAL. The function parameters
and definitions are the same as the non-driver-specific kernel API functions, which do not contain
drv in the function name. The cyg_drv_isr_lock and cyg_drv_isr_unlock functions
are defined the same as the cyg_interrupt_disable and cyg_interrupt_enable func-
tions, respectively. The function cyg_drv_dsr_lock is defined the same as cyg_scheduler_
lock, and cyg_drv_dsr_unlock is defined the same as cyg_scheduler_unlock.

I/O Control System 147

For device driver API syntax and function definitions, refer to the kernel API function
tables in the previous chapters. The difference between using the kernel API and the driver API
is that the driver API is guaranteed to be present in configurations where the eCos kernel is not
present. This makes the drivers more portable. The device driver API definitions are located in
the file drv_api.c and drv_api.h under the hal subdirectory. Item List 7.10 details the
list of device driver API functions.

Item List 7.10 Device Driver API Functions

cyg_drv_isr_lock

cyg_drv_isr_unlock

cyg_drv_dsr_lock

cyg_drv_dsr_unlock

cyg_drv_spinlock_init

cyg_drv_spinlock_destroy

cyg_drv_spinlock_spin

cyg_drv_spinlock_clear

cyg_drv_spinlock_try

cyg_drv_spinlock_test

cyg_drv_spinlock_spin_intsave

cyg_drv_spinlock_clear_intsave

cyg_drv_mutex_init

cyg_drv_mutex_destroy

cyg_drv_mutex_lock

cyg_drv_mutex_trylock

cyg_drv_mutex_unlock

cyg_drv_mutex_release

cyg_drv_cond_init

cyg_drv_cond_destroy

cyg_drv_cond_wait

cyg_drv_cond_signal

cyg_drv_cond_broadcast

cyg_drv_interrupt_create

cyg_drv_interrupt_delete

cyg_drv_interrupt_attach

cyg_drv_interrupt_detach

cyg_drv_interrupt_mask

cyg_drv_interrupt_unmask

cyg_drv_interrupt_acknowledge

cyg_drv_interrupt_configure

cyg_drv_interrupt_level

cyg_drv_interrupt_set_cpu

cyg_drv_interrupt_get_cpu

148 Chapter 7 • Other eCos Architecture Components

7.5 Summary
In this chapter, we began by looking into the different timing features provided in the eCos sys-
tem. This gave us an understanding of how counters, clocks, and timers are used in our applica-
tion. We also explored the assert and tracing functionality and how we can use these features
during the application debug cycle. We got a basic understanding of the libraries (C and math)
included with eCos. Finally, we looked at the I/O Control System and how to use it with the
existing device drivers provided with eCos.

149

C H A P T E R 8

Additional
Functionality and
Third-Party
Contributions

he open-source nature of eCos caters to a rich set of extended functionality. This
functionality is often provided by external third-party contributors to enhance their

own and the open-source community’s embedded systems. Included in this functionality
and contributions are:

• POSIX, EL/IX, and µITRON Compatibility Layers
• ROM Monitors
• RAM and ROM File Systems
• PCI Support
• TCP/IP Networking Support
• Embedded Simple Object Access Protocol (SOAP) Toolkit
• Kaffe Java Virtual Machine
• Bluetooth and Wireless Application Protocol (WAP) Support
• Embedded Web Server Support

The eCos Web site maintains a list of the different contributions available and can be
found online at:

http://sources.redhat.com/ecos/contrib.html

Another source to find the latest information about the latest contributions and functionality
available for eCos is the NEWS file. The eCos NEWS file is located in the online source code
repository, under the packages directory. The online source code repository can be viewed in
HTML format at:

T

150 Chapter 8 • Additional Functionality and Third-Party Contributions

http://sources.redhat.com/cgi-bin/cvsweb.cgi/ecos/?cvsroot=ecos

In this chapter, we take a look at some of the software components and contributions avail-
able for use with eCos. Combining certain components, such as the file system, networking stack,
and Web server, you can achieve the desired feature set for many different embedded systems.

8.1 Compatibility Layers

Compatibility layers are specifications that define standard APIs that interface to the underlying
eCos kernel in order to encapsulate implementation-specific functionality. This allows compa-
nies to adopt the API, easing the porting process of applications across different platforms and
operating systems. This section gives a brief overview of the compatibility layer support offered
with eCos. Resources for additional detailed information are included as well. eCos supports
two different compatibility layers:

• POSIX

• µITRON

The packages for these different layers are found under the compat subdirectory. This is
further divided into the posix and uitron subdirectories. Figure 1.3, in Chapter 1, shows the
overall directory structure.

8.1.1 POSIX

The Portable Operating System Interface (POSIX) is a set of Institute of Electrical and Electron-
ics Engineers, Inc. (IEEE) standards designed to ease application portability. The POSIX specifi-
cations define APIs that detail how applications interface to operating systems.

eCos contains support for the POSIX 1003.1—1996 Specification (ISO/IEC 9945-1). Sup-
port for a function means that the data types and definitions necessary to support the particular
function, including the objects it manipulates, are also defined. The eCos POSIX support is a
subset of the entire POSIX standards, including the implementation of threads, signals, and syn-
chronization objects. Additional information about POSIX can be found in the standard Portable
Operating System Interface (POSIX)—Part 1: System Application Programming Interface
(API)[C Language] ISO/IEC 9945-1:1996, IEEE.

eCos divides the POSIX support into two packages called the POSIX Compatibility Layer
(CYGPKG_POSIX) and POSIX File IO Compatibility Layer (CYGPKG_IO_FILEIO). The
POSIX Compatibility Layer package provides support for threads, signals, synchronization, tim-
ers, and message queues, while the POSIX File IO Compatibility Layer package provides sup-
port for file and device I/O.

eCos defines a template called Posix that is used to enable the standard configuration
options for POSIX compatibility. Chapter 11, The eCos Toolset, describes the process for using
templates in greater detail. There are configuration options for both the POSIX Compatibility

Compatibility Layers 151

Layer and the POSIX File IO Compatibility Layer. The POSIX Compatibility Layer package is
made up of the following configuration components:

• POSIX Scheduling Configuration (CYGPKG_POSIX_SCHED)

• POSIX Pthread Configuration (CYGPKG_POSIX_PTHREAD)

• POSIX Timers (CYGPKG_POSIX_TIMERS)

• POSIX Semaphores (CYGPKG_POSIX_SEMAPHORES)

• POSIX Message Queues (CYGPKG_POSIX_MQUEUES)

• POSIX Signals Configuration (CYGPKG_POSIX_SIGNALS)

• POSIX Utsname Configuration (CYGPKG_POSIX_UTSNAME)

8.1.1.1 EL/IX
EL/IX is an API developed by Red Hat to provide compatibility across different operating sys-
tems including Linux, embedded Linux, and eCos. The EL/IX API encapsulates subsets of the
ISO/IEC 9899:1990 (ISO C) and ISO/IEC 9945-1 (POSIX 1003.1) APIs, as well as a number of
other well-known functions commonly found on UNIX and particularly Linux that are suitable
for embedded systems.

The EL/IX interface ensures application portability for operating systems adopting the
standard, which preserves the investment in software development and developer knowledge.
Red Hat has initiated the EL/IX API as an open-source project. Other companies involved with
EL/IX include Intel, MIPS, Toshiba, and Pacific Softworks. Additional detailed information
about EL/IX can be found at:

http://sources.redhat.com/elix

Since the base of EL/IX functionality is the POSIX specification, operating systems that
conform to the POSIX standard should be largely compatible with the EL/IX specification.

Functions are present at the associated level and all higher levels. The eCos EL/IX pack-
age follows Level 1, the RTOS compatibility layer. These various API subsets are different levels
defined within EL/IX:

• Level 1—RTOS Compatible Layer. These functions are available in both Linux and
embedded operating systems, such as eCos, RTEMS, VxWorks, and PSOS. Certain
functions at this level might have reduced or modified semantics.

• Level 2—Linux Single Process Only. Includes Level 1 along with functions from
Linux that are not easily implemented on an RTOS. Includes the full implementation of
any reduced Level 1 functions.

• Level 3—Linux Multiprocess for Embedded Applications. Based on POSIX.1 with the
removal of functions not intended for embedded applications.

• Level 4—Full POSIX or Linux Compliance. These functions are present in a standard
Linux kernel.

152 Chapter 8 • Additional Functionality and Third-Party Contributions

8.1.2 µITRON

Another compatibility layer eCos supports is called µITRON. The µITRON specification defines
APIs that enable highly flexible operating system architectures tailored specifically for embed-
ded system applications. One advantage of the µITRON compatibility layer, as with other com-
patibility layers, is that the effort of understanding and porting application software to new
processor architectures is reduced. A great reference on µITRON is µITRON 3.0, An Open and
Portable Real-Time Operating System for Embedded Systems by Ken Sakamura.

There are four levels of the µITRON specification:

• Required (R)—Functions in this level are mandatory for µITRON 3.0
implementations.

• Standard (S)—Includes basic functions for achieving a real-time, multitasking
operating system.

• Extended (E)—Includes additional and extended functions, such as object creation
and deletion, memory pools, and timer handler functions.

• CPU Dependent (C)—Incorporates CPU or hardware configuration implementation-
dependent functions.

The eCos µITRON package supports version 3.02 of the specification, which incorporates
all of the Required (R) level functions, all of the Standard (S) level functions, and most of the
Extended (E) level functions as well. More detailed information about the µITRON specification
can be found online at:

www.itron.gr.jp

eCos defines a template called Uitron that is used to load the packages for µITRON com-
patibility. The configuration options for µITRON are located within the µITRON Compatibility
Layer (CYGPKG_UITRON) package. Included under this package are configuration options for
semaphores, mailboxes, tasks, alarm handlers, and others.

8.2 ROM Monitors
A ROM monitor is a program, typically residing in ROM or flash memory, which provides
debug functionality. The ROM monitor is used to load an application program into memory
for debugging. After loading the application image, the ROM monitor provides some basic
level of debug functionality, such as reading and writing memory or processor registers. The
application does not need to provide any debug facilities because this is incorporated into the
ROM monitor program.

The eCos system offers several choices for debugging applications. Some of the debug-
ging support options include:

ROM Monitors 153

• Use an In-Circuit Emulator (ICE) or other hardware debugging module supported
by GDB.

• Include support for GDB directly into the application.
• Use CygMon or RedBoot ROM monitors, which include GDB support, as the resident

ROM monitor on the target platform.
• Create a simple application that only includes GDB debugging support known as a

GDB stub ROM. This application is programmed into ROM and provides loading and
debugging of applications.

• Use a third-party ROM monitor. This ROM monitor must support GDB debugging;
otherwise, the application must provide GDB debugging support directly.

The debugging option used is dependent on your preferences and the system resources
available.

8.2.1 CygMon

CygMon, short for Cygnus ROM Monitor, is an eCos supplied standalone ROM monitor pro-
gram. CygMon is a command-line driven program that provides basic debug functionality, such
as program loading and memory content inspection and manipulation. In addition, GDB com-
munication support is included through the use of the GDB stub. CygMon is designed to be por-
table across all of the supported eCos architectures. Currently, this support includes the arm,
mips, and mn10300 architectures. CygMon also provides an API for applications, which
includes system calls that allow access to serial ports or on-board timers. eCos provides a tem-
plate, Cygmon, for building the ROM monitor program. The CygMon package
(CYGPKG_CYGMON) is located under the cygmon subdirectory.

8.2.2 RedBoot

RedBoot is an acronym for Red Hat Embedded Debug and Bootstrap. The RedBoot ROM moni-
tor provides a complete bootstrap environment and features such as a flash file system, as well as
network downloading and debugging. RedBoot provides its own GDB stub for communication
with a GDB host. RedBoot is intended to replace the CygMon ROM monitor and GDB stub
ROM debug software. Chapter 9, The RedBoot ROM Monitor, provides complete details about
using RedBoot.

N O T E CygMon is no longer maintained in the eCos project.
The preferred ROM monitor program to use is RedBoot. Most of
the functionality provided by CygMon is contained in the RedBoot
ROM monitor. The CygMon monitor can still be used; however,
upkeep, such as bug fixes and enhancements, on the code base
is being maintained.

154 Chapter 8 • Additional Functionality and Third-Party Contributions

8.2.3 GDB Stub

At the core of the two ROM monitors is the GDB stub. The GDB stub is a piece of software that
provides the low-level interaction with the HAL, as well as the GDB protocol communication
layer. The low-level HAL interaction includes hooking into the serial port for communication with
the GDB host and installing trap handlers for breakpoint support.

The GDB stub can also be built into a simple GDB stub ROM application that resides in
the target hardware’s ROM and provides the ability to load and debug applications. This applica-
tion can be used in lieu of a ROM monitor.

The GDB stub code is contained in the file generic-stub.c with support routines in
the file hal_stub.c. These files are located under the common HAL subdirectory. For addi-
tional information on the GDB communication protocol, see the online documentation at:

http://sources.redhat.com/gdb/onlinedocs/gdb_toc.html

GDB stub software can be included in any eCos image to provide GDB debugging func-
tionality. Both CygMon and RedBoot include GDB stubs. The stub code can then be invoked by
the GDB host or by the application itself by calling the breakpoint routine. There are config-
uration options that control whether GDB stub code is included. These options are located under
the common HAL configuration component Source-Level Debugging Support. The configura-
tion options for including GDB stubs in eCos images are detailed in Item List 8.1.

Item List 8.1 GDB Stubs Configuration Options

Option Name Include GDB Stubs in HAL
CDL Name CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
Description Causes the GDB stub code to be included in the image, enabling GDB communication and

debug support. The default for this option is disabled.

Option Name Include GDB External Break Support For Stubs
CDL Name CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT
Description Enables the GDB stub to include a serial port interrupt handler to listening for GDB break

packets. This option allows a target to be stopped asynchronously using the GDB host.

Option Name Include GDB External Break Support When No Stubs
CDL Name CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT
Description Allows a GDB host to stop a target asynchronously by listening for GDB break packets in

a serial port interrupt handler. This option is used when GDB stubs are not present.

Option Name Include GDB Multi-Threading Debug Support
CDL Name CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT
Description Enables additional HAL code to support multithreaded debugging of an application. This

option is enabled by default.

Let’s look at the two configuration options available that enable the building of a GDB
stub ROM image. This image can then be programmed into a target hardware platform for

File Systems 155

communication with a GDB host. The configuration options for building a GDB stub image
are under the Global Build Options component. The stubs package template controls the GDB
stubs options.

The first option is Build GDB Stub ROM Image (CYGBLD_BUILD_GDB_STUBS), which
is disabled by default. When this option is enabled, the platform-specific stub code is built into
the GDB stub image. The platform-specific stub code, contained in the files plf_stub.c and
plf_stub.h, provides the necessary functionality to initialize the hardware for GDB stub
communication with the hardware. This functionality includes initializing the stub serial port,
configuring any Light Emitting Diodes (LED), and setting up the necessary interrupt support for
asynchronous program breaking. These routines, if supplied, are called from the common HAL
stub function initHardware. The GDB stub files produced from this option are
gdb_module.img, a GDB recognizable file format; gdb_module.bin. a binary image;
and gdb_module.srec, an S-record file. Enabling the platform-specific GDB stub build
option requires that the Build Common GDB Stub ROM Image option be enabled as well.

The second option, Build Common GDB Stub ROM Image (CYGBLD_BUILD_COMMON_
GDB_STUBS), is disabled by default. Enabling this option causes the common stub file, stu-
brom.c, to be compiled into the image. This file supplies a cyg_start routine, which calls
the HAL breakpoint function to enter into a GDB debug mode.

8.3 File Systems

eCos provides three different file system implementations: ROM, RAM, and JFFS2. File Alloca-
tion Table (FAT) support is also being developed.

The Journalling Flash File System version 2 (JFFS2) is a log-structured file system
intended for embedded systems containing flash memory devices.

Both the ROM and RAM file system use the POSIX File I/O Compatibility Layer
(CYGPKG_IO_FILEIO) package. The POSIX File I/O package provides control over the file
systems installed and can be found in the fileio subdirectory under the I/O Sub-System. The
POSIX File I/O package contains a file system table array containing entries from each installed
file system. The entries in this array are of the type cyg_fstab_entry, defined in the file
fileio.h. Each entry contains information about the file system, such as the name that might
have a value of “romfs” for a ROM file system. Also included with each entry are pointers to
functions that control directories and files; for example, make directory, romfs_mkdir, and
change directory, romfs_chdir. The maximum number of installed file systems is controlled
by a configuration option, as shown in Item List 8.2.

N O T E It is best to use a template with the stubs packages
when building a GDB stub application rather than individually
configuring the GDB stub options . This ensures that the proper
packages are loaded and the confi guration options are set
proper ly.

156 Chapter 8 • Additional Functionality and Third-Party Contributions

Another table the POSIX File I/O package uses is the mount table, defined in the file
fileio.h as cyg_mtab_entry. This table keeps track of the file systems that are mounted
or active. Tables can be mounted statically, using the MTAB_ENTRY macro, or dynamically dur-
ing run time by calling the mount function. The maximum number of mounted, statically and
dynamically, file systems is controlled by a configuration option; see Item List 8.2 for more
details.

When a file is opened, information about the file is stored in the CYG_FILE_TAG struc-
ture, also defined in the file fileio.h. This structure, commonly referred to as a cyg_file,
keeps track of the state of the file and also contains a pointer to a table of file I/O operations. The
file operations include read, write, and seek.

Item List 8.2 describes the configuration options available for the POSIX File I/O pack-
age. These options give you control over file system components.

Item List 8.2 POSIX Compatibility Layer File I/O Configuration Options

Option Name Enable Socket Support
CDL Name CYGPKG_IO_FILEIO_SOCKET_SUPPORT
Description Allows file support for socket interfaces. This option is only valid when the networking

package is installed. This option is enabled by default.

Option Name Maximum Number of Open Files
CDL Name CYGNUM_FILEIO_NFILE
Description Controls the maximum number of open files allowed for all file systems. Valid values for

this option are 1 to 9,999,999. The default value for this option is 16.

Option Name Maximum Number of Open File Descriptors
CDL Name CYGNUM_FILEIO_NFD
Description Controls the number of open file descriptors allowed for all file systems. The minimum

value for this option is set to the Maximum Number of Open Files; the maximum value is
9,999,999. The default value for this option is 16.

Option Name Maximum Number of Installed File Systems
CDL Name CYGNUM_FILEIO_FSTAB_MAX
Description Sets the maximum number of file systems that the POSIX File I/O package can handle.

Valid values for this option are 1 to 9,999,999. The default value for this option is 4.

Option Name Maximum Number of Mounted File Systems
CDL Name CYGNUM_FILEIO_MTAB_MAX
Description Controls the number of mounted file systems handled by the POSIX File I/O package. The

minimum value for this option is set to the Number of Dynamically Mounted File Sys-
tems; the maximum value is 9,999,999. The default value for this option is 8.

Option Name Number of Dynamically Mounted File Systems
CDL Name CYGNUM_FILEIO_MTAB_EXTRA
Description Sets the maximum number of mounted file systems that can be created dynamically. Valid

values for this option are 0 to 9,999,999. The default value for this option is 4.

File Systems 157

Option Name Maximum Number of Installed Network Stacks
CDL Name CYGNUM_FILEIO_NSTAB_MAX
Description Controls the maximum number of networking stacks that can be handled by the POSIX

File I/O package. Valid values for this option are 1 to 9,999,999. The default value for this
option is 1.

Option Name Enable Current Directory Tracking
CDL Name CYGPKG_IO_FILEIO_TRACK_CWD
Description Allows the POSIX File I/O package to track the name of the current directory as a string.

This supports the getcwd function. The default for this option is enabled.

8.3.1 ROM File System

The eCos ROM File System (CYGPKG_FS_ROM) package is located in the rom subdirectory
under the file system packages subdirectory fs. Figure 1.3 in Chapter 1 shows the overall direc-
tory structure.

A ROM file system is built on the host development system. This file system is read-only
and is stored in the target memory exactly as it was constructed on the host.

At the start of the ROM file system is a header, defined in the file romfs.c as
romfs_disk. This header includes the name of the file system, the size of the file system in
bytes, and the total number of nodes in the file system.

Each file and directory in the file system is a node. Nodes are defined by the structure
romfs_node within the file romfs.c. The node structure includes a description of whether the
node is a file or directory, the size of data in the node, and the creation time of the file. The data for
each file is stored in a contiguous block of memory, which is referenced by the data member of
the node structure. A table of node objects present in the file system follows the header in memory.
Figure 8.1 shows an example ROM file system architecture. We can see the header information and
node table location at the base address configuration option. The directory main and the file
sys_info.txt are represented as romfs_node objects in the node table.

Figure 8.1 Example ROM file system memory architecture.

ROM

ROM File System Base Address

Header Information
(romfs_disk)

Node Table
(romfs_node)

sys_info.txt file
/main directory

158 Chapter 8 • Additional Functionality and Third-Party Contributions

The ROM file system package contains a utility to make a ROM file system image. This
code is located in the file mk_romfs.c under the support subdirectory. The output from this
utility is a file romfs.img, which contains the files and directories and can be loaded into
memory. The ROM file system image utility is built on a host system, such as Windows or
Linux. The eCos development tools are not used to build the ROM file system image utility.
Additional details about using the ROM file system utility can be found in the file
mk_romfs.txt in the doc subdirectory of the ROM file system package.

8.3.2 RAM File System

The eCos RAM file system purely uses RAM to store file data. Therefore, it does not perma-
nently store the file system data because the contents are lost when the system is reset. The RAM
file system starts off uninitialized with no files present. It can then be used to store temporary
data using the classic file system abstraction, for applications requiring a file system, or it can be
loaded with the contents of a ROM file system to provide a fully writeable file system.

The eCos RAM File System (CYGPKG_FS_RAM) package is located in the ram subdirec-
tory under the file system packages subdirectory fs. Figure 1.3 in Chapter 1 shows the overall
directory structure. The RAM file system, similar to the ROM implementation, uses a node to
describe files and directories in the system.

The node structure, ramfs_node, is defined in the file ramfs.c and includes the
node type, size of the file in bytes, the last file access time, and last file modification time. The
RAM file system implementation contains two different storage mechanisms, Simple and
Block.

The Simple mechanism uses the malloc and free routines to allocate memory for
nodes and the file data. If the file data increases in size, memory is reallocated for file. This
mechanism has the advantage of using only the amount of memory it needs to contain all files in
the RAM file system. The Simple mechanism, as the name implies, is a straightforward
approach. One disadvantage of this mechanism is fragmentation of the heap from constant real-
locations for files. This can lead to the inability of a file to grow because the file size might be
larger than the amount of memory that can be allocated from the heap. Another disadvantage is
that the malloc implementation must be included in the eCos image.

The Block mechanism divides file data storage memory into fixed-size blocks. The allo-
cation method for these blocks can be from a predefined array of blocks or using malloc
and free. File data storage for each node, ramfs_node, is arranged in up to three arrays
of pointers to the data block structure, ramfs_block. The number of arrays used is set by
configuration options, shown in Item List 8.3. The three arrays allow direct access, single-
level indirect access, and two-level indirect access to the data blocks. Figure 8.2 shows the
three different data access object arrays for an example file node with a filename
sys_info.txt.

File Systems 159

The Block data storage mechanism has the advantage of using fixed-size blocks making
management of memory easier. Another advantage is that the allocation mechanism is config-
urable; therefore, the malloc implementation can be excluded from the image. A disadvantage
of this mechanism is when using the malloc allocation method; each block causes a malloc
function call rather than a single call for the entire file. The memory allocated is also only avail-
able for the RAM file system.

There are two configuration options that determine the data storage implementation used for
the RAM file system. These options are Simple Implementation (CYGPKG_FS_RAM_SIMPLE)
and Block-Based Allocation (CYGPKG_FS_RAM_BLOCKS), which are located under the RAM File
System package. Only one of the data storage implementations can be selected for the RAM
file system. The Simple Implementation contains the configuration suboption that sets the
amount of memory to allocate for new data added to a file. This suboption is Size of File Data
Storage Increment (CYGNUM_RAMFS_REALLOC_INCREMENT). The different configuration
options for the Block storage mechanism are detailed in Item List 8.3.

Item List 8.3 RAM File System Block Mechanism Configuration Options

Option Name Size of File Data Storage Block
CDL Name CYGNUM_RAMFS_BLOCK_SIZE
Description Controls the size of the ramfs_block for file data storage. The valid values for this

option are 64 to 32,768 bytes. The default value is 256.

Option Name Directly Referenced Data Storage Blocks
CDL Name CYGNUM_RAMFS_BLOCKS_DIRECT

Figure 8.2 RAM file system Block data storage mechanism architecture.

File sys_info.txt
(ramfs_node)

ramfs_block 0

ramfs_block 1

ramfs_block 2

Direct Access

Indirect Access Level 1

Indirect Access Level 2

ramfs_block 3

ramfs_block 4

Level 1 Indirection

Level 1 Indirection

ramfs_block 5

ramfs_block 6

Level 1 Indirection

Level 2 Indirection

Level 2 Indirection

Level 2 Indirection ramfs_block 7

160 Chapter 8 • Additional Functionality and Third-Party Contributions

Description Sets the size of the array for the directly accessed data storage blocks. The valid values for
this option are 0 to 32. The default value is 8.

Option Name Single Level Indirect Data Storage Blocks
CDL Name CYGNUM_RAMFS_BLOCKS_INDIRECT1
Description Sets the size of the array for the single-level indirect data storage blocks. The valid values

for this option are 0 to 32. Setting this value to 0 eliminates the single-level indirect array
from the file node. The default value is 1.

Option Name Two Level Indirect Data Storage Blocks
CDL Name CYGNUM_RAMFS_BLOCKS_INDIRECT2
Description Sets the size of the array for the two-level indirect data storage blocks. The valid values for

this option are 0 to 32. Setting this value to 0 eliminates the single-level indirect array from
the file node. The default value is 1.

Option Name Use Block Array Rather Than Malloc
CDL Name CYGPKG_FS_RAM_BLOCKS_ARRAY
Description Determines whether malloc is used to allocate data storage blocks or an external array

block. Using an external array block enables configuration suboptions for setting the size and
name of the array. The default for this option is disabled, which causes malloc to be used.

8.3.3 Journalling Flash File System Version 2

eCos also provides support for the Journalling Flash File System, version 2 (JFFS2). JFFS2 is based
on JFFS (version 1). JFFS was designed to use embedded flash memory devices more efficiently.
JFFS and JFFS2 take into account the characteristics of flash technology when dealing with the typ-
ical situation in an embedded system where the system is not always cleanly shut down.

JFFS2 is a log-structured file system, whereas a typical embedded file system emulates a
traditional file system that uses block-based storage and keeps track of the files in these blocks.
JFFS2 builds on the version 1 technology.

The JFFS2 package (CYGPKG_FS_JFFS2) is contained in the jffs2 directory under
the file system’s packages directory fs. The license for the JFFS2 file system can be found in
the file License under the src directory. Additional details about JFFS2 can be found online at:

http://sources.redhat.com/jffs2

8.4 PCI Support

eCos provides a Peripheral Component Interconnect (PCI) bus library. The PCI bus is a high-
performance 32- or 64-bit bus that has multiplexed address and data lines. The bus is intended to
connect peripheral controller components, add-in boards, and processor/memory systems. The
PCI bus is commonly found in PCs today, but is has also made its way into embedded system
designs. The current version of the PCI bus specification is 2.2. Additional information about
the PCI specification can be found online at:

www.pcisig.com

PCI Support 161

The eCos PCI Configuration Library (CYGPKG_IO_PCI) package can be found in the
pci subdirectory under the I/O Sub-System packages subdirectory, io. See Figure 1.3 in
Chapter 1 for an overall view of the directory structure. This library provides the following
functionality:

• Scan the bus for specific devices based on Device and Vendor ID or on a particular
device class code.

• Read and modify the generic PCI information.
• Read and modify the device-specific PCI information.
• Allocate PCI memory and I/O space for devices.
• Translate device specific PCI interrupts into HAL vectors.

8.4.1 PCI Library API

The eCos PCI library package contains two main source files, pci.c, high-level PCI library
API functions; and pci_hw.c, low-level HAL interface routines. The high-level API routines
are used by applications to control the devices on the PCI bus. There are also low-level PCI rou-
tines, which are used by the high-level API to access the HAL platform-specific PCI functional-
ity. The high-level PCI library API functions are described in Item List 8.4 and can be found in
the file pci.h.

Item List 8.4 PCI Library API Functions

Syntax: void
cyg_pci_init(
 void
);

Parameters: None
Description: Initialize the PCI bus allowing access to the configuration space. This should be the first

function called, although certain HALs might call this function as part of the platform ini-
tialization procedure.

Syntax: cyg_bool
cyg_pci_find_device(
 cyg_uint16 vendor,
 cyg_uint16 device,
 cyg_pci_device_id *devid
);

Parameters: vendor—Vendor ID of the device to find.
device—Device ID of the device to find.
devid—pointer to the Device ID where to start the scan. When the function returns, this
points to the Device ID of the next device.

Description: Scans the PCI bus configuration space for a device with the given Vendor and Device IDs.
The search begins with the device specified in the devid parameter; specifying
CYG_PCI_NULL_DEVID starts the search at the first slot. This function returns TRUE if
the specified device is found; otherwise, FALSE is returned.

162 Chapter 8 • Additional Functionality and Third-Party Contributions

Syntax: cyg_bool
cyg_pci_find_class(
 cyg_uint32 dev_class,
 cyg_pci_device_id *devid
);

Parameters: dev_class—Class Code of the device to find.
devid—pointer to the bus number, device number, and functional number of the device
where to start the scan. When the function returns, this points to the bus number, device
number, and functional number of the next device.

Description: Searches the PCI bus configuration space for the device with the Class Code specified in
the dev_class parameter. The search begins with the device specified in the devid
parameter; specifying CYG_PCI_NULL_DEVID starts the search at the first slot. This
function returns TRUE if the specified device is found; otherwise, FALSE is returned.

Syntax: cyg_bool
cyg_pci_find_next(
 cyg_pci_device_id cur_devid,
 cyg_pci_device_id *next_devid
);

Parameters: cur_devid—bus number, device number, and functional number of the device where
the search begins.
next_devid—pointer to the bus number, device number, and functional number of the
next device. This parameter can also point to cur_devid.

Description: Scans the PCI configuration space for the next valid device after the device specified in the
cur_devid parameter. The search begins with the device specified in the devid param-
eter; specifying CYG_PCI_NULL_DEVID starts the search at the first slot. This function
returns TRUE if another device is found; otherwise, FALSE is returned.

Syntax: cyg_bool
cyg_pci_find_matching(
 cyg_pci_match_func *matchp,
 void *match_callback_data,
 cyg_pci_device_id *devid
);

Parameters: matchp—pointer to function, supplied by the caller, that checks if the device returned
matches.
match_callback_data—pointer to user data to pass to the matchp callback
function.
devid—pointer to device information to begin search.

Description: Searches the PCI bus configuration space for a device whose properties match those
required by the matchp function. The matchp function is called for each device on the
bus. The search begins with the device pointed to in the devid parameter. This function
returns TRUE if a matching device is found; otherwise, FALSE is returned.

Syntax: void
cyg_pci_get_device_info(
 cyg_pci_device_id devid,

PCI Support 163

 cyg_pci_device *dev_info
);

Parameters: devid—bus number, device number, and functional number of the device.
dev_info—pointer to returned configuration information for the device.

Description: Gets the generic PCI configuration information for the device specified in the devid
parameter.

Syntax: void
cyg_pci_set_device_info(
 cyg_pci_device_id devid,
 cyg_pci_device_id *dev_info
);

Parameters: devid—bus number, device number, and functional number of the device.
dev_info—pointer to configuration information to set the device. The function sets this
parameter to the configuration information by reading back the written information when
it returns.

Description: Set the generic PCI configuration information for the device specified in the devid
parameter.

Syntax: void
cyg_pci_read_config_uintX(
 cyg_pci_device_id devid,
 cyg_uint8 offset,
 cyg_uintX *val
);

Parameters: devid—bus number, device number, and functional number of the device.
offset—register offset.
val—pointer to the returned register value.

Description: Reads the device-specific register from the PCI configuration space for the device speci-
fied in the devid parameter. The X in the function name and the type of the val param-
eter are 8, 16, or 32 and determine the size of the read performed. This routine should be
used to access device-specific registers; general accesses should use the
cyg_pci_get_device_info function.

Syntax: void
cyg_pci_write_config_uintX(
 cyg_pci_device_id devid,
 cyg_uint8 offset,
 cyg_uintX val
);

Parameters: devid—bus number, device number, and functional number of the device.
offset—register offset.
val—value to set in the specified register.

Description: Sets the device specific register in the PCI configuration space for the device specified in
the devid parameter. The X in the function name and the type of the val parameter are
8, 16, or 32 and determine the size of the write performed. This routine should be used to

164 Chapter 8 • Additional Functionality and Third-Party Contributions

access device-specific registers; general accesses should use the
cyg_pci_set_device_info function.

Syntax: cyg_bool
cyg_pci_configure_device(
 cyg_pci_device *dev_info
);

Parameters: dev_info—pointer to the device configuration header information. When the function
returns, this parameter contains the resource allocations for the device.

Description: Handles all I/O and memory regions that need configuration on a device by allocating
memory to all Base Address Registers (BARs). These allocated base addresses are stored
in the dev_info parameter. If the dev_info parameter does not contain valid base
size values, false is returned. This function also calls
cyg_pci_translate_interrupt.

Syntax: cyg_bool
cyg_pci_configure_bus(
 cyg_uint8 bus,
 cyg_uint8 *next_bus
);

Parameters: bus—current bus number.
bus_next—pointer to the subordinate buses. This parameter specifies the bus number to
assign to the next subordinate bus found. The number is incremented for new buses dis-
covered.

Description: Allocates memory and I/O space for all Base Address Registers (BAR) on all devices for
the bus specified by the bus parameter and subordinate buses specified by the
bus_next parameter. This function is used in systems with multiple buses connected by
bridges. On success, TRUE is returned; otherwise, FALSE is returned.

Syntax: cyg_bool
cyg_pci_translate_interrupt(
 cyg_pci_device *dev_info,
 CYG_ADDRWORD *vec
);

Parameters: dev_info—pointer to the device configuration header information.
vec—pointer to translated interrupt vector number.

Description: Translates the PCI interrupt signal (INTA\, INTB\, INTC\ or INTD\) to the associated
HAL interrupt vector. If the device generates interrupts, the translated vector number is
placed in the vec parameter and TRUE is returned; otherwise, FALSE is returned.

Syntax: cyg_bool
cyg_pci_allocate_memory(
 cyg_pci_device *dev_info,
 cyg_uint32 bar,
 CYG_PCI_ADDRESS64 *base
);

USB Support 165

Parameters: dev_info—pointer to the device configuration header information.
bar—Base Address Register to allocate memory.
base—pointer to the base address to allocate the memory. The address of the next free
location is returned in this parameter if the allocation succeeds.

Description: Allocates memory to the BAR specified in the bar parameter, which allows a device
driver to set up its own memory mappings. If the BAR is the wrong type or the
dev_info parameter does not contain valid base sizes, FALSE is returned.

Syntax: cyg_bool
cyg_pci_allocate_io(
 cyg_pci_device *dev_info,
 cyg_uint32 bar,
 CYG_PCI_ADDRESS32 *base
);

Parameters: dev_info—pointer to the device configuration header information.
bar—Base Address Register to allocate I/O space.
base—pointer to the base address to allocate the I/O space. The address of the next free
location is returned in this parameter if the allocation succeeds.

Description: Allocates I/O space to the BAR specified in the bar parameter, which allows a device
driver to set up its own I/O mappings. If the BAR is the wrong type or the dev_info
parameter does not contain valid base sizes, FALSE is returned.

Syntax: void
cyg_pci_set_memory_base(
 CYG_PCI_ADDRESS64 base
);

Parameters: base—address for BAR memory mapping.
Description: Set the base address for memory mapping, overriding the default values set in the platform

PCI initialization.

Syntax: void
cyg_pci_set_io_base(
 CYG_PCI_ADDRESS32 base
);

Parameters: base—address for BAR I/O mapping.
Description: Set the base address for I/O mapping, overriding the default values set in the platform PCI

initialization.

A good source for example code on using the PCI library API functions can be found in
the PCI Library package test file pci1.c. Within this file is the routine pci_test. This routine
shows how to initialize the PCI bus and then scan the bus for all devices present.

8.5 USB Support

Universal Serial Bus (USB) networks consist of a single host, called the Host Controller, and
one or more slave devices. Slave devices connect to the USB through ports on specialized USB

166 Chapter 8 • Additional Functionality and Third-Party Contributions

devices called hubs. The host initiates all USB operations. For example, if a host wants to
receive data from a USB peripheral, the host issues an IN token to the peripheral. The slave
peripheral then responds with the data or a NAK. USB slave peripherals cannot interact with
each other. The current version of the USB specification is 2.0. USB supports four different
types of communication:

• Control Transfers—consist of standard, class, vendor, and reserved. All devices must
respond to certain standard control messages.

• Interrupt Transfers—limited-latency transfer to or from a device. The data can be
presented for transfer at any time and is delivered by the USB at a rate that is not slower
than what is specified by the device. An example of this type of transfer is the
coordinates from a USB mouse device.

• Isochronous Transfers—intended for multimedia devices with large amounts of data
that is continuously exchanged.

• Bulk Transfers—typically consists of larger amounts of data. Reliability of this data
is ensured by the hardware level using error detection and retries. Bandwidth for bulk
transfers varies depending on other bus activities.

Additional detailed information about the USB and the necessary specifications can be
found online at:

www.usb.org

eCos provides support for USB slave devices. The eCos USB support consists of four
different packages, which only provide support for developing USB slave peripherals and
not USB hosts. USB slave device driver packages are located under the usb subdirectory.
This is with the other device drivers within the devs subdirectory. The other packages for
USB support are located under the usb subdirectory within the I/O Sub-System subdirec-
tory io. Figure 1.3 in Chapter 1 gives an overall view of the directory structure. The USB
packages are:

• USB Device Drivers—contains the specific implementations for the USB slave
hardware devices supported. Currently, the USB device driver support exists for the
Intel StrongARM SA-11x0, and has the package name SA11X0 USB Device Driver
(CYGPKG_DEVS_USB_SA11X0).

• Common USB—provides information common to the host and slave sides of the bus
such as the details of the control protocol. The USB Support (CYGPKG_IO_USB)
package is located under the common subdirectory within the I/O Sub-System.

• Common USB Slave—defines the USB API for device drivers and provides utilities,
such as control message handlers, needed by the device drivers and applications. The
file usbs.h contains the USB API. The USB Slave-Side Support

Networking Support 167

(CYGPKG_IO_USB_SLAVE) package is located under the slave subdirectory within
the I/O Sub-System.

• Class-Specific USB Support—eases the development of specific classes of USB
peripherals. Currently, USB-Ethernet devices are supported. The package USB Slave
Ethernet Support (CYGPKG_IO_USB_SLAVE_ETH) is located under the eth
subdirectory within the I/O Sub-System.

Additional information about the USB support in eCos can be found online at:

http://sources.redhat.com/ecos/docs.html

8.6 Networking Support

Internet connectivity for embedded devices is quickly becoming a standard requirement. From
Internet Appliances to remote sensor controllers, the ability to send and receive data over the
Internet, or a private network, is becoming standard. The core to this connectivity is the network
stack. Figure 8.3 shows a general architecture diagram of the some of the protocols supported by
the eCos Networking package.

Networking stacks use several different protocols for communication. For example, the
Simple Mail Transfer Protocol (SMTP) is used to send and receive email. The eCos Networking
package incorporates the frequently used standard protocols for network communication. Using
these protocols, a wide range of application layer components can be developed, such as a mail

Figure 8.3 eCos general networking architecture.

TCP

Application

UDP

IP

ICMP IGMP

RAW

ARP

Hardware

168 Chapter 8 • Additional Functionality and Third-Party Contributions

transfer module for remote email notifications or a Web server module for remote status and
control, which meet the needs of many embedded devices. Additional information about the net-
working stack, including the networking stacks API, can be found online at:

http://sources.redhat.com/ecos/docs.html

Several sources are available that detail the different protocols commonly used for net-
work communications. One good source is the book TCP/IP Illustrated, Volume 1: The Proto-
cols by W. Richard Stevens.

Another source for detailed information about Internet protocols is the Request For Com-
ment (RFC) repository. RFCs are documents that set standards for the Internet community. Sev-
eral sites are available for browsing through these documents; one RFC site is:

www.ietf.org/rfc.html

There is a Basic Networking Framework package provided with eCos for networking sup-
port. This Basic Networking Framework package is modular, which allows the selection of the
actual stack implementation as a configuration option. There are two different network stack
implementations available. One is adapted from OpenBSD and the other from FreeBSD.

8.6.1 OpenBSD

The first implementation is derived from the OpenBSD networking code. OpenBSD is a UNIX-
like open-source operating system project based on 4.4BSD source code. Various components
are incorporated in the OpenBSD project, including a networking stack. Additional information
about OpenBSD can be found online at:

www.openbsd.org

The protocols supported in the OpenBSD implementation are:

• IPv4—Internet Protocol version 4

• ARP—Address Resolution Protocol

• RARP—Reverse Address Resolution Protocol

• ICMP—Internet Control Message Protocol

• UDP—User Datagram Protocol

• TCP—Transmission Control Protocol

• DHCP—Dynamic Host Configuration Protocol

• BOOTP—Bootstrap Protocol

• TFTP—Trivial File Transfer Protocol

In addition, the OpenBSD implementation also supports raw packet interface. There are
other features supported, but untested, by the OpenBSD network stack. These other features
include:

Networking Support 169

• IPv6—Internet Protocol version 6

• Berkeley Packet Filter (BPF)

• Generic Tunneling Interface (GIF)

• Multicast support, which includes Multicast routing

The source code for the OpenBSD network stack implementation is located in the tcpip
subdirectory under the net root directory.

The eCos Net template includes the OpenBSD implementation. Using the Net template
allows you to incorporate the OpenBSD network stack into your application image, which includes
the necessary device drivers for a particular platform. See Chapter 11 for more information about
using templates. The OpenBSD networking package (CYGPKG_NET_OPENBSD_STACK) can
also be added independently to customize the network configuration for a specific image build.

The license terms of the OpenBSD stack can be found online at:

www.openbsd.org/policy.html

8.6.2 FreeBSD

The other networking implementation is derived from FreeBSD networking code released from
the KAME project. FreeBSD is based on the 4.4BSD-Lite operating system. Additional infor-
mation about FreeBSD can be found online at:

 www.freebsd.org

Additional information about the KAME project can be found online at:

 www.kame.net

The networking protocols supported in the FreeBSD implementation include:

• IPv4—Internet Protocol version 4

• IPv6—Internet Protocol version 6

• ARP—Address Resolution Protocol

• RARP—Reverse Address Resolution Protocol

• ICMP—Internet Control Message Protocol

• IGMP—Internet Group Management Protocol

• UDP—User Datagram Protocol

• TCP—Transmission Control Protocol

• DHCP—Dynamic Host Configuration Protocol

• BOOTP—Bootstrap Protocol

• TFTP—Trivial File Transfer Protocol

• Multicast addressing

170 Chapter 8 • Additional Functionality and Third-Party Contributions

Along with these protocols, the FreeBSD implementation also supports raw packet inter-
face. FreeBSD also supports other features in its network stack; however, these features are
untested. These other features include:

• Berkeley Packet Filter (BPF)
• Multicast routing

The source code for the FreeBSD network stack implementation is located in the
bsd_tcpip subdirectory under the net root directory.

eCos also has a template available to include the FreeBSD implementation called
New_Net. However, the FreeBSD networking package (CYGPKG_NET_FREEBSD_STACK)
can be included as an individual component as well. Chapter 11 contains details about using
templates and packages in eCos.

The FreeBSD license terms can be found online at:

 www.freebsd.org/copyright/copyright.html

8.6.3 lwIP

There is also a network stack contribution available called Lightweight TCP/IP (lwIP), which is
basically a small memory footprint implementation of the TCP/IP protocol suite. The focus of
the lwIP implementation is to provide full TCP/IP support while reducing the necessary memory
footprint. lwIP supports IP, ICMP, UDP, and TCP and is available under a BSD-style license.
Additional information about the lwIP contribution can be found online at:

 www.sics.se/~adam/lwip

8.6.4 Networking Threads

The eCos networking code uses threads to accomplish particular tasks. It is important to under-
stand what networking threads are running in the system to determine the resource needs when
using the networking stack.

It is also necessary to keep the thread priorities for the networking code in mind when
designing the overall thread priority scheme to ensure that adequate network performance is
achieved. Certain threads can be enabled or disable via the Basic Networking Framework pack-
age configuration options or under the specific stack implementation, OpenBSD or FreeBSD,
configuration options. Item List 8.5 describes the networking threads, their default priority levels,
and the configuration options used to set the specific priority level.

Item List 8.5 Networking Threads

Thread Function alarm_thread
Filename timeout.c
CDL Name CYGPKG_NET_FAST_THREAD_PRIORITY
Default Priority Level 6

Networking Support 171

Description Services transmit and receive interrupts for Ethernet network device driver. This
thread also handles network timeout events. Setting this thread’s priority level
higher than other application thread priority levels allows the best network perfor-
mance. Setting the priority level lower can affect the throughput of network traf-
fic. This thread is enabled by default.

Thread Function cyg_netint
Filename support.c
CDL Name CYGPKG_NET_THREAD_PRIORITY
Default Priority Level 7
Description Handles ARP requests and IP (version 4) incoming datagram parsing. Also pro-

cesses IPv6 incoming datagram parsing and Ethernet bridge frames when these
options are enabled. This background thread priority level affects the network
stack performance. This thread is enabled by default.

Thread Function cyg_rs
Filename ipv6_routing_thread.c
CDL Name CYGINT_NET_IPV6_ROUTING_THREAD_PRIORITY
Default Priority Level 8
Description Handles sending router solicitation messages used to exchange IP addresses and

other information. This thread is disabled by default since IPv6 is also disabled by
default.

Thread Function dhcp_mgt_entry
Filename dhcp_support.c
CDL Name CYGPKG_NET_DHCP_THREAD_PRIORITY
Default Priority Level 8
Description Manages the DHCP leases for each network interface by ensuring that each inter-

face is configured and functioning properly. If a problem occurs or a lease expires,
the DHCP thread reinitializes and reconfigures the network interfaces. This thread
is enabled by default with DHCP support.

Thread Function tftpd_server
Filename tftp_server.c
CDL Name CYGPKG_NET_TFTPD_THREAD_PRIORITY
Default Priority Level 10
Description A TFTP server that manages client applications attempting to connect and per-

form read and write requests. The TFTP is used to exchange files among devices
connected to the Internet. Using the TFTP server requires the inclusion of a file
system implementation. This thread is enabled by default.

8.6.5 Networking Configuration

The eCos Basic Networking Framework package (CYGPKG_NET) is located in the common
subdirectory under the net subdirectory. See Figure 1.3 in Chapter 1 for an overall view of the
repository directory structure. The Basic Networking Framework package configuration options
are described in Item List 8.6.

172 Chapter 8 • Additional Functionality and Third-Party Contributions

Item List 8.6 Basic Networking Framework Package Configuration Options

Option Name INET Support
CDL Name CYGPKG_NET_INET
Description Allows the use of IPv4 and ARP within the networking stack. This option is enabled by

default. This option contains suboptions for enabling IPv6 Support (CYGPKG_NET_INET6),
Multicast Routing Support (CYGSEM_NET_ROUTING), and the Use Random Sequence
(CYGSEM_NET_RANDOMID). All suboptions are disabled by default.

Option Name TFTP (RFC-1350) Support
CDL Name CYGPKG_NET_TFTP
Description Includes client and server library support for TFTP. This option is enabled by default. The

Priority Level for TFTP Daemon Thread
(CYGPKG_NET_TFTPD_THREAD_PRIORITY) suboption sets the priority level of the
TFTP server thread. The default priority level is 10.

Option Name Use Full DHCP Instead of BOOTP
CDL Name CYGPKG_NET_DHCP
Description Enables the use of DHCP for the initialization of the IP address for network interfaces.

Otherwise, BOOTP is used, which does not require as much resources as DHCP. This
option is enabled by default. When this option is enabled, suboptions configure the DHCP
management thread settings.

Option Name Options Controlling IPv6 Routing
CDL Name CYGPKG_NET_IPV6_ROUTING
Description The configuration suboptions control the IPv6 thread for sending router solicitation mes-

sages, such as thread priority and the rate at which the solicitations are sent out. This option
is only enabled by default when the IPv6 Support configuration suboption is enabled.

Option Name Debug Output
CDL Name CYGPKG_NET_DEBUG
Description Enables diagnostic output for various stack operations. The default for this option is

disabled.

Option Name Network Timing Statistics
CDL Name CYGPKG_NET_TIMING_STATS
Description Controls the diagnostic output of timing messages related to various stack function calls

such as memcpy and mbuf_alloc. The default for this option is disabled.

Option Name Build Networking Tests (Demo Programs)
CDL Name CYGPKG_NET_BUILD_TESTS
Description Enables network tests to be built. This option is disabled by default.

Option Name Initialization Options for ‘eth0’
CDL Name CYGHWR_NET_DRIVER_ETH0_SETUP_OPTIONS
Description This component contains configuration options that specify the method (DHCP/BOOTP or

static) for initializing the Ethernet 0 interface. The default is to use DHCP/BOOTP for ini-
tialization.

Networking Support 173

Option Name Initialization Options for ‘eth1’
CDL Name CYGHWR_NET_DRIVER_ETH1_SETUP_OPTIONS
Description This component contains configuration options that specify the method (DHCP/BOOTP or

static) for initializing the Ethernet 1 interface, if it exists. The default is to use DHCP/
BOOTP for initialization.

The two networking stack implementations (OpenBSD and FreeBSD) also contain their
own configuration options. The configuration options with XXX in the CDL name correspond to
either FREEBSD for the FreeBSD stack implementation or OPENBSD for the OpenBSD stack
implementation. These configuration options are detailed in Item List 8.7.

Item List 8.7 Network Stack Implementation Specific Package Configuration Options

Option Name Implement the Socket API Locally
CDL Name CYGPKG_NET_API_LOCAL
Description Defines whether the networking API functions, such as bind, socket, and connect,

are supplied by the stack itself package.

Option Name Implement the Socket API Via FILEIO Package
CDL Name CYGPKG_NET_API_FILEIO
Description Defines whether the networking API functions, such as bind, socket, and connect,

are supplied by the FILEIO package.

Option Name INET Support
CDL Name CYGPKG_NET_XXX_INET
Description Enables IPv4. This option is enabled by default. The suboption for enabling IPv6 Support

(CYGPKG_NET_XXX_INET6) is disabled by default.

Option Name Number of BPF Filters
CDL Name CYGPKG_NET_NBPF
Description Sets the number of BPFs. The BPF code, which allows sniffing of the network packets, is

not included in the eCos release, but can be obtained from the OpenBSD site. The default
for this option is 0.

Option Name Built-in Ethernet Bridge Code
CDL Name CYGPKG_NET_BRIDGE
Description Enables the code for Ethernet bridge support. The default for this option is disabled.

Option Name Number of GIF Things
CDL Name CYGPKG_NET_NGIF
Description Sets the number of GIFs. The GIF code allows tunneling of different versions (4 or 6) of IP

packets. The default value is 0.

Option Name Number of Loopback Interfaces
CDL Name CYGPKG_NET_NLOOP
Description Sets the number of loopback interfaces, which allows reception of outgoing packets. The

default value for this option is 1.

174 Chapter 8 • Additional Functionality and Third-Party Contributions

Option Name Error and Warning Log Control
CDL Name CYGPKG_NET_XXX_LOGGING
Description Controls the type and amount of error/warning message output by the networking code. A

32-bit hexadecimal number is set to control which messages are output. This option is
enabled by default.

Option Name Memory Designated for Networking Buffers
CDL Name CYGPKG_NET_MEM_USAGE
Description Controls the amount of memory allocated for buffers used by the networking code. These

buffers are used to hold the incoming and outgoing data. The default value is 256 kbytes.

Option Name Max Number of Open Sockets
CDL Name CYGPKG_NET_MAXSOCKETS
Description Controls the maximum number of network sockets that can be simultaneously opened.

The default is 16.

Option Name Number of Supported Pending Network Events
CDL Name CYGPKG_NET_NUM_WAKEUP_EVENTS
Description Sets the total possible number of pending network events. An example of a pending net-

work event is a connect function call waiting to complete. The default value is 8.

Option Name Priority Level for Background Network Processing
CDL Name CYGPKG_NET_THREAD_PRIORITY

Sets the priority level of the background networking thread. The default priority level is 7.

Option Name Priority Level for Fast Network Processing
CDL Name CYGPKG_NET_FAST_THREAD_PRIORITY
Description Sets the priority level of the fast network thread. This priority level should be higher than

the background networking thread. The default priority level is 6.

Option Name Fast Network Processing Thread ‘Tickles’ Driver
CDL Name CYGPKG_NET_FAST_THREAD_TICKLE_DEVS
Description Allows the fast network thread to unblock a network driver due to a hardware problem such

as a lost interrupt. Attempting to send a packet allows the driver to become unblocked. This
option is not necessary for protocols that exchange keep-alive packets periodically, such as
TCP. A suboption sets the delay (in kernel ticks) to wait before sending the packet. The
default is enabled with a delay of 50 kernel ticks (approximately 500ms).

Option Name Build Networking Tests (Demo Programs)
CDL Name CYGPKG_NET_BUILD_TESTS
Description Enables network tests to be built. This option is disabled by default.

Some of the configuration options deserve a closer look because of their impact on the
operation of the networking package. The configuration option Memory Designated for Net-
working Buffers is used to set up the memory used by the network stack. This memory con-
sists of a number of memory buffers (mbuf), memory clusters, and a memory pool. The

Networking Support 175

mbuf has a fixed size of 128 bytes, including data and header information, which can store
smaller-sized packets. If the packet exceeds the mbuf limit, a memory cluster, which has a
fixed size of 4096 bytes, is added to contain the remaining data. The memory pool is like a
private heap used by various functions of the network stack, which can malloc and free
memory as needed. Fine-tuning the amount of memory designated for use by the Network-
ing package might be necessary to handle the network data flow for the embedded device’s
specific application.

A good source for a detailed description of the memory architecture used in the
4.4BSD operating system, which is the basis for the networking packages, is the book The
Design and Implementation of the 4.4BSD Operating System by Marshall Kirk McKusick
and Keith Bostic.

Another configuration option we need to take a closer look at is the Initialization
Options for ‘eth0’. The Networking package contains configuration components for two
Ethernet network interface devices. The second Ethernet network device is configured with
the Initialization Options for ‘eth1’ configuration option. It is important to put some fore-
thought into how each device is used in the released system; perhaps one interface can be
used for debug and one for monitor and control via SNMP. It is necessary to ensure that
each device is properly initialized with an appropriate network address when the system is
initialized.

A MAC address needs to be preconfigured for each Ethernet network interface. The MAC
address typically resides in some form of read-only memory that is set during hardware manu-
facturing. For some Ethernet drivers, the MAC address can be set by configuration data in the
RedBoot ROM monitor or statically configured in the application.

There are three options available for the initialization of the Ethernet network interfaces.
The first option is Initialize ‘eth0’ Manually (CYGHW_NET_DRIVER_ETH0_MANUAL). This
requires the application to perform all device interface initialization and network address config-
uration to get the network interface up and running.

The next option we want to better understand is Use BOOTP/DHCP To Initialize ‘eth0’
(CYGHW_NET_DRIVER_ETH0_BOOTP). The suboption Use DHCP Rather Than BOOTP
for ‘eth0’ (CYGHWR_NET_DRIVER_ETH0_DHCP) determines what protocol is used for the
network interface initialization. The default is to use DHCP; in which case, a DHCP server is
needed to provide the IP address. When using BOOTP or DHCP for network interface initial-
ization, the application needs to call the function init_all_network_interfaces to
initialize the network interface using the selected protocol. The application must include the
file network.h in order to use the networking package API functions.

If the configuration option Use Full DHCP Instead of BOOTP (CYGPKG_NET_DHCP) is
enabled, a DHCP management thread is started, which monitors the network interface to ensure
that the DHCP leases are properly handled. If this configuration option is disabled, the applica-
tion is responsible for renewing DHCP leases. A semaphore, dhcp_needs_attention, and
a function, dhcp_bind, are provided for the application to manage the DHCP leases.

176 Chapter 8 • Additional Functionality and Third-Party Contributions

The last option is Address Setups For ‘eth0’ (CYGHWR_NET_DRIVER_ETH0_ADDRS),
which allows you to set static addresses for the network interface. The suboptions allow configu-
ration of the IP address, network mask, broadcast address, and gateway address. Configuring
static addresses can be useful in debugging scenarios; however, in a release system that runs the
same application image it can be catastrophic to have multiple devices with the same IP address
on the same network.

8.6.6 Networking Tests

The eCos networking package provides tests for exercising different features of network com-
munications. The tests can be performed over any of the network interfaces. The network tests,
located in the tests directory under the common networking directory, are also a good source
for examples on performing various network functions. For example, the file udp_lo_test.c
demonstrates how to initialize the network interface, create a UDP client for sending data, and
create a UDP server for receiving data.

There are two configuration options for building network tests, one under the Basic Net-
working Framework package and the other under the specific networking stack implementation
(OpenBSD or FreeBSD) package. Both configuration options are Build Networking Tests (Demo
Programs) (CYGPKG_NET_BUILD_TESTS).

Some of the tests require additional host machines running programs included in the net-
working package tests. A makefile, make.linux, is included to build these tests on the host
machine. Table 8.1 describes the tests available in the eCos Networking package.

N O T E Debugging via the network interface is allowed by the
RedBoot ROM monitor, see Chapter 9 for more details about
RedBoot. RedBoot requires its own IP address for communica-
tion with the GDB host. The application needs to have a different
IP address for its network communications. One solution is to
statically configure the IP address RedBoot uses and have the
application use DHCP or BOOTP to get its own IP address.

Table 8.1 Networking Tests

Test Filename Description

bridge.c Example network bridge application.

dhcp_test.c Performs DHCP test by renewing lease and performing pings to the host.

flood.c Continuously sends multiple ping packets, then waits for reception of the
responses.

Networking Support 177

ftp_test.c Connects to an FTP server, then reads and writes data.

ga_server_test.c Waits for a connection on a specified port, then retrieves a packet and closes
the connection. This test uses getaddrinfo to set up its addresses.

ipv6_server_test.c Uses IPv6 and waits for a connection on a specified port, then retrieves a
packet and closes the connection. A host running a telnet session is
needed for this test.

mbuf_test.c Memory buffer (mbuf) allocation.

multi_lo_select.c Performs multiple select operations on different sockets for sending data.

nc_test_master.c

nc_test_slave.c

Characterizes the performance of a network by running the
nc_test_slave.c on the target machine and the
nc_test_master.c on the host machine. UDP and TCP are used to
transfer data across the network.

nc6_test_master.c

nc6_test_slave.c

Characterizes the performance of a network using IPv4 and IPv6 by run-
ning the nc6_test_slave.c on the target machine and the
nc6_test_master.c on the host machine. UDP and TCP are used to
transfer data across the network.

ping_test.c Sends multiple ping packets to a server machine to verify communication,
as well as to a nonexistent machine to verify the timeout of ping packets.

ping_lo_test.c Ping test of the loopback address.

server_test.c Waits for a connection on a specified port, then retrieves a packet and closes
the connection. A host running a telnet session is needed for this test.

set_mac_address.c Sets the MAC address for the Ethernet network interfaces. All Ethernet
drivers might not support this feature.

socket_test.c Performs basic socket creation and setup.

Table 8.1 Networking Tests (Continued)

Test Filename Description

178 Chapter 8 • Additional Functionality and Third-Party Contributions

8.6.7 DNS Support

Domain Name System (DNS) is a standard that allows resolution of domain names into IP
addresses. For example, instead of typing in 209.249.29.67 into your browser to visit a particular
site, you can just type in sources.redhat.com and your browser is directed to the appropriate Web
site. It is easier to remember the domain name rather than an IP address. DNS handles the trans-
lation from domain name to IP address.

The DNS Client (CYGPKG_NS_DNS) package is included by default when either the net
or new_net templates are used. Otherwise, the package can be added separately using the eCos
configuration tools. The DNS client source code is located in the dns subdirectory under the
net\ns subdirectory.

A few restrictions exist for the DNS client. First, the DNS client is only supported for
IPv4, not IPv6. Next, if the DNS server returns multiple records for a host name, the hostent
only contains the record for the first entry. Finally, the gethostbyname and gethostbyaddr

tcp_echo.c

tcp_sink.c

tcp_source.c

Data forwarding test to verify network performance. The file
tcp_source.c runs on a host and sends data to the target machine. The
file tcp_echo.c runs on the target, which receives the data and forwards
it. The file tcp_sink.c runs on another machine and receives the for-
warded traffic from the target.

tcp_lo_select.c Performs a TCP throughput test using the loopback address using a
server and two clients.

tcp_lo_test.c Sets up a client and server to perform basic data transfer operations using
TCP.

tftp_client_test.c Performs TFTP get and put operations using a host server. The host
server needs to be configured independently of the target running the
client program.

tftp_server_test.c Runs a TFTP server on the target machine. Another machine running an
TFTP client can be used to perform various operations. The server pro-
gram runs for five minutes before closing down. The dummy file system
used with this test contains one file, see tftp_dummy_file.c, and
can accommodate the creation of three additional files up to 1MB in size.
The filenames can be up to 256 bytes long.

udp_lo_test.c Uses a client and server to transfer UDP data via the loopback address.

Table 8.1 Networking Tests (Continued)

Test Filename Description

SNMP Support 179

functions are thread safe, allowing multiple threads to call these functions. However, it is not
safe for a single thread to call both functions; this destroys the results from the previous call.

The DNS client is initialized by calling the function cyg_dns_res_init, located in
the source file dns.c. This function takes the address of the DNS server that the client can use
to query addresses for translation. The client understands that the target is in a domain, which is
not used by default. The domain name is set using the function setdomainname.

8.7 SNMP Support

SNMP is the standard for the exchange of management information between network
devices. SNMP uses simple requests and responses to communicate management information about
a particular device on a network. A management application runs on a remote system that controls
the SNMP agent, which runs on the device. SNMP uses UDP at the transmission layer. A Manage-
ment Information Base (MIB) contains information and statistics for each device in a network. The
MIB information is constantly updated to keep track of the current status of the networked device.
The SNMP agent accesses the MIB information to fulfill the remote management requests.

The eCos SNMP package is a port of the UCD-SNMP version 4.1.2 code base. The UCD-
SNMP implementations were done at Carnegie Mellon University and University of California
at Davis. This code base has been transformed into Net-SNMP, which is maintained by Source-
Forge. Additional information about the original SNMP code base can be found online at:

http://net-snmp.sourceforge.net

This site also contains additional SNMP tools, including a tool to request or set informa-
tion from SNMP agents, a tool to generate and handle SNMP traps, and a graphical Perl/Tk/
SNMP-based MIB browser.

eCos SNMP support is contained in two packages, the agent and library. The SNMP package
is arranged in this manner to remain consistent with the original UCD-SNMP implementation. The
separation of packages also allows an eCos client application to use the SNMP library without
including the agent package.

The agent contains application-specific handler files that allow a remote SNMP manager
to retrieve the MIB information about the device. The library contains the code for formatting
packets with the SNMP protocol and the MIB file parser, which uses Abstract Syntax Notation
One (ASN-1). The library supports SNMP version 2 and contains security and authentication
aspects of version 3. The database information is MIB-II compatible.

The eCos SNMP packages are located in the snmp subdirectory under the net subdirec-
tory. The SNMP Agent (CYGPKG_SNMPAGENT) package is contained in the agent subdirec-
tory, and the SNMP Library (CYGPKG_SNMPLIB) package is in the lib subdirectory. The
SNMP package requires the inclusion of the Networking package.

The agent contains a single thread, snmpd located in the file snmpd.c, which is initialized
in the routine cyg_net_snmp_init. The task runs at a priority level that is one lower than the
background network task (CYGPKG_NET_THREAD_PRIORITY). The application must call the
cyg_net_snmp_init function, located in the file snmptask.c, to start the SNMP agent.

180 Chapter 8 • Additional Functionality and Third-Party Contributions

The library package contains functionality that relies on the presence of a file system. Cur-
rently, this is not implemented in eCos; therefore, it is the responsibility of the application to
supply file system support if this functionality is desired.

A MIB compiler utility is also included in the SNMP package. The MIB compiler is
located in the utils\mib2c subdirectory within the agent package. The utility is a Perl script
that takes the MIB, included in the SNMP agent package, and compiles it into C code. The out-
put from the MIB compiler can then be modified to support the needed MIB functionality of a
specific application. The new MIB can then be recompiled and used in the application. The
default eCos MIB is located in the mibgroup\mibII subdirectory within the agent package.
There are two readme files, in the mib2c subdirectory, which give additional information about
the MIB compiler. These files are readme.mib2c and readme-ecos.

8.8 The GoAhead Embedded WebServer

Although SNMP is the long-time standard for remote management, more and more devices are
seeking an alternative method to eliminate the shortcomings of SNMP. The latest trend is to use
Web protocols, such as HyperText Transfer Protocol (HTTP), HyperText Markup Language
(HTML), and Java, for remote device management, also called Web-based management. This is
accomplished through the use of an embedded Web server running on the device. A device’s data
can be used to generate dynamic content that is represented in a Web page. These pages are
accessed by any standard browser and become the graphical interface to the device. Devices
become more user friendly when they can be controlled using a common interface, such as the
browser. For example, programming a VCR might not be as daunting a task if the job could be
done via a browser interface.1

There are a few disadvantages to using SNMP for remote management. One disadvantage
is the requirement of application software to control remote devices that is often costly and diffi-
cult to use. Another disadvantage is that SNMP uses UDP, which is an unreliable protocol, for
communication across networks. Packets that are lost in transmission are not retransmitted, and
acknowledgment of received packets is not performed. This can have dire consequences if the
information contained in that packet was crucial to the system.

Along with being the hip, up-and-coming trend, Web-based management allows the use of a
standard interface that is familiar to most users. Having the browser as an interface also allows the use
of handheld devices, most of which have browsers as standard software, for portable management.
Network communication from devices is accomplished using TCP, which is a reliable protocol.

Companies currently using the GoAhead WebServer in products include Hewlett-Packard,
Honeywell, Siemens, and Canon. A complete list of companies is provided on the GoAhead
WebServer site at:

www.goahead.com/webserver/customers.htm

1 My wife, who finds programming the VCR a daunting task, can verify this and, therefore, relies on me for all of her
video recording needs. Yet she is a wizard using a computer to navigate the Web with her favorite browser.

The GoAhead Embedded WebServer 181

One disadvantage to the Web-based management approach is that once a page is served to
the browser, the content is static and does not change until there is some user intervention, such
as a refresh request. This can be a problem if a constant flow of data is needed or IF a user needs
to be notified of an alarm condition on the device. One solution to this problem is the use of the
HTTP REFRESH tag, forcing the browser to re-request the data at a specified interval. Another solu-
tion is through the use of Java applets and JavaScript to continually request data from the device.

The GoAhead WebServer is an open-source embedded Web server specifically designed
for use in embedded systems. The source code is written in C. Unlike typical server-based Web
servers, the GoAhead WebServer is focused on meeting constraints found in an embedded sys-
tem, including:

• Small memory footprint
• Configurable security model
• Supporting the generation of dynamic Web page content
• Support for devices that do not have a file system
• Portability across a wide range of platforms and CPU architectures
• Integration of the source code into very customized devices

The WebServer requires a TCP/IP stack and approximately 60 kbytes of memory. The
GoAhead WebServer supports:

• Active Server Pages (ASP)
• In-process Common Gateway Interface (CGI)
• Embedded JavaScript
• HTTP 1.0 with persistent connections found in HTTP 1.1
• 65 connections per second
• Secure Sockets Layer (SSL) version 3.0
• Digest Access Authentication (DAA)
• User Management via login access
• Storage of Web pages in ROM

Currently, SSL support is not provided for in eCos. Additional information can be found
online at the GoAhead WebServer site at:

www.goahead.com/webserver/webserver.htm

Similar to eCos licensing, the GoAhead WebServer offers its source code free of charge in
exchange for any enhancements to the source code base. There are three basic requirements to using
the GoAhead WebServer in a product. First, GoAhead must be notified prior to shipping the product
using the WebServer. Second, the GoAhead mark (which can be found on their Web site) must be
displayed on the initial page. Finally, GoAhead is allowed to identify companies using the Web-
Server for marketing efforts. The GoAhead WebServer license can be found online at:

182 Chapter 8 • Additional Functionality and Third-Party Contributions

www.goahead.com/webserver/license.htm

The GoAhead site contains a searchable database of questions, and their solutions. GoAhead
offers a bug report form that allows you to submit specific problems with the Web server. Bugs
can also be emailed to:

webserverbugs@goahead.com.

There is also a newsgroup devoted to the GoAhead WebServer, which does not get a large
volume of traffic. The newsgroup can be found at:

news://news.goahead.com/goahead.public.webserver

8.9 Symmetric Multi-Processing Support

SMP is a computer architecture that uses multiple CPUs to process program code. The multiple
CPUs share a common operating system and memory subsystem. This allows the processors to
work together to share the workload in an embedded system, which provides higher perfor-
mance than a single-processor system. eCos provides SMP support on selected architectures and
platforms. This support is broken down into HAL- and kernel-level support. SMP support is
only available in the multilevel queue scheduler.

eCos does impose some target hardware limitations in its SMP support, including:

• The maximum number of CPUs supported is eight, with the typical number being
two or four.

• The hardware must supply a synchronization mechanism in the form of a test-and-set
or compare-and-swap instruction. The eCos kernel uses these hardware instructions for
the spinlock implementation.

• No caches are used, all processors share the cache in the system, or the hardware
maintains coherent caches. This prevents eCos from performing cache flush operations
around each memory access.

• All memory shared among CPUs is addressed at the same location for all CPUs.

• All devices are accessible by all CPUs.

• An interrupt controller must be present to route interrupts to a specific CPU. Other
acceptable architectures include all interrupts delivered to a single CPU, certain
interrupts bound to a specific CPU, or certain interrupts local to each CPU. eCos does
not support delivering all interrupts to all CPUs in the system and allowing the software
to resolve conflicts.

• To allow events on one CPU to cause rescheduling on another CPU, a mechanism is
needed to allow one CPU in the system to interrupt another CPU.

• Software that is running on a particular CPU must be able to identify which CPU it is
running on.

Additional Features 183

The startup sequence is different on SMP systems. A single CPU, called the primary, han-
dles the startup initialization sequence, while the other CPUs, called secondary, are either placed
in a suspended state or put into an idle loop by the HAL. After the application calls
cyg_scheduler_start, the secondary CPUs are initialized.

One major issue in an SMP system is the ability for the kernel to protect its data structures
from concurrent accesses. This is easily accomplished in a single-processor system by disabling
interrupts. However, in a system with multiple CPUs, disabling interrupts on one CPU does not
block another CPU from accessing the data structures.

When the kernel is operating in a single-processor system, accesses to the kernel data
structures are blocked using the scheduler lock. The scheduler lock is implemented as a simple
counter that is atomically incremented to acquire the lock and decremented to release the lock.
When the value of the lock counter is zero, the scheduler is allowed to selected a different thread
to run. Since ISRs can be serviced while the scheduler is locked, certain kernel functions can
only be called from certain operating contexts. Additional information about the scheduler for
single-processor systems can be found in The Scheduler section of Chapter 5, The Kernel.

For SMP systems, a kernel-locking mechanism is needed that does not rely on interrupt
manipulation. This special synchronization mechanism is called a spinlock. Spinlocks are pro-
vided for SMP systems, although the other synchronization mechanisms work in SMP systems
as well. Spinlocks are covered in Chapter 6, Threads and Synchronization Mechanisms.

In addition, functions have been added for interrupt processing in SMP systems. One of
these functions allows routing of interrupts to a specific CPU in the system. The other function
enables you to find out which interrupts in the system are handled by which CPUs. Detailed
information about these, and other interrupt function calls can be found in Chapter 3, Exceptions
and Interrupts.

8.10 Additional Features

Now that we have covered some of the major additional functionality available for use in the
eCos system, let’s take a quick look at some other additional features support by eCos. This sec-
tion is intended to make you aware of some of the other features supported by eCos; however,
the details of operation for these packages are omitted.

The dynamic loader allows Executable and Linking Format (ELF) file images to be loaded
onto a target during run time. After the new ELF image is loaded, the running application can
call functions located in the new image. The dynamic loader package (CYGPKG_LOADER) is
located in the services\loader directory.

The zlib package is a general-purpose compression/decompression library widely known
in the software community. It provides in-memory compression and decompression functions
that are thread safe and include integrity checks of the uncompressed data. Reading and writing
of files in gzip format, with interface functions similar to stdio, is also supported by the zlib
library. The zlib package (CYGPKG_COMPRESS_ZLIB) contains a port of zlib to eCos and is
contained in the services\compress\zlib directory. Additional information about the
zlib library can be found online at:

184 Chapter 8 • Additional Functionality and Third-Party Contributions

www.gzip.org/zlib

eCos provides support for the Microwindows Graphical User Interface (GUI). Microwin-
dows is an open-source project focused on allowing the features of modern graphical windowing
interfaces to be run on smaller devices. The Microwindows package (CYGPKG_MICROWINDOWS)
is located under the services\gfx\mw directory. Additional information about Microwin-
dows is provided under the doc directory within the package as well as online at:

www.microwindows.org

A generic power management package is also provided by eCos. This package provides a
framework that allows the incorporation of additional power management facilities in an embedded
system. The power management package (CYGPKG_POWER) is located in the services\power
directory. Additional information about the power management package is contained in the doc
directory within the package.

8.11 Summary
In this chapter, we took a brief look at some of the additional features provided in the eCos sys-
tem and by third-party contributors that can be included within an application. These additional
features extend eCos’ core functionality, allowing eCos to meet the requirements of a wider
range of embedded systems. Now that you are aware of these features, with some additional
investigation they can quickly be incorporated into your system.

References
Sakamura, Ken. µITRON 3.0, An Open and Portable Real-Time Operating System for Embedded Systems.
(IEEE Computer Society Press, 1997).

Stevens, W. Richard. TCP/IP Illustrated, Volume 1: The Protocols. (Addison-Wesley, 1994).

McKusick, Marshall Kirk, and Keith Bostic. The Design and Implementation of the 4.4BSD Operating
System. (Addison-Wesley Longman, Inc., 1996).

185

C H A P T E R 9

The RedBoot ROM
Monitor

his chapter covers the RedBoot ROM monitor embedded software tool. The RedBoot
ROM monitor provides debugging and bootstrap support. We cover thhe installation and

configuration details necessary to get RedBoot running on target hardware and communicating
with a host unit.

We look at the RedBoot user interface and commands provided for controlling the features
provided. It is important to understand the method for building a RedBoot image to make use of
upgrades and to extend the default command set; however, we cover this information in later
chapters of this book. Although RedBoot is a standalone program that can be used with any real-
time operating system, the information in this chapter focuses on using RedBoot with eCos
applications.

9.1 Overview
RedBoot is an acronym for Red Hat Embedded Debug and Bootstrap. It is a program designed
for embedded systems to provide a debugging and bootstrap environment. RedBoot is intended
to take the place of older programs; specifically, CygMon and GDB stub ROM. In fact, CygMon
is no longer supported.

RedBoot is an eCos-based application and uses the eCos Hardware Abstraction Layer for its
foundation. However, RedBoot can be used on any embedded system or with any RTOS. RedBoot
can be used for debug support during the product development cycle or in a released product to
provide flash and network booting. Some of the features provided by RedBoot include:

• Boot scripting support
• Command Line Interface (CLI) for monitor and control support

T

186 Chapter 9 • The RedBoot ROM Monitor

• Access via serial or Ethernet ports
• GDB support
• Flash image system support
• X/Y modem support
• Network bootstrap support using BOOTP or static IP address configurations

RedBoot is a standalone, self-contained module that runs as an application on the target
platform. Included in RedBoot is a GDB stub (see Chapter 8, Additional Functionality and
Third-Party Contributions, for more information) that allows connection to the target platform
from a GDB host for application debugging. This debug connection can be over the serial or
Ethernet port. RedBoot uses a standalone stack, separate from the eCos networking stack, which
provides a base of functionality for network communications.

RedBoot supports booting from ROM, RAM, floppy disk, or an Integrated Disk Electron-
ics (IDE) hard drive running the ext2 file system. A ROMRAM startup mode is also available; in
which case, RedBoot resides in ROM but is copied to RAM before it begins to run.

When we build a RedBoot image, as in Chapter 12, An Example Application Using eCos,
the result is a binary file that is programmed directly onto the target hardware. This RedBoot
image can contain, depending on the configuration options and packages, all the software com-
ponents to use all features of the target hardware.

Figure 9.1 shows the block diagram architecture of some of the features included with the
RedBoot ROM monitor. From this illustration, we can see that the functionality provided by
RedBoot is all contained within the RedBoot program image. The interaction between RedBoot
and the eCos application varies depending on the configuration option settings in both images.
RedBoot can be configured to provide simple load and run functionality, or can be configured to
provide flash management support, monitor and control for the eCos application via the CLI
using the serial port, and GDB debugging capabilities.

RedBoot is shipped in many products currently on the market, including:

• Intel Residential Gateway
• Intel XScale Development Board
• Intel StrongARM Development Boards
• MIPS Malta 4kc/5kc/20kc Development Board
• MIPS Atlas 4kc/5kc/20kc Development Board

The latest developments and information about the RedBoot ROM monitor can be found
online at:

http://sources.redhat.com/redboot

RedBoot Directory Structure 187

9.2 RedBoot Directory Structure
Although RedBoot is a standalone application, which can run on a target system with or without
eCos, the directory structure of RedBoot is similar to other eCos packages. Figure 9.2 shows the
RedBoot directory structure.

Figure 9.1 RedBoot ROM monitor architecture.

Figure 9.2 RedBoot directory structure.

Target Hardware

RedBoot
ROM Monitor

File System eCos ApplicationNetworking
Stack

Hardware Abstraction
Layer

CLI

GDB Stubs

Device Drivers
Ethernet, Serial,

Flash

X/Y Modem

doc

redboot

cdl

src

misc

include

current

fs net

fs net

188 Chapter 9 • The RedBoot ROM Monitor

As we see in Figure 9.2, the RedBoot package is contained in the directory redboot.
Additional details about the typical eCos package directory structure are covered in Chapter 11,
The eCos Toolset.

Beneath the main directory is the version of RedBoot, which might vary depending on the
source code used. However, in our installation, the version directory is named current, as we
see in Chapter 10, The Host Development Platform.

The cdl directory contains the CDL description file of the RedBoot package. The CDL file
contains the information needed for RedBoot configuration options, packages, and build information.

Next is the doc directory. This contains documentation about the RedBoot ROM monitor
for use by the eCos configuration tools.

The include directory contains the source code header files for RedBoot. This directory
contains two additional directories. The fs directory contains the RedBoot file system header
files, and the net directory contains the RedBoot networking header files.

The misc directory contains an eCos minimal configuration file for RedBoot. Finally, the
src directory contains all of the RedBoot source code. The file system source code is contained
under the fs directory, and the networking code is contained under the net directory.

9.3 Installation and Configuration

eCos provides a template called Redboot. Using this template, the default packages used with
the RedBoot ROM monitor are loaded and configured with the default option settings. The
specific packages loaded depend on the hardware platform you are using. For example, the
Motorola PowerPC MBX860 board platform loads the Ethernet device driver since this is sup-
ported on the MBX platform. However, the Intel StrongARM SA-1100 Multimedia board
platform does not contain Ethernet support; therefore, the Ethernet device driver is not loaded
on the SA-1100 Multimedia platform. We cover building a RedBoot image in Chapter 12.

N O T E Most HAL packages include a .ecm file that can be
imported, along with using the RedBoot template, in order to set
up the packages needed to build the RedBoot ROM monitor for a
specific platform. The files are typically named redboot_RAM.ecm,
redboot_ROM.ecm, or redboot_ROMRAM.ecm, where ROM, RAM,
and ROMRAM determine the startup type for the RedBoot ROM
monitor. The files are located in the misc subdirectory under the
HAL packages. We cover the details of using .ecm files with the
Configuration Tool in Chapter 11.

Although .ecm files are useful for loading a baseline of the
proper packages for a specific platform, you should still verify the
configuration option settings prior to building the RedBoot image.
This ensures that the proper functionality you need is supported
by RedBoot; for example, the configuration of certain options
allows RedBoot to include certain required functionality, or alter-
natively eliminate particular features, thus reducing RedBoot’s
memory footprint.

Installation and Configuration 189

RedBoot typically resides in the flash boot sector or boot ROM on the target platform.
This gives control to RedBoot when the board is powered up. RedBoot can be configured to run
from RAM if you need to debug the RedBoot code itself. This might be the case if you are porting
RedBoot to run on your own hardware platform.

The method for programming the RedBoot image onto the target hardware varies from
platform to platform and depends on the tools available. Some platforms include their own ROM
monitor, such as the Motorola PowerPC MBX860 board, which can be used to program an
image into flash memory and then run the programmed image on power up. In other cases, a
device programmer might need to be used in order to burn the image into memory. Detailed
instructions on programming a RedBoot image for each target platform supported by RedBoot
can be found online at:

http://sources.redhat.com/ecos/docs.html

The steps involved in running an image on the i386 PC platform and the Motorola Pow-
erPC MBX860 platform are covered in Chapter 12. These same steps can be applied to running
the RedBoot image as well.

The resources (ROM, RAM, and communication ports) used by RedBoot vary for each
platform. A description of the resource utilization for the supported platforms can be found in
the RedBoot online documentation. The Configuration Tool’s Memory Layout viewer can also
be used to check and modify the RAM and ROM resources used by RedBoot. We cover the Con-
figuration Tool, and all of its features, in Chapter 11.

9.3.1 RedBoot Configuration

The configuration of the RedBoot image is dependent on the features you want provided by the
ROM monitor and the features provided in the application. As previously mentioned, the Red-
Boot ROM monitor is a standalone program and should be viewed as completely independent
and separate from your application. However, the steps for configuring and building a RedBoot
image are the same as the steps for configuring and building your application. The configuration
allows you to control the functionality provided by RedBoot in order to meet the resource
requirements of your system.

The RedBoot ROM Monitor (CYGPKG_REDBOOT) package is contained in the redboot
subdirectory under the eCos repository root directory. Item List 9.1 shows the configuration
options available for the RedBoot ROM monitor. Some of the options specified in the table are
not supported by all platforms and, therefore, cannot be configured.

Item List 9.1 RedBoot Configuration Options

Option Name Include Support for ELF File Format
CDL Name CYGSEM_REDBOOT_ELF
Description Allows application files in ELF to be loaded by RedBoot.

190 Chapter 9 • The RedBoot ROM Monitor

Option Name Build RedBoot ROM ELF Image
CDL Name CYGBLD_BUILD_REDBOOT
Description Builds an ELF of the RedBoot image. This option is disabled by default. The suboptions

under this option allow inclusion of decompression support, thread debugging support,
and setting a customized version string.

Option Name RedBoot Networking
CDL Name CYGPKG_REDBOOT_NETWORKING
Description Contains suboptions for configuring network support. The default mode for this option is

enabled for platforms with Ethernet support. The suboptions allow you to configure a
default IP address when BOOTP is used (disabled by default), specify the TCP port for
incoming connections (default is 9000), and specify the number of network buffers
(default is 4).

Option Name Allow RedBoot to Use Any I/O Channel for Console
CDL Name CYGPKG_REDBOOT_ANY_CONSOLE
Description RedBoot attempts to use all serial I/O channels that are defined for console communica-

tion. When input arrives, RedBoot uses that channel for its console. This option is enabled
by default.

Option Name Allow RedBoot to Adjust the Baud Rate Serial Console
CDL Name CYGSEM_REDBOOT_VARIABLE_BAUD_RATE
Description Enables RedBoot to support baud rate set commands. This option is enabled by default.

Option Name Maximum Command Line Length
CDL Name CYGPKG_REDBOOT_MAX_CMD_LINE
Description Sets the maximum length for CLI commands. The default value is 256.

Option Name Command Processing Idle Timeout (ms)
CDL Name CYGNUM_REDBOOT_CLI_IDLE_TIMEOUT
Description Specifies the period before command processing is considered idle. A smaller value for

this option causes more frequent idle processing. The default value is 10 ms.

Option Name Size of ZLIB Decompression Buffer
CDL Name CYGNUM_REDBOOT_LOAD_ZLIB_BUFFER
Description Sets the size (in bytes) of the buffer that is filled with incoming data during a load before

calling the decompression function. The default value is 64 bytes.

Option Name Validate RAM Addresses During Load
CDL Name CYGSEM_REDBOOT_VALIDATE_USER_RAM_LOADS
Description Allows RedBoot to check the validity of user RAM when loading an image. This option is

enabled by default; care should be taken when disabling this option.

Option Name Allow RedBoot to Support Flash Programming
CDL Name CYGPKG_REDBOOT_FLASH
Description Enables RedBoot to provide flash image system management. This option is enabled by

default for platforms that contain flash support. Suboptions allow specific configuration of

Installation and Configuration 191

the flash memory, such as the minimum image size and the offset where the flash image
system begins.

Option Name Allow RedBoot to Support Disks
CDL Name CYGPKG_REDBOOT_DISK

Description Enables RedBoot commands for loading disk files. This option is enabled by default for
platforms with disk support. Suboptions allow specific configuration of the disk details
such as number of supported disks.

Option Name Boot Scripting
CDL Name CYGPKG_REDBOOT_BOOT_SCRIPT

Description Component that contains the boot scripting configuration options. The options set the
script timeout value and default boot script. The default is enabled.

Option Name Behave Like a ROM Monitor
CDL Name CYGPRI_REDBOOT_ROM_MONITOR

Description Allows RedBoot to provide ROM monitor services to applications that are loaded. This
option is always enabled when building a ROM startup type image.

Option Name Allow RedBoot to Handle GNUPro Application ‘syscalls’
CDL Name CYGSEM_REDBOOT_BSP_SYSCALLS

Description RedBoot installs a syscall handler to support application debugging based on GNUPro
newlib/bsp when this option is enabled. The default for this option is disabled.

The RedBoot image contains its own implementation of the HAL for the specific hardware
platform selected. The HAL package is the same that is used in your application. The difference
is how the HAL configuration options are set. The standard RedBoot configuration enables the
RedBoot HAL option Behave as a ROM Monitor. Enabling this configuration option includes
setting the Startup Type to ROM, which directs the HAL to perform all initialization necessary
to bring up the hardware from a powered-off state. Using RedBoot in this standard configuration
allows applications to be loaded into RAM for debugging on a hardware platform that is prop-
erly initialized.

Included in the HAL configuration is the setup of the virtual vectors. The standard configura-
tion allows RedBoot to initialize the entire VVT and claim all of the virtual vectors in the table.
The default configuration options for the VVT, which can be overridden, are that the ROM monitor
provides the debugging and diagnostic I/O services and RAM applications rely on these services.
Refer to Chapter 4, Virtual Vectors, for detailed information on virtual vectors and the VVT.

Because the VVT resides at a fixed area of memory, known by both the ROM monitor and
the RAM application, the application can take over any services in the VVT at run time, leaving
other services to be provided by RedBoot. RedBoot is capable of providing debugging and diag-
nostic services via the serial or Ethernet port. The ports used for debugging and diagnostic mes-
sages depend on the resources available on the particular platform and your debug configuration.
For example, if your platform contains a serial port and an Ethernet port, you can use one port

192 Chapter 9 • The RedBoot ROM Monitor

for RedBoot debugging, and the other can be used by your application. With the proper virtual
vector setup and configuration option settings, RedBoot is also able to share the ports it uses for
debugging and diagnostics with the eCos application.

One issue to keep in mind when configuring your debug environment settings is that using
a serial port for debug communications can often be slow when you are loading large application
images.

Typically, it is better if the port resources can be dedicated for either RedBoot usage or
application usage. The HAL configuration options allow you to set up the debug and diagnostic
I/O communications to meet your specific needs. The following two configuration options are used
to configure the method of communication for the application. The first configuration option,
Route Diagnostic Output to Debug Channel (CYGDBG_HAL_DIAG_TO_DEBUG_CHAN), under
the Platform-Independent HAL Options component within the common configuration compo-
nents allows the use of RedBoot’s debug channel for diagnostic messages from the application.
RedBoot provides mangling support, using GDB, which then outputs the message to the host.
Mangling in this scenario means that RedBoot converts diagnostic messages from the applica-
tion into a properly formed GDB remote protocol packet.

The second configuration option is Inherit Console Settings From ROM Monitor
(CYGSEM_HAL_VIRTUAL_VECTOR_INHERIT_CONSOLE) under ROM Monitor Support
within the common configuration components. This option allows the application to use the cur-
rently configured RedBoot console setup for output from the application. RedBoot again handles
the mangling needed for proper communication.

Two platform-specific configuration options allow specific designation of the port number
used for debug and diagnostic communications. If only one port exists on the platform, these
options should be configured to use that port. The first is Debug Serial Port
(CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL), which determines the port used to
connect to the GDB host.

The other configuration option is Diagnostic Serial Port (CYGNUM_HAL_VIRTUAL_
VECTOR_CONSOLE_CHANNEL), which determines the port used for output of diagnostic mes-
sages; for example, using the diag_printf function. Chapter 4 details these configuration

N O T E To avoid terminating a RedBoot communication chan-
nel that is using the networking stack, you must ensure proper
configuration of two options within the eCos application image.

The first configuration option, Inherit Console Settings From
ROM Monitor (CYGSEM_HAL_VIRTUAL_VECTOR_INHERIT_CONSOLE),
must be enab led. The second confi guration option, Claim Comms
Virtual Vectors (CYGSEM_HAL_VIRTUAL_VECTOR_CLAIM_COMMS),
must be disabled. These configuration options are located under
the ROM Monitor Support component within the common config-
uration components of the eCos HAL.

Installation and Configuration 193

options and the steps involved for a typical debug environment configuration using the RedBoot
ROM monitor with a separate application RAM image.

9.3.2 Host Configuration

Currently, there are two methods for connecting a host to a target running RedBoot, serial or
Ethernet. With either method used, RedBoot uses the connection for both GDB and RedBoot
command communications, although RedBoot can be configured to use separate communication
channels for debugging and commands. RedBoot provides commands, which are detailed in the
User Interface and Command Set section of this chapter, for configuring the different parameters
associated with both communication methods. After setting these parameters, they are used on
subsequent boots of the target hardware.

One important point to understand about the RedBoot driver implementations, for both serial
and Ethernet, is that polling (not interrupts) is used for I/O communication. The configuration
option Command Processing Idle Timeout (ms) (CYGNUM_REDBOOT_CLI_IDLE_TIMEOUT)
sets the RedBoot command processing interval. After this timeout expires, RedBoot assumes the
command console is idle and performs various background tasks. The default value for this
option is 10 milliseconds. If traffic increases, there might be a point at which the RedBoot driver
cannot keep up and packets are dropped. In that case, it might be necessary to adjust the timeout
configuration option or re-check the traffic that RedBoot needs to process on the communication
channel.

9.3.2.1 Serial

Using the serial connection requires a host-side terminal program. The default parameters that
RedBoot uses for a serial connection are specific to the target hardware platform. On some target
hardware platforms, the RedBoot baud rate setting can be changed using the baudrate com-
mand, which is detailed in the User Interface and Command Set section of this chapter.

Most hardware target platforms should contain at least one serial port for RedBoot com-
munications. Some platforms contain multiple serial ports. The serial port RedBoot uses for
serial communication is described in the RedBoot Configuration section of this chapter. By
default, RedBoot attempts to communicate with the host via the serial port, set by the configura-
tion options, on power up. Once a command is received by RedBoot on one of the serial ports,
that port is used for communications. There is a channel command available, which is
detailed in the User Interface and Command Set section of this chapter, that allows the port Red-
Boot uses for console communication to be changed.

N O T E If the RedBoot image is built with the configuration
option Allow RedBoot To Use Any I/O Channel For Its Console
(CYGPKG_REDBOOT_ANY_CONSOLE) enabled, which is the default
value, the debug and diagnostic serial port configuration settings
are ignored and RedBoot latches on to the first port that it
receives input.

194 Chapter 9 • The RedBoot ROM Monitor

9.3.2.2 Ethernet
The other method for RedBoot communication is using an Ethernet port. In order to use an
Ethernet port, the RedBoot image must include networking support and, obviously, the target
hardware must have an Ethernet port.

One issue that must be resolved is the method for RedBoot to obtain the Ethernet MAC
address. RedBoot attempts to use the MAC address provided by the board manufacturer. How-
ever, the MAC address is not provided on all target hardware platforms. On some hardware plat-
forms, the Ethernet driver allows RedBoot to program a MAC address into the flash
configuration, using the fconfig command. A default MAC address can also be built into the
RedBoot image.

Another issue when using the Ethernet port for RedBoot communication is obtaining an IP
address. RedBoot offers two methods for obtaining an IP address for network communication,
static and dynamic. Selection of the method is controlled by the fconfig command, which is
described in detail in the User Interface and Command Set section of this chapter.

When using the static method, you must set a unique IP address for the RedBoot image.
Several IP address ranges are good to use because they are private addresses. By using private
addresses, you can create a private network for your debugging configuration, and packets that
leave this private network are not forwarded. According to RFC 1918, the reserved private
addresses are:

• 10.0.0.0 to 10.255.255.255
• 172.16.0.0 to 172.31.255.255
• 192.168.0.0 to 192.168.255.255

It is important to realize that RedBoot does not offer any routing support; therefore, the IP
address selected for the target hardware running RedBoot and the host must be on the same subnet.
RedBoot uses ARP to resolve the host address and then sends packets directly to the host unit.

When using the dynamic method, the BOOTP protocol is enabled in the RedBoot image.
Again, selecting the dynamic method is accomplished through the fconfig command. The
dynamic method also requires a BOOTP server running on the host in order to provide an IP
address to the target hardware. There are several free or shareware BOOTP servers available on
the Web, including the BOOTP Turbo Server from Weird Solutions and a DHCP/BOOTP Server
from Dr. Herbert Hanewinkel.

Once the IP address has been successfully set on the target hardware, you can use the ping
utility to verify communication between the target and the host. Most host operating systems
should offer this utility. RedBoot also contains a ping command, which is described in the User
Interface and Command Set section of this chapter.

After the IP address is assigned to the target hardware Ethernet port, you can connect to
RedBoot from the host using a Telnet client application. Most host operating systems provide a
Telnet application utility and if not, again, a search on the Web should bring up a few options.
Next, the port number that is used for Telnet protocol communications must be set on the host

User Interface and Command Set 195

application and in RedBoot. By default, RedBoot uses port 9000. The default port can be
changed using the fconfig command. Once the host connects to RedBoot using Telnet, all
RedBoot communications take place over the Ethernet port.

9.4 User Interface and Command Set

RedBoot provides a CLI. The port, serial or Ethernet, which the CLI is available on is deter-
mined by configuring RedBoot; refer to the Host Configuration section of this chapter. Once the
initialization message is output by RedBoot, commands can be entered to control the target. An
example of the RedBoot initialization message for the Intel x86 processor is shown in Code
Listing 9.1.

1 Ethernet eth0: MAC address 00:d0:b7:92:9d:d2

2 IP: 192.168.0.10, Default server: 192.168.0.1, DNS server IP: 0.0.0.0

3

4 RedBoot(tm) bootstrap and debug environment [FLOPPY]

5 Non-certified release, version UNKNOWN - built 17:55:00, Apr 21 2002

6

7 Platform: PC (I386)

8 Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

N O T E When using the Ethernet port for RedBoot communi-
cation and in your application, it is important to set up the IP
addresses properly. The system distinguishes the destination of
a packet using the IP address. If the IP address for RedBoot and
the application are the same, RedBoot will receive all incoming
Ethernet packets, not passing them on to the application for pro-
cessing. To avoid this situation, it is best to use a static IP
address in one image and a separate static or dynamic image in
the other image.
N O T E If you are using RedBoot for debugging purposes and
it will not be shipped in the final product, you can assign a static
IP address for RedBoot to use and allow the application to obtain
its IP address via BOOTP or DHCP. This allows you to test the
BOOTP/DHCP protocol in the application.

N O T E If your application contains complex networking soft-
ware, it is better to use a serial port for RedBoot communication
and allow the application to use the Ethernet port exclusively.
Although RedBoot and the application can share an Ethernet
device, there are times when debugging is simplified if a separate
communications channel is used. If the application image is large
and you have concerns over the download time via a serial port,
one solution is to download the application over the Ethernet port
and then switch to the serial port for the debugging.

196 Chapter 9 • The RedBoot ROM Monitor

9

10 RAM: 0x00000000-0x000a0000, 0x00088870-0x000a0000 available

11 RedBoot>

Code Listing 9.1 Example RedBoot initialization message.

In Code Listing 9.1, line 1 shows the Ethernet port (eth0) MAC address, which RedBoot
retrieved from the Ethernet card. Line 2 displays the IP addresses for the target platform
(192.168.0.10, which was statically configured in this case), the default server
(192.168.0.1), and the DNS server, which has no IP address configured.

On line 4 we see the RedBoot title message along with the Startup Type configuration
option selection; in this case, FLOPPY. The build information is output on line 5. In this case, the
image was created from a snapshot of the RedBoot source code; therefore, it is not a certified
release and there is no version number. The build time and date are also displayed, which
occurred on April 21, 2002 at 5:55 P.M.

Line 7 displays the platform information showing this RedBoot image is for the i386 pro-
cessor running on a PC platform. Line 8 gives the copyright information.

The RAM resource information is displayed on line 10. The addresses 0x0000_0000 to
0x000A_0000 show the memory used by RedBoot; in this case, 640 kbytes. Also shown,
0x0008_8870 to 0x000A_0000, is the amount of memory available for loading programs or
other development needs.

Finally, line 11 shows the RedBoot prompt, which indicates that RedBoot is ready to
receive commands.

9.4.1 RedBoot Commands

The basic form of a RedBoot command takes the form:

RedBoot> COMMAND [-OPTION1] [-OPTION2 VALUE] OPERAND

where COMMAND is one of the supported RedBoot commands. The two optional switches,
OPTION1 and OPTION2, modify the behavior of a standard command. The OPERAND speci-
fies additional information needed for particular commands.

Commands are not case sensitive and can be abbreviated to their shortest unique string.
For example, to execute the dump command on a default (default means no other commands
beginning with d have been added) RedBoot image, d, du, dum, or dump can be entered.

There are a few basic editing commands used in RedBoot:

N O T E The i386 PC platform also has memory above
0x0010_0000 (1 Mbyte) and upw ard available for loading pro-
grams. RedBoot does not displa y this in the initialization message
for the i386 PC platform. However, eCos RAM applications are
loaded above the 0x0010_0000 address by default.

User Interface and Command Set 197

• Delete (0x7F) and Backspace (0x08) erase the previous character.
• Period (.) (0x2E) halts the editing of a command, leaving the current item unchanged.
• Caret (^) (0x5E) is used as an up arrow for commands, such as fconfig, which go

through a list of parameters to set.
• Dollar sign ($) (0x24) switches RedBoot into GDB stub mode. The GDB stub takes

control and waits for a connection from a GDB host. To get out of GDB stub mode, a
disconnect message is sent from the GDB host or by a reset of the target.

• Return (0x0D) leaves the value for a particular parameter unchanged.

RedBoot generates basic error messages when commands are entered incorrectly or
invalid commands are used. In the following example, the dump command is entered; however,
the –b switch was omitted by mistake causing RedBoot to generate the error message we see on the
following line. The message informs us that we have forgotten the switch for our parameter value
0x12. RedBoot then outputs a new prompt following the error message for the next command.

RedBoot> dump 0x12
** Error: no default/non-flag arguments supported
RedBoot>

RedBoot commands are designed to be simple to use and remember. Although, the com-
mand set only offers basic commands, the source is available so you can add commands specifi-
cally needed for your platform. If you add general-purpose commands that you think are
extremely useful, the eCos open-source community would be glad to accept a contribution.

Numbers entered with commands can be entered in decimal or hexadecimal (designated by
the 0x prefix). Item Lists 9.2 and 9.3 list the commands available in the default RedBoot image.
Optional parameters or switches in the syntax for commands are enclosed in brackets ([]), and
value parameters are enclosed in angled brackets (<>). Commands entered without parameters
cause a help message about the command to be output or the current setting for the command.

All RedBoot commands listed in Item List 9.2 might not be available on all platforms
because not all platforms support certain resources. For example, a platform that does not con-
tain flash memory does not support the Flash Image System (FIS) command set. Item List 9.3
lists the FIS command set.

Item List 9.2 RedBoot ROM Monitor Command Set

Syntax: alias name [value]
Options: name—String name for alias.

value—Expression for alias.
Description: Allows a simple command-line alias to be used for longer expressions. When the pattern

%{name} appears in a command line, it is replaced with the value previously set. Aliases
can also be used in scripts. These aliases are kept in flash memory. The following shows an
example using the alias command. On line 1 the alias SBUF is used for the string –b
0x100000. Therefore, any place %{SBUF} is used, it is replaced by –b 0x100000.
Line 2 ensures that you want to update the nonvolatile memory with the alias command.
Lines 3 through 6 show the output from RedBoot performing the update.

198 Chapter 9 • The RedBoot ROM Monitor

1 RedBoot> alias SBUF "-b 0x100000"
2 Update RedBoot non-volatile configuration - are you sure (y/n)? y
3 ... Unlock from 0x50f80000-0x50fc0000: .
4 ... Erase from 0x50f80000-0x50fc0000: .
5 ... Program from 0x0000b9e8-0x0000c9e8 at 0x50f80000: .
6 ... Lock from 0x50f80000-0x50fc0000: .

In this code example we see how the alias SBUF, defined earlier, is used. Line 1 shows the
alias being used with the dump, d for short, command.

1 RedBoot> d %{SBUF}
2 0x00100000: FE03 00EA 0000 0000 0000 0000 0000 0000 |................|
3 0x00100010: 0000 0000 0000 0000 0000 0000 0000 0000 |................|

Syntax: baudrate [-b <rate>]
Options: -b rate—Baud rate to set for serial port. If this option is not specified, the current baud

rate setting is displayed.
Description: Query or set the baud rate for the serial port currently in use. If the platform stores config-

uration information in nonvolatile memory, the baud rate is saved and used the next time
the board is reset.

Syntax: cache [ON | OFF]
Options: ON | OFF—State to set the instruction and data caches. If this option is not specified, the

current data and instruction cache settings are displayed.
Description: Query or set the state of the data and instruction caches.

Syntax: channel [channel_number]
Options: channel_number—Number of the I/O channel. Setting this parameter to –1 causes

RedBoot to listen on all channels for console communication, if the
CYGPKG_REDBOOT_ANY_CONSOLE configuration option is enabled, which is the
default.

Description: Query or set the I/O channel for RedBoot to use for console communication. This com-
mand is only available for platforms with multiple I/O channels for use by RedBoot.

Syntax: cksum -b <location> -l <length>
Options: -b location—Memory address, in RAM or ROM, to begin checksum computation.

-l length—Number of bytes to perform checksum calculation over.
Description: Computes the POSIX checksum on a range of memory.

Syntax: disks
Options: None
Description: Display disk and partition information. This command is not supported by all platforms.

Syntax: dump -b <location> [-l <length>] [-s] [-1 | -2 | -4]
Options: -b location—Address to begin memory dump.

-l length—Amount of data, in bytes, to dump.
-s—Dumps data in Motorola S-record format.
-1 | -2 | -4—Specifies the size of the data access. Entering –1 accesses 1 byte (8
bits) at a time where only the least significant 8 bits of the pattern are used. Entering –2

User Interface and Command Set 199

accesses 2 bytes (16 bits) at a time where only the least significant 16 bits of the pattern are
used. Entering –4 accesses 4 bytes (32 bits) at a time.

Description: Display a range of memory in hexadecimal format. The following shows example output
from a dump command. Line 1 uses du, short for the dump command, with a starting
address of 0x100 and a length of 32 bytes. The output is shown on lines 2 and 3.

1 RedBoot> du -b 0x100 -l 0x20
2 0x00000100: 3C60 0004 6044 4D4D 7C20 03A6 8080 0020 |<‘..‘DMM| |
3 0x00000110: 0000 0000 0000 0000 0000 0000 004B 464D |.............KFM|

The memory is displayed in rows of 16 bytes followed by the ASCII interpretation of the
data. Care should be taken if this command is used to dump memory mapped hardware
registers.

Syntax: fconfig [-i] [-l] [-d] [-n] [-f] | nickname [value]
Options: -i—Reset flash configuration settings to their default state.

-l—Display and edit flash configuration.
-d—Allows a simpler interface for the command when backspace is not allowed.
-n—Use nicknames for parameter entries.
-f—Use full names for parameter entries.
nickname value—Allows setting of a particular parameter entry by using the nick-
name and appropriate value. If value is not included, then the nickname parameter
entry is displayed and a prompt for that entry is shown.

Description: Configure network and startup information stored in flash memory. This command is only
supported on platforms that allow flash-based configuration information. As mentioned
previously, the editing commands can be used with this command. Typing return leaves
the value unchanged, period can be used to halt editing of parameters, and caret can be
used as an up arrow to go back to editing a previous parameter. After entering the flash
configuration settings, a prompt is displayed asking whether to write the new configuration
into flash memory.
The following shows output from the fconfig command. Line 1 shows the command
with the option to list the current configuration. Lines 2 through 7 show the output for the
current configuration on this particular platform.

1 RedBoot> fconfig –l
2 Run script at boot: false
3 Use BOOTP for network configuration: false
4 Local IP address: 192.168.1.29
5 Default server IP address: 192.168.1.101
6 GDB connection port: 9000
7 Network debug at boot time: false

This information is only used at reset; therefore, in order for changes to take effect, the
platform must be restarted. A scripting example is shown in the Boot Scripting section of
this chapter.

Syntax: fis [command]
Options: command—The different FIS commands are detailed in Item List 9.3.
Description: Flash Image System (FIS) allows RedBoot to use flash memory for executable and data

image storage. FIS commands are available on platforms that support flash memory. There
is a subset of commands associated with the FIS that are covered in Item List 9.3.

200 Chapter 9 • The RedBoot ROM Monitor

Syntax: go [-w <timeout>] [entry]
Options: -w timeout—Amount of time, in seconds, to wait before beginning program execution.

Allows aborting of program execution by typing CTRL-C on the console. If this option is
not specified, program execution begins immediately.
entry—Location in memory to begin program execution. If this parameter is not speci-
fied, the entry point of the last loaded image is used.

Description: Execute a program.

Syntax: help [<topic>]
Options: topic—Command to display help information about.
Description: Display information about the RedBoot command set.

Syntax: ip_address [-l local_IP_addr] [-h server_IP_addr]
[-d dns_server_IP_addr]

Options: -l local_IP_addr—The IP address for RedBoot.
-h server_IP_addr—The IP address of the default server. This address is used by
other commands, such as load.
-d dns_server_IP_addr—The IP address of the DNS server.

Description: Query or set the RedBoot, server, and DNS server IP address.

Syntax: load [-r] [-v] [-d] [-h <host>]
[-m [[TFTP]|[HTTP]|[xyMODEM]|[disk]] –c <channel_number>]
[-b <base_address>] <file_name>

Options: -r—Download raw data into memory. Using this option also requires the –b option to be
specified.
-v—Display an indicator while the download is in progress. This is useful for feedback
during long downloads.

-d—Decompress gzipped image during download.
-h host—Used in TFTP and HTTP modes only to specify the host computer for the
download. The host parameter can be specified as an IP address or a hostname if DNS is
enabled.
-m TFTP|HTTP|xyMODEM|disk –c channel_number—Specifies the download
method to use. The choices are TFTP or HTTP for network-based downloads, xMODEM or
yMODEM for serial-based downloads, and disk for downloads from hard disk or CD-
ROM (which is not supported on all platforms). The –c option allows specification of the
channel used for the download. This option is not available on all platforms, since some
platforms only contain one I/O channel for RedBoot console communication.
-b base_address—Address location in memory to load the file. Typically, executable
images are loaded into the memory location to which the file was linked; however, this
option allows the overriding of the image’s linked location.
file_name—Filename to download. This parameter is not required for the serial-based
xyMODEM downloads.

N O T E The –v option should not be used when downloading
over the network as it can slow the loading process.

User Interface and Command Set 201

Description: Download data to the target system. Data can be loaded over the serial port using the X or
Y modem protocols, over the network port using the TFTP protocol, over the network
using the HTTP protocol, or from a storage disk (the disk method is not supported by all
platforms). There are several free TFTP servers available on the Web, and most terminal
programs, included with the host operating system, support the different modem protocols.

Syntax: mcmp –s mem_addr1 –d mem_addr2 –l length [-1 | -2 | -4]
Options: -s mem_addr1—Memory start address of first location for data comparison.

-d mem_addr2—Memory start address of second location for data comparison.
-l length—Length of data.
-1 | -2 | -4—Specifies the size of data access for comparison. Entering –1 accesses
1 byte (8 bits) at a time where only the least significant 8 bits of the pattern are used.
Entering –2 accesses 2 bytes (16 bits) at a time where only the least significant 16 bits of
the pattern are used. Entering –4 accesses 4 bytes (32 bits) at a time.

Description: Compare the contents of two memory address ranges. If the buffers do not match, only the
first nonmatching element is displayed.

Syntax: mfill –b addr –l length –p value [-1 | -2 | -4]
Options: -b addr—Memory start address for data fill.

-l length—Length of data.
-p value—Value to fill into memory.
-1 | -2 | -4—Specifies the size of data access for comparison. Entering –1 accesses
1 byte (8 bits) at a time where only the least significant 8 bits of the pattern are used.
Entering –2 accesses 2 bytes (16 bits) at a time where only the least significant 16 bits of
the pattern are used. Entering –4 accesses 4 bytes (32 bits) at a time.

Description: Fill a memory range with the specified data.

Syntax: ping [-v] [-n <count>] [-l <length>] [-t <timeout>]
[-r <rate>] [-i <IP_address>] –h <IP_address>

Options: -v—Verbose setting that allows the display of information about each packet sent.
-n count—Number of packets to send. If this option is not specified, 10 packets are
sent by default.
-l length—Size of payload for ping packet. The default size of a ping packet when
this option is not specified is 64 bytes. The maximum value for this option is 1400.
-t timeout—Length of time in milliseconds (ms) to wait for the host to return a sent
packet. The default timeout is 1000 ms if this option is not specified.
-r rate—Time in milliseconds (ms) between sending ping packets. The default is 1000
ms. If 0 is specified for the rate, packets will be sent without delay.
-i IP_address—Allows overriding of IP address in outgoing ping packets.
-h IP_address—Specifies the IP address, or a hostname can be used if DNS is
enabled, of the host to send the ping packets.

Description: Checks the connectivity of the local network by sending ICMP ping packets to the speci-
fied host. The host returns the ping packets, if received, and data for each packet sent and
received is displayed.

Syntax: reset
Options: None

202 Chapter 9 • The RedBoot ROM Monitor

Description: Reset the target system. This is equivalent to a power-on reset. Not all platforms support
this command.

Syntax: version
Options: None
Description: Display the RedBoot version information. The output from the version command is

shown in the following listing.

1 RedBoot> version

2 RedBoot(tm) bootstrap and debug environment [FLOPPY]

3 Non-certified release, version UNKNOWN - built 17:34:58, Jun 10 2002

4 Platform: PC (I386)

5 Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

6 RAM: 0x00000000-0x000a0000, 0x00088870-0x000a0000 available

In the preceding listing, line 1 shows the command entry. Line 2 displays the RedBoot title
message and Startup Type for which the image was built. The build information is dis-
played on line 3. Line 4 displays the platform information. Copyright information is out-
put on line 5. Finally, line 6 shows the total RAM resources and what is available for use.
This message is similar to the initialization message shown in Code Listing 9.1.

Syntax: x -b <location> [-l <length>] [-s] [-1 | -2 | -4]
Options: -b location—Address to begin memory dump.

-l length—Amount of data, in bytes, to dump.
-s—Dumps data in Motorola S-record format.
-1 | -2 | -4—Specifies the size of the data access. Entering –1 accesses 1 byte (8
bits) at a time where only the least significant 8 bits of the pattern are used. Entering –2
accesses 2 bytes (16 bits) at a time where only the least significant 16 bits of the pattern are
used. Entering –4 accesses 4 bytes (32 bits) at a time.

Description: Alias for dump command.

RedBoot can use flash memory for data and executable image storage. Item List 9.3
details the FIS command set.

Item List 9.3 Flash Image System Commands

Syntax: fis create -b <mem_base> -l <length> [-f <flash_addr>]
[-e <entry_point>] [-r <ram_addr>] [-s <data_length>]
[-n] <name>

Options: -b mem_base—Location in RAM of data to be stored in flash memory.
-l length—Length of the data in RAM.

N O T E A Little Trick...
The GDB stub in the RedBoot image can be used to load an
image into RAM as well. This causes you to lose control of the
RedBoot prompt. However, entering the command ++$k#6b
directly at the serial port causes RedBoot to restart, retaining the
image loaded into RAM.

User Interface and Command Set 203

-f flash_addr—Location in flash memory for the image. The flash address can be
included as part of the linked executable image. If this option is not specified, the first free
block in flash memory is used.
-e entry_point—Execution entry address.
-r ram_addr—Location in RAM when the image is loaded using the fis load com-
mand. This option only needs to be specified if the image will be loaded with the fis
load command.
-s data_length—Length in bytes of the actual data to be written to flash memory. If
this option is not specified, the image length of the –l option is used. If data_length is
less than the length for the –l option, the remainder of the image in flash memory is
left blank.
-n—Updates FIS directory without copying image data from RAM to flash memory. This
option can be used to recreate the FIS entry if it has been destroyed.
name—Name of the image to create.

Description: Create an image in the FIS directory, which causes data currently in RAM to be stored in
flash memory. Data for the image must be present in RAM memory prior to calling this
command.

Syntax: fis delete name
Options: name—Name of the image to delete.
Description: Remove the image, specified by the name parameter, from the FIS, which causes the

image to be erased from flash memory and removed from the FIS directory.

Syntax: fis erase –f <flash_addr> -l <length>
Options: -f flash_addr—Start flash memory address to erase.

-l length—Length in bytes to erase.
Description: Force an erase of a portion of flash memory. No checking is done to ensure whether the

area specified corresponds to a loaded image.

Syntax: fis free

Options: None
Description: Display areas of flash memory that are currently not in use, meaning that the block con-

tains non-erased contents. This command can be to check if a particular location is in use
prior to loading an image.

Syntax: fis init [-f]
Options: -f—Erase or format all blocks of flash memory.
Description: Initialize the FIS. This command should only be executed once during the first installation

of RedBoot on the target hardware. Executing this command more than once causes the
loss of data in flash memory.

Syntax: fis load [-b <memory_load_addr>] [-c] [-d] name
Options: -b memory_load_addr—Location in RAM to copy the image from flash memory. If

this option is not specified, the image is copied from flash memory to the address given
when the image was created. Executable images normally load at their linked location.
-c—Compute and display the checksum of the image data after loading is complete.

204 Chapter 9 • The RedBoot ROM Monitor

-d—Decompress gzipped image while copying the image to RAM.
name—Name of the image.

Description: Transfer an image from RAM into flash memory.

Syntax: fis list [-c] [-d]
Options: -c—Display image checksum instead of the memory address field.

-d—Display image data length instead of amount of flash used.
Description: Display images currently stored in the FIS.

Syntax: fis lock –f <flash_addr> -l <length>
Options: -f flash_addr—Start flash memory address to lock.

-l length—Length in bytes to lock.
Description: Write-protect a portion of flash memory, preventing overwriting of stored images. This

command is only available on platforms that support write-protection of flash memory.

Syntax: fis unlock –f <flash_addr> -l <length>
Options: -f flash_addr—Start flash memory address to unlock.

-l length—Length in bytes to unlock.
Description: Unlock a portion of flash memory, allowing updating of that portion’s contents. This com-

mand must be used for portions of flash memory previously locked before the FIS can use
those areas of memory.

Syntax: fis write -b <location> -l <length> -f <flash_addr>
Options: -b location—Start RAM address to begin reading data.

-l length—Length of bytes to write.
-f flash_addr—Start flash memory address to write data.

Description: Write data from RAM to flash memory.

As mentioned previously, the RedBoot command set offers basic functionality for debug-
ging and control over target hardware. The RedBoot source code is available if you need to
extend the command set or functionality offered by the current commands. After adding the nec-
essary features to RedBoot, a new image needs to be created. The steps involved in creating a
RedBoot image are covered in Chapter 11. Next, the current RedBoot image on your target hard-
ware needs to be updated. Updating the RedBoot image is covered in Chapter 12.

9.4.1.1 Boot Scripting
RedBoot supports running scripts during the target hardware boot cycle. Boot scripting allows
you to run commands you always want executed after power up. For example, if you are con-
stantly going to load an image into memory for execution and debug, you can avoid entering
commands manually by setting up a boot script. A timeout is included in the boot script setup to
allow you to abort running the boot script during a particular power up cycle by simply pressing
Ctrl+C. This boot script is set up and run on the Motorola PowerPC MBX860 board.

Boot scripts are set up using the fconfig command. Entering true (or t) when
fconfig prompts for Run script at boot puts RedBoot in a mode allowing you to

User Interface and Command Set 205

begin inputting your boot script commands. The setup for a simple boot script is shown in
Code Listing 9.2.

1 RedBoot> fconfig
2 Run script at boot: false t
3 Boot script:
4 Enter script, terminate with empty line
5 >> fi li
6 >>
7 Boot script timeout: 0 10
8 Use BOOTP for network configuration: false .
9 Update RedBoot non-volatile configuration - are you sure (y/n)? y
10 ... Erase from 0xfe060000-0xfe070000: .
11 ... Program from 0x0000f810-0x0000fc10 at 0xfe060000: .
12 RedBoot>

Code Listing 9.2 RedBoot script setup example.

The bold characters in Code Listing 9.2 are values entered from the keyboard. Line 1
shows the command entry. Line 2 shows selecting t to enter boot script mode; the false
shown on this line is the current value. The actual command to run during the boot script execu-
tion is shown on line 5. This is the fis list command, or fi li for short. Line 6 contains
an empty line input to terminate the boot script. Line 7 shows that a timeout of 10 seconds is
entered; the default is 0. On line 8, a period (.) is entered to terminate any more entries for the
fconfig command. Lines 9 through 11 show the update of the configuration information in
nonvolatile memory.

1 FLASH: 0xfe000000-0xfe080000,8 blocks of 0x00010000 bytes each.
2 IP: 192.168.0.100, Default server: 192.168.0.3, DNS server IP: 0.0.0.0
3
4 RedBoot(tm) bootstrap and debug environment [ROM]
5 Non-certified release, version UNKNOWN - built 04:02:12, Jul 06 2002
6
7 Platform: Motorola MBX (PowerPC 860)
8 Copyright (C) 2000, 2001, 2002 Red Hat, Inc.
9
10 RAM:0x00000000-0x00400000, 0x00022420-0x003e0000 available
11 == Executing boot script in 10 seconds - enter ^C to abort
12 RedBoot> fi li
13 Name FLASH addr Mem addr Length Entry point
14 RedBoot 0xFE000000 0xFE000000 0x00020000 0x00000000
15 RedBoot[backup] 0xFE020000 0xFE020000 0x00020000 0x00000000
16 RedBoot config 0xFE060000 0xFE060000 0x00010000 0x00000000
17 FIS directory 0xFE070000 0xFE070000 0x00010000 0x00000000
18 RedBoot>

Code Listing 9.3 RedBoot script example output.

206 Chapter 9 • The RedBoot ROM Monitor

Code Listing 9.3 shows the output from the simple boot script we set up in Code
Listing 9.2. The power to the board was cycled in order to get RedBoot to restart. The RedBoot
initialization message is shown on lines 1 through 10.

Line 11 is the message showing that the boot script is going to execute. At this point,
Ctrl+C can be entered to abort running the boot script. On line 12 we see the fi li boot script
that we set up in Code Listing 9.2 execute. We can see the output from the fis list com-
mand on lines 13 through 17. Finally, the script ends and RedBoot is ready for additional com-
mands, as shown on line 18.

9.5 Summary
In this chapter, we covered the RedBoot ROM monitor. Using RedBoot, we are able to load and
debug applications. We looked at the various configuration options for RedBoot, as well as the
different communication mechanisms available. Finally, we went into details about using Red-
Boot by exploring the user interface and command set available.

207

C H A P T E R 1 0

The Host
Development
Platform

his is the first of four chapters that covers the configuration of the host development
platform, the eCos toolset, examples using the eCos system, and porting eCos. These

chapters guide us through the steps necessary to configure the different components of the
eCos development system. At the end of these chapters, you will have a complete embedded
software development environment and an understanding of how to build an application using
the eCos system.

To start, in this chapter, we get an overview of the main steps involved with configuring
our host PC, focusing on setting up the tools needed to build eCos.

Next, in Chapter 11, The eCos Toolset, we proceed with the installation of the eCos con-
figuration tools and the source code repository. This lays the foundation for building the eCos
RTOS library.

In Chapter 12, An Example Application Using eCos, allows us to put our tools to work by
developing an application to run on our development system. We focus on the target-specific
compiler and debugging tools. This chapter offers a basic example in which additional function-
ality and components can be added to develop a fully featured, embedded application.

Finally, Chapter 13, Porting eCos, we look at the steps necessary to move eCos onto a new
hardware platform. This chapter lays the foundation for getting eCos up and running on your
own product.

10.1 Overview
The eCos development system is available on the Internet. In this chapter, we focus on setting up the
eCos development system using the Net release since it is freely (no up-front costs to get started)
available to everyone—provided that you abide by the license terms for each tool or program.

T

208 Chapter 10 • The Host Development Platform

The CD-ROM accompanying this book contains all of the files needed to set up the eCos
development environment described in this book. Links are given to show exactly where the files
can be obtained online. Source code is provided for the executable tools contained on the CD-
ROM. This is one method for satisfying the requirements of the GNU General Public License
(GPL). The GPL (version 2) is contained in the latter part of Appendix B, eCos License, and can
be found online at:

www.gnu.org/licenses/gpl.html

The files on the CD-ROM have actually been used to set up the eCos development suite
described in this book. Since these are open-source tools, they are constantly evolving and being
updated.

The readme file, Readme.txt, included on the CD-ROM under the root directory con-
tains additional information about the contents of the CD-ROM.

The eCos development suite can be set up to run under two operating systems—Linux and
Windows. The Linux configuration has been tested on Red Hat Linux version 7.0 (or later) for x86.

The Windows configuration has been tested using Windows NT 4.0, although Windows
2000, Windows XP, Windows 98, and Windows 95 can also be used.

In this book, we use the Windows NT 4.0 (Service Pack 6.0a) operating system for our
host development platform. You can find information on configuring the Linux operating system
for eCos development on the eCos home page.

N O T E You might find that you need to use a newer version of
a particular tool that incorporates specific features or bug fixes.
Information on upgrading the Cygwin tools is provided in
Appendix C, Cygwin Tools Upgrade Procedure.

However, the general rule to follow concerning the tools is:

If it ain’t broke, don’t fix it.

Basically, if your installed toolset can accomplish all of your
development tasks, it is best to leave the system in its current
working state. Leave the upgrade for later when you have time to
devote to it. Alternatively, configure and use a system other than
your main development environment platform.

The best approach for managing your toolset is to get a sta-
ble working development platform using the tools provided on the
CD-ROM. Then, prior to performing any upgrade, ensure that you
leave yourself a backdoor (by backing up any necessary files) to
restore your current working environment before proceeding with
any upgrades. This will guarantee that you always have a func-
tioning development environment to use.

Configuring the Windows Host 209

10.2 Configuring the Windows Host
In order to develop eCos applications using the Windows operating system, tools must be
installed to build the eCos cross compilers and other development tools. The tools that run under
the Windows operating system are called Cygwin. Cygwin, an acronym for GNU Cygnus Win-
dows, is a UNIX environment for Windows consisting of a Dynamic Link Library (DLL) that
acts as a UNIX emulation layer and a collection of UNIX tools ported to Windows. The Cygwin
site is located at:

http://cygwin.com

The Cygwin tools are capable of running on Windows 95/98/ME/NT/2000/XP operating
systems, but not on Windows CE. The basic steps involved in setting up the eCos development
system on a Windows NT host are:

1. Install Cygwin, the GNU native development tools for Windows—The native host
tools allow us to build the eCos toolset. This information is covered in this chapter.

2. Build the platform-specific cross-development tools—The Cygwin tools allow us to
build the development tools we need to construct the eCos RTOS and applications for a
specific processor. We cover this process for the x86 specific tools in this chapter. The
details for building the tools for other processors are also described in this chapter.

3. Install the eCos development kit—The eCos development kit contains a release of the
eCos source code repository and configuration tools for building the eCos kernel. The
development kit installation is covered in this chapter.

4. Set up and configure the eCos Configuration Tool—The Configuration Tool is used,
among other things, to assist in creating the application-specific eCos library files. This
final procedure is detailed in Chapter 11.

Table 10.1 lists the disk space used by each of the different host development modules for
the Windows platform.

We are going to be building the x86 platform cross-development tools. This allows us to
develop and debug applications using a second PC as our target hardware. We cover examples
using the target PC hardware in Chapter 12.

And away we go...

N O T E It is a good idea when using the Windows operating
system for your host development computer to use the NTFS or
FAT32 file systems on the drive on which the tools are installed.
The tools contain numerous small files, which can waste more
disk space if the hard drive is not formatted with NTFS or FAT32.

210 Chapter 10 • The Host Development Platform

10.2.1 Installing the Cygwin Native Tools

The Cygwin files needed to install the tools are included on the CD-ROM under the cygwin
directory. This directory includes the setup program, setup.exe, and the subdirectories con-
trib and latest, which contain the Cygwin executable tools and the source code files as
well. The tool files have names such as cygwin-1.3.3-2.tar.bz2, while the source code
files contain src in the filename; for example, cygwin-1.3.3-2-src.tar.bz2. All of
the files necessary for installing the Cygwin tools can also be found online at:

http://cygwin.com/download.html

If traffic is busy on the main Cygwin site, it might be necessary to use one of the mirror
sites. A list of Cygwin mirror sites can be found online at:

http://cygwin.com/mirrors.html

The Cygwin readme file, readme.txt, is also contained on the CD-ROM in the cyg-
win directory. It is a good idea to read this file prior to beginning the Cygwin tools installation.
The readme file can also be found online at any of the Cygwin distribution sites. For any addi-
tional information or specific problems installing or using the Cygwin tools, you can look at the
Cygwin discussion mailing list located online at:

http://cygwin.com/ml/cygwin

Posts to this discussion list should be sent to cygwin@cygwin.com. Additional discussion
Cygwin discussion mailing lists can be found online at:

http://cygwin.com/lists.html

Manuals for the different Cygwin development tools can be found online at:

www.gnu.org/manual

Table 10.1 Windows Host Disk Space Requirements

Module Disk Space Required

Cygwin 374.2 Mbytesa

x86 Cross-Development Tools 74.1 Mbytes

eCos Development Kit 81.8 Mbytes

TOTAL 530.1 Mbytes

a Includes source code. Without source code, the Cygwin tools require 202.2 Mbytes of disk space.

Configuring the Windows Host 211

If you are upgrading a previous version of the Cygwin tools, you should refer to the
readme.txt file in the cygwin directory on the CD-ROM to guarantee that the proper steps
are performed prior to installation.

STEP 1
The first step for installing Cygwin is to create a directory for the tools on the hard drive. It is
preferable to create this directory off one of the root drives in order to keep path names short. We
are going to use the directory name cygwin off the root D:\ drive.

STEP 2
Next, we copy the contents of the cygwin directory from the CD-ROM to the directory we just
created. This takes up approximately 178.4 Mbytes of disk drive space, which includes the
source code for the tools.

STEP 3
Run setup.exe from the directory we just created on the hard disk. Next, we go through the
procedure for configuring the setup program to install the proper Cygwin packages. Illustrations
of the dialog boxes and selection of the options for this installation process are provided.

To get started, we run setup.exe from the D:\cygwin directory.
The first dialog box after running the Cygwin setup is shown in Figure 10.1. This dialog

shows us the version information for the setup program. We are using setup version
2.78.2.15. It is important to note the version in case you need to get help from a discussion
list or you need to upgrade to a newer version in the future.

N O T E Before proceeding with the installation it is important
to ensure that all Cygwin applications, if any, running on your sys-
tem are shut down. If you have never installed any Cygwin tools
on your system, you do not have to worry about this.

It is also a good idea to disable any anti-virus software you
have running. Occasionally conflicts occur, such as system
hangs, between the Cygwin files and certain anti-virus software.

Having a space in your Windows logon name might also
cause a problem using the Cygwin tools. To avoid any problems,
it is best to install using a Windows logon name without spaces.

N O T E The Cygwin setup program can be pointed to the cyg-
win directory on the CD-ROM (E:\cygwin, where E: is your CD-
ROM drive) in STEP 5 for installation to eliminate copying the
files on the hard drive. However, having the files on the hard drive
can be helpful when you decide to upgrade the Cygwin tools.

212 Chapter 10 • The Host Development Platform

 Click the Next button to proceed with installation. The latest version of the setup.exe
program can be found online at:

http://sources.redhat.com/cygwin/setup.exe

Click the Next button to proceed with installation.

STEP 4

The next step in the Cygwin installation is to select the location we want to install from. The
options are shown in the dialog box in Figure 10.2. We select Install from Local Directory and
click the Next button.

We can use the Install from Internet option, as shown in the Upgrading the Cygwin Tools
section of this chapter, if we need to upgrade the Cygwin tools in order to download and install the
latest versions of the tools available online. The Download from Internet option allows us to down-
load the latest version of the tools, both executable and source code, without performing the install.

STEP 5

Now we want to select the location of the Cygwin packages we want to install, Local Package Direc-
tory. The dialog box for this option is shown in Figure 10.3. We set this Local Package Directory

Figure 10.1 Cygwin setup version dialog box.

Figure 10.2 Cygwin setup file location dialog box.

Configuring the Windows Host 213

option to D:\cygwin by either typing it in directly or clicking the Browse button to find the proper
directory. Then, click Next.

As we can see in Figure 10.3, the setup allows us to go back to a previous dialog box by
using the Back button.

STEP 6
Next, we set up the location where we want the tools installed, Select Install Root Directory.
This dialog box is shown in Figure 10.4. We set this option to D:\cygwin by either typing it in
directly or clicking the Browse button to find the proper directory.

We also need to select the Default Text File Type and Install For options. The Default Text
File Type allows us to choose DOS, in which case text files will end with \r\n, or Unix, mean-
ing text files will end with \n. Select DOS for this option.

N O T E If you did not copy the Cygwin tools to the hard drive,
enter E:\cygwin to install from the CD-ROM drive, where E: is
your CD-ROM drive letter.

Figure 10.3 Cygwin local package directory
selection dialog box.

Figure 10.4 Cygwin install root directory
selection dialog box.

214 Chapter 10 • The Host Development Platform

The Install For option allows us to select All, which allows anyone that logs on to the host
PC to have access to the Cygwin mount table, or Just Me, if you are the only one needing access.
Select Just Me for this option. We can now click the Next button.

STEP 7
The next step is to select the packages we want to install. The packages contained on the CD-
ROM might not be the latest versions available because changes to the Cygwin tools are contin-
uously occurring. However, the CD-ROM files have been installed and configured into a work-
ing eCos development system.

 The CD-ROM contains the Cygwin DLL version 1.3.3-2. We are using version
1.3.3-2 because it has been verified to work with the eCos development tools. If you look
back at some of the posts on the eCos discussion list, you can see the issues that have come
up using new versions of the Cygwin DLL. To avoid this, it is best to get a known working
development environment up and running before upgrading to any new versions. Then, if prob-
lems occur, you can always restore your previous working environment.

The dialog box for selecting specific Cygwin packages is shown in Figure 10.5. The radio
buttons at the top—Prev, Curr, and Exp—allow us to select the previous, current, or experimental
versions, respectively, for each Cygwin package. We want to ensure that Curr is selected, which is
the default option. Selection of individual versions for a specific package is described later.

The Full/Part button allows us to display the full list of packages or only a partial list. This
is typically used for package upgrades.

The columns in the dialog box display information about the package. The first column,
Current, shows the current release for a particular package. This column is used for package
upgrades. Since this is a new install, all package version details are contained in the column
New. The New column shows the version that is going to be installed. The Src? column allows us
to select whether we want source code installed for the particular package. The last column,
Package, shows the name of the package.

As described previously, the Prev, Curr, and Exp radio buttons allow us to select particular
versions for all packages. In order to select specific versions of a single package, we must click
on the icon in the New column. This toggles the action or version for a specific package to
one of the following:

• Skip—skip installation of the package.
• Source—install source code only for the package.
• Uninstall—remove the package.
• Keep—leaves the current version of the package.
• Version—install the selected version for the package.

For certain actions, the Src? column is not relevant, in which case n/a is displayed in this
column. The cygwin package is highlighted in gray in Figure 10.5 to help shown the proper
version of the package we want to use for our installation.

215

F
ig

u
re

 1
0.

5
C

yg
w

in
 p

ac
ka

ge
 s

el
ec

tio
n

di
al

og
 b

ox
.

216 Chapter 10 • The Host Development Platform

We are now ready to begin the installation, which happens by clicking the Next button. As
installation progresses, a dialog box similar to the one shown in Figure 10.6 is displayed. This
shows the current package being installed, the location for installation, and progress indicators
for the package and total installation procedure.

STEP 8
The final step in the Cygwin tools installation is to select whether desktop and Start menu shortcuts
should be added to run the Cygwin environment shell program. The dialog box for these options is
shown in Figure 10.7. Clicking Next creates the shortcuts according to the options selected.

After successful installation of the Cygwin tools, the dialog box shown in Figure 10.8 is
displayed. Clicking OK completes the Cygwin tools installation.

Figure 10.6 Cygwin package installation progress
dialog box.

Figure 10.7 Cygwin shortcut setup dialog box.

Figure 10.8 Cygwin
tools installation complete
dialog box.

Configuring the Windows Host 217

To ensure proper installation of the Cygwin tools, we can run the bash program by double-
clicking on the desktop shortcut created in . This brings up a UNIX bash shell environment sim-
ilar to the one shown in Figure 10.9. To close the bash shell, type exit (or the shortcut Ctrl+D)
at the bash shell prompt ($).

STEP 9

We now need to add the cygwin\bin directory to the Windows environment path. The path is
altered by right-clicking on the My Computer icon on the desktop. This brings up a drop-down
list of options. Select Properties from the drop-down list.

The System Properties dialog box is displayed. Select the Environment tab. Under the
User Variables, select path. In the Value edit box, to the front of the path, add:

D:\cygwin\bin;

Then, click the Set button. Finally, click the OK button.

10.2.1.1 Cygwin Tools Directory Structure

Now that we have successfully completed the installation of the Cygwin tools, we can take a look
at the directory structure created, which is shown in Figure 10.10. If disk space is a concern the
contrib and latest subdirectories can be deleted, since these are on the CD-ROM anyway.

We can now take a quick look at some of the subdirectories in the Cygwin tools directory
structure. The root cygwin directory includes the file cygwin.bat, which is the batch file

Figure 10.9 Cygwin bash shell program.

218 Chapter 10 • The Host Development Platform

that is run when clicking on the Cygwin shortcut created on the desktop or clicking on Cygwin
Bash Shell under Start –> Programs –> Cygnus Solutions (provided these were created in Step
8 of the Cygwin tools installation). The bash program is the UNIX environment shell that we use
to create the eCos development tools, which is described later in this chapter.

One note: After running the bash program for the first time, the home subdirectory is cre-
ated under the cygwin root. The home\xxx, where xxx is your username, subdirectory
includes a file that contains the history of commands run in the bash shell environment.

The bin subdirectory contains all of the executable files for the Cygwin tools. Included in
this subdirectory is the Cygwin DLL, cygwin1.dll, which we are using version 1.3.3. The
etc subdirectory contains standard UNIX configuration files. The lib subdirectory contains
all of the library files used when developing under Cygwin. The tmp subdirectory is the tempo-
rary scratch directory for the Cygwin tools. Finally, the usr subdirectory contains the miscella-
neous files stored by the different Cygwin packages.

The root directory also contains two log files, setup.log and setup.log.full. An
example of some of the information contained in the setup.log file is shown in Code
Listing 10.1. Line 1 gives the starting date and time of the installation and the version
(2.78.2.15) of the setup.exe file used. Lines 2 through 5 contain the option information,
such as the location of the installation files, we selected during the Cygwin tools installation.

Figure 10.10 Cygwin
installation directory
structure.

bin

contrib

etc

include

latest

lib

sbin

tmp

usr

var

home

cygwin

Configuring the Windows Host 219

Information about the installation for each package is shown on lines 6 through 21. These lines
display the subdirectory, either contrib or latest, of the package for installation. Lines 22,
23, and 24 simply show the place that the setup.log file information was cut out. Lines 25
and 26 are the last two lines of the file that show the completion message and the end date and
time of the install. We can see comparing the start and end message that the complete Cygwin
tools install took approximately 16 minutes.

The file setup.log.full is similar to setup.log; however, additional detailed
information about the setup for each package is contained in the full log file. Any time the
setup.exe program is run, the operations performed are logged into these two log files. This
is helpful to keep track of package upgrades for the different Cygwin tools.

1 2001/09/27 12:12:12 Starting cygwin install, version 2.78.2.15

2 Current Directory: D:\cygwin

3 source: from cwd

4 Selected local directory: D:\cygwin

5 root: D:\cygwin text user

6 Installing test version...latest/ash/ash-20011018-1.tar.bz2

7 Installing...latest/autoconf/autoconf-2.52-1.tar.bz2

8 Installing...latest/automake/automake-1.5-1.tar.bz2

9 Installing...latest/bash/bash-2.05-8.tar.bz2

10 Installing test version...latest/binutils/binutils-20011002-1.tar.bz2

11 Installing...latest/bison/bison-1.28-1.tar.gz

12 Installing...latest/byacc/byacc.tar.gz

13 Installing...latest/bzip2/bzip2-1.0.1-6.tar.gz

14 Installing...latest/clear/clear-1.0.tar.gz

15 Installing...latest/cpio/cpio-2.4.2.tar.gz

16 Installing...contrib/cron/cron-3.0.1-5.tar.bz2

17 Installing...latest/crypt/crypt-1.0-1.tar.gz

18 Installing...latest/ctags/ctags-5.0.1-1.tar.gz

19 Installing...contrib/cvs/cvs-1.11.0-1.tar.gz

20 Installing...latest/cygrunsrv/cygrunsrv-0.94-2.tar.bz2

21 Installing previous version...latest/cygwin/cygwin-1.3.3-2.tar.bz2

22 .

23 .

24 .

25 mbox note: Installation Complete

26 2001/09/27 12:18:34 Ending cygwin install

Code Listing 10.1 Cygwin installation example log file contents.

10.2.1.2 Upgrading the Cygwin Tools
The Cygwin tools upgrade procedure is detailed in Appendix C, in case you need bug fixes or
enhancements offered in the latest versions of the Cygwin tools.

220 Chapter 10 • The Host Development Platform

10.2.2 Installing the Platform-Specific Cross-Development Tools

Next, we install the tools that allow us to build eCos and our applications for our specific proces-
sor; in our case, the Intel x86. The cross-development tools are used to build the eCos library for
our specific platform; in our case, the Intel x86. We also use these same tools when building
applications, as we see in Chapter 12.

Rather than go through the procedure of configuring and building the i386 GNU cross-
development tools, pre-built versions are supplied on the CD-ROM. This eliminates the possibil-
ity of generating incorrect GNU tools, which is very easy considering the command strings that
need to be entered. These tools are used in the examples included with this book. The procedure
used to configure and build the GNU cross-development tools is contained in Appendix D,
Building the GNU Cross-Development Tools.

The platform-specific cross-development tools can be broken down into three different groups:

• GNU Binary Utilities (commonly called binutils)
• GNU C/C++ Compiler
• GNU Insight Debugger with Insight Interface

The file needed to install the GNU cross-development tools is located on the CD-ROM
under the gnu subdirectory and is called i386gnutools.tar.bz2. The versions we are
using of the GNU cross-development tools are shown in Table 10.2.

N O T E Do not go through the Cygwin tools upgrade proce-
dure on your development platform at this point. If you do, your
platform will have different Cygwin tools than those tested in this
book. This section is for future reference when you need, or want,
to upgrade the Cygwin tools.

N O T E Pre-built binary versions of the PowerPC GNU cross-
development tools are also included on the CD-ROM in the file
ppcgnutools.tar.bz2 under the gnu\ppctools directory. These
tools are used in Chapter 13.

Table 10.2 GNU Cross-Development Tools Versions

Tool Version

GNU Binary Utilities 2.11.2

GNU C/C++ Compiler 2.95.2

GNU Debugger with Insight Interface 5.1

Configuring the Windows Host 221

Although the GNU Binary Utilities and GNU C/C++ Compiler versions are not the latest
available, they have been confirmed to work in the development environment used in this book for
the i386 PC target platform. It might be necessary for you to upgrade to newer tool versions if
different processor architectures are used. Prior to upgrading, it is a good idea to search the eCos
discussion list to see if there have been any posts describing problems with a newer version.

The latest versions of the GNU cross-development tools, as well as additional documenta-
tion for each group of tools, can be found on their respective home sites:

• GNU Binary Utilities—http://sources.redhat.com/binutils

• GNU C/C++ Compiler—http://gcc.gnu.org

• GNU Insight Debugger with Insight Interface—http://sources.redhat.com/insight

When installation is complete, the cross-development tools are found in the D:\cygwin\
tools\H-i686-pc-cygwin\bin subdirectory.

The discussion mailing list and address for posting for the GNU Binary Utilities can be
found online:

• Discussion Mailing List—http://sources.redhat.com/ml/binutils

• Post to—binutils@sources.redhat.com

The discussion mailing list and address for posting for the GNU C/C++ Compiler can be
found online:

• Discussion Mailing List—http://gcc.gnu.org/ml/gcc

• Post to—gcc@gcc.gnu.org

• Additional Discussion Mailing Lists—http://gcc.gnu.org/lists.html

The discussion mailing lists and addresses for posting for the GNU Insight Debugger (and
GDB) can be found online:

• Insight Debugger Discussion Mailing List—http://sources.redhat.com/ml/insight

• Post to—insight@sources.redhat.com

N O T E The GNU C/C++ Compiler version 2.95.2 that we use
in our setup is not capable of supporting all processors shown in
Appendix A, Supported Processors and Evaluation Platforms.
The ARM Thumb, Hitachi SH, MN10300/AM33, NEC MIPS
VR4300, and NEC V850 processors require installation of a
snapshot of the GNU C/C++ Compiler. The snapshots can be
found online at ftp://gcc.gnu.org/pub/gcc/snapshots

222 Chapter 10 • The Host Development Platform

• GDB Discussion Mailing List—http://sources.redhat.com/ml/gdb

• Post to—gdb@sources.redhat.com

• Additional GDB Discussion Mailing Lists—http://sources.redhat.com/gdb/mailing-lists

STEP 1
Open the bash command shell. This can be done by clicking on the Cygwin shortcut on the desk-
top, if created in the Cygwin native tools installation, or through the menu Start –> Programs
–> Cygnus Solutions –> Cygwin Bash Shell.

When the shell is opened, the present working directory is D:\cygwin\home\xxx,
where xxx is your username. We want to change to the root Cygwin directory by entering the
following command at the bash prompt:

$ cd /

STEP 2
Unzip the i386 GNU cross-development tools into our Cygwin directory structure. The com-
mand for this is:

$ tar xjvf /cygdrive/e/gnu/i386gnutools.tar.bz2

After executing this command, the i386 GNU cross-development tools are located under
the D:\cygwin\tools directory. The binary executables are under the D:\cygwin\
tools\H-i686-pc-cygwin\bin directory.

STEP 3
We need to ensure that the Cygwin temporary directory is mounted. The command to do this is:

$ mount –f –b d:/cygwin/tmp /tmp

STEP 4
Next, we set the path for our new GNU cross-development tools. The bash shell command for
this is:

$ PATH=/tools/H-i686-pc-cygwin/bin:$PATH ; export PATH

We also add the GNU cross-development tools directory to the Windows environment
path. The path is altered by right-clicking on the My Computer icon on the desktop. This brings
up a drop-down list of options. Select Properties from the drop-down list.

N O T E The CD-ROM drive is mounted as /cygdrive/e/ by
default when Cygwin is installed. The drive letter for your CD-
ROM should be substituted in place of /e/ in the preceding com-
mand. If you are uncertain of the drive mountings for your sys-
tem, enter the command mount at the bash shell prompt to get a
listing of the current system mounts.

Configuring the Windows Host 223

The System Properties dialog box is displayed. Select the Environment tab. Under the
User Variables, select path. In the Value edit box, to the front of the path, add:

D:\cygwin\tools\H-i686-pc-cygwin\bin;

Then, click the Set button. Finally, click the OK button.

STEP 5
We can verify that the i386 GNU cross-development tools were installed properly by entering
the command:

$ i386-elf-gcc –-version

The following message is output if everything is set up properly:

2.95.2

If the message is incorrect, you need to verify that the tools were unzipped correctly and
located in the correct directory.

10.2.3 Installing the eCos Development Kit

There are multiple phases for the eCos development kit installation. The files needed for this
installation are located under the ecos directory on the CD-ROM. We are going to install the
eCos development kit into the D:\ecos directory.

The file ecos-v2a-snap.tar.bz2 contains the source code files from a snapshot of
the version 2 release of the eCos source repository. Also included in this file are the eCos config-
uration tools.

During this installation procedure, we install the version 2 Configuration Tool and the ver-
sion 1.3.net version as well. To build our RedBoot and eCos images, as we will in Chapter 12,
we use the version 2 Configuration Tool. The version 1.3.net Configuration Tool is installed for
using the Memory Layout Tool (MLT), which is described in Chapter 11.

Also included in this installation is the Package Administration tool and the eCos com-
mand-line configuration tool.

The Linux installation files are located on the CD-ROM under the ecos\linux directory.
Additional information about installing eCos on a Linux host platform can be found online at:

http://sources.redhat.com/ecos/getstart.html

STEP 1
Open a bash shell and change to the root D:\ drive by entering the command:

$ cd d:

Now we unzip the source code files by entering the command:

$ tar xjvf /cygdrive/e/ecos/ecos-v2a-snap.tar.bz2

After the files have been unzipped, we have a new directory, ecos, containing the source
code repository and other eCos development kit files.

224 Chapter 10 • The Host Development Platform

STEP 2

Next, we need to install the eCos toolset. The eCos toolset is installed individually. The eCos
toolset files are contained under the D:\ecos\bin directory, which we just unzipped. First,
we install version 2.11 of the eCos Configuration Tool.

It is a good idea to read the two text files that accompany the Configuration Tool version
2.11, which are readme_cfg_v211.txt and changes_cfg_v211.txt. The file
readme_cfg_v211.txt contains information about the version 2 release of the Configura-
tion Tool. The file changes_cfg_v211.txt includes the modifications for each version, up
to the present release, of the Configuration Tool version 2.

To install version 2.11 of the Configuration Tool we run the setup file configtool-
2.11-setup.exe, located under the D:\ecos\bin directory.

The first dialog box asks if we want to install the eCos Configuration Tool 2.11. Click Yes
to continue with the install.

STEP 3

Next, the welcome dialog box for installing the eCos Configuration Tool version 2.11 is dis-
played. Click the Next button to continue with the installation.

STEP 4

Now the eCos license agreement dialog box is displayed, as shown in Figure 10.11.

Use the scroll bar on the right side of the dialog box to view the entire license agreement.
Click Yes to accept the license agreement and continue with the installation.

STEP 5

Next, the Configuration Tool version 2 readme file is displayed in a dialog box. The readme file
is also included in the D:\ecos\bin directory in the file readme_cfg_v211.txt. Use the
scroll on the right side of the dialog box to view the entire readme file. Click the Next button to
continue.

N O T E The CD-ROM drive is mounted as /cygdrive/e/ by
default when Cygwin is installed. The drive letter for your CD-
ROM should be substituted in place of /e/ in the preceding com-
mand. If you are uncertain of the drive mountings for your sys-
tem, enter the command mount at the bash shell prompt to get a
listing of the current system mounts.

Configuring the Windows Host 225

STEP 6
Now we need to select a location for the destination of the Configuration Tool files. The destina-
tion selection dialog box is shown in Figure 10.12.

Figure 10.11 eCos Configuration Tool license agreement
dialog box.

Figure 10.12 Configuration Tool destination directory selection
dialog box.

226 Chapter 10 • The Host Development Platform

Select D:\ecos\bin\eCos Configuration Tool for the destination directory.
Use the Browse button to select the D:\ecos\bin directory and the setup file appends the eCos
Configuration Tool portion of the directory. Then, click the Next button to continue.

STEP 7
Next, we select the program group to install the Configuration Tool start menu shortcuts, as we
see in Figure 10.13.

We enter eCos Configuration Tool into the edit box, as shown in Figure 10.13. Then, click
the Next button to continue.

STEP 8
A dialog box showing that setup is ready to begin the installation of files is now displayed. Click
the Install button to start the installation.

A progress bar is displayed during the installation procedure. When the installation is
complete, a dialog box asking to reboot the computer is displayed. Select Yes, restart the com-
puter now, and click the Finish button to complete the Configuration Tool installation. After the
computer reboots, we see the Configuration Tool icon on our desktop.

STEP 9
Double-click on the Configuration Tool icon on the desktop to run the eCos Configuration Tool.
We could also select Configuration Tool from the Start –> Programs –> eCos Configuration
Tool menu.

Figure 10.13 Configuration Tool program group selection
dialog box.

Configuring the Windows Host 227

The Configuration Tool version 2.11 splash screen is displayed, as shown in Figure 10.14.
The version of the Configuration Tool is located on the splash screen.

The program displays a dialog box asking for the location of the eCos repository tree. We
click the Browse button and select the D:\ecos directory. Then click OK. The eCos repository
tree location can be changed later by selecting Build –> Repository from the menu.

The Configuration Tool then searches through the ecos.db file under the
D:\ecos\packages directory to display the appropriate package information. You can find
additional details about the ecos.db file in Chapter 11.

STEP 10
Next, we set up the build and user tools that the Configuration Tool uses to build eCos and Red-
Boot images. Select Tools –> Paths –> Build Tools from the menu. We want to browse to the
D:\cygwin\tools\H-i686-pc-cygwin\bin directory and click the OK button.

Now we set the user tools by selecting Tools –> Paths –> Build Tools from the menu. We
browse to the D:\cygwin\bin directory and click OK.

We now close down the Configuration Tool version 2.11 and finish installing the other
eCos development tools.

STEP 11
Continuing with the eCos development kit installation, we install a registry file to enable us to
run the eCos Configuration Tool version 1.3.net. We only need to use version 1.3.net of the Con-
figuration Tool when we need to use the MLT. Otherwise, we must hand edit the memory files
associated with our configuration.

Figure 10.14 Configuration Tool version 2.11 splash screen.

228 Chapter 10 • The Host Development Platform

To update the registry, double-click on the file eCos-011025.reg, which is located in
the D:\ecos\bin directory. A dialog box notifying that the registry has been updated is dis-
played. Click OK to close the dialog box.

We can now run the Configuration Tool version 1.3.net by running the file
Configtool13net.exe, which is also located in the D:\ecos\bin directory. The version
1.3.net splash screen is displayed, as shown in Figure 10.15. Notice the version of the Configu-
ration Tool located in the upper right-hand corner of the splash screen.

The readme file for version 1.3.net of the Configuration Tool is located in the
D:\ecos\bin directory in the file readme_cfg_13net.txt.

STEP 12

Finally, let’s ensure that we can run the Package Administration tool and the eCos command-line
configuration tool.

First, run the Package Administration tool by running the file PkgAdmin.exe under the
D:\ecos\bin directory.

Figure 10.15 Configuration Tool version 1.3.net splash screen.

N O T E The Package Administration tool requires certain DLLs
to run properly. These DLLs are contained in the directory
D:\ecos\bin\dll. They need to be copied into the C:\win-
dows\system directory to run the Package Administration tool.
However, they should only be copied to this directory if they do
not exist or if older versions exist in this Windows system direc-
tory. It is a good idea to make a backup copy of the DLL files
being replaced prior to replacing these files.

Configuring the Windows Host 229

Click the Close button to exit the Package Administration tool. Additional information
about the eCos Package Administration tool is provided in Chapter 11.

Next, open a bash shell, if one is not open. To see if the eCos command-line tool runs
properly, enter the command:

$ d:/ecos/bin/ecosconfig.exe

The command line configuration tool usage output should be displayed in the bash shell.
This information can also be displayed by entering ecosconfig –-help. Additional details
about the command-line configuration tool are included in Chapter 11. If you plan to use the
command-line configuration tool often, it is a good idea to add D:\ecos\bin to the path.

10.2.3.1 eCos Development Kit Directory Structure

Let’s take a look at the eCos development kit directory structure. The first directory is bin,
which contains the eCos toolset executable files.

The CVS directory is set up when we access the eCos online source code repository. We go
through this process in the following section.

Next is the doc directory. This contains Standard Generalized Markup Language (SGML)
files of the most recent eCos documentation. These files are contained in the eCos online repository.

The examples directory includes several basic eCos sample applications. We get into
example applications later in Chapter 12.

The host directory includes the source code for all of the tools in the eCos toolset,
including the Configuration Tool and Package Administrator.

The packages directory contains the version 2 snapshot of the eCos online source code
repository.

10.2.4 Accessing the Online eCos Source Code Repository

Due to the constant changes, contributions, and bug fixes made to the eCos source code, it will
quickly become necessary to take advantage of these modifications and update your local source
code repository. It is very important to keep up to date with the latest bug fixes and enhance-
ments to the eCos, and RedBoot, source code. In order to do this, we must configure our system
to access the remote eCos repository.

The eCos source code repository, which includes RedBoot, is managed by CVS, and can
be accessed publicly without requiring an account on the remote machine, which is termed
anonymous CVS access. Additional information about CVS can be found online at:

www.cvshome.org

Additional information about eCos access to the source code repository using anonymous
CVS can be found online at:

http://sources.redhat.com/ecos/anoncvs.html

230 Chapter 10 • The Host Development Platform

A popular Linux CVS client called TkCVS is also included on the CD-ROM under the
tkcvs directory. Information about TkCVS as well as installation instructions can be found
online at:

www.twobarleycorns.net/tkcvs.html

10.2.4.1 Installing WinCVS
To access the eCos source code repository we use one of the open-source CVS software pack-
ages called WinCVS (version 1.2). The files needed for installing WinCVS are located on the
CD-ROM under the wincvs directory. There is one basic setup executable to run that guides us
through the installation procedure.

The source code files, WinCvs120_src_app.zip and WinCvs120_src_
shared.zip, for the WinCVS version used in this installation are also contained in the
wincvs directory in Windows zip file format. The WinCVS home site is located at:

www.cvsgui.org

STEP 1
Run the WinCVS setup file Setup.exe. The first dialog box displayed is the welcome dialog
box. Click the Next button to proceed with the installation.

STEP 2
Next, the software license agreement dialog box is displayed, as shown in Figure 10.16.

Figure 10.16 WinCVS Software License Agreement dialog box.

Configuring the Windows Host 231

WinCVS is also licensed under the GPL version 2, as we see in Figure 10.16. Click the
Yes button to accept the license agreement and continue.

STEP 3
The next dialog box is the information dialog box, as shown in Figure 10.17.

The information dialog box displays the WinCVS home site, the CVS home site, and addi-
tional information about the DLL files needed to run WinCVS. Click the Next button to continue.

Figure 10.17 WinCVS information dialog box.

232 Chapter 10 • The Host Development Platform

STEP 4
Next, we select the destination location to install WinCVS. The dialog box for this step is shown
in Figure 10.18.

The destination selected is D:\Program Files\GNU\WinCVS. Click the Browse
button to enter this directory. Click the Next button to continue.

Figure 10.18 WinCVS destination location dialog box.

Configuring the Windows Host 233

STEP 5
Now we select the type of installation. The possible choices are shown in Figure 10.19.

The installation type we want is Typical, which is the default. Click the Next button to
continue.

Figure 10.19 WinCVS Installation Type dialog box.

234 Chapter 10 • The Host Development Platform

STEP 6
Next, we select the program folder for the WinCVS icons. This dialog box is shown in
Figure 10.20.

The program folder entered is WinCVS. Click the Next button to continue. Then, the setup
program is ready to begin the installation by displaying the Start Copying Files dialog box. Click
Next to start the installation.

As the setup continues, icons similar to the ones shown in Figure 10.21 display the
progress of the installation.

Figure 10.20 WinCVS Program Folder dialog box.

Figure 10.21 WinCVS progress icons.

Configuring the Windows Host 235

After the installation is complete, the computer needs to be rebooted. Select Yes, I want to
restart my computer now, which is the default, and click the Finish button in the Setup Complete
dialog box.

10.2.4.2 Setting WinCVS Preferences
After the computer reboots, we can launch WinCVS using the shortcut for the WinCVS execut-
able located under Start –> Programs –> WinCVS. Before we can use WinCVS, we must config-
ure it for the eCos source code repository. The dialog box shown in Figure 10.22 is displayed the
first time we launch WinCVS.

In the preferences dialog box, under the Enter the CVSROOT edit box we want to type in:

anoncvs@sources.redhat.com:/cvs/ecos

Then we select Local mounted directory from the Authentication drop-down list.
Next, cvs 1.10 (Standard) is selected from the Use version drop-down list.
Then we click on the Globals tab. Since we want the capability to modify the eCos source

files after we download them from the online repository, we want to uncheck the Checkout read-
only checkbox.

Now we click on the WinCvs tab and enter the HOME folder. To enter this, we browse to
the D:\ecos directory.

Then, click the OK button to set the preferences.
The preferences can be modified at anytime by selecting Admin –> Preferences.

Figure 10.22 WinCVS preferences dialog box.

236 Chapter 10 • The Host Development Platform

10.2.4.3 WinCVS Update Commands
In this section, we take a brief look at some of the common commands used to update the eCos
source code repository. After setting the preferences, the main WinCVS program screen is
shown, similar to the one shown in Figure 10.23.

As we see in Figure 10.23, there are three main windows in WinCVS. On the left is the
workspace window. This displays the current home directory, and the directories below, which
contain the CVS source code. To the right of the workspace window is the file window, which
shows the files and directories located within the home directory. At the bottom is the output
window. The output window shows output generated when running WinCVS commands. The
output window can also be used to enter commands, as we do next.

In the output window, we enter the command:

cvs -d :pserver:anoncvs@sources.redhat.com:/cvs/ecos login

Figure 10.23 WinCVS main program screen.

Workspace Window Files Window

Output Window

Configuring the Windows Host 237

This command allows us to log in to the online eCos repository. When the password dialog
box comes up, enter:

anoncvs

The password is stored in the file .cvspass under the WinCVS home directory, which
we selected during the preferences setup as D:\ecos. We are now ready to enter commands to
update our local eCos source code repository.

It is a good idea to use different directory trees when checking out snapshots of the eCos
source code rather than using a directory containing a full release. To check out the latest snap-
shot of the eCos repository, create a new directory for checkout. Then, change to that directory.
Next, enter the following command in the WinCVS output window:

cvs -d :pserver:anoncvs@sources.redhat.com:/cvs/ecos -z 6 co -P ecos

This is a checkout (co) command. The –d option specifies the CVS root directory. The –z
6 option sets the compression level. co is a synonym for the checkout command. The option –P
notifies WinCVS to prune any empty directories. Finally, ecos is the module to checkout.

This initiates a connection to the CVS server and checks out the latest version of eCos,
which includes all packages and RedBoot as well.

After a local repository has been created, different commands are entered to update the
repository. For example,

cvs -z 6 update -d -P

The preceding command updates any files that have been modified since the last time the
files were checked out.

Other commands are available to check out repository files from specific dates or with
specific labels. Additional information about commands is located in the WinCVS help. Select

N O T E Updating your local eCos source code repository
should not be done at this point. The examples we go
through in Chapter 12 have been developed using the source
code repository from the eCos development kit installation proce-
dure. It is a good idea to run through the examples prior to updat-
ing to the latest eCos repository source code.

N O T E The entire eCos repository, including the source code
for the eCos host tools and RedBoot binary images, can be
downloaded using ecos-full as the module name; for example,
cvs –d :pserver:anoncvs@sources.redhat.com:/cvs/ecos -z
6 co -P ecos-full. However, be cautious using this because all
RedBoot images will be downloaded, which totals about 12
Mbytes.

238 Chapter 10 • The Host Development Platform

Help –> Help on cvs-1.10. Select the Index button and type in command reference. This
gives a listing of the CVS commands and optional switches. There is also information on the
eCos site at:

http://sources.redhat.com/ecos/anoncvs.html

10.3 Summary
We have just completed our installation of the eCos host development tools for Windows, which
includes the Cygwin tools, the cross-development tools for the Intel x86 processor, and the eCos
development kit.

We also went through the update procedure using the eCos online repository. This enables
us to keep up to date with the latest changes, additions, and bug fixes with the eCos and RedBoot
source code.

Entering incorrect commands causes some of the most common problems during installa-
tion. You should make sure that the commands are entered correctly prior to proceeding to the
next step.

Another common problem is insufficient disk space. The amount of space needed varies
depending on the format of the hard drive. Verify that an ample amount of hard drive space is
available before configuring your host development platform.

If problems arise when installing the tools, a great source for information is the mailing
list for the associated tool. Often, the developers on the mailing list have been through the same
steps before and can offer helpful hints to getting through snags that might come up.

We are now ready to proceed with the eCos development kit and learn about the different
tools available and how we can use them to develop our own applications.

239

C H A P T E R 1 1

The eCos Toolset

his chapter begins by looking at the structure of packages in the eCos repository,
including a brief description of the CDL used for package script files. We then look at

the graphical Configuration Tool used to customize and build the eCos library, and then build
and run tests on your target platform.

Finally, we look into the other eCos tools and additional open-source tools to aid in our
embedded software development. These additional open source tools allow us to set up a com-
plete software embedded development environment at no cost. This chapter prepares us for
building the eCos library with the tools provided in the eCos development kit. Using this infor-
mation, we can then build an example application, which is covered in the next chapter, and run
it on our target hardware platform.

11.1 Packages
To get a better understanding of the eCos toolset, we need to take a closer look at the modules
that the tools operate on: packages. As described in Chapter 1, An Introduction to the eCos
World, a package is a software component incorporating all necessary source and configuration
files for distribution. A package can be for a single hardware device or for an entire networking
stack. Packages can be configured, using the different eCos tools, to operate in a mode specific
to your application. We see how to manipulate packages with the eCos configuration tools in the
Package Control section of this chapter.

In order for the eCos component framework to make use of packages, the package must
follow rules imposed by the framework. A CDL script file is included with each package,
which describes the package to the component framework. Included in the CDL script files are

T

240 Chapter 11 • The eCos Toolset

dependencies for using the package, configuration options and their associated value ranges,
and details on how to build the package.

11.1.1 Package Directory Structure

All packages in the eCos repository are located under the packages subdirectory under the
root eCos development kit install directory; in our case, D:\ecos. A packages directory
snapshot is shown in Figure 1.3 in Chapter 1. Because the eCos source code repository is con-
stantly evolving to accommodate new features and hardware platforms, the latest eCos reposi-
tory might differ from the one shown in Figure 1.3.

As we see in Figure 1.3, the different packages are arranged based on the functionality
provided by the package. For example, all device drivers are contained in the devs subdirec-
tory, while all compatibility layer support, such as POSIX and µITRON, is contained under the
compat subdirectory. The depth of the subdirectory structure is different for each package. It is
a good idea to familiarize yourself with the overall directory structure by browsing through your
eCos development kit installation.

Under the packages directory is the package database file ecos.db. This file uses the CDL
and contains a high-level description for all packages in the component framework. Additional details
about the eCos database file are included later in The Configuration Tool section of this chapter.

Although the depth of the different subdirectory structures varies for each package, each
of these packages is comprised of a number of common subdirectories that separate the func-
tionality supplied in the different files. The common directory structure for an example package
is shown in Figure 11.1. Not all packages contain all of the common package subdirectories
shown in Figure 11.1; some packages contain more, some less.

It is also important to note that not all of the packages strictly follow the rules for the loca-
tion of files, making the possibility of the file organization slightly different from package to
package. In this section, we look at the general structure of typical packages.

As we see in Figure 11.1, the root of the typical package directory is the version. The
actual name of this subdirectory depends on the repository version installed. From our installa-
tion completed in Chapter 10, we have a version directory called current.

Having multiple versions for each package allows you to experiment with new versions
while maintaining a working version for a particular package. If the new, experimental version of
the package does not work in your application, you can always revert to a previous version.

N O T E Our local eCos source code repository, installed in
Chapter 10, The Host Development Platform, also contains CVS
directories at different levels of our directory tree. These directo-
ries are used by the CVS program—in our case, WinCVS—to
keep track of information about our local eCos repository and the
online eCos repository. We can ignore these directories at this
point since they do not contain any source code files for eCos.

Packages 241

Selection of versions for packages is accomplished using the configuration tools, which we get
into in the Package Control section of this chapter.

Each package contains a file under the version subdirectory called ChangeLog. The
eCos source code repository maintainers use these files to track the changes for each of the dif-
ferent files within a package. These files are useful to get an overview of changes made to the
package to determine if you want to update to a current version to make use of particular bug
fixes or enhancements. An example of two change log entries is shown in Code Listing 11.1.

1 2001-09-27 Jonathan Larmour <jifl@ecoscentric.com>

2

3 * src/plf_misc.c (hal_platform_init):

4 If not RAM startup, install exception VSRs.

5

6 2000-04-21 Bart Veer <bartv@ecoscentric.com>

7

8 * pkgconf/rules.mak:

9 Fix header file dependencies for testcases.

Code Listing 11.1 Example ChangeLog entries.

In Code Listing 11.1, lines 1 and 6 contain the date the changes were made, the developers
who made the changes, and the developers’ email addresses. Each change is designated with an
asterisk (*) as shown on lines 3 and 8. After the asterisks are the files that were altered and their
directory location within the package. Sometimes the routine modified is also entered as we see
on line 3, in which case the routine hal_platform_init was modified. Lines 4 and 9
describe the changes made.

Under the version root is the cdl subdirectory. This subdirectory must be included within
a package. This contains at least one CDL script file that defines the package. Some packages,
such as the kernel, might break up the functionality of the CDL script in multiple CDL files.
Additional details about CDL script files are contained in The Component Definition Language
Overview section of this chapter.

Figure 11.1 Typical
package directory structure
example.

cdl

include

src

test

current

242 Chapter 11 • The eCos Toolset

Next is the include subdirectory, which contains public header files for the package.
During the eCos library build process, which we go through in Chapter 12, An Example Applica-
tion Using eCos, some of the header files for packages that are used are copied into the eCos
library working directories. This allows an application to include header files needed for a par-
ticular package from the working directory rather than using the repository directories.

The src subdirectory contains the source files for the package. This subdirectory must be
included within a package. The source files might include .c C language files, .cxx C++ lan-
guage files, and .S assembly language files. Private header files (with a .h extension), accessible
only to the package source code, might also be contained in this directory. The src subdirectory
can be broken down further into additional subdirectories to aid with the organization of the
source code. For example, see the kernel\current\src and net\tcpip\current\src
subdirectories.

Finally is the tests subdirectory. This subdirectory contains any test files relevant for the
package. We look at building and running tests in Chapter 12.

Other subdirectories that are often included under certain packages are doc, which con-
tains documentation for the package, and misc, which contains other files specific to the pack-
age such as RedBoot configuration import files for various startup types.

Let’s look at the actual directory structure for one of the packages in the eCos source code
repository. Figure 11.2 is a snapshot of the i386 PC HAL package directory structure. From this
figure, we can see where the common subdirectories are located for this particular package.

Figure 11.2 Current version directory snapshot of the i386 PC
HAL package.

current

doc

i386

src

cdl

misc

include

pc

packages

hal

pkgconf

Packages 243

As mentioned before, the packages subdirectory is located under the root eCos
development kit install directory D:\ecos. Since this is a HAL package, it is located under
the hal subdirectory. The HAL packages are organized by architecture; in this case, it is the
i386 architecture.

The architecture, in this package, is further divided by platform support. The platform
component is located under the pc subdirectory. The version subdirectory is called current.
Finally, we have the common package directory structure comprised of the subdirectories cdl,
doc, include (along with pkgconf), misc, and src.

We can see that the i386 package differs slightly from the common package directory
structure shown in Figure 11.1. The additional directories for this package are:

• doc—contains documentation and release notes for the package.
• pkgconf—includes RAM, ROM, and floppy disk memory configuration files.
• misc—contains exported floppy disk and ROM RedBoot configuration files for use

with the configuration tools.

11.1.2 The Component Definition Language Overview

We now take a brief look at the CDL. This section gives us a basic understanding of the CDL
and how script files are used with packages in the component repository. Using the information
in this section, we can then proceed to explore the eCos configuration tools and how the package
CDL script files are interpreted in The Configuration Tool section of this chapter. An in-depth
look into the CDL is provided online in the eCos Component Writer’s Guide:

http://sources.redhat.com/ecos/docs.html

Details about the CDL command and keyword syntax are in the CDL Language Specifica-
tion section of the eCos Component Writer’s Guide.

CDL is not a new language, it is an extension of the existing Tool Command Language
(Tcl) scripting language. The CDL syntax uses Tcl syntax. The CDL is a key part of the eCos
component framework that is used in script files (with the extension .cdl) to describe the pack-
age to the framework. These CDL script files contain information on all of the configuration
options within a package, as well as details on how to build the package.

11.1.2.1 CDL Script Files
Each package has a single top-level CDL script file, typically located in the cdl subdirectory, as
shown in Figure 11.1. The first command in the top-level script should be cdl_package, which
is used in the package database file ecos.db. There should only be one cdl_package
command per package.

The CDL syntax implements a command hierarchy. This allows options to be controlled as
a group; therefore, disabling a single component disables all options within the component as
well. The hierarchy also enables a simpler representation in the Configuration Tool for naviga-
tion and modification of options, as we see in The Configuration Tool section of this chapter.

244 Chapter 11 • The eCos Toolset

There are four CDL commands used in script files:

• cdl_package—The unit of distribution, which might contain option, component, or
interface commands within its body. Typically, this is the top level of the CDL script
file. The package command body can make use of most option properties as well as
additional properties or commands that apply to the entire package.

• cdl_component—A configuration option that might contain additional options or
subcomponents within its body. The body of a component command might also contain
the same properties as the option command.

• cdl_option—The basic unit of configurability that generally contains a single
choice. The body of the option command contains properties that describe and define
the characteristics of the option. There might also be information to aid in your
decision, such as a text description of the option.

• cdl_interface—A calculated configuration option that provides an abstraction
mechanism. The body of the interface command might contain a subset of the option
properties.

Every command must have a command name. All command names must be unique within
a configuration. If two names exist within two different packages, it is not possible to load both
packages in a configuration.

Typically, the component framework outputs a #define for every active and enabled
option, using the command name as the symbol being defined. For example, enabling the option
command named:

CYGIMP_KERNEL_INTERRUPTS_DSRS

which is located within the eCos Kernel package, in the Kernel Interrupt Handling component
causes

#define CYGIMP_KERNEL_INTERRUPTS_DSRS 1

to be placed in the designated kernel package header file. Some options are set to values in
which case the configured value is used when setting the #define statement.

Command names in the eCos component repository follow a naming convention to avoid
name clashes with other packages. An example of a package name is CYGPKG_HAL_I386_PC.

N O T E You might notice that some packages use the same
CDL command names. For example, all HAL packages define
the CDL component name CYG_HAL_STARTUP. Even though all
command names must be unique within a configuration, this is
fine because only one HAL package can be loaded at a time;
therefore, the name CYG_HAL_STARTUP only exists once within a
configuration.

Packages 245

The first three characters of the name identify the organization that produced the package; in this
case, CYG is for Cygnus Solutions. The next three characters indicate the nature of the option; in
this case, PKG is used to indicate this is a package. A complete list of command tags is given
in The eCos Component Writer’s Guide. The HAL portion of the name indicates the location of
the option within the overall hierarchy; in this case, we see that this is a HAL package. The
last part, I386_PC, indicates the option itself. This is for the i386 architecture PC platform
package.

Each CDL command contains a body that might include properties or commands that
describe to the component framework how to handle each option. Properties can be descriptions
of the command or values set by you that are used when the package is built. Commands within
the CDL command body can define header files generated for the package, list source files to
build for the package, or identify constraints that must be met if the package is active. The basic
CDL command structure is shown in Code Listing 11.2.

1 cdl_package PACKAGE_NAME {
2 <package properties and commands>
3 cdl_component COMPONENT_NAME {
4 <component properties and commands>
5 }
6 cdl_option OPTION_NAME {
7 <option properties and commands>
8 }
9 }

Code Listing 11.2 Basic CDL command structure example.

As we see in Code Listing 11.2, a basic structure for CDL commands contains the com-
mand followed by the command name, as shown on line 1. In this case, the package command
name is PACKAGE_NAME. Every command body is encapsulated in curly brackets ({}). The #
character is used for comments within the CDL script file. Line 2 is the beginning of the package
command body and the package command ends on line 9. Package commands and properties are
located within the package body. There can be any number of package commands, properties,
options, or components in the package body.

Next is a component command on line 3, named COMPONENT_NAME. Within the compo-
nent command body, shown on line 4, there might be a number of different properties, com-
mands, options, or subcomponents present.

Finally, there is an option command named OPTION_NAME on line 6. The body of the
option command is on line 7 and might contain any number of properties and commands to
describe and define the option.

Code Listing 11.3 shows an excerpt from the i386 PC HAL package. The script file for
this listing is hal_i386_pc.cdl located under the hal\i386\pc\current\cdl direc-
tory. However, some of the script commands and properties have been cut out to reduce the size
of the listing and isolate the commands we want to examine.

246 Chapter 11 • The eCos Toolset

1 cdl_package CYGPKG_HAL_I386_PC {
2 display "i386 PC Target"
3 parent CYGPKG_HAL_I386
4 define_header hal_i386_pc.h
5 include_dir cyg/hal
6 description "
7 The i386 PC Target HAL package provides
8 the support needed to run eCos binaries
9 on an i386 PC."
10
11 compile hal_diag.c plf_misc.c plf_stub.c
12
13 implements CYGINT_HAL_DEBUG_GDB_STUBS
14 implements CYGINT_HAL_DEBUG_GDB_STUBS_BREAK
15 implements CYGINT_HAL_VIRTUAL_VECTOR_SUPPORT
16
17 cdl_component CYG_HAL_STARTUP {
18 display "Startup type"
19 flavor data
20 legal_values {"RAM" "FLOPPY" "ROM"}
21 default_value {"RAM"}
22 no_define
23 define -file system.h CYG_HAL_STARTUP
24 description "
25 It is possible to configure eCos
26 for the PC target to build for RAM
27 startup (generally when being run
28 under an existing monitor program
29 like RedBoot), FLOPPY startup (for
30 writing to a floppy disk, which can
31 then be used for booting on PCs with
32 a standard BIOS), or ROM startup
33 (for writing straight to a boot
34 ROM/Flash). ROM startup is experimental
35 at this time."
36 }

N O T E The CDL script fragment in Code Listing 11.3 does not
show all of the possible commands or properties available. This
fragment is intended to familiarize us with some of the basic lan-
guage of the CDL and the structure of script files. In the Graphi-
cal Representation of CDL Script Files section of this chapter we
see how the component framework and configuration tools use
packages and their CDL script files. For a comprehensive look at
the CDL, read The eCos Component Writer’s Guide. This docu-
ment is very useful if you need to develop your own packages for
distribution.

Packages 247

37
38 cdl_option CYGSEM_HAL_I386_PC_DIAG_SCREEN {
39 display "Output to PC screen"
40 flavor bool
41 default_value 1
42 implements CYGINT_HAL_I386_PCMB_SCREEN_SUPPORT
43 description "
44 This option enables use of the PC screen
45 and keyboard as a third virtual serial
46 device."
47 }
48 }

Code Listing 11.3 Example CDL script file from i386 PC HAL package.

Let’s take a closer look at the CDL script file excerpt shown in Code Listing 11.3. On line
1, which is the first CDL command in the hal_i386_pc.cdl script file, is the CDL package
command with the name CYGPKG_HAL_I386_PC. From this name, we can see that this is the
i386 architecture PC platform HAL package. The display name of the package is given on line 2
with the display command.

Next, line 3 contains the parent command, which allows this package to be nested under
the i386 architecture defined by the name CYGPKG_HAL_I386. The define_header com-
mand on line 4 identifies the header file, hal_i386_pc.h, which is generated for this pack-
age, and include_dir on line 5 is the location where this header file is placed in the local
configuration workspace. We look at the local configuration workspace in Chapter 12 when we
build the eCos library.

Line 6 contains the description command, which is used by the Configuration Tool to
give a text description of the package contents. The compile command on line 11 lists the files
that should be built for this package. The implements commands on lines 13, 14, and 15
describe the general interfaces that are included by selecting the i386 PC package.

Next, is a CDL component command on line 17 named CYG_HAL_STARTUP. On line 19
is the flavor command, which specifies the nature of the component; in this case, data. By
designating the flavor as data, when the #define is generated for this component the
value is set to one of the legal_values, as shown on line 20. The values that this component
can be set to are RAM, FLOPPY, or ROM. If no change is made to the CYG_HAL_STARTUP com-
ponent, the default_value RAM is used from line 21. The command no_define on line
22 suppresses the normal generation of preprocessor #define symbols in the configuration
header file. Additional #define symbols that go into the configuration header file are specified
by the define command on line 23.

The final CDL option command on line 38 is named CYGSEM_HAL_I386_PC_
DIAG_SCREEN. This option is of type bool as we can see from the flavor command on line
40, which means that the option is either enabled or disabled. The default for this command is
enabled, as shown on line 41 with the default_value of 1.

248 Chapter 11 • The eCos Toolset

11.2 The Configuration Tool

There are two tools you can use to configure the eCos repository according to your specific
requirements. As mentioned in Chapter 1, the configuration tools give you the ability to custom-
ize the eCos library to meet your specific application needs through source-level configuration.
You can use the command-line tool or the graphical Configuration Tool.

The command-line tool does not offer the ability to resolve conflicts interactively. The
Configuration Tool provides interactive conflict resolution, as well as an easy-to-use interface
for configuration setup and management, the facility to build the eCos RTOS library, and the
capability to build and run tests on a target platform. We are going to focus on the use of the
Configuration Tool for manipulating our configurations throughout this book. If you would like
to become more familiar with the command-line tool, additional information can be found
online in the eCos User’s Guide:

http://sources.redhat.com/ecos/docs.html

The eCos development tools are located in the D:\ecos\bin directory from our instal-
lation complete in Chapter 10. The source code for all of the eCos development tools is located
under the D:\ecos\host directory.

There are two different versions of the Configuration Tool we installed, 1.3.net and 2.11.
The version 1.3.net of the Configuration Tool only supports host development environments run-
ning the Windows operating system. Version 2.11 of the Configuration Tool can run on Windows
and Linux host development systems.

The major difference between the two versions is that the 1.3.net version includes a graph-
ical window called the Memory Layout Tool (MLT) for manipulating memory configurations.
Since the MLT functionality is expected to move into a separate application (at sometime in the
future), it is not included in the version 2.11 release of the Configuration Tool.

In this book, we use version 2.11 of the Configuration Tool for configuring the eCos
framework and building eCos images. We also cover using the MLT, in version 1.3.net of the
Configuration Tool, later in this chapter. Both versions of the Configuration Tool were installed
in Chapter 10.

We also get a basic understanding of the relationship between the Configuration Tool and the
component repository in this chapter. CDL script files are included with all packages, which allow
the Configuration Tool to interpret and display the proper information about a given package.

The Configuration Tool can be invoked by either using the desktop icon, if created during
the installation procedure, or through the Start –> Programs –> eCos Configuration Tool menu.

11.2.1 Screen Layout

The first step to understanding the Configuration Tool is to become familiar with the screen lay-
out. Figure 11.3 is a screen snapshot of the Configuration Tool with all window views enabled.
All of the windows in the Configuration Tool can be sized according to your needs by adjusting
the splitter bars for a given window.

249

F
ig

u
re

 1
1.

3
C

on
fig

ur
at

io
n

T
oo

l s
cr

ee
n

la
yo

ut
.

C
o

n
fi

g
u

ra
ti

o
n

W
in

d
o

w

C
o

n
fl

ic
ts

W
in

d
o

w
P

ro
p

er
ti

es
W

in
d

o
w

S
h

o
rt

D
es

cr
ip

ti
o

n
W

in
d

o
w

O
u

tp
u

t W
in

d
o

w

M
en

u
 B

ar

To
o

l B
ar

C
o

n
fi

g
u

ra
ti

o
n

W
in

d
o

w
 S

p
lit

te
r

B
ar

S
ta

tu
s

B
ar

250 Chapter 11 • The eCos Toolset

The title bar of the Configuration Tool application displays the configuration file name—in
this case, ecosi386net.ecc—along with the application name, eCos Configuration Tool. When
a modification has been made to the configuration, an asterisk (*) appears after the configuration
filename. This indicates that the modifications made to the configuration have not been saved.

Under the title bar we see the menu bar, which is standard on Windows applications. This
contains the menus File, Edit, View, Build, Tools, and Help. The File menu contains the options
to save, open, start a new configuration, and import or export a configuration.

The Edit menu includes the cut, copy, and paste options as well as a find option that allows
you to search through certain windows for specific words.

The View menu includes options for configuring the settings of the Configuration Tool,
control over which windows are displayed, and control over which tool bars are enabled.

The Build menu contains options to build the eCos library and tests, clean the build tree
working directory, stop a build in progress, display compiler and linker flags, select the root
repository, and enable templates and packages for a particular configuration.

The Tools menu allows you to set up the paths for the build and user tools, display the
available platforms, and resolve conflicts.

Finally, the Help menu includes the help documentation for the Configuration Tool and
eCos, as well as information about the release of the Configuration Tool. Context-sensitive help
topics are displayed for any control within a dialog box by either pressing F1 or clicking the
question mark icon in the dialog caption bar and then clicking the control. Some dialog boxes
contain a help button as well.

You might want to customize the Configuration Tool settings according to your needs. To do
this, select View –> Settings from the menu bar. This brings up the Configuration Tool settings dia-
log box. The configuration settings in this dialog box are separated into three different tabs.

The first tab is Display. Under this tab, the Configuration Pane settings allow you to Use
Macro Names or Use Descriptive Names for the Labels. Typically, it is easier to use the descrip-
tive names for a better explanation of the different labels in the Configuration window and refer
to the macro name in the Properties window. You can also set whether you want Integer Items
displayed in Decimal or Hexadecimal. The Font can also be set for the different windows in the
Configuration Tool. Finally, the splash screen can be enabled or disabled using the Show Initial
Splash Screen check box.

Next is the Viewers tab. This allows you to set the program to use for viewing header files,
which can be set to use the Associated Viewer (wordpad.exe) or a program you select as This
Viewer. The program to use for viewing documentation can also be configured to the Built-in
Viewer, Associated Browser (iexplore.exe), or a program you select as This Viewer.

 The Conflict Resolution tab is next. This allows you to set the methods the Configuration
Tool uses to check for conflicts in your configuration. The available options are After Any Item
Changed, Before Saving Configuration and Automatically Suggest Fixes.

Finally is the Run Tests tab. The Configuration Tool automates the downloading and run-
ning of tests on the target hardware. This tab allows you to configure the timeout associated with

The Configuration Tool 251

the test download and the connection method to the target, which can either be via serial or
Ethernet port. Additional information about running tests using the Configuration Tool is cov-
ered in Chapter 12.

The Configuration Tool offers a search tool located under the Edit –> Find menu, or the
Find icon on the standard tool bar can be used. The Find tool allows you to search for a text
string within a configuration item. The Find dialog box allows you to search in macro names,
item names, short descriptions, current values, or default values. This tool is very useful when
you need to locate a specific configuration item nested deep within the component repository.

Beneath the menu bar is the tool bar. The tool bar shown in Figure 11.3 is the Standard tool
bar. This is enabled by selecting Toolbar under the View menu. The tool bar allows faster execution
of different menu options by clicking on the different icons. Hovering over the tool bar icons with
the mouse causes a tip to pop up that describes the operation of that particular icon.

At the bottom of the Configuration Tool we see the status bar. In Figure 11.3, the status bar
shows Ready and No Conflicts. During manipulation of the configuration, the status bar gives
feedback of the operation being performed and any problems that might arise. Additionally,
when building the eCos library the status bar gives a progress meter and numerical percentage of
the build progress.

During our installation procedure, we selected the build and user tools. However, there
might be a circumstance that requires selecting a different location for these tools. In that case,
select Tools –> Paths –> Build Tools to set the location of the cross-development tools, such as
i386-elf-gcc. To set the user tools, select Tools –> Paths –> User Tools to set the location of the
Cygwin tools.

In certain circumstances, such as trying out a new snapshot of the eCos source code, it
might be necessary to have the Configuration Tool use a different local source code repository.
The repository the Configuration Tool uses is changed by selecting Build –> Repository and
then browsing to the location of the local eCos source code. The Configuration Tool then
searches for the ecos.db file.

11.2.1.1 Saving Configurations
As mentioned earlier in this section, the Configuration Tool uses the title bar to notify you that
the configuration currently loaded has been modified but not yet saved. It does this by displaying
an asterisk (*) next to the configuration filename on the title bar.

A configuration can be saved either by using the Save icon on the toolbar or through File –>
Save or File –> Save As on the menu bar. Configuration files have a .ecc extension, which stands
for eCos Configuration. The saved configuration file contains all of the packages loaded, template
used, option settings, and description information, which the Configuration Tool uses to generate the
proper eCos image. The configuration files can be viewed using any text editor. A good understand-
ing of configuration files is necessary before attempting to hand edit these files. The Configuration
Tool inserts comments into the configuration file to separate different sections of the file.

After saving the configuration file, build and install tree directory structures are created.
This is a working directory that the Configuration Tool uses to store files during the build procedure.

252 Chapter 11 • The eCos Toolset

The working directory structure created after the configuration file is saved is explained in
Chapter 12. Code Listing 11.4 shows a portion of a saved configuration file for the i386 PC tar-
get using the Net template.

1 cdl_configuration eCos {
2 description "" ;
3
4 # These fields should not be modified.
5 hardware pc ;
6 template net ;
7 package -hardware CYGPKG_HAL_I386 current ;
8 package -hardware CYGPKG_HAL_I386_GENERIC current ;
9 package -hardware CYGPKG_HAL_I386_PC current ;
10 package -hardware CYGPKG_HAL_I386_PCMB current ;
11 .
12 .
13 .
14 package -template CYGPKG_HAL current ;
15 package -template CYGPKG_IO current ;
16 package -template CYGPKG_IO_SERIAL current ;
17 package -template CYGPKG_INFRA current ;
18 package -template CYGPKG_ISOINFRA current ;
19 package -template CYGPKG_KERNEL current ;
20 package -template CYGPKG_ERROR current ;
21 package -template CYGPKG_IO_FILEIO current ;
22 package -template CYGPKG_NET current ;
23 package -template CYGPKG_IO_ETH_DRIVERS current ;
24 };
25 .
26 .
27 .
28 cdl_option CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE {
29 # Flavor: data
30 user_value 4096
31 # value_source user
32 # Default value: CYGPKG_KERNEL ? 4096 : 32768
33 # CYGPKG_KERNEL (unknown) == 0
34 # --> 32768
35 # Legal values: 1024 to 1048576
36 };

Code Listing 11.4 Example of a saved .ecc configuration file for i386 target.

As we see in Code Listing 11.4, the saved configuration file uses the CDL. The main CDL
command configuration is shown on line 1. This command lists all information about the
hardware, template, and packages used for this configuration.

The Configuration Tool 253

Line 5 shows the pc hardware target, and line 6 shows the template used for this configu-
ration, net. Lines 7 through 23 list the different packages that are included in this configuration.

On line 28, a different part of the configuration file is shown. Here the CDL command
option is shown for the CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE. The #
character is used for comments in CDL files. In this case, the comment lines, similar to line 29,
give extra information about the CDL command setting. We see on line 30 that the
user_value parameter is set to 4096. The Configuration Tool uses this value setting during
the build procedure.

Configuration files allow you to store the packages and option settings for a specific con-
figuration used to build an eCos image. You are then able to open this configuration file and edit
the settings, by changing options or adding packages, to build a new eCos image.

11.2.1.2 Importing and Exporting Configurations
The import and export features of the Configuration Tool are useful in saving and restoring par-
tial configurations. The import feature, located under File –> Import, is used to restore the exact
configuration from a saved configuration file. An eCos Minimal Configuration, with a .ecm
ending, includes packages and configuration option value settings for a specific configuration.
We use this feature in Chapter 12 to import a RedBoot configuration.

The export feature, located under File –> Export, saves a configuration to a .ecm file.
This is useful if you need to replicate the exact configuration settings on another host system.
Code Listing 11.5 shows a portion of an exported .ecm file. Exported minimal configuration
files can also be viewed with a text editor.

1 cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD {

2 user_value 57600

3 };

4

5 cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL {

6 user_value 1

7 };

Code Listing 11.5 Example of an exported .ecm file.

Exported minimal configuration files, which also use the CDL, are similar to the saved
configuration files. However, the Configuration Tool does not insert comment lines as it does in
the saved configuration files. The exported minimal configuration file contains only the differ-
ences from the standard configuration settings.

N O T E To get all pac kages and confi guration option settings
accurately recreated, it is better to use the eCos confi guration fi le
(.ecc). eCos confi guration fi les contain all inf ormation f or a par tic-
ular configuration, whereas the minimal confi guration fi les contain
only a subset of the information.

254 Chapter 11 • The eCos Toolset

For the example shown in Code Listing 11.5, two configuration options were modified.
The first option changed was the baud rate for the console channel (CYGNUM_HAL_VIRTUAL_
VECTOR_CONSOLE_CHANNEL_BAUD) from the default of 38400 to 57600. This command
is stored in the file as shown on lines 1 through 3. The second option changed was the debug
channel used (CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL) from 0 to 1. This
command is stored as shown on lines 5 through 7.

11.2.1.3 Configuration Window
The main window of the Configuration Tool is the Configuration window. As we see in Figure 11.3,
this window contains a tree-based representation of the configuration items (packages, compo-
nents, and options) currently loaded into the configuration on the left side of the splitter bar. Each
of these configuration items is enclosed in a cell. To the right of the splitter bar is the version of the
package—in this case, the version is current—or the current option value setting.

Clicking on a particular cell activates that configuration item. Clicking on the right side of
the splitter bar allows you to modify a particular option. To end editing of a particular cell, you
can either click elsewhere in the Configuration window or press Enter. To discard modifications
made and revert to the previous value, press the Escape key.

The plus and minus sign icons next to each node allow you to expand or contract the pack-
ages, components, or options located within that node. Each node contains an icon before the
text to assist you in determining the type of module the node represents. The different icons are
shown in Table 11.1.

Table 11.1 Configuration Tool Module Icons

Icon Description

Represents a package. Typically located at the highest level and contain components and
options for configuration. In Figure 11.3, the packages shown include the eCos HAL, i386
Architecture, and the eCos Kernel.

Indicates a component. Contain subcomponents or options for configuration. Figure 11.3
includes the HAL Interrupt Handling and ROM Monitor Support components within the eCos
HAL package.

Denotes a Boolean flavor option. This icon represents options that can be either enabled or
disabled. Figure 11.3 contains the Boolean flavor options Enable I386 FPU Support and
Enable Pentium Class CPU Features.

Indicates data flavor options of integer type. Options of this type can be set to particular values
within their specified ranges.

The Configuration Tool 255

Icons for particular options are grayed if they are disabled or unable to be modified using
the Configuration Tool. Along with the icon being grayed, the option value is also grayed.

Right-clicking on items in the Configuration window brings up a pop-up menu containing:

• What’s This?—pops up a description of the selected item. This description can also be
found in the Short Description window.

• Properties—displays a dialog box of the properties for the item. The properties are
also found in the Properties window.

• Restore Defaults—sets the value of the item to the default value.
• Visit Documentation—displays the documentation for the item.
• View Header File—opens the header file containing the item. This can also be

accomplished by double-clicking the File property in the Properties window. The
header file is only displayed if the configuration has been saved.

• Unload Package—available only when right-clicking on packages. This unloads the
selected package from the configuration.

11.2.1.4 Conflicts Window
The Conflicts window, shown in Figure 11.3, displays any problems that arise during modifica-
tion, installation, or removal of configuration items. A conflict occurs when requirements are not
met between configuration items that are defined in the CDL.

The Conflicts window is split into three different columns: Item, Conflict, and Property.
The Item column displays the macro name of the first item involved in the conflict. The Conflict
column shows a description of the conflict type, such as Unsatisfied or Illegal. The
Property column contains a description of the configuration item property that caused the con-
flict. The Conflicts window can be enabled or disabled by selecting View –> Conflicts from the
menu bar or using the hot-key combination Alt+5.

Right-clicking on a particular item in the Conflicts window pops up a menu with two
options, Locate and Resolve. Locate causes the configuration item to be selected in the Configu-
ration window. Resolve allows you to resolve the conflict prior to building the eCos library.
Resolving conflicts is covered in the Using Templates section of this chapter.

Denotes data flavor options of string type. Options of this type can be set to various value strings.

Represents data flavor options of enumeration type. Options of this type have predefined
values that can be set. The different configuration values are represented in a drop-down menu.

Table 11.1 Configuration Tool Module Icons (Continued)

Icon Description

256 Chapter 11 • The eCos Toolset

11.2.1.5 Properties Window

The Properties window is located below the Conflicts window, as we see in Figure 11.3. This
window displays the CDL properties found in the CDL script file for the currently selected con-
figuration item. A detailed description of the relationship between the CDL script files and the
Properties window can be found in the Graphical Representation of CDL Script Files section of
this chapter. The Properties window can be enabled or disabled by selecting View –> Properties
from the menu bar or using the hot-key combination Alt+1.

Two columns divide the Properties window, Property and Value. The Property column
gives the property name found in the CDL script file. Each configuration item contains different
properties in the command body. The Value column displays the available or current value set-
tings from the CDL script file.

Double-clicking the URL property causes the referenced HTML page to be displayed.
This is the same as right-clicking the configuration item, in the Configuration window, and
selecting Visit Documentation. Double-clicking on the File property opens the file described in
the Value column. This file contains the source code for the configuration option settings. The
current configuration must be saved for this to work.

11.2.1.6 Short Description Window

The Short Description window displays a brief description, from the CDL script file, which con-
tains information about the currently selected configuration item. The Short Description window
is shown in Figure 11.3.

This window can be enabled or disabled by selecting View –> Short Description from the
menu bar or using the hot-key combination Alt+3. The information displayed in the Short
Description window is also displayed when right-clicking the configuration item, in the Config-
uration window, and selecting Visit Documentation.

11.2.1.7 Output Window

The Output window is located at the bottom of the Configuration Tool as shown in Figure 11.3.
The Output window displays messages generated by the execution of external tools. For exam-
ple, when building the eCos library, the Output window displays commands executed during the
build process along with any warning or error messages that occur. The Output window can be
enabled or disabled by selecting View –> Output from the menu bar or using the hot-key combi-
nation Alt+2.

Right-clicking in the Output window pops up a menu that allows you to copy text from the
window, clear text from the window, select all text in the window, or save the output in the win-
dow to a log file.

11.2.1.8 Memory Layout Window

As previously mentioned, version 1.3.net of the Configuration Tool includes the Memory Layout
Tool, which is not present in version 2.11. Version 1.3.net of the Configuration Tool is located
under the D:\ecos\bin directory in the file Configtool13net.exe, which we installed

The Configuration Tool 257

in Chapter 10. Version 1.3.net is used to graphically manipulate memory configurations. The
other alternative is to edit the memory configuration files by hand.

The mEmory Layout window is a graphical view of the memory configuration based on the
currently selected hardware architecture, platform, and Startup Type configuration option. A
horizontal bar that is divided into a number of blocks for each memory section represents the
memory layout for a region. The name of the memory region is above the horizontal bar along
with the address range covered by that region. For example, in Figure 11.4 we see the MLT’s
graphical representation of the memory configuration for the Motorola PowerPC MBX860 plat-
form with a ROM Startup Type.

The Memory Layout window can be enabled or disabled by selecting View –> Memory
Layout from the menu bar or using the hot-key combination Alt+4. In version 1.3.net of the
Configuration Tool, the memory layout tool bar can be used to modify memory configurations.
This tool bar can be enabled or disabled by selecting View –> Toolbars –> Memory Layout from
the menu bar. Right-clicking in the Memory Layout window allows you to view the properties of
the selected region or section of memory.

11.2.1.9 Memory Layout Manipulation
There are default memory layouts provided for all supported platforms that do not need to be
modified to begin developing using eCos. Modifying the memory layout is necessary when porting
eCos to your own platform, which probably differs from any supported platform, or if memory is
added to or removed from an evaluation board. Modifications can be made in the Memory Layout
window or using the memory layout tool bar.

The memory layout files for each platform are found under the include\pkgconf sub-
directory within the HAL platform directory structure. Typically, each platform includes RAM
and ROM memory layout files that are used by the Configuration Tool based on the Startup Type
configuration option selection. Some platforms also contain ROMRAM memory layout files for
applications that start in ROM but are copied to RAM for execution. For each Startup Type sup-
ported by the platform, there are three different memory layout files.

The first type of memory layout file contains a .h extension, which contains C macro def-
initions of the memory region. The .ldi files are linker script files that define region and sec-
tion locations. Finally, the .mlt files contain the description of the memory layout for use by
the MLT. When editing the memory layout files by hand, only the .h and .ldi files need to be
modified; the .mlt file is only used by the MLT.

Figure 11.4 shows the Memory Layout window for the Motorola PowerPC MBX860
platform with a ROM Startup Type configuration option selected. There are two region names
in this memory layout, ram and rom. We can see that the ram region includes the address
range 0x0000_0000 to 0x003F_FFFF, and the rom region includes the address range
0xFE00_0000 to 0xFE7F_FFFF.

The different memory sections, such as reserved_vectors in the ram region and
text in the rom section, are shown in Figure 11.4. Within each memory section is a short
description about that section, which might include the size, alignment, and whether the section

258 Chapter 11 • The eCos Toolset

is relocated. We can see in Figure 11.4 that the reserved_vectors section in the ram
region has a size of 3000 bytes, while the text section in the rom region is aligned on a 4-byte
boundary. The base addresses for the two memory regions start at the left with the lowest
addresses for that region shown below the horizontal bar. Unused portions of memory are repre-
sented with hatching, as shown at the end of the rom region in Figure 11.4.

Code Listing 11.6 contains a fragment of the linker script file, mlt_powerpc_
mbx_rom.ldi, for the Motorola PowerPC MBX860 platform with ROM Startup Type. This
.ldi file is generated based on the memory layout configured in Figure 11.4. For additional
information about linker scripts and linker commands, see the GNU ld documentation, which
can be found online at:

www.gnu.org/manual/manual.html

1 MEMORY
2 {
3 ram : ORIGIN = 0, LENGTH = 0x400000
4 rom : ORIGIN = 0xfe000000, LENGTH = 0x800000
5 }
6
7 SECTIONS
8 {
9 SECTIONS_BEGIN
10 SECTION_vectors (rom, 0xfe000000, LMA_EQ_VMA)
11 SECTION_text (rom, ALIGN (0x4), LMA_EQ_VMA)
12 SECTION_fini (rom, ALIGN (0x4), LMA_EQ_VMA)
13 .
14 .
15 .
16 SECTIONS_END
17 }

Code Listing 11.6 Linker script fragment for Motorola PowerPC MBX860 platform with ROM
Startup Type.

Figure 11.4 Memory Layout window configuration for Motorola PowerPC MBX860 platform with
ROM Startup Type.

The Configuration Tool 259

The first command, MEMORY, on line 1 defines the memory regions present in the layout.
In Code Listing 11.6, we can see that the ram and rom region definitions are on lines 3 and 4,
respectively. The ram region starts at address 0, denoted by the ORIGIN = 0 command on line
3, and has a length of 0x0040_0000, also shown on line 3. The rom region contains the same
commands with different start address and length values as we can see on line 4. These corre-
spond to the graphical representation for the ram and rom regions shown in Figure 11.4.

The SECTIONS command defines the different sections present in the memory layout.
The macro SECTION_xxx, where xxx defines the section, takes the parameters region, VMA,
and LMA. On line 10, for example, we see that the vectors section has a final location at the
beginning of the rom region at absolute address 0xFE00_0000. The next section, text, is
also located in the rom section and follows the vectors section, since the VMA address is
specified as ALIGN (0x4). The symbol LMA_EQ_VMA, or LMA equals VMA, means that the
section is not relocated. We can see the graphical representation of the vectors and text sec-
tions in the rom region in Figure 11.4.

Modifying or creating memory regions is accomplished using a property sheet. The Prop-
erty Sheet dialog box for a memory region is displayed either by selecting the Properties icon on
the memory layout tool bar, after the specific region is selected, or double-clicking the desired
region. To select a memory region, you can click on the region name. The ram region Property
Sheet dialog box is shown in Figure 11.5. New memory regions can be created using the New
Region icon on the memory layout tool bar.

The General tab is displayed in Figure 11.5. The information in this dialog box ensures
that initial and final locations of relocated memory sections are within the appropriate memory
region. The Name chosen for a memory region is up to you; however, it should not contain
spaces or punctuation characters. In Figure 11.5, the name of the region is ram. The Start
Address and Size are specified in bytes and entered as hexadecimal numbers. We can see in
Figure 11.5 that the Start Address for the ram region is 0x0000_0000 and the Size is
0x0040_0000, which corresponds to a size of 4 Mbytes (4,194,304 bytes). Therefore, the
address range for the ram region, as we see in Figure 11.4, is from 0x0000_0000 to
0x003F_FFFF. In this case, the Read Only check box is not checked because this is a RAM
region of memory. The Notes tab can be used to keep any information about the memory region.

Memory sections are also edited using a property sheet. The Property Sheet dialog box for
a memory section is displayed either by selecting the Properties icon on the memory layout tool
bar, after selecting a specific region, or double-clicking the desired section. New memory sec-
tions can be created using the New Section icon on the memory layout tool bar. Figure 11.6
shows the General tab of the reserved_vsr_table section from the Motorola PowerPC
MBX860 platform memory layout.

A memory section is either Linker-defined or User-defined. In Figure 11.6, we see this sec-
tion is User-defined with the name reserved_vsr_table. The same rules apply for naming
memory sections as with memory regions—no spaces or punctuation characters. If the section is
Linker-defined, a drop-down list containing the names currently not used are presented. The
names in the list vary depending on the selected target architecture. When using a template as

260 Chapter 11 • The eCos Toolset

the baseline for your development, sections will be set up in the memory layout for you. It is
then up to you to determine if they need to be relocated or moved into other memory addresses
or if new sections need to be added.

If the Known Size check box is checked, then the size, in bytes, is entered as a hexadeci-
mal number. In Figure 11.6, we see that the reserved_vsr_table has a size of 200, or
512 bytes. User-defined sections that do not contain a size are assumed to occupy all memory
up to the next section or the end of memory in that region. The Final Location, or Virtual
Memory Address (VMA), defines the final location of the section after relocation. Either an
Absolute address can be entered or Following a specific section. In Figure 11.6, the
reserved_vsr_table follows the reserved_vectors section, which was selected
from a drop-down list. The Alignment of the reserved_vsr_table is also specified on a 1-
byte boundary. If an Absolute address is used, this should be entered in hexadecimal.

The next tab in the section property sheet is for Relocation. For the Motorola PowerPC
MBX860 platform with ROM Startup Type, the only section that is relocated is the data sec-
tion. We can see this in Figure 11.4 in the ram region that has the description relocated in
the data section box below align 10. In Figure 11.7 we see the Relocation tab for the data
section. The Relocate Section check box is checked and the Initial Location, or Load Memory
Address (LMA), for the data section is specified. The LMA can be either an Absolute address
in hexadecimal or Following a specific section that is selected from a drop-down list. In
Figure 11.7, the data section LMA is initially loaded in the rom region following the
gcc_except_table section. The General tab in the data section property sheet specifies a

Figure 11.5 ram region property sheet dialog box.

The Configuration Tool 261

VMA, or final location, following the reserved_virtual_table section. If we look at
Figure 11.4 we can see that the data section is present in both the rom and ram region. Since
the data section is relocated from the rom to ram region, it is grayed in the rom region.

The last tab is the Notes tab, which can be used to keep any information about the memory
section.

Let’s briefly look at how we would access a user-defined memory section. In this example, we
create a user-defined section using the MLT and then go through a code listing showing how this sec-
tion is accessed. We are using the Motorola PowerPC MBX860 platform with ROM Startup Type.

First, the section kfm1 is created using the MLT, as shown in Figure 11.8. We see the
MLT representation of the RAM and ROM memory regions. In the RAM memory region, we
see the kfm1 section at the end. The section Properties dialog box is also shown for the kfm1
section. In this case, the section starts at address 0x000A_0000 and is 296 bytes long.

When we save our configuration, the Configuration Tool generates the memory layout
header file, mlt_powerpc_mbx_rom.h, automatically. This file is stored in the install tree
directory structure under the include\pkgconf directory. An excerpt from the memory lay-
out header file with the kfm1 section defined is shown in Code Listing 11.7.

1 #define CYGMEM_SECTION_kfm1 (CYG_LABEL_NAME (__kfm1))

2 #define CYGMEM_SECTION_kfm1_SIZE (0x128)

Code Listing 11.7 Memory layout file excerpt showing kfm1 section definitions.

Figure 11.6 reserved_vsr_table section Property
Sheet dialog box.

262 Chapter 11 • The eCos Toolset

In Code Listing 11.7, we see that line 1 shows the address definition of our kfm1 section we
defined using the MLT. The actual address, 0x000A_0000, is contained in the linker script file
mlt_powerpc_mbx_rom.ldi, which is also generated by the Configuration Tool. On Line 2,
the size for our new section is defined; in this case, the size is 296 (128 in hexadecimal) bytes.

Code Listing 11.8 shows the example code we implement in our application to access our
user-defined section kfm1.

1 #include <pkgconf/system.h>
2 #include <pkgconf/mlt_powerpc_mbx_rom.h>
3
4 //
5 // Main starting point for the application.
6 //
7 void cyg_user_start(void)
8 {
9 // Use the memory section as an integer array.
10 char *user_section = (char *)CYGMEM_SECTION_kfm1;
11 unsigned char user_sect_size = CYGMEM_SECTION_kfm1_SIZE;
12 unsigned int index;
13
14 // Initialize each element in the kfm1 section of memory.
15 for (index = 0; index < user_sect_size; index++)
16 user_section[index] = 0;
17 }

Code Listing 11.8 Example of how to access a user-defined memory section.

Figure 11.7 data section property sheet dialog box.

263

F
ig

u
re

 1
1.

8
M

em
or

y
la

yo
ut

 to
ol

 s
ho

w
in

g
us

er
 s

ec
tio

n,
 k
f
m
1

, a
nd

 th
e

as
so

ci
at

ed
 s

ec
tio

n
pr

op
er

tie
s

di
al

og
 b

ox
.

264 Chapter 11 • The eCos Toolset

In Code Listing 11.8, we see that the header file, mlt_powerpc_mbx_rom.h, which
defines our new user section kfm1 is included on line 2. On line 10 we set the variable
user_section to our user-defined section address, which allows us to access the section
using this local variable. The size of the section is set to the variable user_sect_size on
line 11, again allowing us to use a local variable to access the size of our user-defined section.
Finally, we initialize the user-defined memory section kfm1 to 0, which is shown on lines 15
and 16, using our local variables user_section and user_sect_size.

11.2.2 eCos Repository Database

The Configuration Tool uses the eCos repository database to understand the components within
the repository. The descriptions of the packages in the repository database are contained in the
file ecos.db, which is located under the D:\ecos\packages subdirectory in our installa-
tion. This file uses the CDL to describe all packages and targets in the database.

The Configuration Tool needs to know the location of this file, and the entire repository.
The Configuration Tool searches for the component repository by first using the most recently
used repository location, then by using the default location setup by the installation, and finally,
by whatever path you select. The component repository location should already be configured
properly from our installation.

If you needed to change the location of the component repository, you could do so by
selecting Build –> Repository from the menu bar. This brings up a dialog box that allows you to
browse to the new location of the repository.

We can see an example of the relationship between the repository database file, ecos.db,
and the Configuration Tool in Figure 11.9. In Figure 11.9, the CDL package description for the eCos
HAL is shown along with the Configuration window, the Properties window, and the Short Descrip-
tion window from the Configuration Tool. We can see how the Configuration Tool interprets the
CDL package for the eCos HAL in order to display the properties and description correctly. The
Configuration Tool uses the CDL script file, hal.cdl, shown on line 4 of the ecos.db code frag-
ment in Figure 11.9, to display the proper components within the eCos HAL package.

Along with all of the package descriptions in the ecos.db file, the template descriptions
are also contained within the database file. Template descriptions are used by the Configuration
Tool to load pre-configured packages for a particular target platform. Details about using tem-
plates can be found in the Using Templates section of this chapter. The template description for
the i386 PC target platform is shown in Code Listing 11.9.

We see in Code Listing 11.9, line 1 contains the name of the target; in this case, pc. An
alias for the target, which is displayed by the Configuration Tool when selecting a template, is
shown on line 2. The packages that are loaded by the Configuration Tool when the i386 PC tar-
get template is selected are given on lines 3 through 13. These packages give a baseline of func-
tionality for a given target. Packages can then be configured, added, or removed in order to get
the specific configuration you need for your target platform. Finally, lines 15 through 19 give the
description of this template.

265

F
ig

u
re

 1
1.

9
eC

os
 r

ep
os

ito
ry

 d
at

ab
as

e,
 e
c
o
s
.
d
b

, a
nd

 C
on

fig
ur

at
io

n
T

oo
l r

el
at

io
ns

hi
p.

1

p
a
c
k
a
g
e

C
Y
G
P
K
G
_
H
A
L

{

2

a
l
i
a
s

{

"
e
C
o
s

c
o
m
m
o
n

H
A
L
"

h
a
l

h
a
l
_
c
o
m
m
o
n

}

3

d
i
r
e
c
t
o
r
y

h
a
l
/
c
o
m
m
o
n

4

s
c
r
i
p
t

h
a
l
.
c
d
l

5

d
e
s
c
r
i
p
t
i
o
n

"

6

T
h
e

e
C
o
s

H
A
L

p
a
c
k
a
g
e

p
r
o
v
i
d
e

a

p
o
r
t
i
n
g

l
a
y
e
r

f
o
r

7

h
i
g
h
e
r
-
l
e
v
e
l

p
a
r
t
s

o
f

t
h
e

s
y
s
t
e
m

s
u
c
h

a
s

t
h
e

k
e
r
n
e
l

8

a
n
d

t
h
e

C

l
i
b
r
a
r
y
.

E
a
c
h

i
n
s
t
a
l
l
a
t
i
o
n

s
h
o
u
l
d

h
a
v
e

9

H
A
L

p
a
c
k
a
g
e
s

f
o
r

o
n
e

o
r

m
o
r
e

a
r
c
h
i
t
e
c
t
u
r
e
s
,

a
n
d

1
0

f
o
r

e
a
c
h

a
r
c
h
i
t
e
c
t
u
r
e

t
h
e
r
e

m
a
y

b
e

o
n
e

o
r

m
o
r
e

1
1

s
u
p
p
o
r
t
e
d

p
l
a
t
f
o
r
m
s
.

I
t

i
s

n
e
c
e
s
s
a
r
y

t
o

s
e
l
e
c
t

o
n
e

1
2

t
a
r
g
e
t

a
r
c
h
i
t
e
c
t
u
r
e

a
n
d

o
n
e

p
l
a
t
f
o
r
m

f
o
r

t
h
a
t

1
3

a
r
c
h
i
t
e
c
t
u
r
e
.

T
h
e
r
e

a
r
e

a
l
s
o

a

n
u
m
b
e
r

o
f

c
o
n
f
i
g
u
r
a
t
i
o
n

1
4

o
p
t
i
o
n
s

t
h
a
t

a
r
e

c
o
m
m
o
n

t
o

a
l
l

H
A
L

p
a
c
k
a
g
e
s
.
"

1
5

}

266 Chapter 11 • The eCos Toolset

1 target pc {
2 alias { "i386 PC target" }
3 packages { CYGPKG_HAL_I386
4 CYGPKG_HAL_I386_GENERIC
5 CYGPKG_HAL_I386_PC
6 CYGPKG_HAL_I386_PCMB
7 CYGPKG_IO_PCI
8 CYGPKG_IO_SERIAL_GENERIC_16X5X
9 CYGPKG_IO_SERIAL_I386_PC
10 CYGPKG_DEVS_ETH_INTEL_I82559
11 CYGPKG_DEVS_ETH_I386_PC_I82559
12 CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS12887
13 CYGPKG_DEVICES_WALLCLOCK_I386_PC
14 }
15 description "
16 The pc target provides the
17 packages needed to run eCos
18 binaries on a standard i386
19 PC motherboard."
20 }

Code Listing 11.9 i386 PC target template description from eCos database file ecos.db.

Figure 11.10 shows the template dialog box displaying the i386 PC target from Code
Listing 11.9. The template dialog box is displayed when Build –> Templates is selected from the
menu bar. We can see in Figure 11.10 that the alias description, from line 2, is displayed in the
Hardware drop-down list.

Below the target alias is the description for the template, from lines 15 through 19. In this
case, the default packages are included, which are described in the Packages in Selected Tem-
plates description box. These packages are listed on lines 3 through 13 in Code Listing 11.9. The
different options in the package drop-down list are described in the Using Templates section of
this chapter.

In certain circumstances, it might be necessary to edit the ecos.db file in order to have
the Configuration Tool recognize a package you added. We look at editing the ecos.db file in
Chapter 13, Porting eCos.

A file named ChangeLog is also located in the same subdirectory as the ecos.db file.
This log file tracks the changes made to the ecos.db file. Entries to this log file are similar to
the entries in the other ChangeLog files described in the Package Directory Structure section
in this chapter.

11.2.3 Graphical Representation of CDL Script Files

Now that we have looked at the relationship between the repository database file and the Config-
uration Tool, let’s go a step further and examine the relationship between the CDL script files
and their graphical representation in the Configuration Tool.

The Configuration Tool 267

This section gives us a basic understanding for how the Configuration Tool interprets the
commands in the CDL script files and uses this information in its different display windows. All
CDL commands and properties are not described in this section; however, you should be able to
see the basic relationship between the CDL scripts and the Configuration Tool allowing you to
investigate other script details on your own.

As we know from the Packages section in this chapter, every package must have at least one
CDL script file to define the package. The Configuration Tool uses the CDL script files to display
the necessary configuration and description information so that you can set up the package accord-
ing to your needs. We use the same CDL script file from the i386 PC HAL package described in
Code Listing 11.3, which you can look at to get an overview of where each portion of the CDL
script commands are located. The line numbers from Code Listing 11.3 are used in the code frag-
ments located in the figures. Figures 11.11, 11.12, and 11.13 show three different portions of the
CDL script file and how the Configuration Tool displays this information. Each figure shows a por-
tion of the Configuration window, the Properties window, and the Short Description window.

First, in Figure 11.11, is the CDL package command. Line 1 gives the macro name of
the package CYGPKG_HAL_I386_PC, which can also be seen next to the Macro property in the
Properties window. Line 2 uses the display command to give a description of the package,
which we can see is used in the Configuration window. The i386 PC Target is part of the i386
Architecture. In order to locate the i386 PC Target package under the i386 Architecture, the
parent command shown on line 3 is used.

Figure 11.10 Configuration Tool template selection dialog box.

268

F
ig

u
re

 1
1.

11
C

D
L

sc
rip

t f
ile

, s
ho

w
in

g
C

D
L

pa
ck

ag
e

co
m

m
an

d,
 a

nd
 C

on
fig

ur
at

io
n

T
oo

l r
ep

re
se

nt
at

io
n

fo
r

th
e

i3
86

 P
C

 H
A

L
pa

ck
ag

e.

4

d
e
f
i
n
e
_
h
e
a
d
e
r

h
a
l
_
i
3
8
6
_
p
c
.
h

5

i
n
c
l
u
d
e
_
d
i
r

c
y
g
/
h
a
l

. . . 1
1

c
o
m
p
i
l
e

h
a
l
_
d
i
a
g
.
c

p
l
f
_
m
i
s
c
.
c

p
l
f
_
s
t
u
b
.
c

1
2
1
3

i
m
p
l
e
m
e
n
t
s

C
Y
G
I
N
T
_
H
A
L
_
D
E
B
U
G
_
G
D
B
_
S
T
U
B
S

1
4

i
m
p
l
e
m
e
n
t
s

C
Y
G
I
N
T
_
H
A
L
_
D
E
B
U
G
_
G
D
B
_
S
T
U
B
S
_
B
R
E
A
K

1
5

i
m
p
l
e
m
e
n
t
s

C
Y
G
I
N
T
_
H
A
L
_
V
I
R
T
U
A
L
_
V
E
C
T
O
R
_
S
U
P
P
O
R
T

1

c
d
l
_
p
a
c
k
a
g
e

C
Y
G
P
K
G
_
H
A
L
_
I
3
8
6
_
P
C

{

2

d
i
s
p
l
a
y

"
i
3
8
6

P
C

T
a
r
g
e
t
"

3

p
a
r
e
n
t

C
Y
G
P
K
G
_
H
A
L
_
I
3
8
6

6

d
e
s
c
r
i
p
t
i
o
n

"

7

T
h
e

i
3
8
6

P
C

T
a
r
g
e
t

H
A
L

p
a
c
k
a
g
e

p
r
o
v
i
d
e
s

8

t
h
e

s
u
p
p
o
r
t

n
e
e
d
e
d

t
o

r
u
n

e
C
o
s

b
i
n
a
r
i
e
s

9

o
n

a
n

i
3
8
6

P
C
.
"

269

F
ig

u
re

 1
1.

12
C

D
L

sc
rip

t f
ile

, s
ho

w
in

g
C

D
L

co
m

po
ne

nt
 c

om
m

an
d,

 a
nd

 C
on

fig
ur

at
io

n
T

oo
l r

ep
re

se
nt

at
io

n
fo

r
th

e
i3

86
 P

C
 H

A
L

pa
ck

ag
e.

1
9

f
l
a
v
o
r

d
a
t
a

2
0

l
e
g
a
l
_
v
a
l
u
e
s

{
"
R
A
M
"

"
F
L
O
P
P
Y
"

"
R
O
M
"
}

2
1

d
e
f
a
u
l
t
_
v
a
l
u
e

{
"
R
A
M
"
}

2
2

n
o
_
d
e
f
i
n
e

2
3

d
e
f
i
n
e

-
f
i
l
e

s
y
s
t
e
m
.
h

C
Y
G
_
H
A
L
_
S
T
A
R
T
U
P

1
7

c
d
l
_
c
o
m
p
o
n
e
n
t

C
Y
G
_
H
A
L
_
S
T
A
R
T
U
P

{

1
8

d
i
s
p
l
a
y

"
S
t
a
r
t
u
p

t
y
p
e
"

2
4

d
e
s
c
r
i
p
t
i
o
n

"

2
5

I
t

i
s

p
o
s
s
i
b
l
e

t
o

c
o
n
f
i
g
u
r
e

e
C
o
s

2
6

f
o
r

t
h
e

P
C

t
a
r
g
e
t

t
o

b
u
i
l
d

f
o
r

R
A
M

2
7

s
t
a
r
t
u
p

(
g
e
n
e
r
a
l
l
y

w
h
e
n

b
e
i
n
g

r
u
n

2
8

u
n
d
e
r

a
n

e
x
i
s
t
i
n
g

m
o
n
i
t
o
r

p
r
o
g
r
a
m

2
9

l
i
k
e

R
e
d
B
o
o
t
)
,

F
L
O
P
P
Y

s
t
a
r
t
u
p

(
f
o
r

3
0

w
r
i
t
i
n
g

t
o

a

f
l
o
p
p
y

d
i
s
k
,

w
h
i
c
h

c
a
n

3
1

t
h
e
n

b
e

u
s
e
d

f
o
r

b
o
o
t
i
n
g

o
n

P
C
s

w
i
t
h

3
2

a

s
t
a
n
d
a
r
d

B
I
O
S
)
,

o
r

R
O
M

s
t
a
r
t
u
p

3
3

(
f
o
r

w
r
i
t
i
n
g

s
t
r
a
i
g
h
t

t
o

a

b
o
o
t

3
4

R
O
M
/
F
l
a
s
h
)
.

R
O
M

s
t
a
r
t
u
p

i
s

e
x
p
e
r
i
m
e
n
t
a
l

3
5

a
t

t
h
i
s

t
i
m
e
.
"

270 Chapter 11 • The eCos Toolset

The different properties, on lines 4, 5, and 11 through 15, for the i386 PC Target are dis-
played in the Properties window. The description command from lines 6 through 9 is
shown in the Short Description window.

Within the i386 PC Target package is the Startup Type component. The CDL script file
and Configuration Tool representation for the Startup Type component is shown in Figure 11.12.
Because this component is part of the CDL package command i386 PC Target
(CYG_HAL_I386_PC) body, the Startup Type component is displayed under the i386 PC Tar-
get in the Configuration window hierarchy structure.

Again, we see the macro name, CYG_HAL_STARTUP, on line 17, which is also displayed
in the Properties window. The display command, on line 18, gives the Configuration Tool a
descriptive name for the component to display in the Configuration window.

The properties on lines 19 through 23 are displayed in the Properties window. One note is
that since this component has a flavor property of data and a type property of enumera-
tion, a drop-down list is used to show the legal_values to configure this component. We
can see the enumeration type icon, as previously described in Table 11.1, next to the Startup
Type description in the Configuration window. The legal_values for the i386 PC Target
package Startup Type are RAM, FLOPPY, and ROM.

Finally, we see the description command from lines 24 through 35 displayed in the
Short Description window.

Finally, we look at the CDL option command Output to PC Screen in Figure 11.13. The
macro for this option is on line 38, CYGSEM_HAL_I386_PC_DIAG_SCREEN. This option is
also located within the i386 PC Target package as we can see from the hierarchy structure shown
in the Configuration window. Line 39 shows the display command represented in the Config-
uration window with the text Output to PC Screen.

 A check box icon to the left of the display text is used for this option since the flavor
property is bool, as shown on line 40 and in the Properties window. The other properties on
lines 41 and 42 are displayed in the Properties window as well.

As we have seen with the other CDL script fragments, the description command is
used by the Configuration Tool to display text in the Short Description window, shown on lines
43 through 46.

11.2.4 Using Templates

Templates are predefined configurations provided in the eCos repository that load specific pack-
ages for a supported hardware platform. As described in Chapter 1, templates are used as a base-
line starting point to begin selecting the configuration settings specific to your application.

The templates dialog box, shown in Figure 11.10, is displayed by selecting Build –>
Templates from the menu bar. We use a template in Chapter 12 to load a baseline of packages
and configuration options for our example application.

271

F
ig

u
re

 1
1.

13
C

D
L

sc
rip

t f
ile

, s
ho

w
in

g
C

D
L

op
tio

n
co

m
m

an
d,

 a
nd

 C
on

fig
ur

at
io

n
T

oo
l r

ep
re

se
nt

at
io

n
fo

r
th

e
i3

86
 P

C
 H

A
L

pa
ck

ag
e.

4
3

d
e
s
c
r
i
p
t
i
o
n

"

4
4

T
h
i
s

o
p
t
i
o
n

e
n
a
b
l
e
s

u
s
e

o
f

t
h
e

P
C

s
c
r
e
e
n

4
5

a
n
d

k
e
y
b
o
a
r
d

a
s

a

t
h
i
r
d

v
i
r
t
u
a
l

s
e
r
i
a
l

4
6

d
e
v
i
c
e
.
"

3
8

c
d
l
_
o
p
t
i
o
n

C
Y
G
S
E
M
_
H
A
L
_
I
3
8
6
_
P
C
_
D
I
A
G
_
S
C
R
E
E
N

{

3
9

d
i
s
p
l
a
y

"
O
u
t
p
u
t

t
o

P
C

s
c
r
e
e
n
"

4
0

f
l
a
v
o
r

b
o
o
l

4
1

d
e
f
a
u
l
t
_
v
a
l
u
e

1

4
2

i
m
p
l
e
m
e
n
t
s

C
Y
G
I
N
T
_
H
A
L
_
I
3
8
6
_
P
C
M
B
_
S
C
R
E
E
N
_
S
U
P
P
O
R
T

272 Chapter 11 • The eCos Toolset

The templates dialog box allows the selection of a combination of hardware and package
templates. The hardware templates are defined in the eCos database file, ecos.db, using CDL
script commands. The hardware template is selected from the drop-down list in the Templates
dialog box under the Hardware label.

Beneath the drop-down list is a brief description of the target platform selected. The hard-
ware template ensures that the proper packages are loaded into the Configuration Tool for a par-
ticular target platform, including HAL, I/O, and device driver packages. There is a hardware
template in the drop-down list for each of the supported evaluation platforms supported by eCos,
as shown in Appendix A, Supported Processors and Evaluation Platforms.

The package templates are generic across all hardware platforms and are defined under the
templates subdirectory located under the D:\ecos\packages directory. The package tem-
plate is also selected from a drop-down list under the Packages label in the Templates dialog box.

Next to the package template list is a drop-down list that allows you to select the version
of the package template to load. In this case, the current template version is selected.

A brief description of the package template selected is located beneath the drop-down
lists. Clicking the Details button displays a scroll list of the packages that are contained in the
package template selected, as shown in Figure 11.10.

Each package template contains its own subdirectory containing a file named cur-
rent.ect, as well as a ChangeLog file. You can generate your own package template files,
which can be useful if you need to incorporate different versions of various packages. Before the new
package template is noticed, the Configuration Tool needs to be restarted. The package template files
use CDL scripts to define the proper packages to load and configuration options to set according to
the template. The package templates included with eCos are defined in Table 1.2 in Chapter 1.

11.2.4.1 Conflicts and Resolutions
When templates are loaded into the Configuration Tool, oftentimes conflicts arise between dif-
ferent components and configuration options. How and when conflicts are displayed depends on
the settings selected under the Tools –> Options menu. This allows you to check for conflicts
after any item is changed, before saving and building, or never.

When the conflict option Automatically Suggest Fix is selected, a dialog box is displayed
when a conflict arises by the Configuration Tool, similar to the one shown in Figure 11.14,
which allows you to resolve the conflicts before proceeding with the configuration setup.

N O T E Prior to using templates for different hardware archi-
tectures you must make sure that the platform-specific cross-
development tools have been built for the hardware architecture
you have selected. You must also make sure that the appropriate
cross development tools are selected from the Tools –> Path –>
Build Tools menu in the Configuration Tool.

The Confi guration Tool will display errors if you try to confi gure
and b uild the eCos libr ary with the wrong cross-de velopment tools
installed. The installation of the cross-development tools is cov-
ered in Chapter 10.

The Configuration Tool 273

As we see in Figure 11.14, the top window displays the conflict that needs to be addressed
with the columns Item, Conflict, and Property, which is the same format as the Conflicts window.
The bottom window gives a Proposed Solution for each conflict. Each proposed solution can be
individually enabled or disabled by selecting the check box in the Item column or a global
enable, provided by the All button, and disable, provided by the None button, are included in the
dialog box. The default state is that all proposed solutions are enabled. Clicking the Continue
button applies the proposed solutions selected. Clicking the Cancel button exits the dialog box
without applying any solutions.

If you choose not to apply the proposed solutions, the resolve conflicts dialog box can be
displayed later by selecting Tools –> Resolve Conflicts from the menu bar. Unresolved conflicts
are also displayed in the Conflicts window and a total count is shown on the bottom-right side of
the status bar.

Figure 11.14 Resolve Conflicts dialog box.

N O T E There are a couple of points to understand about con-
flicts and resolutions. First, an automatic resolution might not be
generated for every conflict that comes about. You might need to
resolve the conflict yourself by altering the configuration in some
way. If this is the case, it is useful to use the Find tool, as
described in The Configuration Tool section of this chapter, to
search for the macro causing the conflict. The property column in
the Conflicts window gives you a hint as to what the problem is
and how you can resolve it.

Finally, resolving a conflict might cause other conflicts to occur.
In this case, you might, again, need to search and edit the configu-
ration to resolve the conflict. In other circumstances, you might
need to unload or load particular packages to resolve the conflict.

274 Chapter 11 • The eCos Toolset

11.2.5 Package Control

After a template has been loaded, it is often necessary to load or unload particular packages to
set up the configuration to support all of the features for your application. Adding and removing
packages is accomplished by using the Packages dialog box as shown in Figure 11.15. This dia-
log box is displayed by selecting Build –> Packages from the menu bar.

The left side of the Packages dialog box contains a scroll list of all available packages in the
eCos component repository under the label Available Packages. The right side contains a scroll list
of the packages currently selected in the configuration under the label Use These Packages. The
version of the currently selected package is shown in the drop-down list below the label Version. If
multiple packages are selected, the versions common to both packages are displayed in the version
drop-down list. A brief description of the package is located below the version. The description
window is blank when multiple packages are selected. In Figure 11.15, we see that the current
version of the RAM Filesystem package is selected from the available packages.

To add a package to the configuration, select the package from the available packages
list and click the Add button. Multiple packages can be selected by holding down the Ctrl key
while clicking packages. Next, you select the version of the package you want to add from the
Version drop-down list. This contains all versions installed under your component repository
installation. Since the current version is the one we installed in Chapter 10, this is the only
version shown.

To remove a package from the configuration, select the package from the current packages
being used and then click the Remove button. Again, multiple packages can be selected by hold-
ing down the Ctrl key while clicking packages.

11.3 Other eCos Tools
There are two additional tools installed with the eCos development kit that we cover in this sec-
tion. The first is the Package Administration tool. The Package Administration tool allows you to
control the packages contained in your local eCos component repository.

The other tool, the command-line configuration tool, allows you to configure packages the
same way as the graphical Configuration Tool. This section is intended to give you an overview

N O T E An error message might be displayed when you try to
add particular packages from the package control dialog box. For
example, if you were to try to add a device driver that is not sup-
ported by your selected platform, a message box appears inform-
ing you that you need to load a different hardware template in
order to load the package you just specified. This means that
there is some conflict between the packages you have currently
selected and the package you are trying to add. In this case, the
hardware template selected does not support the device driver
package you are trying to add.

Other eCos Tools 275

of the tools and a basic understanding of how they operate. Additional information for these
tools can be found online at:

http://sources.redhat.com/ecos/docs.html

11.3.1 The Package Administration Tool

Each package in the eCos component repository is a self-contained released module. A package
contains an individually versioned source code structure. This method supports individual pack-
age distributions or other third-party contributors.

The eCos Package Administration tool is a graphical interface, which runs on Windows,
that provides the management of all packages in the component repository. A command-line
interface can also be used to manage the packages in the repository. We focus on the use of the
graphical Package Administration tool in this section.

The Package Administration Tool is installed as part of the eCos development kit installation
covered in Chapter 10. The executable is located in the D:\ecos\bin directory. The Package
Administration tool can also be started from the Configuration Tool through the Tools –> Adminis-
tration menu. The source code for this tool, along with the other eCos tools, is also installed with
the eCos development kit under the D:\eCos\host\tools\pkgadmin subdirectory.

The Package Administration tool uses a Tcl script file, named ecosadmin.tcl, located
in the D:\ecos\packages subdirectory. This file allows you to install or remove packages in

Figure 11.15 Package control dialog box.

276 Chapter 11 • The eCos Toolset

the eCos component repository. Packages are distributed in a single file with a .epk extension.
Figure 11.16 shows a screen snapshot of the eCos Package Administration tool.

As we see in Figure 11.16, the left side of the Package Administration tool displays the
currently installed packages. The package icons are the same as those found in the Configuration
Tool, which are described in Table 11.1.

The plus and minus signs next to the Package icons allow you to expand or contract the
packages. When the package is expanded, the versions of the different packages currently
installed are displayed. We can see that in Figure 11.16, the i386 Common HAL package has the
current version installed.

Clicking the Add button brings up a dialog box that allows us to browse for a new eCos
package file (.epk) to install into our local source code repository. The Remove button deletes the
selected package from our local eCos repository. When we select the Remove button, a confirmation

Figure 11.16 The eCos Package Administration tool.

N O T E The Package Administration tool provides warnings
when removing certain packages from the component repository.
You need to take care in your selection of particular packages,
because remo ving cer tain pac kages—for example , the eCos Com-
mon HAL pac kage—might require y ou to reinstall the eCos de vel-
opment kit in order to get the pac kage bac k into the repositor y.

Additional Open-Source Tools 277

dialog box is displayed to ensure that the proper package is removed. The Repository button
allows us to select a different eCos repository to operate on.

11.3.2 The Command-Line Configuration Tool

Configuration of packages in the eCos repository for your specific application requirements can
also be done with the eCos command-line tool. The command-line configuration tool is installed
with the eCos development kit installation, which we did in Chapter 10.

The executable is located in the D:\ecos\bin subdirectory. The command-line config-
uration tool can be invoked from the bash shell prompt by running the file ecosconfig.exe.
Invoking the command-line executable without any parameters displays the help message show-
ing the different commands available. The source code for this tool is also installed with the
eCos development kit under the D:\ecos\host\tools\configtool subdirectory.

Since the graphical Configuration Tool is able to run on both Windows and Linux, with
version 2.0 and beyond, we do not go into the details of using the command-line configuration
tool. It is much easier to use the Configuration Tool to set up, configure, and build the eCos
library. The command-line configuration tool also does not offer the ability to interactively
resolve conflicts that arise during the configuration process.

11.4 Building the eCos Tools

Yes, even the eCos development tools, including the graphical Configuration Tool, the Package
Administration Tool, and the command-line configuration tool, are open source and, therefore,
you can build these tools if you desire or need to take on that task. This gives you complete con-
trol of your embedded development environment—you are completely autonomous.

The source code for the eCos toolset is contained in the eCos repository under the
D:\ecos\host directory. Also included in this directory are other testing tools and utilities.
The latest source code for the tools is available in the online CVS repository. Additional infor-
mation about building the eCos toolset can be found on the eCos home site, as well as informa-
tion regarding building the graphical Configuration Tool, at:

http://sources.redhat.com/ecos/ct2.html

11.5 Additional Open-Source Tools

In this section, we briefly look at a couple of additional open-source tools that can be used to
complete our embedded software development environment. The tools described in this section
are often used by developers to aid in producing more robust software and, therefore, a more
robust and reliable product.

This brief overview is to make you aware of other open-source tools that can be appended
to the core eCos development tools to round out your software development system. Sources for
getting additional information are included for you to investigate these tools on your own. All
files needed to set up the tools are provided on the CD-ROM.

278 Chapter 11 • The eCos Toolset

11.5.1 Source-Navigator

Source-Navigator is a code analysis and comprehension tool. Source-Navigator is an open-
source project that can aid in understanding and reengineering complex software projects. By
parsing through C, C++, Java, Tcl, [incr tcl], FORTRAN, COBOL, and assembly lan-
guage source code, Source-Navigator builds a project database. The database includes useful
information such as internal program structures, the location of function declarations, contents
of class declarations, and details the relationships between program components. The home site
for the Source-Navigator project can be found online at:

http://sources.redhat.com/sourcenav

Source-Navigator also includes a Software Development Kit (SDK). The SDK allows you
to add new parsers to support additional languages, modify the graphical user interface, query
the database for specific information, and use other applications in conjunction with Source-
Navigator, such as a version control system. In addition, it is possible to configure Source-Navi-
gator to build programs and launch the GNU debugger for a completely integrated development
environment.

Source-Navigator version 5.0 is included on the CD-ROM under the srcnav directory.
The file sourcenavigator50.zip contains the Windows executable you can use to set up
Source-Navigator on your development system. Pre-built binary files can also be downloaded
for Solaris and HPUX.

Simply unzip the sourcenavigator50.zip file, retaining the directory structure,
onto your D:\ drive. Source-Navigator requires approximately 17.4 Mbytes of disk space. All
necessary files are placed under the directory D:\SourceNavigator. To start Source-Navi-
gator, run the executable file snavigator.exe under the bin subdirectory.

Also included on the CD-ROM is the source code for the version 5.0 release of Source-
Navigator. The source code is contained in the file SN50-010322-source.tar.gz also
under the srcnav directory.

The Source-Navigator User’s Guide includes details about using the project editor, using
the symbol browser, customizing Source-Navigator for your specific needs, and other features,
as well as a tutorial. The User’s Guide can be found online at:

http://sources.redhat.com/sourcenav/online-docs/userguide/index_ug.html

The Source-Navigator Programmer’s Reference Guide contains information about adding
parsers, the database API, and integrating a version control system into Source-Navigator. The
Programmer’s Reference Guide can be found online at:

http://sources.redhat.com/sourcenav/online-docs/progref/index_pr.html

Two discussion mailing lists are available for Source-Navigator. The first is a general dis-
cussion list for issues and submission of patches, which is located online at:

http://sources.redhat.com/ml/sourcenav

Additional Open-Source Tools 279

Posts for this list should be sent to:

sourcenav@sourceware.cygnus.com

The other mailing list is found online at

http://sources.redhat.com/ml/sourcenav-announce

This is an announcement list for posts about new releases or other important information.
Posts for the announcement list should be sent to:

sourcenav-announce@sourceware.cygnus.com

11.5.2 Splint

No, lint is not referring to the stuff you find in the deepest recesses of your pockets. A lint pro-
gram is used to statically verify a program, or part of a program, against standard libraries,
checks the code for portability, and checks the code for common errors such as ignored return
values, unused declarations, and type inconsistencies.

Although a compiler provides some checking, lint checks these areas of a program much
more carefully and provides output messages where possible problems may occur. Lint can be
used to develop more robust software.

Splint is an open source development project; therefore, it can be used free of charge.
Splint stands for Secure Programming Lint or Specifications Lint. Additional information about
Splint can be found online. The home site for Splint is located at:

www.splint.org

Included on the CD-ROM under the splint directory is a zip file, splint-
3016win32.zip, which contains the Splint executable version 3.0.1.6, as well as documenta-
tion on how to set up and use the program. A Linux version of Splint is also included on the CD-
ROM under the splint\linux directory in the file splint-3.0.1.6.Linux.tgz.

Also included on the CD-ROM under the splint directory is the source code for this
Splint version. This is located in the file splint-3.0.1.6.src.tgz. Instructions for build-
ing Splint can be found online at:

www.splint.org/source.html

To install Splint, unzip the file splint-3016win32.zip, retaining the directory struc-
ture, onto your D:\ drive. This will place all Splint files under the directory D:\splint. The
executable is located in the bin subdirectory. Two environment variables need to be set as follows:

• LARCH_PATH="D:\splint\lib"
• LCLIMPORTDIR=D:\splint\imports

Finally, set up the command path to include the directory containing the splint.exe
executable. Additional installation information can be found in the file README file or on the
Splint home site.

280 Chapter 11 • The eCos Toolset

11.6 Summary
In this chapter, we focused on the different eCos development tools. We started with an overview
of the CDL used in the eCos framework. Moving onto the Configuration Tool, we discovered the
relationship between the CDL files and the graphical representation of packages in the Configu-
ration Tool. We also examined the eCos database file and how it is used by the Configuration
Tool to represent the information in the repository.

A typical eCos configuration involves selecting one target and one template. Packages can
then be added and/or removed based on the requirements of the system. Then, fine-grained con-
figuration is performed on the configuration options.

Then we moved on to the other tools available in the eCos development kit, as well as
other open-source tools that allow us to configure a complete embedded development environ-
ment free of charge since the tools are all open source. Now that we have an understanding of
the eCos Configuration Tool, we are able to move to the next step, which is using the eCos tools
to develop our own application.

281

C H A P T E R 1 2

An Example
Application Using
eCos

n this chapter, we get down to using eCos and the development tools. The examples here
detail one method for setting up a debug environment using RedBoot, building an eCos

library, and then building an application that incorporates eCos. There are several different
approaches to use to achieve a similar development and debug environment using different con-
figuration options. These examples provide a straightforward method to achieving our goal:
getting eCos up and running.

We begin by building the RedBoot ROM monitor, which allows us to debug our applica-
tion using GDB on our host development system. Next, we build an eCos library image for us to
use with our application. Then, we build a simple application, which includes the eCos library
image, to understand the process. Each of the examples in this chapter builds on the previous
steps. After becoming familiar with the process, you will be able to tailor the build and debug
procedure to meet your own needs and development style.

12.1 The eCos Build Process
The main goal of the eCos build process is the generation of an eCos library. This library is
called libtarget.a. Other target files are also generated, such as a linker script file and, in
some cases, additional libraries may be generated.

The RedBoot build process is slightly different from that for eCos because a binary file is
generated at the end of a RedBoot build, which is then installed on the target hardware.

The eCos library build process uses makefiles and the GNU make utility to assist in gen-
erating the eCos library. The eCos build process involves three separate trees: source, build,
and install. The source tree is the source code repository, which is located under the pack-
ages directory.

I

282 Chapter 12 • An Example Application Using eCos

The build tree is generated by the configuration tools and contains intermediate files, such
as makefiles and object files. The structure of the build tree might differ between system builds.
Typically, each package in the configuration has its own directory in the build tree, which is used
to store that package’s makefiles and object files.

The install tree is the location of the eCos main library file and the exported header files,
which are used when the application is built. The library files are located under the lib subdi-
rectory, and the header files are contained under the include subdirectory. By default, the
build and install trees are contained in the same working directory.

12.1.1 A Closer Look

Let’s take a closer look at the eCos build process using our example eCos configuration that we
cover later in this chapter. In this example, we are building an eCos library for use on the i386
PC hardware platform.

The build process starts with a configuration. We are able to construct a configuration
according to our requirements using the Configuration Tool, which allows us to incorporate cer-
tain packages and set configuration option values. After we have included the packages we need
and set the configuration options accordingly, we save our configuration file in the file
ecos.ecc. This generates the build and install tree in our working directory. A detailed look at
the build and install tree is shown in Figure 12.6 later in this chapter.

By saving our configuration, the Configuration Tool generates the files needed for our build
process. This includes makefiles, located in the build tree, and header files, located in the install tree.

For now let’s focus on the i386 HAL package and how the configuration option settings
are used to generate files for the build process. Figure 12.1 shows a portion of the Configuration
Tool configuration window, along with the generated build files that match the configuration
option settings.

As we see in the upper-left corner of Figure 12.1, the i386 Architecture package
(CYGPKG_HAL_I386) is displayed from the Configuration Tool. The Enable I386 FPU Sup-
port (CYGHWR_HAL_I386_FPU) configuration option is enabled, while the other two configu-
ration options are disabled. The following descriptions correspond to the numbers in
Figure 12.1. The ellipsis (...) in the code excerpts denote places that the code was cut out to
allow us to focus on specific areas of the source files.

1. First, we see the i386 Architecture package represented in the CDL script file
hal_i386.cdl, which is part of the source tree. Since this package is loaded into the
configuration, the Configuration Tool uses the i386 Architecture package CDL script
file to generate the necessary build files.

The cdl_package command for the CYGPKG_HAL_I386, shown on line 1, con-
tains the files that need to be compiled on line 3, designated by the compile property.
The compile property is used by the Configuration Tool at build time to determine

283

F
ig

u
re

 1
2.

1
C

on
fig

ur
at

io
n

T
oo

l f
ile

 g
en

er
at

io
n

di
ag

ra
m

.

h
a
l
_
i
3
8
6
.
c
d
l

1

c
d
l
_
p
a
c
k
a
g
e

C
Y
G
P
K
G
_
H
A
L
_
I
3
8
6

{

2

.
.
.

3

c
o
m
p
i
l
e

h
a
l
_
m
i
s
c
.
c

c
o
n
t
e
x
t
.
S

i
3
8
6
_
s
t
u
b
.
c

h
a
l
_
s
y
s
c
a
l
l
.
c

4

.
.
.

5

m
a
k
e

{

6

<
P
R
E
F
I
X
>
/
l
i
b
/
v
e
c
t
o
r
s
.
o

:

<
P
A
C
K
A
G
E
>
/
s
r
c
/
v
e
c
t
o
r
s
.
S

7

.
.
.

8

@
r
m

v
e
c
t
o
r
s
.
t
m
p

9

}

1
0

.
.
.

1
1

}

h
a
l
_
i
3
8
6
.
h

1

.
.
.

2

#
d
e
f
i
n
e

C
Y
G
H
W
R
_
H
A
L
_
I
3
8
6
_
F
P
U

1

3

.
.
.

m
a
k
e
f
i
l
e

1

.
.
.

2

$
(
P
R
E
F
I
X
)
/
l
i
b
/
v
e
c
t
o
r
s
.
o
:

$
(
w
i
l
d
c
a
r
d

$
(
R
E
P
O
S
I
T
O
R
Y
)
/
$
(
P
A
C
K
A
G
E
)
/
s
r
c
/
v
e
c
t
o
r
s
.
S
)

3

.
.
.

4

@
r
m

v
e
c
t
o
r
s
.
t
m
p

5

.
.
.

S
o

u
rc

e
Tr

ee

In
st

al
l T

re
e

B
u

ild
 T

re
e

e
c
o
s
.
e
c
c

1

.
.
.

2

c
d
l
_
c
o
m
p
o
n
e
n
t

C
Y
G
H
W
R
_
H
A
L
_
I
3
8
6
_
F
P
U

{

3

.
.
.

4

u
s
e
r
_
v
a
l
u
e

1

5

.
.
.

6

}
;

7

.
.
.

1

2
3

4

284 Chapter 12 • An Example Application Using eCos

which files need to be compiled in order to include the features of the i386 Architecture
package. On lines 5 through 9 are the make properties, which are used by the Configu-
ration Tool to generate the appropriate makefile used to compile the i386 Architecture
package.

2. Next, we see a portion of the makefile generated by the Configuration Tool, which
occurs when we save our configuration. This makefile is part of the build tree and is
located in our working directory under ecos_build\ hal\i386\arch\current.
Details about the build and install tree are covered later in this chapter. In Figure 12.1,
we see the translation from the CDL script file make property to the generation of the
makefile on lines 2 through 4.

3. Now we see that the Enable I386 FPU Support (CYGHWR_HAL_I386_FPU) configu-
ration option is enabled in the Configuration Tool. When the configuration is saved in
the ecos.ecc configuration file, the CDL script is generated as we see on lines 2
through 6.

4. Finally, the Configuration Tool generates a header file hal_i386.h that includes the
CYGHWR_HAL_I386_FPU configuration option. This header file is located in the
install tree portion of our working directory under the ecos_install\
include\pkgconf directory. Since this option is enabled, the Configuration Tool
defines the configuration option CYGHWR_HAL_I386_FPU as 1, which we see on line
2 of this file excerpt.

The preceding example shows the simple generation by the Configuration Tool of two files
for the configuration setup. After all files are generated and the appropriate header files are
included in the install tree, the build process can continue.

Next, the relevant source files, based on the packages included in the configuration, are
compiled. The Configuration Tool determines which files need to be compiled from the CDL
script file, as shown in Figure 12.1 in the hal_i386.cdl file. The compile property alerts
the Configuration Tool of the necessary files for including the specified package’s functionality
into the build.

Global compiler flags (CYGBLD_GLOBAL_FLAGS) are used during the compilation stage
of the build process. Some packages have their own specific build options as well. In addition, in
some cases, packages allow certain global compiler flags to be suppressed. The compiler flags
can be set just as the other configuration options.

During the build process, the object files are output into the build tree. The build tree is
structured according to packages, similar to the source tree. Then, the Configuration Tool links
the files together. Global linker flags (CYGBLD_GLOBAL_LDFLAGS) can be set, just as the
compiler flags.

The compiler flags and linker flags can also be displayed in a dialog box in the Configura-
tion Tool. An example of this dialog box is shown in Figure 12.2.

Examples Overview 285

The dialog box in Figure 12.2 is displayed by selecting Build –> Options. The compiler
(CFLAGS) or linker flags (LDFLAGS) are selected using the drop-down list in the upper-left cor-
ner of the dialog box. The left pane displays the packages in the configuration. The right pane
shows the flags for the specific package selection. Different flags can be displayed by selecting
different packages in the left pane. In Figure 12.2, the global compiler flags are displayed since
the entire configuration is selected in the Packages pane.

As the final step in the build process, for an eCos image, the Configuration Tool invokes
the archive utility to create a library file. This library file is output into the install tree under the
ecos_install\lib directory. In the case of building a RedBoot image, the final product is a
binary file, which is output in the install tree under the ecos_install\bin directory.

Additional details about each step in the eCos build process, as well as information on
how to customize the build process, are provided in the eCos Component Writer’s Guide. This
document can be found online at:

http://sources.redhat.com/ecos/docs.html

12.2 Examples Overview
Several different approaches can be used to configure a target system to load and debug eCos
applications. The method described here offers a direct approach to using the different tools
available in the eCos system. Each platform has its own techniques for loading and debugging

Figure 12.2 Configuration Tool build options dialog box.

286 Chapter 12 • An Example Application Using eCos

code. Using the examples in this chapter, you will have a solid understanding of the development
process using the eCos system.

The examples in this chapter assume that one of the supported hardware platforms is used
for the target system. Moving to your own hardware platform and getting eCos running is the
end goal, which we discuss in Chapter 13, Porting eCos.

An overview of the steps involved in building and running the examples in this chapter is
shown in Figure 12.3.

As we see in Figure 12.3, the first stage covered in the examples in this chapter is to build
the RedBoot ROM monitor to provide application load and debug support. Next, we install the
RedBoot image onto the target hardware. These first two stages are covered in the RedBoot section.

The next step is to configure eCos and build the libraries according to our configuration
settings, which is covered in the eCos section. These libraries are linked in by the application
when the application is built.

Now we can build our example application using the eCos libraries from the previous
stage. This application is a simple example showing some of the functionality provided by eCos.
After we have an application image, we can run and debug the image using RedBoot and GDB.
These two stages are covered in the Application section.

12.2.1 Development Hardware Setup

The development configuration used for the examples in this chapter, which shows the PC plat-
forms and other hardware modules, is detailed in Figure 12.4.

Figure 12.4 gives us an overview of the major components used in the development envi-
ronment for the examples in this chapter. The Host Development System contains the complete
eCos development environment, which we set up in Chapter 10, The Host Development Plat-
form. This system is also the host when running GDB during debug sessions.

Figure 12.3 Overview of the
stages for examples covered in
 this chapter.

Build RedBoot for running and
debugging application

Install RedBoot on target

Build eCos libraries

Build application and link in
eCos libraries

Run and debug application

Examples Overview 287

The i386 PC Target is a Pentium-based PC used to run RedBoot and our applications. The
target system also needs to have a floppy drive. As we see in Figure 12.4, the host connects to the
target via serial and Ethernet. We can use either connection for console and debug communica-
tion between the host and target, which was covered in Chapter 9, The RedBoot ROM Monitor.

Finally, a network hub is used to connect the Ethernet ports together between the host and
target system. The diagram gives the IP addresses used for the examples in this chapter. It might
be necessary in your own development environment to use different IP addresses based on your
network configuration. The points where the network is configured are detailed in the examples.

When using the serial port for debug and communications a null modem cable is used to
connect the COM port of the host to the serial port on the target.

The Ethernet cards used in both PCs use the Intel 82559 Ethernet controller. It is important
to use an Ethernet card that contains a controller supported by eCos; otherwise, the Ethernet port
might not work properly for communications.

In this development environment, the IP addresses are statically configured. This elimi-
nates the need for a DHCP or BOOTP server, which simplifies the development environment.
The Host Development System uses IP address 192.168.0.2. The RedBoot IP address is
192.168.0.10. Information regarding RedBoot and static IP addresses is covered in
Chapter 9. By using these IP addresses, a private network is created. Both connections are on the
same network using a subnet mask of 255.255.255.0.

Figure 12.4 Development environment configuration for eCos examples.

N O T E It is not a good idea to use static IP addresses in a
released product. The network that a device goes into can
vary widely. In this case, it is better to use a dynamic IP
address configuration scheme such as DHCP or BOOTP in
order for the device to obtain its IP address. However, we use
static IP addresses in these example scenarios to simplify
things.

Host Development
System

Network Hub

i386 PC Target

IP Address:
192.168.0.2

Ethernet Ethernet
RedBoot IP

Address
(Static):

192.168.0.10

Serial
COM1 COM1

288 Chapter 12 • An Example Application Using eCos

12.2.2 eCos Tools

The Configuration Tool, instead of the command-line interface, is used to configure and build
the images needed for the examples in this chapter. Other tools that are used are also detailed in
the examples in this chapter.

The examples in this chapter use a working directory to store the build and configuration
files. The working directory is D:\workdir used for each example.

All software needed to recreate the development environment used for building and run-
ning these examples are contained on the CD-ROM under the examples directory. These files
offer a good starting point to bring up your own development environment, which you can then
augment to meet your development and debugging requirements.

12.3 RedBoot

In this section, we go through the process of building, loading, and booting RedBoot. There are
pre-built binary images of the RedBoot ROM monitor. These are located in the online eCos
repository under the subdirectory ecos\images. The RedBoot images are grouped according
to hardware architecture. It might suffice to use these images in the beginning; however, under-
standing how to build your own RedBoot image is important if you need to make bug fixes or
enhance the standard RedBoot program.

The RedBoot image built in this example uses the FLOPPY Startup Type configuration
option. This means that the RedBoot image boots and runs from the floppy disk drive of the
target PC.

12.3.1 Building RedBoot

As mentioned before, we are going to use the Configuration Tool to configure and build Red-
Boot. Since we are using RedBoot to debug our example application, we need to configure the
IP addresses properly. We discussed IP address configuration with respect to RedBoot in
Chapter 9.

Before we begin, let’s get an overview of the build procedure. Figure 12.5 shows us the
flow of the build and install procedure for our RedBoot example.

As we see in Figure 12.5, the beginning of the RedBoot build procedure starts with the
source tree; in our case, this is located under D:\ecos\packages. The appropriate files are
included into our configuration, which we store in the file redboot.ecc.

N O T E The Configuration Tool is evolving just as the eCos
source code itself. Since this is the case, there are times when
the Configuration Tool does not behave exactly as expected.
In these cases, a note is given describing the circumstance
that might occur and workarounds are detailed to ensure that
you can proceed with the examples successfully.

RedBoot 289

Next, the Configuration Tool uses the GNU cross-development tools, such as i386-elf-gcc,
to build our RedBoot image. The output from the Configuration Tool is stored in the build and
install trees. Our final RedBoot image, redboot.bin, is the product of our build procedure.
Finally, this image is installed onto a floppy drive using the Cygwin tools.

In our examples, we are going to use a static IP address for RedBoot. The static IP address
used depends on the specific network configuration where the target hardware resides. The hard-
ware environment for the examples, including the IP address configuration, is shown in
Figure 12.4.

The CD-ROM contains an eCos configuration file (.ecc) that was saved after going
through the steps to build the RedBoot image. The RedBoot configuration file is redboot.ecc,
which is located under the examples\redboot subdirectory. This file is provided in case you
need to recreate the exact configuration file used for this example. Also included in this directory

Figure 12.5 RedBoot build and install procedure flow diagram.

Floppy
Disk

Source Tree
(Local Repository)

Build
Tree

Install
Tree

Cygwin Tools
(dd)

redboot.bin

GNU Cross
Development

Tools and Make
Utility

(GCC, AS, LD, AR)

Configuration
Tool

redboot.ecc

redboot_FLOPPY.ecm

290 Chapter 12 • An Example Application Using eCos

on the CD-ROM is the entire install tree under the directory examples\redboot\
redboot_install created from the example RedBoot build procedure. The binary files cre-
ated (redboot.bin and redboot.elf) are in the bin directory under the install tree. The
MLT directory is also included under examples\redboot\redboot_mlt.

STEP 1
The first step is to load the packages we need to build the RedBoot image using the Configura-
tion Tool. For this, we use a template. The template dialog box is launched by selecting Build –>
Templates.

In the templates dialog box we select i386 PC Target from the hardware drop-down list.
From the packages drop-down list we select the redboot package. Then, click the OK button.

The Resolve Conflicts dialog box might pop up because we are changing to a new tem-
plate with different configuration option settings. Using the Configuration Tool, we can resolve
these conflicts automatically. We want to click the Continue button to proceed with loading the
proper packages and configuration options for the i386 PC Target.

STEP 2
Next, we want to set up the configuration options for our RedBoot build. We can do this by man-
ually selecting the various configuration option settings, or by importing a pre-configured eCos
minimal configuration file (.ecm). The .ecm files are included in the source code repository
for each HAL platform supported, which give us a baseline for configuration settings needed to
build a valid image.

To import the eCos minimal configuration file, we select File –> Import. Now we browse
to the location of the i386 PC platform redboot_FLOPPY.ecm file. This file is located under
the D:\ecos\packages\hal\i386\pc\current\misc subdirectory. After selecting
the redboot_FLOPPY.ecm file, we click the Open button.

The resolve conflicts dialog box might pop up. Click the Continue button to proceed with
importing the eCos minimal configuration file.

STEP 3
Now we need to verify the configuration option settings. First, we want to ensure that the Red-
Boot IP address is configured properly.

The RedBoot IP address configuration options are located within the RedBoot ROM Mon-
itor (CYGPKG_REDBOOT) package under the RedBoot Networking (CYGPKG_REDBOOT_
NETWORKING) package. The configuration option we want to enter is the Default IP Address
(CYGDAT_REDBOOT_DEFAULT_IP_ADDR). The static IP address for the RedBoot image is
192,168,0,10. We also want to enable the Do Not Try To Use BOOTP
(CYGSEM_REDBOOT_DEFAULT_NO_BOOTP) configuration option.

N O T E The Default IP Address configuration option must be
entered with commas separating the IP address numbers, not
decimals.

RedBoot 291

We also want to verify the configuration of the communication channels on the target sys-
tem. The communication channels are nested under the eCos HAL package, under i386 Architec-
ture (CYGPKG_HAL_I386) package, under the i386 PC Target (CYGPKG_HAL_I386_PC)
platform package. The configuration suboptions under the i386 PC Target package control the
settings for the communication channels. The Number of Communication Channels on the
Board (CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS) configuration option defines
the PC serial ports that are used to communicate with the host. The default is set to 3 for this
option. The mapping of these communication channels to PC ports is detailed in Table 12.1.

The communication channels for debug (Debug Serial Port [CYGNUM_HAL_VIRTUAL_
VECTOR_DEBUG_CHANNEL]) and console (Default Console Channel [CYGNUM_HAL_
VIRTUAL_VECTOR_CONSOLE_CHANNEL_DEFAULT]) are configured to use channel 0, or
COM 1. However, the communication channel RedBoot receives input on first is used as the
communication channel.

Since we have the configuration option Output to PC Screen (CYGSEM_HAL_I386_
PC_DIAG_SCREEN) enabled, you can use the PC monitor and keyboard for communication
with RedBoot.

STEP 4
Next, we save our configuration file. For this, we select File –> Save As. We need to pick a name
for the eCos configuration file (.ecc) that we are saving. We use the filename redboot.ecc.

Now, we browse to our working directory location where the build and install trees are
generated. We use D:\workdir\redboot. If this directory does not exist, you can create it
now. Then, click the Save button.

The Configuration Tool takes the .ecc filename selected, redboot in our case, and cre-
ates the directories needed to build the image we have configured. The Configuration Tool appends
_build and _install to the filename when generating the build and install tree directories.

Figure 12.6 shows the working directory structure created by the Configuration Tool for
the RedBoot image we are building.

The redboot_build subdirectory contains the build tree and is used by the Configu-
ration Tool to store the different files used and created in the build process, such as makefiles and

Table 12.1 Communication Channel to PC Port Mapping

Communication Channel PC Port

Channel 0 COM 1

Channel 1 COM 2

Channel 2 PC Screen and Keyboard

292 Chapter 12 • An Example Application Using eCos

object files. The redboot_install subdirectory contains the install tree and includes the
final output binary images as well as the header files used for the build process. The
redboot_mlt subdirectory contains the memory layout files used by the Configuration Tool
Memory Layout Tool.

STEP 5

Now we have the packages and configuration options settings loaded that we need to build the
RedBoot image for the i386 PC platform. We can now proceed with building the image. We
want to verify that the status bar, in the lower right-hand corner, on the Configuration Tool shows
No Conflicts. If conflicts were present in our configuration, we could view them by opening the
Conflicts window by selecting View –> Conflicts, or using the hot key Alt+5.

To start the build, select Build –> Library, or click the Build Library icon on the toolbar.
During the build process, the Configuration Tool shows messages on the status bar. In this case,
Building is displayed. The output window also displays messages as the build progresses.

When the RedBoot build is complete, the output window displays build finished. If
build errors were to occur, the build process would halt and specific error messages would be
displayed in the output window. After the errors are corrected, selecting Build –> Library again
proceeds with the build process.

The file we need is located under redboot_install\bin subdirectory. We use the
redboot.bin file.

12.3.2 Installing RedBoot

The method for installing the RedBoot image on the target hardware varies from platform to
platform. The next steps detail the process for booting an image from a floppy disk drive. Using
other Startup Types or hardware platforms might require a different procedure. A floppy disk is
required to install and run RedBoot using the floppy drive.

Figure 12.6 Working directory
structure for RedBoot example. redboot

redboot_install

redboot_mlt

bin

include

lib

redboot_build

RedBoot 293

Additional information about installing RedBoot on the various supported hardware plat-
forms can be found in the RedBoot documentation online at:

http://sources.redhat.com/ecos/docs.html

STEP 6
Launch the Cygwin Bash Shell by double-clicking the Cygwin desktop icon or selecting Cygwin
Bash Shell under Start –> Programs –> Cygnus Solutions –> Cygnus Solutions. Using the bash
shell, we enter commands to mount the floppy drive and install the binary image onto a floppy disk.

First, we need to make sure that the floppy drive is mounted properly on the development
system. For this, we enter the command:

$ mount -f -b //./a: /dev/fd0

STEP 7
Next, we want to make sure we are in the proper subdirectory to install the RedBoot binary
image. We want to change to the proper working directory in the bash shell using the command:

$ cd d:/workdir/redboot

STEP 8
Now, we place a floppy disk into our host development system’s floppy disk drive. We are using
the dd utility, which was installed during the Cygwin installation procedure, to transfer the Red-
Boot image to the floppy disk.

The dd utility writes raw data from the standard input to standard output. In our case, we
write the RedBoot binary file from the hard disk to our floppy disk.

To install the RedBoot binary image onto the floppy drive we use the command:

$ dd conv=sync if=redboot_install/bin/redboot.bin of=/dev/fd0

After the process is complete, a message is displayed showing the records converted,
similar to:

178+1 records in
179+0 records out

The operation is complete when the bash shell returns the $ prompt.

12.3.3 Booting RedBoot

We are using the development environment configuration as shown in Figure 12.3. Using this
configuration, we are able to debug applications over the serial port or Ethernet port, depending
on the functionality in the application.

N O T E The process of transferring the RedBoot image to the
floppy disk erases any file system and data contained on the
disk.

294 Chapter 12 • An Example Application Using eCos

For this example, we are using the Windows resident terminal program called HyperTerminal,
although any terminal program can be used. Remember, RedBoot uses the first communication
channel it receives input from as its port to communicate with the host.

STEP 9
Place the floppy disk containing the RedBoot image into the drive on the target PC. Power up the
PC. Since our configuration allows output to the PC monitor (as described in step 3), RedBoot
outputs the initialization message shown in Code Listing 12.1 to the screen.

1 Ethernet eth0: MAC address 00:d0:bd:43:9d:d2

2 IP: 192.168.0.10, Default server: 0.0.0.0, DNS server IP: 0.0.0.0

3

4 RedBoot(tm) bootstrap and debug environment [FLOPPY]

5 Non-certified release, version UNKNOWN - built 12:22:06, Apr 20
2002

6

7 Platform: PC (I386)

8 Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

9

10 RAM: 0x00000000-0x000a0000, 0x0008ac30-0x000a0000 available

11 RedBoot>

Code Listing 12.1 RedBoot initialization message.

Code Listing 12.1 shows us the initialization message after booting RedBoot. The RedBoot
network configuration information is displayed on lines 1 and 2, including the static IP address
we configured in step 3, 192.168.0.10. Lines 4 and 5 give us information about the RedBoot
image, including the floppy startup and the build time and date. The platform information is out-
put on line 7. The RAM memory utilization and availability is output on line 10. Finally, the
RedBoot prompt is output on line 11 showing that RedBoot is ready for input.

STEP 10
Next, we connect to the target PC using HyperTerminal. The communication parameters we set
in HyperTerminal are a baud rate of 38400, 8 data bits, no parity, 1 stop bit, and no flow control.
After clicking connect, we can press Enter to get a RedBoot prompt displayed.

We can verify communication over the serial port by entering the help command, to
which RedBoot responds with the commands available.

STEP 11
Finally, we verify our network connections using the ping utility. We verify the connection
between our host and the target. We accomplish this by entering the following command at the
RedBoot prompt:

RedBoot> ping -v -n 3 -h 192.168.0.2

eCos 295

The preceding ping command is set in verbose mode, using the –v option; the number of
ping packets to send is set to 3 by the –n option; and the address to send the ping packets is set
to 192.168.0.2 by the –h option. The IP address you use depends on your network configu-
ration. This results in the output shown in Code Listing 12.2.

1 Network PING - from 192.168.0.10 to 192.168.0.2
2 seq: 1, time: 1 (ticks)
3 seq: 2, time: 1 (ticks)
4 seq: 3, time: 1 (ticks)
5 PING - received 3 of 3 expected
6 RedBoot>

Code Listing 12.2 Response output from ping command to host PC.

On line 1 of Code Listing 12.2, RedBoot displays the message that the ping command is
executing and the two IP addresses being used. Lines 2 through 4 output the response sequence
numbers and times, in ticks, from the ping packets. Finally, line 5 gives a summary of the suc-
cessful reception and response of the three ping packets sent from the target to the host.

A telnet program can also be used to connect to the target PC via the Ethernet port. This
allows you to use telnet to send commands to and receive output from RedBoot, in the same way as
using the serial port. One thing to remember is that the telnet connection must be on port 9000, as
set by the TCP Port To Listen For Incoming Connections (CYGNUM_REDBOOT_NETWORKING_
TCP_PORT) configuration option under the RedBoot package.

12.4 eCos

Continuing with our examples, we now need to configure and build an eCos image that will be
linked with our application. The eCos image we build in this section uses the RAM Startup Type
configuration option. This allows us to use RedBoot to load our example application into RAM.
We are then able to run and debug our application.

12.4.1 Building eCos

The main goal of this stage is to generate the eCos library file according to our configuration set-
tings. The flow diagram for the eCos build procedure used in this example is shown in Figure 12.7.

N O T E Although this is not true for the PC platform booting
from the floppy drive, other hardware platforms allow RedBoot
images to be installed into flash ROM memory. In these
cases, constantly reprogramming the flash device can be
tedious . Therefore, RedBoot can be used to update an older
image r unning from fl ash memor y. Information about updating
existing RedBoot images residing in fl ash memor y on various tar-
get platf orms can be f ound in the RedBoot documentation online
at http://sources .redhat.com/ecos/docs .html.

296 Chapter 12 • An Example Application Using eCos

Similar to the RedBoot build procedure, we start with the source tree as shown in
Figure 12.7. After setting up our configuration according to our specification using the Configu-
ration Tool, we save the file ecos.ecc.

Next, the Configuration Tool generates the appropriate files for our build. The GNU cross-
development tools are used to compile the source code files and produce our final output file, the
eCos library libtarget.a. Other necessary files, which include additional libraries and a
linker script file, are also produced by the Configuration Tool.

The CD-ROM includes the eCos configuration file (.ecc) containing the packages and con-
figuration option settings used in this example. The filename is ecos.ecc and is located in the
examples\ecos subdirectory. As with the RedBoot image, you can recreate the eCos library
files by copying this file to your working directory and then loading it into the Configuration Tool.

Also included in this directory on the CD-ROM is the install tree from this example eCos
build procedure. These files are located under the examples\ecos\ecos_install directory.
The MLT directory is also included under examples\ecos\ecos_mlt.

Figure 12.7 eCos build procedure flow diagram.

N O T E It is a good idea to start with a new configuration by
selecting File –> New from the menu before proceeding with the
eCos build procedure. This resets the Configuration Tool to its
default platform and default configuration option settings, and
clears out any previous configurations.

Source Tree
(Local Repository)

Build
Tree

Install
Tree

GNU Cross
Development

Tools and Make
Utility

(GCC, AS, LD, AR)

Configuration
Tool

ecos.ecc

libtarget.a

eCos 297

STEP 1
We need to load the packages to build the eCos image. We use a template to get a baseline of
packages loaded to meet our requirements.

The template dialog box is launched by selecting Build –> Templates. In the Templates
dialog box, we select i386 PC Target from the hardware drop-down list. From the packages
drop-down list we select the default package. This selects the standard packages for incorpo-
ration into the eCos image. Then, click the OK button.

The Resolve Conflicts dialog box might pop up because we are changing to a new tem-
plate with different configuration option settings. Using the Configuration Tool, we can resolve
these conflicts automatically. We want to click the Continue button to proceed with loading the
proper packages and configuration options for the i386 PC Target.

STEP 2
Now that we have a baseline configuration for our eCos image, we want to verify the configura-
tion option settings. You might need to tailor the configuration option settings according to the
specific target hardware you are using. Some of the configuration options might be set to the
proper values for our build by default. In this case, no modifications are necessary.

First, we want to verify the Startup Type (CYG_HAL_STARTUP) configuration option setting.
This is nested under the eCos HAL package, under i386 Architecture (CYGPKG_HAL_I386) pack-
age, under the i386 PC Target (CYGPKG_HAL_I386_PC) platform package. We want to set the
Startup Type to RAM, so that we can load our application into RAM for running and debugging.

Next, since we are using the RedBoot ROM monitor, we want to verify the ROM Monitor
Support components. Specifically, we want to enable the Work With a ROM Monitor (CYGSEM_
HAL_USE_ROM_MONITOR) configuration option. Since we are going to use GDB on our host
system for debugging, we want to set this option to GDB_stubs.

It is a good idea to enable asserts during the debug phase of a project. This enables various
levels of checking in the software, such as argument checking, to ensure the software is behav-
ing properly. As the software gets closer to a production release asserts should be disabled to
ensure there are no timing problems hiding in the system. Asserts are enabled by selecting the
Asserts & Tracing (CYGPKG_INFRA_DEBUG) component and then enabling the Use Asserts
(CYGDBG_USE_ASSERTS) configuration option, which is enabled by default. This configura-
tion option is located under the Infrastructure package.

Other configuration options might need to be validated or modified for your specific target
hardware. This step is intended to make us aware of some of the key configuration option settings
necessary to build an eCos library that works for our examples.

STEP 3
Next, we save our configuration file by selecting File –> Save As. We use the filename ecos.ecc.

Now, we want to browse to our working directory where we want the eCos files stored. We
use D:\workdir\ecos. If the directory does not exist, you can create it now. Then, click the
Save button.

298 Chapter 12 • An Example Application Using eCos

The Configuration Tool saves the file ecos.ecc under the new eCos working directory
and creates the build and install tree directories named ecos_build and ecos_install,
respectively. The Configuration Tool MLT file is contained in the ecos_mlt directory. The
directory structure for this build process is similar to that shown in Figure 12.4.

STEP 4
We are now ready to build the eCos library. Prior to building, we ensure that there are no con-
flicts in our configuration, which is shown in the bottom-right corner on the status bar. If con-
flicts were present in our configuration, we could view them by opening the Conflicts window by
selecting View –> Conflicts, or using the hot key Alt+5.

To start the build, select Build –> Library, or click the Build Library icon on the toolbar.
During the build process, the Configuration Tool shows the Building message on the status bar.
The output window also displays messages as the build progresses. After the build completes,
the output window displays build finished.

If build errors were to occur, the build process would halt and specific error messages
would be displayed in the output window. After the errors are corrected, selecting Build –>
Library again continues the build process.

The files that we need for the next application example are located in the
ecos_install subdirectory. The header files used when we build our application are con-
tained under the ecos_install\include directory. The eCos library files and linker script
are located under the ecos_install\lib directory.

We are now ready to proceed with building our application.

12.5 Application
We are now at the point where we can build our application and incorporate our eCos library built
in the previous stage. After we have our application image, we can use RedBoot to load the appli-
cation into RAM and run it. In this section, we also look at using GDB to debug our application.

N O T E If modifi cations need to be made to a confi guration after
it is built, the Confi guration Tool can be used to remo ve the b uild
files gener ated. This is done b y selecting Build –> Clean from the
menu. However, there are times when this does not correctly
remove all files and can cause prob lems in the resulting output
image . To be saf e, it is best to delete the b uild and install trees to
ensure that all fi les are reb uilt for an image . In our e xample , these
directories are ecos_install and ecos_build, which we would
want to delete . Saving the confi guration causes the Confi guration
Tool to regener ate these director ies for the ne xt build.

Application 299

The main goal of the application build is to generate a binary file, which includes our eCos
library. The flow diagram for the application build procedure is shown in Figure 12.8.

As we see in Figure 12.8, we start with our C language source file basic1.c. In this
example, we use a makefile and the GNU make utility for the build process. First, the GNU cross
compiler—in our case, i386-elf-gcc—is invoked.

Next, the GNU linker, i386-elf-ld, is run, which links our application object file and the eCos
library, libtarget.a. The other necessary eCos libraries are also linked at this time. The linker
script file target.ld, generated during the eCos build procedure, is used during the linking pro-
cess.

The output is an ELF executable file, basic1.exe. We use one of the GNU binary utili-
ties, i386-elf-objcopy, to translate the ELF format file into an S-record file. RedBoot is used to
download our application image in the S-record file.

12.5.1 Building the Application

The source code for this example application is located on the CD-ROM under the examples\
application subdirectory, which includes the source code file basic1.c and the build file
makefile. Also included in the examples\application\bin directory are the ELF
(basic1.exe), S-record (basic1.srec), and map files for the basic application build.

Figure 12.8 Application
build procedure flow
diagram.

libtarget.a

basic1.c

GNU Cross Compiler
i386-elf-gcc

GNU Linker
i386-elf-ld

basic1.exe

GNU Binutils
i386-elf-objcopy

basic1.srec

GNU Make Utility

300 Chapter 12 • An Example Application Using eCos

Let’s look at the application we are using for this example. There are two threads, A and B,
that run in this application. Thread A uses a semaphore to signal Thread B. Both threads are
passed a value that they print out when they run.

STEP 1
We need to create a directory for our application code. Under our workdir directory, we create the
subdirectory application. We now copy the application source code files from the CD-ROM
examples\application subdirectory. The files we copy are basic1.c and makefile.

STEP 2
Launch the Cygwin Bash Shell, if it is not already open, by double-clicking the Cygwin desktop
icon or by selecting Cygwin Bash Shell under Start –> Programs –> Cygnus Solutions –> Cygnus
Solutions.

From the bash shell we change to the application working directory using the command:

$ cd d:/workdir/application

STEP 3
Next, we can build the application image. Before we build the image, let’s take a moment to
understand the makefile we are using to build our application. The makefile used to build
this application, a portion of which is shown in Code Listing 12.3, is based on the makefile
included in the eCos source code examples, located under the examples subdirectory in the
eCos source code repository. Additional information about the make utility and makefiles can be
found online at:

www.gnu.org/manual

Commands and options can be passed in on the command line to build the application
image as well; however, the makefile prevents us from having to repeatedly reenter commands.
Makefiles are also useful in larger projects when multiple files are being built.

1 ## eCos library installation directory
2 PKG_INSTALL_DIR = /cygdrive/d/workdir/ecos/ecos_install
3
4 ## This sets the compiler to i386 PC.
5 XCC = i386-elf-gcc
6
7 ## Build flags.
8 CFLAGS = -g -Wall -I$(PKG_INSTALL_DIR)/include \
9 -ffunction-sections -fdata-sections
10 LDFLAGS = -nostartfiles -L$(PKG_INSTALL_DIR)/lib \
11 -Wl,--gc-sections -Wl,--Map -Wl,basic1.map
12 LIBS = -Ttarget.ld -nostdlib
13 LD = $(XCC)
14
15 ## Build rules.

Application 301

16 all: basic1

17

18 basic1.o: basic1.c

19 $(XCC) -c -o $*.o $(CFLAGS) $<

20

21 basic1: basic1.o

22 $(LD) $(LDFLAGS) -o $@ $@.o $(LIBS)

Code Listing 12.3 Example application makefile.

In Code Listing 12.3, the first part of the makefile sets up some variables that we can
use later so that our makefile is easier to understand and allows repetitious use of variables
without re-entering an entire string. When we want to use a variable, we use the syntax
$(VARIABLE_NAME). Whatever string VARIABLE_NAME has been declared is substituted
where the variable is used.

On line 2 we set the variable PKG_INSTALL_DIR to the location of the eCos library that
we built in the previous stage of our example. On line 5 we set the variable XCC to the name of
the compiler we are using; in this case, it is the i386 ELF compiler (i386-elf-gcc).

Next, we set the build flags to different variables. Using variables allows us to substitute a
variable name in place of a long string for clarity and for repeated use in multiple locations of
our makefile.

The first variable is CFLAGS, shown on lines 8 and 9, which contains the flags we pass to
the compiler GCC. The next variable is LDFLAGS, shown on lines 10 and 11, which contains
the options for the linker LD. Both variables CFLAGS and LDFLAGS are located on a single line
in the actual makefile; however, here they are split up so that all the options can be shown.

The variable LIBS on line 12 contains the library options that are also passed to the linker.
Finally, the variable LD is defined on line 13 for the linker command. In this case, the linker is
built into the compiler executable, i386-elf-gcc, so we use the XCC variable name to
invoke the linker.

The next part of the makefile contains the build rules or goals. The goals are the targets
that the makefile attempts to update. First, is all on line 16. This is the main target to build,
which is the ELF file basic1.

Lines 18 and 19 contain the information to build the target basic1.o. As we can see on
line 19, the compiler is invoked using the variable XCC and it is passed the flags that follow,
including the string from the variable CFLAGS.

On lines 21 and 22 is the information to build the target basic1. The basic1 target is
the ELF image, which is generated using the linker and the linker options shown on line 22.

A brief description of the compiler and linker flags used is included in the makefile.
For additional information about the various compiler flags, at the bash shell prompt you can
enter the command:

$ i386-elf-gcc –-help -v

302 Chapter 12 • An Example Application Using eCos

The makefile also contains a rule, clean, which removes the files created during the
build, such as object files. This allows us to recompile all files, not just the files modified since
the last build. To clean the built files, use the command make clean at the bash shell prompt.

Before we proceed with the build, let’s see where exactly the eCos library gets linked into
the application.

1 STARTUP(vectors.o)
2 ENTRY(_start)
3 INPUT(extras.o)
4 GROUP(libtarget.a libgcc.a)

Code Listing 12.4 Portion of target.ld linker script file that shows where the eCos library is
included when building applications.

Line 1 of Code Listing 12.4 uses the command STARTUP. This causes the vectors.o file
to be the first file linked, since the file vectors.S contains the entry point for our application.

The ENTRY command, shown on line 2, sets the entry point where the application will
begin execution. In our case, the entry point is in the file vectors.S in the routine _start.
Each HAL contains a file vectors.S that contains the startup code for that particular proces-
sor. This file is located under the arch source directory for each architecture.

The INPUT command on line 3 notifies the linker to include the named files. In this
case, extras.o is the file, which was one of the additional files created during the eCos
build procedure.

Finally, on line 4 is the GROUP command. This command is similar to the INPUT com-
mand; however, it takes archive files as its parameters. The two eCos libraries are used in this
command, libtarget.a and libgcc.a. All of the files mentioned in this section of the
linker script file are located in the install tree under the ecos_install\lib directory.

We are ready…finally!!! To build our application image we invoke the make utility at the
bash shell command prompt using the following command:

$ make

After the build is complete, the files that are output from our build process are:

• basic1.o—the compiler output object file.
• basic1.map—the map file shows the memory layout for the image.
• basic1.exe—the ELF format executable file.

STEP 4
Next, we change the ELF file into an S-record format to load with RedBoot. For this we use
the objcopy utility, which is one of the GNU binary utilities. To get the application image into the
S-Record format we want, we use the command:

$ i386-elf-objcopy –O srec basic1.exe basic1.srec

Application 303

This produces the file basic1.srec. This file is loaded onto the target hardware using
RedBoot, as described in the next section.

12.5.2 Loading the Application

Now we can load and run the application using RedBoot. On the host, we use the Windows
HyperTerminal program, which contains the facility to transfer files using X, Y, and Z modem
protocols. As previously mentioned, RedBoot allows transfer of data using various communica-
tion methods such as serial and TFTP. Additional information about other communication meth-
ods using RedBoot can be found in Chapter 9.

One utility that can come in handy is the GNU size utility. The size utility is part of the
GNU binary utilities. The size utility lists the sizes of the different sections and the total size of
the object file. To get the size of our example application we run the command:

$ i386-elf-size basic1.exe

The output from the size utility is shown in Code Listing 12.5.

1 text data bss dec hex filename

2 76900 544 36744 113188 1ba24 basic1.exe

Code Listing 12.5 Output from GNU size utility for basic application image.

In Code Listing 12.5, the section names, text, data, and bss, are shown on line 1. Also
on line 1 is the total size of the basic.exe object file in decimal (dec) and hexadecimal
(hex). The size values are listed under their respective sections on line 2. Adding up the text,
data, and bss sections gives the total size of the file, 113,188 bytes, under the dec column,
which equates to 1BA24 in hexadecimal, shown in the hex column.

Before continuing, ensure that RedBoot is up and running on the target hardware.

STEP 5
To load the example application using RedBoot, we enter the command:

RedBoot> load -v -m yMODEM

The option –v enables verbose mode during the load process. The –m yMODEM option
informs RedBoot that we want to use the Y modem protocol to transfer our image. After entering
this command, characters (the character is C) are printed that indicate that RedBoot is waiting
for the transmission of the image to begin.

To begin transferring the basic1.srec image, we select Transfer –> Send File from the
menu in HyperTerminal. This brings up the dialog box shown in Figure 12.9.

As shown in Figure 12.9, we want to select Ymodem from the protocol drop-down list. Then,
click the Browse button to select the basic1.srec file under the D:\workdir\application
subdirectory. When the transfer begins, the status of the transfer is displayed in a dialog box similar
to the one in Figure 12.10.

304 Chapter 12 • An Example Application Using eCos

The progress and information about the transfer of the application to the target hardware,
including throughput and time remaining, is shown in Figure 12.10.

When complete, the dialog box is closed and RedBoot outputs a message. An example of
the message output by RedBoot is shown in Code Listing 12.6.

1 Entry point: 0x00108000, address range: 0x00108000-0x0011aba0

2 xyzModem - CRC mode, 2(SOH)/215(STX)/0(CAN) packets, 4 retries

Code Listing 12.6 RedBoot output message after transfer of our application is complete.

On line 1, in Code Listing 12.6, the memory information about the image that we just
loaded is displayed. This information includes the entry point and the memory range used by the
application. Line 2 summarizes the statistics of the transfer.

Figure 12.9 HyperTerminal Send File dialog box.

Figure 12.10 HyperTerminal Transfer Status dialog box.

Application 305

STEP 6
Now we are ready to run our example application. Since RedBoot is aware of the load address
for our application, we do not need to specify an entry point for the RedBoot go command. To
run our application, at the RedBoot prompt we enter the following command:

RedBoot> go

As the basic1 application runs, the output in Code Listing 12.7 appears on the Hyper-
Terminal screen. The application continues to run forever.

1 Hello eCos World!!!
2
3 Thread A, count: 1 message: 75
4 Thread A, count: 2 message: 75
5 Thread B, message: 68
6 Thread A, count: 3 message: 75
7 Thread B, message: 68
8 Thread A, count: 4 message: 68

Code Listing 12.7 Basic1 example application output.

12.5.3 Debugging the Application

Although RedBoot does provide some basic facilities for debugging an application, such as
viewing memory locations, GDB provides more extensive debugging capabilities. Next, we are
going to use GDB to connect to our target hardware, download our example application, and
then run the application. Additional documentation about GDB can be found online at:

http://sources.redhat.com/gdb

During the host development tools setup, we built GDB and included the Insight GUI; see
Chapter 10 for details. It is possible to run GDB in command-line mode, even with Insight built
into GDB. Additional information about Insight can be found online at:

http://sources.redhat.com/insight

In this step, we take a brief look at using GDB in command-line mode and using the
Insight graphical interface. A diagram of the debug environment is shown in Figure 12.11.

N O T E Debugging optimized code can be unreliable
because the compiler might make changes in the executable
file that do not exactly match the original source code. In
these cases, it might be better to disable the compiler optimi-
zation when debugging source code.

To disable the compiler optimization you can either remove the
–O2 option from the Global Compiler Flags (CYGBLD_GLOBAL_CLAGS)
or set the optimization level to zero using the option –O0. The eCos
library and application code would then need to be rebuilt.

306 Chapter 12 • An Example Application Using eCos

As we see in Figure 12.11, GDB with the Insight GUI is run on the host development sys-
tem. We can connect to our target via serial or Ethernet port. The target hardware is running
RedBoot, which includes the GDB stub. The GDB stub provides the communication protocol
layer for our target.

Before proceeding with the following steps, ensure that RedBoot is up and running on the
target hardware.

STEP 7
To launch GDB with the Insight GUI, we run i386-elf-gdb.exe. If you do not want to
use the Insight GUI, you can run GDB using the no windows option; for example, i386-
elf-gdb.exe –nw.

GDB with Insight application is shown in Figure 12.12.
Figure 12.12 shows the Insight GUI Source window in the foreground with the Console

window in the background. The Console window is displayed by selecting View –> Console.
The first step is to load our example application. Using Insight, we select File –> Open,

and then browse to the location of our basic1.exe application file.
When our example application is loaded, the source window is loaded with the file

main.cxx.

STEP 8
Next, we connect our host GDB to our target hardware. This is accomplished by selecting Run –>
Connect To Target, which opens the Target Selection dialog box shown in Figure 12.13.

There are two options for connecting to the target hardware, serial or Ethernet, as shown in
Figure 12.4.

Figure 12.11 The debug environment for our examples, running GDB
on the host and RedBoot on the target.

Host Target

GDB RedBoot
(Includes GDB stub)

Application

EthernetSerial Ethernet Serial

Insight

307

F
ig

u
re

 1
2.

12
In

si
gh

t G
D

B
 S

ou
rc

e
w

in
do

w
 w

ith
 C

on
so

le
 w

in
do

w
 in

 th
e

ba
ck

gr
ou

nd
.

308 Chapter 12 • An Example Application Using eCos

To connect via serial, we select Remote/Serial in the Target drop-down list, 38400 in the
Baud Rate drop-down list, and com1 in the Port drop-down list. The check boxes can be left in
their default states. Additional connection parameters can be displayed by clicking the More
Options arrow.

To connect via Ethernet, we select Remote/TCP in the Target drop-down list, we enter
192.168.0.10 (or whatever the RedBoot static IP address was configured as) for the Hostname,
and 9000 for the Port.

After setting the connection parameters, click the OK button to connect to the target. A
dialog box showing Successfully Connected is displayed when the GDB has connected to the
target hardware.

STEP 9
Once connected to the target, we download our example application by selecting Run –> Download.
During the download, a progress bar appears in the upper right-hand corner of the Insight source
window. The status of the download is displayed on the bottom status bar. When the application
download is complete, Download Finished is displayed on the bottom status bar, as well as sta-
tistics about the download including elapsed time and bytes transferred.

STEP 10
If the console window is not open, select View –> Console. This enables us to view the output
from our application.

Figure 12.13 Insight GDB Target Selection dialog box for connecting to the
target hardware.

N O T E If connecting to the target hardware over the serial
port you will need to disconnect the HyperTerminal from the
serial port before attempting to connect with GDB. Both GDB
and HyperTerminal cannot use COM1 simultaneously.

Application 309

To start the application, select Control –> Continue. The output from the basic1 program,
as shown in Code Listing 12.7, is displayed in the console window.

You can now familiarize yourself with the different functionality with GDB, such as stop-
ping the program, setting breakpoints, and watching variables.

12.5.3.1 Using the GDB Command-Line Interface
As mentioned previously, GDB can also be run from the CLI if the Insight GUI is not needed.
Let’s go through the commands needed to load and run the application from the CLI. These
commands can also be entered in the Console window when using Insight. Table 12.2 lists the
CLI commands for running GDB using the serial and Ethernet ports. The commands are shown
after the GDB prompt (gdb).

N O T E In some cases, the download process can be very
slow using GDB and RedBoot. Some things can be done to
speed up the download process. Details about speeding up
an application download using GDB and RedBoot can be
found in the eCos F requently Ask ed Questions (F AQ), which is
online at http://sources .redhat.com/f om-serv/ecos/cache/1.html.
Another eCos FAQ is located online at http://sources.redhat
.com/ecos/faq.html.

Table 12.2 GDB CLI Commands for Serial and Ethernet Port Debugging

Serial Ethernet

STEP 1: Change to the application directory.
(gdb) cd d:/workdir/application

STEP 1: Change to the application directory.
(gdb) cd d:/workdir/application

STEP 2: Set the serial port baud rate.
(gdb) set remotebaud 38400

STEP 2: Connect to the target via the Ethernet port.a

(gdb) target remote
192.168.0.10:9000

a Use the static IP address configured when RedBoot was built. The port number, 9000, is entered following the IP
address.

STEP 3: Connect to the target via the serial port.
(gdb) target remote com1

STEP 3: Load the application
(gdb) load basic1.exe

STEP 4: Load the application.
(gdb) load basic1.exe

STEP 4: Run the application.
(gdb) continue

STEP 5: Run the application.
(gdb) continue

310 Chapter 12 • An Example Application Using eCos

12.6 The eCos Tests

The eCos repository provides test suites for various packages. The tests are designed to thor-
oughly exercise the various functionality within the different packages to ensure proper opera-
tion. These tests exercise the software at the module, component, and system levels and include
stress and performance testing.

The eCos repository includes test suites for the kernel, various device drivers, and the I/O
Sub-System. The kernel suite includes tests that exercise the different synchronization mecha-
nisms, run various thread-related functions, and use the different clock functionality. The I/O
Sub-System includes various serial port tests. There are also various tests for the different target
hardware platforms.

The test source code is contained in the eCos source code repository and located under the
tests directory within a package’s directory structure; see Figure 11.1 for an illustration of the
generic package directory structure. The test source code also provides a great example of how
to implement various functionality within an application. These tests can be used to guide you
through understanding the different eCos APIs.

Now let’s focus on how we can use the Configuration Tool to build and run various tests in
the eCos framework. The tests are built using the Configuration Tool by selecting Build –> Tests.
The output files from the test build procedure are located in the install tree under the tests
directory. The output files are ELF format files.

After the tests are built, the Configuration Tool also facilitates automatically downloading
and running the tests on the target hardware. To run the tests using the Configuration Tool, select
Tools –> Run Tests. This brings up the Run Tests dialog box as shown in Figure 12.14.

The first tab, Executables, displays all of the tests that are available for running on the tar-
get hardware. Checking the box next to the test selects the test for running. Tests can be added or
removed using the buttons at the top of the dialog box. Once the tests are configured to run, the
Run button at the bottom of the dialog box begins execution of the selected tests.

The next tab is Output. This displays output from the tests as they execute on the target
hardware. The Summary tab keeps track of the results of each test, including the time it took to
execute and the status as to whether the test passed or failed.

Prior to running the tests, the method for connecting to the target hardware is selected.
Clicking the Properties button at the bottom of the Run Tests dialog box brings up the Settings
dialog box as shown in Figure 12.15.

N O T E Some tests , such as those included in the Basic Net-
working Framework package, contain a confi guration option that
must be enab led to b uild the specifi ed tests . The Build Networking
Tests (Demo Programs) (CYGPKG_NET_BUILD_TESTS) configuration
option, when enab led, allows additional netw orking tests to be b uilt.

Simulators 311

As we see in Figure 12.15, the timeout period can be specified. The connection to the tar-
get hardware can also be set to either serial or Ethernet.

12.7 Simulators
The eCos framework provides simulators for several different processor architectures, including
the Hitachi H8/300, MIPS, Matsushita AM3x, PowerPC, and SPARClite. A simulator can be
useful when a development board is not available, or possibly too costly, and the hardware has
not been developed. In these cases, the software can be developed for the target processor and
run on a simulator target.

The simulators are run from the GNU debugger (GDB), either using the Insight GUI or
from the GDB command line. To invoke the PowerPC-based GNU debugger you run the executable
powerpc-eabi-gdb.exe.

Figure 12.14 Configuration Tool Run Tests dialog box.

312 Chapter 12 • An Example Application Using eCos

First, let’s see how to run code on the simulator using Insight. When running Insight GDB,
select File –> Target Settings to bring up the dialog box for connecting to a target, as shown in
Figure 12.16. Under the Target drop-down list, select Simulator. Any target-specific options can
be entered in the Options edit field within this dialog box.

Figure 12.15 Configuration Tool Connection Settings
dialog box for running tests on a target system.

N O T E The pre-built PowerPC GNU cross-development tools
are also included on the CD-ROM in the file ppcgnu-
tools.tar.bz2 under the gnu\ppctools directory. You can add
the PowerPC GNU cross-development tools by unzipping the file
under the root D:\cygwin directory. The files are extracted
under the D:\cygwin\toolsppc directory. The command to
extract the PowerPC GNU cross-development tools is:

$ tar xjvf /cygdrive/e/gnu/ppctools/ppcgnutools.tar.bz2

You would then need to add the D:\cygwin\toolsppc
directory to your path, as shown in Chapter 10 in Section 10.2.2,
Installing the Platform-Specific Cross-Development Tools, in
STEP 4. The PowerPC GNU cross-development tools are used
in Chapter 13.

Summary 313

Using the GDB command line, we use the following commands, assuming we are running
a program named ecoshello.exe:

First, load the symbols from the file with the command:

(gdb) file ecoshello.exe

Next, set our target to the simulator:

(gdb) target sim

On successful connection to the simulator, the output message Connected to simu-
lator is displayed. If there are any target-specific options, they can be entered at the end of the
command. Then, we load the program using the command:

(gdb) load

Finally, the program is run on the simulator with the command:

(gdb) run

The program is debugged using the standard GDB commands. Using a simulator allows
some of the software to proceed without hardware being present; however, certain software
modules, such as device drivers, rely on the presence of the target hardware.

12.8 Summary

In this chapter, we got down to the practical aspects of using eCos by running through some
examples. We started with an overview of the eCos build process, which we use for generating
eCos libraries or RedBoot images.

After covering the details of the build procedure, we began our examples with a build
and install of the RedBoot ROM monitor. This provided us with a method for downloading

Figure 12.16 PowerPC-based Insight GDB Target Selection dialog box.

314 Chapter 12 • An Example Application Using eCos

our application code onto our target hardware, as well as providing GDB debugging support
on the target.

We then proceeded to construct an eCos library from our configuration. The eCos library
was used to build our application. Next, we focused on loading our application using first Red-
Boot directly and then using GDB for debugging.

We concluded this chapter with a brief look at the eCos test suite and the simulators pro-
vided in the eCos framework. Although these examples were basic, they are good starting points
for understanding the eCos development environment and provide a baseline for extending the
functionality to meet your own requirements.

These examples enable you to evaluate the eCos real-time operating system and become
familiar with the build and debug tools available. Moving on to more complex examples by
incorporating additional features into the eCos configuration is a good next step.

315

C H A P T E R 1 3

Porting eCos

etting your application running on your new target hardware platform is typically the
main goal in embedded software development. This typically includes porting eCos to

the target hardware as well. eCos was designed for portability by using a layered approach to
the different software system components. When porting eCos, moving the HAL to the new
target hardware is the first step, which enables the higher layer components, such as the kernel,
to also run on the target hardware. Additional functionality, such as display drivers and Ethernet
drivers, can then be incorporated to meet the requirements of the system and get the system fully
operational.

Because of the unique nature of each new target hardware system, it is impossible to cover
every possible detail for each target system. Instead, in this chapter, we look at a platform port-
ing example to get an overall understanding of the eCos porting process. Using one of the sup-
ported evaluation platforms as a baseline, we can add a new target platform to the eCos
framework and see how to get this new platform up and running using the eCos tools. We can
then go through some of the details that might need to be addressed in other porting procedures.

The PowerPC GNU cross-development tools are included on the CD-ROM in case you
want to build this porting example, although this is not necessary for understanding the porting
process. These tools are located under the gnu\ppctools directory.

13.1 Overview of Porting
Now that we have an understanding of the components in the eCos system, how to use the tools,
and how to write an application using eCos, we can focus on the main task involved with using
any RTOS: getting the software running on our own hardware. This is typically the main goal

G

316 Chapter 13 • Porting eCos

when using an RTOS. Porting to a new hardware platform can be a painful and slow process
because it is typically occurring at the same time that the hardware itself is being debugged.

The layered architecture of eCos, as described in Chapter 1, An Introduction to the eCos
World and shown in Figure 1.1, makes the porting process a bit easier. To move to a new hardware
platform we start by porting the HAL and ensure that it functions properly on the new hard-
ware. Since the higher application layers sit on top of the HAL, they are not dependent on a specific
piece of hardware. Options can then be configured to meet the needs of the new hardware platform.

Since every piece of hardware is unique in its own way, the porting process described in
this chapter should be used as a general guide. Your hardware might require its own specific
code such as serial and display drivers to get the system operating properly. There will be imple-
mentation decisions that you need to make for your hardware in order to port eCos.

The porting of the eCos HAL can be broken down into three different types: Platform,
Variant, and Architecture porting. Platform porting consists of using the HAL of a current plat-
form supported by eCos, which is similar to the new hardware platform, as a baseline and then
making modifications for the new platform, including the new memory layout and any specific
initialization needed. New drivers might need to be developed to accommodate additional hard-
ware resources. Of the three porting types, platform porting usually requires the least amount of
effort if an existing HAL can be used as a baseline.

Variant porting also uses a closely related existing HAL as a baseline. As described in
Chapter 2, The Hardware Abstraction Layer, a variant HAL supports differences of a specific pro-
cessor from the generic processor architecture. A variant port might consist of redefining interrupts,
cache, or other features that override the default implementation of the architecture HAL. A variant
port requires an existing architecture HAL port. The amount of effort necessary for a variant port
directly corresponds to the similarity of the existing variants for the specific processor.

Finally is architecture porting. This consists of using an existing architecture HAL as a
baseline. The reason why an architecture port can be a daunting task is that compiler support
must be present before beginning the porting process. eCos is closely coupled to the GNU C/C++
Compiler. Although the GNU C/C++ Compiler supports numerous different architectures, if it
does not support your new architecture then the task of porting the GNU compiler needs to be
completed as well. After the architecture HAL port is complete, a platform port must be done in
order to support the new hardware.

Before setting out on a new variant or architecture port it is a good idea to search the eCos
discussion mailing list archives to see if anyone else in the development community is currently
undertaking the same port. You can then see if the developer intends to contribute the port back
for use by others. The eCos discussion mailing list archives can be searched online at:

http://sources.redhat.com/ml/ecos-discuss

If no one else is performing the same port, you can post your intentions to the list using the
address ecos-discuss@sources.redhat.com. You might receive a reply giving you some addi-
tional tips or resources to use to help you out.

A Platform Porting Example 317

13.2 A Platform Porting Example

In order to get a better understanding of the platform porting procedure, we are going to go
through the process of creating a new hardware platform for our imaginary piece of hardware. In
this example, we use the Motorola MBX860 platform HAL as our baseline. The Motorola
MBX860 HAL is located under the hal\powerpc\mbx subdirectory.

During the software development process, choosing an off-the-shelf evaluation board
allows us to do parallel software development while the hardware is being designed. Although
the specific platform implementation details might differ among various HALs, this example
should be used as a general guideline that can be applied to all platform ports.

For this porting example, we use RedBoot as the template. Additional information about
RedBoot can be found in Chapter 9, The RedBoot ROM Monitor. Since RedBoot is essentially a
thin command-line interface sitting on top of the HAL with GDB stub functionality included, we
can leverage off the RedBoot development to put us steps ahead in the porting process.

Once the HAL is ported to the new hardware, RedBoot gives us the ability to load and
debug code on our new target platform. Initially, we want to strip out any unnecessary function-
ality included in the RedBoot template so that we have a “bare bones” build of the RedBoot
image. As we progress with the port to our new hardware, we can add back the functionality we
need to produce a full-featured RedBoot image.

It is important to establish some baseline hardware functionality prior to setting out on the
eCos port. We should wring out any basic hardware problems, such as memory reading or writ-
ing errors, before proceeding. This baseline functionality can be established using some basic
RAM read/write tests and ROM, if a flash ROM device is used, read/write tests. Having the
proper tools during the early stages of bringing up hardware is crucial. Most processors have
some type of In-circuit Emulator (ICE) or Background Debug Mode (BDM) tools available. A
good article about ICE technology can be found online at:

www.embedded.com/1999/9910/9910sr.htm

Having one of these tools can give you the ability to load code onto the target hardware
without going through the process of burning EPROMs whenever you need to test code changes.
Easing the testing of new code changes is essential during the eCos porting process.

Other equipment that is good to have when bringing up a new piece of hardware is a logic
analyzer and oscilloscope. These pieces of equipment can guarantee that the hardware is meet-
ing their associated timing specifications.

An evaluation board is a great piece of hardware to have during the initial phases of a
project. Using the evaluation board, you can begin writing the application software for your system
long before your own hardware is ready. Then, when your new hardware comes online you can
go through the platform porting procedure, as described later in this section, to get eCos up and
running on your new platform. The evaluation board also gives you a baseline of functionality
that you can use to check your software as the project progresses. If something is not working
correctly on your new hardware, you can always test it out on the evaluation platform to see how

318 Chapter 13 • Porting eCos

it works in a more stable environment. A list of the evaluation boards supported by eCos can be
found in Appendix A, Supported Processors and Evaluation Platforms. The latest additions to
this list can also be found online at:

http://sources.redhat.com/ecos/hardware.html

Figure 13.1 is an overview flowchart of the platform porting example we go through in
this chapter.

As we see in Figure 13.1, we begin by basing our new platform on an existing evaluation
board HAL package. This allows us to quickly set up the files we need to get our new platform
package noticed by the eCos framework. Then we modify the package to make it specific for our
new hardware platform.

Next, we add the new platform package to the eCos database so that we can use the config-
uration tools to build our new platform image. At this point, we do a test build, which we run on
our evaluation board, to ensure that the package is built properly.

Figure 13.1 eCos porting
process flowchart. Copy similar HAL for

baseline

Modify HAL package to
reflect the new platform

Add new platform to
the eCos database

Test build new platform
for test on the

evaluation board

Customize the software
for the new platform

Build a RedBoot image
for the new platform

Incorporate additional
functionality

A Platform Porting Example 319

Now we customize the software for our new target platform, including changing clock
configuration, memory layout, and adding or modifying device drivers to match the new hard-
ware. Then we are able to build a RedBoot image for our new platform. Once this RedBoot
image is up and running, we are able to extend the functionality for our new platform by incor-
porating any additional features required.

For our example, we are performing the platform port to our new hardware that we code
name “Martini”. The example code for our new Martini HAL package is located on the CD-
ROM under the examples\martini directory. The Martini package is contained under the
examples\martini\package directory and the install tree, MLT directory, and eCos con-
figuration file are located under the examples\martini\build directory. The modified
eCos database file ecos.db, which shows the modifications necessary to get our new Martini
platform noticed in the eCos framework, is also included on the CD-ROM.

N O T E One of the steps in this example porting procedure
entails building a RedBoot image for the new PowerPC-based
target platform. The PowerPC GNU cross-development tools
binary files are included on the CD-ROM if you would like to
build the Martini example image.

To set up the PowerPC GNU cross-development tools fol-
low these steps.

STEP 1:
Open a bash command shell. Change to the root Cygwin
directory by entering the command:

$ cd /

STEP 2:
Unzip the PowerPC GNU cross-development tools with the
command:

$ tar xjvf /cygdrive/e/gnu/ppctools/ppcgnutools.tar.bz2

After executing this command, the PowerPC GNU cross-
development tools are located under the D:\cygwin\toolsppc
directory. The binary executables are under the D:\cygwin\
toolsppc\H-i686-pc-cygwin\bin directory.

STEP 3:
Next, we set the path for our new GNU cross-development
tools. The bash shell command for this is:

$ PATH=/toolsppc/H-i686-pc-cygwin/bin:$PATH ; export PATH

Building the Martini image using the PowerPC GNU cross-
development tools is not necessary in order to understand the
eCos porting procedure.

320 Chapter 13 • Porting eCos

13.2.1 PowerPC HAL Directory and File Structure

Let’s take a closer look at the PowerPC HAL directory structure focusing on the Motorola
MBX860 platform. We need to know the location of the files and subdirectories that contain the
functionality for the MBX platform. Figure 13.2 shows the relevant HAL directories for the
Motorola MBX860 platform. The version subdirectories are left out in Figure 13.2; we are using
the current version in our example. Other HAL platforms have similar directory structures.

The subdirectory common contains the package configuration files general to all HAL
architectures, including files for general interrupt configuration, virtual vector layout, and HAL
debugging control. Function wrappers are contained in this subdirectory to create the common-
ality found among all HAL implementations.

The arch subdirectory is located under the powerpc architecture HAL directory and
includes files for generic support for the PowerPC processor architecture. Functionality included
in this generic support consists of exception vector initialization, ROM and RAM startup config-
uration, common interrupt and exception handling, thread context switch handling, a generic
linker script file, and common debugging functions.

The mbx subdirectory contains the Motorola MBX860 platform source files. The descrip-
tion, in CDL script format, of the MBX package is in the file hal_powerpc_mbx.cdl
located in the cdl subdirectory.

The include subdirectory contains all header files for the MBX platform. Under the
include subdirectory is the pkgconf subdirectory, which is where the memory layout files
are located.

The misc subdirectory includes RedBoot minimum configuration files that can be
imported into the Configuration Tool to establish a baseline of configured options and packages.

The subdirectory src contains the main source assembly file, mbx.S, for the MBX plat-
form. This file contains the hardware setup code in the routine hal_hardware_init, which
configures all necessary processor registers, and initializes the chip select configuration for the
MBX platform. The tests subdirectory contains tests for the MBX platform.

The mpc8xx and quicc subdirectories are shown because they are variants of the
MPC860 architecture used by the MBX platform. We need to be aware of the variants used by
the platform we are using as a baseline in case we need to modify or extend the support offered
in the variant packages.

As we proceed with the platform port, we are going to also need to be aware of the driver
packages that are included in the MBX platform package. These might also need to be modified
to support the new hardware.

STEP 1 Getting the New Platform Noticed
The first step in the platform porting process is to get our new hardware platform noticed by the
Configuration Tool, which allows us to build the software for our new hardware platform.

We first create a martini directory under the PowerPC HAL directory because our hard-
ware uses the PowerPC MPC860T processor.

321

F
ig

u
re

 1
3.

2
M

ot
or

ol
a

M
B

X
86

0
P

la
tfo

rm
 H

A
L

di
re

ct
or

y
st

ru
ct

ur
e.

ha
l

po
w

er
pc

co
m

m
on

cd
l

in
cl

ud
e

sr
c

te
st

s

ar
ch

m
bx

m
pc

8x
x

qu
ic

c

cd
l

cd
l

in
cl

ud
e

in
cl

ud
e

sr
c

m
is

c

cd
l

in
cl

ud
e

sr
c

cd
l

in
cl

ud
e

sr
c

pk
gc

on
f

sr
c

m
is

c
te

st
s

te
st

s

322 Chapter 13 • Porting eCos

Since we are using the MBX platform as our baseline, we copy the subdirectory
hal\powerpc\mbx\current into our new hardware subdirectory hal\powerpc\
martini\current.

Next, we need to change the filenames from the MBX platform to represent our Martini
platform. Table 13.1 shows an example of the filename changes needed for our Martini package,
which are made to the files in our new subdirectory hal\powerpc\martini\current.
The subdirectory location of the files is given in Table 13.1 as well.

N O T E If the files under our new hardware platform are
read-only, it is easier to make these files read/write so we can
make proper modifications. When using the Martini example
from the CD-ROM, the files are marked as read-only. When
you copy them to your working directory, be sure to mark
them read/write as necessary.

Table 13.1 HAL Platform Porting Filename Changes

MBX Platform Filename Martini Platform Filename

Subdirectory cdl

hal_powerpc_mbx.cdl hal_powerpc_martini.cdl

Subdirectory include\pkgconf

mlt_powerpc_mbx_ram.h mlt_powerpc_martini_ram.h

mlt_powerpc_mbx_ram.ldi mlt_powerpc_martini_ram.ldi

mlt_powerpc_mbx_ram.mlt mlt_powerpc_martini_ram.mlt

mlt_powerpc_mbx_rom.h mlt_powerpc_martini_rom.h

mlt_powerpc_mbx_rom.ldi mlt_powerpc_martini_rom.ldi

mlt_powerpc_mbx_ram.mlt mlt_powerpc_martini_rom.mlt

Subdirectory src

mbx.Sa

a In this case, it is important that the extension of the assembly file is an uppercase “S” rather than a lowercase “s”.
The uppercase “S” allows the GNU C compiler driver to perform preprocessing on the assembly file.

martini.Sa

A Platform Porting Example 323

Now we need to modify our new CDL script file, hal_powerpc_martini.cdl
located in the hal\powerpc\martini\current\cdl subdirectory, to reflect our Martini
hardware platform. The modifications necessary for the Martini hardware platform consist of
changing references to the MBX board to our new Martini platform, which can be done by a
search and replace.

Code Listing 13.1 shows an example of the changes made for the new Martini package.
The modified file for the Martini platform, hal_powerpc_martini.cdl, is located on the
CD-ROM in the examples\martini\package\current\cdl subdirectory.

1 cdl_package CYGPKG_HAL_POWERPC_MARTINI {

2 display "Martini PowerPC board"

3 parent CYGPKG_HAL_POWERPC

4 requires CYGPKG_HAL_POWERPC_MPC8xx

5 define_header hal_powerpc_martini.h

6 include_dir cyg/hal

7 description "

8 The MARTINI HAL package provides the support

9 needed to run eCos on a Martini board

10 equipped with a PowerPC processor."

11

12 compile hal_diag.c hal_aux.c martini.S

13

14 implements CYGINT_HAL_DEBUG_GDB_STUBS

15 implements CYGINT_HAL_DEBUG_GDB_STUBS_BREAK

16 implements CYGINT_HAL_VIRTUAL_VECTOR_SUPPORT

17 .

18 .

19 .

20 }

Code Listing 13.1 Example CDL script file changes, in the file hal_powerpc_martini.cdl,
for the new Martini platform.

As we see in line 1, we change the cdl_package command name from
CYGPKG_HAL_POWERPC_MBX to CYGPKG_HAL_POWERPC_MARTINI. We also change the
CDL command display description on line 2. You can choose whatever descriptive name you
wish for the display and description CDL commands.

Lines 3 and 4 are left unchanged at this point in the porting process. We will revisit these
values later in the porting process. Line 5 needs to reflect our new header file hal_powerpc_
martini.h. Lines 7 through 10 contain the new description for our Martini platform. On line
12, for the CDL command compile we change the file mbx.S to martini.S. We might
need to add files to this statement later if necessary. The remaining lines 13 through 16 remain
the same as those in the MBX CDL script file.

324 Chapter 13 • Porting eCos

There are locations in two source files that we need to change for our new Martini plat-
form. The first is located in the file plf_stub.h under the include subdirectory. We need to
change the line:

#include <pkgconf/hal_powerpc_mbx.h>

to
#include <pkgconf/hal_powerpc_martini.h>

We need to perform this same modification to the file martini.S under the src subdirec-
tory. It can be useful to use the grep utility, to find the mbx string, during this modification step.

Next, we need to get our Martini platform noticed by the Configuration Tool. To do this,
we add our new platform package to the ecos.db file located under the D:\ecos\pack-
ages subdirectory.

As we know from Chapter 11, The eCos Toolset, the ecos.db file uses the CDL and con-
tains the high-level descriptions for all packages in the component framework. Code
Listing 13.2 shows the CDL description additions to the ecos.db file in order to get the Con-
figuration Tool to recognize our Martini platform.

1 package CYGPKG_HAL_POWERPC_MARTINI {

2 alias { "Martini board" hal_powerpc_martini powerpc_martini_hal }

3 directory hal/powerpc/martini

4 script hal_powerpc_martini.cdl

5 hardware

6 description "

7 The MARTINI HAL package provides the support

8 needed to run eCos on a Martini board equipped

9 with a PowerPC processor."

10 }

11 .

12 .

13 .

14 target martini {

15 alias { "Martini board" martini860 }

16 packages { CYGPKG_HAL_POWERPC

N O T E You might find that additional modifications are
needed to various source files for your new hardware if a dif-
ferent HAL platform is used as a baseline.

N O T E It is a good idea to make a backup copy of the orig-
inal ecos.db file before editing the file, just in case you need
to refer to it or restore the original file.

A Platform Porting Example 325

17 CYGPKG_HAL_POWERPC_MPC8xx

18 CYGPKG_HAL_POWERPC_MARTINI

19 CYGPKG_HAL_QUICC

20 CYGPKG_IO_SERIAL_POWERPC_QUICC_SMC

21 CYGPKG_DEVS_ETH_POWERPC_QUICC

22 CYGPKG_DEVS_FLASH_MBX

23 CYGPKG_DEVS_FLASH_AMD_AM29XXXXX

24 }

25 description "

26 The martini target provides the packages needed

27 to run eCos on a Martini board."

28 }

Code Listing 13.2 eCos repository database file, ecos.db, changes for the Martini platform.

The easiest way to add the proper package and template descriptions to the ecos.db file
is to copy the package and template descriptions from the HAL platform we are using as a base-
line. In our case, this is the MBX package and MBX template. We then change the MBX names
to our new Martini platform name.

The package description and template description are in different locations in the
ecos.db file. We want to maintain this structure by copying the package and template descrip-
tions in the same area as the MBX platform we are using as a baseline. For additional informa-
tion about how the ecos.db file descriptions are reflected in the Configuration Tool user
interface, see Chapter 11.

On line 1, we change the package CDL command from CYGPKG_HAL_
POWERPC_MBX to CYGPKG_HAL_POWERPC_MARTINI. As we can see, this is the same
package name used in the Martini CDL script file shown in Code Listing 13.1.

We also change the MBX references made on lines 2 through 4 Martini. Line 4 informs
the Configuration Tool where to find the CDL script file to describe our new Martini package—
in our case, the filename is hal_powerpc_martini.cdl—which we previously added and
edited. The description CDL command is changed to depict the Martini package.

Lines 11 through 13 are there to remind us that the package CDL command and the
target CDL command are in different locations in the ecos.db file.

Finally, we change the CDL command target for our new platform. Line 14 shows our
new target name martini. The alias CDL command is also changed for the Martini plat-
form. The CDL command packages, shown on lines 16 through 24, is used by the Configura-
tion Tool to determine which packages to load for our Martini platform. At this point, we only
want to change the package name CYGPKG_HAL_POWERPC_MBX to CYGPKG_HAL_
POWERPC_MARTINI on line 18. At this point, we do not change the CYGPKG_DEVS_
FLASH_MBX package on line 22; we modify the packages needed to build our new platform
later in the porting process. Finally, change the description CDL command to give an
explanation our new Martini platform.

326 Chapter 13 • Porting eCos

STEP 2 Test Build of the New Platform

What we have now in our example port is a new platform named Martini that contains all of the
functionality to operate the Motorola MBX860 evaluation board. This next step verifies the
changes we made to the CDL script files and allows us to build a RedBoot image with the Mar-
tini name that has the functionality to operate the MBX evaluation board. This allows us to ver-
ify the build process using our new hardware package.

To verify that our new Martini package is present, first we need to launch the Configuration
Tool. In the Configuration Tool, we can select our new Martini package using the Templates dialog
box. The Templates dialog box is displayed by selecting Build –> Templates from the menu.
Figure 13.3 shows our new Martini template selected from the hardware platform drop-down list.

As we see in Figure 13.3, the modified description we made to the ecos.db file is displayed
under the Martini Board hardware platform selection. We also want to select redboot from
the Packages drop-down list. Click the OK button to load our new Martini package.

Figure 13.3 Templates dialog box showing our new Martini
platform package.

N O T E The Resolve Conflicts dialog box might pop up after
selecting the new template. This occurs because we are
changing from the default configuration loaded when the
Configuration Tool loads to our new Martini platform configu-
ration. If the Resolve Conflicts dialog box is displayed, click the
Continue button to proceed with resolving all conflicts.

A Platform Porting Example 327

Figure 13.4 shows our new Martini loaded into the Configuration Tool. The Configuration
window shows our new Martini PowerPC Board package selected. The Properties window displays
the information from the CDL script file, hal_powerpc_martini.cdl, that we modified in
step 1. The Short Description window also shows our description of the new Martini package.

Now that we have our new Martini platform loaded with the functionality to run the MBX
board, we can test the build process. The output of this build generates a RedBoot image that we
can load onto our MBX board to verify the build process. Being able to verify the image we
build on an evaluation board is a good reason to have a stable hardware platform to use during
the porting process.

Before building the RedBoot image, we want to make sure that all configuration options
are set properly for the evaluation board. In our case, since we are using the MBX development
board, we want to select ROM for the Startup Type configuration option under the Martini Pow-
erPC Board package. We also need to verify that the other HAL options, such as Development
Board Clock Speed, are configured for the MBX evaluation board.

After the necessary changes have been made, we can save our configuration changes for
our new Martini platform using the File –> Save As menu bar item. We use our working directory,
workdir\martini, to store the porting project for our new Martini platform and use the

Figure 13.4 The Configuration Tool interface showing our new Martini package.

N O T E If you installed the PowerPC GNU cross-develop-
ment tools in order to build the Martini porting example image,
you will need to change the location of the build tools that the
Configuration Tool uses. Select Tools –> Paths –> Build Tools
from the menu. Next, browse to the D:\cygwin\ppctools\H-
i686-pc-cygwin\bin directory and click the OK button.

328 Chapter 13 • Porting eCos

filename martini.ecc. The martini.ecc file used in this example, along with the install
tree and MLT directory, are included on the CD-ROM for reference under the examples\
martini\build directory.

Now we can select Build –> Library from the menu bar to start the build process. It might
be helpful to refer to Chapter 12, An Example Application Using eCos, for additional informa-
tion on the build process.

When the build completes successfully, the final RedBoot image is located in the subdirec-
tory martini_install\bin. We can then use the appropriate file format to load our new Red-
Boot image onto the evaluation board to verify that it operates properly, as shown in Chapter 12. It
might be necessary to use the GNU Binary utility objcopy to convert the file format.

If RedBoot runs normally (basically, if we see the RedBoot prompt), we know that we
have successfully added the new Martini platform to our local eCos repository. We can now
move on with the porting procedure.

STEP 3 Customize the New Platform Package
The next step is to customize the packages and configuration options for our new hardware target.
This consists of going through each of the CDL commands in the CDL script files associated with
our new hardware platform to make modifications and additions that match the new hardware.

There might be additional CDL script files that we need to modify other than the ones we
edited in step 1. The extent of the changes necessary depends on the HAL package used for a
baseline and the differences between the baseline HAL and the new hardware platform HAL. In
general, we need to check the real-time clock/counter configurations and the device driver pack-
ages included, specifically for serial ports and flash memory devices.

N O T E You might fi nd that additional modifi cations are needed
to various source fi les for your new hardware if a diff erent HAL
platform is used as a baseline . Error messages that occur dur ing
the RedBoot image build process are displayed in the Configuration
Tool output window.

N O T E It is best to eliminate as many of the packages as
possible and establish a minimal set of functionality for the
new target platform. Having too many packages increases the
amount of code in the initial image, as well as the possibility of
encountering problems. After the minimal set of functionality
is operating properly on our new platform, packages can be
added back to the new platform to extend the feature set.

Packages can be remo ved from the ne w target platf orm con-
figuration using the P ackage Control dialog bo x, which is launched
by selecting Build –> Packages from the men u. This dialog bo x is
shown in Figure 11.15 . Additional inf ormation about adding and
removing pac kages is co vered in Chapter 11.

A Platform Porting Example 329

For our example, we start by editing hal_powerpc_martini.cdl and the eCos
repository file ecos.db. An example of the modifications necessary to the file hal_
powerpc_martini.cdl for the new Martini platform is shown in Code Listing 13.3.

1 cdl_option CYGHWR_HAL_POWERPC_BOARD_SPEED {
2 display "Development board clock speed (MHz)"
3 flavor data
4 legal_values 50
5 default_value 50
6 description "
7 MARTINI boards have various system clock speeds
8 depending on the processor fitted. Select the
9 clock speed appropriate for your board so that
10 the system can set the serial baud rate
11 correctly, amongst other things."
12 }
13 .
14 .
15 .
16 cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS {
17 display "Number of communication channels on the board"
18 flavor data
19 calculated 2
20 }

Code Listing 13.3 Example CDL script file changes in the file hal_powerpc_martini.cdl
for the new Martini platform.

In Code Listing 13.3, we see an example of two of the changes to the CDL script file to
match the hardware for the Martini platform. The first change is under the CDL command
cdl_option CYGHWR_HAL_POWERPC_BOARD_SPEED shown on line 1. In our example,
the MBX board offers the ability to run the processor clock at two different speeds, 40 and 50
MHz. On the Martini hardware, we only have a single processor speed 50 MHz; therefore, we
change line 4, legal_values, to only accept 50 for the processor speed.

The other example of a change is for the CDL command cdl_option
CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS. The MBX board only has one serial
channel to use for communications; however, the new Martini hardware offers two. Therefore,
on line 19, calculated, we change the value from 1 to 2.

Other CDL commands that need to be verified are the options CYGNUM_HAL_
RTC_NUMERATOR, CYGNUM_HAL_RTC_DENOMINATOR, and CYGNUM_HAL_RTC_PERIOD,
which are located under the component CYGNUM_HAL_RTC_CONSTANTS. These options set
the real-time clock constant according to the hardware clock settings.

Options might also need to be removed completely from the CDL script file since they do
not apply to the new hardware platform. An example of this is the option

330 Chapter 13 • Porting eCos

CYGPKG_HAL_POWERPC_MBX_TESTS, since there are no tests we want to build for the Mar-
tini platform.

Now we need to verify that the proper packages are loaded for our new Martini platform.
This is accomplished by editing the martini target we added to the ecos.db file in step 1.
The reason we did not make these modifications in step 1 was so we could verify the build pro-
cedure and run the RedBoot image on the evaluation board.

We want to remove as many of the packages as possible to establish a basic level of func-
tionality. After this basic functionality is operating properly on our new hardware platform, we
can add back the packages we need to enhance the functionality of our platform. Code
Listing 13.4 shows the packages command within the martini target.

1 packages { CYGPKG_HAL_POWERPC

2 CYGPKG_HAL_POWERPC_MPC8xx

3 CYGPKG_HAL_POWERPC_MARTINI

4 CYGPKG_HAL_QUICC

5 CYGPKG_IO_SERIAL_POWERPC_QUICC_SMC

6 CYGPKG_DEVS_ETH_POWERPC_QUICC

7 CYGPKG_DEVS_FLASH_MBX

8 CYGPKG_DEVS_FLASH_AMD_AM29XXXXX

9 }

Code Listing 13.4 Example package changes to the file ecos.db for the new Martini platform.

In Code Listing 13.4, we see all the packages that will be loaded when the Martini board
target is selected from the Templates dialog box. Some of these packages might need to be
removed all together because the hardware functionality might not be included on the new hard-
ware platform. In other cases, we might need to change a package that is loaded.

For example, if the new Martini platform used the PowerPC 60x variant instead of the 8xx
variant, we would need to change line 2 from CYGPKG_HAL_POWERPC_MPC8xx to
CYGPKG_HAL_POWERPC_PPC60x. This ensures that the PPC60x variant package is loaded
for the Martini template.

We leave the packages CYGPKG_HAL_QUICC and CYGPKG_IO_SERIAL_POWERPC_
QUICC_SMC on lines 4 and 5 because these provide the serial port communication code for our
new platform. In the next step, we verify that the code configures and operates the serial port as
required by our new hardware.

Since we are initially using serial communication on our new hardware platform, we want
to remove line 6 so the CYGPKG_DEVS_ETH_POWERPC_QUICC package is not loaded. After
a baseline of functionality is established on our new platform, we can add Ethernet support back.

If additional hardware is present on the new platform that is not present on the baseline HAL
platform, a new package might need to be added. For example, if a different flash device is used on
the Martini platform, we would remove line 8 CYGPKG_DEVS_FLASH_AMD_AM29XXXXX and
substitute the flash device present on the new hardware platform.

A Platform Porting Example 331

STEP 4 Adjust the Memory Layout for the New Platform
The memory layout files are located in the include\pkgconf subdirectory in our new Mar-
tini package. We need to edit the .h and .ldi files to match the memory on the new hard-
ware platform. Editing the .mlt file is not necessary. The .mlt files are used by the
Configuration Tool to store the graphical information for the memory layout. There are two sets
of memory layout files, one for RAM startup and one for ROM startup.

Initially we can hand edit these files. After the code is up and running on our new plat-
form, it is best to use the Configuration Tool Memory Layout window, as described in
Chapter 11 for changes to the memory structure. The memory layout editor is currently only
present in version 1.3.net of the Configuration Tool. Version 2 of the Configuration Tool does not
have the capability to edit memory configurations.

It is helpful to have the GNU Linker documentation present when editing these files. The
documentation describes all of the linker script commands that are defined in the memory layout
files. The online site for the GNU Linker (ld) is:

www.gnu.org/manual/manual.html

For our example platform port, the two files we need to edit are mlt_powerpc_
martini_rom.h and mlt_powerpc_martini_rom.ldi. Code Listing 13.5 shows part of
the ROM memory layout file mlt_powerpc_martini_rom.h for the new Martini platform.

1 #define CYGMEM_REGION_ram (0)
2 #define CYGMEM_REGION_ram_SIZE (0x400000)
3 #define CYGMEM_REGION_ram_ATTR (CYGMEM_REGION_ATTR_R |

 CYGMEM_REGION_ATTR_W)
4 #define CYGMEM_REGION_rom (0xfe000000)
5 #define CYGMEM_REGION_rom_SIZE (0x800000)
6 #define CYGMEM_REGION_rom_ATTR (CYGMEM_REGION_ATTR_R)

Code Listing 13.5 Example memory layout file, mlt_powerpc_martini_rom.h, for the new
Martini platform.

As we see in Code Listing 13.5, the RAM and ROM memory regions are defined. We need
to adjust the size and start addresses of the RAM and ROM regions to match our new hardware
platform. Line 1 contains the start address, set to 0, for the RAM memory region. The size of the
RAM region is defined on line 2, which is set to 0x0040_0000 (4 Mbytes). Line 3 defines the
properties of the RAM region as read and write. The ROM start address is defined on line 4 at

N O T E In some platform porting cases it might be neces-
sary to write your own device driver package if there is not
support for your hardware device in the eCos repository. If you
need to write your own device driver package, you can model
the new package after one of the existing driver packages.
The steps to do this are the same as described in this plat-
form porting procedure.

332 Chapter 13 • Porting eCos

0xFE00_0000. The size of the ROM memory, set on line 5, is 0x0080_0000 (8 Mbytes).
Finally, the attributes for the ROM region are set on line 6 to read-only.

We also need to modify the .ldi linker script file to match the new hardware platform. In
Code Listing 13.6, we see part of the mlt_powerpc_martini_rom.ldi file.

1 MEMORY

2 {

3 ram : ORIGIN = 0, LENGTH = 0x400000

4 rom : ORIGIN = 0xfe000000, LENGTH = 0x800000

5 }

6

7 SECTIONS

8 {

9 SECTIONS_BEGIN

10 SECTION_vectors (rom, 0xfe000000, LMA_EQ_VMA)

11 SECTION_text (rom, ALIGN (0x4), LMA_EQ_VMA)

12 SECTION_fini (rom, ALIGN (0x4), LMA_EQ_VMA)

13 SECTION_rodata1 (rom, ALIGN (0x8), LMA_EQ_VMA)

14 SECTION_rodata (rom, ALIGN (0x8), LMA_EQ_VMA)

15 SECTION_fixup (rom, ALIGN (0x4), LMA_EQ_VMA)

16 SECTION_gcc_except_table (rom, ALIGN (0x1),LMA_EQ_VMA)

17 .

18 .

19 .

20 SECTION_bss (ram, ALIGN (0x10), LMA_EQ_VMA)

21 CYG_LABEL_DEFN(__heap1) = ALIGN (0x8);

22 SECTIONS_END

23 }

Code Listing 13.6 Example linker script file, mlt_powerpc_martini_rom.ldi, for the new
Martini platform.

The MEMORY linker command is on lines 1 through 5. This command describes the loca-
tion and size of the regions of memory for the hardware platform. As we can see on lines 3 and
4, the ram and rom regions are defined to match the size and start addresses in the
mlt_powerpc_martini_rom.h file.

A portion of the SECTIONS command is defined on lines 7 through 23, which tells the
linker how to map input section into output sections and where the output sections are located in
memory. We want to verify that all memory sections are located in the appropriate place for the
new hardware platform. The macros, such as SECTION_vectors, are defined in the PowerPC
linker script file powerpc.ld located under the hal\powerpc\arch\current\src
subdirectory. All platforms have an architecture linker script file. Additional information about
the linker script files can be found in Chapter 11.

A Platform Porting Example 333

STEP 5 Modify the Code for the New Platform

The next step is to modify the HAL initialization code for the new hardware platform. The main
platform initialization code can be found in the assembly (.S) file located under the src subdi-
rectory. In our example, this is the file martini.S.1 The routine hal_hardware_init
contains the platform-specific code. The modifications necessary are dependent on the platform
used as the baseline and the additional functionality needed by the new platform hardware.

We also need to verify the initialization code in the other files such as hal_aux.c and
hal_diag.c, also located in the src subdirectory. Other HAL packages might have addi-
tional source files that need to be verified. Additional information about the HAL startup process
can be found in Chapter 2.

Some general areas of code to modify or comment out during this phase of the porting
process are common across most platforms. These general modifications include configuring the
processor registers such as the real-time clock, chip select, and interrupt control, which is
accomplished in the routine hal_hardware_init.

Another modification is to disable instruction and data caches, as well as the MMU if pos-
sible, since speed is not a concern at this point. In our example, we can prevent the caches from
being enabled by undefining the macro CYGPRI_ENABLE_CACHES found in the file
plf_cache.h under the include subdirectory.

We also need to make sure that the serial port code initializes the port appropriately for our
new hardware platform. Initially it is a good idea to use a polling mode driver, rather than an inter-
rupt driven driver. By using RedBoot, which only uses polling mode for serial communications, we
have the proper communication functionality we need at this point in the porting process.

In addition, the serial communication channel needs to be hooked into the communication
interface table and virtual vector table properly. Detailed information about the communica-
tion interface table and virtual vector table can be found in Chapter 4, Virtual Vectors. The plat-
form used as a baseline might already hook the necessary serial communication functions into
the tables, in which case we need to verify the serial port is initialized properly.

In our example, the new Martini platform has two serial ports whereas the MBX platform
only has one. We want to initially get one serial port up and running and then add the second
serial port code, which we can model after the functioning port. As we extend the functionality
of our new platform by adding packages we need to verify that the code operates as intended for
our hardware.

STEP 6 Build the RedBoot Image for the New Platform

Now we are ready to build the RedBoot image for our new Martini platform. The new platform
is built by selecting Build –> Library from the menu in the Configuration Tool. The method and
tools needed to load the image onto the new hardware platform are unique to the platform.

1. This is just another reminder about the file extension for the assembly file. In this case, it is important that the
extension of the assembly file is an uppercase “S” rather than a lowercase “s”. The uppercase “S” allows the
GNU C compiler driver to perform preprocessing on the assembly file.

334 Chapter 13 • Porting eCos

It might be necessary to use the GNU Binary utility objcopy to convert the file to a format
that is required by the device programming tools. Additional information about the objcopy util-
ity can be found under binutils online at:

www.gnu.org/manual/manual.html

After the RedBoot image is installed onto the new target platform, the board is reset to
boot the new software. If RedBoot initializes and runs successfully, the initialization message is
output on the serial port, similar to the message shown in Code Listing 9.1 in Chapter 9. If this
message is not received, it is necessary to verify the changes made for the new target platform.

At this point, your embedded debugging skills come into play. Toggling an I/O port pin
(possibly connected to an LED) to track the progress through the code is great for low-level
debugging through assembly files.

STEP 7 Additional Functionality
Once the RedBoot image is up and running on the new hardware, additional functionality can be
added to the configuration. Some of these additional features Might include adding a reset,
which can be implemented in software or using a hardware watchdog.

Testing to make sure the single-step support, which should already be present in the HAL,
is operating properly can be useful when using GDB to step through code. Enabling the cache on
the processor, if present, is another feature to add that can enhance program speed.

13.2.2 Porting Hints

Here are some hints that can come in handy when performing your own eCos port:

• Start with the smallest amount of code possible to get a minimal RedBoot image
running on your new platform. Having too many packages increases the amount of
code in the initial image, as well as the possibility of encountering problems.
Functionality can be added after the hardware has some basic features up and running.

• Stay up to date with the eCos source code. Tracking the changes made to the platform
you use as your baseline for the port is crucial because bug fixes might be incorporated
that you need to take advantage of. The ChangeLog files are a great source for
understanding what changes are occurring with a particular platform.

• Various hardware tools, such as an ICE or BDM, can speed up the porting process by
giving you better visibility into the processor’s operation.

• As mentioned previously, when low-level assembly debugging is necessary, toggling an
I/O port pin to track the progress through the software can be very helpful.

• A trace buffer, or trace messages output to a serial port, is useful in tracking a variable’s
value or other information during execution of the software.

• Assertions can be used to expose bugs or missing features in the software. Assertions
are disabled by default in eCos configurations.

• Using the test applications contained in the eCos framework can divulge problems with
your target platform.

Summary 335

13.3 Summary
In this chapter, we went through the procedure for porting eCos to a new platform. We started
with getting eCos noticed by the Configuration Tool so that we could build our new hardware
platform image. We then looked at some of the modifications that might be necessary to get
eCos running on new hardware.

Although the exact steps necessary for bringing up eCos on a new hardware platform are
unique to that particular hardware, this porting example gives us a basic understanding of the pro-
cedure. Finally, we finished the chapter with some hints that can be used to aid in porting eCos.

Reference
Ganssle, Jack. “ICE Technology Unplugged.” Embedded Systems Programming (October 1999): 103.

337

A P P E N D I X A

Supported
Processors and
Evaluation Platforms

he tables in this appendix list the processors and evaluation boards supported by eCos.
Also listed is the manufacturer of the evaluation board and the features supported by the

board. Additional information about supported processors and evaluation boards can be found
online at:

http://sources.redhat.com/ecos/hardware.html

Table A.1 ARM Architecture

Processor
Evaluation
Board

Manufacturer Supported Features

ARM710T CMA222 Cogent Computer
Systems

Serial driver

ARM9 Excalibur Altera Flash driver

ARM9 AAED2000 Agilent Flash driver, Ethernet
driver, Keyboard driver,
Touchscreen driver, RedBoot

ARM940T EPI Dev9 Embedded
Performance

Serial driver, Flash driver,
RedBoot

T

338 Appendix A

ARM7TDMI CMA230 Cogent Computer
Systems

Serial driver

ARM7TDMI EPI Dev7 Embedded
Performance

Serial driver, Flash driver,
RedBoot

ARM7TDMI ARM Integrator ARM Serial driver, Ethernet
driver, Flash driver, PCI
driver

Atmel AT91x40
(contains
ARM7TDMI core)

AT91EB40
Evaluation Board

Atmel Serial driver, Flash driver,
RedBoot

Cirrus Logic
CL-PS7111

CL-PS7111
Development Board

Cirrus Logic Serial driver, Ethernet
driver, Flash driver

Cirrus Logic
Maverick EP7209

EDB7209 Cirrus Logic. Serial driver, Ethernet
driver, Flash driver

Cirrus Logic
Maverick EP7211

EDB7211 Cirrus Logic Serial driver, Ethernet
driver, Flash driver,
RedBoot

Cirrus Logic
Maverick EP7212

EDB7212 Cirrus Logic Serial driver, Ethernet
driver, Flash driver,
RedBoot

Intel StrongARM
SA-110

EBSA-285 Intel Serial driver, Ethernet
driver, Flash driver, PCI
driver, Watchdog driver,
RedBoot

Intel StrongARM
SA-1100

Intel SA-1100
Evaluation
Platform (Brutus)

Intel Serial driver

Table A.1 ARM Architecture (Continued)

Processor
Evaluation
Board

Manufacturer Supported Features

Supported Processors and Evaluation Platforms 339

Intel StrongARM
SA-1100

Intel SA-1100
Multimedia Board

Intel Serial driver, Flash driver,
RedBoot

Intel StrongARM
SA-1110

Intel SA-1110
Microprocessor
Evaluation Plat-
form (Assabet)

Intel Serial driver, Ethernet
driver, Flash driver, USB
driver, PCMCIA/CF driver,
Watchdog driver, RedBoot

Intel StrongARM
SA-1110

Compaq iPAQ
PocketPC

Hewlett-Packard Serial driver, Ethernet
driver, Flash driver,
PCMCIA/CF driver,
keypad driver, touchscreen
driver, watchdog driver,
RedBoot

Intel StrongARM
SA-1110

Bright Star
Engineering
commEngine

Bright Star
Engineering

Serial driver, Ethernet
driver, Flash driver, PCI
driver, Watchdog driver,
RedBoot

Intel StrongARM
SA-1110

CerfBoard Intrinsyc Serial driver, Ethernet
driver, RedBoot

Intel StrongARM
SA-1110

CerfCube Intrinsyc Serial driver, Ethernet
driver, RedBoot

Intel XScale
80321

IQ80321 Intel Serial driver, Ethernet
driver, Flash driver, PCI
driver, RedBoot

Samsung
KS32C5000 or
S3C4510A

SNDS100 Samsung Serial driver, Ethernet
driver, RedBoot

Table A.1 ARM Architecture (Continued)

Processor
Evaluation
Board

Manufacturer Supported Features

340 Appendix A

Samsung
KS32C50100 (con-
tains ARM7TDMI
core)

Evaluator-7T ARM RedBoot

Sharp LH77790 ARM AEB-1 ARM Serial driver, Watchdog
driver

Table A.2 Samsung CalmRISC Architecture

Processor Evaluation Board Manufacturer
Supported
Features

CalmRISC16 Calm16 Core Samsung RedBoot

CalmRISC32 Calm32 Core Samsung RedBoot

Table A.3 Hitachi H8/300 Architecture

Processor Evaluation Board Manufacturer
Supported
Features

Hitachi H8/300 H8/3068 Evaluation
Board

Akizuki Serial driver, Ethernet
driver, RedBoot

Table A.4 Fujitsu FR-V Architecture

Processor Evaluation Board Manufacturer
Supported
Features

FR-V FR-V400 Fujitsu Flash drivers, Ethernet
drivers, RedBoot

Table A.1 ARM Architecture (Continued)

Processor
Evaluation
Board

Manufacturer Supported Features

Supported Processors and Evaluation Platforms 341

Table A.5 Intel x86 Architecture

Processor Evaluation Board Manufacturer
Supported
Features

x86 PC Motherboard Multiple Serial driver, Ethernet
driver, PCI driver,
RedBoot

Table A.6 Matsushita AM3x Architecture

Processor Evaluation Board Manufacturer
Supported
Features

Panasonic AM31 stdeval1 Syoichi Yamamoto
Kyoto Micro Com-
puter

Serial driver,
Watchdog driver

Panasonic AM33 STB Reference Plat-
form

Syoichi Yamamoto
Kyoto Micro Com-
puter

Serial driver,
Watchdog driver

Panasonic AM33-2 ASB2305 Matsushita Serial driver, Ethernet
driver, Flash driver,
RedBoot

Table A.7 MIPS Architecture

Processor
Evaluation
Board

Manufacturer Supported Features

MIPS 4Kc Atlas MIPS Technologies Serial driver, Ethernet
driver, Flash driver, PCI
driver, RedBoot

MIPS 4Kp Atlas MIPS Technologies Serial driver, Ethernet
driver, Flash driver, RedBoot

MIPS 4Km Atlas MIPS Technologies Serial driver, Ethernet
driver, Flash driver, RedBoot

342 Appendix A

MIPS 4Kc Malta MIPS Technologies Serial driver, Flash driver,
Ethernet driver RedBoot

MIPS 5Kc Malta MIPS Technologies Serial driver, Flash driver,
Ethernet driver RedBoot

NEC VR4300 DDB-VRC4373 NEC Electronics Serial driver, PCI driver

NEC VRC4375 Blue Nile NEC Electronics Serial driver, Flash driver,
Ethernet driver, RedBoot

PMC-Sierra
RM7000A

Ocelot Momentum Com-
puter

Serial driver, Ethernet
driver, Flash driver, PCI
driver, RedBoot

Toshiba
TMPR3904

JMR-TX3904
(Japanese)

Toshiba Information
Systems

Serial driver

Toshiba
TMPR4955F

TMPR4955
Reference Board

Toshiba Information
Systems

Serial driver, Real-time
clock driver

Table A.8 NEC V8xx Architecture

Processor Evaluation Board Manufacturer
Supported
Features

NEC V850/SA1 Cosmo CEB-V850/
SA1 (Japanese)

Cosmo (Japan) Serial driver

NEC V850/SB1 Cosmo CEB-V850/
SB1 (Japanese)

Cosmo (Japan) Serial driver

Table A.7 MIPS Architecture (Continued)

Processor
Evaluation
Board

Manufacturer Supported Features

Supported Processors and Evaluation Platforms 343

Table A.9 Table A.9 PowerPC Architecture

Processor Evaluation Board Manufacturer
Supported
Features

Motorola
MCF527C23
ColdFire

M5272C23
Evaluation Board

Motorola
Semiconductor
Products

Serial driver, Ethernet
driver, Flash driver,
RedBoot

Motorola MPC555 CMx-555 Axiom
Manufacturing

Serial driver, Flash
driver, Wallclock
driver, RedBoot

Motorola MPC823 CMA287-23 Cogent Computer
Systems

Serial driver

Motorola MPC850 CMA287-50 Cogent Computer
Systems

Serial driver

Motorola MPC860 CMA286-60 Cogent Computer
Systems

Serial driver

Motorola MPC860 MPC8xxFADS Motorola
Semiconductor
Products

Motorola MPC860 MBX860 Motorola Computer
Group

Serial driver, Ethernet
driver, Flash driver,
RedBoot

Motorola MPC860T Viper Analogue & Micro Serial driver, Ethernet
driver, Flash driver,
RedBoot

Table A.10 SPARC Architecture

Processor Evaluation Board Manufacturer
Supported
Features

Fujitsu MB86831,
MB86832 or
MB86833

Fujitsu
MB86800-MA01

Fujitsu
Microelectronics

Serial driver

344 Appendix A

Table A.11 SuperH Architecture

Processor
Evaluation
Board

Manufacturer Supported Features

Hitachi SH7708 Hitachi EDK/
SH7708

Hitachi
Semiconductor

Serial driver, Real-time
clock driver, Watchdog
driver

Hitachi 7729 Hitachi
HS7729PCI

Hitachi
Semiconductor

Serial driver, Flash driver,
Ethernet driver, PCI
driver, Watchdog driver,
Wallclock driver, RedBoot

Hitachi 7709 Solution Engine Hitachi
Semiconductor

Serial driver, Flash driver,
Ethernet driver, Watchdog
driver, RedBoot

Hitachi SH7708 CqREEK SH7708
(Japanese)

CQ Publishing
(Japan)

Serial driver

Hitachi SH7750 Sega Dreamcast Sega Serial driver, PCI driver,
RedBoot

Hitachi SH7750 CqREEK SH7750
(Japanese)

CQ Publishing
(Japan)

Serial driver

Hitachi SH7751 Solution Engine Hitachi
Semiconductor

Serial driver, Flash driver,
Ethernet driver, Watchdog
driver, RedBoot

345

A P P E N D I X B

eCos License

Cos version 2 is released under a GNU Public License (GPL) compatible license. Previous
versions of eCos were covered by the Red Hat eCos Public License (RHEPL); however,

with the latest release, the eCos license was changed.
The first part of this appendix describes the eCos license, which is found in the source files

of the eCos source code repository. The GPL version 2 follows the eCos license. The GPL can
be found online at:

www.gnu.org/licenses/gpl.html

The eCos license is the standard GPL version 2 but with a special exception to make it
appropriate for embedded systems. In summary, this license means that when distributing prod-
ucts and binaries containing eCos, you must include or make available the source code to eCos
that you used, for example on your Web site. However, there is nothing in the eCos license that
requires you to release source code for your own software—only the source code of eCos, or
derived from eCos. The details of the license are covered below.

Additional information about the eCos license can be found on the eCos discussion list.
One specific message that interprets some of the details about the new eCos license can be found
online at:

http://sources.redhat.com/ml/ecos-discuss/2002-05/msg00191.html

B.1 eCos License
This file is part of eCos, the Embedded Configurable Operating System.

Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.

e

346 Appendix B

eCos is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 or (at
your option) any later version.

eCos is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with eCos; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

As a special exception, if other files instantiate templates or use macros or inline functions
from this file, or you compile this file and link it with other works to produce a work based on
this file, this file does not by itself cause the resulting work to be covered by the GNU General
Public License. However, the source code for this file must still be made available in accordance
with section (3) of the GNU General Public License.

This exception does not invalidate any other reasons why a work based on this file might
be covered by the GNU General Public License.

Alternative licenses for eCos may be arranged by contacting Red Hat, Inc. at http://sources
.redhat.com/ecos/ecos-license/

B.2 GNU GENERAL PUBLIC LICENSE

B.2.1 Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation,

Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

B.2.2 Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free soft-
ware (and charge for this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs; and that you
know you can do these things.

eCos License 347

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so that
any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public License.
The "Program", below, refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law: that is to say, a work con-
taining the Program or a portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without limitation in the term "modi-
fication".) Each licensee is addressed as "you".

Activities other than copying, distribution, and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted, and the out-
put from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends on
what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the Pro-
gram a copy of this License along with the Program.

348 Appendix B

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the terms
of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print or dis-
play an announcement including an appropriate copyright notice and a notice that there is no
warranty (or else, saying that you provide a warranty) and that users may redistribute the pro-
gram under these conditions, and telling the user how to view a copy of this License. (Exception:
if the Program itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and sep-
arate works in themselves, then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the same sections as part of a
whole which is a work based on the Program, the distribution of the whole must be on the terms
of this License, whose permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work writ-
ten entirely by you; rather, the intent is to exercise the right to control the distribution of deriva-
tive or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

 3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:

eCos License 349

a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute correspond-
ing source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with Sub-
section b above.)

The source code for a work means the preferred form of the work for making modifica-
tions to it. For an executable work, complete source code means all the source code for all mod-
ules it contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a des-
ignated place, then offering equivalent access to copy the source code from the same place
counts as distribution of the source code, even though third parties are not compelled to copy the
source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the
Program is void, and will automatically terminate your rights under this License. However, par-
ties who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, noth-
ing else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or dis-
tributing the Program (or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing or modifying the Pro-
gram or works based on it.

350 Appendix B

6. Each time you redistribute the Program (or any work based on the Program), the recipi-
ent automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions on
the recipients’ exercise of the rights granted herein. You are not responsible for enforcing com-
pliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit roy-
alty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended to
apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of protect-
ing the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software distrib-
uted through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program under
this License may add an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present ver-
sion, but may differ in detail to address new problems or concerns.

eCos License 351

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and "any later version", you have the option of follow-
ing the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of this License, you may
choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make excep-
tions for this. Our decision will be guided by the two goals of preserving the free status of all deriva-
tives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIA-
BLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

352 Appendix B

B.2.3 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

 To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file should
have at least the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY;
for details type ‘show w’.

This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something other

eCos License 353

than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits
your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 21 April 2002
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

355

A P P E N D I X C

Cygwin Tools
Upgrade Procedure

he Cygwin tools upgrade procedure allows you to take advantage of bug fixes and
enhancements to the tools installed from the CD-ROM in Chapter 10, Cygwin Tools

Upgrade Procedure.
For this Cygwin tools upgrade example, we are running through the process of updating

the cygwin package from the Internet. Other Cygwin packages might be newer than the ones
initially installed because updates and bug fixes are constantly occurring for each package.

Before beginning the Internet upgrade, you should check with your network administrator
to determine if there are any special configuration options you need to be aware of, such as
proxy settings. The setup program prompts you for the type of Internet connection you have on
your system.

STEP 1
The first step in the upgrade process is to run the setup.exe program. This is the same program
we used in the initial installation of the Cygwin tools. The same dialog box shown in Figure 10.1 is
displayed, provided the same setup.exe is used. To proceed, click the Next button.

N O T E A good idea prior to upgrading any package is to
search the eCos discussion mailing list to see if anyone has
reported a problem with a particular package. You should also
perform the upgrade in a manner so that you can revert to
your previous working tools if the upgrade has problems.
Posting messages on the eCos discussion mailing list, or the
relevant Cygwin mailing list, is another way to obtain help.

T

356 Appendix C

STEP 2
For the upgrade procedure, we use the Install from Internet option, shown in Figure 10.2. It is
possible to download the latest packages and then install from the downloaded location, as we
did in the initial installation. However, using the Install from Internet option allows us to per-
form the download and install tasks in consecutive steps. Then, click the Next button.

STEP 3
Next, we set the Local Package Directory to D:\cygwin, as shown in Figure 10.3. Click the
Next button.

STEP 4
The next step is the selection of the location, for the Select Install Root Directory option, where
the tools should be installed. This is shown in Figure 10.4. We use D:\cygwin along with the
options DOS for the Default Text File Type option, and Just Me for the Install For option. After
making these option selections, click the Next button.

STEP 5
We now need to choose the type of Internet connection for downloading the Cygwin package.
The dialog box displaying the download options is shown in Figure C.1. The option selected
depends on your specific connection to the Internet. You might need to check with your network
administrator to ensure the proper option is selected. Select Direct Connection, and click Next to
proceed.

STEP 6
Next, we select the mirror site to use for our file downloads for the Select Download Site option.
This dialog box is shown in Figure C.2. The selection for this option depends on your location. It
is typically best to select a download site close to your facility. After selecting your download
site, click the Next button.

STEP 7
The dialog box shown in Figure C.3 is displayed after the download site is selected. This dialog
box remains open until the connection to the download site is complete.

Figure C.1 Cygwin Internet Connection
Options dialog box.

Cygwin Tools Upgrade Procedure 357

After successfully connecting to the download site, the dialog box shown in Figure C.4
appears. As we can see from this dialog box, the current version of the cygwin package we
have installed is 1.3.3-2, as shown in the Current column. The new version available on the
download site is 1.3.4-4, as shown in the New column.

If you want to leave a particular version of a package alone, click on the until Skip is
displayed in the New column. This prevents the setup program from overwriting the current
version of the package you installed.

Figure C.2 Cygwin Download Site
dialog box.

Figure C.3 Cygwin download connection
dialog box.

N O T E The package selection dialog box you see might dif-
fer from the one shown in Figure C.4, because the Cygwin tools
are updated constantly. Therefore, any package that is newer
than the one we installed in Chapter 10 will show up in the Pack-
age Selection dialog box.

358 Appendix C

After clicking the Next button to continue, the packages selected are downloaded and
installed. A dialog box similar to the one shown in Figure 10.6 is displayed during download and
installation.

STEP 8
When the installation completes, the dialog box shown in Figure 10.7 is displayed. Since we
already have our shortcuts configured, we can leave both options unchecked and click Next.
Finally, the dialog box shown in Figure 10.8 is displayed, indicating successful upgrade of the
Cygwin packages. Click OK and we are ready to use the latest Cygwin tools.

UPGRADE HINTS
Here are a few hints to overcome some common problems during the upgrade procedure. If you
are having problems connecting to a download site, simply select a different mirror site. Often
times. the mirror sites are being updated so a particular site might be down for some time.

If the setup program is having troubles upgrading a particular package, you might need to
edit the install.db file located in the etc\setup directory under the cygwin root direc-
tory. Locate the package or packages you are upgrading and delete the text line for those particular
packages. It is best to create a backup copy of the install.db file prior to doing any editing.

Check the log files for additional information regarding the upgrade. The setup program
writes details about the setup procedure, which might assist you in finding the installation problem.

Figure C.4 Cygwin Package Selection dialog box.

Cygwin Tools Upgrade Procedure 359

Finally, check the Cygwin mailing list for specific help with any setup problems. It is help-
ful to give the setup.exe program version number (in our case, the version number is
2.78.2.15) when posting to this list. A list of Cygwin mailing lists can be found online at:

http://sources.redhat.com/cygwin/lists.html

361

A P P E N D I X D

Building the GNU
Cross-Development
Tools

he procedure detailed in this appendix was used to build the i386 GNU cross-development
tools contained on the CD-ROM. The commands in this section are specific to configuring

and building the i386 GNU cross-development tools, although the commands for other processors
are very similar.

The configure and build process for each group of GNU cross-development tools can take
a large amount of time to complete. The amount of time to configure and build the cross-devel-
opment tools directly depends on the speed of your PC.

STEP 1
Open the bash command shell. This can be done by clicking on the Cygwin shortcut on the desk-
top, if created in the Cygwin native tools installation, or through the menu Start –> Programs –>
Cygnus Solutions –> Cygwin Bash Shell.

When the shell is opened, the present working directory is D:\cygwin\home\xxx,
where xxx is your username. We want to change to the root Cygwin directory, which in our case
is D:\cygwin, by entering the following command at the bash prompt ($):

$ cd /

N O T E The steps detailed in this build procedure assume
that a new host development platform is being used. There-
fore, some of the steps—for example, the mount command in
step 4—might not be necessary if new development tools are
being built on an existing platform.

T

362 Appendix D

STEP 2

Next, we need to create subdirectories for each of the three groups of cross-development tools.
When using the Cygwin bash shell, the “/” refers to the root Cygwin installation directory, which
in our case is D:\cygwin. To create the necessary directories, enter the following command:

$ mkdir –p /src/binutils /src/gcc /src/gdb

Verify that these directories are created correctly under the D:\cygwin root directory.

STEP 3

GNU Binary Utilities Unzip

Now we need to unzip the source code files from the CD-ROM. First, we change to the GNU
Binutils directory with the command:

$ cd /src/binutils

Then, we unzip the file with the command:

$ tar xjvf /cygdrive/e/gnu/source/binutils-2.11.2a.tar.bz2

This creates the subdirectory binutils-2.11.2a, under the src/binutils directory,
which contains the GNU Binutils source files.

GNU C/C++ Compiler Unzip

Next, we change to the GNU C/C++ Compiler subdirectory at the bash shell prompt with the
command:

$ cd /src/gcc

Then, unzip the file with the command:

$ tar xjvf /cygdrive/e/gnu/source/gcc-2.95.2a.tar.bz2

This creates the subdirectory gcc-2.95.2a, under the src/gcc directory, containing
the GCC and G++ source files.

GNU Debugger with Insight Unzip

Finally, we change to the GNU Debugger with Insight subdirectory with the command:

$ cd /src/gdb

N O T E The CD-ROM dr ive is mounted as /cygdrive/e/ by
default when Cygwin is installed. The dr ive letter f or your CD-ROM
should be substituted in place of /e/ in the f ollowing tar com-
mands . If you are uncer tain of the dr ive mountings f or your system,
enter the command mount at the bash shell prompt to get a listing
of the current system mounts .

Building the GNU Cross-Development Tools 363

Unzip the file with the command:

$ tar xjvf /cygdrive/e/gnu/source/insight-5.1a.tar.bz2

This creates the subdirectory insight-5.1a under the src/gdb directory with the
GNU Debugger with Insight source files.

STEP 4
Before building the cross-development tools, we need to make sure that the temporary directory
is mounted properly on our system. This ensures that the cross development tools build properly.
The command to do this is:

$ mount –f –b d:/cygwin/tmp /tmp

STEP 5
Now we are ready to build the cross-development tools.

We start with the GNU Binutils. First, we need to create a temporary directory for the
build using the bash shell command:

$ mkdir –p /tmp/build/binutils

We should verify that the directory D:\cygwin\tmp\build\binutils is created.
Change to the subdirectory we just created with the command:

$ cd /tmp/build/binutils

N O T E It is possible to install the GNU Debugger without
the Insight GUI; however, the Insight source code is a super-
set of the GDB source code. In addition, you always have the
option of running the GNU Debugger with the command-line
interface using the –nw option.

N O T E In the following configure and build steps, entering
the commands exactly as shown is very important. The slight-
est typo in entering these commands can cause the entire
GNU cross-development tool chain to fail to work.

If there are prob lems dur ing the b uild, the bash shell histor y is
a good place to star t to see if the GNU cross-de velopment tools
were built properly. The bash command history can be dis-
played by entering the following command:

 $ history

The bash command histor y can also be f ound in the fi le
.bash_history in the D:\cygwin\home\username directory, where
username is your computer user name.

364 Appendix D

Next, we configure the system to build the GNU Binutils with the command:

$ /src/binutils/binutils-2.11.2a/configure –-target=i386-elf \
 --prefix=/tools \
 --exec-prefix=/tools/H-i686-pc-cygwin \
 -v 2>&1 | tee configure.out

The output messages from the configuration process are contained in the file config-
ure.out located in the D:\cygwin\tmp\build\binutils subdirectory should you
need to refer to a particular message.

 After the configuration has completed, we are returned to the bash shell prompt. The con-
figuration populates the D:\cygwin\tmp\build\binutils subdirectory with the neces-
sary files to build the GNU Binutils.

Now we can build the GNU Binutils with the command:

$ make –w all install 2>&1 | tee make.out

The output from the make process is contained in the file make.out located in the
D:\cygwin\tmp\build\binutils subdirectory should you need to refer to a particular
message.

 After this step is complete, in which case we are returned to the bash shell prompt, we
have the GNU Binutils created for the Intel x86 platform. These files are located in the
D:\cygwin\tools\H-i686-pc-cygwin\bin subdirectory. An example of one of the
GNU Binutils files for the Intel x86 platform is i386-elf-as.exe.

STEP 6
Before we proceed with the build process, we need to make sure that the path is configured properly
and that the binary utilities are at the head of the path. To do this, we use the bash shell command:

$ PATH=/tools/H-i686-pc-cygwin/bin:$PATH ; export PATH

We also need to add the GNU Intel x86 tools directory to the Windows environment path.
The path is altered by right-clicking on the My Computer icon on the desktop. This brings up a
drop-down list of options. Select Properties from the drop-down list.

The System Properties dialog box is displayed. Select the Environment tab. Under the
User Variables, select path. In the Value edit box, to the front of the path, add:

D:\cygwin\tools\H-i686-pc-cygwin\bin;

Then, click the Set button. Finally, click the OK button.

N O T E In the following commands, the backslash (\) at the
end of each line is used to break up the commands entered
into the bash shell. After pressing Enter at the end of a line
with a backslash, a new line is output in the bash shell with a
greater than (>) sign prompt, allowing us to continue entering
the remaining command lines.

Building the GNU Cross-Development Tools 365

STEP 7
Now we verify that the GNU Binutils were built properly and that the PATH is set up correctly
before proceeding with the build. To do this, we enter the command:

$ i386-elf-as –-version

The following message is output if everything is set up properly:

GNU assembler 2.11.2

Copyright 2001 Free Software Foundation, Inc.

This program is free software; you may redistribute it under
the terms of the GNU General Public License. This program has
absolutely no warranty.

This assembler was configured for a target of `i386-elf'.

If the message is incorrect, go back and verify that the PATH is configured properly. If so,
you need to verify that the GNU Binutils configure and make commands were entered correctly. If
they were entered incorrectly, it is best to remove the contents under the D:\cygwin\tmp\
build\binutils directory before attempting to configure and make the GNU Binutils again.

STEP 8
Next, we build the GNU C/C++ Compiler. Then, we create a temporary directory for the GNU
C/C++ Compiler build with the command:

$ mkdir –p /tmp/build/gcc

We should verify that the directory D:\cygwin\tmp\build\gcc is created. Change
to the directory we just created using the command:

$ cd /tmp/build/gcc

Now we can configure to build the GNU C/C++ Compiler using the command:

$ /src/gcc/gcc-2.95.2a/configure –-target=i386-elf \

 --prefix=/tools \

 --exec-prefix=/tools/H-i686-pc-cygwin \

 --with-gnu-as –-with-gnu-ld –-with-newlib \

 -v 2>&1 | tee configure.out

The output messages from the GNU C/C++ Compiler configuration process are contained
in the file configure.out located in the D:\cygwin\tmp\build\gcc subdirectory
should you need to refer to a particular message.

 After the configuration has completed, we are returned to the bash shell prompt. The con-
figuration populates the D:\cygwin\tmp\build\gcc subdirectory with the necessary files
to build the GNU C/C++ Compiler.

Now we can build the GNU C/C++ Compiler with the command:

$ make –w all-gcc install-gcc \

 LANGUAGES="c c++" 2>&1 | tee make.out

366 Appendix D

The output from the GNU C/C++ Compiler make process is contained in the file
make.out located in the D:\cygwin\tmp\build\gcc subdirectory should you need to
refer to a particular message.

 After this step is complete, in which case we are returned to the bash shell prompt, we
have the GNU C/C++ Compiler created for the Intel x86 platform. These files are located in the
D:\cygwin\tools\H-i686-pc-cygwin\bin subdirectory. An example of one of
the GNU C/C++ Compiler files for the Intel x86 platform is i386-elf-gcc.exe.

STEP 9

Now we verify that the GNU C/C++ Compiler was built properly. To do this, we enter the com-
mand:

$ i386-elf-gcc –-version

The following message is output if everything is set up properly:

2.95.2

If the message is incorrect, you need to verify that the GNU C/C++ Compiler configure
and make commands were entered correctly. If they were entered incorrectly, it is best to remove
the contents under the D:\cygwin\tmp\build\gcc directory before attempting to config-
ure and make the GNU C/C++ Compiler again.

STEP 10

Finally, we build the GNU Debugger with Insight. First, we create a temporary directory for the
GNU Debugger build with the command:

$ mkdir –p /tmp/build/gdb

We should verify that the directory D:\cygwin\tmp\build\gdb is created. Change
to the directory we just created using the command

$ cd /tmp/build/gdb

Now we can configure to build the GNU Debugger with Insight using the command:

$ /src/gdb/insight-5.1a/configure –-target=i386-elf \

 --prefix=/tools \

 --exec-prefix=/tools/H-i686-pc-cygwin \

 -v 2>&1 | tee configure.out

The output messages from the configuration process are contained in the file config-
ure.out located in the D:\cygwin\tmp\build\gdb subdirectory should you need to
refer to a particular message.

 After the configuration has completed, we are returned to the bash shell prompt. The con-
figuration populates the D:\cygwin\tmp\build\gdb subdirectory with the necessary files
to build the GNU Debugger with Insight.

Building the GNU Cross-Development Tools 367

Now we can build the GNU Debugger with Insight with the command:

$ make –w all install CC='gcc –mwin32' 2>&1 | tee make.out

The output from the make process is contained in the file make.out located in the
D:\cygwin\tmp\build\gdb subdirectory should you need to refer to a particular message.

 After this step is complete, in which case we are returned to the bash shell prompt, we
have the GNU Debugger with Insight Interface created for the Intel x86 platform. These files are
located in the D:\cygwin\tools\H-i686-pc-cygwin\bin subdirectory. An example of
one of the GNU Debugger with Insight files for the Intel x86 platform is i386-elf-gdb.exe.

STEP 11
Now we verify that the GNU Debugger with Insight was built properly. To do this, we enter the
command:

$ i386-elf-gdb –-version

The following message is output if everything is set up properly:

GNU gdb 5.1

Copyright 2001 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public
License, and you are welcome to change it and/or distribute
copies of it under certain conditions. Type "show copying" to
see the conditions.

There is absolutely no warranty for GDB. Type "show warranty"
for details.

This GDB was configured as "--host=i686-pc-cygwin --
target=i386-elf".

If the message is incorrect, you need to verify that the GNU Debugger with Insight config-
ure and make commands were entered correctly. If they were entered incorrectly, it is best to
remove the contents under the D:\cygwin\tmp\build\gdb directory before attempting to
configure and make the GNU Debugger with Insight again.

Other Processor Tools
As mentioned previously, the configure and make commands given for building the cross-com-
piler tools are specific for the Intel x86 processor, although the commands for the other sup-
ported processors are very similar. The installation procedures of the GNU cross-development
tools for other processors can be found online at:

http://sources.redhat.com/ecos/getstart.html

The GNU cross-development tools for other processors can coexist with each other as long
as the tool executable files are not the same. This might be necessary if you are developing eCos
applications for multiple processor architectures. Additional information about selecting the build
and user tools with the Configuration Tool can be found in Chapter 11, The eCos Toolset.

368 Appendix D

Conserving Space
If conserving disk space is an issue, you can delete the directories used during the build proce-
dure. The directories that can be safely removed are:

• D:\cygwin\src\binutils
• D:\cygwin\src\gcc
• D:\cygwin\src\gdb

The following directories can also be deleted; however, it might be useful to save the con-
figure and make output files generated during the build:

• D:\cygwin\tmp\build\binutils
• D:\cygwin\tmp\build\gcc
• D:\cygwin\tmp\build\gdb

369

A B O U T T H E A U T H O R

ANTHONY J. MASSA earned a dual B.S./B.A. degree in electrical engineering from the Uni-
versity of San Diego. He has spent most of his career developing embedded software, device
drivers, and applications on a wide range of 8-, 16-, and 32-bit processors and numerous embedded
RTOS platforms. Anthony also has experience with hardware design, and with writing drivers and
application software on the different Microsoft Windows operating system platforms.

Anthony has developed his skills by working on a diverse array of successful products
including satellite PC receiver cards, set-top boxes, Internet-enabled wireless modems, net-
working broadcast equipment, and cable modems. He has written extensively on eCos in
leading publications including the magazines Doctor Dobb’s Journal, Embedded Systems
Programming, Software Development, and EDN.

When not working, Anthony enjoys spending time with his family at home or on vacation
(where he can often be found having a good time at the Buena Vista in San Francisco), getting
out in the backcountry with his grandfather, and playing a little golf. Now that this project is
concluded, he is looking for his next writing adventure—perhaps a novel!

371

A
alarms, 125, 130–33

example, 127, 132
handler, 130
kernel API, 131–32

architecture. See Hardware Abstraction
Layer (HAL); submodules

asserts and tracing, 74, 134–38, 297
configuration, 137–38
example, 136–37
trace macros, 134

B
Background Debug Mode (BDM), 317, 334
binutils. See GNU Binary Utilities (binutils)
bitmap scheduler. See kernel; scheduler
Bootstrap Protocol (BOOTP), 172, 175, 194
bug tracking (Bugzilla), 8
build process, 282–85
building blocks, 8, 10

C
CDL. See Component Definition

Language (CDL)
ChangeLog file, 241, 266, 334

clocks, 129–30
configuration, 122
example, 133
HAL macros, 122
kernel API, 129
Real-Time Clock (RTC), 122–24
tick calculation, 123

command-line configuration tool, 248, 277
building, 277

communication (COMMS) channels, 67–69
Communication Interface Table (CIT), 67–71.

See also communication
(COMMS) channels

compatibility layers, 12, 150–52
µITRON, 16, 152
POSIX, 15, 150

configuration, 151
EL/IX, 15, 151
file I/O, 156–57

compiler flags, 284–85, 301, 305
Component Definition Language (CDL),

13, 240, 243–47, 256
commands, 244
script files, 13, 239, 243–47, 256

example, 247
graphical representation, 266–70

I N D E X

372 Index

component framework, 3, 8–10, 13, 239, 240
component repository, 10–13, 244, 264, 274

directory structure, 11–13
online, 12

components, 14
Concurrent Versions System (CVS), 12, 229
condition variables, 105–9

configuration, 105
example, 107–9
kernel API, 106–7

configuration method, 4–5
configuration options, 10, 13–14

nesting, 13
suboptions, 10, 13, 26

Configuration Tool, 10, 248–75
build options, 284–85
building, 277
CDL script files, 266–70, 271
Configuration window, 250, 254–55
conflicts and resolutions, 272–73
Conflicts window, 255, 273
eCos Configuration file (.ecc), 9, 251–53
eCos Minimal Configuration file (.ecm),

188, 253
example, 254

file generation, 282–84
importing and exporting, 253–54
installation, 224–28
Memory layout window 256–57. See

also Memory Layout Tool (MLT)
menu bar, 250
Output window, 256
pop-up menu, 255
Properties window, 250, 255,

256, 267, 270
saving configuration, 251–53. See also

eCos Configuration file (.ecm)
example, 252–53

screen layout, 248–51
searching, 251
setting build and user tools, 227, 251,

272, 327
Short description window, 256
status bar, 251

tests, 310–12
title bar, 250
tool bar, 251
versions, 248, 257
working directory, 252, 282–84, 292

conflicts, 14
counters, 125–29

configuration, 125
example, 127–29
kernel API, 126–27

CVS. See Concurrent Versions System (CVS)
CygMon, 12, 15, 153, 154, 185
Cygnus Solutions, 1–2
Cygwin, 209

cygwin.dll file, 218
directory structure, 217–18
installation, 210–17

log files, 218–19
upgrade, 219–20, 355–59

D
database. See repository database
database file. See ecos.db (database) file
Deferred Service Routine (DSR), 40–41, 43,

45–47, 146–47
configuration, 43–44
example, 48–50
explicit posting, 50

development hardware setup, 286–87
device drivers, 12, 139, 141, 146–47, 274
distribution files (.epk). See packages;

distribution files (.epk)
Domain Name System (DNS). See networking;

Domain Name System (DNS)
Dynamic Host Configuration Protocol

(DHCP), 171, 172, 175–76
DSR. See Deferred Service Routine (DSR)
dynamic loader, 183

E
eCos Configuration file (.ecc). See Configuration

Tool; eCos Configuration file (.ecc)

Index 373

eCos development kit, 209
directory structure, 229
installation, 223–229

eCos Minimal Configuration file (.ecm). See
Configuration Tool; eCos Minimal
Configuration file (.ecm)

ecos.db (database) file, 10, 227, 240, 264–66
example, 266
modifying, 324–25, 330

ecosadmin.tcl (administration) file, 275
EL/IX. See compatibility layers; POSIX;

EL/IX
evaluation boards, 337–44
exceptions, 31–40

example, 36–38
HAL macros, 38–39
handling, 32–35

application layer, 39
default handler, 34–35

kernel API, 35–36

F
file systems, 12, 155–60

Journalling Flash File System
Version 2 (JFFS2), 160

POSIX file I/O, 155–56
RAM, 158–60
ROM, 157–58

flags, 110–113
example, 112–13
kernel API, 110–12

FreeBSD. See networking; FreeBSD

G
GDB stub, 16, 35, 154–55, 186, 197

configuration, 154
Gilmore, John, 1
GNU Binary Utilities (binutils), 221

building, 361–68
GNU C/C++ Compiler (GCC), 1, 221,

301, 316
building, 361–68

GNU cross development tools
building, 361–68
installation, 220–23
mailing lists, 221–22
versions, 220–21

GNU Debugger (GDB), 1, 221–22
building, 361–68
Command Line Interface (CLI), 309
compiler optimization, 305
debugging applications, 305–9
protocol, 69
running without Insight interface, 306

GNU linker (ld), 4, 258, 301, 331
GNU make, 281, 299–302
GNU Public License (GPL), 208, 345–53
GoAhead WebServer, 180–82
GPL. See GNU Public License (GPL)

H
HAL. See Hardware Abstraction Layer (HAL)
Hardware Abstraction Layer (HAL), 5, 12,

17–29, 65, 316
clocks, 122
configuration, 24–26
directory structure, 19–22
exceptions, 32–35, 38–39
interrupts, 42–44, 50–52, 53–56
macros, 23–24
porting, 315–35
stacks, 94
startup, 27–29
submodules, 19

Henkel-Wallace, David, 1

I
I/O control system, 67, 140–47

device drivers. See device drivers
I/O sub-system, 142–46

configuration, 143
device I/O table, 142–43, 146
example, 145–46
kernel API, 143–44

In-Circuit Emulator (ICE), 317

374 Index

Insight, 221, 305–9, 311–13. See also GNU
Debugger (GDB)

Interrupt Service Routine (ISR), 40–41, 43,
45–47, 68, 146–47

example, 48–50
management, 51–53

interrupts, 40–58, 77
configuration, 42–44
handling, 44–47
kernel API, 52–58
management, 50–58
scheduler synchronization, 41
stack, 43, 94–95

ISO C library. See libraries; ISO C
ISR. See Interrupt Service Routine (ISR)

J
JFFS2. See Journalling Flash File System

Version 2 (JFFS2)

K
kernel, 12, 15, 73–84, 122–24, 183

C API, 73–74
directory structure, 74–75
instrumentation, 74
scheduler, 41, 77–84, 183

bitmap, 81
configuration, 83–84
kernel API, 78–79
locking/unlocking, 45, 47, 77–78
multi-level queue, 79–81
priority levels, 81–83

startup, 75–76
timeslicing, 79–81, 84, 123

L
libraries, 12, 15

ISO C, 77, 138–40
math, 138–40

libtarget.a (eCos library) file, 281, 296,
299, 302

license 2. See also GNU Public License (GPL)
linker flags, 284–85

linker script files (.ld), 34, 60, 257–60,
302, 331–32

lint. See Splint
Linux, 5, 151, 208
Load Memory Address (LMA), 260
lwIP. See networking; lwIP

M
mailboxes. See message boxes
mailing lists, 6–7
makefile, 282–84, 300–2
math library. See libraries; math
Memory Layout Tool (MLT),

223, 248, 257–64
memory manipulation, 257–64
message boxes, 113–18

configuration, 113–14
example, 117–18
kernel API, 114–16

MIB. See Simple Network Management
Protocol (SNMP)

Microwindows, 184
MLT. See Memory Layout Tool (MLT)
multi-level queue scheduler. See kernel;

scheduler
mutexes, 95–101

configuration, 97
example, 99–101
kernel API, 97–99
priorities, 96

N
networking, 13, 15, 167–79

Basic Networking Framework, 168, 170,
171–73, 176, 310

BOOTP. See Bootstrap Protocol (BOOTP)
configuration, 171–76
DHCP. See Dynamic Host Configuration

Protocol (DHCP)
Domain Name System (DNS), 178–79
Ethernet initialization, 175
FreeBSD, 15, 169–70, 173, 176
lwIP, 170

Index 375

OpenBSD, 168, 170, 173, 176
tests, 172, 174, 176–78
threads, 170–71

NEWS file (latest eCos information), 149

O
objcopy utility (binutils), 299, 302–3, 328
online repository, 12, 229. See also WinCVS
OpenBSD. See networking; OpenBSD
options. See configuration options

P
Package Administration Tool, 9, 10, 275–77

building, 277
installation, 228

packages, 8, 10, 14, 239–47, 253
adding and removing, 274
Component Definition Language. See

Component Definition Language
(CDL)

directory structure, 240–41
distribution files (.epk), 276–77

Peripheral Component Interconnect (PCI)
bus, 160–65

platform. See Hardware Abstraction Layer
(HAL); submodules

platform support. See evaluation boards
porting, 315–35

hints, 334
POSIX. See compatibility layers; POSIX
power management, 184
priority levels. See threads; priority levels
processor support, 6, 337–44
properties, 9. See also Configuration Tool;

Properties window

R
Real-Time Clock (RTC). See clocks;

Real-Time Clock (RTC)
RedBoot, 13, 15, 59, 153, 176, 185–206,

317, 327
eCos Minimal Configuration file (.ecm),

188, 290

binary images, 237
boot scripting, 204–6
booting, 293–95
building, 286–87, 288–93
Command Line Interface (CLI), 196
commands, 196–204
configuration, 189–93
directory structure, 187–88
GDB stub, 197, 202
host configuration, 193–95, 286–88
installation, 292–95
IP addresses, 194, 287
loading applications, 303–5
telnet, 194–95, 295

repository database, 264, 325
ROM monitors 152–55. See also RedBoot

S
scheduler. See kernel; scheduler
semaphores, 101–5

example, 47–50, 103–5, 300
kernel API, 101–3

Simple Network Management Protocol
(SNMP), 13, 179–80

disadvantages, 180
Management Information Base (MIB), 179
UCD-SNMP, 13, 179

simulators, 21–22, 311–13
size utility (binutils), 303
SMP. See Symmetric Multi-Processing (SMP)
Source Navigator, 2, 278–79
spinlocks 118—20. See also Symmetric

Multi-Processing (SMP)
Splint, 279
stacks. See threads; stacks
Startup Type (configuration option),

26, 257–58, 270, 297
stub. See GDB stub
suboptions, See configuration options;

suboptions
Symmetric Multi-Processing (SMP),

57–58, 79, 118, 182–83
synchronization mechanisms, 95–120

blocking/nonblocking, 95

376 Index

T
target.ld file, 299, 302. See also linker

script files (.ld)
targets, 14–15
Tcl. See Tool Command Language (Tcl)
telnet. See RedBoot; telnet
templates, 15–16, 26, 252, 264, 266, 270–72

adding, 325–26
example, 290, 297

terminology, 8–16
tests, 6, 242, 310–11. See also

networking; tests
threads, 40–41, 43, 47, 85–95. See also

networking; threads
configuration, 86–87
example, 92–94, 300
kernel API, 87–92
priority levels, 81–83, 96–97
stacks, 94–95
startup, 77

Tiemann, Michael, 1
timers, 86, 133
TkCVS, 230
Tool Command Language (Tcl),

243, 275, 278
tracing. See asserts and tracing

U
UCD-SNMP. See Simple Network

Management Protocol (SNMP)
Universal Serial Bus (USB), 165–67

V
variant. See Hardware Abstraction Layer

(HAL); submodules
Vector Service Routine (VSR),

33–35, 38–39, 44, 45–47
kernel API, 39–40
table, 33–34, 38–39, 44, 61

Virtual Memory Address (VMA), 260
Virtual Vector Table (VVT),

60–67, 191
initialization, 64–65

virtual vectors, 59–71
configuration, 63–64
ROM monitors, 63

VSR. See Vector Service
Routine (VSR)

VVT. See Virtual Vector
Table (VVT)

W
web-based management. See GoAhead

WebServer
WinCVS, 230–38, 240
Windows, 5, 208–9

Z
zlib, 183

The GNU General Public License (GPL)

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software--to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free soft-
ware (and charge for this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs; and that you
know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the dan-
ger that redistributors of a free program will individually obtain patent licenses, in effect making

the program proprietary. To prevent this, we have made it clear that any patent must be licensed
for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The “Program”, below, refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law: that is to say, a work con-
taining the Program or a portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without limitation in the term “modi-
fication”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what theProgram
does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at
no charge to all third parties under the terms of this License.
c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy

of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print
an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do one
of the following:

a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution,
a complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it.
For an executable work, complete source code means all the source code for all modules it con-
tains, plus any associated interface definition files, plus the scripts used to control compilation
and installation of the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or binary form) with the

major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as dis-
tribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses termi-
nated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or dis-
tributing the Program (or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing or modifying the Pro-
gram or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Pro-
gram subject to these terms and conditions. You may not impose any further restrictions on the
recipients’ exercise of the rights granted herein. You are not responsible for enforcing compli-
ance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not permit royalty-
free redistribution of the Program by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license

practices. Many people have made generous contributions to the wide range of software distrib-
uted through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Pub-
lic License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version num-
ber of this License which applies to it and “any later version”, you have the option of following
the terms and conditions either of that version or of any later version published by the Free Soft-
ware Foundation. If the Program does not specify a version number of this License, you may
choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copy-
righted by the Free Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals of preserving the free sta-
tus of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/
OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY

MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIA-
BLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C)

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foun-
dation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an inter-
active mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes
with ABSOLUTELY NO WARRANTY; for details type ‘show w’. This is free

software, and you are welcome to redistribute it under certain conditions; type
‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
‘show w’ and ‘show c’; they could even be mouse-clicks or menu items--whatever suits your
program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign
a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest
in the program ‘Gnomovision’ (which makes passes at compilers)
written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking
proprietary applications with the library. If this is what you want to do, use the GNU Library
General Public License instead of this License.

A B O U T T H E C D - R O M

The CD-ROM included with Embedded Software Development with eCos contains all of the
software and source code needed to set up a complete embedded software development environ-
ment, centered on the eCos real-time operating system. The CD-ROM includes the following:

• A readme file, Readme.txt, which gives additional details about the contents of the CD-
ROM and installation of the software it contains.

• A UNIX environment for Windows consisting of a Dynamic Link Library (DLL) that
acts as a UNIX emulation layer and a collection of UNIX tools ported to Windows
called Cygwin.

• A snapshot of the eCos source code repository along with all of the eCos configuration
and development tools.

• Example files demonstrating how to use the eCos configuration tools to build the
RedBoot™ ROM monitor, the eCos library, and an application. As well as an example
showing how to port the eCos HAL.

• The GNU cross-development tools for the i386 and PowerPC platforms including the
GNU Binary Utilities (binutils), GNU C/C++ Compiler (GCC), and GNU Debugger
(GDB) with the Insight graphical user interface.

• An open-source lint program, named Splint, which is used to statically verify a
program, or part of a program, against standard libraries.

• An open-source code analysis and comprehension tool named Source-Navigator.
• A Windows-based CVS client called WinCVS, which allows anonymous access to the

eCos online source code repository.
• A popular Linux CVS client called TkCVS.

The CD-ROM can be used on Microsoft Windows® 95/98/NT®/2000/Me/XP and Linux.
The maintainers have tested the eCos tools on Windows NT 4.0 (with service pack 3 or above)
and Red Hat Linux 7.0 (or later). The Cygwin tools are for use on Windows-based host systems.

The recommended operating system, which is used for the examples in this book, is Win-
dows NT with service pack 6.0a.

License Agreement
Use of the software accompanying Embedded Software Development with eCos is subject to the
terms of the License Agreement and Limited Warranty, found on the previous seven pages.

Technical Support
Prentice Hall does not offer technical support for any of the programs on the CD-ROM. How-
ever, if the CD-ROM is damaged, you may obtain a replacement copy by sending an email that
describes the problem to: disc_exchange@prenhall.com.

