MICROSOFET" .NET
DEVELOPER

SAMPLE CHAPTERS

Effective
REST Services
via .NET

For .NET Framework 3.5

3

>

=1 )

R
m By Kem Sorbner
Scott Seely

Concurrent
Programming
on Windows

Essential
Silverlight 3

Ashraf Michail

Foranartby Anders Hejlsberg

Essential LINQ

.N

Charlie Calvert
Dinesh Kulkarni

The C#
Programming
Language

Third Edition

Visual Studio Tools
for Office 2007

VSTO for Excel, Word, and Outlook

. Eric Carter
Eric Lippert

Framework
Design Guidelines

Conventions, Idioms, and Patterns
for Reusable .NET Libraries

Essential C# 3.0

For .NET Framework 3.5

. Mark Michaelis

Advanced ASP.NET
AJAX Server Controls
For .NET Framework 3.5

Adam Calderon
Joel Rumerman

informit.com/teched09

THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison
Wesley



http://www.informit.com/store/product.aspx?isbn=0321613252
http://www.informit.com/store/product.aspx?isbn=0321564162
http://www.informit.com/store/product.aspx?isbn=0321533216
http://www.informit.com/store/product.aspx?isbn=032143482X
http://www.informit.com/store/product.aspx?isbn=0321562992
http://www.informit.com/store/product.aspx?isbn=0321545613
http://www.informit.com/store/product.aspx?isbn=0321533925
http://www.informit.com/store/product.aspx?isbn=0321514440
http://www.informit.com/
http://www.informit.com/imprint/index.aspx?st=61085

MICROSOFET" .NET

DEVELOPER

eBOOK TABLE OF CONTENTS

~  Effective REST Services via .NET

et ioos 9780321613257
s Kenn Scribner, Scott Seely

~ %[ CHAPTER 3: Desktop Client
‘4‘1& s | OpErations
- Essential LINQ

9780321564160
Ferena NG Charlie Calvert, Dinesh Kulkarni
::::'ﬁ' CHAPTER 3: The Essence of
= ineah Kathannt L I N Q

The C#
Programming
Language
T Edion

The C# Programming Language,
Third Edition

9780321562999

Anders Hejlsberg, Mads Torgersen,
Scott Wiltamuth, Peter Golde
CHAPTER 3: Basic Concepts

Framework
Design Guidelines

mmmmmmmmmmmmmmmmmmmmmmm

Framework Design Guidelines,
Second Edition

97800321545619

Krzysztof Cwalina, Brad Abrams
CHAPTER 3: Naming Guidelines

Visual Studio Tools
for Office 2007
VSTC

10 for Excel, Word, and Outlook

c L
D
Eric Lippert

Visual Studio Tools for

Office 2007

9780321533210

Eric Carter, Eric Lippert

CHAPTER 3: Programming Excel

Concurrent
Programming
on Windows

e

Concurrent Programming
on Windows
9780321434821

Joe Duffy

CHAPTER 3: Threads

Essential
Silverlight 3

Essential Silverlight 3
9780321554161

Ashraf Michail
CHAPTER 3: Graphics

Essential C# 3.0: For .NET
Framework 3.5, Second Edition
9780321533920

Mark Michaelis

CHAPTER 3: Operators and
Control Flow

Advanced ASP.NET
AJAX Server Controls
For NET Framework 3.5

s~ Advanced ASP.NET AJAX Server
Controls for .NET Framework 3.5
9780321514448
Adam Calderon, Joel Rumerman
CHAPTER 3: Components

38 o0s [ I =
Bookmarks| Delicious| Digg Facebook StumbleUpon Reddit e Twitter



http://www.google.com/
http://delicious.com/
http://digg.com/
http://www.facebook.com/
http://www.stumbleupon.com/
http://www.reddit.com/
http://twitter.com/

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

Copyright © 2009 by Pearson Education, Inc.

BROUGHT TO YOU BY

In'orm -com Addison

THE TRUSTED TECHNOLOGY LEARNING SOURCE Wesley

UPPER SADDLE RIVER, NJ | BOSTON | INDIANAPOLIS | SAN FRANCISCO | NEW YORK | TORONTO | MONTREAL | LONDON | MUNICH
PARIS | MADRID | CAPETOWN | SYDNEY | TOKYO | SINGAPORE | MEXICO CITY



http://www.informit.com/
http://www.informit.com/imprint/index.aspx?st=61085

Effective
REST Services
via .NET

For .NET Framework 3.5

Kenn Scribner
Scott Seely



http://www.informit.com/store/product.aspx?isbn=0321613252
http://www.informit.com/store/product.aspx?isbn=0321613252
http://www.google.com/
http://delicious.com/
http://digg.com/
http://www.facebook.com/
http://www.stumbleupon.com/
http://www.reddit.com/
http://twitter.com/

BUY ME

Ken Scribner
Scott Seely

Effective REST Services via .NET

For .NET Framework 3.5

Developers are rapidly discovering the power of REST to simplify the development of
even the most sophisticated Web services—and today’s .NET platform is packed with
tools for effective REST development. Now, for the first time, there’s a complete, practical
guide to building REST-based services with .NET development technologies.

Long-time .NET and Web services developers and authors Kenn Scribner and Scott
Seely explain why REST fits so smoothly into the Internet ecosystem, why RESTful
services are so much easier to build, what it means to be RESTful, and how to identify
behaviors that are not RESTful. Next, they review the core Internet standards and .NET
technologies used to develop RESTful solutions and show exactly how to apply them on
both the client and server side. Using detailed

code examples, Scribner and Seely begin with simple ASPNET techniques, and then
introduce increasingly powerful options—including Windows Communication
Foundation (WCF) and Microsoft's cloud computing initiative, Azure. Coverage includes

o Accessing RESTful services from desktop applications, using Windows Forms and
WPF

o Supporting Web client operations using Silverlight 2.0, JavaScript, and other
technologies

o Understanding how IIS 7.0 processes HTTP requests and using that knowledge to
build better REST services

e Constructing REST services based on traditional ASPNET constructs

o Utilizing the ASPNET MVC Framework to implement RESTful services more
effectively

e Taking advantage of WCF 3.5's powerful REST-specific capabilities
e Creating RESTful data views effortlessly with ADO.NET Data Services

e | everaging Microsoft's Azure cloud-computing platform to build innovative new
services

e Choosing the right .NET technology for each REST application or service

Effective
REST Services
via .NET

For .NET Framework 3.5

o e

L -
w s Kenn Scribner
—“

Scott Seely
—

A
\A 4
Addison
Wesley

informit.com/aw

AVAILABLE
e BOOK: 9780321613257
o SAFARI ONLINE

About the Authors

Kenn Scribner has been writing
cutting-edge, software-based books on
Microsoft technologies for more than

10 years. His books include Windows
Workflow Foundation Step by Step
(Microsoft Press) and Understanding
SOAP (SAMS). Kenn is a senior software
consultant whose clients have included
The Weather Channel, CBS, Burton, and
Microsoft.

Scott Seely, an architect at MySpace,
works on the OpenSocial API, one of
the world's most successful REST-based
APIs. Before joining MySpace, he was a
developer on the Windows Communica-
tion Foundation team at Microsoft. His
books include Creating and Consuming
Web Services in Visual Basic (Addison-
Wesley) and SOAP: Cross Platform
Web Service Development Using XML
(Prentice Hall).



http://www.informit.com/store/product.aspx?isbn=0321613252
http://www.informit.com/store/product.aspx?isbn=0321613252
http://www.safaribooksonline.com/Corporate/Index/
http://www.informit.com/imprint/index.aspx?st=61085
http://www.informit.com/imprint/index.aspx?st=61085

3

Desktop Client Operations

E VERY DAY, MORE RESOURCES are made available on private intranets

and the Internet at large. .NET has many different tools that allow you
to consume these services from any application environment: Web, desk-
top, and mobile. In this chapter, we will examine the classes and tools you
need to use in order to build applications for both of the .NET desktop class
libraries: Windows Forms (WinForms) and Windows Presentation Foun-
dation (WPF).

We Still Write Desktop Applications

The desktop application has all sorts of benefits that, today, trump anything
you can do on the Web. Desktop applications have access to storage
devices, arbitrary network resources, and network hardware. They can
make application demands that their Web brethren cannot. For example,
you can write a desktop application that will install only to a Windows
machine that has .NET 3.5 or greater installed. Finally, these applications
can do something useful even when they are disconnected from the net-
work. Outlook will still let you read e-mail and create new messages when
you are disconnected from your Exchange server. Outlook’s fraternal twin,
Outlook Web Access, needs a network connection to work. Because of the
capability to do so much more when having access to inexpensive yet



Chapter 3: Desktop Client Operations

powerful hardware resources (memory, CPU, storage, and so forth), desk-
top applications are not going away any time soon.

These desktop applications frequently become more useful, however,
when they can connect to network-based resources. E-mail can be sent and
received. Games get updates, communicate high scores, and, most impor-
tant, allow for players to meet and play interactively. Individuals at your
company update, modify, and delete documents through WebDAV and
Windows Explorer. As a desktop application developer, you have one ques-
tion you have to answer: “How do I get that data?” This chapter shows you
how to obtain information from RESTful services.

Everything in this chapter can be applied to any executable you
might write. Accessing RESTful data does not change whether you use a
command-line application, a Windows service, a Windows Forms (Win-
Forms) application, or even a Windows Presentation Foundation (WPF)
application. The chapter concentrates on applications created using Win-
Forms and WPF because those two environments have a requirement you
do not necessarily have in other environments. Such as? The user interface
(UI) has to stay responsive while the Web request is executing.

An Introduction to our Web Service

This chapter and the next focus on consuming RESTful services. The later
parts of this book focus on implementing RESTful architectures. In Chapter
8, “Building REST Services Using WCE,” we talk about building RESTful
services using Windows Communication Foundation (WCF). This chapter
utilizes one of the WCF services from Chapter 8. At this point, you do not
need to know how the service is built, but you do need to know what the
service does. A copy of the service is provided in this chapter’s sample proj-
ect in order to keep things easier to build and navigate as you work with
this chapter’s sample client applications.

The service itself demonstrates a few basic capabilities that pretty much
every consumer/producer needs to understand:

* Exchanging binary data
* Exchanging simple data types



An Introduction to our Web Service [ |

* Exchanging structured data

* Exchanging arrays of structured data

Understanding these simple building blocks enables you to build or
consume any RESTful service. When I was looking at scenarios that demon-
strate the previous capabilities without needing to implement an overly
sophisticated solution, one scenario popped out as simple to understand
and small enough to fit within the chapter of a book: sharing photos. Photos
are binary and have extra, interesting attributes, such as an owner and a
caption. In our case, photos have these pieces of metadata:

¢ Is the photo public or private?

Who is the photo owner?

Does the photo have a caption, and if so, what is it?

Does the photo have an extended description?

What is the photo’s unique identifier?

The REST service allows users to do all sorts of things with photos. For
photos you own, you can update the caption and description, and state
whether the photo is public. Regardless of who you are, you can ask for a
list of photos from a particular user. If you are that user, the list contains all
photos. If you ask for someone else’s list, only public photos are returned.
To do all this work, the service supports URLs of the following forms:

* Add an image: POST to [base service address]/ AddImage
* Update an image: PUT to [base service address]/Image/{imageld}
* Delete an image: DELETE to [base service address]/Image/{imageld}

* Get images for a user: GET to [base service address]/Images/
{username}

* Get a single image for a user: GET to [base service address]/Image/
{imageld}

For this chapter, we will be using the XML-based endpoint for this serv-
ice. The POST, PUT, and GET verbs all manipulate an ImageItem, which in
serialized XML form appears as shown in Listing 3.1.



Chapter 3: Desktop Client Operations

LISTING 3.1: ImageItem serialized as XML

<ImageItem xmlns="http://www.scottseely.com/RESTBook/2008"
xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance">
<Caption>Some caption</Caption>
<Description>Some description</Description>
<ImageBytes>AQIDBAUGAQIDBAUJ ... ]</ImageBytes>
<ImageId>33f741ae-934a-4c77-b7f8-01f316000ab53</Imageld>
<ImageUrl>[path to ashx that will yield a valid

image/jpeg]</ImageUrl>

<PublicImage>true</PublicImage>
<UserName>restuser</UserName>

</ImageItem>

Chapter 4, “Web Client Operations,” shows the same object in JavaScript
Object Notation (JSON) format. Just to show the difference here, the JSON
representation of the object is given in Listing 3.2.

LISTING 3.2: ImageItem serialized as JSON

{

"Caption":"Some caption”,

"Description”:"Some description”,

"ImageBytes":[1,2,3,4,5,6 ...],
"ImageId":"4bfa5653-be2b-4198-8c21-bdbf5d2f7bc6",
"ImageUrl":>[path to ashx that will yield a valid image/jpeg],
"PublicImage":true,

"UserName": "restuser"

It's important to note that the only time ImageBytes will contain data is
for an HTTP POST request. The only time that ImageUrl will be populated
is in response to an HTTP GET request. (You’d use the URI contained within
ImageUrl to request the actual image.) Lastly, the RESTful service validates
users based on a username and password.

Reading Data

We have lots of options for dealing with XML markup. Because reading and
writing data is a big part, maybe even the biggest part, of consuming REST-
ful services, the first code examples in this chapter detail how we would
read the ImageItemas XML. A complete description of every possible mech-
anism to read and write data is far beyond the scope of this book. Instead,



Reading Data [ |

this section introduces you to the NET namespaces and tools most often
used—those you need to be familiar with. With knowledge of the basics,
you should be able to implement special cases and go as deep as you need
to go. As a goal, we want to read the XML and transform it into an object
that is more useful to a .NET developer, a process known as deserialization.
Let’s start with an object that can hold the data, which I've named
ImageItem. ImageItem needs seven fields: one for each element in the XML
representation shown in Listing 3.1. Given the XML from Listing 3.1, the
ImageItem class should have the structure shown in Listing 3.3.

LISTING 3.3: The ImageItenm class

public class ImageItem

{
public string Caption { get; set; }
public string Description { get; set; }
public byte[] ImageBytes { get; set; }
public Guid ImageId { get; set; }
public Uri ImageUrl { get; set; }
public bool PublicImage { get; set; }
public string UserName { get; set; }

"= NOTE

Something to keep in mind is that you do not always need to populate
a class to make use of the data. You could keep the data in an XML doc-
ument, a database, or another storage medium. Populating the
ImageItem class is simply for the convenience of the application’s C#-
based code. Populating a form, placing data in a database, or some-
thing else are also possible goals that similarly rely on the capability
to extract information from an XML stream.

With .NET, we have lots of options for dealing with XML markup. We
can parse the XML manually using System.Xml.XmlDocument and System.
Xml.Ling.XDocument. We can also create special classes and use the serial-
ization mechanisms offered by System.Runtime.Serialization.DataCon-
tractSerializer and System.Xml.Serialization.XmlSerializer.

7



Chapter 3: Desktop Client Operations

To demonstrate the various techniques for working with XML data, I've
created a sample application called SerializationSampler and placed itin
this chapter’s demonstration solution. All the XML deserialization tech-
niques just mentioned are illustrated using a static method that returns a
single ImageItem object, which is hard-coded as an XML string for simplic-
ity. The code offers access to the XML-based representation via a
System.IO.Stream named DataStream, which is shown in Listing 3.4.

LISTING 3.4: The preserialized ImageItem resource

const string Data =
"<ImageItem xmlns=\"http://www.scottseely.com/RESTBook/2008\" "
+ "xmlns:i=\"http://www.w3.0rg/2001/XMLSchema-instance\">"
"<Caption>Some caption</Caption>"
"<Description>Some description</Description>"
"<ImageBytes>AQIDBAUGAQIDBAUGAQIDBAUGAQIDBAUGAQIDBAUGAQIDBAUG"
"</ImageBytes>"
"<ImageIld>33f741ae-934a-4c77-b7f8-0f316000ab53</Imageld>"
"<ImageUrl>"
"http://www.scottseely.com/PhotoWeb/Image.ashx"
"/33f741ae-934a-4c77-b7f8-01316000ab53</ImageUrl>"
"<PublicImage>true</PublicImage>"
+ "<UserName>restuser</UserName>"

+ "</ImageItem> ";

+ o+ + o+ + o+ o+ o+

static Stream DataStream

{
get { return new MemoryStream(Encoding.UTF8.GetBytes(Data)); }

The sample code demonstrates deserializing XML data using XmlDocu-
ment, XDocument, XML serialization, and data contract serialization, as well
as a modified technique I call XDocumentAlternate. Each of these tech-
niques is executed using a simple loop that iterates a list of delegates, as
shown in Listing 3.5.

LISTING 3.5: SerializationSampler Main method

delegate ImageItem DemoXml();

static void Main(string[] args)
{
List<DemoXml> examples = new List<DemoXml>()
{ UseXmlDocument,
UseXDocument,



Reading Data [ |

UseXDocumentAlternate,

UseXmlSerialization,

UseDataContractSerialization};
foreach (DemoXml demo in examples)

{

Console.WriteLine("{0}: {1}{2}",
demo.Method.Name,
Environment.NewLine,
demo());

}
}
XmlDocument

XmlDocument has a long history with the .NET Framework—it has been part
of the framework since the beginning. To use XmlDocument, you load the
document with XML that might come from a number of sources: a file, a
URL, a string, or a stream. You can also populate an XmlDocument from
scratch using code, creating each element by hand.

To load XML data into an XmlDocument instance, you would use its
LoadXml to load an XML string or its Load method to use XML data encoded
within one of the other sources (file, stream, and so on). After the document
is loaded, you can extract the data; a number of mechanisms exist to help
extract data to be placed in objects for code manipulation. An obvious
approach is to iterate over the contents of the document, looking for nodes
with known element names. Unfortunately, this technique can be fairly
code heavy. Another technique involves writing code that knows where the
element should be located within the document and then using indexers to
grab the text of that node. This technique winds up being very fragile
because the layout of the document might change over time. Adding or
deleting items from the document can cause specific indexes to change and
code to malfunction accordingly.

My preferred technique to extract data from an XmlDocument involves
using XPath expressions and System.Xml.XmlReader. XmlDocument has a
method named SelectSingleNode that accepts an XPath expression and an
optional Xm1NamespaceManager. XPath is a rich language for querying XML.
The most common queries involve looking for elements or attributes
with known names. Each element and attribute in the XML has an XML



10

Chapter 3: Desktop Client Operations

qualified name (QName). To choose a specific element or attribute, you need
to know the item’s QName. The QName is consistent no matter the XML
namespace being used.

ImageItem has a namespace of http://www.scottseely.com/REST-
Book/2008. The ImageItem XML shown in Listing 3.4 establishes the
default namespace with this markup:

xmlns="http://www.scottseely.com/RESTBook/2008"

This allows us to identify ImageItem content without any prefixes for our
convenience. The declaration could have just as easily been

xmlns:restbook="http://www.scottseely.com/RESTBook/2008"

If this was the case, the ImageItem XML would have to be changed to pre-
fix all element tags with restbook:. The resulting XML, regardless of how
the namespace was declared, would be considered equivalent between the
two documents. What does this digression have to do with anything? Well,
if we want to ask for the caption, description, or other elements contained
within the XML document, we have to present a name that is meaningful
via the XPath expression. These prefixes do not have to match what is in the
actual XML document because XPath expressions operate against the
infoset representation of the document, not the string representation.

"= NOTE

One cannot talk about XML without talking about the infoset. In a nut-
shell, the infoset representation concentrates on the tree-based struc-
ture of the XML document rather than what data the tree structure
contains. Everything in an infoset is some type of XML node: attribute,
text, element, whitespace, comment, processing instruction, and so on.
Elements and attributes have QNames. Using this, specification
authors found it easier to write specifications because they were no
longer worrying about XML representation. Developers have since
used this to introduce new serialization schemes beyond XML 1.0
(text). Today, many binary serializers have been created to reduce the
bulkiness issues associated with XML.




Reading Data m 11

To read more about infosets, consider going to the source specification
at www.w3.org/TR/xml-infoset/. O’Reilly also has a great site with
articles and information about XML in general at www.xml.com.

Knowing what we do about infosets, we need a crash course in XPath.
XPath expressions can get complicated. However, most queries are fairly
straightforward: Select all nodes with this name, select the first node with
this name, only select nodes at this location relative to the root, and so forth.
Here is some of the basic XPath syntax:

* //: Used at the start of an expression to select any node with a given
name. Example: //id selects all nodes named id.

* /: When used as a single character, denotes that the expression starts
at the node being queried. Example: /ImageItem/Caption selects all
nodes named Caption that are children of a node named ImageItem.

* text(): An element may contain a text node. The expression text()
allows the query to select the child text nodes. Example:
/ImageItem/Caption/text() selects all text contents within nodes
named Caption.

* @attribute name: Elements may contain attribute tags. The @ syntax
says that the name that follows in the XPath expression is an attrib-
ute. Example: If we have XML such as <foo @bar="some value" />
and the XPath expression //foo/@bar/text(), then the result of the
expression is some value.

XPath allows for other options too. You can perform logical tests such as
=, I=, <, >,and more. You can also check for string contents and other things
to filter the results to a finer degree. The articles at xml.com provide a rich
source of information for how to handle most of these deeper issues.

For our example, we will want to parse all nodes with the following
QName:

http://www.scottseely.com/RESTBook/2008:ImageItem



12

Chapter 3: Desktop Client Operations

To identify the prefix we will map to the namespace, we use a class
called System.Xml.XmlNamespaceManager. By setting up the name correctly,
we can now ask for all ImageItem elements:

XmlNamespaceManager nsMgr = new XmlNamespaceManager(doc.NameTable);

nsMgr.AddNamespace("item", "http://www.scottseely.com/RESTBook/2008");

XmlNode node = doc.DocumentElement.SelectSingleNode(
"/item:ImageItem", nsMgr);

At this point, we can use additional XPath expressions to iteratively
select child nodes, or we can use a System.Xml.XmlReader to read the
remaining data directly. The choice is up to you. The XmlReader approach
has the benefit of being able to spin through the node data fairly quickly,
whereas the XPath approach is more deliberate. The Xm1Reader approach is
presented only for completeness because both approaches are useful. An
XmlReader tends to require more testing effort as changes to document
structure can introduce bugs fairly easily, which is something to keep in
mind.

Using an Xm1NodeReader, we can then look at each element individually.
Each element has two name properties: Name and LocalName. The Name rep-
resents the QName for the element. The LocalName represents the simple
form of the element tag name—essentially a non-namespace version. If
your expectation is that the names within a given node will not vary, and
that name collisions will not occur, you can safely use LocalName. Other-
wise, if names in a node might be reused across XML namespaces (for
example, address could mean memory address or street address), use the Name
property instead. The Xm1NodeReader then has helper methods to read com-
mon data types: strings, numbers, and Boolean values. Using this knowl-
edge, we can now read the XML using an XmlDocument. The code I've
provided introduces a helper method, ReadToText(XmlReader), that
advances the reader to the (child) text node. This particular function exists
to make sure that we don’t skip over other elements by advancing the
reader too far using functions like ReadElementContentAsString. ReadEle-
mentContentAsString will advance the reader to the next Element node. A
call to Xm1Reader.Read(), as in the while loop shown in Listing 3.6, would
march past too many elements without ReadToText to slow it down.



Reading Data

LISTING 3.6: Reading and consuming XML using XMLDocument and XPath

static void ReadToText(XmlReader reader)

{
while (reader.Read())
{
if (reader.NodeType == XmlNodeType.Text)
{
// Break when we hit a Text node.
break;
}
}
¥

private static ImageItem UseXmlDocument()

{

ImageItem retval = new ImageItem();

XmlDocument doc = new XmlDocument();
doc.Load(DataStream);

// Set up the Infoset mapping information.

XmlNamespaceManager nsMgr = new XmlNamespaceManager(doc.NameTable);

nsMgr.AddNamespace("item",
"http://www.scottseely.com/RESTBook/2008") ;

// Only pick the first node named ImageItem.

// Use SelectNodes to pick ALL.

XmlNode node = doc.DocumentElement.SelectSingleNode(
"/item:ImageItem", nsMgr);

// Look at each node in the document.
XmlNodeReader reader = new XmlNodeReader(node);
while (reader.Read())
{
// Ignore anything that isn’t a start element.
if (reader.NodeType == XmlNodeType.Element)
{
try
{
switch (reader.LocalName)
{
case "Caption":
ReadToText(reader);
retval.Caption = reader.ReadContentAsString();
break;
case "Description”:
ReadToText(reader);

continues

13



14 Chapter 3: Desktop Client Operations

LISTING 3.6: Continued

retval.Description =
reader.ReadContentAsString();
break;
case "ImageBytes":
ReadToText(reader);
retval.ImageBytes = Convert.FromBase64String(
reader.ReadContentAsString());
break;
case "ImageId":
ReadToText(reader);
retval.Imageld = new
Guid(reader.ReadContentAsString());
break;
case "ImageUrl":
ReadToText(reader);
string tempUri = reader.ReadContentAsString();
if (Uri.IsWellFormedUriString(tempUri,
UriKind.Absolute))

retval.ImageUrl = new Uri(tempUri);
¥
break;
case "PublicImage":
ReadToText(reader);
retval.PublicImage =
reader.ReadContentAsBoolean();

break;
case "UserName":
ReadToText(reader);
retval.UserName = reader.ReadContentAsString();
break;
¥
}
catch
{
// Parse failure—do nothing
}

}

return retval;

As you can see from Listing 3.6, that is an awful lot of code to translate
the XML into something readable. If this RESTful services thing is ever
going to take off, there needs to be a simpler solution. There is, and we will



Reading Data [ |

get to it. For this very reason, we will be skipping how to serialize data back
out. If you are writing the object, you have more control and better options
than manipulating XML documents directly for most situations, so it
doesn’t make sense to even describe how that’s done here. We'll save that
topic for later in the chapter when we look at the XML serializers.

XDocument

If you are using .NET 3.5 or later, you have something truly wonderful at
your disposal. You have Language Integrated Query (LINQ). LINQ is
mostly syntactic sugar when represented in a .NET language like C# or
VB.NET. The actual generated code is very procedural. But, from a devel-
oper point of view, the expressions are declarative. Fortunately, the tech-
nology has been written about enough that it is unnecessary to promote its
use here. If you do any work with LINQ, you have to go out and buy the
LINQ Pocket Reference by Joseph and Ben Albahari, ISBN 978-0-596-
51924-7, from O’Reilly. It’s a tiny 160-page book that will literally fit into the
back pocket of your jeans.

Within LINQ), there are all sorts of variants. LINQ to objects lets you exe-
cute nifty queries over collections. LINQ to SQL generates SQL queries.
And perhaps not surprisingly, LINQ to XML operates over XML docu-
ments. Specifically, LINQ to XML (XLINQ) operates on types known as
System.Ling.Xml.XDocument. XDocument knows how to read and write
using System.Xml data types: XmlReader and XmlWwriter. As a result, you
can use the XmlReader code from the preceding section to do your parsing.
So we will skip that and move on to other concepts, like queries.

With XLINQ, we still need to think in terms of infosets. When we ask for
an element with a particular name, we ask for the element by QName. The
XLINQ type representing the QName is named System.Ling.Xml.XName.
You create an XName by concatenating a System.Ling.Xml.XNamespace with
a string representing the element name. To create the XNamespace for
ImageItem and then create the appropriate XName, use the following bit of
code:

XNamespace ns = "http://www.scottseely.com/RESTBook/2008";
XName imageItemName = ns + "ImageItem";

15



16

Chapter 3: Desktop Client Operations

Most of the types we deal with in LINQ are IEnumerable types. In our
case, we will normally want only the first item in that list (and, in fact, the
XML document we’re working with contains only one element). .NET 3.5
implements an extension method for IEnumerable<T> called First that
provides this capability quite handily. Using all this basic knowledge, the
code to parse the XDocument into an ImageItem becomes simpler. To select
a named node within the current node, you pass the XName of the target
node to the current node’s Elements(XName) method. You can then select
the first element from that list and pick off the vValue of that item, as demon-
strated in Listing 3.7.

LiSTING 3.7: Reading and consuming XML using XDocument and XLINQ

static ImageItem UseXDocument()
{
XDocument doc = XDocument.Load(new XmlTextReader(DataStream));
XNamespace ns "http://www.scottseely.com/RESTBook/2008" ;
var items = from imageItemNode in doc.Elements(ns + "ImageItem")
select new ImageItem()

{

Caption = imageItemNode.Elements(ns +
"Caption").First().Value,

Description = imageItemNode.Elements(ns +
"Description”).First().Value,

ImageBytes = Convert.FromBase64String(
imageItemNode.Elements(ns + "ImageBytes").

First().value),

Imageld = new Guid(imageItemNode.Elements(ns +
"ImageId").First().Vvalue),

ImageUrl = new Uri(imageItemNode.Elements(ns +
"ImageUrl").First().Value),

PublicImage = bool.Parse(imageItemNode.Elements(ns +
"PublicImage").First().Value),

UserName = imageItemNode.Elements(ns +
"UserName").First().Value

s

return items.First();

The XDocument code has some advantages over the XmlDocument ver-
sion. First and foremost, it is a lot shorter. Shorter code typically leads to
fewer bugs since most developers implement code with a consistent ratio



Reading Data m 17

of bugs to lines of code. This ratio is not intentional—as humans we just
tend to make mistakes at a steady pace. An issue with the code in Listing 3.7
is that it has very little in the way of error handling. If the Imageurl,
ImageId, ImageBytes, or PublicImage items fail to parse, the code fails for
all items. If we would rather load the ImageItem and leave fields blank on
failure, the code could be rewritten as shown in Listing 3.8 to provide for
deserialization failover.

LisTING 3.8: Reading and consuming XML using XDocument and XLINQ with failover

static ImageItem UseXDocumentAlternate()
{
XDocument doc = XDocument.Load(new XmlTextReader(DataStream));
XNamespace ns = "http://www.scottseely.com/RESTBook/2008";
var items = from imageItemNode in doc.Elements(ns + "ImageItem")
select new
{
Caption = imageItemNode.Elements(ns +
"Caption").First().Vvalue,
Description = imageItemNode.Elements(ns +
"Description").First().Value,
ImageBytes = imageItemNode.Elements(ns +
"ImageBytes").First().Value,
ImageId = imageItemNode.Elements(ns +
"ImageId").First().Value,
ImageUrl = imageItemNode.Elements(ns +
"ImageUrl").First().Value,
PublicImage = imageItemNode.Elements(ns +
"PublicImage").First().Value,
UserName = imageItemNode.Elements(ns +
"UserName").First().Value
15
ImageItem retval = new ImageItem();
foreach (var item in items)
{
retval.Caption = item.Caption;
retval.Description = item.Description;
retval.UserName = item.UserName;
bool publicImage;
if (bool.TryParse(item.PublicImage, out publicImage))
retval.PublicImage = publicImage;

if (Uri.IsWellFormedUriString(item.ImageUrl, UriKind.Absolute))
retval.ImageUrl = new Uri(item.ImageUrl);

continues



18

Chapter 3: Desktop Client Operations

LisTING 3.8: Continued

try
{
retval.Imageld = new Guid(item.Imageld);
}
catch { }
try
{
retval.ImageBytes =
Convert.FromBase64String(item.ImageBytes);
}
catch { }
break;

}

return retval;

}

Again, this all depends on whether you want things to fail whenever
bad input data is encountered. Most of the time, invalid data that appears
anywhere in the object implies that you do not want to continue deserial-
izing that XML stream. When that is the case, the short version of this code
is completely appropriate. When failover is called for, however, you need
the extra code shown in Listing 3.8.

XmlSerializer

Wouldn't it be great if you could just tell the runtime what your object
looked like and then it could figure out how to read the XML and populate
that object for you? As it happens, this is possible. To do this, we can go to
one of my favorite NET namespaces: System.Xml.Serialization. In the
NET world, it is the king of XML reading and writing within the bits
shipped with the framework. It handles attributes, special serialization, and
schema generation. Most of this work is directed with simple attributes
placed on public classes, fields, and properties. And it implements the parts
of the XML Schema specification that map into .NET.



Reading Data ||

"= NOTE

As it happens, .NET doesn’t implement the full suite of schema con-
structs identified in the XML Schema specification. If you create a
schema using a tool outside of .NET, you could be asking for trouble
if you later try to incorporate those schemas into .NET code. For exam-
ple, Altova has tools with XML Spy that implement all far corners of
the XML Schema Document specification and provide features not
found in .NET. If you need to support facets and other fancy features
of XSD, you need to go beyond what Microsoft ships with the frame-
work. In practice, this kind of specialization is needed only for sophis-
ticated XML processing in a small set of scenarios.

The most common attributes used in the System.Xml.Serialization
are listed here:

* XmlElementAttribute: Declares the XML element name and name-
space for a given property when that property appears in an XSD or
XML document.

* XmlAttributeAttribute: Declares the XML attribute name and
namespace for a given property when that property appears in an
XSD or XML document.

* XmlTypeAttribute: Declares the name and namespace for a given
class or enum within an XSD.

* XmlRootAttribute: Declares the name and namespace for a given
class or enum when that data type is used as the root of an XML
document.

* XmlEnumAttribute: Declares the name of an enumeration value
when that enum appears in an XSD or XML document.

* XmlIgnoreAttribute: Prevents serialization of this member. By
default, all public members are serialized.

19



20

Chapter 3: Desktop Client Operations

* XmlArrayAttribute: Allows the developer to control the names used
when serializing arrays of items.

e XmlArrayItemAttribute: Collaborates with XmlArrayAttribute.
XmlArrayItemAttribute allows for a given collection to contain
more than one type of object.

This information is consumed by another class named System.Xml.
XmlSerializer. XmlSerializer learns how to convert between XML and
NET types by reading these attributes via reflection. The initial instance of
an XmlSerializer for a given type is expensive to build in terms of time,
so quite often an instance is created early and held for the duration of the
application’s lifetime. After you have the serializer in hand, however, you
can read XML into objects and write objects as XML into a stream or file
with a single method call.

Using this knowledge, we need to decorate the ImageItem class with the
right set of attributes to drastically reduce the amount of code we have to
write to eventually serialize and deserialize it. The class should be deco-
rated with an XmlRootAttribute and all properties with XmlElement
Attribute. The code in Listing 3.9 demonstrates these attributes in action.
I could have written even less code by not filling in the ElementName infor-
mation as the XML element name defaults to the property name, but I
wanted to demonstrate how you establish the tie between the property
name and the corresponding XML element. If you want to reduce the size
of the serialized XML stream, one way to do it is to provide very short XML
element names, and XmlElementAttribute is the tool you'd use for this. We
do run into one snag, though: ImageItem.ImageUrl is of type System.Uri.
Uri does not have a parameterless constructor, which is a requirement for
XmlSerializer. Because of this, XmlSerializer cannot automatically read
and write Uri values. There is a workaround: We create a new String prop-
erty, ImageUrlString. Within that property, we read and write the ImageUrl
for everyone else to use. It’s a small change to the class but results in sim-
pler code overall than any mechanism seen so far.



Reading Data m 21

LISTING 3.9: ImageItem with XML serialization attributes applied

[Xm1lRoot (Namespace="http://www.scottseely.com/RESTBook/2008")]
public class ImageItem
{

[XmlElement(ElementName = "Caption")]

public string Caption { get; set; }

[XmlElement(ElementName = "Description™)]
public string Description { get; set; }

[XmlElement(ElementName = "ImageBytes")]
public byte[] ImageBytes { get; set; }

[XmlElement(ElementName = "ImageId")]
public Guid ImageId { get; set; }

[XmlIgnore]
public Uri ImageUrl { get; set; }

[XmlElement(ElementName = "ImageUrl")]
public string ImageUrlString
{
get { return ImageUrl == null ? null : ImageUrl.ToString(); }
set
{
Uri tempUri = null;
if (Uri.TryCreate(value, UriKind.Absolute, out tempUri))
ImageUrl = tempUri;
else
ImageUrl = null;

With the data type decorated with all these different attributes, what
code do we implement to read an ImageItemnow? Happily, deserialization
distills down to two lines of code:

static ImageItem UseXmlSerialization()

{
XmlSerializer ser = new XmlSerializer(typeof(ImageItem));
return (ImageItem)ser.Deserialize(DataStream);



22

Chapter 3: Desktop Client Operations

As you can see, we are no longer parsing the XML ourselves. This means
that potential bugs in the code we write become less likely—less code
means fewer defects. The great thing about Xm1Serializer is that it handles
elements being out of order, missing elements, and so on. There is one more
serialization mechanism that has an extra benefit if you can use this mech-
anism: blindingly fast speed. Let’s look at that topic next.

DataContractSerializer
System.Runtime.Serialization.DataContractSerializer is part of a
family of serializers introduced with .NET 3.0 that all inherit from System.
Runtime.Serialization.XmlObjectSerializer. These serializers special-
ize in reading and writing objects to XML, JSON, and other formats. In gen-
eral, these serializers read and write XML faster than anything else on the
NET platform. When looking specifically at DataContractSerializer,
however, understand that the speed comes at a price: DataContractSeri-
alizer does not handle XML attributes and it does not handle arbitrarily
ordered elements. DataContractSerializer handles serialization of the fol-
lowing types of data:

¢ Classes that implement System.Runtime.Serialization.
ISerializable.

¢ Types marked with the System.SerializableAttribute.

* Primitive types and enumerations. These types are implicitly serial-
izable.

* Types marked with System.Runtime.Serialization.DataContract
Attribute.

* Undecorated objects. This feature, new in .NET 3.5 SP1, allows for
serializing objects that have no special attribution. In this case, only
types with public, default constructors can be serialized. The Data-
ContractSerializer will serialize only public fields and properties.

Like XmlSerializer, DataContractSerializer’s explicit serialization
model relies on attributes.



Reading Data m 23

* DataContractAttribute: Indicates that the data type has explicit
serialization rules. Using this attribute, one can set the way the data
type is represented in XML with a name and namespace. Note that
the namespace information might be ignored by other serializers,
such as the System.Runtime.Serialization.Json.DataContract
JsonSerializer, because JSON has no equivalent of XML name-
spaces.

* DataMemberAttribute: Indicates that the field or property is
read /write. Besides the usual name and namespace settings, this
attribute lets the developer express the requested relative order of
the element within any serialization scheme.

* CollectionDataContractAttribute: Used to indicate how a collec-
tion should be serialized. You can set the name of the collection, the
name of elements within the collection, and the XML namespace
associated with the collection.

* EnumMemberAttribute: Allows you to set the names and values of
elements within an enumeration.

We are primarily interested in properties and related fields that use the
explicit serialization rules, which is to say have serialization attributes
applied. The rest of this section focuses on the explicit aspects alone. Ele-
ments are ordered following these rules:

1. All elements within a type are ranked according to the value of the
DataMemberAttribute.Order property.

2. Within an Order value, members are serialized and deserialzed in
alphabetical, ascending order. By default, the value of Order is 0.
Members are always sorted first by Order, then by alphabetical order
within a given Order value. Upon deserialization, if a member is out
of order, it will appear with its default value (typically a 0 or null)
within the deserialized object.



24

Chapter 3: Desktop Client Operations

"= NOTE

If you need to use DataContract and must accept out-of-order param-
eters, consider using the DataContractJsonSerializer and the JSON
format instead. You can also support both XmlSerializer and Data-
ContractJsonSerializer on the same data type if you need to handle
unordered XML.

Assuming that you are guaranteed the order of the elements, you can

use the code shown in Listing 3.10 to read the XML information. You’ll

probably notice that this looks very similar to what we did for Xm1Serial-

izer. However, a benefit of DataContractSerializer is thatit doesn’t need

a public, default constructor to create an object. As a result, it can instanti-

ate System.Uri without the workaround needed for XmlSerializer.

LisTING 3.10: ImageItem with data contract attributes applied

[DataContract(Namespace = "http://www.scottseely.com/RESTBook/2008") ]
public class ImageItem

{

[DataMember(Name = "Caption")]
public string Caption { get; set; }

[DataMember (Name = "Description")]
public string Description { get; set; }

[DataMember (Name="ImageBytes")]
public byte[] ImageBytes { get; set; }

[DataMember(Name = "ImageId")]
public Guid ImageId { get; set; }

[DataMember]
public Uri ImageUrl { get; set; }

[DataMember(Name = "PublicImage")]
public bool PublicImage { get; set; }

[DataMember (Name = "UserName")]
public string UserName { get; set; }

As with XmlSerializer, we wind up with a fairly short code snippet to

deserialize an ImageItem object:



Working with WinForms ||

static ImageItem UseDataContractSerialization()

{
DataContractSerializer dcs = new
DataContractSerializer(typeof(ImagelItem));
return (ImageItem)dcs.ReadObject(DataStream);
}

Writing the object is a matter of calling DataContractSerializer’s
WriteObject method. With all this information in place, we are ready to
start talking about building actual applications.

Working with WinForms

There are a lot of WinForms applications out there. These applications will
be improved, extended, and maintained for a long time. Some of those
enhancements and changes might need to make use of RESTful services. If
they do, you will need to familiarize yourself with the following concepts:

* Using System.Net.WebRequest/WebResponse: This pair of classes
provides the best overall developer tools for communicating with
other HTTP-based services, although you can use the derived classes
HttpWebRequest and HttpWebResponse as well. You also have at your
disposal System.Net.WebClient, but I find I prefer WebRequest and
WebResponse. I like the greater control I have over the request/
response process when using WebRequest and WebResponse. For
example: Credentials frequently need to be passed between the serv-
ice and the client. The normal WebClient behavior issues a chal-
lenge /response pair of HTTP messages for any secured resource.
WebRequest, on the other hand, allows you to set its PreAuthenti-
cate property and save a round trip.

* Sharing the Ul thread: .NET (actually, Windows itself) gives you
only one thread for the UL If you use that single thread for synchro-
nously accessing a RESTful service, the user will feel the application
is unresponsive.

* Using asynchronous programming techniques: Learn to use
System.Threading.ThreadPool, the BeginInvoke method imple-
mented by many data types, and what System.IAsyncResult is used

25



26

Chapter 3: Desktop Client Operations

for. Something to keep in mind is that it’s the client that implements
asynchronous request processing. To the service, a synchronous
client request is no different than an asynchronous one. But your
application users will definitely notice the difference.

Our example here revolves around a simple WinForms application that
interacts with the Photo Service described at the beginning of this chapter.
This application does not include mechanisms for storing information to be
synchronized later. It only shows how to connect with the Photo Service.
The code for this example can be found in the WinFormPhotoClient project
included with this chapter’s sample solution.

This chapter also comes with a copy of the Photo Service presented later,
in Chapter 8. To install the service, please do the following:

1. Open the Chapter 3 Solution file.

2. Right-click on PhotoWeb and select Publish. Publish the Web appli-
cation to http:/ /localhost/PhotoWeb.

3. Create the PhotoWeb database using the scripts found in the
PhotoWebDb database project. You'll find one script for creating the
database and another for creating all the associated tables. The data-
base creation script, CreatePhotoWebDb.sql, assumes you're using
SQL Express and creates the .mdb file accordingly. If you're not using
SQL Express, simply edit the script and store the resulting .mdb file
in an authorized location or create the database using the graphical
tools found in SQL Server Management Studio, giving the new data-
base the name PhotoWebDb.

Let’s take a quick look at Photo Client, the WinForms sample application
that demonstrates RESTful service access. When the Photo Client applica-
tion executes, the user can either log in or create a new user account. Fig-
ure 3.1 shows the initial application user interface.



Working with WinForms ||

20 Photo Client (=& [

User name: restuser?

Password: seenene

E-mail Address:  test@example.com

CreataAccoum‘ | Login

V| Hide Password

FIGURE 3.1: WinForms startup screen

Because users might want to see the password as they type it in, the
application allows them to show or mask the text in the password input
TextBox with a password-hiding feature they can turn on or off. If the login
information is new, which is to say unknown to the service, users can cre-
ate a new service account from the Photo Client application. Pressing the
Login button only caches the credentials within the application. The cre-
dentials are not actually submitted until the user begins to interact with the
Photo Service. If the user clicks Create Account, the following tasks need
to take place:

* The application needs to ask the Photo Service for a new user
account, providing the username, password, and e-mail address the
user provided. The e-mail address might seem like an odd piece of
information, but the service can use this to help the user reset the
password in the event that the user forgets the password.

* The application waits for a response indicating that the new user-
name was accepted and the password met the password strength
requirements. If the username is already in use, or if the password
does not meet password strength requirements, the user is notified
and can resubmit new information.

These tasks are implemented in the sample’s LoginControl.cs file. The
code first constructs a new URI. Because the application knows exactly

27



28

Chapter 3: Desktop Client Operations

what user to create, the code uses a PUT request (versus a POST request). As
service application developers, we know that these are the service’s rules
for creating a new user:

¢ HTTP request verb: PUT

* URI template:
http://localhost/PhotoWeb/UserManager.svc/CreateUser/
w {username}?email={emailAddress}

* Request body: XML-serialized password. Because the password
is issued in the HTTP entity body as clear text, you should use
transport-level security, such as secure sockets (HTTPS), to protect it.

Although not a requirement, most services provide some form of doc-
umentation that tell you, the application developer, how to interact with the
service. In this case, you would be given the URI template, the XML schema
(or format) for the new account request, and so forth. If you're writing a
service, you should provide this information.

Anyway, to call the RESTful service and create the new service user
account, you use the System.Net.WebRequest class. You never create an
instance of WebRequest directly, however. Instead, you use WebRequest.
Create, providing an instance of System.Uri that represents the URI of the
request. Create looks up the right type of request to create based on the URI
scheme. In our case, the scheme is http: or https: (versus ftp: or gopher:).
After the request object is returned, we can change existing HTTP header
values, add new HTTP headers, establish the HTTP method, and assign
other values necessary to issue the request over the network. If we do
nothing special, the UI thread will be using the request object, but requests
and associated responses over the network take time. To allow the UI to
remain responsive while the user waits for the service response, the appli-
cation should use asynchronous service request techniques for any REST-
ful service calls it makes. The asynchronous request for creating a new user
is shown in Listing 3.11. You can tell that the request is made asynchro-
nously because BeginGetResponse is used (its cousin GetResponse is its
synchronous counterpart).



Working with WinForms ||

LisTING 3.11: Photo Client asynchronous user account creation

private void btnCreateAccount_Click(object sender, EventArgs e)
{

// Construct the call.

Uri callUri = Utility.CreateUri(ServiceType.Manager,
string.Format("CreateUser/{0}?email={1}",
HttpUtility.UrlEncode(txtUserName.Text),
HttpUtility.UrlEncode(txtEmailAddress.Text)));

// Create the WebRequest

WebRequest request = WebRequest.Create(callUri);

request.Method = "PUT";

Stream stream = request.GetRequestStream();

request.ContentType = "application/xml";

DataContractSerializer stringSer = new
DataContractSerializer(typeof(string));

stringSer.WriteObject(stream, txtPassword.Text);

stream.Close();

// Asynchronously wait for the response.

request.BeginGetResponse(new AsyncCallback(CreateAccountResponse),
request);

// Disable the UI while waiting.
this.Enabled = false;

Sometime later, the Photo Service responds, letting us know of any
issues or if the account creation was successful. For any issues, we need to
notify the user. If the account creation was successful, we let the user know
that as well and ask if the user would like to log in.

A successful response will have an associated 200-level status code. But
how will we know if there were issues with the request? As it happens,
300-level or higher response status codes will cause WebRequest to throw a
WebException. WebException contains information about which HTTP
response code was returned, as well as any information present in the
response stream. We can use these pieces of information to find out what
the server told us went wrong.

But hold on a minute...we're using an asynchronous request pattern
(we initiated the request using BeginGetResponse). Whenever we receive
responses via these asynchronous calling patterns, we have no knowledge
about which application thread is being used for the response. It is almost

29



30

Chapter 3: Desktop Client Operations

always a safe bet to assume that we aren’t on the original UI thread. How-
ever, any code that updates the user interface must be invoked using the Ul
thread. This model is strictly enforced by the framework (as well as Win-
dows) and serves to prevent race conditions while updating the UL

This necessarily means we have to have some way to switch thread con-
texts and gain access to the UI thread. How is this accomplished? To exe-
cute code on the Ul thread, one technique is to invoke a parameterless
delegate. In these cases, I frequently prefer to pass along an anonymous
delegate: The code is frequently short and easier to understand when
viewed in the context of when the delegate is actually called. You can call
this delegate method via the System.Windows.Forms.Control.Invoke or
BeginInvoke/EndInvoke pair. Either mechanism will make sure that your
code runs on the Ul thread, allowing your application to update the screen.
For short functions, I typically call Invoke since it involves less code and
I'm generally not too concerned about a short pause on the background
(asynchronous) thread. The callback for account creation, using Control.
Invoke and an anonymous delegate, is shown in Listing 3.12.

"= NOTE

Failing to modify the state of the window controls via the original cre-
ating UI thread usually results in an AsyncCallbackException (or in
some cases a COMException). This is by design and has been so since
the first version of Windows. It’s not something we can pick and
choose to deal with—we must deal with it when creating multi-
threaded Windows applications, whether .NET-based or not.

LisTING 3.12: Asynchronous response handling

void CreateAccountResponse(IAsyncResult result)
{
// Capture the request from the state.
WebRequest request = (WebRequest)result.AsyncState;
try
{
// Ask for the response. Any exceptions will get thrown here.
WebResponse response = request.EndGetResponse(result);
this.Invoke((MethodInvoker)delegate



Working with WinForms

{
// Lack of exceptions means that we got a 2xx back.
if (DialogResult.Yes == MessageBox.Show(this,
"Account created. Do you want to log in?",
"Success", MessageBoxButtons.YesNo,
MessageBoxIcon.Information))
{
btnLogin_Click(null, EventArgs.Empty);
}
1)
}
catch (WebException we)
{
// Let the user know what happened.
HttpWebResponse httpResponse = (HttpWebResponse)we.Response;
if (httpResponse.StatusCode == HttpStatusCode.Conflict)
{
// Conflict means the name was in use.
this.BeginInvoke((MethodInvoker)delegate
{
MessageBox.Show(this,
"This username is already in use. Cannot create a new account.”,
"Username in use", MessageBoxButtons.OK,
MessageBoxIcon.Exclamation);
1
¥
else
{
// Something else happened.
this.Invoke((MethodInvoker)delegate
{
MessageBox.Show(this, string.Format(

"Code: {@}\r\nDescription: {1}.",
httpResponse.StatusCode.ToString(),
httpResponse.StatusDescription),

"Failed to create a new user.",

MessageBoxButtons.0K, MessageBoxIcon.Exclamation);

1
}
Debug.WriteLine(we.ToString());
}
this.Invoke((MethodInvoker)delegate
{

// Re-enable the UI.
this.Enabled = true;

s

31



32

Chapter 3: Desktop Client Operations

After we have a valid account, we can log in. The application simply
caches the username and password values in memory for use when con-
tacting the Photo Service. Once authenticated, and if we have used the serv-
ice before, we are greeted with the form shown in Figure 3.2. Note that the
mechanisms used to pass authentication credentials use HTTP Basic
Authentication for this service, which passes the username/password in
clear text (as with account creation, which placed the password in the
HTTP entity body). If your service uses HTTP Basic Authentication to
authenticate users, make sure that this is done over a secure, HTTPS chan-
nel. Otherwise, the credentials can be viewed by any router, proxy server,
or machine between the source and destination of the HTTP request.

ol Photo Client | = | S| S|

Friend name: Load Friend | | Load My Images | V| Load my images on startup

| Add Image |

| Delete Image(s) |

Dad & Phil Derk Whittaker Josh Heyse

Public Image

Caption: Jean

Description: My amazing wife!

FIGURE 3.2: The Photo Client details view

To display images coming from the service, a couple of things have to
happen. First, the user needs to authenticate with the service using HTTP
Basic Authentication (this will be the case for each and every RESTful serv-
ice invocation). Normally this involves one or more trips to the server,
but in our case we’ll preload the credentials in WebRequest by setting its
PreAuthenticate property to true. You'll learn much more about HTTP
Basic Authentication and its relationship to RESTful services in Chapter 6,
“Building REST Services Using IIS and ASP.NET.”



Working with WinForms ||

Then we make a request for images. This request asks for all the images
associated with a particular user. If the authenticated user and the user
whose images are being requested are the same, the returned list of images
includes all images, both public and private. If the users differ, the returned
list includes only public images associated with the requested user. (Actu-
ally, the list includes only the URLSs that the application will use to fetch the
images. The application needs to send out another batch of requests to actu-
ally retrieve the image bytes.) Because we are using a RESTful service, we
treat each interaction as a brand-new request. This means that each request
for secured information, as for the list of pictures, needs to include authen-
tication information.

How does authentication work for us? WebRequest has a property
named Credentials of type System.Net.ICredentials. This interface
defines a lookup table of endpoints, authentication mechanisms, and user-
name/password combinations. Fortunately, System.Net.CredentialCache
implements the interface and handles our needs quite well. Our code
makes use of a helper class, PhotoShared.Utility, in the PhotoShared proj-
ect. This class holds a common CredentialCache and a shared method to
handle setting up our WebRequest in a uniform way. When we click the
Login button (refer to Figure 3.1), the small amount of code shown in List-
ing 3.13 (contained within LoginControl.cs) executes.

LisTING 3.13: Photo Client Login button click handler

private void btnLogin_Click(object sender, EventArgs e)
{

// Clear any stored credentials and store the new ones.

Utility.ClearCredentialCache();

NetworkCredential credential = new
NetworkCredential(txtUserName.Text,
txtPassword.Text);

Utility.CredentialCache.Add(new

Uri(Properties.Settings.Default.PhotoService),
"Basic", credential);

if (this.LoggedIn != null)

{

// Raise the LoggedIn event
this.LoggedIn(this, EventArgs.Empty);

33



34

Chapter 3: Desktop Client Operations

Whenever the application needs to send an authenticated request, it can
use the Utility class’s CreateRequest method, shown in Listing 3.14. This
utility method encapsulates and standardizes the code necessary for setting
the credentials. It also makes sure that any outgoing requests send creden-
tials on the first request—alleviating a possible challenge /response pair of
messages between the server and the client as previously mentioned.

"= NOTE

Some examples later in the book, such as the client application for
Chapter 6, don’t use the credential cache as implemented here but
rather insert the credentials directly into the HTTP request. This is
done for illustrative purposes, and practically speaking is functionally
equivalent to the technique used in this chapter. Feel free to use
whichever technique you prefer.

Listing 3.14: The CreateRequest method

public static WebRequest CreateRequest(Uri uri)

{
WebRequest retval = WebRequest.Create(uri);
retval.Credentials = CredentialCache;
retval.PreAuthenticate = true;
return retval;

}

To add an image to the collection on the server, we use the HTTP POST
method. Why POST? In our case, the server controls the issuance of new
photo identifiers. Clients have no idea what identifier the server will assign
to the new image. The new identifier might be a string, an integer, or some-
thing else—to service consumers it is just an opaque identifier. When this
situation arises, from Chapter 2, “The HyperText Transfer Protocol and the
Universal Resource Identifier,” we know that RFC 2616 tells us the HTTP
POST method is appropriate. After the data is posted, the client waits for the
response so that it can discover the identifier for the newly added image.

Our user interface allows the user to select files using the System.
Windows.Forms.OpenFileDialog. When the user clicks Open, the list of
selected files is returned to the application. This list is then passed to a



Working with WinForms ||

function named AddImages. AddImages is executed in a background thread
obtained from the .NET thread pool:

ThreadPool.QueueUserWorkItem(new WaitCallback(AddImages),
ofdOpenFile.FileNames);

As I mentioned earlier, the ThreadPool is a class you often use with
asynchronous programming. It allows you to spin up a thread, execute a
task, and return the thread to the system with little effort on your part.
Unlike spinning up your own threads, the ThreadPool automatically
increases and decreases the number of threads in an application depending
on needs and available resources. Threads in the pool come into being, are
used, and are reused using patterns that are efficient for the operating sys-
tem. For us as application developers, the good part is that all of this behav-
ior is free. The WaitCallback accepted by the worker item takes a method
that has a signature of void (System.Object), and the AddImages imple-
mentation of this is shown in Listing 3.15.

LisTING 3.15: The AddImages method

void AddImages(object data)

{
// Cast the data to a list of filenames.
string[] filenames = (string[])data;

// Create a serializer.
DataContractSerializer itemSerializer =
new DataContractSerializer(typeof(ImageItem));
foreach (string filename in filenames)
{
// If the string doesn’t map to an existing filename,
// go the next string in the list.
if (!File.Exists(filename))
{

continue;

// Create the URI for the service via the helper
Uri callUri = Utility.CreateUri(ServiceType.Image, "AddImage/");

WebRequest request = Utility.CreateRequest(callUri);
request.ContentType = "application/xml";
request.Method = "POST";

continues

35



36 Chapter 3: Desktop Client Operations

LisTING 3.15: Continued

Stream requestStream = request.GetRequestStream();
ImageItem imageItem = new ImageItem()

{
PublicImage = false,
ImageBytes = File.ReadAllBytes(filename),
UserName = LoggedInUserId

s

itemSerializer.WriteObject(requestStream, imageItem);
requestStream.Close();
IAsyncResult result =
request.BeginGetResponse(ReadResponse, new object[]
{request, imageItem});
}
this.Invoke((MethodInvoker)delegate
{
// Enable the control.
this.Enabled = true;
1)

AddImages works in concert with the application’s ReadResponse
method to retrieve the new image identifier from the response stream, to set
the identifier to an accessible location, and then to signal MessagingEvent,
a ManualResetEvent object, which allows the blocked AddImages to con-
tinue, as shown in Listing 3.16.

LisTING 3.16: Photo Client’s ReadResponse method

void ReadResponse(IAsyncResult result)
{
DataContractSerializer guidSerializer = new
DataContractSerializer(typeof(Guid));
object[] values = (object[])result.AsyncState;
WebRequest request = (WebRequest)values[0];
ImageItem imageItem = (ImageItem)values[1];

try
{
WebResponse response = request.EndGetResponse(result);
Guid lastImageIld = (Guid)guidSerializer.ReadObject(
response.GetResponseStream());
response.Close();
// Set the ID
if (lastImageld != Guid.Empty)
{
imageItem.ImageId = lastImageld;



Working with WinForms ||

ImageDocument.Add(imageItem);
this.Invoke((MethodInvoker)delegate

{
lstImages.Items.Add(new ListViewItem(imageItem.Caption,
AddImageToList(imageItem.Image)) {
Tag = imageItem });
3
¥
}
catch (WebException we)
{
Debug.WriteLine(we.Message);
}

The only HTTP method we haven’t looked at yet is DELETE. Like the
other HTTP methods Photo Client deals with, it is a matter of setting the
WebRequest.Method property to DELETE and then sending a request to the

right resource. When the Delete button is clicked (refer to Figure 3.2), this

line sets things into motion:

ThreadPool.QueueUserWorkItem(new WaitCallback(DeleteImage),

lstImages.SelectedItems[i].Tag);

The ThreadPool then calls DeleteImage, which asynchronously executes

the WebRequest. Since this is a DELETE, we aren’t too worried about the

response. We just need to make sure that EndGetResponse is called so that

no operating system resources are left hanging and so that the WebResponse

is closed, as shown in Listing 3.17.

LISTING 3.17: Photo Client’s DeleteImage and DeleteResponse methods

void DeleteImage(object data)

{

ImageIltem imageItem = (Imageltem)data;
if (data == null)
{

return;

}
// Set the URI
Uri callUri = Utility.CreateUri(ServiceType.Image,

string.Format("Image/{0}", imageItem.ImageId));

// Execute the request.

continues

37



38 Chapter 3: Desktop Client Operations

LIsTING 3.17: Continued

WebRequest request = Utility.CreateRequest(callUri);
request.ContentType = "application/xml";
request.Method = "DELETE";
request.BeginGetResponse(DeleteResponse, request);

}
void DeleteResponse(IAsyncResult result)
{
try
{
WebRequest request = (WebRequest)result.AsyncState;
// nothing to read, so just complete the request.
request.EndGetResponse(result).Close();
¥
catch (WebException)
{
Invoke((MethodInvoker)delegate
{
MessageBox.Show(this,
"Failed to delete an image. Try logging back in again.",
"Delete Failed", MessageBoxButtons.OK,
MessageBoxIcon.Error);
s
¥
3

As you read through the sample code, you’ll probably notice that the
code always calls WebResponse.Close(). You must do this so that connec-
tions to the server can be returned to the server’s connection pool. This
allows the server to serve more clients and is simply good programming
practice. Failure to do so can generate sluggish performance for your client
application and others that consume the RESTful service.

Working with Windows Presentation Foundation

Thankfully, the RESTful service communication tools you use with Win-
Forms and WPF are identical. The only difference when creating WPF client
applications is that the data binding mechanisms change and the mecha-
nisms to apply updates to the user interface using the single Ul thread
change. If you are a WPF developer, read the WinForms section to under-
stand the RESTful communications tools introduced there if you're not
already familiar with them.



Working with Windows Presentation Foundation [ ]

As mentioned, the only real difference in these two sample applications
is the mechanism by which you update the user interface when a RESTful
response comes back. As with WinForms, you can execute the update tasks
on a background thread using an asynchronous request or by making the
request on a background thread via QueueUserWorkItem. When the
response is returned, you still need to be sure to process updates on
the main user interface thread. WPF user interface objects have a property
named Dispatcher of type System.Windows.Threading.Dispatcher.
Through the Dispatcher property, we can make sure that our code executes
on the main UI thread just as we used Invoke with the WinForms applica-
tion logic.

For much of the application code in the WPF version of the Photo Shar-
ing application, we use a simple delegate of the form:

delegate void PlainMethod();

This delegate is used to cast the anonymous delegates used by our code to
a known type when we need to update the user interface in some way. After
the list of images is known, for example, the code needs to retrieve the
images and place them into the list for viewing. Each image might take a bit
of time to load. Because of this, ShowImages is executed using a background
thread obtained from the thread pool, which is shown in Listing 3.18.

LISTING 3.18: Photo Client’s ShowImages method (WPF version)

private void ShowImages()
{
foreach (ImageItem imageItem in ImageDocument)
{
// This is executing on a background thread, so we block
// and wait for each image to load.
BitmapImage image = new BitmapImage(new
Uri(imageItem.ImageUrl));

// Add the image to the screen.
this.Dispatcher.Invoke((PlainMethod)delegate
{
StackPanel sp = new StackPanel();
sp.Children.Add(new Image() { Source = image, Height=100,
Width=100 });
sp.Children.Add(new Label() {

continues

39



40

Chapter 3: Desktop Client Operations

LisTING 3.18: Continued

Content = imageItem.Caption });
1stImages.Items.Add(new ListViewItem() {
Content = sp, Tag = imageltem });
1

}

Although we bind to data using normal WPF mechanisms for most of
this example application, the images themselves are bound a bit differently,
as you see in Listing 3.18. Otherwise, the application logic is nearly identi-
cal to that in the WinForms version, including the mechanisms for service
authentication and invocation.

Where Are We?

In this chapter we looked at techniques to read and write RESTful service
data. RESTful Web services frequently use a neutral data format like XML
or JSON, but our application code uses classes and objects to represent the
data. Client applications need to know how to translate between those rep-
resentations. You also need to be able to send and receive representational
data between your application and the RESTful service. Fortunately,
System.Net includes plenty of classes and makes this easy. For the most
part, you will use WebRequest/WebResponse, or their HTTP-based deriva-
tives, to send and receive information from RESTful services. Because
you’ll want to keep your application responsive to user inputs when mak-
ing long-running network requests, you should become familiar with the
various mechanisms to call remote methods asynchronously (in the back-
ground). When service invocations return information to be presented to
the user, be sure to update the user interface via the application’s UI thread.

This chapter focused on desktop applications, although Windows serv-
ices and console applications would use the same techniques to invoke
RESTful services as well. But how are RESTful services consumed when the
client application is Web-based? In the next chapter we’ll look at both
browser-based and Silverlight clients and see how this is accomplished.



Foreword by Anders Hejlsberg

Essential LINQ

Charlie Calvert
Dinesh Kulkarni

CGoogle | | '
Bookmarks| |l  Delicious | | & Digg



http://www.informit.com/store/product.aspx?isbn=0321564162
http://www.informit.com/store/product.aspx?isbn=0321564162
http://www.google.com/
http://delicious.com/
http://digg.com/
http://www.facebook.com/
http://www.stumbleupon.com/
http://www.reddit.com/
http://twitter.com/

BUY ME

Charlie Calvert
Dinesh Kulkarni

Essential LINQ

LINQ is one of Microsoft's most exciting, powerful new development technologies. Es-
sential LINQ is the first LINQ book written by leading members of Microsoft's LINQ and
C# teams. Writing for architects, developers, and development managers, these Microsoft
insiders share their intimate understanding of LINQ, revealing new patterns and best
practices for getting the most out of it.

Calvert and Kulkarni begin by clearly explaining how LINQ resolves the long-time
“impedance mismatch” between object-oriented code and relational databases. Next, they
show how LINQ integrates querying into C# as a “first-class citizen.” Using realistic code
examples, they show how LINQ provides a strongly typed, IntelliSense-aware technology
for working with data from any source, including SQL databases, XML files, and generic
data structures.

Calvert and Kulkarni carefully explain LINQ's transformative, composable, and declarative
capabilities. By fully illuminating these three concepts, the authors allow developers to
discover LINQ's full power. In addition to covering core concepts and hands-on LINQ

development in C# with LINQ to Objects, LINQ to XML, LINQ to SQL, and LINQ to Entities,

they also present advanced topics and new LINQ implementations developed by the LINQ
community. This book

e Explains the entire lifecycle of a LINQ project: design, development, debugging, and
much more

e Teaches LINQ from both a practical and theoretical perspective

o |everages C# language features that simplify LINQ development

o Offers developers powerful LINQ query expressions to perform virtually any data-
related task

e Teaches how to query SQL databases for objects and how to modify those objects

e Demonstrates effective use stored procedures and database functions with LINQ

e Shows how to add business logic that reflects the specific requirements of your
organization

o Teaches developers to create, query, and transform XML data with LINQ

e Shows how to transform object, relational, and XML data between each other

e Offers best patterns and practices for writing robust, easy-to-maintain LINQ code

Foewordty Anders Hejlsberg A

Essential LINQ

-N'

Charlie Calvert
Dinesh Kulkarni

AVAILABLE

e BOOK: 9780321564160
e SAFARI ONLINE
e EBOOK: 0321564189
o KINDLE: 0321604229

About the Authors

Charlie Calvert, Commu-

nity Program Manager for the
Microsoft C# team, currently
focuses his technical energies on
LINQ. He has periodically worked
with LINQ Chief Architect Anders
Hejlsberg both during the develop-
ment of Delphi and during the
development of LINQ. Calvert's ten
technical books have sold more
than 100,000 copies. They include
Delphi 4 Unleashed, C++Builder

3 Unleashed, Delphi 2 Unleashed,
Teach Yourself Windows 95 Pro-
gramming in 21 Days, and Teach
Yourself Windows Programming.

Dinesh Kulkarni is a Senior
Program Manager on Microsoft’s
NET Framework team. He was
the Program Manager in charge
of LINQ to SQL. He was deeply
involved in LINQ's planning and
implementation from the incuba-
tion stage and was lead author for
MSDN’s authoritative LINQ to SQL
paper. Before joining Microsoft,
he worked in diverse technical
roles ranging from architecting

\A 4
Addison
Wesley

informit.com/aw

and implementing front-end
CASE tools for IBM to designing
databases and middleware for a
Wall Street hedge fund.



http://www.informit.com/store/product.aspx?isbn=0321564162
http://www.informit.com/store/product.aspx?isbn=0321564162
http://www.safaribooksonline.com/Corporate/Index/
http://www.informit.com/imprint/index.aspx?st=61085
http://www.informit.com/imprint/index.aspx?st=61085

3

The Essence of LINQ

N OW THAT YOU'VE SEEN several practical examples of LINQ'’s syntax,

it is time to view the technology from a more theoretical perspective.
This chapter covers the seven foundations on which an understanding of
LINQ can be built. LINQ is

¢ Integrated
¢ Unitive

e Extensible
e Declarative
e Hierarchical
¢ Composable

e Transformative

These ideas may sound esoteric at first, but I believe you will find them
quite easy to understand. LINQ has a fundamental simplicity and elegance.
In this chapter and the next, we explore LINQ’s architecture, giving you a
chance to understand how it was built and why it was built that way. This
chapter explains goals that LINQ aims to achieve. The next chapter explains
each of the pieces of the LINQ architecture and shows how they come
together to achieve those goals.

43



44

Chapter 3: The Essence of LINQ

Integrated

LINQ stands for Language Integrated Query. One of the central, and most
important, features of LINQ is its integration of a flexible query syntax into
the C# language.

Developers have many tools that have been crafted to neatly solve dif-
ficult tasks. Yet there are still dark corners in the development landscape.
Querying data is one area in which developers frequently encounter prob-
lems with no clear resolution. LINQ aims to remove that uncertainty and to
show a clearly defined path that is well-lit and easy to follow.

In Visual Studio 2005, attempts to query data in a SQL database from a
C# program revealed an impedance mismatch between code and data. SQL
is native to neither .NET nor C#. As a result, SQL code embedded in a C#
program is neither type-checked nor IntelliSense-aware. From the perspec-
tive of a C# developer, SQL is shrouded in darkness.

Here is an example of one of several different techniques developers
used in the past when querying data:

SqlConnection sqlConnection = new SglConnection(connectString);
sqlConnection.Open();

System.Data.SqlClient.SqlCommand sqlCommand = new SqlCommand();
sqlCommand.Connection = sqlConnection;

sqlCommand.CommandText = "Select * from Customer";

return sqlCommand.ExecuteReader (CommandBehavior.CloseConnection)

Of these six lines of code, only the last two directly define a query. The
rest of the lines involve setup code that allows developers to connect and
call objects in the database. The query string shown in the next-to-last line
is neither type-checked nor IntelliSense-aware.

After these six lines of code execute, the developers may have more
work to do, because the data returned from the query is not readily
addressable by an object-oriented programmer. You might have to write
more lines of code to access this data, or convert it into a format that is eas-
ier to use.

The LINQ version of this same query is shorter, easier to read, color-
coded, fully type-checked, and IntelliSense-aware. The result set is cleanly
converted into a well-defined object-oriented format:



Unitive m 45

Northwind db = new Northwind(@"C:\Data\Northwnd.mdf");

var query = from c in db.Customers
select c;

By fully integrating the syntax for querying data into .NET languages
such as C# and VB, LINQ resolves a problem that has long plagued the
development world. Queries become first-class citizens of our primary lan-
guages; they are both type-checked and supported by the powerful Intel-
liSense technology provided inside the Visual Studio IDE. LINQ brings the
experience of writing queries into the well-lit world of the 21st century.

A few benefits accrue automatically as a result of integrating querying
into the C# language:

* The syntax highlighting and IntelliSense support allow you to get
more work done in less time. The Visual Studio editor automatically
shows you the tables in your database, the correctly spelled names
and types of your fields, and the operators you can use when query-
ing data. This helps you save time and avoid careless mistakes.

* LINQ code is shorter and cleaner than traditional techniques for
querying data and, therefore, is much easier to maintain.

¢ LINQ allows you to fully harness the power of your C# debugger
while writing and maintaining queries. You can step through your
queries and related code in your LINQ projects.

If language integration were the only feature that LINQ offered, that
alone would have been a significant accomplishment. But we are only one-
seventh of the way through our description of the foundations of LINQ.
Many of the best and most important features are still to be covered.

Unitive

Before LINQ, developers who queried data frequently needed to master
multiple technologies. They needed to learn the following;:

* SQL to query a database
¢ XPath, Dom, XSLT, or XQuery to query and transform XML data



46

Chapter 3: The Essence of LINQ

* Web services to access some forms of remote data

* Looping and branching to query the collections in their own
programs

These diverse APIs and technologies forced developers to frantically
juggle their tight schedules while struggling to run similar queries against
dissimilar data sources. Projects often encountered unexpected delays sim-
ply because it was easier to talk about querying XML, SQL, and other data
than it was to actually implement the queries against these diverse data
sources. If you have to juggle too many technologies, eventually something
important will break.

LINQ simplifies these tasks by providing a single, unified method for
querying diverse types of data. Developers don’t have to master a new
technology simply because they want to query a new data source. They can
call on their knowledge of querying local collections when they query rela-
tional data, and vice versa.

This point was illustrated in the preceding chapter, where you saw three
very similar queries that drew data from three different data sources:
objects, an SQL database, and XML:

var query = from c in GetCustomers()
where c.City == "Mexico D.F."
select new { City = c.City, ContactName = c.ContactName };

var query = from c in db.Customers
where c.City == "Mexico D.F."
select new { City = c.City, ContactName = c.ContactName };

var query = from x in customers.Descendants("Customer")
where x.Attribute("City").Value == "Mexico D.F."
select x;

As you can see, the syntax for each of these queries is not identical, but
it is very similar. This illustrates one of LINQ’s core strengths: a single, uni-
tive syntax can be used to query diverse types of data. It is not that you
never have to scale a learning curve when approaching a new data source,
but only that the principles, overall syntax, and theory are the same even
if some of the details differ.



Extensible Provider Model [ |

You enjoy two primary benefits because LINQ is unitive:

¢ The similar syntax used in all LINQ queries helps you quickly get
up to speed when querying new data sources.

* Your code is easier to maintain, because you are using the same
syntax regardless of the type of data you query.

Although it arises naturally from this discussion, it is worth noting that
SQL and other query languages do not have this capability to access mul-
tiple data sources with a single syntax. Those who advocate using SQL or
the DOM instead of LINQ often forget that their decision forces their team
to invest additional time in learning these diverse technologies.

Extensible Provider Model

In this text I have tended to define LINQ as a tool for querying SQL, XML,
and the collections in a program. Strictly speaking, this is not an accurate
description of LINQ. Although such a view is useful when you first
encounter LINQ, it needs to be abandoned if you want to gain deeper
insight. LINQ is not designed to query any particular data source; rather,
it is a technology for defining providers that can be used to access any arbi-
trary data source. LINQ happens to ship with providers for querying SQL,
XML, and objects, but this was simply a practical decision, not a preor-
dained necessity.

LINQ provides developers with a syntax for querying data. This syntax
is enabled by a series of C# 3.0 and C# 2.0 features. These include lambdas,
iterator blocks, expression trees, anonymous types, type inference, query
expressions, and extension methods. All of these features are covered in this
book. For now you need only understand that they make LINQ possible.

When Visual Studio 2008 shipped, Microsoft employees frequently
showed the image shown in Figure 3.1. Although people tend to think of
LINQ as a means of enabling access to these data sources, this diagram
actually depicts nothing more than the set of LINQ providers that were
implemented by Microsoft at the time Visual Studio shipped. Granted, the
team carefully planned which providers they wanted to ship, but their deci-
sions were based on strategic, rather than technical, criteria.

47



48

m Chapter 3: The Essence of LINQ

Jhe LINQ Project

C#3.0 ’ Visual Basic 9.0 ‘ Others

.NET Language Integrated Query

LINQto || LINQto || LINQto LINQ to LINQ to
Objects DEIERT SQL ||| Entites || XML

Objects Relational

FiIGurRe 3.1 VB and C# ship with LINQ providers for databases, XML, and data structures
found in a typical program.

Using the LINQ provider model, developers can extend LINQ to query
other data sources besides those shown in Figure 3.1. The following are a
few of the data sources currently enabled by third-party LINQ providers:

LINQ Extender LINQ to Google
LINQ over C# project LINQ to Indexes
LINQ to Active Directory LINQ to IQueryable
LINQ to Amazon LINQ to JavaScript
LINQ to Bindable Sources LINQ to JSON

LINQ to CRM LINQ to LDAP

LINQ to Excel LINQ to LLBLGen Pro
LINQ to Expressions LINQ to Lucene
LINQ to Flickr LINQ to Metaweb

LINQ to Geo LINQ to MySQL



Extensible Provider Model [ |

LINQ to NCover LINQ to Sharepoint
LINQ to NHibernate LINQ to SimpleDB
LINQ to Opf3 LINQ to Streams
LINQ to Parallel (PLINQ) LINQ to WebQueries
LINQ to RDF Files LINQ to WMI

These projects are of varying quality. Some, such as the LINQ Extender
and LINQ to IQueryable, are merely tools for helping developers create
providers. Nevertheless, you can see that an active community is interested
in creating LINQ providers, and this community is producing some inter-
esting products. By the time you read this, I'm sure the list of providers will
be longer. See Appendix A for information on how to get updated infor-
mation on existing providers.

One easily available provider called LinqToTerraServer can be found
among the downloadable samples that ship with Visual Studio 2008. You
can download the VS samples from the release tab found at http://code.
msdn.microsoft.com/csharpsamples.

After unzipping the download, if you look in the ...\LingSamples\
WebServiceLinqProvider directory, you will find a sample called Ling-
ToTerraServer. The TerraServer web site, http:/ /terraserver-usa.com, is a
vast repository of pictures and information about geographic information.
The LinqToTerraServer example shows you how to create a LINQ provider
that queries the web services provided on the TerraServer site. For example,
the following query returns all U.S. cities and towns named Portland:

var queryl = from place in terraPlaces

where place.Name == "Portland"
select new { place.Name, place.State };

This query returns a number of locations, but here are a few of the more

prominent:
{ Name = Portland, State = Indiana }
{ Name = Portland, State = Maine }
{ Name = Portland, State = Michigan }
{ Name = Portland, State = Oregon }
{ Name = Portland, State = Texas }

49



50

Chapter 3: The Essence of LINQ

{ Name = Portland, State = Alabama }
{ Name = Portland, State = Arkansas }
{ Name = Portland, State = Colorado }

In Chapter 17, “LINQ Everywhere,” you will see examples of several other
providers, including LINQ to Flickr and LINQ to SharePoint. It is not easy
to create a provider.. After the code is written, however, it is easy to use the
provider. In fact, you should already have enough familiarity with LINQ to
see that it would be easy to modify the preceding query to suit your own
purposes.

The LINQ provider model has hidden benefits that might not be evident
at first glance:

¢ Itis relatively open to examination and modification. As you read
the next few chapters, you will find that most of the LINQ query
pipeline is accessible to developers.

¢ It allows developers to be intelligent about how queries execute. You
can get a surprising degree of control over the execution of a query.
If you care about optimizing a query, in many cases you can opti-
mize it, because you can see how it works.

* You can create a provider to publicize a data source that you have
created. For instance, if you have a web service that you want C#
developers to access, you can create a provider to give them a
simple, extensible way to access your data.

I will return to the subject of LINQ providers later in the book. In this
chapter, my goal is simply to make it clear that LINQ is extensible, and that
its provider model is the basis on which each LINQ query model is built.

Query Operators

You don’t always need to use a LINQ provider to run queries against what
might—at least at first—appear to be nontraditional data sources. By using
the LINQ to Objects provider, and a set of built-in LINQ operators, you can
run queries against a data source that does not look at all like XML or SQL
data. For instance, LINQ to Objects gives you access to the reflection model
that is built into C#.



Extensible Provider Model

The following query retrieves all the methods of the string class that

are static:

var query = from m in typeof(string).GetMethods()

where m.IsStatic == true
select m;

The following are a few of the many results that this query returns:

System.String Join(System.String, System.String[])
System.String Join(System.String, System.String[], Int32, Int32)

Boolean
Boolean
Boolean
Boolean
Boolean

Equals(System.String, System.String)

Equals(System.String, System.String, System.StringComparison)
op_Equality(System.String, System.String)
op_Inequality(System.String, System.String)
IsNullOrEmpty(System.String)

Int32 Compare(System.String,
Int32 Compare(System.String,
Int32 Compare(System.String,

System.String)
System.String, Boolean)
System.String, System.StringComparison)

Using the power of LINQ, it is easy to drill into these methods to find

out more about them. In particular, LINQ uses the extension methods men-

tioned in the preceding section to define a set of methods that can perform

specific query operations such as ordering and grouping data. For instance,

the following query retrieves the methods of the string class that are static,

finds out how many overloads each method has, and then orders them first

by the number of overloads and then alphabetically:

var query = from m in typeof(string).GetMethods()

where m.IsStatic
orderby m.Name

== true

group m by m.Name into g

orderby g.Count()
select new { Name

foreach (var item in query)

{

Console.WriteLine(item);

= g.Key, Overloads = g.Count() };

The results of this query look like this:

{ Overloads = 1, Name = Copy }

{ Overloads = 1, Name = Intern }

{ Overloads = 1, Name = IsInterned }

{ Overloads = 1, Name = IsNullOrEmpty }

51



52

Chapter 3: The Essence of LINQ

{ Overloads =
{ Overloads =
{ Overloads =
{ Overloads =
{ Overloads =

Name = op_Equality }
Name = op_Inequality }
Name = CompareOrdinal }
Name = Equals }

, Name = Join }

{ Overloads = 5, Name = Format }

{ Overloads = 9, Name = Concat }

{ Overloads = 10, Name = Compare }

[P

-

O U1 N NN R R
-

This makes it obvious that Format, Compare, and Concat are the most fre-
quently overloaded methods of the string class, and it presents all the
methods with the same number of overloads in alphabetical order.

You can run this code in your own copy of Visual Studio because the
LINQ to Objects provider ships with C# 3.0. Other third-party extensions to
LINQ), such as LINQ to Amazon, are not included with Visual Studio. If you
want to run a sample based on LINQ to Amazon or some other provider
that does not ship with Visual Studio, you must download and install the
provider before you can use it.

Declarative: Not How, But What

LINQ is declarative, not imperative. It allows developers to simply state
what they want to do without worrying about how it is done.

Imperative programming requires developers to define step by step
how code should be executed. To give directions in an imperative fashion,
you say, “Go to 1st Street, turn left onto Main, drive two blocks, turn right
onto Maple, and stop at the third house on the left.” The declarative version
might sound something like this: “Drive to Sue’s house.” One says how to
do something; the other says what needs to be done.

The declarative style has two advantages over the imperative style:

¢ It does not force the traveler to memorize a long set of instructions.

¢ It allows the traveler to optimize the route when possible.

It should be obvious that there is little opportunity to optimize the first
set of instructions for getting to Sue’s house: You simply have to follow
them by rote. The second set, however, allows the traveler to use his or her
knowledge of the neighborhood to find a shortcut. For instance, a bike



Declarative: Not How, But What [ |

might be the best way to travel at rush hour, whereas a car might be best
at night. On occasion, going on foot and cutting through the local park
might be the best solution.

Here is another example of the difference between declarative and
imperative code:

// imperative style

List<int> imperativelist = new List<int>();
imperativelist.Add(1);
imperativelist.Add(2);
imperativelList.Add(3);

// declarative style
List<int> declaractivelList = new List<int> { 1, 2, 3 };

The first example details exactly how to add items to a list. The second
example states what you want to do and allows the compiler to figure out
the best way to do it. As you will learn in the next chapter, both styles are
valid C# 3.0 syntax. The declarative form of this code, however, is shorter,
easier to understand, easier to maintain, and, at least in theory, leaves the
compiler free to optimize how a task is performed.

These two styles differ in both the amount of detail they require a devel-
oper to master and the amount of freedom that each affords the compiler.
Detailed instructions not only place a burden on the developer, but also
restrict the compiler’s capability to optimize code.

Let’s consider another example of the imperative style of programming.
As developers, we frequently end up in a situation where we are dealing
with a list of lists:

List<int> list@l = new List<int> { 1, 2, 3 };

List<int> 1ist@2 = new List<int> { 4, 5, 6 };
List<int> 1ist@3 = new List<int> { 7, 8, 9 };

List<List<int>> lists = new List<List<int>> { liste1l, liste2, liste3 };

Here is imperative code for accessing the members of this list:
List<int> newlList = new List<int>();
foreach (var item in lists)

{

foreach (var number in item)

53



54 Chapter 3: The Essence of LINQ

{

newList.Add(number);

¥
}

This code produces a single list containing all the data from the three nested
lists:

W 0NV WN R

Notice that we have to write nested for loops to allow access to our data. In

a simple case like this, nested loops are not terribly complicated to use, but

they can become very cumbersome in more complex problem domains.
Contrast this code with the declarative style used in a LINQ program:
var newlList = from list in lists

from num in list
select num;

You can access the results of these two “query techniques” in the same way:

foreach (var item in newlList)

{

Console.WriteLine(item);

}

This code writes the results of either query, producing identical results,
regardless of whether you used the imperative or declarative technique to
query the data:

W oo NV WN PR



Declarative: Not How, But What [ |

The difference here is not in the query’s results, or in how we access the
results, but in how we compose our query against our nested list. The
imperative style can sometimes be verbose and hard to read. The declara-
tive code is usually short and easy to read and scales more easily to com-
plex cases. For instance, you can add an orderby clause to reverse the order
of the integers in your result set:

var query = from list in lists
from num in list
orderby num descending
select num;

You probably know how to achieve the same results using the impera-
tive style. But it was knowledge that you had to struggle to learn, and it is
knowledge that applies only to working with sequences of numbers stored
in a List<T>. The LINQ code for reordering results, however, is easy to
understand. It can be used to reorder not only nested collections, but also
SQL data, XML data, or the many other data sources we query using LINQ.

To get the even numbers from our nested lists, we need only do this:

var query = from list in lists
from num in list
where num % 2 == @

orderby num descending
select num;

Contrast this code with the imperative equivalent:
List<int> newlList = new List<int>();

foreach (var item in lists)

{
foreach (var number in item)
{
if (number % 2 == 9)
{
newList.Add(number);
}
}
}

newList.Reverse();

55



56

Chapter 3: The Essence of LINQ

This imperative style of programming now has an if block nested
inside the nested foreach loops. This is not only verbose and applicable to
only a specific type of data, it also can be like a straight jacket for both the
compiler and the developer. Commands must be issued and followed in a
rote fashion, leaving little room for optimizations.

The equivalent LINQ query expression does not describe in a step-by-
step fashion how to query our list of lists. It simply lets the developer state
what he wants to do and lets the compiler determine the best path to the
destination.

After nearly 50 years of steady development, the possibilities inherent in
imperative programming have been extensively explored. Innovations in
the field are now rare. Declarative programming, on the other hand, offers
opportunities for growth. Although it is not a new field of study, it is still
rich in possibilities.

". Use the Right Tool for the Job

In extolling the virtues of LINQ’s declarative syntax, I should be care-
ful not to overstate my case. For instance, the LINQ operator called
ToList is provided to allow developers to easily translate the sequence
of results returned by a LINQ query into a traditional List<T>. This
functionality is useful because some operations, such as randomly
accessing items in a list (myList[2]), are more easily performed using
the imperative syntax. One of the great virtues of C# 3.0 is that it allows
you to easily move between imperative and declarative syntax, allow-
ing you to choose the best tool for the job. My job right now is to help
you understand the value of LINQ and the declarative style of pro-
gramming. LINQ is indeed a very powerful and useful tool, but it is
not the solution to all your problems.

Because LINQ is a new technology from Microsoft, you might find it a
bit jarring to see me write that declarative programming is not new. In fact,
declarative code has been with us nearly as long as imperative code. Some
older languages such as LISP (which was first specified in 1958) make heavy
use of the declarative style of programming. Haskel and F# are examples of



Hierarchical m 57

other languages that use it extensively. One reason LINQ and SQL look so
much alike is that they are both forms of declarative programming.

The point of LINQ is not that it will replace SQL, but that it will bring the
benefits of SQL to C# developers. LINQ is a technology for enabling a SQL-
like declarative programming style inside a native C# program. It brings
you the benefits of SQL but adds declarative syntax, as well as syntax high-
lighting, IntelliSense support, type checking, debugging support, the abil-
ity to query multiple data sources with the same syntax, and much more.

Hierarchical

Complex relationships can be expressed in a relational database, but the
results of a SQL query can take only one shape: a rectangular grid. LINQ
has no such restrictions. Built into its very foundation is the idea that data
is hierarchical (see Figure 3.2). If you want to, you can write LINQ queries
that return flat, SQL-like datasets, but this is an option, not a necessity.

Grid versus Hierarchies

LINQ’s hierarchical data
model is more flexible
than the grid-like data
returned from a SQL

query.

___&u&nﬁénﬁ&u

Mary RidgeCo, A.E. 322336

FIGURE 3.2 Both object-oriented languages and the developers who use them have a
natural tendency to think in terms of hierarchies. SQL data is arranged in a simple grid.

Consider a simple relational database that has tables called Customers,
Orders, and OrderDetails. It is possible to capture the relationship between
these tables in a SQL database, but you cannot directly depict the relationship



58

Chapter 3: The Essence of LINQ

in the results of a single query. Instead, you are forced to show the result as

a join that binds the tables into a single array of columns and rows.

LINQ, on the other hand, can return a set of Customer objects, each of

which owns a set of 0-to-n Orders. Each Order can be associated with a set

of OrderDetails. This is a classic hierarchical relationship that can be per-

fectly expressed with a set of objects:

Customer
Orders

OrderDetails

Consider the following simple hierarchical query that captures the rela-

tionship between two objects:

var query = from c¢ in db.Customers
select new { City = c.City,

= from o in c.Orders

select new { 0.0OrderID }

This query asks for the city in which a customer lives and a list of the orders

the person has made. Rather than returning a rectangular dataset as a SQL

query would, this query returns hierarchical data that lists the city associ-

ated with each customer and the ID associated with each order:

City=Helsinki

orders:
orders:
orders:
orders:
orders:
orders:
orders:

City=Warszawa

orders:
orders:
orders:
orders:
orders:
orders:

OrderlD=10615
OrderID=10673
OrderID=10695
OrderID=10873
OrderID=10879
OrderID=10910
OrderID=11005

OrderID=10374
OrderID=10611
OrderID=10792
OrderID=10870
OrderID=10906
OrderID=10998

orders=...

orders=...

This result set is multidimensional, nesting one set of columns and rows

inside another set of columns and rows.



Hierarchical [ |

Look again at the query, and notice how we gain access to the Orders
table:

orders = from o in c.Orders

The identifier c is an instance of a Customer object. As you will learn
later in the book, LINQ to SQL has tools for automatically generating Cus-
tomer objects given the presence of the Customer table in the database.
Here you can see that the Customer object is not flat; instead, it contains a set
of nested Order objects.

Listing 3.1 shows a simplified version of the Customer object that is auto-
matically generated by the LINQ to SQL designer. Notice how LINQ to SQL
wraps the fields of the Customer table. Later in this book, you will learn
how to automatically generate Customer objects that wrap the fields of a
Customer table.

LisTING 3.1 A Simplified Version of the Customer Object That the LINQ to SQL Designer
Generates Automatically

public partial class Customer

{
... // Code omitted here
private string _CustomerID;
private string _CompanyName;
private string _ContactName;
private string _ContactTitle;
private string _Address;
private string _City;
private string _Region;
private string _PostalCode;
private string _Country;
private string _Phone;
private string _Fax;
private EntitySet<Order> _Orders;
... // Code omitted here

The first 11 private fields of the Customer object simply reference the
fields of the Customer table in the database. Taken together, they provide
a location to store the data from a single row of the Customer table. Notice,
however, the last item, which is a collection of Order objects. Because it is

59



60

Chapter 3: The Essence of LINQ

bound to the Orders table in a one-to-many relationship, each customer has
from 0-to-n orders associated with it, and LINQ to SQL stores those orders
in this field. This automatically gives you a hierarchical view of your data.

The same thing is true of the Order table, only it shows not a one-to-
many relationship with the Customer table, but a one-to-one relationship:

public partial class Order
{
... // Code omitted here
private int _OrderID;
private string _CustomerID;
private System.Nullable<int> _EmployeelD;
private System.Nullable<System.DateTime> _OrderDate;
private System.Nullable<System.DateTime> _RequiredDate;
private System.Nullable<System.DateTime> _ShippedDate;
private System.Nullable<int> _ShipVia;
private System.Nullable<decimal> _Freight;
private string _ShipName;
private string _ShipAddress;
private string _ShipCity;
private string _ShipRegion;
private string _ShipPostalCode;
private string _ShipCountry;
private EntityRef<Customer> _Customer;
. // Code omitted here

Again we see all the fields of the Orders table, their types, and whether
they can be set to Null. The difference here is that the last field points back
to the Customer table not with an EntitySet<T>, butan EntityRef<T>. This
is not the proper place to delve into the EntitySet and EntityRef classes.
However, it should be obvious to you that an EntitySet refers to a set of
objects, and an EntityRef references a single object. Thus, an EntitySet
captures a one-to-many relationship, and an EntityRef captures a one-to-
one relationship.

The point to take away from this discussion is that LINQ to SQL cap-
tures not a flat view of your data, but a hierarchical view. A Customer class
is connected to a set of orders in a clearly defined hierarchical relationship,
and each order is related to the customer who owns it. LINQ gives you a
hierarchical view of your data.

In a simple case like this, such a hierarchical relationship has obvious
utility, but it is possible to imagine getting along without it. More complex



Hierarchical m 61

queries, however, are obviously greatly simplified by this architecture.
Consider the following LINQ to SQL query:

var query = from c¢ in db.Customers
where c.CompanyName == companyName
from o in c.Orders
from x in o.0rder_Details
where x.Product.Category.CategoryName == "Confections"
orderby x.Product.ProductName
group X by x.Product.ProductName into g
orderby g.Count()
select new { Count = g.Count(), Product = g.Key };

Here we use LINQ'’s hierarchical structure to move from the Customers
table to the Orders table to the Order_Details table without breaking a
sweat:

var query = from c¢ in db.Customers
from o in c.Orders
from x in o.0Order_Details

The next line really helps show the power of LINQ hierarchies:

where x.Product.Category.CategoryName == "Confections"

The identifier x represents an instance of a class containing the data from a
row of the Order_Details table. Order_Details has a relationship with the
Product table, which has a relationship with the Category table, which has
a field called CategoryName. We can slice right through that complex rela-
tionship by simply writing this:

x.Product.Category.CategoryName

LINQ'’s hierarchical structure shines a clarifying light on the relational data
in your programs. Even complex relational models become intuitive and
easy to manipulate.

We can then order and group the results of our query with a few simple
LINQ operators:

orderby x.Product.ProductName

group x by x.Product.ProductName into g
orderby g.Count()



62

Chapter 3: The Essence of LINQ

Trying to write the equivalent code using a more conventional C# style of
programming is an exercise that might take two or three pages of convo-
luted code and involve a number of nested loops and if statements. Even
writing the same query in standard SQL would be a challenge for many
developers. Here we perform the whole operation in nine easy-to-read lines
of code.

In this section, I have introduced you to the power of LINQ'’s hierarchi-
cal style of programming without delving into the details of how such
queries work. Later in this book you will learn how easy it is to compose
your own hierarchical queries. For now you only need to understand two
simple points:

* There is a big difference between LINQ’s hierarchical structure and
the flat, rectangular columns and rows returned by an SQL query.

* Many benefits arise from this more powerful structure. These
include the intuitive structure of the data and the ease with which
you can write queries against this model.

Composable

The last two foundations of LINQ shed light on its flexibility and power. If
you understand these two features and how to use them, you will be able
to tap into some very powerful technology. Of course, this chapter only
introduces these features; they are discussed in more detail in the rest of
the book.

LINQ queries are composable: You can combine them in multiple ways,
and one query can be used as the building block for yet another query. To
see how this works, let’s look at a simple query:

var query = from customer in db.Customers

where customer.City == "Paris"
select customer;

The variable that is returned from the query is sometimes called a compu-
tation. If you write a foreach loop and display the address field from the
customers returned by this computation, you see the following output:



Composable m

265, boulevard Charonne
25, rue Lauriston

You can now write a second query against the results of this query:

query2 = from customer in query
where customer.Address.StartsWith("25")
select customer;

Notice that the last word in the first line of this query is the computation
returned from the previous query. This second query produces the follow-
ing output:

25, rue Lauriston

LINQ to Objects queries are composable because they operate on and
usually return variables of type IEnumerable<T>. In other words, LINQ
queries typically follow this pattern:

IEnumerable<T> query = from x in IEnumerable<T>
select x;

This is a simple mechanism to understand, but it yields powerful results. It
allows you to take complex problems, break them into manageable pieces,
and solve them with code that is easy to understand and easy to maintain.
You will hear much more about IEnumerable<T> in the next chapter.

The next chapter also details a feature called deferred execution.
Although it can be confusing to newcomers, one of the benefits of deferred
execution is that it allows you to compose multiple queries and string them
together without necessarily needing to have each query entail an expen-
sive hit against the server. Instead, three or four queries can “execute” with-
out ever sending a query across the wire to your database. Then, when you
need to access the result from your query, a SQL statement is written that
combines the results of all your queries and sends it across the wire only
once. Deferred execution is a powerful feature, but you need to wait until
the next chapter for a full explanation of how and why it works. The key
point to grasp now is that it enables you to compose multiple queries
as shown here, without having to take an expensive hit each time one
“executes.”

63



64

Chapter 3: The Essence of LINQ

"= Discreet Computations and PLINQ

LINQ queries are not only composable, but also discreet. In other
words, the computation returned by a query is a single self-contained
expression with only a single entry point. This has important conse-
quences for a field of study called Parallel LINQ (PLINQ). Because
each computation returned by a query is discreet, it can easily be run
concurrently on its own thread. PLINQ is discussed briefly in Chap-
ter 17, “LINQ Everywhere.

Transformative

SQL is poor at transformations, so we are unaccustomed to thinking about
query languages as a tool for converting data from one format to another.
Instead, we usually use specialized tools such as XSLT or brute-force tech-
niques to transform data.

LINQ, however, has transformational powers built directly into its syn-
tax. We can compose a LINQ query against a SQL database that effortlessly
performs a variety of transforms. For instance, with LINQ it is easy to trans-
form the result of a SQL query into a hierarchical XML document. You can
also easily transform one XML document into another with a different
structure. SQL data is transformed into a hierarchical set of objects auto-
matically when you use LINQ to SQL. In short, LINQ is very good at trans-
forming data, and this adds a new dimension to our conception of what we
can do with a query language.

Listing 3.2 shows code that takes the results of a query against relational
data and transforms it into XML.

LisTING 3.2 A Simple Query That Transforms the Results of a LINQ to SQL Query into XML

var query = new XElement("Orders", from c in db.Customers
where c.City == "Paris"
select new XElement("Order",
new XAttribute("Address", c.Address),
new XAttribute(“City”, c.City)));

Embedded in this query is a simple LINQ to SQL query that returns the
Address and City fields from all the customers who live in Paris. In Listing 3.3
I've stripped away the LINQ to XML code from Listing 3.2 to show you the
underlying LINQ to SQL query.



Transformative [ |

LisTING 3.3 The Simple LINQ to SQL Query Found at the Heart of Listing 3.2

var query = from c in db.Customers
where c.City == "Paris"
select new { c.Address, c.City };

Here is the output from Listing 3.3:

265, boulevard Charonne
25, rue Lauriston

Here is the output from Listing 3.2:

<Orders>
<Order Address="265, boulevard Charonne" City="Paris" />
<Order Address="25, rue Lauriston" City="Paris" />
</Orders>

As you can see, the code in Listing 3.2 performs a transform on the results
of the LINQ to SQL query, converting it into XML data.

Because LINQ is composable, the following query could then be used to
run a second transform on this data:

var queryl = new XElement("Orders", new XAttribute("City", "Paris"),
from x in query.Descendants("Order")
where x.Attribute("City").value == "Paris"
select new XElement("Address", x.Attribute("Address").Value));

This query takes the XML results of the first query and transforms that XML
into the following format:
<Orders City="Paris">
<Address>265, boulevard Charonne</Address>

<Address>25, rue Lauriston</Address>
</Orders>

LINQ is constantly transforming one type of data into another type. It
takes relational data and transforms it into objects; it takes XML and trans-
forms it into relational data. Because LINQ is extensible, it is at least theo-
retically possible to use it to tear down the walls that separate any two
arbitrary data domains.

Because LINQ is both composable and transformative, you can use it in
a number of unexpected ways:

65



66

Chapter 3: The Essence of LINQ

* You can compose multiple queries, linking them in discrete chunks.
This often allows you to write code that is easier to understand and
maintain than traditional nested SQL queries.

* You can easily transform data from one data source into some other
type. For instance, you can transform SQL data into XML.

* Even if you do not switch data sources, you can still transform the
shape of data. For instance, you can transform one XML format into
another format. If you look back at the section “Declarative: Not
How, But What,” you will see that we transformed data that was
stored in nested lists into data that was stored in a single list. These
kinds of transformations are easy with LINQ.

Summary

In this chapter you have read about the foundations of LINQ. These foun-
dations represent the core architectural ideas on which LINQ is built. Taken
together, they form the essence of LINQ. We can summarize these founda-
tions by saying the following about LINQ:

¢ Itis a technique for querying data that is integrated into .NET lan-
guages such as C# and VB. As such, it is both strongly typed and
IntelliSense-aware.

¢ It has a single unitive syntax for querying multiple data sources such
as relational data and XML data.

¢ It is extensible; talented developers can write providers that allow
LINQ to query any arbitrary data source.

¢ It uses a declarative syntax that allows developers to tell the compiler
or provider what to do, not how to do it.

e It is hierarchical, in that it provides a rich, object-oriented view of
data.

e It is composable, in that the results of one query can be used by a sec-
ond query, and one query can be a subclause of another query. In
many cases, this can be done without forcing the execution of any
one query until the developer wants that execution to take place.



Summary =®

e It is transformative, in that the results of a LINQ query against one
data source can be morphed into a second format. For instance, a
query against a SQL database can produce an XML file as output.

Scattered throughout this chapter are references to some of the impor-
tant benefits of LINQ that emerge from these building blocks. Although
these benefits were mentioned throughout this chapter, I'll bring them
together here in one place as a way of reviewing and summarizing the
material discussed in this chapter:

* Because LINQ is integrated into the C# language, it provides syntax
highlighting and IntelliSense. These features make it easy to write
accurate queries and to discover mistakes at design time.

* Because LINQ queries are integrated into the C# language, it is pos-
sible for you to write code much faster than if you were writing old-
style queries. In some cases, developers have seen their
development time cut in half.

* The integration of queries into the C# language also makes it easy
for you to step through your queries with the integrated debugger.

* The hierarchical feature of LINQ allows you to easily see the rela-
tionship between tables, thereby making it easy to quickly compose
queries that join multiple tables.

* The unitive foundation of LINQ allows you to use a single LINQ
syntax when querying multiple data sources. This allows you to get
up to speed on new technologies much more quickly. If you know
how to use LINQ to Objects, it is not hard to learn how to use LINQ
to SQL, and it is relatively easy to master LINQ to XML.

* Because LINQ is extensible, you can use your knowledge of LINQ
to make new types of data sources queriable.

* After creating or discovering a new LINQ provider, you can lever-
age your knowledge of LINQ to quickly understand how to write
queries against these new data sources.

* Because LINQ is composable, you can easily join multiple data
sources in a single query, or in a series of related queries.

67



68

Chapter 3: The Essence of LINQ

* The composable feature of LINQ also makes it easy to break com-
plex problems into a series of short, comprehensible queries that are
easy to debug.

* The transformational features of LINQ make it easy to convert data
of one type into a second type. For instance, you can easily trans-
form SQL data into XML data using LINQ.

* Because LINQ is declarative, it usually allows you to write concise
code that is easy to understand and maintain.

* The compiler and provider translate declarative code into the code
that is actually executed. As a rule, LINQ knows more than the aver-
age developer about how to write highly optimized, efficient code.
For instance, the provider might optimize or reduce nested queries.

e LINQ is a transparent process, not a black box. If you are concerned
about how a particular query executes, you usually have a way to
examine what is taking place and to introduce optimizations into
your query.

This chapter touched on many other benefits of LINQ. These are
described throughout this book. This entire text is designed to make you
aware of the benefits that LINQ can bring to your development process. It
also shows you how to write code that makes those benefits available to
you and the other developers on your team.

The more you understand LINQ, the more useful it will be to you. As 1
have dug more deeply into this technology, I have found myself integrating
LINQ into many different parts of my development process. When I use
LINQ, I can get more work done in less time. The more I use it, the more
completely these benefits accrue.



“‘Office dev Mert using man code has kit new strides with
| & advantage of
g I fing in this book fo

—From the Foreword by Ken
senior consultant, MCW Technologies

Visual Studio Tools
for Office 2007

VSTO for Excel, Word, and Outlook

nJ

hicrosaft .

-

SPILDFRINT
ey

Eric Carter
Eric Lippert

S | | P S
Bookmarks | |Ill  Delicious || & Digg Facebook StumbleUpon Reddit e Twitter



http://www.google.com/
http://delicious.com/
http://digg.com/
http://www.facebook.com/
http://www.stumbleupon.com/
http://www.reddit.com/
http://twitter.com/
http://www.informit.com/store/product.aspx?isbn=0321533216
http://www.informit.com/store/product.aspx?isbn=0321533216

BUY ME

Eric Carter
Eric Lippert

Visual Studio Tools for
Office 2007

VSTO for Excel, Word, and Outlook

Visual Studio Tools for Office 2007: VSTO for Excel, Word, and Outlook is
the definitive book on VSTQ 2008 programming, written by the inventors of the technol-
ogy. VSTO is a set of tools that allow professional developers to use the full power of
Microsoft Visual Studio 2008 and the .NET Framework to program against Microsoft
Office 2007.

This book delivers in one place all the information you need to succeed using VSTQ to
program against Word 2007, Excel 2007, and Outlook 2007, and provides the necessary
background to customize Visio 2007, Publisher 2007, PowerPoint 2007, and InfoPath
2007. It introduces the Office 2007 object models, covers the most commonly used
objects in those object models, and will help you avoid the pitfalls caused by the COM
origins of the Office object models. Developers who wish to program against Office
2003 should consult Carter and Lippert's previous book, Visual Studio Tools for Office.

In VSTO 2008, you can build add-ins for all the major Office 2007 applications, build
application-level custom task panes, customize the new Office Ribbon, modify Outlook’s
user interface using Forms Regions, and easily deploy everything you build using
ClickOnce.

Carter and Lippert cover their subject matter with deft insight into the needs of .NET
developers learning VSTO, based on the deep knowledge that comes from the authors’
unique perspective of living and breathing VSTO for the past three years. This book

Explains the architecture of Microsoft Office programming and introduces the object
models

Covers the main ways Office applications are customized and extended

Explores the ways of customizing Excel, Word, and Qutlook, and plumbs the depths of
programming with their events and object models

Introduces the VSTO programming model

Teaches how to use Windows Forms and WPF in VSTO and how to work with the Docu-
ment Actions Pane and application-level task panes

Delves into VSTO data programming and server data scenarios
Teaches ClickOnce VSTO deployment

This is the one book you need to succeed in programming against Office 2007.

A
vy

Addison
Wesley

informit.com/aw

Visual Studio Tools
for Office 2007

VSTO for Excel, Word, and Outlook

. Eric Carter
Eric Lippert

AVAILABLE
* BOOK: 9780321533210
* SAFARIONLINE (Safari
* EBOOK: 032153333X

* KINDLE: 0321533348

About the Authors

Eric Carter is a development manager
on the Visual Studio team at Microsoft.
He helped invent, design, and implement
many of the features that are in VSTO
today. Previously at Microsoft he worked
on Visual Studio for Applications, the
Visual Studio Macros IDE, and Visual
Basic for Applications for Office 2000
and Office 2003.

Eric Lippert's primary focus during

his twelve years at Microsoft has been
on improving the lives of developers by
designing and implementing useful pro-
gramming languages and development
tools. He has worked on the Windows
Scripting family of technologies,

Visual Studio Tools for Office, and, most
recently, on the C# compiler team.


http://www.informit.com/imprint/index.aspx?st=61085
http://www.informit.com/imprint/index.aspx?st=61085
http://www.informit.com/store/product.aspx?isbn=0321533216
http://www.informit.com/store/product.aspx?isbn=0321533216
http://www.safaribooksonline.com/Corporate/Index/

= 3

Programming Excel

Ways to Customize Excel

Excel is the application most frequently programmed against in the Office
family. Excel has a very rich object model with 247 objects that combined
have more than 5,000 properties and methods. It supports several models
for integrating your code, including add-ins and code behind documents.
Most of these models were originally designed to allow the integration of
COM components written in Visual Basic 6, VBA, C, or C++. However,
through COM interop, managed objects written in C# or Visual Basic can
masquerade as COM objects and participate in most of these models. This
chapter briefly considers several of the ways that you can integrate your
code with Excel and refers you to other chapters that discuss these
approaches in more depth. This chapter also explores building user-defined
functions for Excel and introduces the Excel object model.

New Objects in Excel 2007

Excel 2007 introduces 51 new objects to the object model. These new
objects are, listed alphabetically: AboveAverage, Action, Actions, Chart-
Format, ChartView, ColorScale, ColorScaleCriteria, ColorScaleCriterion,

71



72

Chapter 3: Programming Excel

ColorStop, ColorStops, ConditionValue, Connections, Databar, Dialog-
SheetView, FormatColor, HeaderFooter, Icon, lconCriteria, lconCriterion,
IconSet, IconSetCondition, lconSets, LinearGradient, ModuleView, Multi-
ThreadedCalculation, ODBCConnection, OLEDBConnection, Page, Pages,
PivotAxis, PivotFilter, PivotFilters, PivotLine, PivotLineCells, PivotLines,
Ranges, RectangularGradient, Research, ServerViewableltems, SheetViews,
Sort, SortField, SortFields, TableStyle, TableStyleElement, TableStyle-
Elements, TableStyles, Top1o, UniqueValues, WorkbookConnection, and
WorksheetView.

Automation Executable

As mentioned in Chapter 2, “Introduction to Office Solutions,” the sim-
plest way to integrate with Excel is to start Excel from a console application
or Windows Forms application and automate it from that external pro-
gram. Chapter 2 provides a sample of an automation executable that auto-
mates Word and an automation executable that automates Excel.

VSTO Add-Ins

When building add-ins for Excel, you have two choices: You can build a
COM add-in (sometimes called a shared add-in) or a VSTO Excel add-in. A
VSTO Excel add-in solves many of the problems associated with COM add-
in development and is the preferred model for Excel 2003 and Excel 2007
add-in development. The only time you would want to consider building a
COM add-in instead is if you need to target versions of Excel older than
Excel 2003.

An add-in is typically written to add application-level functionality—
functionality that is available to any workbook opened by Excel. For exam-
ple, you might write an add-in that adds a Ribbon button to convert a cur-
rency in the selected Excel worksheet cell to another currency based on
current exchange rates.

Excel has a COM Add-Ins dialog box that enables users to turn COM
and VSTO add-ins on and off. To access the COM Add-Ins dialog box, you
must perform the following steps:



Ways to Customize Excel

1. Click the Office menu (the large circle with the Office logo on it in the
top-left corner of the Excel window), and choose Excel Options from
the bottom of the menu that drops down.

2. Click the Add-Ins tab on the left side of the Excel Options dialog box.

3. Choose COM Add-Ins from the drop-down Manage menu, and click
the Go button.

After you complete these steps, the COM Add-Ins dialog box appears.
Figure 3-1 shows this dialog box.

The COM Add-ins dialog box shows both older-style COM add-ins and
newer-style VSTO add-ins. In Figure 3-1, you can tell that ExcelAddInlis a
VSTO add-in because of the Location information shown below; rather
than showing the path to a DLL, which would indicate a COM add-in, the
dialog box shows the path to a .vsto file, which indicates a VSTO add-in.

You can add COM add-ins by using the Add button and remove them
by using the Remove button. Typically, you will not have your users use
this dialog box to manage COM add-ins. Instead, you will install and
remove a COM add-in by manipulating registry settings with the installer
you create for your COM add-in. You can’t add VSTO add-ins by using the
Add button in the COM Add-Ins dialog box; you must install them by double-
clicking a .vsto file or a setup.exe file associated with the VSTO add-in.

Excel discovers the installed add-ins by reading from the registry. You
can view the registry on your computer by going to the Windows Start

COM Add-Ins [l

Add-Ins available: oK

< | -

|| ExcelAddIng Cancel

|| Microsoft Visual Studio 2008 Tools for Office Design-Time Adaptor for Excel 2003

|| Microsoft Visual Studio 2008 Tools for Office Design-Time Adaptor for Excel 2007
|| Snaglt Add-in
Location: C:\MyVstoAddin'ExcelAddIn 1\ExcelAddIn 1\bin\Debug\ExcelAddIn 1. vsto Jvstolocal
Load Behavior: Load at Startup

Figure 3-1: The COM Add-Ins dialog box in Excel.

73



74

Chapter 3: Programming Excel

menu and choosing Run. In the Run dialog box, type regedit for the pro-
gram to run, and then click the OK button. In Vista, type regedit in the
search box that appears at the bottom of the Windows Start menu. Excel
looks for VSTO and COM add-ins in the registry keys under HKEY_
CURRENT_USER\Software \Microsoft\Office\Excel \Addins. Excel also
looks for COM add-ins in the registry keys under HKEY_LOCAL_
MACHINE\Software \Microsoft\Office \Excel \ Addins. COM add-ins reg-
istered under HKEY_LOCAL_MACHINE are not shown in the COM Add-
Ins dialog box and cannot be turned on or off by users. It is recommended
you do not register your COM add-in under HKEY_LOCAL_MACHINE
because it hides the COM add-in from the user.

VSTO add-ins are discussed in detail in Chapter 12, “The VSTO Pro-
gramming Model.”

Automation Add-Ins

Automation add-ins are classes that are registered in the registry as COM
objects that expose public functions that can be used in Excel formulas.
Automation add-ins that have been installed are shown in the Add-Ins
dialog box, which you can access by following these steps:

1. Click the Office menu (the large circle with the Office logo on it in the
top-left corner of the Excel window), and choose Excel Options from
the bottom of the menu that drops down.

2. Click the Add-Ins tab on the left side of the Excel Options dialog box.

3. Choose Excel Add-Ins from the drop-down Manage menu, and click
the Go button.

This chapter examines automation add-ins in more detail during the
discussion of how to create user-defined Excel functions for use in Excel

formulas.

Visual Studio Tools for Office Code Behind

Visual Studio 2008 Tools for Office 2007 (VSTO 3.0) enables you to put C#
or Visual Basic code behind Excel templates and workbooks. The code-
behind model was designed from the ground up for managed code, so this



Ways to Customize Excel

model is the most “.NET” of all the models used to customize Excel. This
model is used when you want to customize the behavior of a particular
workbook or a particular set of workbooks created from a common tem-
plate. For example, you might create a template for an expense-reporting
workbook that is used whenever anyone in your company creates an
expense report. This template can add commands and functionality that
are always available when the workbook created with it is opened.

VSTO’s support for code behind a workbook is discussed in detail in
Part III of this book.

Smart Documents and XML Expansion Packs
Smart documents are another way to associate your code with an Excel
template or workbook. Smart documents rely on attaching an XML
schema to a workbook or template and associating your code with that
schema. The combination of the schema and associated code is called an
XML Expansion Pack. An XML Expansion Pack can be associated with an
Excel workbook by choosing XML Expansion Packs from the XML menu
in the Data menu. Figure 3-2 shows the XML Expansion Packs dialog box.
When an XML Expansion Pack is attached to a workbook, Excel loads
the associated code and runs it while that workbook is opened. Smart doc-
ument solutions can create a custom user interface in the Document
Actions task pane. Figure 3-3 shows a custom Document Actions task pane
in Excel.

XML Expansion Packs @Ii:_hj

Attached XML expansion pack:

MName:
Source URL:

Available XML expansion packs:

Microsoft ActionsPane

Attach

i Add...

[ OK ]I Cancel I

Figure 3-2: The XML Expansion Packs dialog box in Excel.

75



76

m Chapter 3: Programming Excel

.'/-_;a\ Hw-c N - ExcelWorkbookl xlsx - Microsoft Excel EIEI&J
- Home | Insert Page Layout  Formulas Data  Review  View  Developer @& - & X
& Calibri bl b General = A‘ j‘C'Inser‘I:v x - ‘%‘7'
B ||B I U-|A A | - |[8 - % | % Delete - || (3]~ 8-
Paste Styles || ...
S 4 [~ A~ |5 | <8 508| ty. [ Format ~ || 2~
Clipboard ™ Font (F Alignment (F Mumber = Cells Editing
B2 - I | January ¥
A B C D E F IiDocur‘nent;\?\ctions v X
1
Send To
2 IJanuaE $530.16 _I ]
3 February $904.61 ® EMai
4 March $715.70 (@ Phone
5 April $478.59 3 @ Twitter
6 May $168.54
7 June $162.25
Send
: wy  Sasess
9 August $180.87
10 Septembe $889.45
11 October  5$173.41
12 Novembe $127.58
13 Decembel $626.08
1A
M 4 » M| Sheetl - Sheet2 ~ Sheet3 m
Ready Average: 5301620811  Count: 2 Sum: 5301620811 Uﬁlﬁl 100% @ (1] @ uJ

" 4

Figure 3-3: A custom Document Actions task pane in Excel.

It is possible to write smart document solutions “from scratch” in C# or
Visual Basic. This book does not cover this approach. Instead, this book
focuses on the VSTO approach, which was designed to make smart docu-
ment development much easier and allow you to create a custom Docu-
ment Actions task pane using Windows Forms. Chapter 14, “Working with
Document-Level Actions Pane,” discusses this capability in more detail.

Smart Tags
Smart Tags enable a pop-up menu to be displayed containing actions rele-
vant for a recognized piece of text in a workbook. You can control the text
that Excel recognizes and the actions that are made available for that text
by creating a Smart Tag DLL or by using VSTO code behind a document or
a VSTO add-in.

A Smart Tag DLL contains two types of components that are used by
Excel: a recognizer and associated actions. A recognizer determines what



Ways to Customize Excel g

text in the workbook is recognized as a Smart Tag. An action corresponds
to a menu command displayed in the pop-up menu.

A recognizer could be created that tells Excel to recognize stock-ticker
symbols (such as the MSFT stock symbol) and display a set of actions that
can be taken for that symbol: buy, sell, get the latest price, get history, and
so on. A “get history” action, for instance, could launch a Web browser to
show a stock history Web page for the stock symbol that was recognized.

When a recognizer recognizes some text, Excel displays a little triangle
in the lower-right corner of the associated cell. If the user hovers over the
cell, a pop-up menu icon appears next to the cell that the user can click to
drop down a menu of actions for the recognized piece of text. Figure 3-4
shows an example menu. When an action is selected, Excel calls back into
the associated action to execute your code.

.'/-_;a\ Hw-c N - ExcelWorkbookl xlsx - Microsoft Excel EIEI&J

g Home | Insert Page Layout  Formulas Data  Review  View  Developer @& - & X
% calibri 11 - |=E == 5! |General - A S=lnsert~ | X v A7~
B3 ||B £ u-[|A A % % | 3 Delete - || (8]~ B4~

Paste = Styles || 1.
S 4 [~ A~ £ iE|| 3| | =58 508 ty. [ Format ~ || 2~

Clipboard ™ Font (F Alignment (F Mumber = Cells Editing
D11 - ( %] v
A B C D E F G H 1 L

1

2 MSFT @ -

3 Financial Symbol: MSFT

a

= Insert refreshable stock price... =

6 Stock quote on MSN MoneyCentral

7 Company report on M5SN MoneyCentral

8 Recent news on M5MN MoneyCentral

3 Bemove this Smart Tag

o Stop Recognizing "MSFT"

11

12 Smart Tag Options...

13

14

4 4 » M| Sheetl , Sheet? . Sheet3 . ¥J I

Ready | Uﬁ@ 100% (=) v

"

Figure 3-4: Smart Tags in Excel.

77



78 Chapter 3: Programming Excel

Smart Tags are managed from the Smart Tags page of the AutoCorrect
dialog box, as shown in Figure 3-5. You can display the Smart Tags page by
following these steps:

1. Click the Office button (the large circle with the Office logo on it in
the top-left corner of the Excel window), and choose Excel Options
from the bottom of the menu that drops down.

2. Click the Proofing tab on the left side of the Excel Options dialog box.

3. Click the AutoCorrect Options button.

4. Click the Smart Tags page.

On the Smart Tags page of the AutoCorrect dialog box, the user can
turn on and off individual recognizers as well as control other options
relating to how Smart Tags display in the workbook.

It is possible to write Smart Tags from scratch in C# or Visual Basic, and
the first edition of this book covers this approach. VSTO provides a sim-
pler model for creating a Smart Tag that works at the workbook, template,
and (new in VSTO 2008 SP1) add-in levels. Chapter 18, “Working with

N
AutoCorrect Ll_J@ X2
| AutoCorrect [ AutoFormat As You Type | Smart Tags

Excel can recognize certain types of data in your workbooks, For each
recognized type, there are actions you can perform with that data.

Label data with smart tags
Recognizers:

[ Date (Smart tag lists) Properes

Financial Symbol (Smart tag lists)

Person Mame (Qutlook e-mail recipients)

[ Check Workbook. .. ] [ More Smart Tags. .. ]

Show smart tags as | Indicator and Button lz‘
["]Embed smart tags in this workbook

[ oK ][ Cancel ]

Figure 3-5: The Smart Tags page in the AutoCorrect dialog box.



Ways to Customize Excel

Smart Tags in VSTO,” describes the VSTO model for working with Smart
Tags in more detail.

XLA Add-Ins

Also listed in the Excel Add-Ins dialog box (follow the steps for showing
the dialog box for Automation add-ins, described earlier in this chapter)
are XLA add-ins. An XLA add-in starts life as a workbook that has VBA
code behind it. The developer can then save the workbook as an XLA or
Excel add-in file by using Save As from the File menu and selecting XLA as
the file format. An XLA file acts as an application-level add-in in the form
of an invisible workbook that stays open for the lifetime of Excel. Although
it is possible to save a workbook customized with VSTO as an XLA file,
many of the features of VSTO do not work when the workbook is con-
verted to an XLA file. Some of the features that do not work include
VSTO'’s support for the Document Actions task pane and for Smart Tags.
For this reason, Microsoft does not support or recommend saving a work-
book customized with VSTO as an XLA file. Therefore, this book does not
cover it further.

Server-Generated Documents
VSTO enables you to write code on the server that populates an Excel
workbook with data without starting Excel on the server. You might create
an ASP.NET page that reads some data out of a database and then puts it
in an Excel workbook and returns that workbook to the client of the Web
page. VSTO provides a class called ServerDocument that makes this pro-
cess easy. Chapter 20, “Server Data Scenarios,” describes generating docu-
ments on the server using the ServerDocument class.

You can also use the XML features and file formats of Office to generate
Excel workbooks on the server—an approach that is more complex but
that allows you to generate more complex documents.

Research Services

Excel has a task pane, called the Research task pane, that enables you to
enter a search term and search various sources for that search term. To
show the Research task pane, click the Research button in the Review tab.
Figure 3-6 shows the Research task pane.

79



80

m Chapter 3: Programming Excel

-

. - | = celWorkbookl xlsx - Microsoft Excel
u/Dn ) 3 ExcelWorkbookl xlsx - M Ft Excel E@Iﬁ
- Home  Insert Page Layout  Formulas Data | Review | View  Developer @& - & X
% 45, Research ] ©J | (ZgProtect Sheet & Protect and Share Workbook
@Thesaurus palt [T 3@Protecl:‘.'\.forkbookv @Allow Users to Edit Ranges
Spelling ., W
iy Translate || Comment = {2 Share Workbook 3 Track Chanages =
Proofing Comments Changes
BS - I | carter ¥
A B C D E F f Research ¥ X
1 | search for:
2 carter a
3 All Reference Books lz‘
2 I:l Peack |~ | 1@
) &)
5 carter 1
6 =l Encarta Dictionary: -
= English (North America)
= car-ter (noun)
8
z 1| car-ter [ kaartar](
10 carters) )
somebody operating
11 cart
12 somebody who uses a
13 cart for transporting
goods or for farm work
14 + Thesaurus: English
15 (United States)
16 + Translation
' it?
= # Can't find it? ji
13 0}) Get services on Office
19 Marketplace
== ﬁi Research options...
M 4 » M| Sheetl - Sheet2 ~ Sheet3 m
Ready S Uﬁ [5] L__ll)l)% @ Y @ Q

Figure 3-6: The Research task pane.

Excel enables developers to write a special Web service, called a
research service, that implements a set of Web methods defined by Excel.
A research service can be registered with Excel and used in Office’s
Research task pane. For example, you might write a research service that
searches for a search term in a company database. Chapter 6, “Programming
Word,” discusses creating a research service in more detail.

Programming User-Defined Functions

Excel enables the creation of user-defined functions that can be used in
Excel formulas. A developer must create a special kind of DLL called an
XLL. Excel also allows you to write custom functions in VBA that can be



Programming User-Defined Functions

used in Excel formulas. Unfortunately, Excel does not support writing an
XLL that uses managed code.

Building a Managed Automation Add-In That Provides User-Defined Functions
Fortunately, there is an easier way to create a user-defined function that
does not require you to create an XLL. Excel 2007 supports a customization
technology called an automation add-in that can easily be created in C# or
Visual Basic.

First, launch Visual Studio and create a new C# class library project.
Name the project AutomationAddin. In your Class].cs file created for you
in the new project, replace Classl with the code shown in Listing 3-1.
Replace the GUID string in the listing with your own GUID by choosing
Tools > Generate GUID. In the Generate GUID dialog box, pick option 4,
Registry Format. Click the Copy button to put the new GUID string on the
clipboard. Click Exit to exit the Generate GUID tool. Finally, select the
GUID string in the listing ("5268ABE2-9B09-439d-BE97-2EA6QE103EF6"),
and replace it with your new GUID string. You'll also have to remove the { }
brackets that get copied as part of the GUID.

Listing 3-1 defines a class called MyFunctions that implements a function
called MultiplyNTimes. We will use this function as a custom formula. Our
class also implements RegisterFunction and UnregisterFunction, which
are attributed with the ComRegisterFunction attribute and ComUnregister-
Function attribute respectively. The RegisterFunction will be called when
the assembly is registered for COM interop. The UnregisterFunction will be
called when the assembly is unregistered for COM interop. These functions
put a necessary key in the registry (the Programmable key) that allows Excel
to know that this class can be used as an automation add-in. Register-
Function also works around another issue that occurs when registering the
class. Excel needs a full path to the NET component that loads the automation
add-in—a component called mscoree.dll. So RegisterFunction contains
some code to put the full path to mscoree.dll in the registry.

Listing 3-1: A C# Class Called MyFunctions That Exposes a User-Defined
Function MultiplyNTimes

using System;
using System.Collections.Generic;

81



82

Chapter 3: Programming Excel

using System.Ling;

using System.Text;

using System.Runtime.InteropServices;
using Microsoft.Win32;

namespace AutomationAddin

{

// Replace the GUID below with your own GUID that
// you generate using Create GUID from the Tools menu
[Guid("5268ABE2-9B09-439d-BE97-2EA6QE103EF6") ]
[ClassInterface(ClassInterfaceType.AutoDual)]
[ComVisible(true)]
public class MyFunctions
{

public MyFunctions()

{

}

public double MultiplyNTimes(double numberil,
double number2, double timesToMultiply)

{
double result = numberl;
for (double i = @; i < timesToMultiply; i++)
{
result = result * number2;
}
return result;
}

[ComRegisterFunctionAttribute]
public static void RegisterFunction(Type type)
{
Registry.ClassesRoot.CreateSubKey(
GetSubKeyName(type, "Programmable"));
RegistryKey key = Registry.ClassesRoot.OpenSubKey(
GetSubKeyName(type, "InprocServer32"), true);
key.Setvalue("",
System.Environment.SystemDirectory + @"\mscoree.dll",
RegistryValueKind.String);
}

[ComUnregisterFunctionAttribute]
public static void UnregisterFunction(Type type)
{
Registry.ClassesRoot.DeleteSubKey (
GetSubKeyName(type, "Programmable"), false);
¥

private static string GetSubKeyName(Type type,
string subKeyName)



Programming User-Defined Functions

System.Text.StringBuilder s =

new System.Text.StringBuilder();
s.Append(@"CLSID\{");
s.Append(type.GUID.ToString().ToUpper());
s.Append(@"}\");
s.Append(subKeyName) ;
return s.ToString();

With this code written (remember to replace the GUID in the listing with
your own GUID that you generate by choosing Tools > Generate GUID),
you need to configure the project to be registered for COM interop so that
Excel can see it. Go to the properties for the project by double-clicking the
Properties node in Solution Explorer. In the properties designer that
appears, click the Build tab, and check the check box labeled Register for
COM Interop, as shown in Figure 3-7. This step causes Visual Studio to
register the assembly for COM interop when the project is built.

If you are running under Vista or later, you need to run Visual Studio as
administrator, because registering for COM interop requires administra-
tive privileges. If you aren’t already running Visual Studio as administra-
tor, save your project and exit Visual Studio. Then find the Visual Studio
2008 icon in the Start menu, right-click it, and choose Run as Administrator
(see Figure 3-8). When you're running Visual Studio as administrator,
reopen your project and choose Build > Rebuild Solution. Visual Studio
will do the necessary registration to make your class visible to Excel.

Using Your Managed Automation Add-In in Excel
Now that the add-in is built and registered, to load the managed automa-
tion add-in into Excel, follow these steps:

1. Launch Excel, and click the Microsoft Office button in the top-left
corner of the window.

2. Choose Excel Options.
3. Click the Add-Ins tab in the Excel Options dialog box.

4. Choose Excel Add-Ins from the combo box labeled Manage, and click
the Go button.

83



84

m Chapter 3: Programming Excel

A Addi -
L
Application
Configuration: Platform: | Active (Any CPU) b

| Build

Build Events Generel

Debug Cenditional compilation symbols:

Define DEBUG constant
Resources

Define TRACE constant

Services
Platform target: Any CPU -

Setiiiy || Allow unsafe code

Reference Paths [] Optimize code

Signing Errors and warning

Code Analysis Warning level:

Suppress warnings:

Treat warnings as errors
@ Mone
() Specific warnings:

© Al

Qutput

Output path: bin\Debugh

] XML decumentation file:

Register for COM interop

Generate serialization assembly:

Browse...

Figure 3-7: Checking the Register for COM Interop check box in the project properties

designer.

Internet
( Internet Explorer

— E-mail ecarter
{jMicrosoﬂOﬁiceOutlook

Documents

% Remote Desktop Connection

Microsoft Visual 5t

—
|'_!__§ Microsoft Office Wo

Open

Open file location

@ Run as administrator

Figure 3-8: Launching Visual Studio 2008 as

administrator under Vista.




Programming User-Defined Functions 85

5. Click the Automation button in the Add-Ins dialog box.

6. Look through the list of Automation Servers, and find the class you
created; it will be listed as AutomationAddin.MyFunctions, as shown
in Figure 3-9.

By clicking OK in this dialog box, you have added the Automation-
Addin.MyFunctions class to the list of installed automation add-ins, as
shown in Figure 3-10.

Now, try to use the function MultiplyNTimes in an Excel formula. First
create a simple spreadsheet that has a number, a second number to multiply
the first by, and a third number for how many times you want to multiply
the first number by the second number. Figure 3-11 shows the spreadsheet.

Click an empty cell in the workbook below the numbers, and then click
the Insert Function button (the button with the “fx” label) in the formula
bar. From the dialog box of available formulas, drop down the “Or select a
category” drop-down box and choose AutomationAddin.MyFunctions. Then
click the MultiplyNTimes function, as shown in Figure 3-12.

.
Automation Servers @Iﬂ_hJ
Automation servers available:
AudioCD Class - oK
AudioCDImageX Class
AudicMotes Class |
AuthDlg Class e Eagol
AutomaticUpdates Class

AutomationAdd
AutoScrolOptions Class

AzAuthorizationStore Class

AzBizRuleContext Class

AzPrincipalLocator Class

BackWWeb Client

BackWWeb Client Files Access

BackWWeb ClientExt Class

Barn

BaseCalendarDef Class

BaseCalendarException Class

BasicImage

BDA Data Services Feature Segment

BDA Tuner Device Segment

BDA Tuning Model Analog Locator i

AutomationAddin. MyFunctions

ProgID: AutomationAddin.MyFunctions
C:\Windows\system32'mscoree. dil

Figure 3-9: Selecting AutomationAddin.MyFunctions

from the Automation Servers dialog box.



86

m Chapter 3: Programming Excel

r ~
Add-Ins (2] = ]
Add-Ins available:
[ ] Analysis ToolPak - oK
("] Analysis ToolPak - VBA
[Fl| AutomationAddin. MyFunctions
[ | Conditional Sum Wizard
["| Euro Currency Tools
B ==
[ Internet Assistant VBA SEsE
[ | Lookup Wizard N
[C] solver Add-n

AutomationAddin. MyFunctions
ProgID: AutomationAddin.MyFunctions

LS A

Figure 3-10: AutomationAddin.MyFunctions is now installed.

- E‘J - 00l E 1Crosol CEl
n ) \ BooklR I Ft Excel E@g
W
- Home Insert Page Layout Formulas Data Review View Developer @ - 2 X
= 4 calibri -l - =& General il A S=Insert - x - %
PT]% Bz u-|ax W (8% o] o o @- 2] W9
aste o es e 0 n
- J ||[ESA ||[ERE R %o 8 - | [EJFormat - | 2~ Fitter~ Select~
Clipboard ™ Font (F Alignment (F Mumber = Cells Editing
ca - fe|s 3
A B c D E F G H
1
2 Number 1 10 3
3 Number 2 3
i i ? I |
! Multiple 1 by 2 how many times? i
3
6
7
4 4 » ¥ | Sheetl  Sheet2 Sheet3 %2 ] | m [
Ready | | E =] = — T

Figure 3-11: A simple spreadsheet to test the custom formula in.

When you click the OK button, Excel pops up a dialog box to help select
function arguments from cells in the spreadsheet, as shown in Figure 3-13.

After you have selected function arguments from the appropriate cells,
click OK to create the final spreadsheet, as shown in Figure 3-14, with the
custom formula in cell C5.



Programming User-Defined Functions

Insert Function

[

Search for a function:

Go

Select a function:

Type a brief description of what you want to do and then dick

Or select a category: | AutomationAddin, MyFunctions IZ|

Equals
GetHashCode

ToString

GetType
uitplmmes

Mo help available.

Help on this function

MultiplyNTimes(numberl,number2,timesToMultiply)

[ OK ][ Cancel ]

J

-

Figure 3-12: Picking MultiplyNTimes from the Insert Function

dialog box.

Function Arguments

MultiplyMTimes
Numberl
Number2

TimesToMultiply

Mo help available.

Help on this function

c2 10
C3 3
c4 5
= 2430
TimesToMultiply

Formula result = 2430

=

-

Figure 3-13: Setting arguments using the Function Arguments dialog box.

A B c 0 |m

5 B
2 Number 1 10

3 Number 2 3

4 Multiple 1 by 2 how many times? 5

5 2430.

6
"M 4 » ¥ Sheetl Sheet? Sheetd [ JHIL m 1]

Figure 3-14: The final spreadsheet.

87



88

Chapter 3: Programming Excel

Non-English Locales and Excel

Excel and .NET have some special issues when running in a non-English
locale that may cause an automation add-in to fail. For more information,
see the section “Special Excel Issues” in Chapter 5, “Working with Excel
Objects.” VSTO add-ins have some additional features that protect you
from these issues.

Some Additional User-Defined Functions

You might experiment with other functions that could be used in an Excel
formula. For example, Listing 3-2 shows several other functions you could
add to your MyFunctions class. To use Listing 3-2, you must add a refer-
ence to the Excel 12.0 Object Library and add the code using Excel =
Microsoft.Office.Interop.Excel to the top of your class file. Note in par-
ticular that when you declare a parameter as an object, Excel passes you a
Range object. Also note how optional parameters are supported by the
AddNumbers function. When a parameter is omitted, System.Type .Missing
is passed as the value of the parameter. Also be sure to restart Excel so that
it loads the newest version of your automation add-in.

Listing 3-2: Additional User-Defined Function That Could Be Added to the MyFunctions Class

public string GetStars(int number)
{
System.Text.StringBuilder s =
new System.Text.StringBuilder();
s.Append('*', number);
return s.ToString();

}

public double AddNumbers(double numberl,
[Optional] object number2, [Optional] object number3)

{

double result = numberil;

if (number2 != System.Type.Missing)

{
Excel.Range r2 = number2 as Excel.Range;
double d2 = Convert.ToDouble(r2.Value2);
result += d2;

}



Programming User-Defined Functions

if (number3 != System.Type.Missing)

{

Excel.Range r3 = number3 as Excel.Range;
double d3 = Convert.ToDouble(r3.Value2);
result += d3;

}

return result;

}

public double CalculateArea(object range)
{

Excel.Range r = range as Excel.Range;
return Convert.ToDouble(r.Width) *
Convert.ToDouble(r.Height);

}

public double NumberOfCells(object range)
{

Excel.Range r = range as Excel.Range;
return r.Cells.Count;

}

public string ToUpperCase(string input)

{
return input.ToUpper();

}

Debugging User-Defined Functions in Managed Automation Add-Ins

You can debug a C# class library project that is acting as an automation
add-in by setting Excel to be the program your class library project starts
when you debug. Show the properties for the project by double-clicking
the Properties node under the project node in Solution Explorer. In the
properties designer that appears, click the Debug tab, and in the Start
external program text box, type the full path to Excel.exe, as shown in Fig-
ure 3-15. Now, set a breakpoint on one of your user functions, press F5,
and use the function in the spreadsheet. The debugger will stop in the
implementation of your user function where the breakpoint was set.

Deploying Managed Automation Add-Ins
To deploy an automation add-in, right-click your solution in Solution
Explorer and choose New Project from the Add menu. From the Add New
Project dialog box, choose Setup Project from Other Project Types\Setup
and Deployment in the Project Types tree.

89



90

Chapter 3: Programming Excel

AutomationAddin® - X

Application

Configuration: | Active (Debug) - Platform: | Active (Any CPU) -

Start Action

Build

Build Events

Debug® Start project

@ Start external program:  c\program files\microsoft office\officel 2\excel EXE E]
Resources

i Start browser with URL:
Services

Settings Start Options
Command line arguments:
Reference Paths
Signing il
Code Analysis )
o Waorking directory:

Use remote machine

Enable Debuggers

Enable unmanaged code debugging

Enable 5QL Server debugging

Figure 3-15: Setting Debug options to start Excel.

Right-click the newly added setup project in Solution Explorer and
choose Project Output from the Add menu. From the Add Project Output
Group dialog box, choose the AutomationAddin project and select Pri-
mary Output, as shown in Figure 3-16.

You must also configure the install project to register the managed
object for COM interop at install time. To do this, click the Primary output
from AutomationAddin node in the setup project. In the Properties win-
dow for the primary output (our C# DLL), make sure that Register is set to
vsdrpCOM.

Introduction to the Excel Object Model

Regardless of the approach you choose to integrate your code with Excel,
you will eventually need to talk to the Excel object model to get things
done. It is impossible to completely describe the Excel object model in this
book, but we try to make you familiar with the most important objects in
the Excel object model and show some of the most frequently used meth-
ods, properties, and events on these objects.



Introduction to the Excel Object Model

Add Project Qutput Group Ll_J@ LX)
Project: ’AutomationAddin v]
;

Localized resources
Debug Symbols

m

Content Files
Source Files
Documentaticn Files

KMI_Serializatinn Azzemblies

4 [ m b
Configuration: (Active) -
Description:

Contains the DLL or EXE built by the project. -

[ 0K l ’ Cancel ]

-

Figure 3-16: Adding the Primary Output of the

AutomationAddin project to the setup project.

The first step in learning the Excel object model is getting an idea for the
basic structure of the object model hierarchy. Figure 3-17 shows the most
critical objects in the Excel object model and their hierarchical relationship.

A Workbook object has a collection called Sheets. The Sheets collection
can contain objects of type Worksheet or Chart. A Chart is sometimes

| Application |

Workbooks |
Workbook |

—| Worksheets |

|—| Worksheet |

/ I—| Range

— Sheets

—| Charts :\
[

Chart

Figure 3-17: The basic hierarchy of the Excel object model.

91



92

Chapter 3: Programming Excel

called a chart sheet because it covers the entire area that a worksheet
would cover. You can insert a chart sheet into a workbook by right-clicking
the worksheet tabs in the lower-left corner of the Excel workbook and
choosing Insert. Figure 3-18 shows the dialog box that appears. Note that
two additional objects are found in the Sheets collection: MS Excel 4.0
macro sheets and MS Excel 5.0 dialog sheets. If you insert a macro sheet or
dialog sheet into an Excel workbook, it is treated as a special kind of work-
sheet—there is not a special object model type corresponding to a macro
sheet or a dialog sheet.

Because a workbook can contain these various kinds of objects, Excel
provides several collections off of the Workbook object. The Worksheets
collection contains just the Worksheet objects in the workbook. The Charts
collection contains just the chart sheets in the workbook. The Sheets collec-
tion is a mixed collection of both. The Sheets collection returns members of
the collection as type object—you must cast the returned object to a Work-
sheet or Chart. In this book, when we talk about an object that could be
either a Worksheet or a Chart, we refer to it as a sheet.

Figure 3-19 shows a more complete hierarchy tree with the major
objects associated with the objects in Figure 3-17. This starts to give you an

Insert &
General | Spreadsheet Solutions
&~ j j % B=E
fil il Preview
Chart MS Excel 4.0 MS Excel 5.0 review
Macro Dialog
Preview not available.
[ Templates on Office Online ] [ OK ] [ Cancel ]

Figure 3-18: Inserting various kinds of “sheets” into an Excel Workbook.



93

Introduction to the Excel Object Model

puaba

Balyiold

dnoiopeyn

sisuI0D

i obuey

T|A aweN

]

soweN

a|qeLf1enD

syuipadAH
adojeruzospy 0

1004

slqeLerEq

nokeiond

Sllem

BaIYLRYD

SpLBYD

dnjegabey

[ depnux

i Japjinguiojealy

salqoisi
sa|qef1and

qeL

SBINWIO10Nd

sanadoiduoisnd

uonosloid

auno

[spepatInoreD

pIolHond

spiel4eqno

JsyI4oINy

sjoelqoHeyD

sbejews

QUoBDI0Nd

II

sjuswwod j
o[qeLIoNd

"]apouw 323(q0 132%3 3y} ul s323(qo Jofew awos jo Aydieialy pajielap alow y :61-€aInsi4

uoissiuLag
'suondobejews

MOPUIM

y

diigbunnoy

aoedsyiop\paleys

N 1oaysyIopm

00GOM

suondobujosygiony

[ seameon )
[ oSl
[ weads |
[ mew )
suondogeminejed
N\
suondobuljedg

UonouN4128ys3Iopm

isbuegabenfue]

slaziubooaybe|uews

uoneolddy



94

Chapter 3: Programming Excel

idea of the extensive hierarchy of objects that is the Excel object model,
especially when you realize that this diagram shows less than half of the
objects available. The objects shown in gray are coming from the
Microsoft.Office.Core namespace, which is associated with the Microsoft
Office 12.0 PIA (office.dll). These objects are shared by all the Office appli-
cations.

Figure 3-20 shows the object hierarchy associated with Range, a very
important object in Excel that represents a range of cells you want to work
with in your code. We have already used the Range object in Listing 3-2.

Figure 3-21 shows the object hierarchy associated with Shape—a Shape
represents things that float on the worksheet that are not cells, such as
embedded buttons, drawings, comment bubbles, and so on.

Conclusion

This chapter introduced the various ways you can integrate your code into
Excel. The chapter described how to build automation add-ins to create
user-defined functions for Excel. You also learned the basic hierarchy of
the Excel object model. Chapter 4, “Working with Excel Events,” discusses
the events in the Excel object model. Chapter 5, “Working with Excel
Objects,” covers the most important objects in the Excel object model.



95

Conclusion

"]apouw 123[qo }93x3 ayj uj aSuey Yiim pajeidosse s323(qo jo Aydielary pajielap alow y :0z-€ ainsi4

depjjux

[ smogsn |

10lqois!

T|A a|qel1end

suwnjoIsI

—

widyjoAld

[ snweinond

lI80101Id

slepiog

Jou3

siou3

UONIPUODIELLIOS

SUONIPUODIEWIOS

Se|NWI010Ald

uonepiieA

e e |

splal4palenojen

spieI4eqnd dIqeLioNd

s1aquiaj\pale|nde)

abuey

Sway|pae|nojen

PIgI4i0AId

pIgI43aNy




Excel

ing

: Programm

m Chapter 3

96

uaIp|iydapoNwesbeiq

weibeiqos|y|

sapoNweibelq
apoNadeys

1eW10410(0D

‘1opow 329(qo 192x3 8y} ui adeys yiim pajedosse s329[qo jo Aysiessiy pajielap alow y :1ez-€ aunsi4

spoNweibelq

1eWI0410129UU0D

1ewlojmopeys

jewuod||i4

1eWI04103)43IX3

SN

abueyadeys

\ sadeysdnoin

1
)

adeys

» 1duds

1eWI104310

1ewWIopjur]

jewlo4|onuo)

| i

abuey

SuladAH




Foreword by Craig Mundie, Chief Research and Strategy Officer. Microsoft ‘."

Concurrent
Programming
on Windows



http://www.google.com/
http://delicious.com/
http://digg.com/
http://www.facebook.com/
http://www.stumbleupon.com/
http://www.reddit.com/
http://twitter.com/
http://www.informit.com/store/product.aspx?isbn=032143482X
http://www.informit.com/store/product.aspx?isbn=032143482X

BUY ME

Joe Duffy

Concurrent Programming
on Windows

Author Joe Duffy has risen to the challenge of explaining how to write software that
takes full advantage of concurrency and hardware parallelism. In Concurrent Program-
ming on Windows, he explains how to design, implement, and maintain large-scale
concurrent programs, primarily using C# and C++ for Windows.

Duffy aims to give application, system, and library developers the tools and
techniques needed to write efficient, safe code for multicore processors. This is
important not only for the kinds of problems where concurrency is inherent and easily
exploitable—such as server applications, compute-intensive image manipulation,
financial analysis, simulations, and Al algorithms—but also for problems that can be
speeded up using parallelism but require more effort—such as math libraries, sort
routines, report generation, XML manipulation, and stream processing algorithms.

Concurrent Programming on Windows has four major sections: The first introduces
concurrency at a high level, followed by a section that focuses on the fundamental
platform features, inner workings, and API details. Next, there is a section that de-
scribes common patterns, best practices, algorithms, and data structures that emerge
while writing concurrent software. The final section covers many of the common
system-wide architectural and process concerns of concurrent programming.

This is the only book you'll need in order to learn the best practices and common
patterns for programming with concurrency on Windows and .NET.

Forecrsty Craig Mundie, Gretesear o Sy O sty

Concurrent
Programming
on Windows

A
vv
Addison

informit.com/aw

Wesley

AVAILABLE

* BOOK: 97803214
o SAFARI ONLINE | Safari |
o EBOOK: 0321604423
o KINDLE: 0321604415

About the Author

Joe Duffy is the development lead,
architect, and founder of the Parallel
Extensions to the .NET Framework team
at Microsoft. In addition to hacking code
and managing a team of developers, he
works on long-term vision and incubation
efforts, such as language and type system
support for concurrency safety. He previ-
ously worked on the Common Language
Runtime team. Joe blogs regularly at
www.bluebytesoftware.com/blog.


http://www.informit.com/store/product.aspx?isbn=032143482X
http://www.informit.com/store/product.aspx?isbn=032143482X
http://www.safaribooksonline.com/Corporate/Index/
http://www.informit.com/imprint/index.aspx?st=61085
http://www.informit.com/imprint/index.aspx?st=61085

3

Threads

I NDIVIDUAL PROCESSES ON Windows are sequential by default. Even
on a multiprocessor machine, a program (by default) will only use one of
them at a time. Running multiple processes at once creates concurrency at
a very coarse level. Microsoft Word could be repaginating a document on
one processor, while Internet Explorer downloads and renders a Web page
on another, all while Windows Indexer is rebuilding search indexes on a
third processor. This happens because each application is run inside its own
distinct process with (one hopes) little interference between the two (again,
one hopes), yielding better responsiveness and overall performance by
virtue of running completely concurrently with one another.

The programs running inside of each process, however, are free to intro-
duce additional concurrency. This is done by creating threads to run differ-
ent parts of the program running inside a single program at once. Each
Windows process is actually comprised of a single thread by default, but
creating more than one in a program enables the OS to schedule many onto
separate processors simultaneously. Coincidently, each .NET program is
actually multithreaded from the start because the CLR garbage collector
uses a separate finalizer thread to reclaim resources. As a developer, you are
free to create as many additional threads as you want.

Using multiple threads for a single program can be done to run entirely
independent parts of a program at once. This is classic agents style
concurrency and, historically, has been used frequently in server-side

99



100

Chapter 3: Threads

programs. Or, you can use threads to break one big task into multiple
smaller pieces that can execute concurrently. This is parallelism and is
increasingly important as commodity hardware continues to increase the
number of available processors. Refer back to Chapter 1, Introduction, for a
detailed explanation of this taxonomy.

Threads are the fundamental units of schedulable concurrency on the
Windows platform and are available to native and managed code alike.
This chapter takes a look at the essentials of scheduling and managing con-
currency on Windows using threads. The APIs used to access threading in
native and managed code are slightly different, but the fundamental archi-
tecture and OS support are the same. But before we go into the details, let’s
precisely define what a thread is and of what it consists. After that, we’ll
move on to how programs use them.

Threading from 10,001 Feet

A thread is in some sense just a virtual processor. Each runs some pro-
gram’s code as though it were independent from all other virtual proces-
sors in the system. There can be fewer, equal, or more threads than real
processors on a system at any given moment due (in part) to the multi-
tasking nature of Windows, wherein a user can run many programs at once,
and the OS ensures that all such threads get a fair chance at running on the
available hardware.

Given that this could be as much a simple definition of an OS process
as a thread, clearly there has to be some interesting difference. And there is
(on Windows, at least). Processes are the fundamental unit of concurrency
on many UNIX OSs because they are generally lighter-weight than Win-
dows processes. A Windows process always consists of at least one thread
that runs the program code itself. But one process also may execute multi-
ple threads during the course of its lifetime, each of which shares access to
a set of process-wide resources. In short, having many threads in a single
process allows one process to do many things at once. The resources shared
among threads include a single virtual memory address space, permitting
threads to share data and communicate easily by reading from and writing
to common addresses and objects in memory. Shared resources also include



Threading from 10,001 Feet [ |

things associated with the Windows process, such as the handle table and
security token information.

Most people get their first taste of threading by accident. Developers
use a framework such as ASP.NET that calls their code on multiple threads
simultaneously or write some GUI event code in Windows Forms, MFC, or
Windows Presentation Foundation, in which there is a strong notion of
particular data structures belonging to particular threads. (We discuss this
fact and its implications in Chapter 16, Graphical User Interfaces.) These
developers often learn about concurrency “the hard way” by accidentally
writing unreliable code that crashes or by creating an unresponsive GUI
by doing I/O on the GUI thread. Faced with such a situation, people are
quick to learn some basic rules of thumb, often without deeply under-
standing the reasons behind them. This can give people a bad first impres-
sion of threads. But while concurrency is certainly difficult, threads are the
key to exploiting new hardware, and so it’s important to develop a deeper
understanding.

What Is a Windows Thread?
We already discussed threads at a high level in previous chapters, but let’s
begin painting a more detailed picture.

Conceptually speaking, a thread is an execution context that represents
in-progress work being performed by a program. A thread isn’t a simple,
physical thing. Windows must allocate and maintain a kernel object for
each thread, along with a set of auxiliary data structures. But as a thread
executes, some portion of its logical state is also comprised of hardware
state, such as data in the processor’s registers. A thread'’s state is, therefore,
distributed among software and hardware, at least when it’s running.
Given a thread that is running, a processor can continue running it, and
given a thread that is not running, the OS has all the information it needs so
that it can schedule the thread to run on the hardware again.

Each thread is mapped onto a processor by the Windows thread sched-
uler, enabling the in-progress work to actually execute. Each thread has an
instruction pointer (IP) that refers to the current executing instruction.
“Execution” consists of the processor fetching the next instruction, decod-
ing it, and issuing it, one instruction after another, from the thread’s code,

101



102

Chapter 3: Threads

incrementing the IP after ordinary instructions or adjusting it in other ways
as branches and function calls occur. During the execution of some com-
piled code, program data will be routinely moved into and out of registers
from the attached main memory. While these registers physically reside on
the processor, some of this volatile state also abstractly belongs to the
thread too. If the thread must be paused for any reason, this state will be
captured and saved in memory so it can be later restored. Doing this
enables the same IP fetch, decode, and issue process to proceed for the
thread later as though it were never interrupted. The process of saving or
restoring this state from and to the hardware is called a context switch.

During a context switch, the volatile processor state, which logically
belongs to the thread, is saved in something called a context. The context
switching behavior is performed entirely by the OS kernel, although the
context data structure is available to user-mode in the form of a CONTEXT
structure. Similarly, when the thread is rescheduled onto a processor, this
state must be restored so the processor can begin fetching and executing the
thread’s instructions again. We’ll look at this process in more detail later.
Note that contexts arise in a few other places too. For example, when an
exception occurs, the OS takes a snapshot of the current context so that
exception handling code can inspect the IP and other state when deter-
mining how to react. Contexts are also useful when writing debugging and
diagnostics tools.

As the processor invokes various function call instructions, a region of
memory called the stack is used to pass arguments from the caller to the
callee (i.e., the function being called), to allocate local variables, to save reg-
ister values, and to capture return addresses and values. Code on a thread
can allocate and store arbitrary data on the stack too. Each thread, therefore,
has its own region of stack memory in the process’s virtual address space.
In truth, each thread actually has two stacks: a user-mode and a kernel-
mode stack. Which gets used depends on whether the thread is actively
running code in user- or kernel-mode, respectively. Each thread has a well-
defined lifetime. When a new process is created, Windows also creates a
thread that begins executing that process’s entry-point code. A process
doesn’t execute anything, its threads do. After the magic of a process’s first
thread being created—handled by the OS’s process creation routine—any



Threading from 10,001 Feet [ |

code inside that process can go ahead and create additional threads.
Various system services create threads without you being involved, such as
the CLR’s garbage collector. When a new thread is created, the OS is told
what code to begin executing and away it goes: it handles the bookkeeping,
setting the processor’s IP, and the code is then subsequently free to create
additional threads, and so on.

Eventually a thread will exit. This can happen in a variety of ways—all
of which we’ll examine soon—including simply returning from the entry-
point used to begin the thread’s life an unhandled exception, or directly
calling one of the platform’s thread termination APIs.

The Windows thread scheduler takes care of tracking all of the threads
in the system and working with the processor(s) to schedule execution of
them. Once a thread has been created, it is placed into a queue of runnable
threads and the scheduler will eventually let it run, though perhaps not
right away, depending on system load. Windows uses preemptive sched-
uling for threads, which allows it to forcibly stop a thread from running on
a certain processor in order to run some other code when appropriate. Pre-
emption causes a context switch, as explained previously. This happens
when a higher priority thread becomes runnable or after a certain period
of time (called a quantum or a timeslice) has elapsed. In either case, the
switch only occurs if there aren’t enough processors to accommodate both
threads in question running simultaneously; the scheduler will always pre-
fer to fully utilize the processors available.

Threads can block for a number of reasons: explicit I/O, a hard page
fault (i.e., caused by reading or writing virtual memory that has been paged
out to disk by the OS), or by using one of the many synchronization prim-
itives detailed in Chapters 5, Windows Kernel Synchronization and 6, Data
and Control Synchronization. While a thread blocks, it consumes no proces-
sor time or power, allowing other runnable threads to make forward
progress in its stead. The act of blocking, as you might imagine, modifies
the thread data structure so that the OS thread scheduler knows it has
become ineligible for execution and then triggers a context switch. When
the condition that unblocks the thread arises, it becomes eligible for execu-
tion again, which places it back into the queue of runnable threads, and the
scheduler will later schedule it to run using its ordinary thread scheduling

103



104

Chapter 3: Threads

algorithms. Sometimes awakened threads are given priority to run again,
something called a priority boost, particularly if the thread has awakened
in response to a GUI event such as a button click. This topic will come up
again later.

There are five basic mechanisms in Windows that routinely cause non-
local transfer of control to occur. That is to say, a processor’s IP jumps some-
where very different from what the program code would suggest should
happen. The first is a context switch, which we’ve already seen. The sec-
ond is exception handling. An exception causes the OS to run various
exception filters and handlers in the context of the current executing thread,
and, if a handler is found, the IP ends up inside of it.

The next mechanism that causes nonlocal transfer of control is the hard-
ware interrupt. An interrupt occurs when a significant hardware event of
interest occurs, like some device I/O completing, a timer expiring, etc., and
provides an interrupt dispatch routine the chance to respond. In fact, we’'ve
already seen an example of this: preemption based context switches are
initiated from a timer based interrupt. While an interrupt borrows the cur-
rently executing thread’s kernel-mode stack, this is usually not noticeable:
the code that runs typically does a small amount of work very quickly and
won’t run user-mode code at all.

(For what it’s worth, in the initial SMP versions of Windows NT, all
interrupts ran on processor number 0 instead of on the processor execut-
ing the affected thread. This was obviously a scalability bottleneck and
required large amounts of interprocessor communication and was reme-
died for Windows 2000. But I've been surprised by how many people still
believe this is how interrupt handling on Windows works, which is why
I mention it here.)

Software based interrupts are commonly used in kernel and system
code too, bringing us to the fourth and fifth methods: deferred procedure
calls (DPCs) and asynchronous procedure calls (APCs). A DPC is just some
callback that the OS kernel queues to run later on. DPCs run at a higher
Interrupt Request Level (IRQL) than hardware interrupts, which simply
means they do not hold up the execution of other higher priority hardware
based interrupts should one happen in the middle of the DPC running. If
anything meaty has to occur during a hardware interrupt, it usually gets



Threading from 10,001 Feet [ |

done by the interrupt handler queuing a DPC to execute the hard work,
which is guaranteed to run before the thread returns back to user-mode. In
fact, this is how preemption based context switches occur. An APC is sim-
ilar, but can execute user-mode callbacks and only run when the thread has
no other useful work to do, indicated by the thread entering something
called an alertable wait. When, specifically, the thread will perform an
alertable wait is unknowable, and it may never occur. Therefore, APCs are
normally used for less critical and less time sensitive work, or for cases in
which performing an alertable wait is a necessary part of the programming
model that users program against. Since APCs also can be queued pro-
grammatically from user-mode, we’ll return to this topic in Chapter 5, Win-
dows Kernel Synchronization. Both DPCs and APCs can be scheduled
across processors to run asynchronously and always run in the context of
whatever the thread is doing at the time they execute.

Threads have a plethora of other interesting aspects that we’ll examine
throughout this chapter and the rest of the book, such as priorities, thread
local storage, and a lot of API surface area. Each thread belongs to a sin-
gle process that has other interesting and relevant data shared among all
of its threads—such as the handle table and a virtual memory page table—
but the above definition gives us a good roadmap for exploring at a deeper
level.

Before all of that, let's review what makes a managed CLR thread
different from a native thread. It's a question that comes up time and
time again.

What Is a CLR Thread?

A CLR thread is the same thing as a Windows thread—usually. Why, then,
is it popular to refer to CLR threads as “managed threads,” a very official
term that makes them sound entirely different from Windows threads? The
answer is somewhat complicated. At the simplest level, it effectively
changes nothing for developers writing concurrent software that will run
on the CLR. You can think of a thread running managed code as precisely
the same thing as a thread running native code, as described above. They
really aren’t fundamentally different except for some esoteric and exotic
situations that are more theoretical than practical.

105



106

Chapter 3: Threads

First, the pragmatic difference: the CLR needs to track each thread that
has ever run managed code in order for the CLR to do certain important
jobs. The state associated with a Windows thread isn’t sufficient. For exam-
ple, the CLR needs to know about the object references that are live so that
the garbage collector can determine which objects in the heap are still live.
It does this in part by storing additional per-thread information such as
how to find arguments and local variables on the stack. The CLR keeps
other information on each managed thread, like event kernel objects that it
uses for its own internal synchronization purposes, security, and execution
context information, etc. All of these are simply implementation details.

Since the OS doesn’t know anything about managed threads, the CLR
has to convert OS threads to managed threads, which really just populates
the thread’s CLR-specific information. This happens in two places. When
a new thread is created inside a managed program, it begins life as a man-
aged thread (i.e., CLR-specific state is associated before it is even started).
This is easy. If a thread already exists, however—that is it was created in
native code and native-managed interoperability is being used—then the
first time the thread runs managed code, the CLR will perform this con-
version on-demand at the interoperability boundary.

Just to reiterate, all of this is transparent to you as a developer, so these
points should make little difference. Knowing about them can come in
useful, however, when understanding the CLR architecture and when
debugging your programs.

Aside from that very down-to-earth explanation, the CLR has also
decoupled itself from Windows threads from day one because there has
always been the goal of allowing CLR hosts to override the default map-
ping of CLR threads directly to Windows threads. A CLR host, like SQL
Server or ASP.NET, implements a set of interfaces, allowing it to override
various policies, such as memory management, unhandled exception han-
dling, reliability events of interest, and so on. (See Further Reading,
Pratschner, for a more detailed overview of these capabilities.) One such
overridable policy is the implementation of managed threads. When the
CLR 2.0 was being developed, in fact, SQL Server 2005 experimented very
seriously with mapping CLR threads to Windows fibers instead of threads,
something they called fiber-mode. We’ll explore in Chapter 9, Fibers, the



Threading from 10,001 Feet [ |

advantages fibers offer over threads, and how the CLR intended to support
them. SQL Server has had a lot of experience in the past employing fiber
based user-mode scheduling. We will also discuss We will also discuss a
problem called thread affinity, which is related to all of this: a piece of work
can take a dependency on the identity of the physical OS thread or can cre-
ate a dependency between the thread and the work itself, which inhibits the
platform’s ability to decouple the CLR and Windows threads.

Just before shipping the CLR 2.0, the CLR and SQL Server teams
decided to eliminate fiber-mode completely, so this whole explanation now
has little practical significance other than as a possibly interesting historical
account. But, of course, who knows what the future holds? User-mode
scheduling offers some promising opportunities for building massively
concurrent programs for massively parallel hardware, so the distinction
between a CLR thread and a Windows thread may prove to be a useful one.
That’s really the only reason you might care about the distinction and why
I labeled the concern “theoretical” at the outset.

Unless explicitly stated otherwise in the pages to follow, all of the dis-
cussions in this chapter pertain to behavior when run normally (i.e., no
host) or inside a host that doesn’t override the threading behavior. Trying
to explain the myriad of possibilities simultaneously would be nearly
impossible because the hosting APIs truly enable a large amount of the
CLR’s behavior to be extended and customized by a host.

Explicit Threading and Alternatives

We'll start our discussion about concurrency mechanisms at the bottom of
the architectural stack with the Windows thread management facilities in
Win32 and in the NET Framework. This is called explicit threading in this
book because you must be explicit about the creation and use of threads.
This is a very low-level way to write concurrent software. Sometimes think-
ing at this low level is unavoidable, particularly for systems-level pro-
gramming and, sometimes, also in application and library. Thinking about
and managing threads is tricky and can quickly steal the focus from solv-
ing real algorithmic domain and business problems. You'll find that explicit
threading quickly can become intrusive and pervasive in your program’s
architecture and implementation. Alternatives exist.

107



108

Chapter 3: Threads

Thread pools abstract away the management of threads, amortizing
the cost of creating and deleting them over the life of your process and
optimizing the total number of threads to achieve superior all-around
performance and scaling. Using a thread pool instead of explicit thread-
ing gets you away from thread management minutia and back to solving
your business or domain problems. Most programmers can be very suc-
cessful at concurrent programming without ever having to create a sin-
gle thread by hand, thanks to carefully engineered Windows and CLR
thread pool implementations.

Identifying patterns that emerge, abstracting them away, and hiding the
use of threads and thread pools are also other useful techniques. It's com-
mon to layer systems so that most of the threading work is hidden inside
of concrete components. A server program, for example, usually doesn’t
have any thread based code in callbacks; instead, there is a top-level pro-
cessing loop that is responsible for moving work to run on threads. No mat-
ter what mechanisms you use, however, synchronization requirements are
always pervasive unless alternative state management techniques (such as
isolation) are employed.

Nevertheless, threads are a basic ingredient of life. Examining them in
depth before looking at the abstractions that sit atop them will give you a
better understanding of the core mechanisms in the OS, and from there, we
can build up those (important and necessary) layers of abstraction without
sacrificing knowledge of what underlies them. And perhaps you'll find
yourself one day building such a layer of abstraction.

Last, a word of caution. Deciding precisely when it’s a good idea to intro-
duce additional threads is not as straightforward as you might imagine.
Introducing too many can negatively impact your program'’s performance
due to various fixed overheads and because the OS will spend increasingly
more time trying to schedule them fairly as the ratio of threads to processors
grows (we’ll see details on this later). At the same time, introducing too few
will lead to underutilized hardware and wasted opportunity. In some cases,
the platform will help you create additional concurrency by using separate
threads for some core system services (the CLR'’s ability to perform multi-
threaded garbage collections is one example), but more often than not, it’s
left to you to decide and manage.



The Life and Death of Threads [ |

The Life and Death of Threads

As with most things, threads have a beginning and an end. Let’s take a look
at what causes the creation of a new thread, what causes the termination
of an existing thread, and what precisely goes on during these two events.
We'll also look at the D11Main method, which is a way for native code to
receive notifications of thread creation and termination events.

Thread Creation

During the creation of a new process, Windows will automatically create
a new thread to run the program’s entry point code. That’s typically
your main function in your programming language of choice (i.e., (w)main
in C++, Mainin C#, and so forth). Without at least one thread, the process
wouldn’t be able to do anything because processes themselves don’t exe-
cute code—threads do. Once the process has been bootstrapped, additional
threads may be created by code run within the process itself by the mech-
anisms we’re about to review.

Programmatically Creating Threads

When creating a new thread, you must specify a few pieces of information,
including the function at which the thread should begin running—the
thread start routine—and the Windows kernel takes care of everything
thereafter. When the creation request returns successfully, the new thread
will have been initialized, and, so long as it wasn’t created as suspended
(specified by an optional flag), registered into a queue of threads to be run
and later scheduled onto a processor. When the thread actually gets to run
on a processor is subject to the thread scheduler and, therefore, system load
and available resources. In fact, the new thread may have already begun (or
finished) running by the time the request for creation returns.

Once the new thread runs, its thread start routine can call any other
code in the process, and so forth, accessing any shared memory in the
process’s address space, using other process-wide resources, and perhaps
even creating additional threads of its own. The thread start routine can
return normally or throw an unhandled exception, both of which termi-
nate the thread, or alternatively the thread can be terminated via some

109



110

Chapter 3: Threads

other more explicit mechanism. We’ll take a look at each of these
termination mechanisms momentarily. But first, let’s see the APIs used to
create threads.

Win32 and the NET Framework offer different but very similar ways to
create a new thread. If you're writing native C programs, there is also a
separate set of C APIs you must use to ensure the C Runtime Library (CRT)
is initialized properly. We’ll start by looking at Win32. Both the .NET
Framework and CRT thread creation routines effectively build directly on
top of Win32.

In Win32. Kernel32 offers the CreateThread API to create a new thread.

HANDLE WINAPI CreateThread(
LPSECURITY_ATTRIBUTES lpThreadAttributes,
SIZE_T dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddress,
LPVOID 1lpParameter,

DWORD dwCreationFlags,
LPDWORD 1pThreadId

)s

CreateThread returns a HANDLE to the new thread kernel object, which
can be passed to various other interesting Win32 APISs to later retrieve infor-
mation about, interact with, or manipulate the newly created thread. (A
HANDLE, by the way, is just an opaque pointer-sized value that indexes into
a process-wide handle table. It's commonly used to refer to kernel objects.
Managed code uses IntPtrs and SafeHandles to represent HANDLEs.) It
must be closed when the creating thread no longer must interact with the
new thread to avoid keeping the thread object’s state alive indefinitely. The
parameters to CreateThread are numerous:

® LPSECURITY_ATTRIBUTES lpThreadAttributes: a pointer to a
SECURITY_ATTRIBUTES data structure. If NULL, the security attributes
are inherited by the calling thread (which, if a thread along the way
didn’t specify overrides, in turn inherits them from the process).
We will not discuss Windows object security in detail in this book;
please refer to MSDN documentation and/or a book on Windows
security for more details (see Further Reading, Brown).



The Life and Death of Threads m 111

e SIZE_T dwStackSize: the amount of user-mode stack, in
bytes, to commit, in the virtual memory sense. If the
STACK_SIZE_PARAM_IS_A_RESERVATION flag is present in the
dwCreationFlags parameter, then this size represents the number of
reserved bytes instead of committed bytes. @ can be passed for
dwStackSize to request that Windows use the process-wide default
stack size. We discuss stack reservation, commit, and where this
default comes from in the next chapter.

* LPTHREAD_START_ROUTINE lpStartAddress: a function pointer to
the thread start routine. When Windows runs your thread, this is
where it will begin execution. The type of function has the following
signature:

DWORD WINAPI ThreadProc(LPVOID lpParameter);

The return value is captured and stored as the thread’s exit code,
which is then retrievable programmatically.

* LPVOID lpParameter:a pointer to memory you'd like to make acces-
sible to the thread once it begins execution. This is opaque to Win-
dows and is merely passed through as the value of your thread start
routine’s 1pParameter argument. It's “opaque” because Windows
will not attempt to dereference, validate it, or otherwise use it in any
way. NULL is a valid argument value; without passing a pointer to
some program data, the only valid way the thread will be able to find
program data will be through accessing static or global variables.

* DWORD dwCreationFlags: a bit-flags value that enables you to
indicate optional flags: that the stack size is for reservation rather
than commit purposes (STACK_SIZE_PARAM_IS_A_RESERVATION),
and/or that the thread should be left in a suspended state after
CreateThread returns (CREATE_SUSPENDED). A thread that
remains suspended must be resumed with a call to the Kernel32
ResumeThread API before it will be registered with the runnable
thread queue and begin running. This can be useful if extra state
must be prepared before the thread is able to begin executing. We
look at thread suspension (SuspendThread) and resumption later.



112

Chapter 3: Threads

* LPDWORD 1pThreadId: An output pointer into which the
CreateThread routine will store the newly created thread’s process-
wide unique identifier. As with the HANDLE returned, this can some-
times be used to subsequently interact with the thread. More often
than not, it’s just useful for diagnostics purposes. If you don’t care
about the thread’s ID, as is fairly common, you can simply pass NULL
(though on Windows 9X a valid non-NULL pointer must be supplied,
otherwise CreateThread will attempt to dereference it and fail).

CreateThread can fail for a number of reasons, in which case the return
value will be NULL and GetLastError may be used to retrieve details about
the failure. Remember, each thread consumes a notable amount of system
resources, including some amount of nonpageable memory, so if system
resources are low, thread creation is very likely to fail: your code must be
written to handle such cases gracefully, which may mean anything from
choosing an alternative code-path or even terminating the program
cleanly.

As a simple example of using CreateThread, consider Listing 3.1. In this
code, the main routine is automatically called from the process’s primary
thread, which then invokes CreateThread to create a second program thread,
supplying a function pointer to MyThreadMain as lpStartAddress and a
pointer to the "Hello, World" string as 1pParameter. Windows creates and
enters the new thread into the scheduler’s queue, at which point Cre-
ateThread returns and we make a call to the Win32 WaitForSingleObject
AP], passing the newly created thread’s HANDLE as the argument. Though we
don’t look at the various Win32 wait functions Chapter 5, Windows Kernel
Synchronization, this API call just causes the primary thread wait for the
second thread to exit, allowing us to access and print the thread’s exit code
before exiting the program.

LisTING 3.1: Creating a new OS thread with Win32’s CreateThread function

WIN32 - C++ CREATETHREAD.CPP
#include <stdio.h>
#include <windows.h>

DWORD WINAPI MyThreadStart(LPVOID);



The Life and Death of Threads m 113

int main(int argc, wchar_t * argv[])
{

HANDLE hThread;

DWORD dwThreadld;

// Create the new thread.
hThread = CreateThread(NULL, // lpThreadAttributes
0, // dwStackSize
&MyThreadStart, // lpStartAddress
"Hello, World", // lpParameter
9, // dwCreationFlags
&dwThreadId); // lpThreadId
if (!hThread)
{
fprintf(stderr, "Thread creation failed: %d\r\n",
GetLastError());
return -1;

printf("%d: Created thread %x (ID %d)\r\n",
GetCurrentThreadId(), hThread, dwThreadId);

// Wait for it to exit and then print the exit code.
WaitForSingleObject(hThread, INFINITE);

DWORD dwExitCode;
GetExitCodeThread(hThread, &dwExitCode);
printf("%d: Thread exited: %d\r\n",
GetCurrentThreadId(), dwExitCode);
CloseHandle(hThread);

return 0;

DWORD WINAPI MyThreadStart(LPVOID lpParameter)
{
printf("%d: Running: %s\r\n",
GetCurrentThreadId(), reinterpret_cast<char *>(lpParameter));
return 0;

Notice that we use a few other APIs that haven’t been described yet.
First, GetCurrentThreadId retrieves the ID of the currently executing
thread. This is the same ID that was returned from CreateThread's
1pThreadId output parameter:

DWORD WINAPI GetCurrentThreadId();



114

Chapter 3: Threads

And GetExitCodeThread retrieves the specified thread’s exit code. We'll
describe how exit codes are set when we discuss thread termination, but if
you run this example, you'll see that when the thread terminates by its
thread routine returning, the return value from the thread start is used as
the exit code (which in this case means the value 0):

BOOL GetExitCodeThread(HANDLE hThread, LPDWORD lpExitCode);

GetExitCodeThread sets the memory location behind the 1pExitCode
output pointer to contain the thread’s exit code. Both the ExitThread and
TerminateThread APIs, used to explicitly terminate threads, allow a return
code to be specified at the time of termination. It is generally accepted prac-
tice to use non-@ return values to indicate that a thread exit was caused due
to an abnormal or unexpected condition, while 0 is usually used to indicate
that termination was caused by ordinary business. If you try to access a
thread’s exit code before it has finished executing, a value of STILL_ACTIVE
(0x103) is returned: clearly you should avoid using this error code for
meaningful values because it could be interpreted wrongly.

This example isn’t very interesting, but it shows some simple coordina-
tion between threads. There is little concurrency here, as our primary
thread just waits while the new thread runs. We’ll see more interesting uses
as we progress through the book.

Another API is worth mentioning now. As we’ve seen, CreateThread
returns a HANDLE to the newly created thread. In some cases you’ll want to
retrieve the current thread’s HANDLE instead. To do that, you can use the
GetCurrentThread function.

HANDLE WINAPI GetCurrentThread();

The returned value can be passed to any HANDLE based functions. But
note that the value returned is actually special—something called a
pseudo-handle—which is just a constant value (-2) that no real HANDLE
would ever contain. GetCurrentProcess works similarly (returns -1
instead). Not having to manufacture a real handle is more efficient, but
more importantly, pseudo-handles do not need to be closed. That means
you needn’t call CloseHandle on the returned value. But because the
pseudo-handle is always interpreted as “the current thread” by Windows,



The Life and Death of Threads [ |

you can’t just share the pseudo-handle value with other threads (it would
be subsequently interpreted by that thread as referring to itself). To convert
it into a real handle that is shareable, you can call DuplicateHandle, which
returns a new shareable HANDLE that must be closed when you are through
with it. Here is a sample snippet of code that converts a pseudo-handle into
a real handle, printing out the two values.

#include <stdio.h>
#include <windows.h>

int main(int argc, wchar_t * argv[])

{
HANDLE hl = GetCurrentThread();

printf("pseudo:\t%x\r\n", hl);

HANDLE h2;

DuplicateHandle(
GetCurrentProcess(), hl, GetCurrentProcess(), &h2,
@, FALSE, DUPLICATE_SAME_ACCESS);

printf("real:\t%x\r\n", h2);

CloseHandle(h2);

If all you've got is a thread’s ID and you need to retrieve its HANDLE, you
can use the OpenThread function. This also can be used if you need to pro-
vide a HANDLE that has been opened with only very specific access rights,
that is, because you need to share it with another component.

HANDLE WINAPI OpenThread(
DWORD dwDesiredAccess,
BOOL bInheritHandle,
DWORD dwThreadID

)s

The bInheritHandle parameter specifies whether a HANDLE can be used
by child processes (i.e., processes created by the one issuing the OpenThread
call), and dwThreadID specifies the ID of the thread to which the HANDLE is to
refer.

Finally, there is also a CreateRemoteThread function with nearly the
same signature as CreateThread, with the difference that it accepts a
process HANDLE as the first argument. As its name implies, this function

115



116

Chapter 3: Threads

creates a new thread inside a process other than the caller’s. This is a rather
obscure capability, but can come in useful for tools like debuggers.

In C Programs. When you're programming with the C Runtime Library
(CRT), you should use the _beginthread or _beginthreadex functions
for thread creation in your C programs. These are defined in the header
file process.h. These functions internally call CreateThread, but also
perform some additional CRT initialization steps. If these steps are
skipped, various CRT functions will begin failing in strange and unpre-
dictable ways.

For example, the strtok function tokenizes a string. If you pass NULL as
the string argument, it means “continue retrieving tokens from the previ-
ously tokenized string.” In the original CRT—which was written long
before multithreading was commonplace on Windows—the ability to
remember “the previous string” was implemented by storing the tokens in
global variables. This was fine with single-threaded programs, but clearly
isn’t for ones with multiple threads: imagine thread t1 tokenizes a string,
then another thread t2 runs and tokenizes a separate string; when tl
resumes and tries to obtain additional tokens, it will be inadvertently shar-
ing the token information from t2. Just about anything can happen, such as
global state corruption, which can cause crashes or worse. Other functions
do similar things: for example, errno stores and retrieves the previous error
(similar to Win32’s GetLastError) as global state.

With the introduction of the multithreaded CRT, LIBCMT.LIB (versus
LIBC.LIB, usually accessed via the Visual C++ compiler switch /MT), all
such functions now use thread local storage (TLS), which is just a collection
of memory locations specific to each thread in the process. We'll review TLS
in more detail later. To ensure the TLS state that these routines rely on has
been initialized properly, the thread calling strtok or any of the other TLS
based functions must have been created with either _beginthread or
_beginthreadex. If the thread wasn’t created in this way, these functions
will try to access TLS slots that haven’t been properly initialized and will
behave unpredictably.

The _beginthread and _beginthreadex functions are quite similar in
form to the CreateThread function reviewed earlier. Because of the simi-
larities, we'll review them quickly.



The Life and Death of Threads [ |

uintptr_t _beginthread(
void (__cdecl * start_address)(void *),
unsigned stack_size,
void * arglist
)
uintptr_t _beginthreadex(
void * security,
unsigned stack_size,
unsigned (__stdcall * start_address)(void *),
void * arglist,
unsigned initflag,
unsigned * thrdaddr

)s

Each takes a function pointer, start_address, to the routine at which to
begin execution. The _beginthread function differs from _beginthreadex
and CreateThread in that the function’s calling convention must be
__cdeclinstead of __stdcall, as you would expect for a C based program
versus a Win32 based one, and the return type is void instead of a DWORD
(i.e., it doesn’t return a thread exit code). Each takes a stack_size argument
whose value is used the same as in CreateThread (8 means the process-
wide default) and an arglist pointer that is subsequently accessible via the
thread start’s first and only argument.

The _beginthreadex function takes two additional arguments. The
value CREATE_SUSPENDED can be passed for the initflag parameter, which,
just as with the CreateThread API, ensures that the thread is created in a
suspended state and must be manually resumed with ResumeThread before
it runs. There are no special CRT functions for thread suspend and resume.
The thrdaddr argument, if non-NULL, receives the resulting thread identifier
as an output argument.

In both cases, the function returns a handle to the thread (of type
uintptr_t, which can safely be cast to HANDLE) or @ if there was an error
during creation. Be extremely careful when using _beginthread, as the
thread’s handle is automatically closed when the thread start routine exits.
If the thread runs quickly, the uintptr_t returned could represent an
invalid handle by the time _beginthread even returns. This is in contrast
to_beginthreadex and CreateThread, which require that the code creating
the thread closes the returned handle if it's not needed and makes
_beginthread nearly useless unless the creating thread has no need to sub-
sequently interact with the newly created thread.

117



118

Chapter 3: Threads

We will discuss more about exiting threads in a CRT safe way later,
when we talk about thread termination and the _endthread and _end-
threadex functions.

In the .NET Framework. In managed code you can use the System.
Threading.Thread class’s constructors and Start methods to create a new
managed thread. The primary difference between this mechanism and
Win32’s CreateThread is just that the CLR has a chance to set up various
bookkeeping data structures, as described previously, and, of course, the
use of a CLR object to represent the thread in your programs instead of an
opaque HANDLE.

(There also is a corresponding class System.Diagnostics.ProcessThread,
which also offers access to various thread information and attributes in
managed code. This type exposes additional capabilities that the managed
Thread object doesn’t. However, you cannot retrieve an instance of
ProcessThread from a Thread instance, and vice versa, so, as its name
implies, this is much more useful as a diagnostics tool rather than some-
thing you will use in production code. Hence, most of this chapter ignores
ProcessThread and instead focuses on the actual Thread class itself.)

First the thread object must be constructed using one of Thread’s various
constructors.

public delegate void ThreadStart();
public delegate void ParameterizedThreadStart(object obj);

public class Thread

{

public Thread(ThreadStart start);

public Thread(ThreadStart start, int maxStackSize);

public Thread(ParameterizedThreadStart start);

public Thread(ParameterizedThreadStart start, int maxStackSize);
}

Assuming an unhosted CLR, each Thread object is just a thin object ori-
ented veneer over an OS thread kernel object. Note that when you instan-
tiate a new Thread object, the CLR hasn’t actually created the underlying
OS thread kernel object, user- or kernel-mode stack, and so on, just yet. This
constructor just allocates some tiny internal data structures necessary to



The Life and Death of Threads [ |

store your constructor arguments so that they can be used should you
decide to start the thread later. If you never get around to starting the
thread, there will never be any OS resources backing it.

After creating the object, you must call the Start method on it to actually
create the OS thread object and schedule it for execution. As you might
imagine, the unhosted CLR uses the CreateThread APl internally to do that.

public class Thread

{
public void Start();
public void Start(object parameter);

}

A thread created with the ParameterizedThreadStart based constructor
allows a caller to pass an object reference argument to the Start method (as
parameter), which is then accessible from the new thread’s start routine as obj.
This is similar to the CreateThread API, seen above, and provides a simple way
of communicating state between the creator and createe. A similar effect can
be achieved by passing a thread start delegate that refers to an instance method
on some object, in which case that object’s instance state will be accessible from
the thread start via this. If a thread created with a ParameterizedThreadStart
delegate is subsequently started with the parameterless Start overload, the
value of the thread start’s obj argument will be null.

There are a couple of constructor overloads that accept a maxStackSize
parameter. This specifies the size of the thread’s reserved and committed
stack size (because in managed code both are the same). We return to more
details about stacks in the next chapter, including why you might want to
change the default.

It’s also worth pointing out that many of Thread's methods (in addition
to most synchronization related methods), including Start, are protected by
a Code Access Security HostProtection link demand for Synchronization
and ExternalThreading permissions. This ensures that, while untrusted
code can create a new CLR thread object (because its constructors are not
protected), most code hosted inside a program like SQL Server cannot start
or control a thread’s execution. Deep examinations of security and hosting
are both outside of the scope of this book. Please refer to Further Reading,
Brown and Pratschner, for excellent books on the topics.

119



120 Chapter 3: Threads

Listing 3.2 illustrates an example comparable to the Win32 code in List-
ing 3.1 earlier. Just as we had used the WaitForSingleObject Win32 API to
wait for the thread to exit, we use Thread’s Join method. We'll review Join
in more detail later, though it doesn’t get much more complicated than
what is shown here. You'll notice that the CLR doesn’t expose any sort of
thread exit code capability.

LiSTING 3.2: Creating a new OS thread with the .NET Framework’s Thread class

using System;
using System.Threading;

class Program

{
public static void Main()
{
Thread newThread = new Thread(
new ParameterizedThreadStart(MyThreadStart));
Console.WriteLine("{@}: Created thread (ID {1})",
Thread.CurrentThread.ManagedThreadld,
newThread.ManagedThreadId);
newThread.Start("Hello world"); // Begin execution.
newThread.Join(); // Wait for the thread to finish.
Console.WritelLine("{@}: Thread exited",
Thread.CurrentThread.ManagedThreadId);
}
private static void MyThreadStart(object obj)
{
Console.WritelLine("{®}: Running: {1}",
Thread.CurrentThread.ManagedThreadId, obj);
}
}

You can write this code more succinctly using C# 2.0’s anonymous del-
egate syntax.

Thread newThread = new Thread(delegate(object obj)
{
Console.WriteLine("{@}: Running {1}",
Thread.CurrentThread.ManagedThreadId, obj);
3
newThread.Start("Hello world (with anon delegates)");
newThread.Join();



The Life and Death of Threads [ |

Using lambda syntax in C# 3.0 makes writing similar code even slightly
more compact.

Thread newThread = new Thread(obj =>
Console.WriteLine("{@}: Running {1}",
Thread.CurrentThread.ManagedThreadId, obj)
)
newThread.Start("Hello, world (with lambdas)");
newThread.Join();

We make use of the CurrentThread static property on the Thread class,
which retrieves a reference to the currently executing thread, much
like GetCurrentThread in Win32. We then use the instance property
ManagedThreadId to retrieve the unique identifier assigned by the CLR to
this thread. This identifier is completely different than the one assigned by
the OS. If you were to P/Invoke to GetCurrentThreadId, you'll likely see
a different value.

public class Thread

{
public static Thread CurrentThread { get; };

public int ManagedThreadld { get; }

Again, this code snippet isn’t very illuminating. We’ll see more complex
examples. But as you can see, the idea of a thread as seen by Win32 and
managed code programmers is basically the same. That’s good as it means
most of what we’ve discussed and are about to discuss pertains to native
and managed code alike.

Thread Termination

A thread goes through a complex lifetime, from runnable to running to pos-
sibly waiting, possibly being suspended, and so forth, but it will eventually
terminate. Termination might occur as a result of any one of a number of
particular events.

1. The thread start routine can return normally.

2. An unhandled exception can escape the thread start routine, “crash-
ing” that thread.

121



122

Chapter 3: Threads

3. A call can be made to one of the Win32 functions ExitThread or
TerminateThread, either by the thread itself (synchronous) or by
another thread (asynchronous). There is no direct equivalent to these
functions in the NET Framework, and P/Invoking to them will lead
to much trouble.

4. A managed thread abort can be triggered by a call to the NET
Framework method Thread.Abort, either by the thread itself (syn-
chronous) or by another thread (asynchronous). There is no equiva-
lent in Win32. This approach in fact looks a lot like ExitThread,
though you can argue that it is a “cleaner” way to shut down
threads. We’ll see why shortly. That said, aborting threads is still
(usually) a bad practice.

A managed thread may also be subject to a thread abort induced
by the CLR infrastructure or a CLR host. Aborts also occur on all
threads running code in an AppDomain when it is being unloaded.
This is different from the previous item because it’s initiated by the
infrastructure, which knows how to do this safely.

5. The process may exit.

Of course, the machine could get unplugged, in which case threads ter-
minate, but since there’s not much our software can do in response to such
an event, we’ll set this aside.

After a thread terminates, assuming the process remains alive, its data
structures continue to live on until all of the HANDLESs referring to the thread
object have been closed. The CLR thread object, for example, uses a final-
izer to close this handle, which means that the OS data structures will con-
tinue to live until the GC collects the Thread object and then runs its
finalizer, even though the thread is no longer actively running any code.

Several of the techniques mentioned are brute force methods for thread
termination and can cause trouble (namely 3 and 4). Higher-level coordi-
nation must be used to cooperatively shut down threads or else program
and user data can become corrupt.

Note that the termination of a thread may cause termination of its own-
ing process. In native code, the process will exit automatically when the last
thread in a process exits. In managed code, threads can be marked as a



The Life and Death of Threads [ |

background thread (with the IsBackground property), which ensures that
a particular thread won’t keep the process alive. A managed process will
automatically exit once its last nonbackground thread exits. As with thread
termination, there are other brute force (and problematic) ways to shut
down a process, such as with a call to TerminateProcess.

Method 1: Returning from the Thread Start Routine
Any thread start routine that returns will cause the thread to exit. This is by
far the cleanest way to trigger thread exit. The top of each thread’s callstack
is actually a Windows internal function that calls the thread start routine
and, once it returns, calls the ExitThread API. This is true for both native and
managed threads and is imposed by Windows. This is the cleanest shut-
down method because the thread start routine is able to run to completion
without being interrupted part way through some application specific code.
While not exposed through the managed thread object, each OS thread
remembers an exit code, much like a process does. The CreateThread start
routine function pointer type returns a DWORD value and the callback for
_beginthreadex returns an unsigned value. Managed threading doesn’t
support exit codes and is evidenced by the fact that ThreadStart and Para-
meterizedThreadStart are typed as returning void. Programs can use exit
codes to communicate the reason for thread termination. Windows stores
the return value as part of the thread object so that it can be later retrieved
with GetExitCodeThread, as we saw just a bit earlier. Most alternative
forms of thread termination also supply a way to set this code.

Method 2: Unhandled Exceptions

If an exception reaches the top of a thread’s stack without having been
caught, the thread will be terminated. The default Windows and CLR
behavior is to terminate the process when such an unhandled exception
occurs (for most cases), though a custom exception filter can be installed to
change this behavior. Of course, many exceptions are handled before get-
ting this far, in which case there is no impact on the life of the thread. Addi-
tionally, some programs install custom top-level handlers that catch all
exceptions, perform error logging, and attempt some level of data recov-
ery before letting the process crash.

123



124

Chapter 3: Threads

Process termination works by installing at the base of every Windows
thread’s stack an SEH exception filter. This filter decides what to do with
unhandled exceptions. The details here differ slightly between native and
managed code, because managed code wraps everything in its own excep-
tion filter and handler too.

The default filter in native code will display a dialog when the exception
has been deemed to go unhandled during the first pass. It asks the user to
choose whether to debug or terminate the process (the latter of which just
calls ExitProcess). All of this occurs in the first pass of exception handling,
so by default, no stacks have been unwound at this point. Anybody who
has written code on Windows knows what this dialog looks like. Though
it tends to change from release to release, it offers the same basic function-
ality: debug or terminate the process and, now in Windows Vista, check for
solutions online.

The CLR installs its own top-level unhandled exception filter, which
performs debugger notification, integrates with Dr. Watson to generate
proper crash dumps, raises an event in the AppDomain so that custom
managed code can execute shutdown logic, prints out more friendly failure
information (including a stack trace) to the console, and unwinds the crash-
ing thread’s stack, letting managed finally blocks run. One interesting dif-
ference is that finally blocks are run when a managed thread crashes, while
in native they are not (by default). This custom exception logic is run
regardless of whether it was a managed or native thread in the process that
caused the unhandled exception because the CLR overrides the process-
wide unhandled exception behavior.

There are two special exceptions to the rule that any unhandled excep-
tion causes the process to exit: an unhandled ThreadAbortException or
AppDomainUnloadedException will cause the thread on which it was
thrown to exit, but will not actually trigger a process exit (unless it’s the last
nonbackground thread in the process). Instead, the exception will be swal-
lowed and the process will continue to execute as normal. This is done
because these exceptions are regularly used by the runtime and CLR hosts
to carefully unload an AppDomain while still keeping the rest of the
process alive.



The Life and Death of Threads [ |

Overriding the Default Unhandled Exception Behavior. There are a few
ways in which you may override the default unhandled exception behavior.
Doing so is seldom necessary. The first way allows you to turn off the default
dialog in Win32 programs by passing the SEM_NOGPFAULTERRORBOX flag to the
SetErrorMode function. This is usually a bad idea if you want to be able to
debug your programs, but it can be useful for noninteractive programs:

UINT SetErrorMode(UINT uMode);

A change was made in the CLR 2.0 to make unhandled exceptions on the
finalizer thread, thread pool threads, and user created threads exit
the process. In the CLR 1.X, such exceptions were silently swallowed by the
runtime. An unhandled exception is more often than not an indication that
something wrong has happened and, therefore, the old policy tended to
lead to many subtle and hard to diagnose errors. Swallowing the exception
merely masked a problem that was sure to crop up later in the program’s
execution. At the same time, this change in policy can cause compatibility
problems for those migrating from 1.X to 2.0 and above. A configuration
setting enables you to recover the 1.X behavior.

<system>

<runtime>
<legacyUnhandledExceptionPolicy enabled="1" />

</runtime>
</system>

Using this configuration setting is highly discouraged for anything
other than as an (one hopes temporary) application compatibility crutch.
It can create debugging nightmares. CLR hosts can also override (some of)
this unhandled exception behavior, so what has been described in this sec-
tion strictly applies only to unhosted managed programs. Please refer to
Pratschner (see Further Reading) for details on how this is done.

Some of you might be wondering how the CLR is able to hook itself into
the whole Windows unhandled exception process so easily. Any user-mode
code can install a custom top-level SEH exception filter that will be called
instead of the default OS filter when an unhandled exception occurs.
SetUnhandledExceptionFilter installs such a filter.

125



126

Chapter 3: Threads

LPTOP_LEVEL_EXCEPTION_FILTER SetUnhandledExceptionFilter(
LPTOP_LEVEL_EXCEPTION_FILTER lpTopLevelExceptionFilter
)

LPTOP_LEVEL_EXCEPTION_FILTERis justa function pointer to an ordinary
SEH exception filter.

LONG WINAPI UnhandledExceptionFilter(
struct _EXCEPTION_POINTERS * ExceptionInfo
)

The _EXCEPTION_POINTERS data structure is passed by the OS—and is
the same value you’d see if you were to call GetExceptionInformation
by hand during exception handling—which provides you with an
EXCEPTION_RECORD and CONTEXT. The record provides exception details and
the CONTEXT is a collection of the processor’s volatile state (i.e., registers)
at the time the exception occurred. We review contexts later in this chapter.
As with any filter, this routine can inspect the exception information and
decide what to do. At the end, it returns EXCEPTION_CONTINUE_SEARCH or
EXCEPTION_EXECUTE_HANDLER to instruct SEH whether to execute a handler
or not.

(The details of the CLR and Windows SEH exception systems are fasci-
nating, but are fairly orthogonal to the topic of concurrency. Therefore we
won't review them here, and instead readers are encouraged to read Pietrek
(see Further Reading) for a great overview.)

If you return EXCEPTION_CONTINUE_SEARCH from this top-level filter,
the exception goes completely unhandled and the OS will perform the
default unhandled exception behavior. That entails showing the dialog
(assuming it has not been disabled via SetErrorMode) and calling
ExitProcess without unwinding the crashing thread’s stack. All of this
happens during the first pass. If you return EXCEPTION_EXECUTE_HANDLER,
however, a special OS-controlled handler is run. This SEH handler sits at
the base of all threads and will call ExitProcess without displaying the
standard error dialog. And because we have told SEH to execute a han-
dler, the thread’s stack is unwound normally, and, hence, the call to Exit-
Process occurs during the second pass after finallys blocks have
been run.



The Life and Death of Threads [ |

Method 3: ExitThread and TerminateThread (Native Code Only)

If you're writing native code, you can explicitly terminate a thread
(although it is generally very dangerous to do so and should be done only
after this is understood). This can be done for the current thread (synchro-
nous) or another thread running in the system (asynchronous). There are
two Win32 APIs to initiate explicit thread termination

VOID WINAPI ExitThread(DWORD dwExitCode);
BOOL WINAPI TerminateThread(HANDLE hThread, DWORD dwExitCode);

Calling ExitThread will immediately cause the thread to exit, without
unwinding its stack, meaning that finally blocks and destructors will not
execute. It changes the thread’s exit code from STILL_ACTIVE to the value
supplied as the dwExitCode argument. The thread’s user- and kernel-mode
stack memory is de-allocated, pending asynchronous I/O is canceled (see
Chapter 15, Input and Output), thread detach notifications are delivered to
all DLLs in the process that have defined a D11Main entry point, and the ker-
nel thread object becomes signaled (see Chapter 5, Windows Kernel
Synchronization). The thread may continue to use resources because the
kernel object and its associated memory remains allocated until all out-
standing HANDLEs to it have been closed.

If you created threads with the CRT’s _beginthread or _beginthreadex
function, then you must use the _endthread or _endthreadex function
instead of ExitThread.

void _endthread();
void _endthreadex(unsigned retval);

Internally, these both call ExitThread, but they additionally provide a
chance for the CRT to de-allocate any per-thread resources that were allocated
at runtime. Terminating threads created with the_beginthread routines using
ExitThread or TerminateThread will cause these resources to be leaked. The
leaks are so small that they could go unnoticed for some time, but will cer-
tainly cause progressively severe problems for long running programs. The
only difference between_endthread and_endthreadex is that_endthreadex
accepts a thread exit code as the retval argument, while_endthread simply
uses 0 as the exit code.

127



128

Chapter 3: Threads

The first method of terminating a thread described earlier—returning
from the thread start routine—internally calls ExitThread (via_end-
threadex) at the base of the stack, passing the routine’s return value as the
dwExitCode argument. Exiting a thread can only occur synchronously on a
thread; in other words, some other thread can’t exit a separate thread “from
the outside.” This means that ExitThread is safer, though it can lead to
issues like lock orphaning and memory leaks because the thread’s stack is
not before exiting.

The TerminateThread function, on the other hand, is extremely danger-
ous and should almost never be used. The only possible situations in which
you should consider using it are those where you are entirely in control of
what code the target thread is executing. Terminating a thread this way
does not free the user-mode stack and does not deliver DllMain
notifications. Calling it synchronously on a thread is very similar to
ExitThread, with these two differences aside. But calling it asynchronously
can cause problems. The target thread could be holding on to locks that,
after termination, will remain in the acquired state. For example, the thread
might be in the process of allocating memory, which often requires a lock.
Once terminated, no other thread would be able to subsequently allocate
memory, leading to deadlocks. Similarly, the target could be modifying crit-
ical system state that could become corrupt when interrupted part way
through. If you are considering using TerminateThread, you should follow
it soon with a call to terminate the process as well.

In all cases, using higher-level synchronization mechanisms to shut
down threads is always preferred. This typically requires some combina-
tion of state and cooperation among threads to periodically check for shut-
down requests and voluntarily return back to the thread start routine when
arequest has been made. ExitThread and TerminateThread often seem like
“short-cuts” to achieve this, while avoiding the need to perform this kind
of higher-level orchestration; there’s certainly less tricky cooperation code
to write because many important issues are hidden. Generally speaking,
this should be considered a sloppy coding practice, viewed with great sus-
picion, and regarded as likely to lead to many bugs.

Managed code should never explicitly terminate managed threads using
these mechanisms. Instead, synchronization should be used to orchestrate



The Life and Death of Threads [ |

exit or, in some specific scenarios, thread aborts can be used instead (see
below). P/Invoking to ExitThread or TerminateThread will lead to unpre-
dictable and unwanted behavior for much the same reason that calling Exit-
Thread instead of _endthreadex can cause problems: that is, the CLR has state
to clean up and bookkeeping to perform whenever a thread terminates.

Method 4: Thread Aborts (Managed Code Only)

Managed threads can be aborted. When a thread is aborted, the runtime
tears it down by introducing an exception at the thread’s current instruction
pointer, versus stopping the thread in its tracks a la the Win32 ExitThread
function. Using an exception such as this allows finally blocks to execute
as the thread unwinds, ensuring that important resources are cleaned up
appropriately. Moreover, the runtime is aware of certain regions of code
that are performing uninterruptible operations, such as manipulating
important system-wide state, and will delay introducing the aborting
exception until a safe point has been reached.

Thread aborts can be introduced synchronously and asynchronously,
just like TerminateThread. When an asynchronous abort is triggered, an
instance of System.Threading.ThreadAbortException is constructed and
thrown in the aborted thread, just as if the thread itself threw the exception.
Synchronous aborts, on the other hand, are fairly straightforward: the
thread itself just throws the exception. As described earlier, unhandled
thread abort exceptions only terminate the thread on which the exception
was raised, and do not cause the process to exit (unless that was the last
nonbackground thread).

To initiate a thread abort, the Thread class offers an explicit Abort APIL.

public void Abort();
public void Abort(object stateInfo);

When aborting another thread asynchronously, the call to Abort blocks
until the thread abort has been processed. Note that when the call unblocks,
it does not mean that the thread has been aborted yet. In fact, the thread
may suppress the abort, so there is no guarantee that the thread will exit.
You should use other synchronization techniques (such as the Join API) if
you must wait for the thread to complete. If the overload, which accepts the

129



130

Chapter 3: Threads

stateInfo parameter, is used, the object is accessible via the ThreadAbort
Exception’s ExceptionState property, allowing one to communicate the
reason for the thread abort.

ThreadAbortExceptions thrown during a thread abort are special. They
cannot be swallowed by catch blocks on the thread’s callstack. The stack
will be unwound as usual, but if a catch block tries to swallow the excep-
tion, the CLR reraises it once the catch block has finished running. An abort
can be reset mid-flight with the Thread.ResetAbort API, which will allow
exceptions to be caught and the thread to remain alive.

public static void ResetAbort();

The following code snippet illustrates this behavior.

try
{
try
{
Thread.CurrentThread.Abort();
}
catch (ThreadAbortException)
{

// Try to swallow it.
} // CLR automatically reraises the exception here.

¥
catch (ThreadAbortException)

{
Thread.ResetAbort();
// Try to swallow it again.
} // The in-flight abort was reset, so it is not reraised again.

A single callstack may be executing code in multiple AppDomains at
once. Should a ThreadAbortException cross an AppDomain boundary
on a callstack, say from AppDomain B to A, it will be morphed into an
AppDomainUnloadedException. Unlike thread abort exceptions, this
exception type can be caught and swallowed by code running in A.

Delay-Abort Regions. As mentioned earlier, the runtime only initiates an
asynchronous thread abort when the target thread is not actively running
critical code: these are called delay-abort regions. Each of the following is
considered to be a delay-abort region by the CLR: invocation of a catch or



The Life and Death of Threads [ |

finally block, code within a constrained execution region (CER), running
native code on a managed thread, or invocation of a class or module con-
structor. When a thread is in such a region and is asynchronously aborted,
the thread is simply marked with a flag (reflected in its state bitmask by
ThreadState.AbortRequested), and the thread subsequently initiates the
abort as soon as it exits the region, that is, when it reaches a safe point (tak-
ing into consideration that such regions may be nested). The determination
of whether a thread is in a delay-abort region is made by the CLR suspend-
ing the target thread, inspecting its current instruction pointer, and so on.

Thread Abort Dangers. There are two situations in which thread aborts
are always safe.

* The main purpose of thread aborts is to tear down threads during
CLR AppDomain unloads. When an unload occurs—either
because a host has initiated one or because the program has called
the AppDomain.Unload function—any thread that has a callstack in
an AppDomain is asynchronously aborted. As the abort exceptions
reach the boundary of the AppDomain, the thread abort is reset
and the exception turns into an AppDomainUnloadedException,
which, as we’ve noted, can then be caught and handled. This is
safe because nearly all NET Framework code assumes that an
asynchronous thread abort means the AppDomain is being
unloaded and takes extra precautions to avoid leaking process-
wide state.

* Synchronous thread aborts are safe, provided that callers expect
an exception to be thrown from the method. Because the thread
being aborted controls precisely when aborts happen, it’s the
responsibility of that code to ensure they happen when program
state is consistent. A synchronous abort is effectively the same as
throwing any kind of exception, with the notable difference that it
cannot be caught and swallowed. It’s possible that some code will
check the type of the exception in-flight and avoid cleaning up
state so that AppDomain unloads are not held up, but these cases
should be rare.

131



132

Chapter 3: Threads

All other uses of thread aborts are questionable at best. While a great
deal of the NET Framework goes to great lengths to ensure resources are
not leaked and deadlocks do not occur (see Further Reading, Duffy,
Atomicity and Asynchronous Exception Failures), the majority of the
libraries are not written this way. Note that hosts can also initiate a
so-called rude thread abort, which does not run finally blocks and will
interrupt the execution of catch and finally clauses. This capability is used
only by some hosts and not the unhosted CLR itself and, therefore, is inac-
cessible to managed code. A detailed discussion of this is outside the
scope of this book.

While thread aborts are theoretically safer than other thread termination
mechanisms, they can still occur at inopportune times, leading to instabil-
ity and corruption if used without care. While the runtime knows about
critical system state modifications, it knows nothing about application state
and, therefore, aborts are not problem free. In fact, you should rarely (if
ever) use one. But the runtime and its hosts are able to make use of them
with great care, usually because possible state corruption can be contained
appropriately.

As a simple illustration of what can go wrong when aborts occur at
unexpected and inopportune places, let’s look at an example that leads to
a resource leak.

void UseSomeBigResource()

{
IntPtr hBigResource = /* S@ */ Allocate();
try
{
// Do something...
}
finally
{
Free(hBigResource);
X
}

In this example, a thread abort could be triggered after the call to
Allocate but before the assignment to the hBigResource local variable, at
S0. An asynchronous thread abort here will lead to memory leakage
(because the memory is not GC managed). Even if we were assigning the



The Life and Death of Threads [ |

result of Allocate to a member variable on a type that had a finalizer, to
catch the case where the try/finally didn’t execute the resource would leak
because we never executed the assignment. If instead of allocating mem-
ory we were acquiring a mutually exclusive lock, for example, then an
abort could lead to deadlock for threads that subsequently tried to acquire
the orphaned lock. There are certainly ways to ensure reliable acquisition
and release of resources (see Further Reading, Toub; Grunkemeyer),
including using delay-abort regions with great care, but given that many
of them are new to the CLR 2.0, most code that has been written remains
vulnerable to such issues.

Method 5: Process Exit

The final method of terminating a thread is to exit the process without shut-
ting down all of its threads. When it happens, it usually occurs in one of
the following ways.

e Win32 offers ExitProcess and TerminateProcess APIs, which mir-
ror the ExitThread and TerminateThread APIs reviewed earlier.
When ExitProcess is called, ExitThread is called on all threads in
the process, ensuring that DLL thread and process detach notifica-
tions are sent to DLLs loaded in the process. Threads are not
unwound, so any destructors or finally blocks that are live on call-
stacks on these threads are not run. TerminateProcess, on the other
hand, is effectively like calling TerminateThread on each thread and
also skips the step of sending process detach notifications to loaded
DLLs. Because these notifications are skipped, DLLs are not given a
chance to free or restore machine-wide state.

e C programs can call either the exit/_exit or abort CRT library
functions, which are similar to ExitProcess and TerminateProcess,
respectively. Each contains additional logic, however. For example,
exit invokes any routines registered with the CRT atexit/_onexit
functions, and abort displays a dialog box indicating that the
process has terminated abnormally.

* Managed code may call Environment.Exit, which triggers a clean
shutdown of all threads in the process. The CLR will suspend all

133



134

Chapter 3: Threads

threads, and then it will finalize any finalizable objects in the
process. After this, it exits threads without running finally blocks.
The CLR will actually create a so-called “shutdown watchdog
thread” that monitors the shutdown process to ensure it doesn’t
hang. As we'll see in Chapter 6, Data and Control Synchronization,
there are circumstances in which managed threads may hang
during shutdown due to locks. If, after 2 seconds, the shutdown
has not finished, the watchdog thread will take over and rudely
shut down the process.

* Any managed code may also call Environment.FailFast. This is
similar to calling Exit, except that it is meant for abnormal and
unexpected situations where no managed code must run during the
shutdown. This means that finalizers are not run, and AppDomain
events are not called, and also an entry is made in the Windows
Event Log to indicate failure.

The behavior explained above during shutdown in managed code
always occurs. In fact, threads need to be terminated prematurely more fre-
quently than you might think. That’s because a managed process exits
when all nonbackground threads exit, and it is actually quite common to
have many background threads (e.g., in the CLR’s thread pool).

Shutting down a process without cleanly exiting the application can
lead to problems, particularly if you're using TerminateThread or Fail-
Fast. These APIs are best used to respond to critical situations in which
continuing execution poses more risk to the stability of the system and
integrity of data than shutting down abruptly and possibly missing some
important application-specific cleanup activities. For example, if a thread is
in the middle of writing data to disk, it will be stopped midway, possibly
corrupting data. Even if a thread has finished writing, data may not be
flushed until a certain point in the future, and shutting down skips finally
blocks, etc., which may result in buffers not being flushed. There are many
things that can go wrong, and they depend on subtle timings and inter-
actions, so a clean shutdown should always be preferred over all of the
methods described in this section.



The Life and Death of Threads [ |

DllMain

We’ve referenced DLL_THREAD_ATTACH and DLL_THREAD_DETACH notifications
at various points above. Now let’s see how you register to receive such noti-
tications. Each native DLL may specify a D11Main entry point function in
which code to respond to various interesting process events may be placed.
The signature of the D11Main function is:

BOOL WINAPI D1lMain(
HINSTANCE hInstDLL,

DWORD fdwReason,
LPVOID lpReserved

)s

Defining a DLL entry point is optional. The OS will call the entry point
for all DLLs that have defined entry points, as they are loaded into the
process, when one of four events occurs. The event is indicated by the value
of the fdwReason argument supplied by the OS:

® DLL_PROCESS_ATTACH: This is called when a DLL is first loaded into a
process. For libraries statically linked into an EXE, this will occur at
process load time, while for dynamically loaded DLLs, it will occur
when LoadLibrary is invoked. This event may be used to perform
initialization of data structures that the DLL will need during execu-
tion. If the 1pReserved argument is NULL, it indicates the DLL has
been loaded dynamically, while non-NULL indicates it has been
loaded statically.

® DLL_PROCESS_DETACH: This is called when the DLL is unloaded from
the process, either because the process is exiting or, for dynamically
loaded libraries, when the FreeLibrary function has been called.
The process detach notification handling code is ordinarily symmet-
ric with respect to the process attach; in other words, it typically is
meant to free any data structures or resources that were allocated
during the initial DLL load. If 1pReserved is NULL, it indicates the
DLL is being dynamically unloaded with FreeLibrary, while non-
NULL indicates the process is terminating.

* DLL_THREAD_ATTACH: Each time the process creates a new thread, this
notification will be made. Any thread specific data structures may

135



136

Chapter 3: Threads

then be allocated. Note that when the initial process attach notification
is sent there is not an accompanying thread attach notification, neither
will there be notifications for existing threads in the process when a
DLL is dynamically loaded after threads were created.

* DLL_THREAD_DETACH: When a thread exits the system, the OS invokes
the D11Main for all loaded DLLs and sends a detach notification from
the thread that is exiting. This is the DLL's opportunity to free any
data structures or resources allocated inside of the thread attach
routine.

There is no equivalent to D11Main in managed code. Instead, there is an
AppDomain.ProcessExit event that the CLR calls during process shut-
down. If you are writing a C++/CLI assembly, or interoperating with an
existing native DLL, however, you will be delivered D11Main notifications
as normal.

The D11Main function is one of few places that program code is invoked
while the OS holds the loader lock. The loader lock is a critical region used
by the OS to protect access to loadtime state and automatically acquires it
in several places: when a process is shutting down, when a DLL is being
loaded, when a DLL is being unloaded, and inside various loader related
APIs. It’s a lock just like any other, and so it is subject to deadlock. This
makes it particularly dangerous to write code in the D11Main routine. You
must not trigger another DLL load or unload, and certainly should never
synchronize with another thread that might hold a lock and then need
to acquire the loader lock. It’s easy to write deadlock prone code in your
Dl11Main without even knowing it. Techniques like lock leveling (see
Chapter 11, Concurrency Hazards, for details) can avoid deadlock, but
generally speaking, it’s better to avoid all synchronization in your D11Main
altogether. See Further Reading, MSDN, Best Practices for Creating DLLs,
for some additional best practices for DLL entry point code.

Prior to C++/CLI in Visual Studio 2005, it was impossible to create a
C++ mixed mode native/managed DLL that contained a D11Main without
it being deadlock prone. The reasons are numerous (see Further Reading,
Brumme), but the basic problem is that it's impossible to run managed code
without acquiring locks and possibly synchronizing with other threads
(due to GC), which effectively guarantees that deadlocks are always



The Life and Death of Threads [ |

possible. If you're still writing code in 1.0 or 1.1, workarounds are possible
(see Further Reading, Currie). As of Visual C++ 2005, however, managed
code is not called automatically inside of D11Main and thus it’s possible to
write safe deadlock free entry points, provided you do not call into man-
aged code explicitly. See Further Reading, MSDN, Visual C++: Initialization
of Mixed Assemblies for details.

There is a hidden cost to defining D11Main routines. Every time a thread
is created or destroyed, the OS must enumerate all loaded DLLs and invoke
their D11Main functions with an attach or detach notification, respectively.
Win32 offers an API to suppress notifications for a particular DLL, which
can avoid this overhead when the calls are unnecessary.

BOOL WINAPI DisableThreadLibraryCalls(HMODULE hModule);

Using this API to suppress DLL notifications can provide sizeable per-
formance improvements, particularly for programs that load many DLLs
and/or create and destroy threads with regularity. But use it with caution.
If a third party DLL has defined a D11Main function, it’s probably for a rea-
son; suppressing calls into it is apt to cause unpredictable behavior.

Thread Local Storage

Programs can store information inside thread local storage (TLS), which
permits each thread to maintain some private data that isn’t shared among
other threads but that is globally accessible to any code running on that
thread. This enables one part of the program to place data into a known
location so another part can subsequently access and/or modify it. Static
variables in C++ and C#, for example, refer to memory that is shared
among all threads in the process. Accessing this shared state must be done
with care, as we’ve established in previous chapters. It's often more attrac-
tive to isolate data so that synchronization isn’t necessary or because the
specific details of your problem allow or require information to be thread
specific.

That’s where TLS comes into the picture. With TLS, each thread in the
system is allocated a separate region of memory to represent the same log-
ical variable. Native and managed code both offer TLS support, with very
similar programming interfaces, but the details of each are rather different.
We'll review both, in that order.

137



138

Chapter 3: Threads

Win32TLS

There are two TLS modes for native code: dynamic and static. Dynamic
TLS can be used in any situation, including static and dynamic link
libraries, and executables. Static TLS is supported by the C++ compiler and
may only be used for statically linked code but has the advantage of greater
efficiency when accessing TLS information. Code can freely intermix the
two in the same program and process without problems.

Dynamic TLS. In order to use native TLS to store and retrieve informa-
tion, you must first allocate a TLS slot for each separate piece of data. Allo-
cating a slot simply retrieves a new index and removes it from the list of
available indices in the process. This slot index is a numeric DWORD value
that is used to set or retrieve a LPVOID value stored in a per thread, per slot
location managed by the OS. In fact, this value is just an index into an array
of LPVOID entries that each thread has allocated at thread instantiation time.
Reserving a new index is done with the T1sAlloc APIL

DWORD WINAPI TlsAlloc();

All TLS slots are 0 initialized when a thread is created, so all slots will
initially contain the value NULL. The index itself should be treated as an
opaque value, much like a HANDLE. Each thread in the process uses this same
index value to access the same TLS slot, meaning that the value is typically
shared in some static or global variable that all threads can access.

If T1sAlloc returns TLS_OUT_OF_INDEXES, the allocation of the TLS
slot failed. The per thread array of TLS slots is limited in number (64 in
Windows NT, 95; 80 in Windows 98; and 1,088 in Windows 2000 and
beyond, according to MSDN and empirical results). If too many components
in a process are fighting to create large numbers of slots, this error can result.
In practice, this seldom arises, but the error condition needs to be handled.

Once a TLS slot has been allocated, the T1lsSetValue and TlsGetValue
functions can be used to set and retrieve data from the slots, respectively.

BOOL WINAPI TlsSetValue(DWORD dwTlsIndex, LPVOID lpTlsValue);
LPVOID WINAPI TlsGetValue(DWORD dwTlsIndex);

Note that the TLS slot dwT1lsIndex isn’t validated at all, other than
ensuring it falls within the range of available slots mentioned above



The Life and Death of Threads [ |

(i.e., so that an out-of-bounds array access doesn’t result). This means
that, due to programming error, you can accidentally index into a garbage
slot and the OS will permit you to do so, leading to unexpected results.
In the case where you provide a dwTlsIndex value outside of the legal
range (e.g., less than 0 or greater than 1,087 on Windows 2000), T1sSet-
Value returns FALSE and TlsGetValue returns NULL. GetLastError in both
cases will return ERROR_INVALID_PARAMETER (87). Note that NULL is a legal
value to store inside a slot, which can be easily confused with an error
condition; T1sGetValue indicates the lack of error by setting the last error
to ERROR_SUCCESS.

Last, you must free a TLS slot when it’s no longer in use. If this step is
forgotten, other components trying to allocate new slots will be unable to
re-use the slot, which is effectively a resource leak and can result in an
increase in TLS_OUT_OF_INDEXES errors. Freeing a slot is done with the
T1lsFree function.

BOOL WINAPI TlsFree(DWORD dwTlsIndex);

This function returns FALSE if the slot specified by dwT1sIndex is invalid,
and TRUE otherwise. Note that freeing a TLS slot zeroes out the slot memory
and simply makes the index available for subsequent calls to T1sAlloc. If
the LPVOID value stored in the slot is a pointer to some block of memory, the
memory must be explicitly freed before freeing the index. As soon as the
TLS slot is free, the index is no longer safe to use—the slot can be handed
out immediately to any other threads attempting to allocate slots concur-
rently, even before the call to T1sAlloc returns, in fact.

It's common to use D11Main to perform much of the aforementioned TLS
management functions, at least when you’re writing a DLL. For example,
you can call T1sAlloc inside DLL_PROCESS_ATTACH, initialize the slot’s con-
tents for each thread inside DLL_THREAD_ATTACH, free the slot’s contents dur-
ing DLL_THREAD_DETACH, and call T1sFree inside of DLL_PROCESS_DETACH.
For instance:

#include <windows.h>
DWORD g_dwMyTlsIndex; // Keep index in global or static variable.

BOOL WINAPI D11Main(HINSTANCE hinstDLL,
DWORD fdwReason, LPVOID lpvReserved)

139



140

Chapter 3: Threads

switch (fdwReason)

{
case DLL_PROCESS_ATTACH:

// Allocate a TLS slot.
if ((g_dwMyTlsIndex = TlsAlloc()) == TLS_OUT_OF_INDEXES)

{

; // Handle the error ...

}

break;

case DLL_PROCESS_DETACH:
// Free the TLS slot.
TlsFree(g_dwMyTlsIndex);
break;

case DLL_THREAD_ATTACH:
// Allocate the thread-local data.
TlsSetValue(g_dwMyTlsIndex, new int[1024]);
break;

case DLL_THREAD_DETACH:
// Free the thread local data.
int * data = reinterpret_cast<int *>(
TlsGetValue(g_dwMyTlsIndex));
delete [] data;
break;

Recall from earlier that there are some cases in which thread attach and
detach notifications may be missed. If a DLL is loaded dynamically, for
example, threads may exist prior to the load, in which case there will not
be DLL_THREAD_ATTACH notifications for them. For that reason, you will usu-
ally need to write your code to check the TLS value to see if it has been
initialized and, if not, do so lazily. And as noted earlier, sometimes
DLL_THREAD_DETACH notifications will be skipped. There is little within rea-
son you can do here, and so killing threads in a manner that skips detach
notifications when TLS is involved often leads to leaks. This is yet another
reason to avoid APIs like TerminateThread.

Static TLS. Instead of writing all of the boilerplate to T1sAlloc, T1sFree,
and manage the per-thread data for each TLS slot, you can use the C++
__declspec(thread) modifier to turn a static or global variable into a TLS



The Life and Death of Threads [ |

variable. To do this, instead of writing the code above to T1sAlloc and
TlsFree a slot in D11Main, you can simply write:

__declspec(thread) int * g_dwMyTlsIndex;

You will still need to initialize and free the array itself, however, on a per
thread basis. You can do this inside your own D11Main thread attach and
detach notification code.

When you use __declspec(thread), the compiler will perform all of
the necessary TLS management during its own custom D11Main initializa-
tion and produces more efficient code when reading from and writing
to TLS. Static TLS is substantially faster than dynamic TLS because the
compiler has enough information to emit code during compilation that
accesses slot addresses with a handful of instructions versus having to
make one or more function calls to obtain the address, as with dynamic
TLS. The compiler knows the three pieces of information it needs to cre-
ate code that calculates a TLS slot’s address: the TEB address (which it
finds in a register), the slot index (known statically), and the offset inside
the TEB at which the TLS array begins (constant per architecture). From
there, it's a simple matter of some pointer arithmetic to access the data
inside a TLS slot.

There are limitations around when you can use static TLS, however. You
can only use it from within a program or a DLL that will only be linked stat-
ically. In other words, it cannot be used reliably when loaded dynamically
via LoadLibrary. If you try, you will encounter sporadic access violations
when trying to access the TLS data.

Managed Code TLS

Similar to native code, there are two modes of TLS access for managed
code. But unlike native code, neither has strict limitations about which kind
can be used in any particular program. A single program can, in fact, use a
combination of both without worry that they will interact poorly with one
another.

Thread Statics. The ThreadStaticAttribute type is a custom attribute
that can be applied to any static field. (While neither the compiler nor

141



142

Chapter 3: Threads

runtime will prevent you from placing it on an instance field, doing so has
no effect whatsoever.) This has the effect of giving each thread a separate
copy of that particular static variable. For example, say we had a class C
with a static field s_array and wanted each thread to have its own copy:

class C

{
[ThreadStatic]

static int[] s_array;

}

Now each thread that accesses s_array will have its own copy of the
value. This is accomplished by the CLR managing an array of TLS slots
hanging off the managed thread object. All references to this field are emit-
ted by the JIT as method calls to a special helper function that knows how
to access the thread local data. Managed TLS access is slower than static
TLS in native code because there are extra hidden function calls and many
more indirections.

All call sites that access the variable must check for lazy initialization.
There is no direct equivalent to D11Main’s attach and detach notifications
that can be used for this purpose. Even if a static field initializer is provided,
it will only run the first time the variable is accessed (which only works for
the first thread that happens to access it). Detach notifications are unneces-
sary because data store in TLS variables will be garbage collected once the
thread dies. It's a good idea, however, to set TLS variables to null when
they are no longer necessary, particularly if the thread is expected to remain
alive for some time to come.

Dynamic TLS. Thread statics are (by far) the preferred means of TLS in
managed code. However, there are some circumstances in which you may
need more dynamic in the way that TLS is used. For example, with thread
statics, the TLS information you need to store must be decided statically at
compile-time, and you are required to arrange for a static field to represent
the TLS data. Sometimes you may need per object TLS. Dynamic TLS
allows you to create slots in this kind of way, very similar to how dynamic
TLS in native code works.



The Life and Death of Threads [ |

To use dynamic TLS, you first allocate a new slot. Two kinds of slots
are available, those accessed by name and unnamed slots accessed via a
slot object. These are allocated with the AllocateNamedDataSlot and
AllocateDataSlot static methods on the Thread class.

public static LocalDataStoreSlot AllocateNamedDataSlot(string name);
public static LocalDataStoreSlot AllocateDataSlot();

When specifying a named slot, the name supplied must be unique, or else
an ArgumentException will be thrown. In both cases, a LocalDataStoreSlot
object will be returned. In the case of AllocateDataSlot, you must save this
object in order to access the slot. If you lose it, you can’t access the slot ever
again. For named slots, there is a method to look up the slot, though saving
it can avoid unnecessary subsequent lookups.

public static LocalDataStoreSlot GetNamedDataSlot(string name);

GetNamedDataSlot will lazily allocate the slot if it hasn’t been created
already.

Once a slot has been created, you may set and get data using the SetData
and GetData static methods, respectively. Each accepts a LocalDataStoreSlot
as an argument, and enables you to store and retrieve references to any kind
of object.

public static object GetData(LocalDataStoreSlot slot);
public static void SetData(LocalDataStoreSlot slot, object data);

Last, it is important to free named slots when you no longer need them
with the Thread class’s FreeNamedDataSlot static method.

public static void FreeNamedDataSlot(string name);

If you fail to free a named slot, it will stay around until the AppDomain
or process exits, and data stored under the slot will remain referenced for
each thread that has used it (until the thread itself goes away). The
LocalDataStoreSlot type has a finalizer, which handles cleanup for
unnamed slots once you drop all references to instances. However, the
Thread object itself keeps a reference to all named slots that have been

143



144

Chapter 3: Threads

created, so even if your program drops all references to it, the slot will not
be reclaimed as you might imagine.

Where Are We?

This chapter has reviewed a lot of the basic functionality of Windows and
CLR threads. Threads are the underpinning of all concurrency on the
Windows OS, and so this foundational knowledge is necessary no matter
what kind of concurrency you are using. We looked at the lifetime of
threads, including how to start and stop them, in addition to some of the
most common attributes of threads such as TLS. Subsequent chapters will
build on this information.

The next chapter will do just that and will take the discussion of threads
to the next level. It is called Advanced Threads for a reason. This chapter
intentionally focused more on the basics while the next chapter intention-
ally focuses on more low-level and internal details.

FURTHER READING

A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques, and
Tools, Second Edition (Addison-Wesley, 2006).

B. Grunkemeyer. Constrained Execution Regions and Other Errata. Weblog article,
http:/ /blogs.msdn.com/bclteam/archive/2005/06/14/429181.aspx (2005).

K. Brown The .NET Developer’s Guide to Windows Security (Addison-Wesley, 2004).

C. Brumme. Startup, Shutdown, and Related Matters. Weblog article, http:/ /
blogs.msdn.com/cbrumme/archive/2003/08/20/51504.aspx (2003).

S. Currie. Mixed DLL Loading Problem. MSDN documentation, http://msdn2.
microsoft.com/enus/library/Aa290048(VS.71).aspx (2003).

J. Duffy. Atomicity and Asynchronous Exception Failures. Weblog article, http://
www.bluebytesoftware.com/blog/2005/03/19/AtomicityAnd
AsynchronousExceptionFailures.aspx (2005).

J. Duffy. The CLR Commits the Whole Stack. Weblog article, http:/ /www.
bluebytesoftware.com/blog/2007/03/10/TheCLRCommitsThe
WholeStack.aspx (2007).



Further Reading

MSDN. Visual C++: Initialization of Mixed Assemblies. MSDN documentation,
http:/ /msdn2.microsoft.com/en-us/library /ms173266(VS.80).aspx.

MSDN. Best Practices for Creating DLLs. MSDN documentation, http://www.
microsoft.com/whdc/driver/kernel/DLL_bestprac.mspx (2006).

M. Pietrek. A Crash Course on the Depths of Win32"" Structured Exception

Handling. Microsoft Systems Journal, http:/ /www.microsoft.com/msj/0197/
Exception/Exception.aspx (1997).

S. Pratschner. Customizing the Microsoft NET Framework Common Language Runtime
(MS Press, 2005).

S. Toub. High Availability: Keep Your Code Running with the Reliability Features
of the .NET Framework. MSDN Magazine (October 2005).

145



The C#
Programming
Language

Third Edition

Microsofty
Net
Development

Series

Anders Hejlsherg
Mads Torgersen
Scott Wiltamuth

Peter Golde



http://www.google.com/
http://delicious.com/
http://digg.com/
http://www.facebook.com/
http://www.stumbleupon.com/
http://www.reddit.com/
http://twitter.com/
http://www.informit.com/store/product.aspx?isbn=0321562992
http://www.informit.com/store/product.aspx?isbn=0321562992

Anders Hejlsberg
Mads Torgersen

BUY ME

Scott Wiltamuth
Peter Golde

The C# Programming Language
Third Edition

The popular C# programming language combines the high productivity of rapid ap-
plication development languages with the raw power of C and C++. Now, C# 3.0 adds
functional programming techniques and LINQ, Language INtegrated Query. The C#
Programming Language, Third Edition, is the authoritative and annotated technical refer-
ence for C# 3.0.

Written by Anders Hejlsberg, the language’s architect, and his colleagues, Mads Torg-
ersen, Scott Wiltamuth, and Peter Golde, this volume has been completely updated and
reorganized for C# 3.0. The book provides the complete specification of the language,
along with descriptions, reference materials, code samples, and annotations from nine
prominent G# gurus.

The many annotations—a new feature in this edition—bring a depth and breadth of under-
standing rarely found in any programming book. As the main text of the book introduces
the concepts of the C# language, cogent annotations explain why they are important,
how they are used, how they relate to other languages, and even how they evolved.

This book is the definitive, must-have reference for any developer who wants to
understand C#.

About the Authors

Anders Hejlsberg is a programming legend. He is the architect of the C# language
and a Microsoft Technical Fellow. He joined Microsoft in 1996, following a 13-year
career at Borland, where he was the chief architect of Delphi and Turbo Pascal.

Mads Torgersen is a senior program manager at Microsoft. As the program manager
for the C# language, he runs the C# language design meetings and maintains the C#
language specification. Prior to joining Microsoft in 2005, Mads was an associate
professor at the University of Aarhus, teaching and researching object-oriented pro-
gramming languages. There, he led the group that designed and implemented generic
wildcards for the Java Programming Language.

Scott Wiltamuth is partner program manager for Visual Studio. While at Microsoft,
he has worked on a wide range of developer-oriented projects, including Visual Basic,
VBScript, JScript, Visual J++, and Visual C#. Scott is one of the designers of the C#
language, and holds bachelor's and master's degrees in computer science from Stanford
University.

Before leaving Microsoft, Peter Golde served as the lead developer of Microsoft's

C# compiler. As the primary Microsoft representative on the ECMA committee that
standardized C#, he led the implementation of the compiler and worked on the language
design.

The C#
Programming
Language

Third Edition

Special Annotated Edition for C#3.0 ¥

Anders Hejlsberg
Mads Torgersen

A
vv

Addison
Wesley

informit.com/aw |

(|

Scott Wiltamuth ”
Peter Golde
AVAILABLE

o BOOK: 978032158
e SAFARI ONLINE |Safari
o EBOOK: 0321592263
o KINDLE: 0321592255

Professional Features

This is the definitive reference to the
C# Programming Language, direct
from the architect, and updated for
the new version 3.0

e New to this edition - insight-

ful, valuable annotations from
eleven leading C# programmers,
available nowhere else

e Fully updated for the changes to

G# 3.0, especially LINQ

o C# has become the most widely

used language for Windows
development

o Anders Hejlsberg is the creator

of C# and a true legend among
programmers


http://www.informit.com/store/product.aspx?isbn=0321562992
http://www.informit.com/store/product.aspx?isbn=0321562992
http://www.safaribooksonline.com/Corporate/Index/
http://www.informit.com/imprint/index.aspx?st=61085
http://www.informit.com/imprint/index.aspx?st=61085

3. Basic Concepts

3.1 Application Start-Up

An assembly that has an entry point is called an application. When an application is run,
anew application domain is created. Several different instantiations of an application may
exist on the same machine at the same time, and each has its own application domain.

An application domain enables application isolation by acting as a container for the appli-
cation state. An application domain acts as a container and boundary for the types defined
in the application and the class libraries it uses. Types loaded into one application domain
are distinct from the same types loaded into another application domain, and instances of
objects are not directly shared between application domains. For instance, each application
domain has its own copy of static variables for these types, and a static constructor for a
type is run at most once per application domain. Implementations are free to provide
implementation-specific policy or mechanisms for the creation and destruction of applica-
tion domains.

Application start-up occurs when the execution environment calls a designated method,
which is referred to as the application’s entry point. This entry point method is always
named Main, and it can have one of the following signatures:

static void Main() {...}
static void Main(string[] args) {...}
static int Main() {...}

static int Main(string[] args) {...}

As shown, the entry point may optionally return an int value. This return value is used in
application termination (§3.2).

The entry point may optionally have one formal parameter. The parameter may have any
name, but the type of the parameter must be string[ ]. If the formal parameter is present,
the execution environment creates and passes a string[] argument containing the
command-line arguments that were specified when the application was started. The
string[] argument is never null, but it may have a length of zero if no command-line
arguments were specified.

148



0
L
=%
()
o
c
o
()
=
(7]
©
o0

3.

3. Basic Concepts

149

Because C# supports method overloading, a class or struct may contain multiple defini-
tions of some method, provided each definition has a different signature. However, within
a single program, no class or struct may contain more than one method called Main whose
definition qualifies it to be used as an application entry point. Other overloaded versions
of Main are permitted, however, provided they have more than one parameter, or their only
parameter is something other than type string[].

An application can be made up of multiple classes or structs. It is possible for more than
one of these classes or structs to contain a method called Main whose definition qualifies it
to be used as an application entry point. In such cases, an external mechanism (such as a
command-line compiler option) must be used to select one of these Main methods as the
entry point.

®s ERICLIPPERT The “csc” command-line compiler provides the /main: switch for
this purpose.

In C#, every method must be defined as a member of a class or struct. Ordinarily, the
declared accessibility (§3.5.1) of a method is determined by the access modifiers (§10.3.5)
specified in its declaration. Similarly, the declared accessibility of a type is determined by
the access modifiers specified in its declaration. For a given method of a given type to be
callable, both the type and the member must be accessible. However, the application entry
point is a special case. Specifically, the execution environment can access the application’s
entry point regardless of its declared accessibility and regardless of the declared accessibil-
ity of its enclosing type declarations.

The application entry point method may not be in a generic class declaration.

In all other respects, entry point methods behave like methods that are not entry points.

3.2 Application Termination

Application termination returns control to the execution environment.

If the return type of the application’s entry point method is int, the value returned serves
as the application’s termination status code. The purpose of this code is to allow commu-
nication of success or failure to the execution environment.

If the return type of the entry point method is void, reaching the right brace (}) that termi-
nates the method, or executing a return statement that has no expression, results in a ter-
mination status code of @.



3.3 Declarations

"s BILL WAGNER The following rule is an important difference between C# and
other managed environments.

Prior to an application’s termination, destructors for all of its objects that have not yet been
garbage collected are called, unless such cleanup has been suppressed (by a call to the
library method GC.SuppressFinalize, for example).

3.3 Declarations

Declarations in a C# program define the constituent elements of the program. C# programs
are organized using namespaces (§9), which can contain type declarations and nested
namespace declarations. Type declarations (§9.6) are used to define classes (§10), structs
(8§10.14), interfaces (§13), enums (§14), and delegates (§15). The kinds of members permit-
ted in a type declaration depend on the form of the type declaration. For instance, class
declarations can contain declarations for constants (§10.4), fields (§10.5), methods (§10.6),
properties (§10.7), events (§10.8), indexers (§10.9), operators (§10.10), instance constructors
(8§10.11), static constructors (§10.12), destructors (§10.13), and nested types (§10.3.8).

A declaration defines a name in the declaration space to which the declaration belongs.
Except for overloaded members (§3.6), it is a compile-time error to have two or more decla-
rations that introduce members with the same name in a declaration space. It is never pos-
sible for a declaration space to contain different kinds of members with the same name. For
example, a declaration space can never contain a field and a method with the same name.

"= ERIC LIPPERT “Declaration spaces” are frequently confused with “scopes.”
Although related conceptually, they have quite different purposes. The scope of a
named element is the region of the program text in which that element may be referred
to by name without additional qualification. By contrast, the declaration space of an
element is the region in which no two elements may have the same name (or same
signature, for methods).

Several types of declaration spaces are possible:

* Within all source files of a program, namespace-member-declarations with no enclosing
namespace-declaration are members of a single combined declaration space called the
global declaration space.

* Within all source files of a program, namespace-member-declarations within namespace-
declarations that have the same fully qualified namespace name are members of a single
combined declaration space.

150

'€

w
Q
ml
(@]
o
=}
S
o
®
°
~
(2}




3. Basic Concepts

* Each class, struct, or interface declaration creates a new declaration space. Names are
introduced into this declaration space through class-member-declarations, struct-member-
declarations, interface-member-declarations, or type-parameters. Except for overloaded
instance constructor declarations and static constructor declarations, a class or struct
cannot contain a member declaration with the same name as the class or struct. A class,
struct, or interface permits the declaration of overloaded methods and indexers. Fur-
thermore, a class or struct permits the declaration of overloaded instance constructors
and operators. For example, a class, struct, or interface may contain multiple method
declarations with the same name, provided these method declarations have different
signatures (§3.6). Note that base classes do not contribute to the declaration space of a
class, and base interfaces do not contribute to the declaration space of an interface. Thus,
a derived class or interface is allowed to declare a member with the same name as an
inherited member. Such a member is said to hide the inherited member.

* Each delegate declaration creates a new declaration space. Names are introduced into
this declaration space through formal parameters (fixed-parameters and parameter-arrays)
and type-parameters.

* Each enumeration declaration creates a new declaration space. Names are introduced
into this declaration space through enum-member-declarations.

* Each method declaration, indexer declaration, operator declaration, instance construc-
tor declaration, and anonymous function creates a new declaration space called a local
variable declaration space. Names are introduced into this declaration space through
formal parameters (fixed-parameters and parameter-arrays) and type-parameters. The body
of the function member or anonymous function, if any, is considered to be nested within
the local variable declaration space. It is an error for a local variable declaration space
and a nested local variable declaration space to contain elements with the same name.
Thus, within a nested declaration space, it is not possible to declare a local variable or
constant with the same name as a local variable or constant in an enclosing declaration
space. It is possible for two declaration spaces to contain elements with the same name
as long as neither declaration space contains the other.

0
L
=%
()
o
c
o
()
=
(7]
©
o0

3.

e Each block or switch-block, as well as a for, foreach, and using statement, creates a local
variable declaration space for local variables and local constants. Names are introduced
into this declaration space through local-variable-declarations and local-constant-declarations.
Note that blocks that occur as or within the body of a function member or anonymous
function are nested within the local variable declaration space declared by those func-
tions for their parameters. Thus, it is an error to have, for example, a method with a local
variable and a parameter of the same name.

* Each block or switch-block creates a separate declaration space for labels. Names are intro-
duced into this declaration space through labeled-statements, and the names are referenced

151



3.3 Declarations

through goto-statements. The label declaration space of a block includes any nested
blocks. Thus, within a nested block, it is not possible to declare a label with the same
name as a label in an enclosing block.

The textual order in which names are declared is generally of no significance. In particular,
textual order is not significant for the declaration and use of namespaces, constants, meth-
ods, properties, events, indexers, operators, instance constructors, destructors, static con-
structors, and types. Declaration order is significant in the following ways:

e Declaration order for field declarations and local variable declarations determines the
order in which their initializers (if any) are executed.

* Local variables must be defined before they are used (§3.7).

* Declaration order for enum member declarations (§14.3) is significant when constant-

expression values are omitted.

The declaration space of a namespace is “open-ended,” and two namespace declarations
with the same fully qualified name contribute to the same declaration space. For
example,

namespace Megacorp.Data

{
class Customer
{
}
}
namespace Megacorp.Data
{
class Order
{
}
}

Here the two namespace declarations contribute to the same declaration space—in this
case, declaring two classes with the fully qualified names Megacorp.Data.Customer and
Megacorp.Data.Order. Because the two declarations contribute to the same declaration
space, a compile-time error would have occurred if each contained a declaration of a class
with the same name.

"= BILLWAGNER Think of namespaces as a tool to manage the logical organization
of your code. Assemblies manage the physical organization of your code.

152

'€

w
Q
ml
(@]
o
=}
S
o
®
°
~
(2}




0
L
=%
()
o
c
o
()
=
(7]
©
o0

3.

3. Basic Concepts

153

As specified earlier, the declaration space of a block includes any nested blocks. Thus, in
the following example, the F and G methods result in a compile-time error because the
name i is declared in the outer block and cannot be redeclared in the inner block. The H
and I methods are valid, however, because the two i’s are declared in separate non-
nested blocks.

class A
{
void F() {
int i = @;
if (true) {
int i = 1;
¥
¥
void G() {
if (true) {
int i = 0;
}
int i = 1;
¥
void H() {
if (true) {
int i = 0;
}
if (true) {
int 1 = 1;
}
¥
void I() {
for (int i = 0; i < 10; i++)
HOS
for (int i = ©; i < 10; i++)
HOS
¥
}

3.4 Members

Namespaces and types have members. The members of an entity are generally available
through the use of a qualified name that starts with a reference to the entity, followed by a

“uo

.” token, followed by the name of the member.

Members of a type are either declared in the type declaration or inherited from the base
class of the type. When a type inherits from a base class, all members of the base class,
except instance constructors, destructors, and static constructors, become members of the
derived type. The declared accessibility of a base class member does not control whether



3.4 Members

the member is inherited—inheritance extends to any member that isn’t an instance con-
structor, static constructor, or destructor. However, an inherited member may not be acces-
sible in a derived type, either because of its declared accessibility (§3.5.1) or because it is
hidden by a declaration in the type itself (§3.7.1.2).

3.4.1 Namespace Members

Namespaces and types that have no enclosing namespace are members of the global
namespace. This corresponds directly to the names declared in the global declaration
space.

Namespaces and types declared within a namespace are members of that namespace. This
corresponds directly to the names declared in the declaration space of the namespace.

Namespaces have no access restrictions. It is not possible to declare private, protected, or
internal namespaces, and namespace names are always publicly accessible.

3.4.2 Struct Members

The members of a struct are the members declared in the struct and the members inherited
from the struct’s direct base class System.ValueType and the indirect base class object.

The members of a simple type correspond directly to the members of the struct type aliased
by the simple type:

¢ The members of sbyte are the members of the System.SByte struct.

'€

* The members of byte are the members of the System.Byte struct.
¢ The members of short are the members of the System.Int16 struct.
¢ The members of ushort are the members of the System.UInt16 struct.

¢ The members of int are the members of the System.Int32 struct.

oe)
)
),
(@]
0
o
S
o
o
©
~
0

¢ The members of uint are the members of the System.UInt32 struct.

¢ The members of long are the members of the System.Int64 struct.

¢ The members of ulong are the members of the System.UInt64 struct.

¢ The members of char are the members of the System.Char struct.

¢ The members of float are the members of the System.Single struct.

* The members of double are the members of the System.Double struct.

¢ The members of decimal are the members of the System.Decimal struct.

¢ The members of bool are the members of the System.Boolean struct.

154



0
L
=%
()
o
c
o
()
=
(7]
©
o0

3.

3. Basic Concepts

155

3.4.3 Enumeration Members

The members of an enumeration are the constants declared in the enumeration and the
members inherited from the enumeration’s direct base class System.Enum and the indirect
base classes System.ValueType and object.

3.4.4 Class Members

The members of a class are the members declared in the class and the members inherited
from the base class (except for class object, which has no base class). The members inher-
ited from the base class include the constants, fields, methods, properties, events, indexers,
operators, and types of the base class, but not the instance constructors, destructors, and
static constructors of the base class. Base class members are inherited without regard to
their accessibility.

A class declaration may contain declarations of constants, fields, methods, properties,
events, indexers, operators, instance constructors, destructors, static constructors,

and types.

The members of object and string correspond directly to the members of the class types
they alias:
* The members of object are the members of the System.0Object class.

e The members of string are the members of the System.String class.

3.4.5 Interface Members

The members of an interface are the members declared in the interface and in all base inter-
faces of the interface. The members in class object are not, strictly speaking, members of
any interface (§13.2). However, the members in class object are available via member
lookup in any interface type (§7.3).

3.4.6 Array Members

The members of an array are the members inherited from class System.Array.

3.4.7 Delegate Members

The members of a delegate are the members inherited from class System.Delegate.

"= VLADIMIR RESHETNIKOV In the Microsoft implementation of C#, the members
of a delegate also include the instance methods Invoke, BeginInvoke, EndInvoke, and
the members inherited from class System.MulticastDelegate.




3.5 Member Access

3.5 Member Access

Declarations of members allow control over member access. The accessibility of a member
is established by the declared accessibility (§3.5.1) of the member combined with the acces-
sibility of the immediately containing type, if any.

When access to a particular member is allowed, the member is said to be accessible. Con-
versely, when access to a particular member is disallowed, the member is said to be
inaccessible. Access to a member is permitted when the textual location in which the access
takes place is included in the accessibility domain (§3.5.2) of the member.

3.5.1 Declared Accessibility

The declared accessibility of a member can be one of the following:

¢ Public, which is selected by including a public modifier in the member declaration. The
intuitive meaning of public is “access not limited.”

¢ Protected, which is selected by including a protected modifier in the member declara-
tion. The intuitive meaning of protected is “access limited to the containing class or
types derived from the containing class.”

¢ Internal, which is selected by including an internal modifier in the member declaration.
The intuitive meaning of internal is “access limited to this program.”

¢ Protected internal (meaning protected or internal), which is selected by including both
a protected modifier and an internal modifier in the member declaration. The intuitive
meaning of protected internal is “access limited to this program or types derived from
the containing class.”

* Private, which is selected by including a private modifier in the member declaration.
The intuitive meaning of private is “access limited to the containing type.”

®s JESSE LIBERTY There is always a default accessibility, and it is always good pro-
gramming practice to declare the accessibility explicitly. This makes for code that is
easier to read and far easier to maintain.

Depending on the context in which a member declaration takes place, only certain types of
declared accessibility are permitted. Furthermore, when a member declaration does not
include any access modifiers, the context in which the declaration takes place determines
the default declared accessibility.

* Namespaces implicitly have public declared accessibility. No access modifiers are
allowed on namespace declarations.

156

'€

w
Q
ml
(@]
o
=}
S
o
®
°
~
(2}




3. Basic Concepts

* Types declared in compilation units or namespaces can have public or internal declared
accessibility and default to internal declared accessibility.

* Class members can have any of the five kinds of declared accessibility and default to
private declared accessibility. (Note that a type declared as a member of a class can have
any of the five kinds of declared accessibility, whereas a type declared as a member of a
namespace can have only public or internal declared accessibility.)

"s VLADIMIR RESHETNIKOV If a sealed class declares a protected or protected
internal member, a warning is issued. If a static class declares a protected or pro-
tected internal member, a compile-time error occurs (CS1057).

e Struct members can have public, internal, or private declared accessibility and
default to private declared accessibility because structs are implicitly sealed. Struct
members introduced in a struct (that is, not inherited by that struct) cannot have
protected or protected internal declared accessibility. (Note that a type declared as
a member of a struct can have public, internal, or private declared accessibility;,
whereas a type declared as a member of a namespace can have only public or internal
declared accessibility.)

¢ Interface members implicitly have public declared accessibility. No access modifiers are
allowed on interface member declarations.

* Enumeration members implicitly have public declared accessibility. No access modifi-
ers are allowed on enumeration member declarations.

"s JOSEPH ALBAHARI The rationale behind these rules is that the default declared
accessibility for any construct is the minimum accessibility that it requires to be useful.
Minimizing accessibility is positive in the sense that it promotes encapsulation.

0
L
=%
()
o
c
o
()
=
(7]
©
o0

3.

"= CHRIS SELLS Except for operator precedence, which I believe should be made
explicit if any doubt ever arises, I'm a big fan of less code. When I see unnecessary use
of private or internal, it looks like noise to me. For example,

internal class Foo { private int x; public int X { get { return x; } } }

should really be written as

class Foo { int x; public int X { get { return x; } } }

157



3.5 Member Access

"= ERICLIPPERT There is a difference between the “declared” accessibility and the
actual effective accessibility. For example, a method declared as public on a class
declared as internal is, for most practical purposes, an internal method.

A good way to think about this issue is to recognize that a public class member is pub-
lic only to the entities that have access to the class.

3.5.2 Accessibility Domains

The accessibility domain of a member consists of the (possibly disjoint) sections of pro-
gram text in which access to the member is permitted. For purposes of defining the acces-
sibility domain of a member, a member is said to be top-level if it is not declared within
a type, and a member is said to be nested if it is declared within another type. Further-
more, the program text of a program is defined as all program text contained in all source
files of the program, and the program text of a type is defined as all program text con-
tained between the opening and closing “{” and “}” tokens in the class-body, struct-body,
interface-body, or enum-body of the type (including, possibly, types that are nested within
the type).

The accessibility domain of a predefined type (such as object, int, or double) is unlimited.

The accessibility domain of a top-level unbound type T (§4.4.3) that is declared in a pro-
gram P is defined as follows:

e If the declared accessibility of T is public, the accessibility domain of T is the program
text of P and any program that references P.

e If the declared accessibility of T is internal, the accessibility domain of T is the program
text of P.

From these definitions, it follows that the accessibility domain of a top-level unbound type
is always at least the program text of the program in which that type is declared.

The accessibility domain for a constructed type T<A , ..., A > is the intersection of the acces-
sibility domain of the unbound generic type T and the accessibility domains of the type

arguments A , ...,A.

The accessibility domain of a nested member M declared in a type T within a program P is
defined as follows (noting that M itself may possibly be a type):

158

'€

w
Q
ml
(@]
o
=}
S
o
®
°
~
(2}




3. Basic Concepts

e If the declared accessibility of M is public, the accessibility domain of M is the accessibil-
ity domain of T.

o If the declared accessibility of M is protected internal, let D be the union of the pro-
gram text of P and the program text of any type derived from T, which is declared
outside P. The accessibility domain of M is the intersection of the accessibility domain
of T with D.

¢ If the declared accessibility of M is protected, let D be the union of the program text of
T and the program text of any type derived from T. The accessibility domain of M is the
intersection of the accessibility domain of T with D.

e If the declared accessibility of Mis internal, the accessibility domain of M is the intersec-
tion of the accessibility domain of T with the program text of P.

e If the declared accessibility of Mis private, the accessibility domain of Mis the program
text of T.

From these definitions, it follows that the accessibility domain of a nested member is
always at least the program text of the type in which the member is declared. Further-
more, it follows that the accessibility domain of a member is never more inclusive than the
accessibility domain of the type in which the member is declared.

In intuitive terms, when a type or member Mis accessed, the following steps are evaluated
to ensure that the access is permitted:

e First, if M is declared within a type (as opposed to a compilation unit or a namespace),
a compile-time error occurs if that type is not accessible.
e Then, if Mis public, the access is permitted.

* Otherwise, if M is protected internal, the access is permitted if it occurs within the
program in which M is declared, or if it occurs within a class derived from the class in
which Mis declared and takes place through the derived class type (§3.5.3).

0
L
=%
()
o
c
o
()
=
(7]
©
o0

3.

° Otherwise, if Mis protected, the access is permitted if it occurs within the class in which
Mis declared, or if it occurs within a class derived from the class in which M is declared
and takes place through the derived class type (§3.5.3).

* Otherwise, if Mis internal, the access is permitted if it occurs within the program in
which M is declared.

* Otherwise, if Mis private, the access is permitted if it occurs within the type in which
Mis declared.

* Otherwise, the type or member is inaccessible, and a compile-time error occurs.

159



3.5 Member Access

In the example

public class A

{
public static int X;
internal static int v;
private static int Z;

}

internal class B

{
public static int X;
internal static int v;
private static int Z;

public class C

{
public static int X;
internal static int V;
private static int Z;

}

private class D

{
public static int X;
internal static int V;
private static int Z;

'€

the classes and members have the following accessibility domains:

* The accessibility domain of A and A.X is unlimited.

* The accessibility domain of A.Y, B, B.X, B.Y,B.C,B.C.X, and B.C.Y is the program text of
the containing program.

* The accessibility domain of A.Z is the program text of A.

w
Q
ml
(@]
o
=}
S
o
®
°
~
(2}

* The accessibility domain of B.Z and B.D is the program text of B, including the program
text of B.C and B.D.

* The accessibility domain of B.C.Z is the program text of B.C.

¢ The accessibility domain of B.D.X and B.D.Y is the program text of B, including the pro-
gram text of B.C and B.D.

* The accessibility domain of B.D.Z is the program text of B.D.
As this example illustrates, the accessibility domain of a member is never larger than that

of a containing type. For example, even though all X members have public declared acces-
sibility, all members except A.X have accessibility domains that are constrained by a con-

taining type.

160



0
L
=%
()
o
c
o
()
=
(7]
©
o0

3.

3. Basic Concepts

161

"= JOSEPH ALBAHARI Declaring a public member within an internal type might
seem pointless, given that the member’s visibility will be capped at internal. It can
make sense, however, if the public member modifier is interpreted as meaning “having
the same visibility as the containing type.”

A good question to ask, in deciding whether to declare a member of an internal type
public or internal, is this: “If the type was later promoted to public, would I want
this member to become public, too?” If the answer is yes, one could argue for declar-
ing the member as public from the outset.

As described in §3.4, all members of a base class, except for instance constructors, destruc-
tors, and static constructors, are inherited by derived types—even private members of a
base class. However, the accessibility domain of a private member includes only the pro-
gram text of the type in which the member is declared. In the example

class A

{

int x;

static void F(B b) {

b.x = 1; // Okay
¥
}
class B: A
{
static void F(B b) {
b.x = 1; // Error, x not accessible
¥
}

the B class inherits the private member x from the A class. Because the member is private,
it is only accessible within the class-body of A. Thus, the access to b.x succeeds in the A.F
method, but fails in the B.F method.

": BILLWAGNER Notice that the inaccessible methods also obviate the need for the
new modifier on B.F().

3.5.3 Protected Access for Instance Members

When a protected instance member is accessed outside the program text of the class in
which it is declared, and when a protected internal instance member is accessed outside
the program text of the program in which it is declared, the access must take place within



3.5 Member Access

a class declaration that derives from the class in which it is declared. Furthermore, the
access is required to take place through an instance of that derived class type or a class type
constructed from it. This restriction prevents one derived class from accessing protected
members of other derived classes, even when the members are inherited from the same
base class.

"= ERIC LIPPERT For instance, suppose you have a base class Animal and two
derived classes, Mammal and Reptile, and Animal has a protected method Feed(). Then
the Mammal code can call Feed() on a Mammal or any subclass of Mammal (Tiger, say).

Mammal code cannot call Feed() on an expression of type Reptile because there is no
inheritance relationship between Mammal and Reptile.

Furthermore, because an expression of type Animal might actually be a Reptile at
runtime, Mammal code also cannot call Feed() on an expression of type Animal.

Let B be a base class that declares a protected instance member M, and let D be a class that
derives from B. Within the class-body of D, access to M can take one of the following forms:
° An unqualified type-name or primary-expression of the form M

* A primary-expression of the form E.M, provided the type of E is T or a class derived from
T, where T is the class type D, or a class type constructed from D

w
° A primary-expression of the form base.M
>
In addition to these forms of access, a derived class can access a protected instance con- 2.
structor of a base class in a constructor-initializer (§10.11.1). )
o
a
In the example )
o
~*
public class A (%
{
protected int x;
static void F(A a, B b) {
a.x = 1; // Okay
b.x = 1; // Okay
}
}
public class B: A
{
static void F(A a, B b) {
a.x = 1; // Error, must access through instance of B
b.x = 1; // Okay
¥
}

162



3. Basic Concepts

within A, it is possible to access x through instances of both A and B, because in either case
the access takes place through an instance of A or a class derived from A. However, within
B, it is not possible to access x through an instance of A, because A does not derive from B.

In the example

class C<T>
{
protected T x;
}
class D<T>: C<T>
{
static void F() {
D<T> dt = new D<T>();
D<int> di = new D<int>();
D<string> ds = new D<string>();
dt.x = default(T);
di.x = 123;
ds.x = "test";
}
}

the three assignments to x are permitted because all of them take place through instances
of class types constructed from the generic type.

"s CHRIS SELLS To minimize the surface area of a class or namespace, I recom-
mend keeping things private/internal until they prove to be necessary in a wider
scope. Refactoring is your friend here.

(]
-
[=R
[}
o
c
(=}
O
=
[72]
(C
o

"s BILL WAGNER These rules exist to allow for the separate evolution of compo-
nents in different assemblies. You should not incorporate these rules into your regular
design patterns.

3.

3.5.4 Accessibility Constraints

Several constructs in the C# language require a type to be at least as accessible as a
member or another type. A type T is said to be at least as accessible as a member or type
M if the accessibility domain of T is a superset of the accessibility domain of M. In other
words, T is at least as accessible as M if T is accessible in all contexts in which M is
accessible.

163



3.5 Member Access

"= VLADIMIR RESHETNIKOV  For the purposes of this paragraph, only accessibil-
ity modifiers are considered. For instance, if a protected member is declared in a
public sealed class, the fact that this class cannot have descendants (and, therefore,
the accessibility domain of this member does not include any descendants) is not
considered.

The following accessibility constraints exist:

The direct base class of a class type must be at least as accessible as the class type itself.

The explicit base interfaces of an interface type must be at least as accessible as the inter-
face type itself.

The return type and parameter types of a delegate type must be at least as accessible as
the delegate type itself.

The type of a constant must be at least as accessible as the constant itself.
The type of a field must be at least as accessible as the field itself.

The return type and parameter types of a method must be at least as accessible as the
method itself.

The type of a property must be at least as accessible as the property itself.
The type of an event must be at least as accessible as the event itself.

The type and parameter types of an indexer must be at least as accessible as the indexer
itself.

The return type and parameter types of an operator must be at least as accessible as the
operator itself.

The parameter types of an instance constructor must be at least as accessible as the
instance constructor itself.
In the example

class A {...}

public class B: A {...}

the B class results in a compile-time error because A is not at least as accessible as B.

Likewise, in the example

class A {...}

public class B

{

'€

w
Q
ml
(@]
o
=}
S
o
®
°
~
(2}

164



0
L
=%
()
o
c
o
()
=
(7]
©
o0

3.

3. Basic Concepts

165

AF() {...}
internal A G() {...}

public A H() {...}
}

the H method in B results in a compile-time error because the return type A is not at least as
accessible as the method.

3.6 Signatures and Overloading

Methods, instance constructors, indexers, and operators are characterized by their
signatures:

The signature of a method consists of the name of the method, the number of type
parameters and the type and kind (value, reference, or output) of each of its formal
parameters, considered in order from left to right. For these purposes, any type param-
eter of the method that occurs in the type of a formal parameter is identified not by its
name, but by its ordinal position in the type argument list of the method. The signature
of a method specifically does not include the return type, the params modifier that may
be specified for the rightmost parameter, nor the optional type parameter constraints.

The signature of an instance constructor consists of the type and kind (value, reference,
or output) of each of its formal parameters, considered in order from left to right. The
signature of an instance constructor specifically does not include the params modifier
that may be specified for the rightmost parameter.

The signature of an indexer consists of the type of each of its formal parameters, consid-
ered in order from left to right. The signature of an indexer specifically does not include
the element type, nor does it include the params modifier that may be specified for the
rightmost parameter.

The signature of an operator consists of the name of the operator and the type of each of
its formal parameters, considered in order from left to right. The signature of an operator
specifically does not include the result type.

Signatures are the enabling mechanism for overloading of members in classes, structs, and
interfaces:

Overloading of methods permits a class, struct, or interface to declare multiple methods
with the same name, provided their signatures are unique within that class, struct, or
interface.



3.6 Signatures and Overloading

* Overloading of instance constructors permits a class or struct to declare multiple instance
constructors, provided their signatures are unique within that class or struct.

* Overloading of indexers permits a class, struct, or interface to declare multiple indexers,
provided their signatures are unique within that class, struct, or interface.

* Overloading of operators permits a class or struct to declare multiple operators with the
same name, provided their signatures are unique within that class or struct.

Although out and ref parameter modifiers are considered part of a signature, members
declared in a single type cannot differ in signature solely by ref and out. A compile-time
error occurs if two members are declared in the same type with signatures that would be
the same if all parameters in both methods with out modifiers were changed to ref modi-
fiers. For other purposes of signature matching (e.g., hiding or overriding), ref and out are
considered part of the signature and do not match each other. (This restriction is intended
to allow C# programs to be easily translated to run on the Common Language Infrastruc-
ture [CLI], which does not provide a way to define methods that differ solely in terms of
ref and out.)

The following example shows a set of overloaded method declarations along with their
signatures.

interface ITest

{ void F(); /7 FQ)
void F(int x); // F(int)
void F(ref int x); // F(ref int)
void F(out int x); // F(out int) error
void F(int x, int y); // F(int, int)
int F(string s); // F(string)
int F(int x); // F(int) error
void F(string[] a); // F(string[])
void F(params string[] a); // F(string[]) error
}

Note that any ref and out parameter modifiers (§10.6.1) are part of a signature. Thus,
F(int) and F(ref int) are unique signatures. However, F(ref int) and F (out int) cannot
be declared within the same interface because their signatures differ solely by ref and out.
Also, note that the return type and the params modifier are not part of a signature, so it is
not possible to overload the declarations solely based on return type or on the inclusion or
exclusion of the params modifier. As such, the declarations of the methods F(int) and
F(params string[]) identified above result in a compile-time error.

166

'€

oe)
)
),
(@]
0
o
S
o
o
©
~
0




0
L
=%
()
o
c
o
()
=
(7]
©
o0

3.

3. Basic Concepts

167

3.7 Scopes

The scope of a name is the region of program text within which it is possible to refer to the
entity declared by the name without qualification of the name. Scopes can be nested, and
an inner scope may redeclare the meaning of a name from an outer scope (this does not,
however, remove the restriction imposed by §3.3 that within a nested block it is not pos-
sible to declare a local variable with the same name as a local variable in an enclosing
block). The name from the outer scope is then said to be hidden in the region of program
text covered by the inner scope, and access to the outer name is possible only by qualify-
ing the name.

The scope of a namespace member declared by a namespace-member-declaration (§9.5)
with no enclosing namespace-declaration is the entire program text.

The scope of a namespace member declared by a namespace-member-declaration within a
namespace-declaration whose fully qualified name is N is the namespace-body of every
namespace-declaration whose fully qualified name is N or starts with N, followed by a
period.

The scope of a name defined by an extern-alias-directive extends over the using-directives,
global-attributes, and namespace-member-declarations of its immediately containing compi-
lation unit or namespace body. An extern-alias-directive does not contribute any new
members to the underlying declaration space. In other words, an extern-alias-directive is
not transitive, but rather affects only the compilation unit or namespace body in which
it occurs.

The scope of a name defined or imported by a using-directive (§9.4) extends over the
namespace-member-declarations of the compilation-unit or namespace-body in which the
using-directive occurs. A using-directive may make zero or more namespace or type names
available within a particular compilation-unit or namespace-body, but it does not contrib-
ute any new members to the underlying declaration space. In other words, a using-
directive is not transitive, but rather affects only the compilation-unit or namespace-body in
which it occurs.

The scope of a type parameter declared by a type-parameter-list on a class-declaration
(8§10.1) is the class-base, type-parameter-constraints-clauses, and class-body of that class-
declaration.

The scope of a type parameter declared by a type-parameter-list on a struct-declaration
(§11.1) is the struct-interfaces, type-parameter-constraints-clauses, and struct-body of that
struct-declaration.

The scope of a type parameter declared by a type-parameter-list on an interface-declaration
(813.1) is the interface-base, type-parameter-constraints-clauses, and interface-body of that
interface-declaration.



3.7 Scopes

The scope of a type parameter declared by a type-parameter-list on a delegate-declaration
(8§15.1) is the return-type, formal-parameter-list, and type-parameter-constraints-clauses of
that delegate-declaration.

The scope of a member declared by a class-member-declaration (§10.1.6) is the class-body in
which the declaration occurs. In addition, the scope of a class member extends to the class-
body of those derived classes included in the accessibility domain (§3.5.2) of the member.

The scope of a member declared by a struct-member-declaration (§11.2) is the struct-body
in which the declaration occurs.

The scope of a member declared by an enum-member-declaration (§14.3) is the enum-body
in which the declaration occurs.

The scope of a parameter declared in a method-declaration (§10.6) is the method-body of
that method-declaration.

The scope of a parameter declared in an indexer-declaration (§10.9) is the accessor-
declarations of that indexer-declaration.

The scope of a parameter declared in an operator-declaration (§10.10) is the block of that
operator-declaration.

The scope of a parameter declared in a constructor-declaration (§10.11) is the constructor-
initializer and block of that constructor-declaration.

The scope of a parameter declared in a lambda-expression (§7.14) is the lambda-expression-
body of that lambda-expression.

'€

The scope of a parameter declared in an anonymous-method-expression (§7.14) is the block
of that anonymous-method-expression.

The scope of a label declared in a labeled-statement (§8.4) is the block in which the declara-
tion occurs.

oe)
)
),
(@]
0
o
S
o
o
©
~
0

The scope of a local variable declared in a local-variable-declaration (§8.5.1) is the block in
which the declaration occurs.

The scope of a local variable declared in a switch-block of a switch statement (§8.7.2) is
the switch-block.

The scope of a local variable declared in a for-initializer of a for statement (§8.8.3) is the
for-initializer, the for-condition, the for-iterator, and the contained statement of the for
statement.

The scope of a local constant declared in a local-constant-declaration (§8.5.2) is the block
in which the declaration occurs. It is a compile-time error to refer to a local constant in a
textual position that precedes its constant-declarator.

The scope of a variable declared as part of a foreach-statement, using-statement, lock-
statement, or query-expression is determined by the expansion of the given construct.



3. Basic Concepts

Within the scope of a namespace, class, struct, or enumeration member, it is possible to
refer to the member in a textual position that precedes the declaration of the member. For
example, in

class A
{
void F() {
i=1;
}
int i = 0;
}

it is valid for F to refer to i before it is declared.

Within the scope of a local variable, it is a compile-time error to refer to the local variable
in a textual position that precedes the local-variable-declarator of the local variable. For
example,

class A
{
int i = 0;
void F() {
i=1;
int i;
i=2;

// Error, use precedes declaration

}

void G() {
int § = (3 = 1); // valid
}

void H() {
int a =1, b = ++a; // Valid

0
L
=%
()
o
c
o
()
=
(7]
©
o0

}
}

3.

In the preceding F method, the first assignment to i specifically does not refer to the field
declared in the outer scope. Rather, it refers to the local variable and results in a compile-
time error because it textually precedes the declaration of the variable. In the G method, the
use of j in the initializer for the declaration of j is valid because the use does not precede
the local-variable-declarator. In the H method, a subsequent local-variable-declarator correctly
refers to a local variable declared in an earlier local-variable-declarator within the same local-
variable-declaration.

The scoping rules for local variables are designed to guarantee that the meaning of a name
used in an expression context is always the same within a block. If the scope of a local vari-
able were to extend only from its declaration to the end of the block, then in the preceding

169



3.7 Scopes

example, the first assignment would assign to the instance variable and the second assign-
ment would assign to the local variable, possibly leading to compile-time errors if the state-
ments of the block were later rearranged.

The meaning of a name within a block may differ based on the context in which the name
is used. In the example

using System;
class A {}

class Test
{
static void Main() {
string A = "hello, world";
string s = A; // Expression context

Type t = typeof(A); // Type context
Console.WritelLine(s); // Writes "hello, world"
Console.WriteLine(t); // Writes "A"

}

the name A is used in an expression context to refer to the local variable A and in a type
context to refer to the class A.

3.7.1 Name Hiding

The scope of an entity typically encompasses more program text than the declaration space
of the entity. In particular, the scope of an entity may include declarations that introduce
new declaration spaces containing entities of the same name. Such declarations cause the
original entity to become hidden. Conversely, an entity is said to be visible when it is not
hidden.

'€

Name hiding occurs when scopes overlap through nesting and when scopes overlap
through inheritance. The characteristics of the two types of hiding are described in the fol-
lowing sections.

w
Q
2,
(g}
)
(=}
3
()
D
o
~
(2}

3.7.1.1 Hiding through Nesting

Name hiding through nesting can occur as a result of nesting namespaces or types within
namespaces, as a result of nesting types within classes or structs, and as a result of param-
eter and local variable declarations.

In the example

class A

{

int i = 0;

170



0
=
=%
()
o
c
o
()
=
(7]
©
o0

3.

3. Basic Concepts

171

void F() {
int i = 1;
}
void G() {
i=1;
}
}

within the F method, the instance variable i is hidden by the local variable i, but within the
G method, i still refers to the instance variable.

When a name in an inner scope hides a name in an outer scope, it hides all overloaded
occurrences of that name. In the example

class Outer

{
static void F(int i) {}
static void F(string s) {}
class Inner
{
void G() {
F(1); // Invokes Outer.Inner.F
F("Hello"); // Error
}
static void F(long 1) {}
}
}

the call F(1) invokes the F declared in Inner because all outer occurrences of F are hidden
by the inner declaration. For the same reason, the call F("Hello") results in a compile-time
error.

"= VLADIMIR RESHETNIKOV If a nested scope contains a member with the same
name as a member from an outer scope, then the member from the outer scope is not
always hidden due to the rule “If the member is invoked, all non-invocable members are
removed from the set” (see §7.3):

class A {
static void Foo() { }
class B {
const int Foo = 1;
void Bar() {
Foo(); // Okay
}
}
}




3.7 Scopes

3.7.1.2 Hiding through Inheritance
Name hiding through inheritance occurs when classes or structs redeclare names that were
inherited from base classes. This type of name hiding takes one of the following forms:

* A constant, field, property, event, or type introduced in a class or struct hides all base
class members with the same name.

* A method introduced in a class or struct hides all nonmethod base class members with
the same name, and all base class methods with the same signature (method name and
parameter count, modifiers, and types).

¢ An indexer introduced in a class or struct hides all base class indexers with the same
signature (parameter count and types).

The rules governing operator declarations (§10.10) make it impossible for a derived class
to declare an operator with the same signature as an operator in a base class. Thus, opera-
tors never hide one another.

Unlike hiding a name from an outer scope, hiding an accessible name from an inherited
scope causes a warning to be reported. In the example

class Base
{
public void F() {}
}
class Derived: Base
{
public void F() {} // Warning, hiding an inherited name
}

the declaration of F in Derived causes a warning to be reported. Hiding an inherited name
is specifically not an error, because that would preclude separate evolution of base classes.
For example, the preceding situation might have come about because a later version of
Base introduced an F method that wasn’t present in an earlier version of the class. If this
situation had been an error, then any change made to a base class in a separately versioned
class library could potentially cause derived classes to become invalid.

The warning caused by hiding an inherited name can be eliminated through use of the new
modifier:

class Base
{
public void F() {}
}
class Derived: Base
{
new public void F() {}
}

172

'€

oe)
)
),
(@]
0
o
S
o
o
©
~
0




3. Basic Concepts

The new modifier indicates that the F in Derived is “new,” and that it is, indeed, intended
to hide the inherited member.

A declaration of a new member hides an inherited member only within the scope of the
new member.

class Base
{
public static void F() {}
}
class Derived: Base
{
new private static void F() {} // Hides Base.F in Derived only
}
class MoreDerived: Derived
{
static void G() { F(); } // Invokes Base.F
}

In the preceding example, the declaration of F in Derived hides the F that was inherited from
Base. Because the new F in Derived has private access, however, its scope does not extend to
MoreDerived. Thus, the call F() in MoreDerived.G is valid and will invoke Base.F.

"= CHRIS SELLS If you find yourself using new to hide an instance method on the
base class, you're almost always going to be disappointed, if for no other reason than
a caller can simply cast to the base class to get to the “hidden” method. For example,

class Base { public void F() {} }

class Derived : Base { new public void F() {} }

Derived d = new Derived();

((Base)d).F(); // Base.F not so hidden as you'd like...

0
L
=%
()
o
c
o
()
=
(7]
©
o0

You'll be much happier if you pick a new name for the method in the derived class
instead.

3.

3.8 Namespace and Type Names

Several contexts in a C# program require a namespace-name or a type-name to be specified.

namespace-name:
namespace-or-type-name

type-name:
namespace-or-type-name

173



3.8 Namespace and Type Names

namespace-or-type-name:
identifier type-argument-list,
namespace-or-type-name . identifier type-argument-list,
qualified-alias-member

A namespace-name is a namespace-or-type-name that refers to a namespace. Following resolu-
tion as described later in this section, the namespace-or-type-name of a namespace-name must
refer to a namespace; otherwise, a compile-time error occurs. No type arguments (§4.4.1)
can be present in a namespace-name (only types can have type arguments).

A type-name is a namespace-or-type-name that refers to a type. Following resolution as
described later in this section, the namespace-or-type-name of a type-name must refer to a
type; otherwise, a compile-time error occurs.

If the namespace-or-type-name is a qualified-alias-member, its meaning is as described in
§9.7. Otherwise, a namespace-or-type-name has one of four forms:

o I

o I<A, ..., A>

® N.I

* N.IKA, ..., A>

where I is a single identifier, N is a namespace-or-type-name, and <A, ..., A > is an optional
type-arqument-list. When no type-argument-list is specified, consider K to be zero.

The meaning of a namespace-or-type-name is determined as follows:

e If the namespace-or-type-name is of the form I or of the form I<A, ..., A>:

- IfKis zero and the namespace-or-type-name appears within a generic method declara-
tion (§10.6) and if that declaration includes a type parameter (§10.1.3) with name I,
then the namespace-or-type-name refers to that type parameter.

- Otherwise, if the namespace-or-type-name appears within a type declaration, then for
each instance type T (§10.3.1), starting with the instance type of that type declara-
tion and continuing with the instance type of each enclosing class or struct decla-
ration (if any):

e If K is zero and the declaration of T includes a type parameter with name I, then
the namespace-or-type-name refers to that type parameter.

o Otherwise, if the namespace-or-type-name appears within the body of the type dec-
laration, and T or any of its base types contain a nested accessible type having
name I and K type parameters, then the namespace-or-type-name refers to that type

174

'€

oe)
)
),
(@]
0
o
S
o
o
©
~
0




0
L
=%
()
o
c
o
()
=
(7]
©
o0

3.

3. Basic Concepts

175

constructed with the given type arguments. If there is more than one such type, the
type declared within the more derived type is selected. Note that nontype mem-
bers (constants, fields, methods, properties, indexers, operators, instance construc-
tors, destructors, and static constructors) and type members with a different
number of type parameters are ignored when determining the meaning of the
namespace-or-type-name.

- If the previous steps were unsuccessful, then, for each namespace N, starting with the
namespace in which the namespace-or-type-name occurs, continuing with each enclos-
ing namespace (if any), and ending with the global namespace, the following steps
are evaluated until an entity is located:

e IfKis zero and I is the name of a namespace in N, then

- If the location where the namespace-or-type-name occurs is enclosed by a
namespace declaration for N and the namespace declaration contains an extern-
alias-directive or using-alias-directive that associates the name I with a namespace
or type, then the namespace-or-type-name is ambiguous and a compile-time error
occurs.

- Otherwise, the namespace-or-type-name refers to the namespace named I in N.

* Otherwise, if N contains an accessible type having name I and K type parame-
ters, then

- If K is zero and the location where the namespace-or-type-name occurs is enclosed
by a namespace declaration for N and the namespace declaration contains an
extern-alias-directive or using-alias-directive that associates the name I with a
namespace or type, then the namespace-or-type-name is ambiguous and a
compile-time error occurs.

- Otherwise, the namespace-or-type-name refers to the type constructed with the
given type arguments.

° Otherwise, if the location where the namespace-or-type-name occurs is enclosed by a
namespace declaration for N:

- If K is zero and the namespace declaration contains an extern-alias-directive or
using-alias-directive that associates the name I with an imported namespace or
type, then the namespace-or-type-name refers to that namespace or type.

- Otherwise, if the namespaces imported by the using-namespace-directives of the
namespace declaration contain exactly one type having name I and K type
parameters, then the namespace-or-type-name refers to that type constructed with
the given type arguments.



3.8 Namespace and Type Names

- Otherwise, if the namespaces imported by the using-namespace-directives of the
namespace declaration contain more than one type having name I and K type
parameters, then the namespace-or-type-name is ambiguous and an error occurs.

- Otherwise, the namespace-or-type-name is undefined and a compile-time error
occurs.

* Otherwise, the namespace-or-type-name is of the form N.I or of the form N.I<A , ..., A>.
N is first resolved as a namespace-or-type-name. If the resolution of N is not successful, a
compile-time error occurs. Otherwise, N.I or N.I<A, ..., A > is resolved as follows:

- IfKis zero and N refers to a namespace and N contains a nested namespace with name
I, then the namespace-or-type-name refers to that nested namespace.

- Otherwise, if N refers to a namespace and N contains an accessible type having name I
and K type parameters, then the namespace-or-type-name refers to that type constructed
with the given type arguments.

- Otherwise, if N refers to a (possibly constructed) class or struct type and N or any of its
base classes contain a nested accessible type having name I and K type parameters,
then the namespace-or-type-name refers to that type constructed with the given type
arguments. If there is more than one such type, the type declared within the more
derived type is selected. Note that if the meaning of N.I is being determined as part
of resolving the base class specification of N then the direct base class of N is consid-
ered to be object (§10.1.4.1).

'€

- Otherwise, N.I is an invalid namespace-or-type-name, and a compile-time error
occurs.

A namespace-or-type-name is permitted to reference a static class (§10.1.1.3) only if

* The namespace-or-type-name is the T in a namespace-or-type-name of the form T.1I, or

oe)
)
),
(@]
0
o
S
o
o
©
~
0

° The namespace-or-type-name is the T in a typeof-expression (§7.5.11) of the form
typeof(T).

3.8.1 Fully Qualified Names

Every namespace and type has a fully qualified name, which uniquely identifies the
namespace or type amongst all others. The fully qualified name of a namespace or type N
is determined as follows:

e If Nis a member of the global namespace, its fully qualified name is N.

* Otherwise, its fully qualified name is S.N, where S is the fully qualified name of the
namespace or type in which N is declared.

176



0
L
=%
()
o
c
o
()
=
(7]
©
o0

3.

3. Basic Concepts

177

In other words, the fully qualified name of N is the complete hierarchical path of identifiers
that lead to N, starting from the global namespace. Because every member of a namespace or
type must have a unique name, it follows that the fully qualified name of a namespace
or type is always unique.

The following example shows several namespace and type declarations along with their
associated fully qualified names.

class A {} // A
namespace X // X
{
class B // X.B
class C {} // X.B.C
}
namespace Y // X.Y
{
class D {} // X.Y.D
}
}
namespace X.Y // X.Y
{
class E {} // X.Y.E
}

"= JOSEPH ALBAHARI If a fully qualified name conflicts with a partially qualified
or unqualified name (a nested accessible type, for instance), the latter wins. Prefixing
the name with global:: forces the fully qualified name to win (§9.7). There’s little
chance of such a collision in human-written code, but with machine-written code, the
odds are greater. For this reason, some code generators in design tools and IDEs emit
the global: : prefix before all fully qualified type names to eliminate any possibility of
conflict.

3.9 Automatic Memory Management

C# employs automatic memory management, which frees developers from manually allo-
cating and freeing the memory occupied by objects. Automatic memory management poli-
cies are implemented by a garbage collector. The memory management life cycle of an
object is as follows:

1. When the object is created, memory is allocated for it, the constructor is run, and the
object is considered live.



3.9 Automatic Memory Management

2. If the object, or any part of it, cannot be accessed by any possible continuation of execu-
tion, other than the running of destructors, the object is considered no longer in use, and
it becomes eligible for destruction. The C# compiler and the garbage collector may
choose to analyze code to determine which references to an object may be used in the
future. For instance, if a local variable that is in scope is the only existing reference to an
object, but that local variable is never referred to in any possible continuation of execu-
tion from the current execution point in the procedure, the garbage collector may (but
is not required to) treat the object as no longer in use.

3. Once the object is eligible for destruction, at some unspecified later time the destructor
(§10.13) (if any) for the object is run. Unless overridden by explicit calls, the destruc-
tor for the object is run only once.

4. Once the destructor for an object is run, if that object, or any part of it, cannot be accessed
by any possible continuation of execution, including the running of destructors, the
object is considered inaccessible and the object becomes eligible for collection.

5. Atsome time after the object becomes eligible for collection, the garbage collector frees
the memory associated with that object.

The garbage collector maintains information about object usage. It uses this information to
make memory management decisions, such as where in memory to locate a newly created
object, when to relocate an object, and when an object is no longer in use or inaccessible.

Like other languages that assume the existence of a garbage collector, C# is designed so
that the garbage collector may implement a wide range of memory management policies.
For instance, C# does not require that destructors be run or that objects be collected as soon
as they are eligible, or that destructors be run in any particular order, or on any particular
thread.

The behavior of the garbage collector can be controlled, to some degree, via static methods
on the class System.GC. This class can be used to request a collection to occur, destructors
to be run (or not run), and so forth.

"s ERICLIPPERT Using these static methods to control the behavior of the garbage
collector is almost never a good idea. In production code, odds are good that the gar-
bage collector knows more about when would be a good time to do a collection than
your program does.

Explicit tweaking of the garbage collector behavior at runtime should typically be
limited to purposes such as forcing a collection for testing purposes.

178

'€

w
Q
2,
(g}
)
(=}
3
()
D
o
~
(2}




3. Basic Concepts

Because the garbage collector is allowed wide latitude in deciding when to collect objects
and run destructors, a conforming implementation may produce output that differs from
that shown by the following code. The program

using System;

class A
{
~AQ) |
Console.WriteLine("Destruct instance of A");
}
}
class B
{
object Ref;
public B(object o) {
Ref = o;
}
~B() {
Console.WriteLine("Destruct instance of B");
}
}
class Test
{
static void Main() {
B b = new B(new A());
b = null;
GC.Collect();
GC.WaitForPendingFinalizers();
}
}

0
L
=%
()
o
c
o
()
=
(7]
©
o0

creates an instance of class A and an instance of class B. These objects become eligible for
garbage collection when the variable b is assigned the value null, because after this time it
is impossible for any user-written code to access them. The output could be either

3.

Destruct instance of A
Destruct instance of B

or

Destruct instance of B
Destruct instance of A

because the language imposes no constraints on the order in which objects are garbage
collected.

179



3.9 Automatic Memory Management

In subtle cases, the distinction between “eligible for destruction” and “eligible for collec-
tion” can be important. For example,

using System;

class A

{
~AQ) o

Console.WriteLine("Destruct instance of A");

}

public void F() {
Console.WriteLine("A.F");
Test.RefA = this;

}
}
class B
{
public A Ref;
~B() {
Console.WritelLine("Destruct instance of B");
Ref.F();
}
}
class Test
{
public static A RefA;
public static B RefB;
w
static void Main() { y
RefB = new B(); w
RefA = new A(); o
RefB.Ref = RefA; I~
RefB = null; 0
RefA = null; S
o
// A and B now eligible for destruction {3
GC.Collect(); 7y
GC.WaitForPendingFinalizers();
// B now eligible for collection, but A is not
if (RefA != null)
Console.WriteLine("RefA is not null");
}
}

In this program, if the garbage collector chooses to run the destructor of A before the
destructor of B, then the output of this program might be

Destruct instance of A

Destruct instance of B

A.F
RefA is not null

180



0
L
=%
()
o
c
o
()
=
(7]
©
o0

3.

3. Basic Concepts

181

Although the instance of A was not in use and A’s destructor was run, it is still possible for
methods of A (in this case, F) to be called from another destructor. Also, running of a destruc-
tor may cause an object to become usable from the mainline program again. In this case, the
running of B’s destructor caused an instance of A that was previously not in use to become
accessible from the live reference Test.RefA. After the call to WaitForPendingFinalizers, the
instance of B is eligible for collection, but the instance of A is not, because of the reference
Test.RefA.

To avoid confusion and unexpected behavior, it is generally a good idea for destructors to
perform cleanup only on data stored in their object’s own fields, and not to perform any
actions on referenced objects or static fields.

"= ERIC LIPPERT It is an even better idea for the destructor to clean up only their
fields that contain data representing unmanaged objects, such as operating system
handles. Because you do not know which thread the destructor will run on or when it
will run, it is particularly important that the destructor have as few side effects as
possible.

The calls to Console.WriteLine in the example are obviously in violation of this good
advice to do only cleanup and not perform other actions. This code is intended solely
as a pedagogic aid. Real production code destructors should never attempt to do any-
thing that has a complex side effect such as console output.

An alternative to using destructors is to let a class implement the System.IDisposable
interface. This strategy allows the client of the object to determine when to release the
resources of the object, typically by accessing the object as a resource in a using statement
(88.13).

"= BRAD ABRAMS Nine times out of ten, using GC.Collect() is a mistake. It is
often an indication of a poor design that is being bandaided together. The garbage col-
lector is a finely tuned instrument, like a Porsche. Just as you would not play bumper
tag with a new Porsche, so you should generally avoid interfering with the garbage
collector’s algorithms. The garbage collector is designed to unobtrusively step in at
the right time and collect the most important unused memory. Kicking it with the call
GC.Collect() can throw off the balance and tuning. Before resorting to this solution,
take a few minutes to figure why it is required. Have you disposed of all your
instances? Have you dropped references where you could? Have you used weak ref-
erences in the right places?




3.10 Execution Order

"= KRZYSZTOF CWALINA Some people attribute the performance problems of mod-
ern VM-based systems to their use of garbage collection. The fact is that modern gar-
bage collectors are so efficient that there really isn’t much software left that would
have problems with the garbage collector’s performance in itself. The biggest perfor-
mance culprit is over-engineering of applications and, sadly, many framework
libraries.

"= BILLWAGNER These notes point out how few of your regular assumptions are
valid in the context of a destructor. Member variables may have already executed their
destructors. They are called on a different thread, so thread local storage may not be
valid. They are called by the system, so your application won't see errors reported by
destructors using exceptions. It’s hard to over-emphasize how defensively you need
to write destructors. Luckily, they are needed only rarely.

3.10 Execution Order

Execution of a C# program proceeds such that the side effects of each executing thread are
preserved at critical execution points. A side effect is defined as a read or write of a volatile
field, a write to a nonvolatile variable, a write to an external resource, and the throwing of
an exception. The critical execution points at which the order of these side effects must be
preserved are references to volatile fields (§10.5.3), lock statements (§8.12), and thread
creation and termination. The execution environment is free to change the order of execu-
tion of a C# program, subject to the following constraints:

* Data dependence is preserved within a thread of execution. That is, the value of each
variable is computed as if all statements in the thread were executed in original program
order.

¢ Initialization ordering rules are preserved (§10.5.4 and §10.5.5).

* The ordering of side effects is preserved with respect to volatile reads and writes (§10.5.3).
Additionally, the execution environment need not evaluate part of an expression if it can
deduce that the expression’s value is not used and that no needed side effects are pro-
duced (including any caused by calling a method or accessing a volatile field). When
program execution is interrupted by an asynchronous event (such as an exception
thrown by another thread), it is not guaranteed that the observable side effects will be
visible in the original program order.

182

'€

w
Q
ml
(@]
o
=}
S
o
®
°
~
(2}




Forewords by Miguel de Icaza Second Edition
and Anders Hejlsberg

Framework
Design Guidelines

Conventions, ldioms, and Patterns
for Reusable .NET Libraries

Krzysztof Cwalina
Brad Abrams

G Sinens| (™ f o]
Bookmarks| |l Delicious || & Digg Facebook StumbleUpon Reddit W Twitter



http://www.google.com/
http://delicious.com/
http://digg.com/
http://www.facebook.com/
http://www.stumbleupon.com/
http://www.reddit.com/
http://twitter.com/
http://www.informit.com/store/product.aspx?isbn=0321545613
http://www.informit.com/store/product.aspx?isbn=0321545613

BUY ME

Krzysztof Cwalina
Brad Abrams

Framework Design Guidelines

Conventions, Idioms, and Patterns for Reusable
.NET Libraries

Framework Design Guidelines, Second Edition, teaches developers the
best practices for designing reusable libraries for the Microsoft .NET Framework.
Expanded and updated for .NET 3.5, this new edition focuses on the design issues
that directly affect the programmability of a class library, specifically its publicly
accessible APIs.

This book can improve the work of any .NET developer producing code that other
developers will use. It includes copious annotations to the guidelines by thirty-five
prominent architects and practitioners of the .NET Framework, providing a lively
discussion of the reasons for the guidelines as well as examples of when to break
those guidelines.

Microsoft architects Krzysztof Cwalina and Brad Abrams teach framework design
from the top down. From their significant combined experience and deep insight,
you will learn

e The general philosophy and fundamental principles of framework design
e Naming guidelines for the various parts of a framework

e Guidelines for the design and extending of types and members of types
e [ssues affecting—and guidelines for ensuring—extensibility

e How (and how not) to design exceptions

e Guidelines for—and examples of-common framework design patterns

Guidelines in this book are presented in four major forms: Do, Consider, Avoid,
and Do not. These directives help focus attention on practices that should always
be used, those that should generally be used, those that should rarely be used,
and those that should never be used. Every guideline includes a discussion of its
applicability, and most include a code example to help illuminate the dialogue.

Framework Design Guidelines, Second Edition, is the only definitive source
of best practices for managed code API development, direct from the architects
themselves.

A companion DVD includes the Designing .NET Class Libraries video series,
instructional presentations by the authors on design guidelines for developing
classes and components that extend the .NET Framework. A sample API
specification and other useful resources and tools are also included.

Forewords by Miguel de lcaza

N
S d Editie
and Anders Hejlsberg econd Edition [p g

Framework
Design Guidelines

Conventions, Idioms, and Patterns
for Reusable .NET Libraries

Krzysztof Cwalina
Brad Abrams

A
vy

Addison
Wesley

informit.com/aw |

AVAILABLE

o BOOK: 97803215456
SAFARI ONLINE [Safart
EBOOK: 0321605012
KINDLE: 0321605004

About the Authors

Krzysztof Cwalina is a program manager
on the .NET Framework team at Microsoft.
He was a founding member of the .NET
Framework team and throughout his career
has designed many .NET Framework APIs
and framework development tools, such

as FxCop. He is currently leading a com-
panywide effort to develop, promote, and
apply framework design and architectural
guidelines to the .NET Framework. He

is also leading the team responsible for
delivering core .NET Framework APIs.
Krzysztof graduated with a B.S. and an
M.S. in computer science from the Univer-
sity of lowa. You can find his blog at http://
blogs.msdn.com/kcwalina.

Brad Abrams was a founding member

of the Common Language Runtime and
NET Framework teams at Microsoft
Corporation. He has been designing parts
of the .NET Framework since 1998 and

is currently Group Program Manager of
the .NET Framework team. Brad started

his framework design career building the
Base Class Library (BCL) that ships as

a core part of the .NET Framework. Brad
was also the lead editor on the Common
Language Specification (CLS), the .NET
Framework Design Guidelines, and the
libraries in the ECMA\ISO CLI Standard.
Brad has authored and coauthored multiple
publications, including Programming in
the .NET Environment and .NET Framework
Standard Library Annotated Reference,
Volumes 1 and 2. Brad graduated from
North Carolina State University with a B.S.
in computer science. You can find his most
recent musings on his blog at http://blogs.
msdn.com/BradA.


http://www.informit.com/store/product.aspx?isbn=0321545613
http://www.informit.com/store/product.aspx?isbn=0321545613
http://www.informit.com/imprint/index.aspx?st=61085
http://www.informit.com/imprint/index.aspx?st=61085
http://www.safaribooksonline.com/Corporate/Index/

3

Naming Guidelines

FOLLOWING A CONSISTENT set of naming conventions in the development
of a framework can be a major contribution to the framework’s usabil-
ity. It allows the framework to be used by many developers on widely sepa-
rated projects. Beyond consistency of form, names of framework elements
must be easily understood and must convey the function of each element.

The goal of this chapter is to provide a consistent set of naming conven-
tions that results in names that make immediate sense to developers.

Most of the naming guidelines are simply conventions that have no
technical rationale. However, following these naming guidelines will
ensure that the names are understandable and consistent.

Although adopting these naming conventions as general code devel-
opment guidelines would result in more consistent naming throughout
your code, you are required only to apply them to APIs that are publicly
exposed (public or protected types and members, and explicitly imple-
mented interfaces).

"= KRZYSZTOF CWALINA The team that develops the .NET Framework
Base Class Library spends an enormous amount of time on naming and
considers it to be a crucial part of framework development.

185



186

Naming Guidelines

This chapter describes general naming guidelines, including how to
use capitalization, mechanics, and certain specific terms. It also provides
specific guidelines for naming namespaces, types, members, parameters,
assemblies, and resources.

3.1 Capitalization Conventions

Because the CLR supports many languages that might or might not be
case sensitive, case alone should not be used to differentiate names. How-
ever, the importance of case in enhancing the readability of names cannot
be overemphasized. The guidelines in this chapter lay out a simple method
for using case that, when applied consistently, make identifiers for types,
members, and parameters easy to read.

3.1.1 Capitalization Rules for Identifiers

To differentiate words in an identifier, capitalize the first letter of each
word in the identifier. Do not use underscores to differentiate words, or for
that matter, anywhere in identifiers. There are two appropriate ways to
capitalize identifiers, depending on the use of the identifier:

 PascalCasing

* camelCasing

"= BRAD ABRAMS In the initial design of the Framework, we had hun-
dreds of hours of debate about the naming style. To facilitate these debates,
we coined a number of terms. With Anders Hejlsberg, the original designer
of Turbo Pascal, and a key member of the design team, it is no wonder that
we chose the term PascalCasing for the casing style popularized by the
Pascal programming language. We were somewhat cute in using the term
camelCasing for the casing style that looks something like the hump on a
camel. We used the term SCREAMING_CAPS to indicate an all-uppercase
style. Luckily, this style (and name) did not survive in the final guideline.

The PascalCasing convention, used for all identifiers except parameter
names, capitalizes the first character of each word (including acronyms
over two letters in length), as shown in the following examples:



3.1 Capitalization Conventions

PropertyDescriptor
HtmlTag

A special case is made for two-letter acronyms in which both letters are
capitalized, as shown in the following identifier:

I0Stream

The camelCasing convention, used only for parameter names, capital-
izes the first character of each word except the first word, as shown in the
following examples. As the example also shows, two-letter acronyms that
begin a camel-cased identifier are both lowercase.

propertyDescriptor
ioStream
htmlTag

The following are two basic capitalization guidelines for identifiers:

v/ DO use PascalCasing for namespace, type, and member names consist-
ing of multiple words.

For example, use TextColor rather than Textcolor or Text_color.
Single words, such as Button, simply have initial capitals. Compound
words that are always written as a single word, like endpoint, are
treated as single words and have initial capitals only. More information
on compound words is given in section 3.1.3.

v/ DO use camelCasing for parameter names.

Table 3-1 describes the capitalization rules for different types of
identifiers.

"= BRAD ABRAMS An early version of this table included a convention
for instance field names. We later adopted the guideline that you should
almost never use publicly exposed instance fields and should use properties
instead. Thus, the guideline for publicly exposed instance fields was no lon-
ger needed. For the record, the convention was camelCasing.

187



188 Naming Guidelines

TasLE 3-1: Capitalization Rules for Different Types of Identifiers

Identifier Casing Example
Namespace Pascal namespace System.Security { ... }
Type Pascal public class StreamReader { ... }
Interface Pascal public interface IEnumerable { ... }
Method Pascal public class Object {
public virtual string ToString();
}
Property Pascal public class String {
public int Length { get; }
}
Event Pascal public class Process {
public event EventHandler Exited;
}
Field Pascal public class MessageQueue {
public static readonly TimeSpan
InfiniteTimeout;
}
public struct UInt32 {
public const Min = 0;
}
Enum value Pascal public enum FileMode {
Append,
}
Parameter Camel public class Convert {
public static int ToInt32(string
value);
}

3.1.2 Capitalizing Acronyms

In general, it is important to avoid using acronyms in identifier names
unless they are in common usage and are immediately understandable to
anyone who might use the framework. For example, HTML, XML, and IO
are all well understood, but less well-known acronyms should definitely

be avoided.




3.1 Capitalization Conventions

"= KRZYSZTOF CWALINA Acronyms are distinct from abbreviations, which
should never be used in identifiers. An acronym is a word made from the
initial letters of a phrase, whereas an abbreviation simply shortens a word.

By definition, an acronym must be at least two characters. Acronyms of
three or more characters follow the guidelines of any other word. Only the
first letter is capitalized, unless it is the first word in a camel-cased param-
eter name, which is all lowercase.

As mentioned in the preceding section, two-character acronyms (e.g.,
IO) are treated differently, primarily to avoid confusion. Both characters
should be capitalized unless the two-character acronym is the first word in
a camel-cased parameter name, in which case both characters are lower-
case. The following examples illustrate all of these cases:

public void StartIO(Stream ioStream, bool closeIOStream);
public void ProcessHtmlTag(string htmlTag)

v Do capitalize both characters of two-character acronyms, except the
first word of a camel-cased identifier.

System.IO
public void StartIO(Stream ioStream)

v bo capitalize only the first character of acronyms with three or more
characters, except the first word of a camel-cased identifier.

System.Xml
public void ProcessHtmlTag(string htmlTag)

v/ DO NOT capitalize any of the characters of any acronyms, whatever
their length, at the beginning of a camel-cased identifier.

"= BRAD ABRAMS In my time working on the NET Framework, I have
heard every possible excuse for violating these naming guidelines. Many
teams feel that they have some special reason to use case differently in their
identifiers than in the rest of the Framework. These excuses include consis-
tency with other platforms (MFC, HTML, etc.), avoiding geopolitical issues

189



190

Naming Guidelines

(casing of some country names), honoring the dead (abbreviation names
that came up with some crypto algorithm), and the list goes on and on. For
the most part, our customers have seen the places in which we have diverged
from these guidelines (for even the best excuse) as warts in the Framework.
The only time I think it really makes sense to violate these guidelines is
when using a trademark as an identifier. However, I suggest not using
trademarks, because they tend to change faster than APIs do.

"= BRAD ABRAMS Here is an example of putting these naming guide-
lines to the test. We have the class shown here in the Framework today. It
successfully follows the guidelines for casing and uses Argb rather than
ARGB. But we have actually gotten bug reports along the lines of “How do
you convert a color from an ARGB value—all I see are methods to convert
‘from argument b.”?”

public struct Color {

public static Color FromArgb(int alpha, Color baseColor);

public static Color FromArgb(int alpha, int red, int green, int blue);
public static Color FromArgb(int argb);

public static Color FromArgb(int red, int green, int blue);

¥

In retrospect, should this have been a place where we violated the guidelines
and used FromARGB? I do not think so. It turns out that this is a case of overab-
breviation. RGB is a well-recognized acronym for red-green-blue values. An
ARGB value is a relatively uncommon abbreviation that includes the alpha
channel. It would have been clearer to name these AlphaRgb and would have
been more consistent in naming with the rest of the Framework.

public struct Color {

public static Color FromAlphaRgb(int alpha, Color baseColor);

public static Color FromAlphaRgb(int alpha, int red, int green, int blue);
public static Color FromAlphaRgb(int argb);

public static Color FromAlphaRgb(int red, int green, int blue);




3.1 Capitalization Conventions

3.1.3 Capitalizing Compound Words and Common Terms
Most compound terms are treated as single words for purposes of
capitalization.

X DO NOT capitalize each word in so-called closed-form compound
words.

These are compound words written as a single word, such as endpoint.
For the purpose of casing guidelines, treat a closed-form compound
word as a single word. Use a current dictionary to determine if a com-
pound word is written in closed form.

Table 3-2 shows capitalization for some of the most commonly used
compound words and common terms.

TasLe 3-2: Capitalization and Spelling for Common Compound Words and Common Terms

Pascal Camel Not
BitFlag bitFlag Bitflag
Callback callback CallBack
Canceled canceled Cancelled
DoNot doNot Don't
Email email EMail
Endpoint endpoint EndPoint
FileName fileName Filename
Gridline gridline GridLine
Hashtable hashtable HashTable
Id id ID
Indexes indexes Indices
LogOff logOff LogOut

Continues

191



m Naming Guidelines

TasLe 3.2: Continued

Pascal Camel Not

LogOn logOn LogIn
Metadata metadata MetaData, metaData
Multipanel multipanel MultiPanel
Multiview multiview MultiView
Namespace namespace NameSpace
Ok ok OK

Pi pi PI
Placeholder placeholder PlaceHolder
SignlIn signIn SignOn
SignOut signOut SignOff
UserName userName Username
WhiteSpace whiteSpace Whitespace
Writable writable Writeable

Two other terms that are in common usage are in a category by them-
selves, because they are common slang abbreviations. The two words Ok
and Id (and they should be cased as shown) are the exceptions to the guide-
line that no abbreviations should be used in names.

"= BRAD ABRAMS Table 3-2 presents specific examples found in the
development of the .NET Framework. You might find it useful to create
your own appendix to this table for compound words and other terms com-
monly used in your domain.




3.1 Capitalization Conventions

"= BRAD ABRAMS One abbreviation commonly used in COM interface
names was Ex (for interfaces that were extended versions of previously
existing interfaces). This abbreviation should be avoided in reusable librar-
ies. Use instead a meaningful name that describes the new functionality. For
example, rather than IDispatchEx, consider IDynamicDispatch.

3.1.4 Case Sensitivity

Languages that can run on the CLR are not required to support case
sensitivity, although some do. Even if your language supports it, other
languages that might access your framework do not. Any APIs that are
externally accessible, therefore, cannot rely on case alone to distinguish
between two names in the same context.

"s PAULVICK When it came to the question of case sensitivity, there was
no question in the minds of the Visual Basic team that the CLR had to sup-
port case insensitivity as well as case sensitivity. Visual Basic has been case
insensitive for a very long time, and the shock of trying to move VB devel-
opers (including myself) into a case-sensitive world would have made any
of the other challenges we faced pale in comparison. Add to that the fact
that COM is case insensitive, and the matter seemed pretty clear. The CLR
would have to take case insensitivity into account.

"= JEFFREY RICHTER To be clear, the CLR is actually case sensitive. Some
programming languages, like Visual Basic, are case insensitive. When the
VB compiler is trying to resolve a method call to a type defined in a case-
sensitive language like C#, the compiler (not the CLR) figures out the actual
case of the method’s name and embeds it in metadata. The CLR knows
nothing about this. Now if you are using reflection to bind to a method, the
reflection APIs do offer the ability to do case-insensitive lookups. This is the
extent to which the CLR supports case insensitivity.

There is really only one guideline for case sensitivity, albeit an impor-
tant one.

193



194

Naming Guidelines

X DO NOT assume that all programming languages are case sensitive.
They are not. Names cannot differ by case alone.

3.2 General Naming Conventions

This section describes general naming conventions that relate to word
choice, guidelines on using abbreviations and acronyms, and recommen-
dations on how to avoid using language-specific names.

3.2.1 Word Choice

It is important that names of framework identifiers make sense on first
reading. Identifier names should clearly state what each member does and
what each type and parameter represents. To this end, it is more important
that the name be clear than that it be short. Names should correspond to
scenarios, logical or physical parts of the system, and well-known con-
cepts rather than to technologies or architecture.

v/ DO choose easily readable identifier names.
For example, a property named HorizontalAlignment is more English-

readable than AlignmentHorizontal.

v/ DO favor readability over brevity. The property name CanScroll-
Horizontally is better than ScrollableX (an obscure reference to the
X-axis).

X DO NOT use underscores, hyphens, or any other non-alphanumeric
characters.

X DO NOT use Hungarian notation.

"= BRENT RECTOR It might be useful here to define what Hungarian
notation is. It is the convention of prefixing a variable name with some low-
ercase encoding of its data type. For example, the variable uiCount would
be an unsigned integer. Another common convention also adds a prefix
indicating the scope of the variable in addition to or in place of the type (see
Jeffrey’s later example of static and member variable-scope prefixes).




3.2 General Naming Conventions

One downside of Hungarian notation is that developers frequently
change the type of variables during early coding, which requires the name
of the variable to also change. Additionally, while commonly used funda-
mental data types (integers, characters, etc.) had well-recognized and stan-
dard prefixes, developers frequently fail to use a meaningful and consistent
prefix for their custom data types.

"= KRZYSZTOF CWALINA There have always been both positive and
negative effects of using the Hungarian naming convention, and they still
exist today. Positives include better readability (if used correctly). Nega-
tives include cost of maintenance, confusion if maintenance was not done
properly, and finally, Hungarian makes the API more cryptic (less approach-
able) to some developers. In the world of procedural languages (e.g., C)
and the separation of the System APIs for advanced developers from
framework libraries for a much wider developer group, the positives
seemed to be greater than the negatives. Today, with System APIs designed
to be approachable to more developers, and with object-oriented lan-
guages, the trade-off seems to be pulling in the other direction. OO encap-
sulation brings variable declaration and usage points closer together, OO
style favors short, well-factored methods, and abstractions often make the
exact type less important or even meaningless.

"= JEFFREY RICHTER TI'll admit it; I miss Hungarian notation. Although
in many editors, like Visual Studio, you can hover the mouse over a vari-
able and the editor pops up the type, this does not work when reading
source code in a book chapter or magazine article. Fortunately, in OOP, vari-
ables tend have a short scope, so that you only need to scan a few lines to
find the definition of a variable. However, this is not true for a type’s static
and instance fields. Personally, I make all my fields private, and I now pre-
fix my instance fields with “m_" and my static fields with “s_" so that I can
easily spot fields in my methods. Luckily, this does not conflict with the
guidelines described in this chapter, because they only cover publicly
exposed members. This helps me a lot, but I still can’t tell what type a vari-
able represents. I rely on my editor’s tool tips for this.

195



196

Naming Guidelines

ber fields that this practice could prevent. Similarly, static fields are a dan-

"= ANTHONY MOORE While most coding guidelines in use at Microsoft
do not promote the use of “m_" and “s_" described above, I believe that
practice is worth consideration. For the most part, the consistency of use of
a coding guideline is more important than its details. However, in this case
I've seen a few bugs caused by confusion between local variables and mem-

gerous construct, because for a library you generally need to make them—as
well as any instances transitively hanging off them—threadsafe. Making
them look different from regular members makes it easier to find thread-
safety errors when reviewing code.

X AvoID using identifiers that conflict with keywords of widely used pro-

gramming languages.

According to Rule 4 of the Common Language Specification (CLS), all
compliant languages must provide a mechanism that allows access to
named items that use a keyword of that language as an identifier. C#,
for example, uses the @ sign as an escape mechanism in this case. How-
ever, it is still a good idea to avoid common keywords because it is
much more difficult to use a method with the escape sequence than one
without it.

biguate the situation to the compiler (using square brackets), but I was

"s JEFFREY RICHTER When I was porting my Applied Microsoft .NET
Framework Programming book from C# to Visual Basic, I ran into this situa-
tion a lot. For example, the class library has Delegate, Module, and
Assembly classes, and Visual Basic uses these same terms for keywords.
This problem is exacerbated by the fact that VB is a case-insensitive lan-
guage. Visual Basic, like C#, has a way to escape the keywords to disam-

surprised that the VB team selected keywords that conflict with so many
class library names.

3.2.2 Using Abbreviations and Acronyms
In general, do not use abbreviations or acronyms in identifiers. As stated
earlier, it is more important for names to be readable than it is for them to



3.2 General Naming Conventions

be brief. It is equally important not to use abbreviations and acronyms that
are not generally understood—that is, do not use anything that the large
majority of people who are not experts in a given field would not know the
meaning of immediately.

X DO NOT use abbreviations or contractions as part of identifier names.
For example, use GetWindow rather than Getwin.

X DO NOT use any acronyms that are not widely accepted, and even if
they are, only when necessary.

For example, Ul is used for User Interface and HTML is used for Hyper
Text Markup Language. Although many framework designers feel that
some recent acronym will soon be widely accepted, it is bad practice to
use it in framework identifiers.

For acronym capitalization rules, see section 3.1.2.

"= BRAD ABRAMS We continually debate about whether a given acro-
nym is well known or not. A good divining rod is what I call the grep test.
Simply use some search engine to grep the Web for the acronym. If the first
few results returned are indeed the meaning you intend, it is likely that
your acronym qualifies as well known; if you don’t get those search results,
think harder about the name. If you fail the test, don’t just spell out the acro-
nym but consider how you can be descriptive in the name.

3.2.3 Avoiding Language-Specific Names

Programming languages that target the CLR often have their own names
(aliases) for the so-called primitive types. For example, int is a C# alias for
System.Int32. To ensure that your framework can take full advantage of
the cross-language interoperation that is one of the core features of the
CLR, it is important to avoid the use of these language-specific type names
in identifiers.

197



198 Naming Guidelines

"= JEFFREY RICHTER Personally, I take this a step further and never use
the language’s alias names. I find that the alias adds nothing of value and
introduces enormous confusion. For example, I'm frequently asked what
the difference is between String and string in C#. I've even heard people
say that strings (lowercase “S”) are allocated on the stack while Strings
(uppercase “S”) are allocated on the heap. In my book CLR via C#, I give
several reasons in addition to the one offered here for avoiding the alias
names. Another example of a class library/language mismatch is the
NullReferenceException class, which can be thrown by VB code. But VB
uses Nothing, not null.

v’ DO use semantically interesting names rather than language-specific
keywords for type names.

For example, GetLength is a better name than GetInt.

v DO usea generic CLR type name, rather than a language-specific name,
in the rare cases when an identifier has no semantic meaning beyond
its type.

For example, a method converting to System.Int64 should be named
ToInt64, not ToLong (because System.Int64 is a CLR name for the
C#-specific alias 1ong). Table 3-3 presents several base data types using
the CLR type names (as well as the corresponding type names for C#,
Visual Basic, and C++).

TasLe 3-3: CLR Type Names for Language-Specific Type Names

C# Visual Basic C++ CLR
sbyte SByte char SByte
byte Byte unsigned char Byte
short Short short Intl6
ushort UIntl6 unsigned short UIntl6
int Integer int Int32




3.2 General Naming Conventions

C# Visual Basic C++ CLR
uint UInt32 unsigned int UInt32
long Long __int64 Int64
ulong UInt64 unsigned __int64 UInt64
float Single float Single
double Double double Double
bool Boolean bool Boolean
char Char wchar_t Char
string String String String
object Object Object Object

v/ DO use a common name, such as value or item, rather than repeating the
type name, in the rare cases when an identifier has no semantic mean-
ing and the type of the parameter is not important.

The following is a good example of methods of a class that supports
writing a variety of data types into a stream:

void Write(double value);
void Write(float value);
void Write(short value);

3.2.4 Naming New Versions of Existing APls

Sometimes a new feature cannot be added to an existing type even though
the type’s name implies that it is the best place for the new feature. In such
a case, a new type needs to be added, which often leaves the framework
designer with the difficult task of finding a good new name for the new
type. Similarly, an existing member often cannot be extended or over-
loaded to provide additional functionality, and so a member with a new
name needs to be added. The guidelines that follow describe how to choose

199



200 Naming Guidelines

names for new types and members that supersede or replace existing types
or members.

v/ DO use a name similar to the old API when creating new versions of an
existing APL

This helps to highlight the relationship between the APIs.

class AppDomain {

[Obsolete("AppDomain.SetCachePath has been deprecated. Please use
AppDomainSetup.CachePath instead.")]

public void SetCachePath(String path) { ... }
}

class AppDomainSetup {
public string CachePath { get { ... }; set { ... }; }
}

v bo prefer adding a suffix rather than a prefix to indicate a new version
of an existing API.

"= VANCE MORRISON We did exactly this when we added a faster (but
not completely backward-compatible) version of ReaderWriterLock. We
called it ReaderWriterLockSlim. There was debate whether we should call
it S1imReaderWriterLock (following the guideline that you write it like
you say it in English), but decided the discoverability (and the fact that lexi-
cal sorting would put them close to each other) was more important.

This will assist discovery when browsing documentation, or using
Intellisense. The old version of the API will be organized close to the
new APIs, because most browsers and Intellisense show identifiers in
alphabetical order.

v/ CONSIDER using a brand new, but meaningful identifier, instead of
adding a suffix or a prefix.

v/ DO use a numeric suffix to indicate a new version of an existing API,
particularly if the existing name of the API is the only name that makes
sense (i.e., if it is an industry standard) and if adding any meaningful
suffix (or changing the name) is not an appropriate option.



3.2 General Naming Conventions 201

// old API

[Obsolete("This type is obsolete. Please use the new version of the same
class, X509Certificate2.")]

public class X509Certificate { ... }

// new API

public class X509Certificate2 { ... }

"= KRZYSZTOF CWALINA 1 would use numeric suffixes as the very last
resort. A much better approach is to use a new name or a meaningful
suffix.

The BCL team shipped a new type named TimeZone2 in one of the early
prereleases of the NET Framework 3.5. The name immediately became the
center of a controversy in the blogging community. After a set of lengthy
discussions, the team decided to rename the type to TimeZoneInfo, which
is not a great name but is much better than TimeZone2.

It’s interesting to note that nobody dislikes X509Certificate2. My inter-
pretation of this fact is that programmers are more willing to accept the
ugly numeric suffix on rarely used library types somewhere in the corner of
the Framework than on a core type in the System namespace.

X DO NOT use the “Ex” (or a similar) suffix for an identifier to distinguish
it from an earlier version of the same API.

[Obsolete("This type is obsolete. ...")]
public class Car { ... }
// new API

public class Carkx {...
public class CarNew {...
public class Car2 {...
public class Automobile { ...

// the wrong way
// the wrong way
// the right way
// the right way

e e

v/ DO use the “64” suffix when introducing versions of APIs that operate
on a 64-bit integer (a long integer) instead of a 32-bit integer. You only
need to take this approach when the existing 32-bit API exists; don’t do
it for brand new APIs with only a 64-bit version.

For example, various APIs on System.Diagnostics.Process return
Int32 values representing memory sizes, such as PagedMemorySize or



202

Naming Guidelines

PeakWorkingSet. To appropriately support these APIs on 64-bit systems,
APIs have been added that have the same name but a “64” suffix.

public class Process {
// old APIs
public int PeakWorkingSet { get; }
public int PagedMemorySize { get; }
/...
// new APIs
public long PeakWorkingSet64 { get; }
public long PagedMemorySize64 { get; }

"= KIT GEORGE Note that this guideline applies only to retrofitting APIs
that have already shipped. When designing a brand new API, use the most
appropriate type and name for the API that will work on all platforms, and
avoid using both “32” and “64” suffixes. Consider using overloading.

3.3 Names of Assemblies and DLLs

An assembly is the unit of deployment and identity for managed code pro-
grams. Although assemblies can span one or more files, typically an assem-
bly maps one-to-one with a DLL. Therefore, this section describes only
DLL naming conventions, which then can be mapped to assembly naming
conventions.

"= JEFFREY RICHTER Multifile assemblies are rarely used, and Visual
Studio has no built-in support for them.

Keep in mind that namespaces are distinct from DLL and assembly
names. Namespaces represent logical groupings for developers, whereas
DLLs and assemblies represent packaging and deployment boundaries.
DLLs can contain multiple namespaces for product factoring and other
reasons. Because namespace factoring is different than DLL factoring, you
should design them independently. For example, if you decide to name
your DLL MyCompany .MyTechnology, it does not mean that the DLL has to
contain a namespace named MyCompany .MyTechnology, though it can.



3.3 Names of Assemblies and DLLs 203

"= JEFFREY RICHTER Programmers are frequently confused by the fact
that the CLR does not enforce a relationship between namespaces and
assembly file names. For example, System.I0.FileStreamisinMSCorLib.
dll, and System.IO.FileSystemWatcher is in System.dll. As you can
see, types in a single namespace can span multiple files. Also notice that the
.NET Framework doesn’t ship with a System.I0.d11 file at all.

"= BRAD ABRAMS We decided early in the design of the CLR to separate
the developer view of the platform (namespaces) from the packaging and
deployment view of the platform (assemblies). This separation allows each
to be optimized independently based on its own criteria. For example, we
are free to factor namespaces to group types that are functionally related
(e.g., all the I/O stuff is in System. I0), but the assemblies can be factored for
performance (load time), deployment, servicing, or versioning reasons.

v/ DO choose names for your assembly DLLs that suggest large chunks of
functionality, such as System.Data.

Assembly and DLL names don’t have to correspond to namespace
names, but it is reasonable to follow the namespace name when nam-
ing assemblies. A good rule of thumb is to name the DLL based on the
common prefix of the assemblies contained in the assembly. For exam-
ple, an assembly with two namespaces, MyCompany.MyTechnology.
FirstFeature and MyCompany.MyTechnology.SecondFeature, could be
called MyCompany .MyTechnology.dll.

\/ CONSIDER naming DLLs according to the following pattern:

<Company>.<Component>.dll

where <Component> contains one or more dot-separated clauses. For
example:

Microsoft.VisualBasic.dll
Microsoft.VisualBasic.Vsa.dll
Fabrikam.Security.dll
Litware.Controls.dll



204

Naming Guidelines

3.4 Names of Namespaces

As with other naming guidelines, the goal when naming namespaces is
creating sufficient clarity for the programmer using the framework to
immediately know what the content of the namespace is likely to be. The
following template specifies the general rule for naming namespaces:

<Company>. (<Product>|<Technology>)[.<Feature>][.<Subnamespace>]
The following are examples:

Microsoft.VisualStudio
Microsoft.VisualStudio.Design
Fabrikam.Math
Litware.Security

v bo prefix namespace names with a company name to prevent
namespaces from different companies from having the same name.

For example, the Microsoft Office automation APIs provided by Micro-
soft should be in the namespace Microsoft.0ffice.

"= BRAD ABRAMS It is important to use the official name of your com-
pany or organization when choosing the first part of your namespace name
to avoid possible conflicts. For example, if Microsoft had chosen to use MS
as its root namespace, it might have been confusing to developers at other
companies that use MS as an abbreviation.

v/ DO use a stable, version-independent product name at the second level

ofa hamespace name.

"= BRAD ABRAMS This means staying away from the latest cool and
catchy name that the marketing folks have come up with. It is fine to tweak
the branding of a product from release to release, but the namespace name
is going to be burned into your client’s code forever. Therefore, choose
something that is technically sound and not subject to the marketing whims
of the day.




3.4 Names of Namespaces 205

X DO NOT use organizational hierarchies as the basis for names in
namespace hierarchies, because group names within corporations tend
to be short-lived. Organize the hierarchy of namespaces around groups
of related technologies.

"= BRAD ABRAMS We added a set of controls to ASP.NET late in the ship
cycle for V1.0 of the .NET Framework that rendered for mobile devices.
Because these controls came from a team in a different division, our imme-
diate reaction was to put them in a different namespace (System.Web.
MobileControls). Then, after a couple of reorganizations and .NET Frame-
work versions, we realized a better engineering trade-off was to fold that
functionality into the existing controls in System.Web.Controls. In retro-
spect, we let internal organizational differences affect the public exposure of
the APIs, and we came to regret that later. Avoid this type of mistake in your
designs.

v/ DO use PascalCasing, and separate namespace components with peri-
ods (e.g., Microsoft.0ffice.PowerPoint). If your brand employs non-
traditional casing, you should follow the casing defined by your brand,
even if it deviates from normal namespace casing.

v/ CONSIDER using plural namespace names where appropriate.

For example, use System.Collections instead of System.Collection.
Brand names and acronyms are exceptions to this rule, however. For
example, use System.IO instead of System.IOs.

X DO NOT use the same name for a namespace and a type in that
namespace.

For example, do not use Debug as a namespace name and then also pro-
vide a class named Debug in the same namespace. Several compilers
require such types to be fully qualified.

These guidelines cover general namespace naming guidelines, but the
next section provides specific guidelines for certain special subnamespaces.



206

Naming Guidelines

3.4.1 Namespaces and Type Name Conflicts

Namespaces are used to organize types into a logical and easy-to-explore
hierarchy. They are also indispensable in resolving type name ambiguities
that might arise when importing multiple namespaces. However, that fact
should not be used as an excuse to introduce known ambiguities between
types in different namespaces that are commonly used together. Develop-
ers should not be required to qualify type names in common scenarios.

X DO NOT introduce generic type names such as Element, Node, Log, and

Message.

There is a very high probability that doing so will lead to type name
conflicts in common scenarios. You should qualify the generic type
names (FormElement, XmlNode, EventLog, SoapMessage).

There are specific guidelines for avoiding type name conflicts for differ-
ent categories of namespaces. Namespaces can be divided into the follow-
ing categories:

* Application model namespaces
¢ Infrastructure namespaces
¢ Core namespaces

* Technology namespace groups

3.4.1.1 Application Model Namespaces

Namespaces belonging to a single application model are very often used
together, but they are almost never used with namespaces of other appli-
cation models. For exarnple, the System.Windows.Forms namespace is very
rarely used together with the System.Web.UI namespace. The following is
a list of well-known application model namespace groups:

System.Windows*
System.Web.UI*



3.4 Names of Namespaces

X DO NOT give the same name to types in namespaces within a single
application model.

For example, do not add a type named Page to the System.Web.UI.
Adapters namespace, because the System.Web.UI namespace already
contains a type named Page.

3.4.1.2 Infrastructure Namespaces

This group contains namespaces that are rarely imported during develop-
ment of common applications. For example, .Design namespaces are
mainly used when developing programming tools. Avoiding conflicts with
types in these namespaces is not critical.

System.Windows.Forms.Design
*.Design
*.Permissions

3.4.1.3 Core Namespaces

Core namespaces include all System namespaces, excluding namespaces
of the application models and the Infrastructure namespaces. Core
namespaces include, among others, System, System.IO, System.Xml, and
System.Net.

X DO NOT give types names that would conflict with any type in the Core
namespaces.

For example, never use Stream as a type name. It would conflict with
System.IO.Stream, a very commonly used type.

By the same token, do not add a type named EventLog to the System.
Diagnostics.Events namespace, because the System.Diagnostics
namespace already contains a type named EventLog.

3.4.1.4 Technology Namespace Groups
This category includes all namespaces with the same first two namespace
nodes (<Company>.<Technology>*), such as Microsoft.Build.Utilities

207



208

Naming Guidelines

and Microsoft.Build.Tasks. It is important that types belonging to a
single technology do not conflict with each other.

X DO NOT assign type names that would conflict with other types within
a single technology.

X DO NOT introduce type name conflicts between types in technology
namespaces and an application model namespace (unless the technol-
ogy is not intended to be used with the application model).

For example, one would not add a type named Binding to the
Microsoft.VisualBasic namespace because the System.Windows.
Forms namespace already contains that type name.

3.5 Names of Classes, Structs, and Interfaces

In general, class and struct names should be nouns or noun phrases, because
they represent entities of the system. A good rule of thumb is that if you are
not able to come up with a noun or a noun phrase name for a class or a
struct, you probably should rethink the general design of the type. Inter-
faces representing roots of a hierarchy (e.g., IList<T>) should also use
nouns or noun phrases. Interfaces representing capabilities should use
adjectives and adjective phrases (e.g., IComparable<T>, IFormattable).

Another important consideration is that the most easily recognizable
names should be used for the most commonly used types, even if the name
fits some other less-used type better in the purely technical sense. For
example, a type used in mainline scenarios to submit print jobs to print
queues should be named Printer, rather than PrintQueue. Even though
technically the type represents a print queue and not the physical device
(printer), from the scenario point of view, Printer is the ideal name because
most people are interested in submitting print jobs and not in other opera-
tions related to the physical printer device (e.g., configuring the printer). If
you need to provide another type that corresponds, for example, to the
physical printer to be used in configuration scenarios, the type could be
called PrinterConfiguration or PrinterManager.



3.5 Names of Classes, Structs, and Interfaces

"= KRZYSZTOF CWALINA 1 know this goes against the technical preci-
sion that is one of the core character traits of most software engineers, but I
really do think it’s more important to have better names from the point of
view of the most common scenario, even if it results in slightly inconsistent
or even wrong type names from a purely technical point of view. Advanced
users will be able to understand slightly inconsistent naming. Most users
are usually not concerned with technicalities and will not even notice the
inconsistency, but they will appreciate the names guiding them to the most
important APIs.

Similarly, names of the most commonly used types should reflect usage
scenarios, not inheritance hierarchy. Most users use the leaves of an inheri-
tance hierarchy almost exclusively, and they are rarely concerned with the
structure of the hierarchy. Yet API designers often see the inheritance hier-
archy as the most important criterion for type name selection. For example,
Stream, StreamReader, TextReader, StringReader, and FileStream all
describe the place of each of the types in the inheritance hierarchy quite
well, but they obscure the most important information for the majority of
users: the type that they need to instantiate to read text from a file.

The naming guidelines that follow apply to general type naming.

v/ DO name classes and structs with nouns or noun phrases, using
PascalCasing.

This distinguishes type names from methods, which are named with
verb phrases.

v/ DO name interfaces with adjective phrases, or occasionally with nouns
or noun phrases.

Nouns and noun phrases should be used rarely and they might indi-
cate that the type should be an abstract class, and not an interface. See
section 4.3 for details about deciding how to choose between abstract
classes and interfaces.

X DO NOT give class names a prefix (e.g., “C”).

209



210

m Naming Guidelines

"= KRZYSZTOF CWALINA One of the few prefixes used is “1” for inter-
faces (as in ICollection), but that is for historical reasons. In retrospect, I
think it would have been better to use regular type names. In a majority of
the cases, developers don’t care that something is an interface and not an
abstract class, for example.

"= BRAD ABRAMS On the other hand, the “I” prefix on interfaces is a
clear recognition of the influence of COM (and Java) on the .NET Frame-
work. COM popularized, even institutionalized, the notation that interfaces
begin with “I.” Although we discussed diverging from this historic pattern,
we decided to carry forward the pattern because so many of our users were
already familiar with COM.

"= JEFFREY RICHTER Personally, I like the “1” prefix, and I wish we had
more stuff like this. Little one-character prefixes go a long way toward keep-
ing code terse and yet descriptive. As I said earlier, I use prefixes for my
private type fields because I find this very useful.

"s BRENT RECTOR Note: This is really another application of Hungarian
notation (though one without the disadvantages of the notation’s use in
variable names).

v/ CONSIDER ending the name of derived classes with the name of the

base class.

This is very readable and explains the relationship clearly. Some
examples of this in code are: ArgumentOutOfRangeException, which is a
kind of Exception, and SerializableAttribute, which is a kind of
Attribute. However, it is important to use reasonable judgment in
applying this guideline; for example, the Button class is a kind of



3.5 Names of Classes, Structs, and Interfaces 211

Control event, although Control doesn’t appear in its name. The fol-
lowing are examples of correctly named classes:

public class FileStream : Stream {...}
public class Button : Control {...}

v DO prefix interface names with the letter I, to indicate that the type is an
interface.

For example, IComponent (descriptive noun), ICustomAttribute-
Provider (noun phrase), and IPersistable (adjective) are appropriate
interface names. As with other type names, avoid abbreviations.

" JEFFREY RICHTER There is one interface I'm aware of that doesn’t fol-
low this guideline: System._AppDomain. It is very disconcerting to me
when [ see this type used without the uppercase I. Please don’t make this
same mistake in your code.

v/ DO ensure that the names differ only by the “I” prefix on the interface
name when you are defining a class—interface pair where the class is a
standard implementation of the interface.

The following example illustrates this guideline for the interface
IComponent and its standard implementation, the class Component:

public interface IComponent { ... }
public class Component : IComponent { ... }

"= PHILHAACK One place where the Framework violates this convention
is the class HttpSessionState, which you would suspect implements
IHttpSessionState, but you'd be wrong, as I was.

This inconsistency nearly bit us when we were developing our
HttpContextBase abstraction of HttpContext, because it seemed we could
expose the Session property as the IHttpSessionState interface, which
turned out to not be the case.




212

Naming Guidelines

3.5.1 Names of Generic Type Parameters

Generics were added to .NET Framework 2.0. The feature introduced a
new kind of identifier called type parameter. The following guidelines
describe naming conventions related to naming such type parameters:

v/ DO name generic type parameters with descriptive names unless a
single-letter name is completely self-explanatory and a descriptive
name would not add value.

public interface ISessionChannel<TSession> { ... }

public delegate TOutput Converter<TInput,TOutput>(TInput from);
public class Nullable<T> { ... }

public class List<T> { ... }

v/ CONSIDER using T as the type parameter name for types with one
single-letter type parameter.

public int IComparer<T> { ... }
public delegate bool Predicate<T>(T item);
public struct Nullable<T> where T:struct { ... }

v bo prefix descriptive type parameter names with T.

public interface ISessionChannel<TSession> where TSession : ISession{
TSession Session { get; }

}

v/ CONSIDER indicating constraints placed on a type parameter in the
name of the parameter.

For example, a parameter constrained to ISession might be called
TSession.

3.5.2 Names of Common Types
If you are deriving from or implementing types contained in the .NET
Framework, it is important to follow the guidelines in this section.

v/ DO follow the guidelines described in Table 3-4 when naming types
derived from or implementing certain .NET Framework types.



3.5 Names of Classes, Structs, and Interfaces

These suffixing guidelines apply to the whole hierarchy of the specified
base type. For example, it is not just types derived directly from System.
Exception that need the suffixes, but those derived from Exception

subclasses as well.

These suffixes should be reserved for the named types. Types derived
from or implementing other types should not use these suffixes. For

example, the following represent incorrect naming;:

public class ElementStream : Object { ... }
public class WindowsAttribute : Control { ... }

TasLe 3-4: Name Rules for Types Derived from or Implementing Certain Core Types

Base Type

Derived/Implementing Type Guideline

System.Attribute

v/ DO add the suffix “Attribute” to names of
custom attribute classes.

System.Delegate

v/ DO add the suffix “EventHandler” to names

of delegates that are used in events.

v/ DO add the suffix “Callback” to names of
delegates other than those used as event
handlers.

X DONOT add the suffix “Delegate” toa
delegate.

System.EventArgs

v/ DO add the suffix “EventArgs.”

System.Enum

X DO NOT derive from this class; use the
keyword supported by your language
instead; for example, in C#, use the enum
keyword.

X DO NOT add the suffix “Enum” or “Flag.”

System.Exception

v/ DO add the suffix “Exception.”

IDictionary
IDictionary<TKey,TValue>

v/ DO add the suffix “Dictionary.” Note that
IDictionary is aspecific type of
collection, but this guideline takes prece-
dence over the more general collections
guideline that follows.

Continues

213



214 Naming Guidelines

TasLe 3.4: Continued

Base Type Derived/Implementing Type Guideline

IEnumerable v/ DO add the suffix “Collection.”
ICollection

IList
IEnumerable<T>
ICollection<T>
IList<T>

System.IO.Stream v/ DO add the suffix “Stream.”

CodeAccessPermission v/ DO add the suffix “Permission.”
IPermission

3.5.3 Naming Enumerations

Names of enumeration types (also called enums) in general should follow
the standard type-naming rules (PascalCasing, etc.). However, there are
additional guidelines that apply specifically to enums.

v DO use a singular type name for an enumeration unless its values are
bit fields.

public enum ConsoleColor {
Black,
Blue,
Cyan,

v DO usea plural type name for an enumeration with bit fields as values,
also called flags enum.

[Flags]

public enum ConsoleModifiers {
Alt,
Control,
Shift



3.5 Names of Classes, Structs, and Interfaces 215

X DO NOT use an “Enum” suffix in enum type names.

For example, the following enum is badly named:

// Bad naming
public enum ColorEnum {

}

X DO NOT use “Flag” or “Flags” suffixes in enum type names.

For example, the following enum is badly named:

// Bad naming
[Flags]
public enum ColorFlags {

}

X DO NOT use a prefix on enumeration value names (e.g., “ad” for ADO
enums, “rtf” for rich text enums, etc.).

public enum ImageMode {
ImageModeBitmap = @, // ImageMode prefix is not necessary
ImageModeGrayscale = 1,
ImageModeIndexed = 2,
ImageModeRgb = 3,
}

The following naming scheme would be better:

public enum ImageMode {
Bitmap = 0,
Grayscale = 1,
Indexed = 2,
Rgb = 3,

¥

"= BRAD ABRAMS Notice that this guideline is the exact opposite of com-
mon usage in C++ programming. It is important in C++ to fully qualify
each enum member because they can be accessed outside of the scope of the
enum name. However, in the managed world, enum members are only
accessed through the scope of the enum name.




216 Naming Guidelines

3.6 Names of Type Members

Types are made of members: methods, properties, events, constructors,
and fields. The following sections describe guidelines for naming type
members.

3.6.1 Names of Methods

Because methods are the means of taking action, the design guidelines
require that method names be verbs or verb phrases. Following this guide-
line also serves to distinguish method names from property and type
names, which are noun or adjective phrases.

"= STEVEN CLARKE Do your best to name methods according to the task
that they enable, not according to some implementation detail. In a usability
study on the System.Xml APIs, participants were asked to write code that
would perform a query over an instance of an XPathDocument. To do this,
participants needed to call the CreateXPathNavigator method from XPath-
Document. This returns an instance of an XPathNavigator that is used to
iterate over the document data returned by a query. However, no participants
expected or realized that they would have to do this. Instead, they expected
to be able to call some method named Query or Select on the document itself.
Such a method could just as easily return an instance of XPathNavigator in
the same way that CreateXPathNavigator does. By tying the name of the
method more directly to the task it enables, rather than to the implementation
details, it is more likely that developers using your API will be able to find the
correct method to accomplish a task.

v bo give methods names that are verbs or verb phrases.

public class String {
public int CompareTo(...);
public string[] Split(...);
public string Trim();

3.6.2 Names of Properties

Unlike other members, properties should be given noun phrase or adjec-
tive names. That is because a property refers to data, and the name of the
property reflects that. PascalCasing is always used for property names.



3.6 Names of Type Members 217

v/ DO name properties using a noun, noun phrase, or adjective.

public class String {
public int Length { get; }
}

X DO NOT have properties that match the name of “Get” methods as in
the following example:

public string TextWriter { get {...} set {...} }
public string GetTextWriter(int value) { ... }

This pattern typically indicates that the property should really be a
method. See section 5.1.3 for additional information.

v/ DO name collection properties with a plural phrase describing the items
in the collection instead of using a singular phrase followed by “List”
or “Collection.”

public class ListView {
// good naming
public ItemCollection Items { get; }

// bad naming
public ItemCollection ItemCollection { get; }

v/ DO name Boolean properties with an affirmative phrase (CanSeek
instead of CantSeek). Optionally, you can also prefix Boolean properties
with “Is,” “Can,” or “Has,” but only where it adds value.

For example, CanRead is more understandable than Readable. However,
Created is actually more readable than IsCreated. Having the prefix is
often too verbose and unnecessary, particularly in the face of Intellisense
in the code editors. It is just as clear to type MyObject.Enabled = and
have Intellisense give you the choice of true or false as it is to have
MyObject.IsEnabled =, and the second one is more verbose.



218

Naming Guidelines

"= KRZYSZTOF CWALINA In selecting names for Boolean properties and
functions, consider testing out the common uses of the APl in an if-statement.
Such a usage test will highlight whether the word choices and grammar of
the APIname (e.g., active versus passive voice, singular versus plural) make
sense as English phrases. For example, both of the following

if(collection.Contains(item))
if(regularExpression.Matches(text))

read more naturally than

if(collection.IsContained(item))
if(regularExpression.Match(text))

Also, all else being equal, you should prefer the active voice to the passive
voice:

if(stream.CanSeek) // better than ..
if(stream.IsSeekable)

v/ CONSIDER giving a property the same name as its type.

For example, the following property correctly gets and sets an enum
value named Color, so the property is named Color:

public enum Color {...}
public class Control {

public Color Color { get {...} set {...} }
}

3.6.3 Names of Events

Events always refer to some action, either one that is happening or one
that has occurred. Therefore, as with methods, events are named with
verbs, and verb tense is used to indicate the time when the event is raised.

v/ DO name events with a verb or a verb phrase.

Examples include Clicked, Painting, DroppedDown, and so on.

v bo give events names with a concept of before and after, using the pres-
ent and past tenses.



3.6 Names of Type Members

For example, a close event that is raised before a window is closed
would be called Closing, and one that is raised after the window is
closed would be called Closed.

X DO NOT use “Before” or “After” prefixes or postfixes to indicate pre-
and post-events. Use present and past tenses as just described.

v/ DO name event handlers (delegates used as types of events) with the
“EventHandler” suffix, as shown in the following example:

public delegate void ClickedEventHandler(object sender, ClickedEventArgs e);

Note that you should create custom event handlers very rarely. Instead,
most APIs should simply use EventHandler<T>. Section 5.4.1 talks
about event design in more detail.

"= JASON CLARK Today, it is the rare case where you would need to
define your own “EventHandler” delegate. Instead, you should use the
EventHandler<TEventArgs> delegate type, where TEventArgs is either
EventArgs or your own EventArgs derived class. This reduces type defini-
tions in the system and ensures that your event follows the pattern described
in the preceding bullet.

v/ DO use two parameters named sender and e in event handlers.

The sender parameter represents the object that raised the event. The
sender parameter is typically of type object, even if it is possible to
employ a more specific type. The pattern is used consistently across the
Framework and is described in more detail in section 5.4.

public delegate void <EventName>EventHandler(object sender,
<EventName>EventArgs e);

v/ DO name event argument classes with the “EventArgs” suffix, as shown
in the following example:

public class ClickedEventArgs : EventArgs {
int x;
int y;

219



220

Naming Guidelines

public ClickedEventArgs (int x, int y) {
this.x = x;
this.y = y;

}
public int X { get { return x; } }

public int Y { get { returny; } }

3.6.4 Naming Fields

The field-naming guidelines apply to static public and protected fields.
Internal and private fields are not covered by guidelines, and public or
protected instance fields are not allowed by the member design guidelines,
which are described in Chapter 5.

v/ DO use PascalCasing in field names.

public class String {
public static readonly string Empty ="";

}
public struct UInt32 {

public const Min = @;

}

v/ DO name fields using a noun, noun phrase, or adjective.

X DO NOT use a prefix for field names.

For example, do not use “g_" or “s_" to indicate static fields. Publicly
accessible fields (the subject of this section) are very similar to proper-
ties from the API design point of view; therefore, they should follow
the same naming conventions as properties.

"= BRAD ABRAMS Notice that, as with just about all the guidelines in
this book, this guideline is meant to apply only to publicly exposed fields.
In this case, it’s important that the names be clean and simple so the masses
of consumers can easily understand them. As many have noted, there are
very good reasons to use some sort of convention for private fields and local
variables.




3.7 Naming Parameters 221

"= JEFF PROSISE As a matter of personal preference, I typically prefix
thenames of private fields with an underscore (for example, _connection).
When I read the code back after a time away, this makes it obvious to me
which fields are not intended for public consumption. This convention is
used quite a lot in the .NET Framework—for example, in System.Net.
HttpWebRequest and System.Web.HttpContext—but it is not used
throughout.

3.7 Naming Parameters

Beyond the obvious reason of readability, it is important to follow the
guidelines for parameter names because parameters are displayed in
documentation and in the designer when visual design tools provide
Intellisense and class browsing functionality.

v/ DO use camelCasing in parameter names.

public class String {
public bool Contains(string value);
public string Remove(int startIndex, int count);

v/ DO use descriptive parameter names.

Parameter names should be descriptive enough to use with their types
to determine their meaning in most scenarios.

v/ CONSIDER using names based on a parameter’s meaning rather than
the parameter’s type.

Development tools must provide useful information about the type, so
the parameter name can be put to better use describing semantics rather
than the type. Occasional use of type-based parameter names is entirely
appropriate—but it is not ever appropriate under these guidelines to
revert to the Hungarian naming convention.



222

Naming Guidelines
3.7.1 Naming Operator Overload Parameters
This section talks about naming parameters of operator overloads.

v/ DO use left and right for binary operator overload parameter names if
there is no meaning to the parameters.

public static TimeSpan operator-(DateTimeOffset left,
DateTimeOffset right)
public static bool operator==(DateTimeOffset left,
DateTimeOffset right)

v/ DO use value for unary operator overload parameter names if there is
no meaning to the parameters.

public static BigInteger operator-(BigInteger value);

v/ CONSIDER meaningful names for operator overload parameters if
doing so adds significant value.

public static BigInteger Divide(BigInteger dividend,
BigInteger divisor);

X DO NOT use abbreviations or numeric indices for operator overload
parameter names.

// incorrect parameter naming
public static bool operator ==(DateTimeOffset di,
DateTimeOffset d2);

3.8 Naming Resources

Because localizable resources can be referenced via certain objects as if
they were properties, the naming guidelines for resources are similar to
property guidelines.

v/ DO use PascalCasing in resource keys.

v bo provide descriptive rather than short identifiers.



3.8 Naming Resources

Keep them concise where possible, but do not sacrifice readability
for space.

X DO NOT use language-specific keywords of the main CLR languages.

v DO use only alphanumeric characters and underscores in naming
resources.

v/ DO use the following naming convention for exception message
resources.

The resource identifier should be the exception type name plus a short
identifier of the exception:

ArgumentExceptionIllegalCharacters
ArgumentExceptionInvalidName
ArgumentExceptionFileNameIsMalformed

SUMMARY

The naming guidelines described in this chapter, if followed, provide a
consistent scheme that will make it easy for users of a framework to iden-
tify the function of elements of the framework. The guidelines provide
naming consistency across frameworks developed by different organiza-
tions or companies.

The next chapter provides general guidelines for implementing types.

223



Essential
Silverlight 3

Ashraf Michail



http://www.google.com/
http://delicious.com/
http://digg.com/
http://www.facebook.com/
http://www.stumbleupon.com/
http://www.reddit.com/
http://twitter.com/

Ashraf Michail

Essential Silverlight 3

Get under the hood with Silverlight 2: a deep look at the platform’s inner
workings, by its long-time lead architect

e Crucial, never-before-published information for building Silverlight
2 applications that perform better, are more reliable, and are easier
to deploy

e Includes extensive code examples that show apply the author’s
insights in real applications

e Unparalleled, in-depth coverage of Silverlight graphics, text, audio,
video, animation, input, layout, and data binding

About the Author

Ashraf Michail is the only Microsoft architect who has continued to
work on Silverlight since the original project began. In 2001, he joined
Microsoft's newly forming WPF team, where he built the GPU accelerated
graphics engine used to render WPF content and included in the Vista
Desktop Window Manager. In 2004, he became a WPF architect focused
on improving the end-to-end WPF experience. In 2005, he became an
architect on the new Silverlight team, where he is currently working on
Silverlight's next release. With nine years of experience delivering web
platforms and rendering engines, Michail’s deep insights have guided
Silverlight's design.

Essential
Silverlight 3

Ashraf Michail

AVAILABLE

e BOOK: 9780321534161

e SAFARI ONLINE |Safari
* EBOOK: 0321562283

* KINDLE: 0321562291

Due to Publish in
October 2009

Please note that the text
in this chapter has not yet
been proofread or copy-
edited and may contain
grammatical errors. The
inclusion of this text is to
show an example of what
is included in this book.

A
vy

Addison
Wesley

informit.com/aw



http://www.safaribooksonline.com/Corporate/Index/
http://www.informit.com/imprint/index.aspx?st=61085
http://www.informit.com/imprint/index.aspx?st=61085

Chapter 3
Graphics

In this chapter, you will learn how to add rich vector graphics and images to your
application. You will also learn how to optimize performance and image quality of those
graphics elements. In particular, Chapter 3 will discuss:

. The graphics system design principles
. The elements for displaying graphics
. The problems the Silverlight run-time solves under the hood and the

problems your application must solve

Graphics Principles

The Silverlight graphics API makes it easy to add vector graphics, bitmap images, and
text to your applications. This section describes the graphics API design principles.

Vector Graphics and Bitmap Images

Bitmap images are a common method of adding graphics to an application. However,
bitmap images become blurry when scaled up, as shown in Figure 3-1, or aliased when
scaled down, as shown in Figure 3-2. Unlike a bitmap image, if you scale a vector graphic, it
will remain sharp as shown in Figure 3-3. Both vector graphics and bitmap images are useful
in most applications. For example, a user interface control will look better at different sizes
and resolutions with vector graphics instead of bitmap images. Bitmap images are useful for
displaying content that is not easily expressible in vector form such as digital photographs or
visual effects not supported by the run-time.

New in Silverlight 3

There are a number of techniques for scaling down an image to produce
a result better than Figure 3-2. However, these techniques can be
computationally expensive and slow down your animations. Silverlight 3
adds support for mip-mapping that converts your image to a set of smaller
images at various sizes using a better algorithm. This conversion
happens as Silverlight is downloading and decoding your images. During
an animation, Silverlight 3 will then dynamically select the right resolution
to display. This process can increase memory usage, but substantially
improves the display quality of scaled down images and 3D transforms
applied bitmap images.




Scaling up images in Silverlight 3 still remains blurry as shown in Figure
3-1.

Figure 3-1
Scaling up an image of a circle

Figure 3-2
Scaling down an image of a circle

Figure 3-3
Scaling a vector graphic circle

Retained Mode

There are two types of graphics API: retained mode and immediate mode. A retained
mode API automatically responds to changes to a graph of objects. An immediate mode API



requires you to issue all the draw commands to describe a change. For example, to remove
the rectangle shown in Figure 3-4 in a retained mode system, simply call a function to
remove that element. The retained mode graphics system is responsible for redrawing the
background, the triangle beneath, and the ellipse above. To remove the same rectangle
shown in Figure 3-4 with an immediate mode API, you need to make three calls to draw the
background, the triangle beneath it, and the ellipse above as shown in Figure 3-5.

A retained mode API enables you to:

. Construct a set of graphics elements

. Change properties of the graphics elements

. Build a graph representing the relationship between those elements
. Manipulate the graph structure

Remove
Rectangle

Figure 3-4
Removing a rectangle with a retained mode API



—

Draw
background
behind
rectangle

—

Draw
triangle

Draw
ellipse

Figure 3-5
Removing a rectangle with an immediate mode API

A retained mode graphics API is easier to use than an immediate mode API and enables
the underlying system to provide automatic performance optimizations such as drawing
incrementally and avoiding the drawing of occluded shapes. Silverlight provides a retained
mode system to optimize for ease of use, animating vector graphics content, and for building
applications composed of UI controls.

In Silverlight, you can construct the retained mode graph declaratively with a XAML
file:



<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<!-- triangle -->
<Path
Fill="Green"
Data="F1 M 128,12L 12,224L 224 ,224"

/>

<!-- rectangle -->

<Rectangle
Fill="Blue"
Canvas.Left="96"
Canvas.Top="160"
Width="256"
Height="224"

/>

<!-- circle -->

<Ellipse
Fill="Red"
Canvas.Left="230"
Canvas.Top="288"
Width="200"
Height="200"

/>

</Canvas>

Alternatively, you can construct the retained mode graph with code:

Canvas canvas = new Canvas() ;
//

// Make the triangle

//

Path path = new Path();

path.Fill = new SolidColorBrush(Colors.Green) ;
path.SetValue (Path.DataProperty, "F1 M 128,12L 12,224L 224,224");

canvas.Children.Add (path) ;

//
// Make the rectangle

//
Rectangle rectangle = new Rectangle() ;

rectangle.Fill = new SolidColorBrush(Colors.Blue) ;
rectangle.SetValue (Canvas.LeftProperty, 96);
rectangle.SetValue (Canvas.TopProperty, 160);
rectangle.Width = 256;



rectangle.Height = 224;
canvas.Children.Add (rectangle) ;

//
// Make the circle

//
Ellipse ellipse = new Ellipse();

ellipse.Fill = new SolidColorBrush (Colors.Red) ;
ellipse.SetValue (Canvas.LeftProperty, 230);
ellipse.SetValue (Canvas.TopProperty, 288);
ellipse.Width = 200;

ellipse.Height = 200;

canvas.Children.Add (ellipse) ;

Cross Platform Consistency

An important goal for the Silverlight graphics engine is to enable a developer to write
their application once and have it run consistently across a variety of operating systems and
browsers. Each operating system has a local graphics library. However, these local
operating system graphics libraries differ significantly in feature set, performance, and image
quality. To ensure cross-platform consistency and performance, Silverlight includes its own
rendering engine.

Tools

Silverlight is capable of loading vector and image content from designer tools and
integrating with developer written application code. For vector graphics and animation, you
can use Expression Design and Expression Blend to generate XAML content for use with the
Silverlight run-time. There are also a variety of free XAML exporters available to generate
XAML content including an Adobe Illustrator exporter, an XPS print driver, and several
others.

Balancing Image Quality and Speed

In addition to displaying static XAML, Silverlight provides real-time animation at 60
frames per second. However, real-time performance is highly dependent on the application
content, the specific hardware configuration of the target machine, the resolution of the
target display, the operating system, and the hosting web browser.

When an application does not meet the 60 frame per second goal, the three options the
Silverlight team uses to improve performance are:

. Make optimizations to components in the Silverlight run-time
. Lower image quality to achieve better speed

Reducing image quality for speed is the most controversial optimization technique. The
Silverlight application must look good. However, it is possible to trade off image quality in a
manner that is generally acceptable to the end-user. For example, vector graphics rendering
makes some quality sacrifices but still maintains an acceptable visual bar. On the other hand,



end users have a much higher standard for text quality and the Silverlight run-time spends
more CPU time rendering text clearly.

Graphics Elements

As previously discussed, the Silverlight run-time can load and draw vector graphics
XAML on a variety of platforms. The graphics elements can also be specified
programmatically when you use C# or JavaScript. This section will describe the elements
you can use to display vector graphics and images in your applications.

Shapes

This section will start the graphics element discussion with the base class for all graphics
primitives: the Shape element. The Shape element provides:

. A Fill property to specify how the shape interior is drawn

. A Stretch property to indicate how a Shape element stretches to a specified
Width and Height

. Stroke and StrokeThickness properties to specify the pen behavior

The elements that derive from Shape will define the shape’s geometry. These elements
include Rectangle, Ellipse, Line, Polygon, Polyline, and Path

Rectangle
To draw a rectangle at a specified position, place it in a Canvas element and specify its
Canvas.Top, Canvas.Left, Width, Height, and Fill color:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
Fill="LightGray"
Canvas.Left="50"
Canvas.Top="50"
Width="400"
Height="400"

/>

</Canvas>

You can add an outline to the rectangle as shown in Figure 3-6 by setting the Stroke
property to specify the color and the StrokeThickness property to specify the thickness:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
Fill="LightGray"
Stroke="Black"
StrokeThickness="10"



Canvas.Left="50"
Canvas.Top="50"
Width="400"
Height="400"

/>

</Canvas>

Figure 3-6
Rectangle element with an outline

You can use the Rectangle element to draw the rounded rectangles shown in Figure 3-7
by specifying the RadiusX and RadiusY properties:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
Fill="LightGray"
Stroke="Black"
StrokeThickness="10"
RadiusX="40"
RadiusY="60"
Canvas.Left="50"
Canvas.Top="50"
Width="400"
Height="400"

/>

</Canvas>




\. J

Figure 3-7
Rectangle element with rounded corners

Ellipse

As with the Rectangle element, you can position an E11ipse element with the same
Canvas.Top, Canvas.Left, Width, and Height properties. Silverlight will stretch the
ellipse to fit the specified bounds as shown in Figure 3-8:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Ellipse
Fill="LightGray"
Stroke="Black"
StrokeThickness="10"
Canvas.Left="50"
Canvas.Top="50"

Width="400"
Height="400"
/>
</Canvas>
Figure 3-8

Ellipse element



Line

To draw a line, you can use the Line element and set its X1, Y1, X2, Y2 properties. As
with all other shapes, you can use the Stroke property to specify the fill color, and the
StrokeThickness property to specify the thickness as shown in Figure 3-9:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<!-- thick diagonal line -->
<Line
Stroke="Black"
StrokeThickness="40"

Xl=ll6oll
Yl=ll6oll
X2="400"
Y2="400"
/>
<!-- one pixel horizontal line -->
<Line
Stroke="Black"
StrokeThicknegg="1"
X1l="100"
Yl=ll6oll
X2="400"
Y2=||60||
/>
</Canvas>

Figure 3-9
Line element

If you look closely at the pixels for the horizontal line shown in Figure 3-10, you will see
it has a height of two pixels despite the one pixel StrokeThickness specified in the XAML.
Furthermore, the line is grey instead of the specified black color. To understand this
rendered result, consider the following equivalent Rectangle element:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">



<!-- one pixel horizontal line drawn as a rectangle -->
<Rectangle

Fill="Black"

Canvas.Left="99.5"

Canvas.Top="59.5"

Width="301"
Height="1"
/>
</Canvas>

Figure 3-10
Pixels rendered for a Line element

The previous Rectangle element has half integer values for its position. The reason for
the half pixel coordinates is that the line expands by half StrokeThickness in either
direction. Since StrokeThickness is equal to one, the line adjusts the top and left
coordinates by -0.5. Since the rectangle is between two pixels, it gets anti-aliased and
occupies two pixels with a lighter color. If you want sharp horizontal and vertical lines, you
should draw a rectangle positioned at integer coordinates to get the result shown in Figure
3-11:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<!-- one pixel horizontal line drawn as a rectangle -->
<Rectangle

Fill="Black"

Canvas.Left="99"

Canvas.Top="59"

Width="301"

Height="1"
/>

</Canvas>




Figure 3-11
Sharp horizontal line drawn with a Rectangle element

Path

The Path element extends the Shape element by providing a Data property that
specifies the geometry object. The Rectangle, E1lipse, and Line elements previously
discussed are all expressible with the more general Path element. For example, instead of
specifying a Rectangle element, we can specify a Path element with a
RectangleGeometry:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Path
Fill="Blue"
Stroke="Black"
StrokeThickness="10"

<Path.Data>
<RectangleGeometry Rect="96,160,256,224"/>
</Path.Data>
</Path>

</Canvas>

The Path element syntax is more verbose than the specialized shapes syntax. However,
since Silverlight converts all shapes internally to Path elements, if you understand how the
Path element draws you will understand how all shapes draw.



Figure 3-12
Example path

In addition to expressing specialized shapes, the Path element can express a geometry
consisting of a collection of Figure elements. A Figure element is a connected set of line
segments and Bezier segments. The most common method to specify these figures, line
segments, and curves is the path mini-language. For example, to draw the shape in Figure
3-12 you would do the following:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Path

StrokeThickness="10"

Stroke="Black"

Fill="Red"

Data="M 14,16
C 14,16 -8,256 64,352
C 136,448 185,440 247,336
C 309,233 448,416 448,416
L 436,224

/>

</Canvass>

The commands supported by the mini-language include those shown in Table 3-1. Each
command is followed by the action it takes.

Table 3-1

Path Mini-language Commands

Command Action

Mx,y Move to position x,y

Lxy Draw a line from the current position to position x, y

Cxl,yl, x2,y2, x3,y3 Draw a cubic Bezier segment with control points consisting of
the current position, (x1,y1), (x2,y2), and (x3, y3)

Qx1,yl, x2,y2 Draw a quadratic Bezier segment with control points consisting




of the current position, (x/,y/), and (x2,y2)

Hx Draw a horizontal line from the current position x0,y0 to
position x, y0

Vy Draw a vertical line from the current position x0,y0 to position
x0, y

z Close a figure

FO Specify EvenOdd fill rule

F1l Specify NonZero fill rule

An alternative form of specifying the geometry is to use the expanded XAML syntax:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Path
StrokeThickness="10"
Stroke="Black"
Fill="Red"

<Path.Data>
<PathGeometry>
<PathGeometry.Figuress>
<PathFigure StartPoint="14, 16" IsClosed="true">
<PathFigure.Segments>
<BezierSegment
Pointl="14,16"
Point2="-8,256"
Point3="64,352"
/>
<BezierSegment
Point1="136,448"
Point2="185,440"
Point3="247,336"
/>
<BezierSegment
Pointl1="309,233"
Point2="448,416"
Point3="448,416"
/>
<LineSegment
Point="436,224"
/>
</PathFigure.Segments>
</PathFigure>
</PathGeometry.Figures>
</PathGeometry>
</Path.Data>
</Path>

</Canvas>




Performance Tip

These two forms of specifying a path may render identically, but they
differ in performance and flexibility. The mini-language form will parse
faster, consume less memory, and draw fastest at run-time. The mini-
language is the recommended form for static content. However, it is not
possible to bind an animation or change a segment property of a path
generated with the mini-language since Silverlight does not create the
path, figure, or segment API objects.

One additional concept previously discussed is that of a Figure element. Because the
Path element can have more than one figure, it can create an empty space in the middle of a
filled space as shown in Figure 3-13:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Path
StrokeThickness="10"
Stroke="Black"
Fill="LightGray"
Data="M 50,50 L 50,450 450,450 450,50 50,50 z
M 100,100 L 100,400 400,400 400,100 100,100 =z"
/>

</Canvas>

Figure 3-13
Path with an empty space in the center

Fill rules

The previous section explained how to use geometry to specify an outline of an area to
fill. However, an outline does not uniquely specify the inside and outside of the shape. For
example, the outline in Figure 3-13 could generate any of the rendering results shown in
Figure 3-14. What is missing is a method to distinguish the inside of a shape from the
outside of the shape.



Figure 3-14
Different fills for the same outline

One approach to specifying what is inside a shape is to cast a horizontal line through the
shape and count the number of edges crossed from left to right. If the number of edges
crossed is even, classify the horizontal line segment as outside the shape. If the number of
edges is odd, classify that segment as inside the shape. This fill rule is the Even0dd rule and
is the default fill mode for Path elements. To specify the fill mode explicitly, you can
specify the Fi11Rule property on geometry or use F0 for Even0dd from the path mini-
language:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<!-- Path with fill rule FO = EvenOdd -->

<Path
StrokeThickness="10"
Stroke="Black"
Fill="LightGray"
Data="F0
M 50,50 L 50,450 450,450 450,50 50,50 z
M 100,100 L 100,400 400,400 400,100 100,100 =z"

/>

</Canvas>

An alternative rule is the NonZero rule, which considers the order points are specified in
the input. If an edge goes up in the y direction, assign that edge a +1 winding number. If an
edge goes down in the y direction, assign that edge a -1 winding number. The NonZero rule
defines the interior of the shape to be all those segments where the sum of winding numbers
from the left to the current segment is not zero. For example, if you specify the geometry
shown in Figure 3-14 with the point order in the following markup, it would result in the
winding numbers and filled segments shown in Figure 3-15.

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<!-- Path with fill rule F1 = NonZero -->



<Path
StrokeThickness="10"
Stroke="Black"
Fill="LightGray"
Data="F1
M 50,50 L 50,450 450,450 450,50 50,50 z
M 100,100 L 100,400 400,400 400,100 100,100 =z"
/>

</Canvas>

+1 +1 -1

Figure 3-15
Winding mode numbers resulting in a filled center space

If you specify the points in the following order, the shape would render differently as
shown in Figure 3-16:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<!-- Path with fill rule F1 = NonZero -->

<Path
StrokeThickness="10"
Stroke="Black"
Fill="LightGray"
Data="F1
M 50,50 L 50,450 450,450 450,50 50,50 z
M 100,100 L 400,100 400,400 100,400 100,100 =z"
/>

</Canvas>



Figure 3-16
Different fill as a result of a different point order

Performance Tip

The Nonzero rule is more complicated than the Evenodd rule and does
render slower. For most vector graphics fills, the Evenodd rule gives the
desired result.

Images

In addition to the vector graphics elements previously discussed, the other fundamental
graphics primitive is the Image element. To display an image, you can use the Image
element with a reference to a URI to produce the result shown in Figure 3-17:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Image Source="silverlight.png"/>
</Canvas>

The Source property can reference any image in JPG or PNG format. However, if the
JPG or PNG contains DPI (dots per inch) information, Silverlight ignores this information
because it is usually not accurate for display purposes. All references to URI’s in XAML are
relative to the location of the XAML file. For example, if the XAML file is in a XAP,
Silverlight will search for silverlight.png in the XAP. If the XAML file is a resourced in a
managed assembly, Silverlight will search for silverlight.png in that same assembly.



If you do not specify the width and Height properties of an image, Silverlight draws
the image at its natural size, which results in a pixel perfect rendering of the original image

Light up the Web

v

Microsoft

Silverlight

wwwi.silverlight.net

data.

Figure 3-17
Image element example

Technical Insight

As shown in the previous example, the source property of an Tmage
element can be set to a URI. Many references to the same source URI
will cause Silverlight to download the image once and use it multiple
times. If you remove all references to 1mage elements for a specific URI,
Silverlight removes the image from the memory cache and a future
reference will cause Silverlight to initiate another download. Future
downloads may be serviced from the browser cache or go over the
network if the image is no longer in the browser cache.

Brushes

All of the previous examples filled the Path element pixels with a single color.
Silverlight also supports filling arbitrary shapes with image brushes, linear gradient brushes,
and radial gradient brushes. A brush is a mathematical function that maps an (x,y) position to
a color. For example, SolidColorBrush is asimple function that ignores its position and
always outputs the same color. This section will describe the brushes available in Silverlight
and include the function used to map from screen position to color.

Solid Color Brush

SolidColorBrush returns a single color for all screen positions. When you specify a
Fill or Stroke property value, Silverlight will create a solid color brush for the
corresponding shape fill or pen stroke respectively:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
Fill="Blue"



Stroke="Black"
StrokeThickness="10"
Canvas.Left="96"
Canvas.Top="160"
Width="256"
Height="224"

/>

</Canvas>

Alternatively, you can specify a brush with the expanded XAML syntax:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
StrokeThickness="10"
Canvas.Left="96"
Canvas.Top="160"
Width="256"
Height="224"

<Rectangle.Fill>
<SolidColorBrush Color="Blue"/>
</Rectangle.Fill>
<Rectangle.Stroke>
<SolidColorBrush Color="Black"/>
</Rectangle.Stroke>
</Rectangle>

</Canvas>

The previous examples specified a named color. You can also specify a color explicitly
by providing a hex string of the form #aarrggbb which represents a hex alpha channel value,
red channel value, green channel value, and blue channel value. For example, opaque green
would be #ff 00ff00.

From C#, you can specify a color by creating an instance of the Color class:

Color green = Color.FromArgb (0xff, 0x0, O0xff, 0x0);

The alpha channel specifies the degree of transparency where 0x0 indicates completely
transparent, 0xf £ indicates an opaque color, and intermediate values indicate partial
transparency. A brush with a transparent color will blend its color to the background color
using the following formula:

Color_destination = (alpha*Color_source + (0xff-alpha)*Color_destination)/256

Silverlight will pass colors specified in hex format to the web browser without a color
space conversion. Typically, the browser will interpret the color as a SRGB color, i.e., an 8-
bit per channel 2.2 implied gamma space color. However, the visible color may vary with



operating systems, web browser, the monitor, and the operating system color profile. An
alternative form of specifying colors is the floating point scRGB linear gamma format:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
Fill="sc#1, 1.0, 0.0, O0.0O"
Canvas.Left="96"
Canvas.Top="160"
Width="256"
Height="224"

/>

</Canvas>

Silverlight converts scRGB colors to sSRGB internally for blending. Consequently,
specifying colors in native SRGB is desirable to avoid extra color conversion steps.

Gradient Brushes

Gradient brushes define a set of colors and positions along a virtual gradient line. The
function that maps screen position to color will first map the screen position to a point along
the gradient line and then interpolate a color based on the two nearest points.

Consider the following use of LinearGradientBrush:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Ellipse
Width="450"
Height="450"

<Ellipse.Fills>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<LinearGradientBrush.GradientStops>
<GradientStop Color="White" Offset="0"/>
<GradientStop Color="Black" Offset="1"/>
</LinearGradientBrush.GradientStops>
</LinearGradientBrush>
</Ellipse.Fill>
</Ellipse>

</Canvas>

The linear gradient brush above will produce the fill shown in Figure 3-18. A linear
gradient brush will map a screen position to the point on the line closest to that position.



The brush will then interpolate a color based on the two nearest points specified along the

line as shown in
Figure 3-18.

Figure 3-18
Linear gradient brush

Alternatively, you can specify a radial gradient fill using RadialGradientBrush that
will take the distance from the screen position to the center of the radial gradient and map
that distance to the specified gradient line of colors and positions. For example, the XAML
below will generate the rendering shown in Figure 3-19:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Ellipse
Width="450"
Height="450"



<Ellipse.Fills>
<RadialGradientBrushs>
<RadialGradientBrush.GradientStops>
<GradientStop Color="White" Offset="0"/>
<GradientStop Color="Black" Offset="1"/>
</RadialGradientBrush.GradientStops>
</RadialGradientBrushs>
</Ellipse.Fill>
</Ellipse>

</Canvas>

Figure 3-19
Radial gradient brush

Another feature of RadialGradientBrush is the capability to move the point that maps
to the start of our gradient line. In particular, in our previous example, the center of the
radial gradient circle mapped to the start of our gradient line and the radius of the gradient
circle mapped to the end of our gradient line. With this pattern, you will always get a
uniform ellipse. You can move the center using the Center property to get the result shown
in Figure 3-20:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Ellipse
Width="450"
Height="450"

<Ellipse.Fills>
<RadialGradientBrush GradientOrigin="0.25 0.25">
<RadialGradientBrush.GradientStops>
<GradientStop Color="White" Offset="0"/>
<GradientStop Color="Black" Offset="1"/>



</RadialGradientBrush.GradientStops>
</RadialGradientBrushs>
</Ellipse.Fill>
</Ellipse>

</Canvas>

Figure 3-20
Focal gradient brush

One other feature of linear and radial gradients is the capability to specify the behavior
when the display position maps to some position outside the range of the gradient line. The
SpreadMethod property defines that behavior. The Pad mode will repeat the closest point
when off the line, the Reflect mode will mirror to a point on the line, and the Repeat
mode will simply take the position modulo the length of the line as shown in Figure 3-21.

- JOK)

Repeat Reflect

Figure 3-21
SpreadMethod example



Image Brushes

The role of the image brush is to map a screen position to a pixel in the specified image.
For example, the following XAML would result in the image brush rendering shown in
Figure 3-22:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Ellipse
Width="450"
Height="450"
Stroke="Black"
StrokeThickness="10"

<Ellipse.Fills>
<ImageBrush ImageSource="silverlight.png"/>
</Ellipse.Fill>
</Ellipse>

</Canvas>

ight up the Web

4

Microsoft

Silverlight

Figure 3-22
ImageBrush example

Strokes

The previous section showed how to use a brush to color the fill of a shape. You can
also use a brush to add color to the outline of a shape by setting the stroke properties. For
example, the following XAML would generate the output shown in Figure 3-23:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Ellipse



Stroke="Black"
StrokeThickness="10"
Canvas.Left="50"
Canvas.Top="50"

Width="400"
Height="400"
/>
</Canvas>
Figure 3-23

Sample stroke applied to an ellipse

Stroke

A stroke transforms geometry to a widened form that describes the shape outline instead
of the shape fill. Silverlight will fill the widened geometry with exactly the same rendering
rules as the main shape fill. For example, Figure 3-24 shows an example of a widened
ellipse.



Outter Outline

Inner Outline

Figure 3-24
The widening process applied to an ellipse

The widening process will expand the original geometry by half the stroke thickness to
form an outer outline. The widening process will also shrink the original geometry by half
the stroke thickness to form an inner outline. The outer and inner outlines combine to form
two figures Silverlight fills to produce the resulting stroke.

Technical Insight

One side effect of the widening process is that local self-intersection can
occur. For example, the process of widening a triangle will generate
several self-intersections as shown in Figure 3-25. One option is to run a
loop removal algorithm to remove these intersections before rasterization.
However, by simply filling the new geometry with the Nonzero fill rule,
these self intersections are not visible to the end user.

\ V

Figure 3-25
The widening process applied to a triangle




Dashes

To add dashes to your strokes, specify an array of distances alternating between the dash
filled distance and the gap distance. For example, the simple dash array in the following
XAML generates the output shown in Figure 3-26:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Ellipse
Stroke="Black"
StrokeThickness="10"
StrokeDashArray="5, 4, 2, 4"
Canvas.Left="50"
Canvas.Top="50"
Width="400"
Height="400"

/>
</Canvas>
- - [
/7 \
’ '
‘ !
4
\
c_ .7
Figure 3-26

StrokeDashArray example of long and short dashes

Technical Insight

Dashes are also a geometry modifier built on top of the stroke geometry
modifier. When you specify a strokeDashArray, Silverlight will take the
output of the pen and subdivide it into smaller geometries. Large
numbers of dashes can result in significant slowdowns in rendering speed
and therefore you should use them sparingly.




Canvas

Every example shown so far has had a single root Canvas element with a set of Shape
elements contained within it. In addition to providing a convenient container, the Canvas
element also enables you to modify the rendering primitives it contains as a group. In
particular, the Canvas element enables the following:

. Naming groups of elements

. Grouping shapes so that you can add or remove the group with a single
operation

. Applying a transform to the group of elements

. Clipping a group of elements

. Apply an opacity or opacity mask effect to a group of elements

Transforms, clipping, and opacity effects are available on both individual shapes and the
Canvas element.

Performance Tip

For individual shapes, it is faster to express clipping or opacity as a
different geometry or a different brush color. For example, draw a path
with an ImageBrush to achieve the same result as applying a clip to an
Image element. Similarly, you can add opacity to the brush color alpha
channel instead of adding opacity to the shape.

Transforms

A transform enables you to position, rotate, scale, or skew a shape or group of shapes.
To transform a group of primitives, you can set the RenderTransform on the Canvas
element as exemplified in the following listing to achieve the result shown in Figure 3-27:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Canvas.RenderTransform>
<TransformGroup>
<ScaleTransform ScaleX="1.5"/>
<RotateTransform Angle="30"/>
<TranslateTransform X="100" Y="-10"/>
</TransformGroup>
</Canvas.RenderTransform>

<Ellipse
Fill="LightGray"
Stroke="Black"
StrokeThickness="20"
Width="200"
Height="200"

/>

<Rectangle
Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="100"



Canvas.Top="100"
Width="200"
Height="200"

/>

</Canvas>

Figure 3-27
RenderTransform example of overlapping a rectangle over an ellipse

As shown in the previous example, you can use a list of ScaleTransform,
TranslateTransform, and RotateTransform elements in a TransformGroup element.
Alternatively, you can specify an explicit matrix with a MatrixTransform:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Canvas.RenderTransform>
<TransformGroup>
<MatrixTransform Matrix="
1.30, 0.75,
-0.50, 0.87,
100.00, -10.00"
/>
</TransformGroup>
</Canvas.RenderTransform>

<Ellipse
Fill="LightGray"
Stroke="Black"
StrokeThickness="20"
Width="200"



Height="200"

/>

<Rectangle
Fill="Gray"
Stroke="Black"
StrokeThicknesg="20"
Canvas.Left="100"
Canvas.Top="100"
Width="200"
Height="200"

/>

</Canvas>

3D Transforms (New in Silverlight 3)
In Silverlight 3, you can set the Projection property to a PlaneProjection to rotate a

group of elements in 3D as shown in Figure 3-28:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Canvas.Projections>
<PlaneProjection RotationY="-60" CenterOfRotationyY="50" />
</Canvas.Projection>

<Ellipse
Fill="LightGray"
Stroke="Black"
StrokeThicknesgs="20"
Width="200"
Height="200"

Canvas.Top="50"

/>

<Rectangle
Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="100"
Canvas.Top="100"
Width="200"
Height="200"

/>

</Canvas>




Figure 3-28
3D projection example

Each projection logically has its own camera. To position more than one object relative
to the same perspective camera, position them all in the same place and use the
GlobalOffsetX, GlobalOffsetY, and GlobalOffsetZ properties to move in the 3D world
as shown in Figure 3-29:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
Fill="Gray"
Stroke="Black"
StrokeThicknesg="20"
Canvas.Left="200"
Canvas.Top="100"
Width="200"
Height="200"

<Rectangle.Projections>
<PlaneProjection
GlobalOffsetX="-200"
RotationyY="-60"
CenterOfRotationyY="50"
/>
</Rectangle.Projection>
</Rectangle>

<Rectangle
Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="200"
Canvas.Top="100"
Width="200"
Height="200"

<Rectangle.Projections>
<PlaneProjection GlobalOffsetZ="-150"/>
</Rectangle.Projection>
</Rectangle>

<Rectangle



Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="200"
Canvas.Top="100"
Width="200"
Height="200"

<Rectangle.Projections>
<PlaneProjection
GlobalOffsetX="200"
RotationyY="60"
CenterOfRotationyY="50"
/>
</Rectangle.Projection>
</Rectangle>

</Canvass>

Figure 3-29
Position three rectangles in the same 3D projection camera

The global offset properties apply after the rotation property. You can also use the also a
LocalOffsetX, LocalOffsetY, and LocalOffsetZ properties on the PlaneProjection
object to apply an offset before the rotation.

Clipping
Clipping is the process of restricting the display area to a specified shape. To clip an
element, set the C1ip property as shown in the following listing:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Canvas.Clip>
<EllipseGeometry
Center="100,200"
RadiusX="150"
RadiusY="150"
/>

</Canvas.Clip>

<Ellipse
Fill="LightGray"



Stroke="Black"
StrokeThickness="20"
Width="200"
Height="200"

/>

<Rectangle
Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="100"
Canvas.Top="100"
Width="200"
Height="200"

/>

</Canvas>

Figure 3-30
Clipping example

Performance Tip

A clipping operation is semantically equivalent to intersecting two
geometries. Clipping a group of elements or a single shape does come
with a significant performance penalty. You should avoid clipping when
possible.

Opacity

Setting opacity on a brush or setting a transparent color on a brush will introduce alpha
blending. In particular, if a brush contains a transparent color, the brush will blend its color
with the content underneath using the following formula:



Color_destination = alpha*Color_source + (1-alpha)*Color_destination

The other form of opacity is setting the Opacity property on a Canvas. This operation
is not equivalent to changing the opacity of each of the shapes within the Canvas element as
demonstrated by Figure 3-31.

Performance Tip

Setting opacity on a canvas element will resolve occlusion first and then
blend content. This process is significantly more expensive at run-time
than blending individual primitives. If possible, you should set opacity on
a brush, brush color, or a path element for maximum performance.

Opacity on Rectangle Opacity on Canvas

Figure 3-31
Canvas Opacity versus per path Opacity

OpacityMask

The OpacityMask property on a UIElement provides a mechanism to blend brush per
pixel alpha information with the content of a UIElement. For example, the following
XAML would produce the result shown in Figure 3-32:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Canvas.OpacityMasks>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<LinearGradientBrush.GradientStops>
<GradientStop Color="Transparent" Offset="0"/>
<GradientStop Color="White" Offset="1"/>
</LinearGradientBrush.GradientStops>
</LinearGradientBrush>
</Canvas.OpacityMasks>

<Ellipse
Fill="LightGray"
Stroke="Black"
StrokeThickness="20"
Width="200"
Height="200"

/>



<Rectangle
Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="100"
Canvas.Top="100"
Width="200"
Height="200"

/>

</Canvas>

Figure 3-32
OpacityMask example

Performance Tip

OpacityMask is computationally expensive at run-time. In some cases, it
is faster to draw content on top that blends to the background instead of
using the opacityMask. For example, you can achieve the effect in
Figure 3-32 with the following XAML:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Ellipse
Fill="LightGray"
Stroke="Black"
StrokeThickness="20"



Width="200"
Height="200"

/>

<Rectangle
Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="100"
Canvas.Top="100"
Width="200"
Height="200"

/>

<!-- simulate opacity mask effect with a rectangle on top -->

<Rectangle Width="300" Height="300">
<Rectangle.Fill>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<LinearGradientBrush.GradientStops>
<GradientStop Color="White" Offset="0"/>
<GradientStop Color="Transparent" Offset="1"/>
</LinearGradientBrush.GradientStops>
</LinearGradientBrushs>
</Rectangle.Fill>
</Rectangle>

</Canvas>

Under the Hood

Previous sections have discussed the graphics principles and the graphics API elements.
This section goes deeper under the covers to describe how Silverlight draws XAML content
and displays it in the browser window. Understanding this process will help you understand
the Silverlight run-time performance characteristics. Furthermore, you will understand the
problems solved by the run-time and the problems your application must solve.

In particular, this section will discuss:

. The draw loop process which takes changes to the graph of objects and draws
it to an off screen back buffer

. The rasterization process that converts vector graphics primitives to pixels in
an offscreen back buffer

. Performance optimizations such as incremental redraw, occlusion culling, and
multi-core

. How the off screen back buffer gets displayed in the browser window



Draw Loop

Silverlight draws at a regular timer interval set by the MaxFrameRate property. On each
tick of the timer, Silverlight will do the following:

1. Check for any changes to the properties of our graph of Canvas and Shape
elements. If no changes exist, Silverlight does no further work for this timer
tick.

2. Perform any pending layout operations. The layout chapter will discuss these
layout operations further.

3. Gather rendering changes and prepare to rasterize them.

4. Incrementally rasterize the changes for the current timer tick. The graphics

state at the current timer tick is also known as the current frame.

5. Notify the browser that a frame (or an incremental delta to an existing frame)
is complete for display.

Performance Tip

One property of the draw loop is that nothing draws immediately after you
make a change to the element tree. Consequently, profiling tools will not
associate the cost of a drawing operation with the function that added
those drawing primitives. To tune your performance, you should measure
the maximum frame rate of your application during development. In
particular, set the MaxFrameRrRate property to some value that is beyond
what Silverlight can achieve and turn on the frame rate display as shown
in the following JavaScript:

function loadHandler (sender, args)

{

sender.settings.EnableFramerateCounter = true;
sender.settings.MaxFrameRate = 10000;

During development, watch for content that drops the frame rate
significantly, and consider specifying that content in an alternative form.

Rasterization

After the draw loop has identified which elements need to be redrawn, Silverlight
converts those elements to a set of pixels in our off screen back buffer. The previous
discussion of shapes described how to specify path outlines and a method of specifying the
inside and the outside of the shape. However, the geometry describes an abstract infinite
resolution outline of a shape and a screen has a finite number of pixels to color.
Rasterization is the process of converting from a path outline to discrete pixels. This section
describes how rasterization is accomplished.

The simplest method to convert geometry to pixels is a process called sampling. The
sampling process uses a discrete number of sample points to convert from the infinite shape



description to pixels. For example, consider the simple sample pattern consisting of a
uniform grid of sample points with one sample point per pixel. If the sample point is
contained within the geometry, light up the pixel. If the sample point is not contained within
the geometry, do not light the pixel. For example, the circle specified by the following
XAML would light the pixels shown in Figure 3-33:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Ellipse
Fill="Black"
Width="15"
Height="15"
/>
</Canvas>

Figure 3-33
Sampling a circle

You may have noticed that the integer coordinates were located at the top left of the pixel
and the sample points were in the center of a pixel. This convention enables a symmetrical
curved surface specified on integer coordinates to produce a symmetrical rasterization. If the
sample points were on integer coordinates instead, the ellipse would lose symmetry as shown
in Figure 3-34.



Figure 3-34
Sampling a circle with integer sample point coordinates

The rasterization shown in Figure 3-33 appears to have jagged edges. This jagged
appearance is the consequence of aliasing. Aliasing is the loss of information that results
from converting from a continuous curve to a discrete set of samples. Anti-aliasing is a term
that refers to a technique that attempts to minimize aliasing artifacts.

The Silverlight anti-aliasing technique consists of sampling multiple times per pixel and
applying a box filter to produce the final pixel color. Silverlight conceptually samples 64
times per pixel as shown in Figure 3-35. The box filter will average the contribution of all
samples within a rectangle bordering the pixel to produce a final pixel color. If some partial
number of samples is in the box, Silverlight applies transparency to blend smoothly with
what is underneath the geometry as shown in Figure 3-36. This anti-aliasing technique
produces a smooth transition from inside the shape to outside the shape along edges.

Figure 3-35
Anti-aliasing sampling pattern



I I I |

Figure 3-36
Anti-aliased rasterization

Technical Insight

You may be wondering why there are 16 samples per pixel in the x
direction and only 4 samples per pixel in the y direction. The reason for
picking this sample pattern is that horizontal resolution is critical to being
able to render text clearly. Furthermore, horizontal resolution is
computationally cheap and vertical resolution is computationally
expensive. The 16x4 sampling pattern balances image quality and
speed.

Instead of a box pattern, it is also possible to accumulate samples in a
circular pattern, weight samples unevenly, or even have a sample pattern
that extended far beyond a single pixel in size. In fact, all of these other
algorithms generate better image quality than a box filter but typically
render more slowly. The Silverlight high-resolution box filter is a choice
made to achieve good rendering performance with reasonable image
quality.

One artifact of anti-aliasing is a visible seam that sometimes results from drawing two
adjacent shapes. For example, the following two rectangles that meet in the middle of a pixel
would generate a seam:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
Fill="Black"
Width="100.5"
Height="100.5"

/>

<Rectangle
Fill="Black"
Canvas.Left="100.5"
Width="100.5"
Height="100.5"



/>

</Canvas>

The previous XAML will result in the rasterization shown in Figure 3-37. Notice the gap
between the two rectangles. The rectangles joined perfectly in the input XAML, so why is
there a seam in the rendered result?

Figure 3-37
Anti-aliasing seam example

These seams are a result of the rasterization rules described in this section. Consider the
rasterization process applied to pixel X shown in Figure 3-37. Rectangle A is covering
exactly half the samples for pixel X. Silverlight will consequently draw that pixel of
Rectangle A with 0.5 anti-aliasing alpha. Alpha is a term that refers to the transparency used
to blend colors with a formula such as:

Color_destination = alpha*Color_source + (1 - alpha)*Color_destination
In our example, alpha=0.5, Color_source=Black, and Color_destination=White.
Blending along the edge of rectangle A will result in a destination color of:
0.5*Black + (1 - 0.5)*White = 0.5*White

Rectangle B also covers half its sample points. Silverlight will also blend pixel X of
rectangle B with alpha=0.5 to a background color of 0.5*White. Consequently, the resulting
color will be:

0.5*Black + (1 - 0.5)*(0.5White) = 0.25 White.

The final pixel color has one quarter of the background color showing through as a
visible seam.

Technical Insight

This result is an artifact of sampling each primitive independently. An
alternative anti-aliasing mode is full screen anti-aliasing that processes all
samples from all shapes simultaneously. However, Silverlight does not



currently use full screen anti-aliasing because it results in slower run-time
performance.

To avoid these seams, you should snap edges to pixel boundaries as shown in Figure
3-38. Snapping will also produce a sharper edge between the two shapes. However, pixel
snapping only removes seams if you align the shapes edges with the x-axis or the y-axis. For
the rotated edges shown in Figure 3-39, snapping does not remove the artifact. For rotated
edges, the common technique to avoid this seam is to overlap the edges so that the
background is no longer visible.

Figure 3-38
Pixel snapped rasterization

Figure 3-39
Seams with a rotated edge

Bilinear Filtering

The previous section discussed how Silverlight converts an arbitrary geometry to a set of
pixels to fill. Silverlight then colors the filled pixels based on the brush specified. This
process is straightforward for solid color brushes and gradient brushes. However, with image
brushes, Silverlight must map from the destination pixels to the original image data, which
may be at a different resolution. This section describes the mapping function used to achieve
the image data stretch shown in Figure 3-40.



®

Figure 3-40
Image with bilinear filtering

Nearest neighbor is a simple image scaling function that will transform the destination
pixel to an image bitmap position and pick the nearest pixel color. Nearest neighbor
sampling generates ugly aliasing artifacts when the image is displayed with a scale or rotation
as shown in Figure 3-41. You will notice jagged lines if you look at the picture closely.

Figure 3-41
Image with nearest neighbor

Silverlight will use nearest neighbor sampling in the special case where the brush image
data maps exactly onto centers of pixels. For rotated, scaled, or non-integer translated
images, bilinear filtering is used to produce the result shown in Figure 3-40.



‘/‘

44/%
S}] l/‘%z . Map to =

image O
e/'// bitmap —+
3 S
[
T[]
Find 4 closest
. < bitmap pixels
Interpolate
destination
color and fill
shape

Figure 3-42
The bilinear filtering process

Bilinear filtering maps the screen position to a position (#,v) in image space. The bilinear
filtering process will then interpolate a color from pixels (floor(u), floor(v)), (floor(u)+1,
floor(v)), (floor(u), floor(v)+1), and (floor(u)+1, floor(v)+1). Figure 3-42 illustrates this
process. Bilinear filtering generates good results for scales that are within a factor of two of
the original image size. Figure 3-43 demonstrates the results of scaling an image in two sizes
within reasonable limits.

v

Microsoft®

Silverlight

Microsoft® .
Silverlight

Figure 3-43
Image scaling within good limits

With bilinear filtering, if you scale up an image significantly it will become blurry.
Conversely, if you scale down an image significantly it will look aliased. Figure 3-44 shows
examples of both these artifacts.



Figure 3-44
Image scaling extremes

New in Silverlight 3

There are a number of techniques for scaling down an image to produce
a result better than Figure 3-44. However, these techniques can be
computationally expensive and slow down your animations. Silverlight 3
adds support for mip-mapping that converts your image to a set of smaller
images at various sizes using a better algorithm.

For example, if you have a 128x128 image, Silverlight will also generate
copies at 64x64, 32x32, 16x16, 8x8, 4x4, 2x2, and 1x1 resolutions
resized with high quality. When displaying the image at a particular scale,
Silverlight will choose the closest resolution to the display size or even
use multiple sizes at once when displaying in 3D.

This conversion happens as Silverlight is downloading and decoding your
images and only adds a little time to the loading time of your application,
but does not slow down animation speed.

Incremental Redraw

In addition to drawing static objects for a single frame, Silverlight must constantly redraw
objects as they are changing. If an object moves from one position to another, it would be
wasteful to redraw all the pixels on the screen. Instead, Silverlight marks the old position as
needing a redraw and marks the new position as also needing a redraw. To simplify this
marking algorithm, Silverlight uses the bounding box of a shape instead of the tight shape
bounds.

For example, suppose the shape shown in the following XAML moves from position 0, 0
to position 100,100. Figure 3-45 shows the area that is redrawn.

<Canvas xmlns="http://schemas.microsoft.com/client/2007">



<Ellipse
Fill="Black"
Width="100"
Height="100"
/>

</Canvas>

Background
redraw from old
location

Draw Ellipse

Figure 3-45
Incremental redraw regions

To view a visualization of these incremental redraw regions in an application, use the
following JavaScript:

function loadHandler (sender, args)

{
}

sender.settings.EnableRedrawRegions = true;

This visualization will blend a transparent color on top of any content drawn and cycles
to a different color each frame. Consequently, any content that is flashing represents content
that Silverlight is constantly redrawing. Any content that stabilizes on a single color has not
changed for several frames.

Occlusion Culling

The most expensive operation in the draw loop is the rasterization process, which writes
each of the destination pixels. For example, a full screen animation can consist of processing
several hundred million pixels per second. Each of these pixels will apply at least one brush
operation. If there are overlapping brushes, the computational requirements can multiply by
a factor of 3 to 10.

As the graph of elements gets more complicated, it may no longer render at the desired
frame rate. To optimize the rasterization process, Silverlight avoids brush operations for
completely occluded brush pixels. For example, if you draw a full screen background and
an almost full screen image, Silverlight computes all the image pixels and only those



background pixels not covered by the image itself. For complicated graphs of elements, this
optimization can produce a 3-10x speedup.

Performance Tip

Occlusion culling only applies to brush pixel color optimizations. If a
complicated geometry is behind a big opaque rectangle, the rasterizer will
walk the geometry before it realizes that the pixel operations are not
necessary. Consequently, it is still important to remove hidden content
from the element tree for maximum performance.

Multi-core Rendering

Silverlight will take advantage of multiple CPU cores to produce faster rendering
throughput. In particular, Silverlight will subdivide a frame into a set of horizontal bands
and distribute the rasterization of those bands across CPU cores as shown in Figure 3-46.
Currently, only the frame rasterization step and media operations run in parallel across CPU
cores. Systems such as layout, control templating, application user code, and animation all
run on a single thread. Consequently, you can determine if your application is rasterization
bound by simply setting your framerate to 10000 frames per second and measuring your
CPU usage percentage. If you achieve almost 100% CPU usage on a dual core machine, you
are almost entirely rasterization bound. If you achieve 70% CPU usage on a dual core
machine (at 10000 frames per second) that means that 30% of the work is not running in
parallel.

Figure 3-46
Dividing a scene for multi-core rendering



How Content Gets to the Screen

As previously discussed, the draw loop first draws a frame to an off screen back buffer
and then it notifies the browser that the frame is ready for display. With windowless=false
mode, Silverlight content goes to the screen without browser intervention on most operating
systems. With windowless=true, the browser copies the off screen frame to its display
area. This extra step is both slow and can result in visual tearing effects in a number of
browsers. The worst mode of operation is when windowless=true is specified with a
transparent color for the background of the control. The transparent color causes the web
browser to redraw the content underneath the control each time any control content has
changed.

Performance Tip

You should avoid using both a transparent background and
windowless=true if possible.

Where Are We?
This chapter has described:

. The graphics system design principles
. The elements for displaying graphics
. The problems the Silverlight run-time solves under the hood and the

problems your application must solve

In addition, you have learned a number of important performance optimization techniques
for use with your application.



“If you want to be a C#¥ de
C# programming skills, there is no m
book on the cl. You are holding

—From the Foreword by Charli
Community Program Manager, Visual C#, Microsoft

Essential C# 3.0

For .NET Framework 3.5

Microsofty
AEt

Mark Michaelis

Facebook I StumbleUpon | @ Reddit II

Ml Delicious



http://www.google.com/
http://delicious.com/
http://digg.com/
http://www.facebook.com/
http://www.stumbleupon.com/
http://www.reddit.com/
http://twitter.com/
http://www.informit.com/store/product.aspx?isbn=0321533925
http://www.informit.com/store/product.aspx?isbn=0321533925

BUY ME

Mark Michaelis

Essential C# 3.0

For .NET Framework 3.5

Essential C# 3.0 is an extremely well-written and well-organized “no-fluff” guide to C#
3.0, which will appeal to programmers at all levels of experience with C#. This fully up-
dated edition dives deep into the new features that are revolutionizing programming, with

brand new chapters covering query expressions, lambda expressions, extension methods,

collection interface extensions, standard query operators, and LINQ as a whole.

Author Mark Michaelis covers the C# language in depth, and each importantconstruct is
illustrated with succinct, relevant code examples. (Complete code examples are available
online.) Graphical “mind maps” at the beginning of each chapter show what material

is covered and how each topic relates to the whole. Topics intended for beginners and
advanced readers are clearly marked.

Following an introduction to C#, readers learn about
e C# primitive data types, value types, reference types, type conversions, and arrays
e (Qperators and control flow, loops, conditional logic, and sequential programming
e Methods, parameters, exception handling, and structured programming
e (lasses, inheritance, structures, interfaces, and object-oriented programming
o Well-formed types, operator overloading, namespaces, and garbage collection
e Generics, collections, custom collections, and iterators
e Delegates and lambda expressions
e Standard query operators and query expressions
e LINQ: language integrated query
o Reflection, attributes, and declarative programming
e Threading, synchronization, and multithreaded patterns
e Interoperability and unsafe code
e The Common Language Infrastructure that underlies C#
Whether you are just starting out as a programmer, are an experienced developer looking
to learn C#, or are a seasoned C# programmer interested in learning the new features of

C# 3.0, Essential G# 3.0 gives you just what you need to quickly get up and running
writing C# applications.

Essential C# 3.0

For .NET Framework 3.5

\A 4
Addison
Wesley

informit.com/aw

(

AVAILABLE

« BOOK: 97803215

« EBOOK: 0321580699
o KINDLE: 0321580680

About the Author

Mark Michaelis is an enterprise
software architect at Itron Inc. In
addition, Mark recently started intel-
liTechture, a software engineering
and consulting company offering
high-end consulting in Microsoft
VSTS/TES, BizTalk, SharePoint,

and .NET 3.0. Mark also serves as a
chief software architect and trainer
for IDesign Inc.

Mark holds a B.A. in philosophy
from the University of Illinois and

an M.S. in computer science from
the Illinois Institute of Technology.
Mark was recently recognized as a
Microsoft Regional Director. Starting
in 1996, he has been a Microsoft
MVP for C#, Visual Studio Team
System, and the Windows SDK. He
serves on several Microsoft software
design review teams, including C#,
the Connected Systems Division,
and VSTS. Mark speaks at many de-
veloper conferences and has written
numerous articles and books.

When not bonding with his comput-
er, Mark is busy with his family or
training for the Ironman. Mark lives
in Spokane, Washington, with his
wife Elisabeth, and three children,
Benjamin, Hanna, and Abigail.


http://www.informit.com/store/product.aspx?isbn=0321533925
http://www.informit.com/store/product.aspx?isbn=0321533925
http://www.safaribooksonline.com/Corporate/Index/
http://www.informit.com/imprint/index.aspx?st=61085
http://www.informit.com/imprint/index.aspx?st=61085

53

Operators and Control Flow

N THIS CHAPTER,
ments. Operators

you will learn about operators and control flow state-
provide syntax for performing different calculations

or actions appropriate for the operands within the calculation. Control

flow statements provide the means for conditional logic within a program

or looping over a section of code multiple times. After introducing the if

control flow statement, the chapter looks at the concept of Boolean expres-

sions, which are emb

#if, #elif, #else, and #endif
#define and #undef
#error and #warning

edded within many control flow statements, pointing

Arithmetic Binary

Preprocessor Operators
#pragma r 0
3 ® Directives (@) operators

nowarn:<warn list>
#line
#region/#endregion

break Jump

continue
goto

if
while
do-while

Statements

Assignment Operators

Increment and
Decrement Operators

Constant Expressions

Operators and @ Boolean Expressions

Control Flow r

Control Flow @ Bitwise Operators
Statements

for
foreach
switch

83



84

Chapter 3: Operators and Control Flow

out that integers will not cast explicitly to bool and the advantages of this
restriction. The chapter ends with a discussion of the primitive C# “prepro-
cessor” and its accompanying directives.

Operators

Now that you have been introduced to the predefined data types (refer to
Chapter 2), you can begin to learn more about how to use these data types
in combination with operators to perform calculations. For example, you
can make calculations on variables you have declared.

BEGINNER TOPIC

Operators

Operators specify operations within an expression, such as a mathematical
expression, to be performed on a set of values, called operands, to produce
a new value or result. For example, in Listing 3.1 there are two operands,
the numbers 4 and 2, that are combined using the subtraction operator, -.
You assign the result to the variable total.

LISTING 3.1: A SIMPLE OPERATOR EXAMPLE

total = 4 - 2;

Operators are generally broken down into three categories: unary,
binary, and ternary, corresponding to the number of operands 1, 2, and 3,
respectively. This section covers some of the most basic unary and binary
operators. Ternary operators appear later in the chapter.

Plus and Minus Unary Operators (+, -)

Sometimes you may want to change the sign of a numerical variable. In
these cases, the unary minus operator (-) comes in handy. For example,
Listing 3.2 changes the total current U.S. debt to a negative value to indi-
cate that it is an amount owed.



Operators

LISTING 3.2: SPECIFYING NEGATIVE VALUES®

//National Debt to the Penny
decimal debt = -9202150370120.72M;

Using the minus operator is equivalent to multiplying a number by —1.
The unary plus operator (+) has no effect on a value. It is a superfluous
addition to the C# language and was included for the sake of symmetry.

Arithmetic Binary Operators (+, -, *, /, %)

Binary operators require two operands in order to process an equation: a
left-hand side operand and a right-hand side operand. Binary operators
also require that the code assign the resultant value to avoid losing it.

Language Contrast: C++—Operator-Only Statements

Binary operators in C# require an assignment or call; they always return a
new result. Neither operand in a binary operator expression can be modi-
fied. In contrast, C++ will allow a single statement, such as 4+5, to compile
even without an assignment. In C#, call, increment, decrement, and new
object expressions are allowed for operator-only statements.

The subtraction example in Listing 3.3 is an example of a binary operator—
more specifically, an arithmetic binary operator. The operands appear
on each side of the arithmetic operator and then the calculated value is
assigned. The other arithmetic binary operators are addition (+), divi-
sion (/), multiplication (*), and remainder (%; sometimes called the mod
operator).

LISTING 3.3: USING BINARY OPERATORS

class Division

{

static void Main()

{

int numerator;
int denominator;

1. As of January 15, 2008.

85



86 Chapter 3: Operators and Control Flow

int quotient;
int remainder;

System.Console.Write("Enter the numerator: ");
numerator = int.Parse(System.Console.ReadlLine());

System.Console.Write("Enter the denominator: ");
denominator = int.Parse(System.Console.ReadlLine());

quotient = numerator / denominator;
remainder = numerator % denominator;

System.Console.WriteLine(
"{e} / {1} = {2} with remainder {3}",
numerator, denominator, quotient, remainder);

Output 3.1 shows the results of Listing 3.3.

OUTPUT 3.1:

Enter the numerator: 23
Enter the denominator: 3

23 / 3

Note the order of associativity when using binary operators. The binary
operator order is from left to right. In contrast, the assignment operator
order is from right to left. On its own, however, associativity does not spec-
ify whether the division will occur before or after the assignment. The
order of precedence defines this. The precedence for the operators used so

= 7 with remainder 2

far is as follows:

1) *,/,and %,2) + and -, and 3) =

Therefore, you can assume that the statement behaves as expected, with
the division and remainder operators occurring before the assignment.
If you forget to assign the result of one of these binary operators, you

will receive the compile error shown in Output 3.2.



Operators

OUTPUT 3.2:

. error CSD201: Only assignmenta calla increment. decrementa.
and new object expressions can be used as a statement

BEGINNER TOPIC

Associativity and Order of Precedence
As with mathematics, programming languages support the concept of
associativity. Associativity refers to how operands are grouped and, there-
fore, the order in which operators are evaluated. Given a single operator
that appears more than once in an expression, associative operators will
produce the same result regardless of the order in which they are evalu-
ated. Binary operators such as + and - are associative because the order in
which the operators are applied is not significant; a+b+c has the same
result whether a+b is performed first or b+c is performed first.
Associativity applies only when all the operators are the same. When
different operators appear within a statement, the order of precedence for
those operators dictates which operators are evaluated first. Order of pre-
cedence, for example, indicates that the multiplication operator be evalu-
ated before the plus operator in the expression a+b*c.

Using the Plus Operator with Strings

Operators can also work with types that are not numeric. For example, it is
possible to use the plus operator to concatenate two or more strings, as
shown in Listing 3.4.

LISTING 3.4: USING BINARY OPERATORS WITH NON-NUMERIC TYPES

class FortyTwo

{
static void Main()
{
short windSpeed = 42;
System.Console.WriteLine(
"The original Tacoma Bridge in Washington\nwas "
+ "brought down by a "
+ windSpeed + " mile/hour wind.");
}

87



88

Chapter 3: Operators and Control Flow

Output 3.3 shows the results of Listing 3.4.

OuTPUT 3.3:

The original Tacoma Bridge in Washington
was brought down by a 42 mile/hour wind-.

Because sentence structure varies among languages in different cultures,
developers should be careful not to use the plus operator with strings that
require localization. Composite formatting is preferred (refer to Chapter 1).

Using Characters in Arithmetic Operations

When introducing the char type in the last chapter, I mentioned that even
though it stores characters and not numbers, the char type is an integer
type. It can participate in arithmetic operations with other integer types.
However, interpretation of the value of the char type is not based on the
character stored within it, but rather on its underlying value. The digit 3,
for example, contains a Unicode value of 8x33 (hexadecimal), which in
base 10 is 51. The digit 4, on the other hand, contains a Unicode value of
@x34, or 52 in base 10. Adding 3 and 4 in Listing 3.5 results in a hexadeci-
mal value of @x167, or 103 in base 10, which is equivalent to the letter g.

LISTING 3.5: USING THE PLUS OPERATOR WITH THE char DATA TYPE

int n="'3" + '4";
char c = (char)n;
System.Console.WriteLine(c); // Writes out g.

Output 3.4 shows the results of Listing 3.5.

OUTPUT 3.4:

9

You can use this trait of character types to determine how far two char-
acters are from one another. For example, the letter f is three characters
away from the letter c. You can determine this value by subtracting the let-
ter c from the letter f, as Listing 3.6 demonstrates.



Operators

LISTING 3.6: DETERMINING THE CHARACTER DIFFERENCE BETWEEN TWO CHARACTERS

int distance = 'f' - 'c';
System.Console.WriteLine(distance);

Output 3.5 shows the results of Listing 3.6.

OUTPUT 3.5:

5

Special Floating-Point Characteristics

The floating-point types, float and double, have some special characteris-
tics, such as the way they handle precision. This section looks at some spe-
cific examples, as well as some unique floating-point type characteristics.

A float, with seven digits of precision, can hold the value 1,234,567 and
the value 0.1234567. However, if you add these two floats together, the
result will be rounded to 1234567, because the decimal portion of the num-
ber is past the seven significant digits that a float can hold. This type of
rounding can become significant, especially with repeated calculations or
checks for equality (see the upcoming Advanced Topic, Unexpected
Inequality with Floating-Point Types).

Note that inaccuracies can occur with a simple assignment, such as double
number = 4.2F. Since the double can hold a more accurate value than the
float can store, the C# compiler will actually evaluate this expression to dou-
ble number = 4.1999998092651367;.4.1999998092651367 is 4.2 as a float,
but not quite 4.2 when represented as a double.

ADVANCED TOPIC

Unexpected Inequality with Floating-Point Types
The inaccuracies of floats can be very disconcerting when comparing values
for equality, since they can unexpectedly be unequal. Consider Listing 3.7.

LISTING 3.7: UNEXPECTED INEQUALITY DUE TO FLOATING-POINT INACCURACIES

decimal decimalNumber = 4.2M;
double doubleNumberl = 0.1F * 42F;

89



90

Chapter 3: Operators and Control Flow

double doubleNumber2 = ©.1D * 42D;
float floatNumber = 0.1F * 42F;

Trace.Assert(decimalNumber != (decimal)doubleNumberl);
// Displays: 4.2 != 4.20000006258488
System.Console.WriteLine(

"{e} !'= {1}", decimalNumber, (decimal)doubleNumberl);

Trace.Assert((double)decimalNumber != doubleNumberl);
// Displays: 4.2 != 4.20000006258488
System.Console.WriteLine(

"{e} !'= {1}", (double)decimalNumber, doubleNumberl);

Trace.Assert((float)decimalNumber != floatNumber);
// Displays: (float)4.2M != 4.2F
System.Console.WriteLine(

"(float){eM != {1}F",

(float)decimalNumber, floatNumber);

Trace.Assert(doubleNumberl != (double)floatNumber);
// Displays: 4.20000006258488 != 4.20000028610229
System.Console.WriteLine(

"{e} != {1}", doubleNumberl, (double)floatNumber);

Trace.Assert(doubleNumberl != doubleNumber2);
// Displays: 4.20000006258488 != 4.2
System.Console.WriteLine(

"{e} != {1}", doubleNumberl, doubleNumber2);

Trace.Assert(floatNumber != doubleNumber2);
// Displays: 4.2F != 4.2D
System.Console.WriteLine(

"{0}F != {1}D", floatNumber, doubleNumber2);

Trace.Assert((double)4.2F != 4.2D);
// Display: 4.19999980926514 != 4.2
System.Console.WriteLine(

"{0} !'= {1}", (double)4.2F, 4.2D);

Trace.Assert(4.2F != 4.2D);
// Display: 4.2F != 4.2D
System.Console.WriteLine(

"{@}F != {1}D", 4.2F, 4.2D);

Output 3.6 shows the results of Listing 3.7.
The Assert() methods are designed to display a dialog whenever the

parameter evaluates for false. However, all of the Assert() statements in
this code listing will evaluate to true. Therefore, in spite of the apparent



Operators

OUTPUT 3.6:

4.2 != 4.2000000k258488

4.2 !'= 4.2000000k258488

(float)4.2M != YH.2F

4.2000000k258488 !'= 4.20000028L10229
4.2000000k258488 !'= 4.2

4.2F != 4.2D
4.1999998092b514 != 4.2
4.2F != 4.2D

equality of the values in the code listing, they are in fact not equivalent due
to the inaccuracies of a float. Furthermore, there is not some compound-
ing rounding error. The C# compiler performs the calculations instead of
the runtime. Even if you simply assign 4.2F rather than a calculation, the
comparisons will remain unequal.

To avoid unexpected results caused by the inaccuracies of floating-
point types, developers should avoid using equality conditionals with
these types. Rather, equality evaluations should include a tolerance. One
easy way to achieve this is to subtract one value (operand) from the other
and then evaluate whether the result is less than the maximum tolerance.
Even better is to use the decimal type in place of the float type.

You should be aware of some additional unique floating-point charac-
teristics as well. For instance, you would expect that dividing an integer by
zero would result in an error, and it does with precision data types such as
int and decimal. float and double, however, allow for certain special val-
ues. Consider Listing 3.8, and its resultant output, Output 3.7.

LISTING 3.8: DIVIDING A FLOAT BY ZERO, DISPLAYING NAN

float n=0f;
// Displays: NaN
System.Console.WriteLine(n / 0);

OuUTPUT 3.7:

NaN

In mathematics, certain mathematical operations are undefined. In C#,
the result of dividing OF by the value 0 results in “Not a Number,” and all

91



92

Chapter 3: Operators and Control Flow

attempts to print the output of such a number will result in NaN. Similarly,
taking the square root of a negative number (System.Math.Sqrt(-1)) will
result in NaN.

A floating-point number could overflow its bounds as well. For exam-
ple, the upper bound of a float type is 3.4E38. Should the number over-
flow that bound, the result would be stored as “positive infinity” and the
output of printing the number would be Infinity. Similarly, the lower
bound of a float type is -3.4E38, and assigning a value below that bound
would result in “negative infinity,” which would be represented by the
string -Infinity. Listing 3.9 produces negative and positive infinity,
respectively, and Output 3.8 shows the results.

LISTING 3.9: OVERFLOWING THE BOUNDS OF A float

// Displays: -Infinity
System.Console.WriteLine(-1f / 0);

// Displays: Infinity
System.Console.WriteLine(3.402823E+38f * 2f);

OuTPUT 3.8:

-Infinity
Infinity

Further examination of the floating-point number reveals that it can
contain a value very close to zero, without actually containing zero. If the
value exceeds the lower threshold for the float or double type, then the
value of the number can be represented as “negative zero” or “positive
zero,” depending on whether the number is negative or positive, and is
represented in output as -0 or @.

Parenthesis Operator

The parenthesis operator allows you to group operands and operators so
that they are evaluated together. This is important because it provides a
means of overriding the default order of precedence. For example, the fol-
lowing two expressions evaluate to something completely different:

(60 / 10) * 2
60 / (18 * 2)



Operators

The first expression is equal to 12; the second expression is equal to 3. In
both cases, the parentheses affect the final value of the expression.

Sometimes the parenthesis operator does not actually change the result,
because the order-of-precedence rules apply appropriately. However, it is
often still a good practice to use parentheses to make the code more read-
able. This expression, for example:

fahrenheit = (celsius * 9 / 5) + 32;
is easier to interpret confidently at a glance than this one is:
fahrenheit = celsius * 9 / 5 + 32;

Developers should use parentheses to make code more readable, disam-
biguating expressions explicitly instead of relying on operator precedence.

Assignment Operators (+=, -=, *=, /=, %=)

Chapter 1 discussed the simple assignment operator, which places the
value of the right-hand side of the operator into the variable on the left-
hand side. Other assignment operators combine common binary operator
calculations with the assignment operator. Take Listing 3.10, for example.

LISTING 3.10: COMMON INCREMENT CALCULATION

int x;
X = X + 2;

In this assignment, you first calculate the value of x + 2 and then you
assign the calculated value back to x. Since this type of operation is rela-
tively frequent, an assignment operator exists to handle both the calcula-
tion and the assignment with one operator. The += operator increments the
variable on the left-hand side of the operator with the value on the right-
hand side of the operator, as shown in Listing 3.11.

LISTING 3.11: USING THE += OPERATOR

int x;
X += 2;

This code, therefore, is equivalent to Listing 3.10.

93



94

Chapter 3: Operators and Control Flow

Numerous other combination assignment operators exist to provide
similar functionality. You can use the assignment operator in conjunction
with not only addition, but also subtraction, multiplication, division, and

the remainder operators, as Listing 3.12 demonstrates.

LISTING 3.12: OTHER ASSIGNMENT OPERATOR EXAMPLES

U}
N NN DN

E}

E}

LN |
[}

E}

X X X X
R
1]

El

Increment and Decrement Operators (++, —-)

C# includes special operators for incrementing and decrementing coun-
ters. The increment operator, ++, increments a variable by one each time it
is used. In other words, all of the code lines shown in Listing 3.13 are
equivalent.

LISTING 3.13: INCREMENT OPERATOR

spaceCount = spaceCount + 1;
spaceCount += 1;
spaceCount++;

Similarly, you can also decrement a variable by one using the decre-
ment operator, - -. Therefore, all of the code lines shown in Listing 3.14 are
also equivalent.

LISTING 3.14: DECREMENT OPERATOR

lines = lines - 1;
lines -= 1;
lines--;

BEGINNER TOPIC

A Decrement Example in a Loop

The increment and decrement operators are especially prevalent in loops,
such as the while loop described later in the chapter. For example, Listing
3.15 uses the decrement operator in order to iterate backward through
each letter in the alphabet.



Operators

LISTING 3.15: DISPLAYING EACH CHARACTER’S ASCII VALUE IN DESCENDING ORDER

char current;
int asciivalue;

// Set the initial value of current.
current='z";

do
{
// Retrieve the ASCII value of current.
asciivalue = current;
System.Console.Write("{@}={1}\t", current, asciiValue);

// Proceed to the previous Lletter in the alphabet;
current--;

}

while(current>='a');

Output 3.9 shows the results of Listing 3.15.

OUTPUT 3.9:

z=1l22 y=121 x=120 w=119 v=118 u=117 t=11k s=115 r=114
9=113 p=112 0=111 n=110 m=109 1=108 k=107 j=10k i=105
h=104 9=103 f=102 e=101 d=100 c=99 b=98 a=97

The increment and decrement operators are used to count how many
times to perform a particular operation. Notice also that in this example, the
increment operator is used on a character (char) data type. You can use incre-
ment and decrement operators on various data types as long as some mean-
ing is assigned to the concept of “next” or “previous” for that data type.

Just as with the assignment operator, the increment operator also
returns a value. In other words, it is possible to use the assignment opera-
tor simultaneously with the increment or decrement operator (see Listing
3.16 and Output 3.10).

LISTING 3.16: USING THE POST-INCREMENT OPERATOR

int count;

int result;

count = 0;

result = count++;

95



96

Chapter 3: Operators and Control Flow

System.Console.WriteLine("result = {0} and count = {1}",
result, count);

OUTPUT 3.10:

result = 0 and count = 1

You might be surprised that count is assigned to result before it is incre-
mented. This is why result ends up with a value of @ even though count
ends up with a value of 1.

If you want the increment or decrement operator to take precedence
over the assignment operator and to execute before assigning the value,
you need to place the operator before the variable being incremented, as
shown in Listing 3.17.

LISTING 3.17: USING THE PRE-INCREMENT OPERATOR

int count;

int result;

count = 0;

result = ++count;

System.Console.WriteLine("result = {0} and count = {1}",
result, count);

Output 3.11 shows the results of Listing 3.17.

OUTPUT 3.11:

result = 1 and count = 1

Where you place the increment or decrement operator determines the
order of operations, which affects how the code functions. If the incre-
ment or decrement operator appears before the operand, the value
returned will be the new value. If x is 1, then ++x will return 2. However,
if a postfix operator is used, x++, the value returned by the expression
will still be 1. Regardless of whether the operator is postfix or prefix, the
resultant value of x will be different. The difference between prefix and
postfix behavior appears in Listing 3.18. The resultant output is shown in
Output 3.12.



Operators

LISTING 3.18: COMPARING THE PREFIX AND POSTFIX INCREMENT OPERATORS

class IncrementExample

{
public static void Main()
{
int x;
x = 1;
// Display 1, 2.
System.Console.WriteLine("{0}, {1}, {2}", x++, x++, X);
// X now contains the value 3.
// Display 4, 5.
System.Console.WriteLine("{0}, {1}, {2}", ++x, ++Xx, X);
// x now contains the value 5.
/.
}
}
OUTPUT 3.12:
1. 2. 3
4. 5. 5

As Listing 3.18 demonstrates, where the increment and decrement
operators appear relative to the operand can affect the result returned from
the operator. Pre-increment/decrement operators return the result after
incrementing/decrementing the operand. Post-increment/decrement
operators return the result before changing the operand. Developers
should use caution when embedding these operators in the middle of a
statement. When in doubt as to what will happen, use these operators
independently, placing them within their own statements. This way, the
code is also more readable and there is no mistaking the intention.

ADVANCED TOPIC

Thread-Safe Incrementing and Decrementing

In spite of the brevity of the increment and decrement operators, these
operators are not atomic. A thread context switch can occur during the exe-
cution of the operator and can cause a race condition. Instead of using a

97



98

Chapter 3: Operators and Control Flow

lock statement to prevent the race condition, the System.Thread-
ing.Interlocked class includes the thread-safe methods Increment() and
Decrement(). These methods rely on processor functions for performing
fast thread-safe increments and decrements.

Constant Expressions (const)
The previous chapter discussed literal values, or values embedded directly
into the code. It is possible to combine multiple literal values in a constant
expression using operators. By definition, a constant expression is one that the
C# compiler can evaluate at compile time (instead of calculating it when the
program runs). For example, the number of seconds in a day can be assigned
as a constant expression whose result can then be used in other expressions.
The const keyword in Listing 3.19 locks the value at compile time. Any
attempt to modify the value later in the code results in a compile error.

LISTING 3.19: DECLARING A CONSTANT

/! ...

ublic long Main

‘{) g 0 Constant Expression
const int secondsPerDay = 60 * 60 * 24;
const int secondsPerWeek = secondsPerDay * 7;

Constant

/..

}

Note that even the value assigned to secondsPerWeek is a constant expres-
sion, because the operands in the expression are also constants, so the com-
piler can determine the result.

Introducing Flow Control

Later in this chapter is a code listing (Listing 3.42) that shows a simple way
to view a number in its binary form. Even such a simple program, how-
ever, cannot be written without using control flow statements. Such state-
ments control the execution path of the program. This section discusses
how to change the order of statement execution based on conditional
checks. Later, you will learn how to execute statement groups repeatedly
through loop constructs.



Sanuiuo)
f(.31x3, =j 3Indul)airym
{
£()aur1ppay 270suU0) *Wa1SAS
= 3ndui
(., cowpbu Ja3juy,
)au179311dM 1 370SU0) *W31SAS ¢ (Uuo1ssaudxa-upa7100q)3TTym
} JUBW3IDLS -PIAPPIqU
op op Juawajle}s STTYm op
{

f++3Uno>
f(auno> ,{e} = 3unos,
)au179311dM *370SU0) *Wd1SAS
}

(1p3031 > 3UNO0>)a11ym

1UBW33DIS -PappPaquIad
(uo1ssaudxa-upal1o0q)dTTyYM

JUBWIRIS STTYM

£()anowixanN3an
as1a
{
fudniad
£(.,pua aupy,
)aU17a11JM *370SU0D *W3ISAS

JUBWB1D1S -pappPaqud
asT?

} JUBWa3IDS-pappaquiad
(.31nb, == 3ndui) f1 (uoissaudxa-upalooq)4t
{
fudaniad
£(.,.pua aupy,
)aU17311JM *370SU0D *W3ISAS
} JUBW31D1S-PappaquId
(.31nb, == 3ndui) f1 (uoissaudxa-unajooq)4t juswialels 4t
31dWvX3 J¥NLONYLS XVLNAS TVH¥INID INIW3LVIS

SINIW3ILVIS MO14 10¥INO) :T°€ 319V]

99



£(ua1137
)311dM 3705U0) *Wa3IsAS

{

fanui1juod

{

}
(,0, == 433397) 1

fanJj = ulbuwogapisul

}

(urbwogapisuij)fi

}

(11bwd Ul 433337 JbYd) YsD3Jof

fanuT3uod

JUSWI)LIS BNUTIUOD

Juswa3lels-pappaqud
(uotssaudxa
UT JOTJTIUIPT adA3)yoseauos

JUSWI]LIS YoeaJoS

{
f(3uno> ‘,{o} = 3unos,
)au17911JdM*270SUO0) *W23SAS
}
(++3uno>
9T => 3uno>
fT = 3uno> jui) Jof

JUAW3IDIS -PaPPIqUI
(4031DU3311-dOf
fuoissaddxa-upajooq
fuaz11p131ul-Jof)Jot

JUBWIL)S JOF

I1dWVX3

FANLINYLS XVINAS TVIINIDH

INIW3ILVIS

(panunuo)) SINIWILVIS MOT4 TO¥INOD) :T°€ 318v)

100



f3Tnejap o308

. { fU01SssaJdxa-1suod> ased 0308
fypauq
3
vm:wqmpwgs.mgomcmmm“MMWAW fualfirjuap1r 0308 jusawajlels oio8
:31npfap
£yDadgq yeadq JudWale]s Meadq
£()anowian
:,3dJb1Ss, 3spd {
f,34b1s, aspd> ojob Juawaieys-dwn(l
£()313say 1STT-31uUswalels
2, 14D1S3ad, aspd :3Tnejap
fypauq Juawaieys-dwnl
(., "+ddp buriirx3, 1STT-31uUswalels
)au17211dM " 370SU0D "waISAS 1UOTSSaJdXxa-1SuUod ased
:.31nb, asb> tee
:,11Xx2, 3spd }
} (uoTssaudxa
(3ndui)ysiims -2dA3-3utudanold)ysiytms 1USWIe]S YdO1IMS
I1dWvX3 FANLINYLS XVINAS TV¥INID AINIW3ILVLS

(panujuo)) SINIWILVIS MOT4 TO¥LNO) :T°E 318v]

101



102

Chapter 3: Operators and Control Flow

A summary of the control flow statements appears in Table 3.1. Note
that the General Syntax Structure column indicates common statement
use, not the complete lexical structure.

An embedded-statement in Table 3.1 corresponds to any statement, includ-
ing a code block (but not a declaration statement or a label).

Each C# control flow statement in Table 3.1 appears in the tic-tac-toe
program found in Appendix B. The program displays the tic-tac-toe board,
prompts each player, and updates with each move.

The remainder of this chapter looks at each statement in more detail.
After covering the if statement, it introduces code blocks, scope, Boolean
expressions, and bitwise operators before continuing with the remaining
control flow statements. Readers who find the table familiar because of
C#'s similarities to other languages can jump ahead to the section titled C#
Preprocessor Directives or skip to the Summary section at the end of the
chapter.

if Statement

The if statement is one of the most common statements in C#. It evaluates
a Boolean expression (an expression that returns a Boolean), and if the
result is true, the following statement (or block) is executed. The general
form is as follows:

if(boolean-expression)
true-statement

[else
false-statement]

There is also an optional else clause for when the Boolean expression is
false. Listing 3.20 shows an example.

LISTING 3.20: if/else STATEMENT EXAMPLE

class TicTacToe // Declares the TicTacToe class.

{
static void Main() // Declares the entry point of the program.
{

string input;

// Prompt the user to select a 1- or 2- player game.
System.Console.Write (
"1 - Play against the computer\n" +



Introducing Flow Control

"2 - Play against another player.\n" +
"Choose:"
)

input = System.Console.ReadLine();

if(input=="1")
// The user selected to play the computer.
System.Console.WriteLine(
"Play against computer selected.");
else
// Default to 2 players (even if user didn't enter 2).
System.Console.WriteLine(
"Play against another player.");

In Listing 3.20, if the user enters 1, the program displays "Play against
computer selected.". Otherwise, it displays "Play against another
player.".

Nested if

Sometimes code requires multiple if statements. The code in Listing 3.21
first determines whether the user has chosen to exit by entering a number
less than or equal to ©; if not, it checks whether the user knows the maxi-
mum number of turns in tic-tac-toe.

LISTING 3.21: NESTED if STATEMENTS

class TicTacToeTrivia
{
static void Main()

{

int input; // Declare a variable to store the input.

System.Console.Write(
"What is the maximum number
"of turns in tic-tac-toe?" +
"(Enter @ to exit.): ");

+

1

2

3

4

5

6

7

8

9

10

11

12 // int.Parse() converts the ReadlLine()
13 // return to an int data type.

14 input = int.Parse(System.Console.ReadLine());
15
16
17
18
19
20

if (input <= @)
// Input is less than or equal to 6.

System.Console.WriteLine("Exiting...");
else
if (input < 9)
21 // Input is less than 9.
22 System.Console.WriteLine(
23 "Tic-tac-toe has more than {0}" +

24 " maximum turns.", input);

103



104

Chapter 3: Operators and Control Flow

25 else

26 if(input>9)

27 // Input is greater than 9.

28 System.Console.WriteLine(

29 "Tic-tac-toe has fewer than {0}" +
30 " maximum turns.", input);

31 else

32 // Input equals 9.

33 System.Console.WriteLine(

34 "Correct, " +

35 "tic-tac-toe has a max. of 9 turns.");
36 }

37 }

Output 3.13 shows the results of Listing 3.21.

OuUTPUT 3.13:

What's the maximum number of turns in tic-tac-toe? (Enter O to exit.): 9
Correct. tic-tac-toe has a max. of 9 turns.

Assume the user enters 9 when prompted at line 14. Here is the execution
path:

1. Line 16: Check if input is less than 0. Since it is not, jump to line 20.
2. Line 20: Check if input is less than 9. Since it is not, jump to line 26.
3. Line 26: Check if input is greater than 9. Since it is not, jump to line 33.

4. Line 33: Display that the answer was correct.

Listing 3.21 contains nested if statements. To clarify the nesting, the lines
are indented. However, as you learned in Chapter 1, whitespace does not
affect the execution path. Without indenting and without newlines, the
execution would be the same. The code that appears in the nested if state-
ment in Listing 3.22 is equivalent.

LISTING 3.22: if/else FORMATTED SEQUENTIALLY

if (input < @)
System.Console.WriteLine("Exiting...");
else if (input < 9)
System.Console.WriteLine(
"Tic-tac-toe has more than {0}" +

maximum turns.", input);
else if(input>9)



Code Blocks ({})

System.Console.WriteLine(
"Tic-tac-toe has less than {0}" +
" maximum turns.", input);
else
System.Console.WriteLine(
"Correct, tic-tac-toe has a maximum of 9 turns.");

Although the latter format is more common, in each situation, use the for-
mat that results in the clearest code.

Code Blocks ({})

In the previous if statement examples, only one statement follows if and
else, a single System.Console.WriteLine(), similar to Listing 3.23.

LISTING 3.23: if STATEMENT WITH No CODE BLocCK

if(input<9)
System.Console.WriteLine("Exiting");

However, sometimes you might need to execute multiple statements.
Take, for example, the highlighted code block in the radius calculation in
Listing 3.24.

LISTING 3.24: if STATEMENT FOLLOWED BY A CODE BLOCK

class CircleAreaCalculator
{
static void Main()
{
double radius; // Declare a variable to store the radius.
double area; // Declare a variable to store the area.

System.Console.Write("Enter the radius of the circle: ");

// double.Parse converts the ReadlLine()
// return to a double.
radius = double.Parse(System.Console.ReadLine());

if(radius>=0)
{
// Calculate the area of the circle.
area = 3.l14*radius*radius;
System.Console.WriteLine(
"The area of the circle is: {@}", area);

105



106 Chapter 3: Operators and Control Flow

else

{

System.Console.WriteLine(
"{0} is not a valid radius.", radius);

Output 3.14 shows the results of Listing 3.24.

OUTPUT 3.14:

Enter the radius of the circle: 3
The area of the circle is: 28.2k

In this example, the if statement checks whether the radius is positive. If
so, the area of the circle is calculated and displayed; otherwise, an invalid
radius message is displayed.

Notice that in this example, two statements follow the first if. How-
ever, these two statements appear within curly braces. The curly braces
combine the statements into a single unit called a code block.

If you omit the curly braces that create a code block in Listing 3.24, only
the statement immediately following the Boolean expression executes con-
ditionally. Subsequent statements will execute regardless of the if state-
ment’s Boolean expression. The invalid code is shown in Listing 3.25.

LISTING 3.25: RELYING ON INDENTATION, RESULTING IN INVALID CODE

if(radius>=0)
area = 3.l1l4*radius*radius;
System.Console.WriteLine( // Error!! Needs code block.
"The area of the circle is: {@}", area);

In C#, indentation is for code readability only. The compiler ignores it,
and therefore, the previous code is semantically equivalent to Listing 3.26.

LISTING 3.26: SEMANTICALLY EQUIVALENT TO LISTING 3.25

if(radius>=0)
{

area = 3.l1l4*radius*radius;

}



Scope

System.Console.WriteLine( // Error!! Place within code block.
"The area of the circle is: {@}", area);

Programmers should take great care to avoid subtle bugs such as this, per-
haps even going so far as to always include a code block after a control
flow statement, even if there is only one statement.

ADVANCED TOPIC

Math Constants

In Listing 3.25 and Listing 3.26, the value of pi as 3.14 was hardcoded—a
crude approximation at best. There are much more accurate definitions for
pi and E in the System.Math class. Instead of hardcoding a value, code
should use System.Math.PI and System.Math.E.

Scope

Scope is the hierarchical context bound by a code block or language con-
struct. C# prevents two declarations with the same name declared in the
same scope. For example, it is not possible to define two local variables in
the same code block with the same name; the code block bounds the scope.
Similarly, it is not possible to define two methods called Main() within the
same class.

Scope is hierarchical because it is not possible to define a local variable
directly within a method and then to define a new variable with the same
name inside an if block of the same method. The scope of the initial vari-
able declaration spans the scope of all code blocks defined within the
method. However, a variable declared within the if block will not be in
the same scope as a variable defined within the else block. Furthermore,
the same local variable name can be used within another method because
the method bounds the scope of the local variable.

Scope restricts accessibility. A local variable, for example, is not accessi-
ble outside its defining method. Similarly, code that defines a variable in
an if block makes the variable inaccessible outside the if block, even
while still in the same method. In Listing 3.27, defining a message inside

107



108 Chapter 3: Operators and Control Flow

the if statement restricts its scope to the statement only. To avoid the
error, you must declare the string outside the if statement.

LISTING 3.27: VARIABLES INACCESSIBLE OUTSIDE THEIR SCOPE

class Program
{
static void Main(string[] args)
{
int playerCount;
System.Console.Write(
"Enter the number of players (1 or 2):");
playerCount = int.Parse(System.Console.ReadLine());
if (playerCount != 1 && playerCount != 2)
{
string message =
"You entered an invalid number of players.";

/...

// Error: message is not in scope.
Console.WriteLine(message);

Output 3.15 shows the results of Listing 3.27.

OUTPUT 3.15:

««.\Program.cs(18.2k): error CSD103: The name 'message' does not exist
in the current context

Boolean Expressions

The portion of the if statement within parentheses is the Boolean expres-
sion, sometimes referred to as a conditional. In Listing 3.28, the Boolean
expression is highlighted.

LISTING 3.28: BOOLEAN EXPRESSION

if(input < 9)
{
// Input is less than 9.



Boolean Expressions

System.Console.WriteLine(
"Tic-tac-toe has more than {@}" +
" maximum turns.", input);
}
/] ...

Boolean expressions appear within many control flow statements. The
key characteristic is that they always evaluate to true or false. For
input<9 to be allowed as a Boolean expression, it must return a bool. The
compiler disallows x=42, for example, because it assigns x, returning the
new value, instead of checking whether x’s value is 42.

Language Contrast: C++—Mistakenly Using - in Place of --

The significant feature of Boolean expressions in C# is the elimination of a
common coding error that historically appeared in C/C++. In C++, Listing
3.29 is allowed.

LISTING 3.29: C++, BUT NOoT C#, ALLOWS ASSIGNMENT AS A BOOLEAN EXPRESSION

if(input=9) // COMPILE ERROR: Allowed in C++, not in Ci#.
System.Console.WriteLine(
"Correct, tic-tac-toe has a maximum of 9 turns.");

Although this appears to check whether input equals 9, Chapter 1
showed that = represents the assignment operator, not a check for equal-
ity. The return from the assignment operator is the value assigned to the
variable—in this case, 9. However, 9 is an int, and as such it does not
qualify as a Boolean expression and is not allowed by the C# compiler.

Relational and Equality Operators
Included in the previous code examples was the use of relational opera-
tors. In those examples, relational operators were used to evaluate user
input. Table 3.2 lists all the relational and equality operators.

In addition to determining whether a value is greater than or less than
another value, operators are also required to determine equivalency. You
test for equivalence by using equality operators. In C#, the syntax follows

109



110 Chapter 3: Operators and Control Flow

TABLE 3.2: RELATIONAL AND EQUALITY OPERATORS

OPERATOR DESCRIPTION EXAMPLE

< Less than input<9;
> Greater than input>9;
<= Less than or equal to input<=9;
>= Greater than or equal to input>=9;
== Equality operator input==9;
1= Inequality operator input!=9;

the C/C++/Java pattern with ==. For example, to determine whether

input equals 9 you use input==9. The equality operator uses two equals
signs to distinguish it from the assignment operator, =.

The exclamation point signifies NOT in C#, so to test for inequality you
use the inequality operator, !=.

The relational and equality operators are binary operators, meaning
they compare two operands. More significantly, they always return a Bool-
ean data type. Therefore, you can assign the result of a relational operator
to a bool variable, as shown in Listing 3.30.

LISTING 3.30: ASSIGNING THE RESULT OF A RELATIONAL OPERATOR TO A bool

bool result = 70 > 7;

In the tic-tac-toe program (see Appendix B), you use the equality opera-
tor to determine whether a user has quit. The Boolean expression of Listing
3.31 includes an OR (| |) logical operator, which the next section discusses
in detail.

LISTING 3.31: USING THE EQUALITY OPERATOR IN A BOOLEAN EXPRESSION

if (input == "" || input == "quit")

{
System.Console.WriteLine("Player {0} quit!!", currentPlayer);
break;

}




Boolean Expressions

Logical Boolean Operators

Logical operators have Boolean operands and return a Boolean result.
Logical operators allow you to combine multiple Boolean expressions to
form other Boolean expressions. The logical operators are ||, &, and *,
corresponding to OR, AND, and exclusive OR, respectively.

OR Operator (| |)
In Listing 3.31, if the user enters quit or presses the Enter key without typ-
ing in a value, it is assumed that she wants to exit the program. To enable
two ways for the user to resign, you use the logical OR operator, | |.

The | | operator evaluates two Boolean expressions and returns a true
value if either of them is true (see Listing 3.32).

LISTING 3.32: USING THE OR OPERATOR

if((hourOfTheDay > 23) || (hourOfTheDay < 0))
System.Console.WriteLine("The time you entered is invalid.");

Note that with the Boolean OR operator, it is not necessary to evaluate
both sides of the expression. The OR operators go from left to right, so if
the left portion of the expression evaluates to true, then the right portion is
ignored. Therefore, if hourOfTheDay has the value 33, (hourOfTheDay >
23) will return true and the OR operator ignores the second half of the
expression. Short-circuiting an expression also occurs with the Boolean
AND operator.

AND Operator (88)

The Boolean AND operator, &&, evaluates to true only if both operands
evaluate to true. If either operand is false, the combined expression will
return false.

Listing 3.33 displays that it is time for work as long as the current hour
is both greater than 10 and less that 242 As you saw with the OR operator,
the AND operator will not always evaluate the right side of the expression.
If the left operand returns false, then the overall result will be false
regardless of the right operand, so the runtime ignores the right operand.

2. The typical hours programmers work.

111



112

Chapter 3: Operators and Control Flow

LISTING 3.33: USING THE AND OPERATOR

if ((hourOfTheDay > 10) && (hourOfTheDay < 24))
System.Console.WriteLine(
"Hi-Ho, Hi-Ho, it's off to work we go.");

Exclusive OR Operator (")

The caret symbol, ~, is the “exclusive OR” (XOR) operator. When applied
to two Boolean operands, the XOR operator returns true only if exactly
one of the operands is true, as shown in Table 3.3.

TABLE 3.3: CONDITIONAL VALUES FOR THE XOR OPERATOR

LEFT OPERAND RIGHT OPERAND RESULT
True True False
True False True
False True True
False False False

Unlike the Boolean AND and Boolean OR operators, the Boolean XOR
operator does not short-circuit: It always checks both operands, because
the result cannot be determined unless the values of both operands are
known.

Logical Negation Operator (!)

Sometimes called the NOT operator, the logical negation operator, !,
inverts a bool data type to its opposite. This operator is a unary operator,
meaning it requires only one operand. Listing 3.34 demonstrates how it
works, and Output 3.16 shows the results.

LISTING 3.34: USING THE LOGICAL NEGATION OPERATOR

bool result;

bool valid = false;

result = lvalid;

// Displays "result = True".
System.Console.WriteLine("result = {0}", result);




Boolean Expressions

OUTPUT 3.16:

result = True

To begin, valid is set to false. You then use the negation operator on
valid and assign a new value to result.

Conditional Operator (?)

In place of an if statement that functionally returns a value, you can use
the conditional operator instead. The conditional operator is a question
mark (?), and the general format is as follows:

conditional? expressionl: expression2;

The conditional operator is a ternary operator, because it has three
operands: conditional, expressioni, and expression2. If the conditional
evaluates to true, then the conditional operator returns expressioni.
Alternatively, if the conditional evaluates to false, then it returns
expression2.

Listing 3.35 is an example of how to use the conditional operator. The
full listing of this program appears in Appendix B.

LISTING 3.35: CONDITIONAL OPERATOR

public class TicTacToe

{

public static string Main()

{
// Initially set the currentPlayer to Player 1;

int currentPlayer = 1;
/.
for (int turn = 1; turn <= 10; turn++)
{
[/ ..

// Switch players
currentPlayer = (currentPlayer == 2) ? 1 : 2;

113



114

Chapter 3: Operators and Control Flow

The program swaps the current player. To do this, it checks whether the
current value is 2. This is the conditional portion of the conditional state-
ment. If the result is true, the conditional operator returns the value 1.
Otherwise, it returns 2. Unlike an if statement, the result of the conditional
operator must be assigned (or passed as a parameter). It cannot appear as
an entire statement on its own.

Use the conditional operator sparingly, because readability is often sac-
rificed and a simple if/else statement may be more appropriate.

Bitwise Operators (<<, >>, |, & *, ~)

An additional set of operators common to virtually all programming lan-
guages is the set of operators for manipulating values in their binary for-
mats: the bit operators.

BEGINNER TOPIC

Bits and Bytes

All values within a computer are represented in a binary format of 1s and
Os, called bits. Bits are grouped together in sets of eight, called bytes. In a
byte, each successive bit corresponds to a value of 2 raised to a power,
starting from 2° on the right, to 27 on the left, as shown in Figure 3.1.

ojojfo0o|jo0j0j0O]0O]O

20 2% 28 20 20 22 20 2

FIGURE 3.1: Corresponding Placeholder Values

In many instances, particularly when dealing with low-level or system ser-
vices, information is retrieved as binary data. In order to manipulate these
devices and services, you need to perform manipulations of binary data.

As shown in Figure 3.2, each box corresponds to a value of 2 raised to
the power shown. The value of the byte (8-bit number) is the sum of the
powers of 2 of all of the eight bits that are set to 1.



Bitwise Operators (<<, >>, |, & *, ~)

ojofojofoj|t1y|1{1

7=4 + 2 + 1

FIGURE 3.2: Calculating the Value of an Unsigned Byte

The binary translation just described is significantly different for signed
numbers. Signed numbers (long, short, int) are represented using a 2s
complement notation. With this notation, negative numbers behave differ-
ently than positive numbers. Negative numbers are identified by a 1 in the
leftmost location. If the leftmost location contains a 1, you add the loca-
tions with Os rather than the locations with 1s. Each location corresponds
to the negative power of 2 value. Furthermore, from the result, it is also
necessary to subtract 1. This is demonstrated in Figure 3.3.

111|111 [1]0[0]1

7=-4 -2 +0 -1

FIGURE 3.3: Calculating the Value of a Signed Byte

Therefore, 1111 1111 1111 1111 corresponds to a -1, and 1111 1111
1111 1001 holds the value —7. 1000 0000 0000 0000 corresponds to the
lowest negative value a 16-bit integer can hold.

Shift Operators (<<, >>, <<=, >>=)

Sometimes you want to shift the binary value of a number to the right or
left. In executing a left shift, all bits in a number’s binary representation are
shifted to the left by the number of locations specified by the operand on
the right of the shift operator. Zeroes are then used to backfill the locations
on the right side of the binary number. A right-shift operator does almost
the same thing in the opposite direction. However, if the number is nega-
tive, the values used to backfill the left side of the binary number are ones
and not zeroes. The shift operators are >> and <<, the right-shift and left-
shift operators, respectively. In addition, there are combined shift and
assignment operators, <<= and >>=.

115



116

Chapter 3: Operators and Control Flow

Consider the following example. Suppose you had the int value -7,
which would have a binary representation of 1111 1111 1111 1111 1111
1111 1111 1e01. In Listing 3.36 you right-shift the binary representation of
the number —7 by two locations.

LISTING 3.36: USING THE RIGHT-SHIFT OPERATOR

int x;

X = (-7 > 2); // 11111111111111111111111111111001 becomes
// 11111111111111111111111111111116

// Write out "x is -2."

System.Console.WriteLine("x = {0}.", Xx);

Output 3.17 shows the results of Listing 3.36.

OUTPUT 3.17:

x = -2.

Because of the right shift, the value of the bit in the rightmost location has
“dropped off” the edge and the negative bit indicator on the left shifts by
two locations to be replaced with 1s. The result is -2.

Bitwise Operators (&, |, %)

In some instances, you might need to perform logical operations, such as
AND, OR, and XOR, on a bit-by-bit basis for two operands. You do this via
the &, |, and » operators, respectively.

BEGINNER TOPIC

Logical Operators Explained
If you have two numbers, as shown in Figure 3.4, the bitwise operations
will compare the values of the locations beginning at the leftmost signifi-
cant value and continuing right until the end. The value of “1” in a location
is treated as “true,” and the value of “0” in a location is treated as “false.”
Therefore, the bitwise AND of the two values in Figure 3.4 would be the
bit-by-bit comparison of bits in the first operand (12) with the bits in the
second operand (7), resulting in the binary value 800000100, which is 4.



Bitwise Operators (<<, >>, |, & *, ~) 117

122 |0)JO0OfO]JOf1T]1T]O]fO

72 10|10 fO0O]O[O]|1T|1]1

FIGURE 3.4: The Numbers 12 and 7 Represented in Binary

Alternatively, a bitwise OR of the two values would produce 00001111, the
binary equivalent of 15. The XOR result would be 00001011, or decimal 11.

Listing 3.37 demonstrates how to use these bitwise operators. The
results of Listing 3.37 appear in Output 3.18.

LISTING 3.37: USING BITWISE OPERATORS

byte and, or, xor;
and = 12 & 7; // and = 4
or =12 | 7; // or = 15
xor = 12 ~ 7; // xor = 11
System.Console.WriteLine(
"and = {0} \nor = {1}\nxor = {2}",
and, or, xor);

OuTPUT 3.18:
and = 4
or = 15
xor = 1l

In Listing 3.37, the value 7 is the mask; it is used to expose or eliminate spe-
cific bits within the first operand using the particular operator expression.

In order to convert a number to its binary representation, you need to
iterate across each bit in a number. Listing 3.38 is an example of a program
that converts an integer to a string of its binary representation. The results
of Listing 3.38 appear in Output 3.19.

LISTING 3.38: GETTING A STRING REPRESENTATION OF A BINARY DISPLAY

public class BinaryConverter

{

public static void Main()



118 Chapter 3: Operators and Control Flow

const int size = 64;
ulong value;
char bit;

System.Console.Write ("Enter an integer: ");

// Use long.Parse() so as to support negative numbers
// Assumes unchecked assignment to ulong.

value = (ulong)long.Parse(System.Console.ReadLine());

// Set initial mask to 16@....

ulong mask = 1ul << size - 1;

for (int count = ©@; count < size; count++)

{
bit = ((mask & value) > ©@) ? '1': '@';
System.Console.Write(bit);
// Shift mask one location over to the right
mask >>= 1;

}

System.Console.WriteLine();

OUTPUT 3.19:

Enter an integer: 42
0000000000000000000O00O0O0OOOOOOOOOOOOOOO00O0000000000000000000101010

Notice that within each iteration of the for loop (discussed shortly), you
use the right-shift assignment operator to create a mask corresponding to
each bit in value. By using the & bit operator to mask a particular bit, you
can determine whether the bit is set. If the mask returns a positive result,
you set the corresponding bit to 1; otherwise, it is set to @. In this way, you
create a string representing the binary value of an unsigned long.

Bitwise Assignment Operators (&=, | =, =)

Not surprisingly, you can combine these bitwise operators with assign-
ment operators as follows: &=, | =, and ~=. As a result, you could take a vari-
able, OR it with a number, and assign the result back to the original
variable, which Listing 3.39 demonstrates.



Control Flow Statements, Continued

LISTING 3.39: USING LOGICAL ASSIGNMENT OPERATORS

byte and, or, xor;
and = 12;
and &= 7; // and = 4
or = 12
or |= 7;
xor = 12;
xor "= 7; // xor = 11
System.Console.WriteLine(
"and = {0} \nor = {1}\nxor = {2}",
and, or, xor);

// or = 15

The results of Listing 3.39 appear in Output 3.20.

OUTPUT 3.20:

and = 4
or = 15
xor = 11

Bitwise Complement Operator (~)

The bitwise complement operator takes the complement of each bit in the
operand, where the operand can be an int, uint, long, or ulong. ~1, there-
fore, returns 1111 1111 1111 1111 1111 1111 1111 1110 and ~(1<<31)
returns 0111 1111 1111 1111 1111 1111 1111 1111.

Control Flow Statements, Continued

With the additional coverage of Boolean expressions, it’s time to consider
more of the control flow statements supported by C#. As indicated in the
introduction to this chapter, many of these statements will be familiar to
experienced programmers, so you can skim this section for information
specific to C#. Note in particular the foreach loop, as this may be new to
many programmers.

Thewhile and do/while Loops

Until now, you have learned how to write programs that do something only
once. However, one of the important capabilities of the computer is that it
can perform the same operation multiple times. In order to do this, you need

119



120

Chapter 3: Operators and Control Flow

to create an instruction loop. The first instruction loop I will discuss is the
while loop. The general form of the while statement is as follows:

while(boolean-expression )
statement

The computer will repeatedly execute statement as long as Boolean-
expression evaluates to true. If the statement evaluates to false, then
code execution continues at the line following statement. The Fibonacci
calculator shown in Listing 3.40 demonstrates this.

LISTING 3.40: while LooP EXAMPLE

class FibonacciCalculator

{
static void Main()
{
decimal current;
decimal previous;
decimal temp;
decimal input;
System.Console.Write("Enter a positive integer:");
// decimal.Parse convert the ReadlLine to a decimal.
input = decimal.Parse(System.Console.ReadLine());
// Initialize current and previous to 1, the first
// two numbers in the Fibonacci series.
current = previous = 1;
// While the current Fibonacci number in the series 1is
// less than the value input by the user.
while(current <= input)
{
temp = current;
current = previous + current;
previous = temp;
¥
System.Console.WriteLine(
"The Fibonacci number following this is {e}",
current);
}
¥

A Fibonacci number is a member of the Fibonacci series, which includes
all numbers that are the sum of the previous two numbers in the series,



Control Flow Statements, Continued

beginning with 1 and 1. In Listing 3.40, you prompt the user for an integer.
Then you use a while loop to find the Fibonacci number that is greater than
the number the user entered.

BEGINNER TOPIC

When to Use awhile Loop

The remainder of this chapter considers other types of statements that
cause a block of code to execute repeatedly. The term loop refers to the
block of code that is to be executed within the while statement, since the
code is executed in a “loop” until the exit condition is achieved. It is impor-
tant to understand which loop construct to select. You use a while con-
struct to iterate while the condition evaluates to true. A for loop is used
most appropriately whenever the number of repetitions is known, such as
counting from 0 to n. A do/while is similar to a while loop, except that it
will always loop at least once.

The do/while loop is very similar to the while loop, except that it is used
when the number of repetitions is from 1 to 7 and 7 is indeterminate when
iterating begins. This pattern occurs most commonly when repeatedly
prompting a user for input. Listing 3.41 is taken from the tic-tac-toe pro-
gram.

LISTING 3.41: do/while LooP EXAMPLE

// Repeatedly request player to move until he
// enter a valid position on the board.

do

{

valid = false;

// Request a move from the current player.
System.Console.Write(

"\nPlayer {@}: Enter move:", currentPlayer);
input = System.Console.ReadLine();

// Check the current player's input.
/..

} while (!valid);

121



122

Chapter 3: Operators and Control Flow

In Listing 3.41, you always initialize valid to false at the beginning of
each iteration, or loop repetition. Next, you prompt and retrieve the num-
ber the user input. Although not shown here, you then check whether the
input was correct, and if it was, you assign valid equal to true. Since the
code uses a do/while statement rather than a while statement, the user
will be prompted for input at least once.

The general form of the do/while loop is as follows:

do
statement
while(boolean-expression );

As with all the control flow statements, the code blocks are not part of
the general form. However, a code block is generally used in place of a sin-
gle statement in order to allow multiple statements.

The for loop

Increment and decrement operators are frequently used within a for loop.

The for loop iterates a code block until a specified condition is reached in a

way similar to the while loop. The difference is that the for loop has built-

in syntax for initializing, incrementing, and testing the value of a counter.
Listing 3.42 shows the for loop used to display an integer in binary

form. The results of this listing appear in Output 3.21.

LISTING 3.42: USING THE for LooP

public class BinaryConverter
{
public static void Main()
{
const int size = 64;
ulong value;
char bit;

System.Console.Write ("Enter an integer: ");

// Use long.Parse() so as to support negative numbers
// Assumes unchecked assignment to ulong.

value = (ulong)long.Parse(System.Console.ReadLine());

// Set initial mask to 100....
ulong mask = 1ul << size - 1;
for (int count = @; count < size; count++)

{



Control Flow Statements, Continued

bit = ((mask & value) > @) ? '1': '@';
System.Console.Write(bit);

// Shift mask one location over to the right
mask >>= 1;

OUTPUT 3.21:

Enter an integer: -42
0 0 1 P o o P P P P P P M A P A

Listing 3.42 performs a bit mask 64 times, once for each bit in the num-
ber. The for loop declares and initializes the variable count, escapes once
the count reaches 64, and increments the count during each iteration. Each
expression within the for loop corresponds to a statement. (It is easy to
remember that the separation character between expressions is a semico-
lon and not a comma, because each expression is a statement.)

You write a for loop generically as follows:

for(initial; boolean-expression; Loop)
statement

Here is a breakdown of the for loop.

* The initial expression performs operations that precede the first
iteration. In Listing 3.42, it declares and initializes the variable count.
The initial expression does not have to be a declaration of a new
variable. It is possible, for example, to declare the variable beforehand
and simply initialize it in the for loop. Variables declared here, how-
ever, are bound within the scope of the for statement.

* The boolean-expression portion of the for loop specifies an end con-
dition. The loop exits when this condition is false in a manner similar
to the while loop’s termination. The for loop will repeat only as long
as boolean-expression evaluates to true. In the preceding example,
the loop exits when count increments to 64.

¢ The loop expression executes after each iteration. In the preceding
example, count++ executes after the right shift of the mask (mask >>= 1),



124 Chapter 3: Operators and Control Flow

but before the Boolean expression is evaluated. During the sixty-fourth
iteration, count increments to 64, causing boolean-expression to be
false and, therefore, terminating the loop. Because each expression can
be thought of as a separate statement, each expression in the for loop is
separated by a semicolon.

¢ The statement portion of the for loop is the code that executes while
the conditional expression remains true.

If you wrote out each for loop execution step in pseudocode without
using a for loop expression, it would look like this:

Declare and initialize count to 0.
Verify that count is less than 64.
Calculate bit and display it.
Shift the mask.

Increment count by one.

SN S A

If count<64, then jump back to line 3.

The for statement doesn’t require any of the elements between paren-
theses. for(;;){ ... }is perfectly valid, assuming there is still a means to
escape from the loop. Similarly, the initial and loop expressions can be a
complex expression involving multiple subexpressions, as shown in List-
ing 3.43.

LISTING 3.43: for LooP USING MULTIPLE EXPRESSIONS

for(int x=0, y=5; ((x<=5) && (y>=0)); y--, X++)
{
System.Console.Write("{0}{1}{2}\t",

X, (x>y? '>' <), y);

The results of Listing 3.43 appear in Output 3.22.

OUTPUT 3.22:

0<5 1<y 2<3 3> 4>L 5>0



Control Flow Statements, Continued 125

In this case, the comma behaves exactly as it does in a declaration state-
ment, one that declares and initializes multiple variables. However, pro-
grammers should avoid complex expressions such as this one because they
are difficult to read and understand.
Generically, you can write the for loop as a while loop, as shown here:
initial;

while(boolean-expression)

{

statement;
Loop;
¥

BEGINNER TOPIC

Choosing between for and while Loops

Although you can use the two statements interchangeably, generally you
would use the for loop whenever there is some type of counter, and the
total number of iterations is known when the loop is initialized. In con-
trast, you would typically use the while loop when iterations are not based
on a count or when the number of iterations is indeterminate when iterat-
ing commences.

The foreach Loop
The last loop statement within the C# language is foreach. foreach is
designed to iterate through a collection of items, setting an identifier to
represent each item in turn. During the loop, operations may be performed
on the item. One feature of the foreach loop is that it is not possible to acci-
dentally miscount and iterate over the end of the collection.

The general form of the foreach statement is as follows:

foreach(type identifier in collection)
statement;

Here is a breakdown of the foreach statement.

* typeis used to declare the data type of the identifier for each item
within the collection.



126 Chapter 3: Operators and Control Flow

* identifier isaread-only variable into which the foreach construct
will automatically assign the next item within the collection. The
scope of the identifier is limited to the foreach loop.

* collection is an expression, such as an array, representing multiple
items.

e statement is the code that executes for each iteration within the
foreach loop.

Consider the foreach loop in the context of the simple example shown
in Listing 3.44.

LISTING 3.44: DETERMINING REMAINING Moves UsinG THE foreach Loor

class TicTacToe // Declares the TicTacToe class.

{
static void Main() // Declares the entry point of the program.

{

// Hardcode initial board as follows

char[] cells = {
1, '2', '3', 'a', 's', 'e', '7', '8', '’
s

System.Console.Write(
"The available moves are as follows: ");

// Write out the initial available moves
foreach (char cell in cells)

if (cell != '0O' && cell != 'X")
¢ System.Console.Write("{0} ", cell);
¥
¥
}
}

Output 3.23 shows the results of Listing 3.44.



Control Flow Statements, Continued

OUTPUT 3.23:

The available moves are as follows: 1. 2 3 4 5k 789

When the execution engine reaches the foreach statement, it assigns to the
variable cell the first item in the cells array—in this case, the value "1'.1It
then executes the code within the foreach statement block. The if state-
ment determines whether the value of cell is '0' or 'X'. If it is neither,
then the value of cell is written out to the console. The next iteration then
assigns the next array value to cell, and so on.

It is important to note that the compiler prevents modification of the
identifier variable (cell) during the execution of a foreach loop.

BEGINNER TOPIC

Where the switch Statement Is More Appropriate
Sometimes you might compare the same value in several continuous if
statements, as shown with the input variable in Listing 3.45.

LISTING 3.45: CHECKING THE PLAYER’S INPUT WITH AN if STATEMENT

/...

bool valid = false;

// Check the current player's input.
if( (input == "1") ||
(input == "2")
(input == "3"
(input == "4"
(input == "5'
(input == "6"
(input == "7"
(input == "8"
(input == "9"

[
[
[
I
[
[
I
)

~

// Save/move as the player directed.
/..

valid = true;
}
else if( (input == "") || (input == "quit") )
{

127



128 Chapter 3: Operators and Control Flow

valid = true;

}
else
{
System.Console.WriteLine(
"\nERROR: Enter a value from 1-9. "
+ "Push ENTER to quit");
}
/]l ...

This code validates the text entered to ensure that it is a valid tic-tac-toe
move. If the value of input were 9, for example, the program would have
to perform nine different evaluations. It would be preferable to jump to the
correct code after only one evaluation. To enable this, you use a switch
statement.

The switch Statement

Given a variable to compare and a list of constant values to compare
against, the switch statement is simpler to read and code than the if state-
ment. The switch statement looks like this:

switch(governing-type-expression)
{
[case constant:
statement
jump expression]
[default:
statement
jump expression]

}

Here is a breakdown of the switch statement.

* governing-type-expression returns a value that is compatible with
the governing types. Allowable governing data types are sbyte, byte,
short, ushort, int, uint, long, ulong, char, string, and an enum-type
(covered in Chapter 8).

* constant is any constant expression compatible with the data type of
the governing type.

* statement is one or more statements to be executed when the govern-
ing type expression equals the constant value.



Control Flow Statements, Continued 129

* jump expressionisajump statement such as a break or goto state-
ment. If the switch statement appears within a loop, then continue is
also allowed.

A switch statement must have at least one case statement or a default
statement. In other words, switch(x){} is not valid.

Listing 3.46, with a switch statement, is semantically equivalent to the
series of if statements in Listing 3.45.

LISTING 3.46: REPLACING THE if STATEMENT WITH A switch STATEMENT

static bool ValidateAndMove(
int[] playerPositions, int currentPlayer, string input)

{

bool valid = false;

// Check the current player's input.

switch (input)

{
case
case
case
case
case
case
case
case :
case "9" :

// Save/move as the player directed.

W NV A WN R

valid = true;
break;
case "" :
case "quit" :
valid = true;
break;
default :
// If none of the other case statements
// 1s encountered then the text 1is invalid.
System.Console.WriteLine(
"\nERROR: Enter a value from 1-9. "
+ "Push ENTER to quit");
break;

return valid;

}




130

Chapter 3: Operators and Control Flow

In Listing 3.46, input is the governing type expression. Since input is a
string, all of the constants are strings. If the value of inputis 1, 2, ... 9, then
the move is valid and you change the appropriate cell to match that of the
current user’s token (X or O). Once execution encounters a break statement,
it immediately jumps to the statement following the switch statement.

The next portion of the switch looks for "" or "quit", and sets valid to
true if input equals one of these values. Ultimately, the default label is
executed if no prior case constant was equivalent to the governing type.

There are several things to note about the switch statement.

¢ Placing nothing within the switch block will generate a compiler
warning, but the statement will still compile.

* default does not have to appear last within the switch statement.
case statements appearing after default are evaluated.

* When you use multiple constants for one case statement, they should
appear consecutively, as shown in Listing 3.46.

* The compiler requires a jump statement (usually a break).

Language Contrast: C++—switch Statement Fall-Through

Unlike C++, C# does not allow a switch statement to fall through from one
case block to the next if the case includes a statement. A jump statement
is always required following the statement within a case. The C# founders
believed it was better to be explicit and require the jump expression in
favor of code readability. If programmers want to use a fall-through seman-
tic, they may do so explicitly with a goto statement, as demonstrated in
the section The goto Statement, later in this chapter.

Jump Statements

It is possible to alter the execution path of a loop. In fact, with jump state-
ments, it is possible to escape out of the loop or to skip the remaining por-
tion of an iteration and begin with the next iteration, even when the
conditional expression remains true. This section considers some of the
ways to jump the execution path from one location to another.



Jump Statements

The break Statement

To escape out of a loop or a switch statement, C# uses a break statement.
Whenever the break statement is encountered, the execution path immedi-
ately jumps to the first statement following the loop. Listing 3.47 examines
the foreach loop from the tic-tac-toe program.

LISTING 3.47: USING break To ESCAPE ONCE A WINNER IS FOUND

class TicTacToe // Declares the TicTacToe class.
{
static void Main() // Declares the entry point of the program.
{
int winner=0;
// Stores locations each player has moved.
int[] playerPositions = {0,0};

// Hardcoded board position
// x| 2]o
VZAEEESre s

playerPositions[0]
playerPositions[1]

449;
28;

// Determine if there is a winner
int[] winningMasks = {
7, 56, 448, 73, 146, 292, 84, 273 };

// Iterate through each winning mask to determine
// if there 1is a winner.
foreach (int mask in winningMasks)
{
if ((mask & playerPositions[@]) == mask)
{
winner = 1;
break;
¥
else if ((mask & playerPositions[1]) == mask)
{
winner = 2;
break;

System.Console.WriteLine(
"Player {0} was the winner", winner);

131



132

Chapter 3: Operators and Control Flow

Output 3.24 shows the results of Listing 3.47.

OUTPUT 3.24:

Player 1 was the winner

Listing 3.47 uses a break statement when a player holds a winning posi-
tion. The break statement forces its enclosing loop (or a switch statement)
to cease execution, and the program moves to the next line outside the
loop. For this listing, if the bit comparison returns true (if the board holds
a winning position), the break statement causes execution to jump and dis-
play the winner.

BEGINNER TOPIC

Bitwise Operators for Positions

The tic-tac-toe example uses the bitwise operators (Appendix B) to deter-
mine which player wins the game. First, the code saves the positions of
each player into a bitmap called playerPositions. (It uses an array so that
the positions for both players can be saved.)

To begin, both playerPositions are 0. As each player moves, the bit
corresponding to the move is set. If, for example, the player selects cell 3,
shifterisset to 3 - 1. The code subtracts 1 because C# is zero-based and
you need to adjust for 0 as the first position instead of 1. Next, the code sets
position, the bit corresponding to cell 3, using the shift operator
000000000000001 << shifter, where shifter now has a value of 2. Lastly,
it sets playerPositions for the current player (subtracting 1 again to shift
to zero-based) to 000000V 100. Listing 3.48 uses |= so that previous
moves are combined with the current move.

LISTING 3.48: SETTING THE BIT THAT CORRESPONDS TO EACH PLAYER’S MOVE

int shifter; // The number of places to shift
// over in order to set a bit.
int position; // The bit which is to be set.

// int.Parse() converts "input" to an integer.
// "int.Parse(input) - 1" because arrays



Jump Statements

// are zero-based.
shifter = int.Parse(input) - 1;

// Shift mask of 0000 000000V VPOOVVOVOO1
// over by celllocations.
position = 1 << shifter;

// Take the current player cells and OR them to set the
// new position as well.

// Since currentPlayer is either 1 or 2,

// subtract one to use currentPlayer as an

// index in a ©-based array.
playerPositions[currentPlayer-1] |= position;

Later in the program, you can iterate over each mask corresponding to
winning positions on the board to determine whether the current player
has a winning position, as shown in Listing 3.47.

The continue Statement
In some instances, you may have a series of statements within a loop. If
you determine that some conditions warrant executing only a portion of
these statements for some iterations, you use the continue statement to
jump to the end of the current iteration and begin the next iteration. The C#
continue statement allows you to exit the current iteration (regardless of
which additional statements remain) and jump to the loop conditional. At
that point, if the loop conditional remains true, the loop will continue exe-
cution.

Listing 3.49 uses the continue statement so that only the letters of the
domain portion of an email are displayed. Output 3.25 shows the results of
Listing 3.49.

LISTING 3.49: DETERMINING THE DOMAIN OF AN EMAIL ADDRESS

class EmailDomain

{

static void Main()

{
string email;
bool insideDomain = false;
System.Console.WriteLine("Enter an email address: ");

email = System.Console.ReadlLine();

133



134

Chapter 3: Operators and Control Flow

System.Console.Write("The email domain is: ");

// Iterate through each letter in the email address.
foreach (char letter in email)

{ if (!insideDomain)
{
if (letter == '@")
{
insideDomain = true;
}
continue;
}
System.Console.Write(letter);
}
}
}
OUTPUT 3.25:

Enter an email address:
markaddotnetprogramming.com
The email domain is: dotnetprogramming.com

In Listing 3.49, if you are not yet inside the domain portion of the email
address, you need to use a continue statement to jump to the next charac-
ter in the email address.

In general, you can use an if statement in place of a continue state-
ment, and this is usually more readable. The problem with the continue
statement is that it provides multiple exit points within the iteration, and
this compromises readability. In Listing 3.50, the sample has been rewrit-
ten, replacing the continue statement with the if/else construct to dem-
onstrate a more readable version that does not use the continue statement.

LISTING 3.50: REPLACING A continue WITH AN if STATEMENT

foreach (char letter in email)

{
if (insideDomain)
{
System.Console.Write(letter);

}

else

{



Jump Statements

if (letter == '@")
{
insideDomain = true;
}
¥
}
The goto Statement

With the advent of object-oriented programming and the prevalence of
well-structured code, the existence of a goto statement within C# seems
like an aberration to many experienced programmers. However, C# sup-
ports goto, and it is the only method for supporting fall-through within a
switch statement. In Listing 3.51, if the /out option is set, code execution
jumps to the default case using the goto statement; similarly for /f.

LISTING 3.51: DEMONSTRATING A switch WITH goto STATEMENTS

/...
static void Main(string[] args)
{
bool isOutputSet = false;
bool isFiltered = false;

foreach (string option in args)
{
switch (option)
{
case "/out":
isOutputSet = true;
isFiltered = false;
goto default;
case "/f":
isFiltered = true;
isRecursive = false;
goto default;
default:
if (isRecursive)
{
// Recurse down the hierarchy
VA

}

else if (isFiltered)

{
// Add option to list of filters.
/.

135



136

Chapter 3: Operators and Control Flow

break;

/...

Output 3.26 shows the results of Listing 3.51.

OUTPUT 3.26:

C:\SAMPLES>Generate /out fizbottle.bin /f "%x.xml™ "%.wsdl"

As demonstrated in Listing 3.51, goto statements are ugly. In this par-
ticular example, this is the only way to get the desired behavior of a switch
statement. Although you can use goto statements outside switch state-
ments, they generally cause poor program structure and you should dep-
recate them in favor of a more readable construct. Note also that you
cannot use a goto statement to jump from outside a switch statement into
a label within a switch statement.

C# Preprocessor Directives

Control flow statements evaluate conditional expressions at runtime. In
contrast, the C# preprocessor is invoked during compilation. The prepro-
cessor commands are directives to the C# compiler, specifying the sections
of code to compile or identifying how to handle specific errors and warn-
ings within the code. C# preprocessor commands can also provide direc-
tives to C# editors regarding the organization of code.

Each preprocessor directive begins with a hash symbol (#), and all pre-
processor directives must appear on one line. A newline rather than a
semicolon indicates the end of the directive.

A list of each preprocessor directive appears in Table 3.4.



C# Preprocessor Directives

Language Contrast: C++—Preprocessing

Languages such as C and C++ contain a preprocessor, a separate utility

from the compiler that sweeps over code, performing actions based on

special tokens. Preprocessor directives generally tell the compiler how to

compile the code in a file and do not participate in the compilation pro-

cess itself. In contrast, the C# compiler handles preprocessor directives as

part of the regular lexical analysis of the source code. As a result, C# does

not support preprocessor macros beyond defining a constant. In fact, the

term precompiler is generally a misnomer for C#.

TABLE 3.4: PREPROCESSOR DIRECTIVES

STATEMENT OR
EXPRESSION GENERAL SYNTAX STRUCTURE EXAMPLE
#if #1if preprocessor-expression #if CSHARP2
command code Console.Clear();
#endif #endif
#define #define conditional-symbol #define CSHARP2
command
#undef #undef conditional-symbol #undef CSHARP2
command
#error #error preproc-message #error Buggy implementation
command
#warning #warning preproc-message #warning Needs code review
command
#pragma #pragma warning #pragma warning disable
command 1030
#line #line org-line new-line #line 467 "TicTacToe.cs"
command ce
#1line default #line default
#region #region pre-proc-message #region Methods
command code

#endregion

#endregion

137



138

Chapter 3: Operators and Control Flow

Excluding and Including Code (#if, #elif, #else, #endif)

Perhaps the most common use of preprocessor directives is in controlling
when and how code is included. For example, to write code that could be
compiled by both C# 2.0 and later compilers and the prior version 1.2 com-
pilers, you use a preprocessor directive to exclude C# 2.0-specific code
when compiling with a 1.2 compiler. You can see this in the tic-tac-toe
example and in Listing 3.52.

LISTING 3.52: EXCLUDING C# 2.0 CODE FROM A C# 1.X COMPILER

#if CSHARP2
System.Console.Clear();
#endif

In this case, you call the System.Console.Clear() method, which is avail-
able only in the 2.0 CLI version and later. Using the #if and #endif prepro-
cessor directives, this line of code will be compiled only if the preprocessor
symbol CSHARP2 is defined.

Another use of the preprocessor directive would be to handle differ-
ences among platforms, such as surrounding Windows- and Linux-spe-
cific APIs with WINDOWS and LINUX #if directives. Developers often use
these directives in place of multiline comments (/*. . .*/) because they are
easier to remove by defining the appropriate symbol or via a search and
replace. A final common use of the directives is for debugging. If you sur-
round code with a #if DEBUG, you will remove the code from a release
build on most IDEs. The IDEs define the DEBUG symbol by default in a
debug compile and RELEASE by default for release builds.

To handle an else-if condition, you can use the #elif directive within
the #if directive, instead of creating two entirely separate #if blocks, as
shown in Listing 3.53.

LISTING 3.53: USING #if, #elif, AND #endif DIRECTIVES

#if LINUX
#elif WINDOWS

ttendif




C# Preprocessor Directives

Defining Preprocessor Symbols (#define, #undef)
You can define a preprocessor symbol in two ways. The first is with the
#define directive, as shown in Listing 3.54.

LISTING 3.54: A #define EXAMPLE

#tdefine CSHARP2

The second method uses the define option when compiling for .NET,
as shown in Output 3.27.

OUTPUT 3.27:

>csc.exe /define:(CSHARPZ2 TicTacToe.cs

Output 3.28 shows the same functionality using the Mono compiler.

OUTPUT 3.28:

>mcs.exe -define:CSHARPZ2 TicTacToe.cs

To add multiple definitions, separate them with a semicolon. The
advantage of the define complier option is that no source code changes are
required, so you may use the same source files to produce two different
binaries.

To undefine a symbol you use the #undef directive in the same way you
use #define.

Emitting Errors and Warnings (#error, #warning)

Sometimes you may want to flag a potential problem with your code. You
do this by inserting #error and #warning directives to emit an error or
warning, respectively. Listing 3.55 uses the tic-tac-toe sample to warn that
the code does not yet prevent players from entering the same move multi-
ple times. The results of Listing 3.55 appear in Output 3.29.

139



140

Chapter 3: Operators and Control Flow

LISTING 3.55: DEFINING A WARNING WITH #warning

#warning "Same move allowed multiple times."

OUTPUT 3.29:

Performing main compilation...
...\tictactoe-cs(4?L.1k): warning CS1030: #warning: '"Same move allowed
multiple times."'

Build complete -- O errorsa 1 warnings

By including the #warning directive, you ensure that the compiler will report
a warning, as shown in Output 3.29. This particular warning is a way of flag-
ging the fact that there is a potential enhancement or bug within the code. It
could be a simple way of reminding the developer of a pending task.

Turning Off Warning Messages (#pragma)

Warnings are helpful because they point to code that could potentially be
troublesome. However, sometimes it is preferred to turn off particular
warnings explicitly because they can be ignored legitimately. C# 2.0 and
later compilers provide the preprocessor #pragma directive for just this
purpose (see Listing 3.56).

LISTING 3.56: USING THE PREPROCESSOR #fpragma DIRECTIVE TO DISABLE THE #warning
DIRECTIVE

#pragma warning disable 1030

Note that warning numbers are prefixed with the letters CS in the compiler
output. However, this prefix is not used in the #pragma warning directive.
The number corresponds to the warning error number emitted by the com-
piler when there is no preprocessor command.

To reenable the warning, #pragma supports the restore option follow-
ing the warning, as shown in Listing 3.57.

LISTING 3.57: USING THE PREPROCESSOR #pragma DIRECTIVE TO RESTORE A WARNING

#pragma warning restore 1030




C# Preprocessor Directives

In combination, these two directives can surround a particular block of
code where the warning is explicitly determined to be irrelevant.

Perhaps one of the most common warnings to disable is C51591, as this
appears when you elect to generate XML documentation using the /doc
compiler option, but you neglect to document all of the public items within
your program.

nowarn:<warn list> Option

In addition to the #pragma directive, C# compilers generally support the
nowarn:<warn list> option. This achieves the same result as #pragma,
except that instead of adding it to the source code, you can simply insert
the command as a compiler option. In addition, the nowarn option affects
the entire compilation, and the #pragma option affects only the file in which
it appears. Turning off the CS1591 warning, for example, would appear on
the command line as shown in Output 3.30.

OUTPUT 3.30:

> csc /doc:generate.xml /nowarn:159l /out:generate.exe Program-.cs

Specifying Line Numbers (#1ine)

The #1ine directive controls on which line number the C# compiler reports
an error or warning. It is used predominantly by utilities and designers
that emit C# code. In Listing 3.58, the actual line numbers within the file
appear on the left.

LISTING 3.58: THE #1ine PREPROCESSOR DIRECTIVE

124 #line 113 "TicTacToe.cs"
125 #warning "Same move allowed multiple times."
126 #line default

Including the #1line directive causes the compiler to report the warning
found on line 125 as though it was on line 113, as shown in the compiler
error message shown in Output 3.31.

Following the #1ine directive with default reverses the effect of all prior
#line directives and instructs the compiler to report true line numbers
rather than the ones designated by previous uses of the #1line directive.

141



142

Chapter 3: Operators and Control Flow

OUTPUT 3.31:

Performing main compilation...
...\tictactoe.cs(113.18): warning (S1030: #warning: '"Same move allowed
multiple times."'

Build complete -- 0 errorsa 1 warnings

Hints for Visual Editors (#region, #endregion)

C# contains two preprocessor directives, #region and #endregion, that are
useful only within the context of visual code editors. Code editors, such as
the one in the Microsoft Visual Studio .NET IDE, can search through
source code and find these directives to provide editor features when writ-
ing code. C# allows you to declare a region of code using the #region
directive. You must pair the #region directive with a matching #endregion
directive, both of which may optionally include a descriptive string follow-
ing the directive. In addition, you may nest regions within one another.

Again, Listing 3.59 shows the tic-tac-toe program as an example.

LISTING 3.59: A #region AND #endregion PREPROCESSOR DIRECTIVE

#region Display Tic-tac-toe Board

#if CSHARP2
System.Console.Clear();
#tendif

// Display the current board;
border = @; // set the first border (border[@] = "[")

// Display the top line of dashes.

/7 ("\n---+---+---\n")

System.Console.Write(borders[2]);

foreach (char cell in cells)

{
// Write out a cell value and the border that comes after it.
System.Console.Write(" {0} {1}", cell, borders[border]);

// Increment to the next border;
border++;

// Reset border to @ if it is 3.
if (border == 3)
{

border = 0;



Summary

}
}

t#tendregion Display Tic-tac-toe Board

One example of how these preprocessor directives are used is with
Microsoft Visual Studio .NET. Visual Studio .NET examines the code and
provides a tree control to open and collapse the code (on the left-hand side
of the code editor window) that matches the region demarcated by the
#region directives (see Figure 3.5).

29 TicTacToe - Microsoft Visual C# .MET [design] - TicTacToe.cs*

File Edit View Refactor Project Build Debug  Tools  Window  Help
A-a-2E208 & B 2l a- p T E S | FET 2 4% %%,
% TicTacToe.cs"‘|TicTacToe.cs 4 b ¥ || Solukion Explorer - Solution.., = 3 X @
g _ o EES
g ff Print the hoard and ask the current RSolution TicTacToe' (1 project) g
/¢ player where to move next. = (2 TicTacToe 3
for(short turn =1; turn<=10; ++turn) +- (&3] References E
i j App.ico
#] AssemblyInfo.cs
& |Display Tic-tac-toe Board| "5] TicTacToe.cs
/¢ Afrer completing the 10th display of
/¢ board exit out rather than prompting
/¢ user again.
if (turn==10)
break: ¥
1 | >
Task List - 1 Build Error task shown (Filkered) * I x
! v/ | Description
H #warning: "Same move allowed multiple times,"
¢ >
Task List | E7] System Window | E7] Command Window | Bl Output IQSolution Explorer E’Class Wi
Ready Ln 407 Col 10 ch4 INS

FIGURE 3.5: Collapsed Region in Microsoft Visual Studio .NET

SUMMARY

This chapter began with an introduction to the C# operators related to
assignment and arithmetic. Next, you used the operators along with the
const keyword to declare constant expressions. Coverage of all of the C#
operators was not sequential, however. Before discussing the relational
and logical comparison operators, I introduced the if statement and the

143



144

Chapter 3: Operators and Control Flow

important concepts of code blocks and scope. To close out the coverage of
operators I discussed the bitwise operators, especially regarding masks.

Operator precedence was discussed earlier in the chapter, but Table 3.5
summarizes the order of precedence across all operators, including several
that are not yet covered.

TABLE 3.5: OPERATOR ORDER OF PRECEDENCE?

CATEGORY OPERATORS

Primary x.y f(x) a[x] x++ Xx-— new
typeof(T) checked(x) unchecked(x)
default(T) delegate{} O

Unary + - !~ ++x --x (T)x

Multiplicative /%

Additive + -

Shift << >

Relational and type testing < > <= »>= 1is as

Equality = =

Logical AND &

Logical XOR A

Logical OR |

Conditional AND &&

Conditional OR |

Null coalescing ??

Conditional P

Assignment ==>*= [= %= += -= K= >>= &= "= |=

a. Rows appear in order of precedence from highest to lowest.



Summary

Given coverage of most of the operators, the next topic was control flow
statements. The last sections of the chapter detailed the preprocessor direc-
tives and the bit operators, which included code blocks, scope, Boolean
expressions, and bitwise operators.

Perhaps one of the best ways to review all of the content covered in
Chapters 1-3 is to look at the tic-tac-toe program found in Appendix B. By
reviewing the program, you can see one way in which you can combine all
you have learned into a complete program.

145



Foreword by MNikhil Kothari,
Software Architect. .NET Developer Platform, Microsoft

Advanced ASP.NET
AJAX Server Controls
For .NET Framework 3.5

Adam Calderon
Joel Rumerman



http://www.google.com/
http://delicious.com/
http://digg.com/
http://www.facebook.com/
http://www.stumbleupon.com/
http://www.reddit.com/
http://twitter.com/
http://www.informit.com/store/product.aspx?isbn=0321514440
http://www.informit.com/store/product.aspx?isbn=0321514440

BUY ME

Adam Calderon
Joel Rumerman

Advanced ASP.NET AJAX
Server Controls

ASP.NET AJAX server controls can encapsulate even the most powerful AJAX functionality,
helping you build more elegant, maintainable, and scalable applications. This is the first
comprehensive, code-rich guide to custom ASPNET AJAX server controls for experienced
ASP.NET developers. Unlike other books on ASPNET AJAX, this book focuses solely on
server control development and reflects the significant improvements in ASPNET 3.5
AJAX and the latest Visual Studio 2008 features for streamlining AJAX development

Adam Calderon and Joel Rumerman first review the core Microsoft AJAX Library and
JavaScript techniques needed to support a rich client-side experience. Next, they build
upon these techniques showing how to create distributable AJAX-enabled controls

that include rich browser-independent JavaScript client-side functionality. The authors
thoroughly explain both the JavaScript and .NET aspects of control development and how
these two distinct environments come together to provide a foundation for building a rich
user experience using ASPNET AJAX.

o (reate object-oriented cross-browser JavaScript that supports .NET style classes,
interfaces, inheritance, and method overloading

o Work with components, behaviors, and controls, and learn how they relate to
DOM elements

o |earn Sys.Application and the part it plays in object creation, initialization, and events
in the Microsoft AJAX Library

e Build Extender and Script controls that provide integrated script generation for their
corresponding client-side counterparts

e | ocalize ASPNET AJAX controls including client script

e Discover ASPNET AJAX client and server communication architecture and the new
support for Windows Communication Foundation (WCF)

e Understand ASPNET AJAX Application Services

e (Create custom Application Services

e Design controls for a partial postback environment

e Understand the AJAX Control Toolkit architecture and the many features it provides

e Develop highly interactive controls using the AJAX Control Toolkit

e Understand AJAX Control Toolkit architecture and build controls that utilize the toolkit

Foreword by Nikhil Kothari s
Software Architect. .NET Developer Platform. Microsoft

Advanced ASP.NET
AJAX Server Controls
For .NET Framework 3.5

Adam Calderon
Joel Rumerman

A\ A4
Addison
Wesley

informit.com/aw

AVAILABLE

e BOOK: 978032151444
 SAFARI ONLINE |Safari
e EBOOK: 0321574

® KINDLE: 0321574214

About the Authors

Adam Calderon is a C# MVP and the Applica-
tion Development Practice Lead at InterKnowl-
0gy. He is an accomplished software developer,
author, teacher, and speaker with more than 14
years of experience designing and develop-

ing solutions on the Microsoft platform. His
involvement with ASPNET AJAX began in late
2005 with his participation in the ASPNET ATLAS
First Access program and later as a member of
the Ul Server Frameworks Advisory Council.
Adam was one of the fortunate few who were able
to work on a production application that utilized
ASPNET AJAX in its alpha form and experienced
firsthand the trials and tribulations of working

in “beta land” on this exciting technology. Visit
Adam’s blog at http://blogs.interknowlogy.com/
adamcalderon.

Joel Rumerman is a Senior .NET Developer

at the CoStar Group, where he develops ASP.
NET applications to support the company’s com-
mercial real estate information business. He is
an adept software developer with more than eight
years of experience developing .NET applications
and is active in the San Diego .NET community
as an author and speaker. Joel has been working
with ASP.NET AJAX since late 2005 when he
started work on a large-scale application for a
worldwide independent software vendor. This ini-
tial entry into the ASPNET AJAX world provided
him invaluable experience as he worked closely
with Microsoft as a member of the ATLAS First
Access program and participated in a Strategic
Design Review of the technology. Joel has gone
on to implement many more solutions using ASP.
NET AJAX, including a Virtual Earth mash-up
that maps commercial real estate properties. Visit
Joel's blog at http://seejoelprogram.wordpress.
com.


http://www.informit.com/store/product.aspx?isbn=0321514440
http://www.informit.com/store/product.aspx?isbn=0321514440
http://www.safaribooksonline.com/Corporate/Index/
http://www.informit.com/imprint/index.aspx?st=61085
http://www.informit.com/imprint/index.aspx?st=61085

3

Components

I N CHAPTER 2, “MICROSOFT AJAX Library Programming,” we began
our discussion of the Microsoft AJAX Library and how it extends the
built-in JavaScript types with new features, how to use the Prototype
Model to extend the Library with our own custom types, and we even cov-
ered a few of the important prebuilt types.

In this chapter, we continue our discussion of the Microsoft AJAX
Library by covering components and its two derived types, controls and
behaviors. This chapter is the start of creating client objects that will be
related to server controls.

Components Defined

A component is any object whose client type inherits from Sys.Component.
They are extremely important because you'll use the Sys.Component base
type to extend the framework to create new components. You'll want to cre-
ate new components because Sys.Component contains a few distinct char-
acteristics not found in any other Microsoft AJAX Library type.

First, components are designed to bridge the gap between client and
server programming. Through server objects called ScriptDescriptors,
we can instruct ASPNET AJAX to automatically emit JavaScript that creates
instances of our component types. Using this feature, we can attach client

342



343 Chapter 3: Components

capabilities to web server controls without actually writing any JavaScript
in our web server control’s class.

"= NOTE Creating Components through Server Code

We cover creating components through server code in detail in Chap-
ter 5, “Adding Client Capabilities to Server Controls.”

Second, Sys.Application, which is a global object that acts like a client
runtime, is set up to manage any type that inherits from Sys.Component.
This means that your component will go through a predefined lifecycle.
You'll know when the component will be created and when it will be dis-
posed, and you can inject your own custom code at these points as needed.
This provides you with a great deal of control and safety.

"= NOTE Components and Web Server Controls

Sys.Application managing components is similar to a page managing
web server controls. It was designed that way on purpose to give
ASPNET developers a familiar feel when programming within the
Microsoft AJAX Library. We cover Sys.Application in detail in Chap-
ter 4, “Sys.Application.”

Finally, components have a lot of the common functionality that you'll
need already built-in. They have a Sys.EventHandlerList instance, so you
can create, maintain, and raise custom events. They implement the
Sys.INotifyPropertyChanged interface, which provides property-changed
notification methods. And they implement the Sys.INotifyDisposing
interface so that other objects can be notified easily when they are disposed.

Components, Controls, and Behaviors

As if components weren't already great, there are two special-purpose
component types contained within the Microsoft AJAX Library: behaviors,
represented by the Sys .UI.Behavior class; and controls, represented by the
Sys.UI.Control class. Figure 3.1 shows the hierarchy between the three

types.



Components Defined m 344

Sys.Component

_D <_

Sys.Ul.Behavior Sys.Ul.Control

FIGURE 3.1 Class hierarchy between Sys.Component, Sys.Ul.Behavior, and Sys.Ul.Control

"= TIP Managed Components

As Figure 3.1 shows, Sys.Component is the base type for both
Sys.UI.Control and Sys.UI.Behavior. As stated earlier, Sys.
Application manages components. It is through inheritance that con-
trols and behaviors are managed, too. When we talk about Sys.
Application, we refer to it as having managed components, which
could be a component, behavior, or control.

Behaviors, controls, and components are mostly the same. This is the
case because when compared to the amount of functionality the base com-
ponent type provides, behaviors and controls don’t provide much, and the
functionality they do provide doesn’t take them in a radically different
direction.

The one striking difference that does exist between a base component
and a behavior or control is behaviors and controls have a built-in associa-
tion to a DOM element because they are intended to be visual. In compar-
ison, components do not have a built-in association to a DOM element
because they are intended to be nonvisual.

Between behaviors and controls, the major difference is that a DOM ele-
ment can have only one control associated to it, whereas it can have multi-
ple associated behaviors.

Table 3.1 summarizes the differences between the three types.



345 Chapter 3: Components

TaBLE 3.1 Differences between Components, Controls, and Behaviors

Can Be A DOM Element Can Access to
Object Associated to Have More Than Object from
Type a DOM Element One Associated to It DOM Element
Component Notallowed  N/A (not directly N/A (not directly asso-
associated to a DOM ciated to a DOM element).
element).
Control Must be No, a DOM element Yes, a control can be ac-
associated to a can have only one cessed through a control
DOM element associated control. expando property attached
to the DOM element.
Behavior Must be Yes, a DOM element Yes, a behavior can be
associated to a can have one or more accessed through an
DOM element associated behaviors. expando property of the
behavior’s name from the
DOM element if the

behavior was named at the
time it was initialized.

All behaviors attached to
an element can be accessed
by a private _behaviors
array attached to the DOM
element.

These rules are enforced during the creation of a component, behavior,

and control and dictate what base type your new type will inherit from.

Figure 3.2 covers the basic decision process when determining what type of

new object to create based on the feature’s requirements.

Now that we covered the basics of components, controls, and behaviors,

let’s tackle each type individually.



Sys.Component m 346

Feature
Requirements

Is the Feature going to be
associated to a DOM
Element?

o (o)

Yes

Should the Feature be
combinable with other
features?

=D

Yes

FiIGURE 3.2 Decision process between component, control, and behavior

Sys.Component

Sys.Component is the root type of all components and provides the major-
ity of the functionality. It does not inherit from another type, but does
implement three interfaces: Sys.IDisposable, Sys.INotifyProperty
Changed, and Sys.INotifyDisposing. Table 3.2 details these three
interfaces.



347 Chapter 3: Components

TABLE 3.2 Interfaces Implemented by Sys.Component

Interface Purpose Methods

Sys.INotifyPropertyChanged Implements add_propertyChanged
property-changed remove_propertyChanged
notification event

Sys.INotifyDisposing Implements add_disposing
disposing event remove_disposing

Sys.IDisposable Represents a dispose
disposable object.

Sys.Component also contains five internal members, as detailed in
Table 3.3.

TaBLE 3.3 Sys.Component Members

Member Name  Purpose Type

_id The unique identifier of the compo-  string
nent. Used to find the component
after it’s registered with
Sys.Application. Each component
managed by Sys.Application must
have a unique ID.

_idset Indicates whether the _id boolean
property has been set.

_initializing Indicates whether the component boolean
has been through its initialization
routine.

_updating Indicates whether the component boolean
is updating.

_events Maintains a list of events and event  Sys.EventHandlerList
handlers.

Besides implementing the methods required by the three interfaces,
Sys.Component exposes methods that allow interaction with its internal



Sys.Component

m 348

members. Table 3.4 details these methods and the methods required by the

three interfaces.

TaBLE 3.4 Sys.Component Methods

Method Name

Description Syntax

beginUpdate

Marks the compo-  comp.beginUpdate();
nent as updating.

Called during the

creation of a

component.

endUpdate

Marks the compo-  comp.endUpdate();
nent as not updating.

Called during the

creation of a compo-

nent. Executes the

initialize method

if the component is

not initialized.

Executes the updated

method.

updated

Empty comp.updated();
implementation.

get_isUpdating

Getter for the comp.get_isUpdating();
updating member.

initialize

Marks the component comp.initialize();
as initialized.

get_initialized

Getter for the comp.get_initialized();
initialized member.

dispose

Executes the comp.dispose();
disposing event

handlers. Removes

the _events property

from the component.

Unregisters the com-

ponent from

Sys.Application.




349

Chapter 3: Components

TABLE 3.4 continued

Method Name

Description

Syntax

get_events

Getter for the events
member.

comp.get_events()

has been set (through
this setter) or after
the component has
been registered with
Sys.Application.

get_id Getter for the ID comp.get_id();
member.

set_id Setter for the ID comp.set_id(id);
member. ID cannot
be changed after it

add_disposing

Adds an event
handler to the
disposing event.

comp.add_disposing(handler);

remove_disposing

Removes an event

comp . remove_

handler from the disposing(handler);
disposing event.

add_propertyChanged Adds an event comp.add_
handler to the propertyChanged(handler);
propertyChanged
event.

remove_propertyChanged

Removes an event
handler from the
propertyChanged
event.

comp.remove_
propertyChanged(handler)

raisePropertyChanged

Executes registered
propertyChanged
event handlers
passing in the name
of the property that
changed in the event
arguments.

comp.raisePropertyChanged
(propertyName) ;




Sys.Component m 350

"= NOTE beginUpdate, endUpdate, and initialize

beginUpdate, endUpdate, and initialize are automatically executed
during the component creation process. They are normally not exe-
cuted by user-defined code, but can be overridden to provide custom
functionality.

Defining New Components
Sys.Component is extremely useful, but directly creating instances of it is
not its purpose. Instead, it is intended to be used as a base class for user-
defined components.

We can define a new component type using the Prototype Model we
covered in Chapter 2 and registering our component to inherit from
Sys.Component.

ErrorHandler Component

To demonstrate how to define a new component, we create a new error han-
dling component. The ErrorHandler component will be responsible for
publishing handled and unhandled errors to an error data service.

Skeleton
To start, we create the skeleton of our new component, as Listing 3.1 shows.

LisTiNG 3.1 Defining Our ErrorHandler Component

/// <reference name="MicrosoftAjax.js"/>
ErrorHandler = function() {
ErrorHandler.initializeBase(this);

s

ErrorHandler.prototype = {
initialize: function() {
ErrorHandler.callBaseMethod(this, 'initialize');
}J
dispose: function() {
ErrorHandler.callBaseMethod(this, 'dispose');
¥
}

ErrorHandler.registerClass('ErrorHandler', Sys.Component);




351

Chapter 3: Components

Besides calling initializeBase in the constructor and registering
our class to inherit from Sys.Component, we overrode Sys.Component’s
initialize and dispose methods. We included these overrides in the
skeleton because overriding the initialize and dispose methods is nor-
mally the first step taken in creating a new component, and we suggest
doing it right away.

Build Up and Tear Down
We can build on our skeleton definition by providing an implementation of
our initialize and dispose methods.

In the initialize method, you build up your component. This includes
adding event handlers to DOM elements, appending a new DOM element
to the tree, or anything else your component requires.

In the dispose method, you tear down your component. This might
include detaching an event from a DOM element, destroying a created
DOM element, or releasing any other resources that your component
created.

"= TIP dispose May Be Called More Than Once

It’s a good habit to write your dispose method so that it can be called
more than once without causing any runtime errors. With a decently
complex application, it’s likely you'll get into a situation where when
some manager object is disposed it will call dispose on its child compo-
nents. But, each of the child components will have also been registered as
a disposable object with Sys.Application. When Sys.Application dis-
poses and executes dispose on each of the registered disposable objects,
it will be the second (or more time) that dispose will have been called on
them. If you're not careful, this can cause a runtime error. Simple if-then
checks can prevent most common problems.

For our new ErrorHandler component, we need to add a handler to the
window’s error event when the component initializes and then remove the
handler when our component disposes. Listing 3.2 shows how we do this.



Sys.Component

LisTING 3.2 Adding a Handler to Window’s error Event

m 352

/// <reference name="MicrosoftAjax.js"/>
ErrorHandler = function () {
ErrorHandler.initializeBase(this);

3

ErrorHandler.prototype = {
initialize: function () {
ErrorHandler.callBaseMethod(this, 'initialize');
window.onerror =

Function.createDelegate(this, this._unhandledError);

1

dispose: function ErrorHandler$dispose() {
window.onerror = null;

ErrorHandler.callBaseMethod(this, 'dispose');

1

_unhandledError: function(msg, url, lineNumber) {
try {
var stackTrace = StackTrace.createStackTrace(arguments.callee);
ErrorDataService.PublishError
(stackTrace, msg, url, lineNumber);
}
catch (e) { }
}
}

ErrorHandler.registerClass('ErrorHandler', Sys.Component);

Asyou can see in Listing 3.2, we did some interesting things. First, in the
initialize method, we created a delegate that pointed to the _unhandled
Error method and assigned it to the window’s error event using the

onerror assignment.

" TIP window.onerror

We used the onerror assignment rather than the $addHandler method
because for some reason the window’s error event doesn’t support
adding events through addEventListener or attachEvent, the two
browser-specific methods that $addHandler eventually calls.




353

Chapter 3: Components

In the dispose method, we went ahead and cleared the window’s error
event handler. This is the buildup and teardown of our component.

In the unhandledError method that will execute when an unhandled
error occurs, we do two things. First, we generate a stack trace using a
global StackTrace object passing in the callee property of the function’s
arguments variable. After we have our stack trace, we execute the
PublishError method on our ErrorDataService web service proxy, pass-
ing to the server the stack trace, the error message, the URL of the page
where the error occurred, and the line number of the error message. We also
wrapped all the code in a try-catch statement because we don’t want the
error handling code to throw any runtime errors itself.

®: NOTE StackTrace and ErrorDataService

The global StackTrace object we used to generate our stack trace of the
executing call stack is really useful for debugging, and its full source
code is available in Appendix D, “Client Error Handling Code.” Sim-
ilarly, the ErrorDataService web service that we used to send the
error information back to the server for processing can be found in
Appendix D.

Using Base Class Methods and Objects

By inheriting from Sys.Component, our type inherits all the attributes and
behaviors of Sys.Component. Using the base class’s Sys.EventHandlerList
object and its related functionality, we can define new events without hav-
ing to write much code ourselves. Listing 3.3 expands our basic Error
Handler component and adds an event that we can register with that will
be raised whenever an error occurs.

LisTING 3.3 Using Base Class Methods

.. // code remains the same as before.

_unhandledError: function (msg, url, lineNumber) {
try {
var stackTrace =
StackTrace.createStackTrace(arguments.callee);
ErrorDataService.PublishError
(stackTrace, msg, url, lineNumber);

var args = new ErrorEventArgs(stackTrace, msg, url, lineNumber);
this._raiseUnhandledErrorOccured(args);



Sys.Component m 354

}
catch (e) { }

1

add_unhandledErrorOccurred: function(handler) {
this.get_events().addHandler("unhandledErrorOccurred”, handler);

1

remove_unhandledErrorOccurred: function(handler) {
this.get_events().removeHandler("unhandledErrorOccurred"”, handler);

1

_raiseUnhandledErrorOccured: function(args) {
var evt = this.get_events().getHandler("unhandledErrorOccurred");
if (evt !== null) {
evt(this, args);
}
})
}

ErrorHandler.registerClass('ErrorHandler', Sys.Component) ;

ErrorEventArgs = function(stackTrace, message, url, lineNumber) {
ErrorEventArgs.initializeBase(this);
this._message = message;
this._stackTrace = stackTrace;
this._url = url;
this._lineNumber = lineNumber;

}

ErrorEventArgs.registerClass("ErrorEventArgs"”, Sys.EventArgs);

Starting from the bottom of Listing 3.3, we define the new ErrorEvent
Args type. This type inherits from Sys . EventArgs and turns our error infor-
mation into an object.

In the ErrorHandler type, we added the three methods necessary to
add, remove, and raise the unhandledErrorOccurred event. We rely on
Sys.Component’s event handler list, which we access through
this.get_events() to maintain the list of events.

Finally, in the _unhandledError, we added code to create the error
event arguments and then pass them on to the method that raises the event.

One final change that we make to our ErrorHandler component is to
add a property that allows us to enable or disable the error publishing fea-
ture. Listing 3.4 shows the code changes.

LiSTING 3.4 Adding the Disable Error Publishing Property

/// <reference name="MicrosoftAjax.js"/>
ErrorHandler = function () {



355 Chapter 3: Components

LISTING 3.4 continued

ErrorHandler.initializeBase(this);
this._disableErrorPublication = false;

s
ErrorHandler.prototype = {

get_disableErrorPublication: function() {
return this._disableErrorPublication;

B

set_disableErrorPublication: function(value) {
if (!this.get_updating()) {
this.raisePropertyChanged("disableErrorPublication");
}
this._disableErrorPublication = value;

B

_unhandledError: function(msg, url, lineNumber) {
try {
var stackTrace = StackTrace.createStackTrace(arguments.callee);
if (!this._disableErrorPublication) {
ErrorDataService.PublishError
(stackTrace, msg, url, lineNumber);
}
var args =
new ErrorkEventArgs(stackTrace, msg, url, lineNumber);
this._raiseUnhandledErrorOccured(args);
¥
catch (e) { }
}J

}

ErrorHandler.registerClass('ErrorHandler', Sys.Component);

With that final change, we’ve created a useful component that we can
use to send client error information to the server so that we can be aware
of issues our clients are experiencing.

Creating Components

Based on what we’ve covered so far, you might think that to create a new
component you would “new up” a component and assign it to a variable,
as shown in Listing 3.5.



Sys.Component m 356

LisTING 3.5 Creating an Instance of a Component Using new

var errorHandler = new ErrorHandler();
errorHandler.set_disableErrorPublication (false);

Although nothing is wrong with this code, after all a component is just
a JavaScript object, components should be created through the Sys.
Component.create method. Listing 3.6 shows the syntax for using the
create method.

LisTING 3.6 Creating an Instance of a Component Using Sys.Component.create

var newComponent =
Sys.Component.create(
type,
properties,
events,
references,
element);

The Sys.Component.create method, which can also be accessed
through the global variable $create, does more than just create a new
instance of a particular type. Instead, it creates an instance of a particular
type, registers the instance with Sys.Application as a managed compo-
nent, and automatically calls the component’s beginUpdate, endUpdate,
updating, and initialize methods. In addition to doing all this automat-
ically, depending on what parameters are provided to the call, $create can
assign initial property values, add event handlers to events, assign other
components as references, and associate a DOM element to the component.
Finally, the $create method returns a pointer to the created instance. So as
you can see, the $create method does a lot more than create a new instance
of a type.

®: NOTE |Initialize Execution

Initialize always executes after all properties, events, and references
have been set.

Importantly, the $create method not only creates instances of types that
directly inherit from Sys.Component, but can also create types that have
multiple levels of inheritance before reaching the Sys.Component type. This
includes controls that inherit from Sys.UI.Control and behaviors that



357 Chapter 3: Components

inherit from Sys.UI.Behavior. The $create method works a little bit dif-
ferently when creating a behavior or control, and we cover this slight dif-
ference when we cover those types later in this chapter.

®. NOTE Parameter Information

The only parameter required by the $create method is type. The other
parameters—properties, events, references, and element—are all
optional parameters. If you don’t want to use them, supply null.

Supplying a value other than null for the element parameter is valid
only when the type you're creating an instance of inherits from
Sys.UI.Control or Sys.UI.Behavior. If you pass in an element when
creating a component that does not inherit from either of these types,
an error is thrown.

Likewise, if you do not pass in an element when creating an instance
of a type that inherits from Sys.UI.Control or Sys.UI.Behavior, an
error will be thrown.

To demonstrate how to use the $create method, we walk through a
series of $create calls changing the parameters around to suit our demon-
stration purposes.

"= NOTE Sys.Application Is Initialized

The following explanation of the $create method assumes that
Sys.Application has been initialized. Although components will not
always be created under this condition, we chose this assumption for
the initial walkthrough of the $create method so that we could have
a clear path through the method without too many branches.

However, there are a couple of significant differences between creating
components after Sys.Application is initialized and creating compo-
nents before Sys.Application is fully initialized, and we point out
how the $create method changes when Sys.Application isn’t fully
initialized when we discuss Sys.Application’s initialization process
in Chapter 4.

Using the type Parameter
First, let’s look at the basic call where we only pass in the type we want to cre-
ate and null values for the rest of the parameters. Listing 3.7 shows this call.



Sys.Component m 358

LisTING 3.7 The type Parameter

var errorHandler =
Sys.Component.create(
ErrorHandler,
null,
null,
null,
null);

type
Description: The type of component to create
Expected type: type

Required: Yes

Other requirements: The value assigned to type must inherit from
Sys.Component.

Notes: The parameter is not enclosed in quotation marks because
it’'s a Type object, not a string. A Type object is a Function object
that has been registered with the Microsoft AJAX Library using the
registerClass, registerInterface, or registerEnum method
such as we did with the ErrorHandler component.

In this example, the first thing the Sys.Component.create method does
is ensure that the parameter value ErrorHandler is a Type and inherits from
Sys.Component. After it passes those tests, it creates a new instance of
ErrorHandler and assigns it to a local variable.

"= NOTE Registering as a Disposable Object

When the new instance is created, it registers as a disposable object
with Sys.Application. Doing so ensures that the instance’s dispose
method is executed when Sys.Application is disposed. We cover this
topic further in Chapter 4.

Then, on our new instance, beginUpdate is executed. By default, begin
Update does nothing more than set the internal updating flag to true, but
it can be overridden by the new component’s implementation to do more
work if necessary.



359

Chapter 3: Components

Then, on our new instance, endUpdate is executed, which sets the inter-
nal _updating flag back to false and then executes the initialize method,
which we overrode to attach an event handler to the window’s error event.
Once the initialize method has executed, the updated method executes.
If a method override is not supplied, the updated method doesn’t do any-
thing. From there, the component is returned, and you can access it through
a variable assigned to the method call.

" TIP _initialized Check

In endUpdate, there is a check to make sure the internal member
_initialized is false before initialize is called. In the case of the
$create method, initialized will always be false when endUpdate
is called. However, if you use endUpdate for a different purpose later in
the component’s lifecycle, _initialized will be set to true, and the
initialize method won’t execute again. This allows you to call
beginUpdate and endUpdate without having to worry about your com-
ponent being re-initialized.

This simple example tells us one important thing through the power
of omission. Nowhere did we say that the component got added to Sys.
Application’s managed objects, which is something we claimed the Sys.
Component.create method did. This didn’t happen because the ID of the
component was never set, and only components that have their IDs set are
automatically added to Sys.Application’s managed components. We can
correct this by manually setting the component’s ID and then adding it to
Sys.Application’s list of managed components, as shown in Listing 3.8.

LisTING 3.8 Manually Setting the ID and Calling addComponent

var errorHandler =
Sys.Component.create(
ErrorHandler,
null,
null,
null,
null);

errorHandler.set_id("ApplicationErrorHandler");
Sys.Application.addComponent(errorHandler);




Sys.Component m 360

"= NOTE Calling addComponent

If we were to manually add the component to Sys . Application with-
out setting the component’s ID, an error would be thrown.

Another way to correct this problem is to initially set the component’s
ID. If the ID is set using the properties parameter, the component will
automatically be added to Sys.Application’s managed components right
after the events parameter is processed. Listing 3.9 shows the change
required.

LISTING 3.9 Setting the Component’s id Inline

var errorHandler =
Sys.Component.create(
ErrorHandler,
{id: "ApplicationErrorHandler"},
null,
null,
null);

Because having a value for the component’s ID is necessary for it to
become a managed component, it should almost always be set in the
$create call. There might be special cases where you don’t want to set it or
want to set it a later time, but these will be rare.

Also, the IDs of components that are managed by Sys.Application
must be unique. If you attempt to add two components with the same ID
to Sys.Application's managed components either through the $create
statement or manually calling addComponent, an error will be thrown.

"= NOTE Using the returned Variable

The $create method enables us to access the created component
through a pointer returned by the method, but it’s useful only in
certain situations. Because the component is registered with Sys.
Application, we’ll be able to get access to the component later by find-
ing it within Sys.Application’s managed components using its
unique ID.




361

Chapter 3: Components

Using the properties Parameter
In this example let’s pass in some simple initial property values. Listing
3.10 shows how we do this.

LisTING 3.10 Passing In Initial Property Values

var errorHandler =
Sys.Component.create(

ErrorHandler,

{
id: "ApplicationErrorHandler",
disableErrorPublication: true

})

null,

null,

null);

properties
Expected type: Object
Required: No

Description: An object containing key-value pairs, where the key is
the name of a property on the component to set, and the value is the
value to assign to that property

In this example, the initial steps of the $create method are the same as
they were in the previous example. The type is validated, the component
is created, and beginUpdate is executed.

The next step is to assign the property values to the component’s prop-
erties. The properties and their values are passed in using the string-object
syntax that is highlighted in Listing 3.10. Instead of using the string-object
syntax, we could have used object creation code as shown in Listing 3.11,
but the string-object syntax is a shorter and more comprehensible syntax
in this situation.

LisTING 3.11 Creating Properties Object Using Variables

var initialProperties = new Object;
initialProperties.id = "ApplicationErrorHandler";
initialProperties.disableErrorPublication = true;

var errorHandler =
$create(
ErrorHandler,
initialProperties,
null,



Sys.Component m 362

null,
null);

Using either method, our code indicates that we want to set two prop-
erties: id and disableErrorPublication.

To do this, the $create method delegates control to another method,
Sys$Component_setProperties. Thisis a global method available within the
Microsoft AJAX Library, whose purpose is to set properties on a component.
It accepts two parameters: the target object and the properties object.

Within this method, each of the expando properties attached to the
properties parameter is accessed and successively processed according to
a series of rules.

The first rule determines whether there is a getter method for the prop-
erty. It does this by prefixing the current property name, id, with the string
get_. In our example, the get_id method exists on the base Sys .Component
class, so this rule is met.

After the getter method has been established as existing, the setter
method is looked for. It does this by prefixing the current property name
with the string set_. Again, in our example, the set_id method exists on
the base Sys.Component class.

After the setter method has been determined to exist, the setter method
is executed on the target, passing in the value of the current property. In our
example, the value passed in is ApplicationErrorHandler.

The process repeats until all properties have been successfully applied
to the component or an error occurs, such as the getter not existing, a set-
ter not taking in the correct number of parameters, or a whole host of other
possibilities. In our example, the disableErrorPublication property is ini-
tialized with the value true.

"= NOTE lIterating over the Properties

The expando properties attached to the properties parameter are
accessed by using a for...in loop. As we discussed in Chapter 1,
“Programming with JavaScript,” the for...in loop iterates over the prop-
erties of an object, placing the current property name into a variable.

After the property name is placed in a variable, the value associated
to the property name is accessed using the associative array principle
discussed in Chapter 1.




363

Chapter 3: Components

Calling the Setter Method

As mentioned, the setter method for a property is executed during the cre-
ation of a component. Just as in .NET, the setter method can contain any
code it wants. If you write the method to execute a long-running process,
the component creation waits until that process has completed.

With that in mind, you need to be careful to make the setter method as
efficient as possible for the component creation to complete quickly.

If there is extra code that should not execute during the component cre-
ation process, one way to avoid executing it is to check the value of
_updating, as shown here:

;et_disableErrorPublication: function(value) {
if (!this.get_updating()) {

this.raisePropertyChanged
("disableErrorPublication");

}

this._disableErrorPublication = value;

}s

In this code example, we make sure that the component is not updat-
ing before we raise the propertyChanged event. Checking the updating
flag is less expensive than going through the process of raising the event.

Caution: This is just test code. Make sure that you really don’t want the
propertyChanged event to be raised when the component is updating
before using this code.

Complex Property Setting

Setting the id and the disableErrorPublication of our ErrorHandler
instance are simple examples of property settings through the $create
method, but there are four advanced scenarios of property setting that
we can use to our advantage to create complex components in a single
statement.



4.

Sys.Component

Setting a value that has no setter or getter, such as an attribute on a
DOM element or a property attached to a prototype

Appending items to an array

Setting properties on a subcomponent; a component contained
within another component

Adding properties to an existing object

Each of these concepts is illustrated with a new dummy component

MyComplexComponent:

MyComplexComponent = function() {

1

1

MyComplexComponent.initializeBase(this);
this.city = null;
this._areaCodes = [];
this._myObject = { firstName: "Harry" };
this.subComponent =
$create(ErrorHandler,

null,

null,

null,

null);

MyComplexComponent.prototype = {

someExpandoProperty: null,

get_address: function() {
return this._address;

3

set_address: function(value) {
this._address = value;

s

get_areaCodes: function() {
return this._areaCodes;

3

get_myObject: function() {
return this._myObject;

}

MyComplexComponent.registerClass(

"MyComplexComponent”,
Sys.Component);

var newComponent =

$create(

H 364



365

Chapter 3: Components

MyComplexComponent,
{

id: "MyNewComplexComponent",

city: "San Diego",

areaCodes: [619, 858, 760],
someExpandoProperty: "My Expando's Value",
subComponent:

{
id: "ApplicationErrorHandler",
disableErrorPublication: "true"

}s
myObject: { lastName: "Houdini" }

}s
null,
null,
null);

Setting a value that has no getter or setter

This scenario is exemplified through the setting of the city and
someExpandoProperty properties. These properties can be set
because they are existing fields on the object. If they didn’t already
exist, the setProperties routine wouldn’t add them for us.
Appending items to an array

The second advanced scenario is exemplified through the areaCodes
property. Here, we define a new array of three elements (619, 858, and
760) and assign it to the areaCodes property. For the elements to be
appended to the existing array, there must be a getter for the prop-
erty, but no setter. If there is a setter, it will be used instead, and it will
be up to the setter’s code to append the items to the array. Also, the
array must already be instantiated. If the variable points to null or
undefined, an error is thrown.

Setting properties on a subcomponent

The third advanced scenario is exemplified through the sub
Component property. Here, we define a subobject that contains an id
and disableErrorPublication property, both properties on our
previously defined ErrorHandler component. When the set
Properties method encounters this property, it accesses the



Sys.Component m 366

subcomponent, and then recursively calls the setProperties
method using the subcomponent as the target parameter and the
subobject containing the id and address properties as the proper-
ties parameter. This type of recursive call could continue an infinite
number of levels deep if we had set up our properties parameter
that way.
We could have supplied a getter here and had the same effect, but if
we had supplied a setter, too, setting the properties of the subcom-
ponent would not have worked as expected.
When we call the setProperties method recursively using a com-
ponent as the target parameter, it calls beginUpdate on that compo-
nent before it enters the for...in loop and endUpdate when it exits.
This is something to be aware of if you’re using the get_updating
method in your code.

4. Setting properties on a simple JavaScript object
The fourth and final advanced scenario is exemplified through the
myObject property. The myObject property defines a simple object
containing the property 1astName that has the value Houdini. When
the setProperties method encounters this property, it makes a
recursive callinto the setProperties method to apply the new prop-
erties to the myObject member. Here, rather than pass in a compo-
nent as the target, myObject is passed in as the target parameter
and the new properties object is passed in as the properties
parameter.

As you can see, the properties parameter of the $create method can

handle some advanced scenarios. You’ll find use for them in your code, if

you remember that they’re there.

Using the events Parameter

In this example, let’s assign an event handler to the available initialized
event using the events parameter. The code in Listing 3.12 demonstrates
how to do this.



367 Chapter 3: Components

LisTING 3.12 Passing in Event Handlers

$create(
ErrorHandler,
{
id:"ApplicationErrorHandler",
disableErrorPublication: true
}J
{

unhandledErrorOccurred:
function(sender, args) {
alert(args._stackTrace);
¥
}J
null,
null);

events

Expected type: Object

Required: No

Description: An object containing key-value pairs, where the key is

the name of an event on the component to assign to, and the value
is an event handler to add to the event

In this example, the initial steps of the $create method are the same as
they were in the previous properties example. The type is validated, the
component is created, beginUpdate is executed, and then the properties are
set.

After the properties are set, the events parameter is processed. Similar
to the properties property, the events parameter is an object that contains
a series of key-value pairs. The events object is iterated over, and each key-
value pair is used to add an event handler to an event until they are all
added or an error occurs. Again, similar to the properties parameter, the
event handlers are added to events by executing the appropriate method.
In this case, the key, unhandledErrorOccurred, is automatically prefixed
with add_ to create add_unhandledErrorOccurred. This string is then
looked for as a function contained within the component’s definition. If the
method add_unhandledErrorOccurred is successfully found and the value
of the key-value pair contained in the object is a Function object, the value
is passed into the add_unhandledErrorOccurred method as its parameter
and executed, adding the event handler to the event.



Sys.Component m 368

In our example $create statement, we defined the event handler in line
with the $create statement, and our event handler is successfully added
to the unhandledErrorOccurred event. Another way to do this is to prede-
fine an event handler function, as we show in Listing 3.13.

LisTING 3.13 Predefining an Event Handler

function unhandledErrorHandler(sender, args) {
alert(args._stackTrace);

}
$create(
MyComponent,
{address: "123 N. Fake Street" },
{
unhandledErrorOccurred:
unhandledErrorHandler
}
}J
null,
null);

Predefining the event handler allows it to be reused for other compo-
nents or to be called procedurally.

In addition, if we want to handle an event with a method that is con-
tained within our component, rather than use a global function as we did in
Listing 3.13, we have to go through an extra step of creating a delegate to
wrap our event handler method so that context gets pointed back to the
intended component, as shown in Listing 3.14.

LisTING 3.14 Wrapping an Event Handler in a Delegate

MyOtherComponent = function() {
MyOtherComponent.initializeBase(this);
this._subComponent = null;

}s

MyOtherComponent.prototype = {
_unhandledErrorOccurred: function(sender, args) {
var stackTrace = args._stackTrace;
if (typeof(stackTrace) != "undefined") {
alert ("The Stack Trace of the error was:

}

+ stackTrace);

1



369 m Chapter 3: Components

LISTING 3.14 continued

initialize: function() {
MyOtherComponent.callBaseMethod(this, "initialize");

this._errorHandler =
$create(
ErrorHandler,
{
id:"ApplicationErrorHandler",
disableErrorPublishing: true
})
{
unhandledErrorOccurred:
Function.createDelegate (
this,
this._unhandledErrorOccurred
)
})
null,
null);

// cause an error to be thrown
var nullObj = null;
nullObj.causeError;
}
s

MyOtherComponent.registerClass("MyOtherComponent”, Sys.Component);

As shown in the highlighted text, we create an instance of the Error
Handler component in MyOtherComponent’s initialize method. When we
assign the event handler to the unhandledErrorOccurred event, we wrap
it in a delegate so that when the code goes to execute the _unhandled
ErrorOccurred method it executes is using the correct context.

"= NOTE Functional Prefixes

Now that we’ve covered setting properties and adding event handlers
through the $create method, we can see how the property prefixes
get_and set_ and the event handler prefix add_ are not only aesthetic
prefixes but also functional.




Sys.Component m 370

Using the references Parameter
With the references parameter, we can assign one component to a property
on another, thus linking them together. You might wonder why we would
need a separate parameter for this when we could already accomplish this
using the properties parameter. We need this parameter because when we
start using server code to create instances of client components, we won't
know what order the components will be created in. If we use a separate
parameter, the initialization process that Sys.Application goes through to
create our components treats component references differently and delays
assigning them until all components have been created. Doing this eliminates
the problem of a component attempting to access an uncreated component.
To illustrate how to use the references parameter, we pass in one com-
ponent as a reference to another component in the $create statement using
the references parameter. To do that, we must first create a component
that can act as a reference to our second component. Listing 3.15 shows the
two $create statements. In this example, we use two fictitious components
to keep the example clear.

LisTING 3.15 Assigning References

// create the first component
$create(

MyComponent,

{

id: "MyFirstComponent™"

}J

null

null,

null

)

// create the second component and assign the first component
// to a property called subComponent
$create(
MyComponent,
{
id: "MySecondComponent™
1
null,
{
subComponent: "MyFirstComponent"
}s
null
)s




371

Chapter 3: Components

references

Expected type: Object

Required: No

Description: An object that contains key-value pairs, where the key
represents a component property, and the value represents a com-

ponent to assign to this property. The value is the id of the
component.

After the $create statement has passed the event’s assignment code, it
processes the references parameter. Similar to the properties and events
parameters, the references parameter is an object that contains key-value
pairs. The key is the property we want to assign, and the value is an id of
a component we want to assign to the property.

In Listing 3.15, the references object is highlighted. The object states
that we want to assign the component that has the id MyFirstComponent to
the subComponent property of the component being created. Just like the
setProperties method we discussed earlier, the setReferences method
looks for a setter method that’s defined by prefixing set_ to the property
name. In our example, this method’s name is set_subComponent. When this
method is found, the component id, MyFirstComponent, is looked for
within Sys.Application’s managed components. If the component is
found, the setter method is executed with the found component as its
parameter.

"= NOTE Finding Managed Components

Through Sys.Application.find, we can find registered components
by ID. When we cover Sys.Application in Chapter 4, we cover the
find method in detail.

" TIP Creation Order

As mentioned earlier, for this code sample to work correctly, MyFirst
Component must be available before the second $create statement exe-
cutes. References to uncreated components can be used if Sys.
Applicationisinits initialization phase. This is something we cover in
Chapter 4.




Controls m 372

Using the element Parameter

The last parameter of the $create method is element, which is used as a
pointer to a DOM element. Because the element parameter is valid only
when we’re creating a new behavior or a new control, we cover the element
parameter when we cover defining and creating those types.

Wrapping Up Components

A component is not just defined as an object that inherits from Sys.
Component, but also as being managed by Sys.Application. Creating an
instance of a type that inherits from Sys.Component using the new keyword
will not automatically register the instance with Sys.Application. We have
to use the $create method for this to happen. Using $create also facilitates
setting properties, wiring up event handlers, assigning references to other
components, and associating it with a DOM element, as we see with con-
trols and behaviors. It also automatically calls the initialize method on
the component, enabling you to create user-defined code that executes after
all the properties have been set, event handlers added, and component ref-
erences assigned.

Controls

A control is a special type of component directly associated to a DOM ele-
ment. A DOM element can have only one associated control, and a control
must be associated to a DOM element.

In practical terms, because we can have only one control associated to
a given DOM element, their use is intended for situations where you want
to have full power over the DOM element. In those cases where you're not
sure whether that’s your intention, start off with a behavior, and then move
to a control if needed. In reality, switching back and forth between a control
and a behavior is not too difficult and doesn’t require too much code to be
altered.

Because a control is directly tied to a DOM element, it has methods that
are useful for accessing and manipulating the associated DOM element.
Table 3.5 details the methods available to a control that access and manip-
ulate the associated DOM element.



373

Chapter 3: Components

TaBLE 3.5 Sys.Ul.Control Methods

Method Name

Description Syntax

set_id

Overrides component’s  no valid usage
set_id method. Throws

an error because a con-

trol’s id is always the asso-

ciated DOM element’s id.

get_id

Overrides component’s  return ctrl.get_id();
get_id method. Returns

the id of the associated

DOM element.

get_visible

Returns the value returned return ctrl.get_visible();
by calling Sys.UI.

DOMElement.getVisible

on the associated DOM

element.

set_visible

Calls Sys.UI.DomElement. ctrl.set_

setVisible using the visible(visibility);
control’s associated DOM

element and the Boolean

value passed into the

set_visible call.

get_visibilityMode

Calls Sys.UI.DomElement. return ctrl.get_
getVisibilityMode using visibilityMode();
the control’s associated

DOM element.

set_visibilityMode

Calls Sys.UI.DomElement. ctrl.set_visibilityMode(
setVisibilityMode using Sys.UI.VisibilityMode
the control’s associated );

DOM element and Sys.

UI.VisibilityMode

parameter passed in to the

set_visibilityMode call.

get_element

Returns the associated return ctrl.get_
DOM element. element();




Controls

m 374

Method Name

Description

Syntax

addCssClass

Calls Sys.UI.DomElement.
addCssClass using the
control’s associated DOM
element and the name of
the CSS class to add.

ctrl.addCssClass
(cssClassName)

removeCssClass

Calls Sys.UI.DomElement.
removeCssClass using the
control’s associated DOM
element and the name of
the CSS class to remove.

ctrl.removeCssClass
(cssClassName) ;

toggleCssClass

Calls Sys .UI.DomElement.
toggleCssClass using the
control’s associated DOM
element and the name of
the CSS class to toggle.

ctrl.toggleCssClass
(cssClassName) ;

dispose

Overrides Sys.Component’s

dispose. Calls base class
dispose, sets element’s
control expando property
to undefined, and deletes
reference to the DOM
element from the
component.

ctrl.dispose();

New Concepts

Besides the methods that access and manipulate the associated DOM ele-

ment, other methods introduce two new concepts: a control’s parent and
ASP.NET-like event bubbling.

Control’s Parent

A control’s parent property provides a pointer to another control. The par-

ent can be calculated in one of two ways. If a parent has been explicitly set

using the set_parent method, that is the control’s parent. If a parent has

not been explicitly set, the control’s associated DOM element’s parentNode

pointer is walked until an element with a control attached to it is reached,

and that is considered the control’s parent.

Table 3.6 details the methods involved with the parent pointer concept.



375

Chapter 3: Components

TABLE 3.6 Sys.Ul.Control Methods Related to Control’s Parent

Method Name Description Syntax

get_parent  Returns the explicitly set var parent = ctrl.get_parent();
parent or the first control
encountered by walking
up the DOM element’s
parentNode pointer

set_parent  Explicitly sets the parent  ctrl.set_parent(othercCtrl);

Event Bubbling
Event bubbling is a method of passing events up through the parent pointer
and giving parent controls the opportunity to handle those events.

Event bubbling in the Microsoft AJAX Library is similar to event bub-
bling using controls in ASP.NET. A control starts the process by calling
raiseBubbleEvent, passing in a source and event arguments. In the raise
BubbleEvent method, the control’s parent is retrieved using the get_parent
method attached to the control, and onBubbleEvent is called on it. The
default implementation of Sys.UI.Control’s onBubbleEvent method
returns false, which indicates that the control did not handle the event and
the bubbling should continue up the hierarchy.

If the control wants to handle the bubbled event, it may do so by over-
riding the default implementation of onBubbleEvent. In the overridden
method, it can decide whether the bubbling should continue or stop. If it
wants to stop the event’s propagation up the parent hierarchy, it returns
true. If it wants to allow other controls higher up in the control’s parent tree
the opportunity to handle the event, too, it returns false.

Table 3.7 details the methods involved with the event bubbling concept.



Controls m 376

TaBLE 3.7 Sys.Ul.Control Methods Related to Event Bubbling

Method Name Description Syntax
onBubbleEvent Part of the event bubbling  Is automatically called by
framework. Needs to be raiseBubbleEvent

overridden to provide
functionality. Returns
false by default.

raiseBubbleEvent Part of the event bubbling  ctrl.raiseBubbleEvent
framework. Walks the (source, args);
control’s parent list, firing
the onBubbleEvent on
each parent object.

®": NOTE Additional Methods

Because Sys.UI.Control inherits from Sys.Component, all the methods
available to Sys.Component are available to Sys.UI.Control.

Defining a New Control

Like defining a new component, defining a new control follows the Proto-
type Model we covered in Chapter 2. To illustrate how to define a new con-
trol, we create a new control that attaches to a textbox and allows only
numbers to be entered. Listing 3.16 shows the code necessary to define the
new NumberOnlyTextBox control.

LisTING 3.16 Defining a New Control Type

/// <reference name="MicrosoftAjax.js"/>

NumberOnlyTextBox = function(element) {
NumberOnlyTextBox.initializeBase(this, [element]);
this._keyDownDelegate = null;

s

NumberOnlyTextBox.prototype = {
initialize: function() {
NumberOnlyTextBox.callBaseMethod(this, 'initialize');
this._keyDownDelegate =
Function.createDelegate(this, this._keyDownHandler);
$addHandler(this.get_element(), "keydown", this._keyDownDelegate);

1



377 Chapter 3: Components

LiIsTING 3.16 continued

dispose: function() {
$removeHandler
(this.get_element(), "keydown", this._keyDownDelegate);
this._keyDownDelegate = null;
NumberOnlyTextBox.callBaseMethod(this, 'dispose');
}J

_keyDownHandler: function(e) {
return ((e.keyCode >= 48 &% e.keyCode <= 57) || (e.keyCode == 8));
}
};

NumberOnlyTextBox.registerClass("NumberOnlyTextBox", Sys.UI.Control);

As shown in Listing 3.16, we can see that there are two major differences

between our NumberOnlyTextBox control and our ErrorHandler component

we declared previously.

First, the base class of our NumberOnlyTextBox control is Sys.UI.Control

and not Sys.Component.

Second, the constructor takes an element parameter and passes it to the

base class’s constructor through the initializeBase method. This param-

eter is the DOM element that is going to be associated to the control.

When the element is passed to Sys.UI.Control’s constructor, three

things happen. First, the DOM element is checked to make sure that there

is no other control already associated to it. If this test fails, the constructor

throws an error, and the control’s creation fails. If it passes, the second step

the constructor takes is to assign the DOM element to the internal member

_element. Finally, the control is assigned to the DOM element using the

expando property control. If we created a reference to the associated ele-

ment, we could access the assigned control using the following code:
$get("TextBox1").control;

Using our newly minted control type, Listing 3.17 demonstrates the

association requirements we just discussed.

LisTING 3.17 Creating an Instance of MyControl Using new

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">

<title>Control Testing!</title>
</head>



Controls m 378

<body>
<form id="forml" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />
// omitted NumberOnlyTextBox definition for brevity.
<asp:TextBox ID="txtBox1l" runat="server" Width="150px" />

<script type="text/javascript">

var numberOnlyTextBox =
new NumberOnlyTextBox($get("txtBox1"));

// alerts "txtBoxl"
alert ("numberOnlyTextBox's associated element's id:
numberOnlyTextBox.get_element().id);

// alerts "txtBox1l"
alert ("numberOnlyTextBox's associated control's id: " +
$get("txtBox1").control.get_id());

// throws a JavaScript error because a
// control is already associated to txtBox1.
var numberOnlyTextBox2 =
new NumberOnlyTextBox ($get("txtBox1"));
</script>

</form>
</body>
</html>

Creating a Control
In Listing 3.17, we used the new keyword to create a new instance of our
NumberOnlyTextBox type. From our component discussion, we know that
the $create method performs a whole host of tasks besides creating a new
instance of the type, and because our new type inherits from Sys.UI.
Control, which inherits from Sys . Component, we can use the $create state-
ment in the same manner as we did for our ErrorHandler component.
Instead of walking through the entire $create method again, we need to
discuss only the use of the element parameter because that’s the only dif-
ference. Using the example we created in Listing 3.17 as a basis, we can
modify the code to use the $create method. Listing 3.18 shows the altered
code.



379 Chapter 3: Components

LisTING 3.18 Creating an Instance of MyControl Using Screate

<html>

<head runat="server">
<title>Control Testing!</title>

</head>

<body>
<form id="forml" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />

// omitted NumberOnlyTextBox definition for brevity.
<asp:TextBox ID="txtBox1l" runat="server" Width="150px" />

<script type="text/javascript">
$create(
NumberOnlyTextBox,
null,
null,
null,
$get("txtBox1")
);

</script>

</form>
</body>
</html>

The highlighted code shows the $create method call. Notice how
$get("txtBox1") is passed in as the element parameter of the $create
method. When the $create method instantiates the new instance of the
NumberOnlyTextBox, it determines whether the NumberOnlyTextBox inher-
its from Sys.UI.Control or Sys.UI.Behavior. If it does, and in our exam-
ple it does, it uses the element parameter as the parameter for the
constructor call; similar to what we did in Listing 3.17 before we used the
$create method to create our new control.

"= NOTE Setting the Control’s id

Unlike a component or behavior, setting the id of a control is not
allowed. The id of the control is always the id of the associated DOM
element.




Behaviors m 380

Wrapping Up Controls

Controls are not too different from their base component type. The main
difference is that a control must be associated to a DOM element, whereas
a component must not be.

Behaviors

Abehavior is another special type of component that is related to DOM ele-
ments. Like controls, a behavior must be associated to a DOM element.
However, unlike a control, there can be more than one behavior attached
to a DOM element.

In a practical sense, behaviors define how we want a DOM element to
behave. We want the DOM element to collapse to a single line, we want the
DOM element to float on the page, and we want the DOM element to fill all
the available screen space. These are all examples of behaviors that we
might attach to a DOM element.

To help us define new behaviors and use instantiated behaviors, the
base Sys.Behavior type includes a few more methods than its base
Sys.Component type. Table 3.8 details these methods.

TaBLE 3.8 Sys.Ul.Behavior Methods

Method Name Description Syntax

get_element Returns the DOM return behavior.get_
element associated to ~ element();
the behavior.

get_name Returns the name of the return behavior.get_name();
behavior. If the name
has been explicitly set,
that’s the name re-
turned. If it has not
been explicitly set, the
name returned is the
short type name of the
behavior.




381 Chapter 3: Components

TABLE 3.8 continued

Method Name

Description Syntax

set_name

Sets the name of the behavior.set_
behavior. Explicitly set name("HiddenElm");
behavior names must

be unique. The name of

a behavior cannot be set

after the behavior has

been initialized. The

behavior name must

not start with a blank

space, end with a blank

space, or be an empty

string.

initialize

Calls the base class’s behavior.initialize();
initialize method.

Attaches the behavior

to its associated DOM

element by adding an

expando property to the

DOM element that’s the

name of the behavior.

dispose

Overrides Sys.
Component’s dispose.
Calls base class dispose,
removes the DOM
element’s expando
property that is in the
name of the behavior,
and deletes the reference
to DOM element from
the behavior.

behavior.dispose();

get_id

Returns the underlying return behavior.get_id();
component’s id if it’s

set. If it’s not set, the

value returned is the

associated DOM ele-

ment’s id appended

with the behavior’s

name.




Behaviors m 382

Method Name Description Syntax
Sys.UI.Behavior. Returns all behaviors  return Sys.UI.Behavior.
getBehaviorsByType attached to a DOM getBehaviorsByType
element that are of a (element, typeName)
particular type.
Sys.UI.Behavior. Returns a behavior return Sys.UI.Behavior.
getBehaviorByName attached to a DOM getBehaviorByName
element if it was found.  (element, behaviorName)
Sys.UI.Behavior.  Returnsacopyofthe return Sys.UI.Behavior.
getBehaviors behaviors attached to a getBehaviors
DOM element. If there (element);
are no behaviors for a
particular DOM element,
returns an empty array.

Defining a Behavior

Like defining a new component and control, defining a new behavior fol-
lows the Prototype Model we covered in Chapter 2. Rather than create a
brand new example, we modify the NumberOnlyTextBox control example
we used in the previous section to work as a behavior instead. Listing 3.19
shows the code necessary to define the NumberOnlyTextBox behavior.

LisTING 3.19 Defining a Behavior Type

/// <reference name="MicrosoftAjax.js"/>

NumberOnlyTextBox = function(element) {
NumberOnlyTextBox.initializeBase(this, [element]);
this._keyDownDelegate = null;

¥

NumberOnlyTextBox.prototype = {
initialize: function() {
NumberOnlyTextBox.callBaseMethod(this, 'initialize");
this._keyDownDelegate =
Function.createDelegate(this, this._keyDownHandler);
$addHandler(this.get_element(), "keydown", this._keyDownDelegate);

1

dispose: function() {
$removeHandler
(this.get_element(), "keydown", this._keyDownDelegate);



383 Chapter 3: Components

LISTING 3.19 continued

this._keyDownDelegate = null;
NumberOnlyTextBox.callBaseMethod(this, 'dispose');

})

_keyDownHandler: function(e) {
return ((e.keyCode >= 48 && e.keyCode <= 57) || (e.keyCode == 8));
)
s

NumberOnlyTextBox.registerClass("NumberOnlyTextBox", Sys.UI.Behavior);

As you can see, the code to define our NumberOnlyTextBox behavior is
almost identical to the code necessary to define the NumberOnlyTextBox as
a new control. The only difference is that a behavior inherits from
Sys.UI.Behavior rather than Sys.UI.Control.

Sys.UI.Behavior’s constructor, like Sys.UI.Control’s, takes in an ele-
ment as a parameter. In its constructor, the internal member _element is
assigned to the element parameter, associating the DOM element to the
behavior. Then, the behavior is added to the element’s _behaviors expando
property. The _behaviors expando property is like the control’s control
property except that it is defined as an array so that more than one behav-
ior can be associated to the DOM element.

Creating a Behavior
From our component and control discussion, we know that using the
$create method is the correct way of instantiating a new instance of a type
that inherits from Sys.Component, and a behavior is no different.
In fact, creating a behavior is exactly the same as creating a control, and
the code shown in Listing 3.18 will suffice for an example of how to do this.
Unlike controls, however, a couple of problems could appear when
creating behaviors, and they both have to do with the uniqueness of the
behavior.

Behavior Uniqueness Problems

The first problem is that if a behavior’s id is not set, the id is automatically
generated based on the id of the associated DOM element and the name of
the behavior. Because this is a generated value, it’s likely that it could be the



Behaviors m 384

same for more than one behavior. If the same id is generated for more than
one behavior, when the second behavior attempts to register itself with
Sys.Application, the registration fails because components managed by
Sys.Application must have unique ids. Listing 3.20 demonstrates this
problem.

LisTING 3.20 Creating Behaviors That Have the Same id

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Behavior Testingl!</title>
</head>
<body>
<form id="forml" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />

// .. NumberOnlyTextBox omitted for brevity.
<asp:TextBox ID="txtBoxl" runat="server" Width="15@px" />

<script type="text/javascript">
$create(
NumberoOnlyTextBox,
null,
null,
null,
$get("txtBox1")
K

// this will cause an error because the id of the component will
// be the same as the previous behavior.
$create(
NumberoOnlyTextBox,
null,
null,
null,
$get ("txtBox1")
)5

</script>

</form>
</body>
</html>

In this example, because we’re not explicitly setting the name or the id
of either behavior, the id of each behavior is txtBox1$NumberOnlyTextBox.
The behaviors” ids are computed based on the DOM element’s id



385 Chapter 3: Components

(txtBox1), appended with $, followed by the name of the behavior, which
when it’s not explicitly set is the type name minus any namespaces.

"= NOTE NumberOnlyTextBox

In our example, the name of our behavior is just the full name of the
type: NumberOnlyTextBox.

If we were using a namespace for our behavior, for example MyProject.
Behaviors.NumberOnlyTextBox, the calculated name of the behavior
would still be NumberOnlyTextBox.

When the second behavior tries to register itself with Sys.Application,
an error occurs because a component is already registered with that id.

To rectify this problem, either the name or id of the behavior has to be
explicitly set. In either case, the id or the name needs to be unique. In the
case of the id, it needs to be unique among all components. In the case of
the name, it needs to be unique among behaviors attached to the associated
DOM element. Listing 3.21 shows code that would successfully create the
two behaviors and attach them to the same textbox.

LisTING 3.21 Setting a Behavior’s id

<script type="text/javascript">
$create(
NumberOnlyTextBox,
{id: "Behaviori" },
null,
null,
$get("txtBox1")
)

$create(
NumberOnlyTextBox,
{id: "Behavior2" },
null,
null,
$get ("txtBox1")

)

</script>

The second problem with creating behaviors can occur when we attach
multiple instances of the same behavior to a DOM element and don’t set



Behaviors m 386

their names. Because their names will be the same calculated value (i.e.,
NumberOnlyTextBox), we won't be able find one or more of them through
the Sys.UI.getBehaviorByName method.

Attaching the multiple instances of the same behavior to a single DOM
element might be a rarer case than most, but it can occur. Listing 3.22 shows
how we’re only able to find one of the NumberOnlyTextBox behaviors
attached to our textbox.

LisTING 3.22 Problems Finding Behaviors by Name

<html>

<head runat="server">
<title>Behavior Testing!</title>

</head>

<body>
<form id="forml" runat="server">
<asp:ScriptManager ID="SM1" runat="server" />

// NumberOnlyTextBox omitted for brevity
<asp:TextBox ID="txtBox1l" runat="server" Width="150px" />

<script type="text/javascript">
$create(
NumberOnlyTextBox,
{id: "Behaviorl"},
null,
null,
$get("txtBox1l")
)

$create(
NumberOnlyTextBox,
{id: "Behavior2"},
null,
null,
$get("txtBox1")

)

var beh = Sys.UI.Behavior.getBehaviorByName
($get("txtBox1"), " NumberOnlyTextBox ");

alert (beh.get_name());

var behaviorsAssignedToDom =
Sys.UI.Behavior.getBehaviors($get("txtBox1"));

var behaviors = H



387 Chapter 3: Components

LISTING 3.22 continued

for (var i=0; i<behaviorsAssignedToDom.length; i++) {
behaviors += behaviorsAssignedToDom[i].get_name() +

}

now,
3

// alerts NumberOnlyTextBox NumberOnlyTextBox because
// there are two behaviors of that name
alert (behaviors);

</script>
</form>

</body>
</html>

To correct this problem we need to explicitly set the name of any behav-
iors we create.

To conclude this section on problems with creating behaviors, although
an error won't be thrown if a behavior doesn’t have its id/name set when
it’s created, it’s clearly better to do so to avoid some of the rarer problems
with behaviors. Therefore, we suggest that you always set the id and name
of a behavior whenever you create an instance of one. Listing 3.23 shows
this pattern.

LisTING 3.23 Assigning ids and names to Behavior Instances

<script type="text/javascript">
$create(
NumberOnlyTextBox,
{id: "Behaviori”,
name: "Behaviorl"},
null,
null,
$get ("txtBox1")

)s

$create(
NumberOnlyTextBox,
{id: "Behavior2",
name: "Behavior2"},
null,
null,
$get("txtBox1")

)

</script>




Summary ®m 388

Wrapping Up Behaviors

Behaviors are not too different from their base component type. The main
difference is that a behavior must be associated to a DOM element, whereas
a component must not be. The main difference between a control and a
behavior is that a DOM element can have only one control associated to it,
whereas a DOM element can have multiple behaviors.

SUMMARY

In this chapter, we examined components, controls, and behaviors. We
looked at how the base component type contains commonly used objects
and how controls and behaviors extend components to include a reference
to a DOM element. We also looked at how you can build them by hand and
how they’re created using the $create function.

In the next chapter, we cover Sys.Application, whichis the manager
object for all components, controls, and behaviors. After we examine
Sys.Application, we begin to tie the Microsoft AJAX Library into the
server portion of ASP.NET AJAX with a chapter on how to create compo-
nents, controls, and behaviors through .NET code. Finally, we wrap up
components, controls, and behaviors with an in-depth look on how to local-
ize them and how they react to being placed inside an UpdatePanel.



Software Archtect. .NET Develdper Patform, Mcrosoft

Advanced ASP.NET
AJAX Server Controls
For .NET Framework 3.5

Try Safari Books Online FREE

Get online access to 7,500+ Books and Videos

Effective
REST Services
via .NET

For .NET Framework 3.5

Essential

Essential C# 3.0 Si|ver|ight 3

For .NET Framework 3.5

3 ¥

-
m il Kenn Scribner
-— Scott Seely

Safari

Books Online

FREE TRIAL—GET STARTED TODAY!
informit.com/safaritrial

Find trusted answers, fast

Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O'Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques

In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the first
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

)

: sas (F)WILEY


http://my.safaribooksonline.com/home?subpage=anonUItrial&portal=informit

Learn' | at Inform

Podcasts Short Cuts
& -
o 2
87 [o)
o Conferences — Rough Cuts 2
i informit 3
1]
~ -
Reference Safari Books N

o Guides Online ~

- <

® (59

o\ &
Blogs Video
] —
Articles
\O’@ 6 y
Ce o)
S‘S. 0’&
A Research |7 A
v

A
\ A4
iBM
QUE PRENTICE
HALL

Addison Cisco Press EXAM/CRAM
Press.

Wesley



http://www.informit.com/
http://www.InformIT.com/learn

	06a_0321545613_CH03.pdf
	06a_0321545613_CH03.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	A
	B
	C


	LearnIT_InformIT_Ad.pdf
	00a_SOA_cover_final
	00b_SOA_IFC_color_final_final
	00c_TOC_copyright_final
	00d_SOA Podcast BOB ad_color
	01_Erl_9780131858589
	02_0131858580_ch03
	03_Brown_9780137147465
	04_0137147465_ch08
	05_Erl_9780136135166
	06_0136135161_ch12
	07_Ogrinz_9780321579478
	08_032157947X_ch01
	09_Erl_9780132344821
	10_0132344823_ch05
	11_Bieberstein_9780132353748
	12_0132353741_ch04
	13_Erl_9780136135173
	14_013613517X_ch03
	15_Carter_9780131956544
	16_013195654x_ch11




