

O

BJECT

 D

ESIGN

Wirfs.book Page i Friday, October 11, 2002 11:44 AM

Wirfs.book Page ii Friday, October 11, 2002 11:44 AM

O

BJECT

 D

ESIGN

Roles, Responsibilities, and Collaborations

REBECCA WIRFS-BROCK

ALAN MCKEAN

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Wirfs.book Page iii Friday, October 11, 2002 11:44 AM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special
sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Control Number: 2002112293

Copyright © 2003 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher. Printed in the United States of America. Published simulta-
neously in Canada.

For information on obtaining permission for use of material from this work, please submit a written
request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN: 0-201-37943-0

Text printed on recycled paper

12345678910—CRW—0605040302

First printing, November 2002

Wirfs.book Page iv Friday, October 11, 2002 11:44 AM

v

Contents

Foreword by Ivar Jacobson xv
Foreword by John Vlissides xvii
Preface xix

C

HAPTER

 1

Design Concepts 1

Object Machinery 2

Roles 3

Object Role Stereotypes 4

Roles, Responsibilities, and Collaborations 5

Object Contracts 7

Conditions-of-Use and Aftereffect
Guarantees

8

Domain Objects 8

Application-Specific Objects 10

Interfaces 12

Classes 13

Two Roles

13

Composition 16

Wirfs.book Page v Friday, October 11, 2002 11:44 AM

Contents

vi

Inheritance 16

Object Organizations 17

Components 18

Patterns 18

Applying Double Dispatch to a Specific
Problem

20

The Real Benefits of Using Patterns

25

Frameworks, Inc. 25

Architecture 27

Architectural Styles 28

Centralized Control Style

30

Dispersed Control: No Centers

30

Delegated Control

31

Examining Interactions: A Layered
Architecture Example

32

Locating Objects in Layers

34

Design Description 36

Summary 36

Further Reading 37

C

HAPTER

 2

Responsibility-Driven Design 39

A Process for Seeing, Describing, and
Designing 40

Launching the Production: Project Definition
and Planning

44

Setting the Stage: Early Description

44

Staging the Production: Design

47

“Seeing” from Multiple Perspectives

49

Writing the Script: Analysis Descriptions 49

Usage Descriptions

50

Other Specifications

58

Glossaries

58

Conceptual Objects

58

Wirfs.book Page vi Friday, October 11, 2002 11:44 AM

Contents

vii

Casting the Characters: Exploratory Design 60

CRC Cards

61

Inventions: Using Patterns

62

Pursuing a Solution

67

Bouncing Between Ideas and Details

68

Tuning the Production: Design Refinement 70

Designing for Flexibility and Extension

71

Designing for Reliability

73

Making Our Design Predictable, Consistent,
and Comprehensible

73

Summary 74

Further Reading 74

C

HAPTER

 3

Finding Objects 77

A Discovery Strategy 78

Looking for Objects and Roles, and Then
Classes 79

Why Tell a Design Story? 80

Search Strategies 84

What’s in a Name? 88

Describing Candidates 93

Characterizing Candidates 98

Connecting Candidates 99

Looking for Common Ground 101

Defend Candidates and Look for Others 104

Summary 106

Further Reading 107

C

HAPTER

 4

Responsibilities 109

What Are Responsibilities? 110

Where Do Responsibilities Come From? 111

Wirfs.book Page vii Friday, October 11, 2002 11:44 AM

Contents

viii

Strategies for Assigning Responsibilities 125

Recording Responsibilities

126

Making Initial Assignments

128

Getting Unstuck

138

Implementing Objects and
Responsibilities 140

Testing Your Candidates’ Quality 145

Summary 146

Further Reading 146

C

HAPTER

 5

Collaborations 149

What Is Object Collaboration? 150

Preparing for Collaboration

150

Recording Candidate Collaborations

151

The Design Story for the Speak for Me
Software 152

Collaboration Options 153

Who’s In Control?

155

How Much Should Objects Trust One
Another?

155

Strategies for Identifying Collaborations 158

Looking at an Individual Object’s Role:
Stereotypes Imply Collaborations

159

Looking at Individual Responsibilities: They
Imply Collaborations

166

Designing the Details of a Complex
Responsibility

168

Designing Collaborations for a Specific
Task

169

Identifying Applicable Patterns

170

Identifying How Architecture Influences
Collaborations

172

Solving Problems in Collaborations

173

Wirfs.book Page viii Friday, October 11, 2002 11:44 AM

Contents

ix

Simulating Collaborations 176

Planning a Simulation

177

Running a Simulation

180

Designing Good Collaborations 183

The Law of Demeter: A Case Study

184

Making Collaborations Possible 187

Guidelines for Making Connections

188

Designing Reliable Collaborations

190

When Are We Finished? 191

Summary 193

Further Reading 193

C

HAPTER

 6

Control Style 195

What Is Control Style? 196

Control Style Options 197

Making Trade-offs 198

Centralizing Control

198

Delegating Control

200

The Limits of Control Decisions

201

Developing Control Centers 205

A Case Study: Control Style for External User
Events 206

Centralizing Control in the
MessageBuilder

208

Refactoring Decision Making into State
Methods within the MessageBuilder

220

Abstracting Away Decisions

221

Delegating More Responsibility

224

Designing the Control Style for the Guessing
Neighborhood

225

Designing a Similar Control Center: Can We
Be Consistent?

230

Summary 237

Wirfs.book Page ix Friday, October 11, 2002 11:44 AM

Contents

x

C

HAPTER

 7

Describing Collaborations 239

Telling Collaboration Stories 240

A Strategy for Developing a Collaboration
Story 241

Establishing Scope, Depth, and Tone 242

Listing What You Will Cover 243

Deciding on the Level of Detail 243

Showing a Bird’s-Eye View

244

Showing Collaborators Only

245

Showing a Sequence of Interactions Among
Collaborators

250

Showing an In-Depth View

251

Showing a Focused Interaction

253

Showing an Implementation View

254

Showing How to Adapt a Collaboration

254

Where UML Diagrams Fall Short

258

Choosing the Appropriate Form 263

Tell It, Draw It, Describe It: Guidelines 264

Organizing Your Work 270

Adding Emphasis 271
Unfolding Your Story 271
Understanding What’s Fundamental 272
Putting It All Together 273

Preserving Stories 274

Summary 275

Further Reading 275

CHAPTER 8 Reliable Collaborations 277

Understanding the Consequences of
Failure 278

Increasing Your System’s Reliability 280

Determining Where Collaborations Can Be
Trusted 280

Wirfs.book Page x Friday, October 11, 2002 11:44 AM

Contents

xi

Trusted Versus Untrusted
Collaborations 281
Implications of Trust 284

Identifying Collaborations to Be Made
Reliable 285

What Use Cases Tell Us 286
Distinguish Between Exceptions and
Errors 287
Object Exceptions Versus Use Case
Exceptions 288
Object Exception Basics 288
Exception- and Error-Handling
Strategies 294
Determining Who Should Take Action 296

Designing a Solution 299
Brainstorm Exception Conditions 299
Limit Your Scope 300
Record Exception-Handling Policies 302

Documenting Your Exception-Handling
Designs 303

Specifying Formal Contracts 307

Reviewing Your Design 311

Summary 312

Further Reading 313

CHAPTER 9 Flexibility 315

What Does It Mean to Be Flexible? 316

Degrees of Flexibility 317

The Consequences of a Flexible Solution 319

Nailing Down Flexibility Requirements 320

Recording Variations 324

Wirfs.book Page xi Friday, October 11, 2002 11:44 AM

Contents

xii

Variations and Realizations 327
Identifying the Impact of a Variation 328
Exploring Strategies for Realizing
Flexibility 329
Using Templates and Hooks to Support
Variations 330

The Role of Patterns in Flexible Designs 338
Varying an Object’s Behavior with the
Strategy Pattern 338
Hiding Interacting Objects with
Mediator 339
Making a Predefined Object or System Fit
Using Adapter 340
How Do Patterns Increase Flexibility? 340

How to Document a Flexible Design 342
Consider Your Audience 344
Describing How to Make a Variation 345

Changing a Working System’s Design 350

Summary 352

Further Reading 353

CHAPTER 10 On Design 355

The Nature of Software Design 356

Tackling Core Design Problems 357

Frame the Problem 358

Dealing with Revealing Design Problems 361
A Story About Managing Shared
Information 362
A Story About Connection Problem
Complexity 363
A Story About a Design Problem That Never
Got Easier 364
Can Revealing Problems Be Wicked,
Too? 365

Wirfs.book Page xii Friday, October 11, 2002 11:44 AM

Contents

xiii

Strategies for Solving Revealing Problems 366
Redefining the Problem 368
Synthesizing a Solution 369

Working on the Rest 370

Designing Responsibly 371

Further Reading 374

Bibliography 375

Index 381

Wirfs.book Page xiii Friday, October 11, 2002 11:44 AM

Wirfs.book Page xiv Friday, October 11, 2002 11:44 AM

xv

Foreword
by Ivar Jacobson

oftware development is very different than it was over 10 years
ago when Rebecca first introduced us to Responsibility-Driven

Design. Use cases are now widely used to gather system require-
ments. The Unified Modeling Language is now the common tool for
describing software designs and architectures. Object-oriented lan-
guages are everywhere. Business pressures demand that we develop
systems quickly and react to changing market demands.

Good software design, however, remains essential. Object Design
advances the state of the art as well as the practice of software
design using objects. It offers a powerful way of thinking about soft-
ware in terms of roles, responsibilities, and collaborations. Use cases
specify the role of your system when interacting with its users.
Designers transform use cases into responsibilities of objects. This
higher-level view of a design, which focuses on responsibilities that
are tied to your system’s usage, helps you step away from implemen-
tation details and focus on what the appropriate software machinery
should be. Once you understand that, then you can decide how to
implement your design using classes, interfaces, and inheritance
hierarchies.

Object Design presents a “theatre of design ideas.” It is full of stories,
design examples, and commonsense advice. It offers a vocabulary
for characterizing object roles, application control styles, and design
problems. It presents practical strategies for finding candidate
objects and offers sound advice for naming them.

S

Wirfs.book Page xv Friday, October 11, 2002 11:44 AM

Foreword

xvi

This book is more than an introduction to design. It also offers in-
depth treatments of design topics that will be of interest to the most
experienced software designers. It explores how to effectively use
design patterns, make trade-offs, and reason about design alterna-
tives. It demonstrates the consequences that seemingly simple
design decisions have on the distribution of responsibilities among
collaborators. In the chapter on control style, the authors present
one solution to a problem and then work through several alterna-
tives, discussing each of their relative merits. Another chapter is
devoted to designing reliable collaborations and establishing
“trusted” collaboration regions. This book takes design seriously!

There isn’t just one way to think about and describe a design. Infor-
mal techniques and tools can complement more formal ones. In this
new, agile world, we need to use a variety of tools and techniques to
communicate design ideas. Whether you are new to object technol-
ogy or an experienced developer, this book is a rich source of practi-
cal advice.

Ivar Jacobson
Rational Software Corporation
August 2002

Wirfs.book Page xvi Friday, October 11, 2002 11:44 AM

xvii

Foreword
by John Vlissides

hat makes for effective pedagogy? Well, first you avoid words
like “pedagogy.” Next, you learn all about your subject because

a robust mental model is a prerequisite to enlightening others. Then
you need a stockpile of examples that illustrate the model—varied
examples that hit it from different angles. Finally, you must present
the material smoothly and progressively like the graceful blooming
of a rose under time-lapse photography.

If that’s the gist of good teaching, then this book is its embodiment.
Rebecca and Alan are master expositors, and they have done a mas-
terful job conveying Responsibility-Driven Design, their model of
object-oriented expertise. Conceived in the late 1980s, Responsibil-
ity-Driven Design has developed into a principled yet pragmatic
approach with a big following. It was perhaps the first methodology
to capitalize on the fundamental advance of objects—moving away
from a mathematical, algorithmic view of programming to one of
autonomous objects, each with its own responsibilities, collaborating
in time and space much as people do. Object languages had captured
the mechanisms that made an advance possible; Responsibility-
Driven Design captures the thinking and practices that make objects
live up to their promise.

This book explains the concept and practice of Responsibility-Driven
Design in the context of modern software technology, rich with
examples in contemporary object language, informed by the growing

W

Wirfs.book Page xvii Friday, October 11, 2002 11:44 AM

Foreword

xviii

body of software patterns, and couched in notational (read “UML”)
standards. Unlike many works with comparable goals, there’s noth-
ing daunting about this book. The authors ease you into the material
and keep you engaged with a steady revelation of wisdom. From
beginning to end, this book teaches effectively.

But this isn’t just a book for beginners. It’s filled with practical tech-
niques and advice for all practitioners, experts included. The more
expertise you have, the harder it is to know what you don’t know,
and the more susceptible you become to over design and the
dreaded second-system syndrome. The authors’ treatments of flexi-
bility and the nature of software design is especially insightful,
revealing the relationship of variability to problem focus, strategies
for solving “wicked” problems, and the synergies between agile and
Responsibility-Driven Design. No matter what your technical persua-
sion, regardless of the school of design you practice, the wisdom
here will enlighten you.

You’re holding the definitive work on Responsibility-Driven Design of
object software. More importantly you’re embarking on what may be
the most efficient path to designing better software.

John Vlissides
IBM T.J. Watson Research

Wirfs.book Page xviii Friday, October 11, 2002 11:44 AM

xix

Preface

his book is about designing object software. Like many human
endeavors, design is part art, part engineering, and part guess-

work and experimentation. Discipline, hard work, inspiration, and
sound technique all play their parts. Although software design is a
highly creative activity, the fundamentals can be easily learned.
Strategies and techniques exist for developing a design solution, and
this book is packed with practical design techniques that help you
get the job done. We hope you will become adept at thinking in
objects and excited about devising solutions that exploit object
technology.

You can consider design choices only in light of what you know to be
relevant and important. To achieve good results, you need to learn
how to discriminate important choices from mundane ones and how
to acquire a good set of techniques that you intelligently practice.
The informal tools and techniques in this book that don’t require
much more than a white board, a stack of index cards, a big sheet of
paper, and chairs around a table. Oh yeah, be sure to bring your
brain, too!

But more important than a grab bag of techniques are the fundamen-
tal ways you view a design. Although the techniques we present in this
book are independent of any particular implementation technology or

T

Wirfs.book Page xix Friday, October 11, 2002 11:44 AM

Preface

xx

modeling language or design method, our approach to object design
requires a specific perspective:

This approach, called Responsibility-Driven Design, gives you the
basis for reasoning about objects.

Most novice designers are searching for the right set of techniques
to rigidly follow in order to produce the correct design. In practice,
things are never that straightforward. For any given problem there
are many reasonable solutions, and a few very good solutions. Peo-
ple don’t produce identical designs even if they follow similar prac-
tices or apply identical design heuristics. For each problem you
approach, you make a different set of tactical decisions. The effects
of each small decision accumulate. Your current design as well as
your current lines of reasoning shape and limit subsequent possibili-
ties. Given the potential impact of seemingly inconsequential deci-
sions, designers need to thoughtfully exercise good judgment.

Your primary tool as a designer is your power of abstraction—form-
ing objects that represent the essence of a working application. In a
design, objects play specific roles and occupy well-known positions
in an application’s architecture. Each object is accountable for a spe-
cific portion of the work. Each has specific responsibilities. Objects
collaborate in clearly defined ways, contracting with each other to
fulfill the larger goals of the application.

Design is both a collaborative and a solo effort. To work effectively
you need not only a rich vocabulary for describing your design but
also strategies for finding objects, recipes for developing a collabora-
tive model, and a framework for discussing design trade-offs. You
will find these tools in this book. We also explore how design pat-
terns can be used to solve a particular design problem and demon-
strate their effects on a design. We present you with strategies for
increasing your software’s reliability and flexibility. We discuss differ-
ent types of design problems and effective ways to approach them.
This book presents many tools and techniques for reasoning about a
design’s qualities and effectively communicating design ideas.
Whether you’re a student or a seasoned programmer, a senior devel-
oper or a newcomer to objects, you can take away many practical
things from this book.

Objects are not just simple bundles of logic and data. They are
responsible members of an object community.

Wirfs.book Page xx Friday, October 11, 2002 11:44 AM

Preface

xxi

HOW TO READ THIS BOOK

This book is organized into two major parts. The first six chapters—
Chapter 1, Design Concepts, Chapter 2, Responsibility-Driven
Design, Chapter 3, Finding Objects, Chapter 4, Responsibilities,
Chapter 5, Collaborations, and Chapter 6, Control Style—form the
core of Responsibility-Driven Design principles and techniques. You
should get a good grounding by reading these chapters.

Chapter 1, Design Concepts, introduces fundamental views of object
technology and explains how each element contributes to a coher-
ent way of designing an application. Even if you are a veteran
designer, a quick read will set the stage for thinking about object
design in terms of objects’ roles and responsibilities. Chapter 2,
Responsibility-Driven Design, provides a brief tour of Responsibility-
Driven Design in practice. Chapter 3, Finding Objects, presents strat-
egies for selecting and, equally important, rejecting candidate
objects in an emerging design model. Chapter 4, Responsibilities pre-
sents many techniques for defining responsibilities and intelligently
allocating them to objects. Chapter 5, Collaborations, gives many
practical tips and examples of how to develop a collaboration model.
Chapter 6, Control Style, describes strategies for developing your
application’s control centers and options for allocating decision-
making and control responsibilities.

Chapters 7–10 explore challenges you may encounter as you develop
your design. Each chapter covers a specific topic that builds on the
design concepts and techniques presented in the first part of the
book. Chapter 7, Describing Collaborations, explores options for doc-
umenting and describing your design. Chapter 8, Reliable Collabora-
tions, presents strategies for handling exceptions, recovering from
errors, and collaborating within and across a “trusted region.” Chap-
ter 9, Flexibility, discusses how to characterize software variations
and design to support them. Chapter 10, On Design, discusses how to
sort design problems into one of three buckets—the core, the reveal-
ing, and the rest—and treat each accordingly.

Wirfs.book Page xxi Friday, October 11, 2002 11:44 AM

Preface

xxii

ACKNOWLEDGMENTS

A lot of people have helped us in this endeavor, and we wish to
acknowledge and thank them.

First, we would like to thank our design clients and students, who over
the years have kept us on our toes, have offered much support and
enthusiasm for our ideas, and have kept our focus on the practical.

We’d also like to thank our colleagues and friends with whom, over
the years, we’ve had many thoughtful design discussions. While at
Instantiations, and later at Digitalk, we found good design practices
and techniques a frequent and energizing part of daily discussions.
Our fellow consultants and trainers kept us honest: If a design tech-
nique or concept didn’t work for a real client with a real problem, it
was ditched. As a consequence, what’s in this book has been proven
in the trenches. And thanks to the engineers at Instantiations, who
while they built amazing object-oriented applications and tools to
support Smalltalk development, offered pearls of wisdom whenever
we were able to divert their attention from their keyboards long
enough to discuss their current design challenge.

We’d also like to acknowledge our editor, Paul Becker, the publica-
tion staff at Addison-Wesley, and our reviewers. Paul, you offered
constant, unwavering support. Thanks.

Rebecca’s Acknowledgments

I would like to acknowledge several people who have been a spark of
inspiration or a source of strength. First, I’d like to acknowledge my
coauthor, Alan McKean. You truly are a student of design. You like to
think and talk and reflect. You are excited about exploring ideas and
turning them into things of value you can teach your students.
Thanks for being my constant collaborator, coauthor, and friend. I’d
also like to acknowledge Dave Squire, who (long ago as my manager
at Tektronix) gave me this challenge: “Either write a book on design,
lead the color Smalltalk project, or manage the engineering team.
You’ve got to pick one and just do it.” Ignoring Dave’s advice, I man-
aged to do all three. And I’ve been juggling the roles of designer,
author, and manager ever since. Thanks, Dave, for believing I had
something to write about that others would want to read. Sharon Hol-
stein encouraged me more than she knows when she commented on
my first solo efforts at writing in the Smalltalk Report. She told me
that she liked reading what I wrote because it was just like having a
conversation with me. John Schwartz is another colleague who

Wirfs.book Page xxii Friday, October 11, 2002 11:44 AM

Preface

xxiii

sharpened our ideas. John read and ripped on each and every chap-
ter of this book. I learned to not only accept but also relish his advice,
and our book is better because of it. Finally, I’d like to acknowledge
the constant support and occasional words of wisdom from my best
friend and the best designer I know on this planet: my husband, Allen
Wirfs-Brock. Allen, you know how to chip in ideas at just the right
time and give me that gentle prod or word of encouragement.

Alan’s Acknowledgments

My ideas about design are very broad. The Universal Traveler, by Don
Koberg and Jim Bagnell, a design book from the 1970s, puts it well:

I would like to acknowledge many of the people who moved me along
that path of fulfillment.

R. Buckminster Fuller, architect, industrial designer, philosopher,
mathematician, poet, and humanitarian, for demonstrating how to
live a life in which genius involved both heart and mind. He helped
me know that I could make the world a better place.

Murshida Vera Corda, Sufi teacher, for showing me that laughter is
the ultimate language. She opened my doors of perception.

Richard Britz, architect, teacher, builder, and friend, for inspiring me
with his devotion to good work. Surely a member of my karass.

Sarah Douglas and Art Farley, professors at the University of Oregon,
for starting me along the Smalltalk path.

Rebecca Wirfs-Brock, business partner and friend, for hiring me at
Instantiations. Our work together has been more collaborative and
stimulating than I had even hoped.

Walter and Marjorie McKean, my parents, who gave me their all.
Their devotion to each other is an inspiration to everyone who
knows them.

My wife, Brenda Herold, and my son, Jesse Vasilinda, my life’s com-
panions. Most of all, for showing me that love is a verb.

“Design is the process of making your dreams come true.”

Wirfs.book Page xxiii Friday, October 11, 2002 11:44 AM

Wirfs.book Page xxiv Friday, October 11, 2002 11:44 AM

Chapter 1
Design

Concepts

lan Kay’s favorite metaphor for software objects is a bio-
logical system. Like cells, software objects don’t know

what goes on inside one another, but they communicate and
work together to perform complex tasks. In contrast, mono-
lithic software is like a mechanical clock containing innumera-
ble gears. Each gear functions unintelligently and only in
relation to other adjacent gears. That design is hopelessly
flawed. “When you’re building gear clocks, eventually you reach
a certain level of complexity and it falls in on itself,” says Kay.

A software object may be machinelike, but, crafted by a
thoughtful designer, it can be very smart. It makes decisions; it
does things and knows things. It collaborates with potentially
many other objects. Living in an enclosing machine, it is a
whole on one level and a part on another. As with a machine,
or a cell, the behaviors of an object are strictly limited to
those that are designed into it. Cells and objects follow pro-
grammed instructions. But the dynamic behavior of a software
system emerges from the interactions of many objects—each
contributing, each playing a responsible role.

A

Wirfs.book Page 1 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

2

OBJECT MACHINERY

All but the simplest of devices, both hardware and software, are
designed from parts. These parts interact according to someone’s
plan. In a physical machine, these parts touch one another or com-
municate through a shared medium. Their interactions may give way
to force, transfer motion, or conduct heat.

Software machinery is similar to physical machinery. A software appli-
cation is constructed from parts. These parts—software objects—
interact by sending messages to request information or action from
others. Throughout its lifetime, each object remains responsible for
responding to a fixed set of requests. To fulfill these requests,
objects encapsulate scripted responses and the information that
they base them on (see Figure 1-1). If an object is designed to remem-
ber certain facts, it can use them to respond differently to future
requests.

So how do we invent these software machines?

Building an object-oriented application means inventing appropriate
machinery. We represent real-world information, processes, interac-
tions, relationships, even errors, by inventing objects that don’t exist
in the real world. We give life and intelligence to inanimate things. We
take difficult-to-comprehend real-world objects and split them into

Like all good questions,
“What is an object?” raises
a number of others. How do
objects help us think about
a problem? How are object
applications different? Once
we have found an object
solution, can we use it again
for other purposes?

Figure 1-1
An object encapsulates scripts and information.

At the heart of object-oriented
software development there
is a violation of real-world
physics. We have a license to
reinvent the world, because
modeling the real world in our
machinery is not our goal.

Wirfs.book Page 2 Friday, October 11, 2002 11:44 AM

Roles

3

simpler, more manageable software ones. We invent new objects.
Each has a specific role to play in the application. Our measure of
success lies in how clearly we invent a software reality that satisfies
our application’s requirements—and not in how closely it resembles
the real world.

For example, filling out and filing a form seems simple. But to per-
form that task in software, behind the simple forms, the application
is validating the data against business rules, reading and refreshing
the persistent data, guaranteeing the consistency of the information,
and managing simultaneous access by dozens of users. Software
objects display information, coordinate activities, compute, or con-
nect to services. The bulk of this machine is our invention! We follow
a real-world metaphor—forms and files—but our object model
includes a much richer set of concepts that are realized as objects.

Because they have machinelike behaviors and because they can be
plugged together to work in concert, objects can be used to build
very complex machines. To manage this complexity, we divvy the
system’s behaviors into objects that play well-defined roles. If we
keep our focus on the behavior, we can design the application using
several complementary perspectives:

ROLES

No object exists in isolation. It is always part of a bigger machine. To
fit in, an object has a specific purpose—a role it plays within a given
context. Objects that play the same role can be interchanged. For
example, there are several providers that can deliver letters and
packages: DHL, FedEx, UPS, Post, Airborne. They all have the same
purpose, if not the same way of carrying out their business. You
choose from among them according to the requirements that you
have for delivery. Is it one-day, book rate, valuable, heavy, flamma-
ble? You pick among the mail carriers that meet your requirements.

An application= a set of interacting objects

An object= an implementation of one or more roles

A role= a set of related responsibilities

A responsibility= an obligation to perform a task or know information

A collaboration= an interaction of objects or roles (or both)

A contract= an agreement outlining the terms of a collaboration

“We take a handful of sand
from the endless landscape of
awareness around us and call
that handful of sand the
world. Once we have the
handful of sand, the world of
which we are conscious, a
process of discrimination
goes to work on it. This is the
knife. We divide the sand into
parts. This and that. Here and
there. Black and white. Now
and then. The discrimination
is the division of the
conscious universe into
parts.”

—Robert Pirsig

Wirfs.book Page 3 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

4

It is useful to think about an object, asking, “What role does it play?”
This helps us concentrate on what it should be and what it should
do. We have been speaking of objects and roles loosely. What is the
real difference? When a role is always played by the same kind of
object, the two are equivalent. But if more than one kind of object
can fulfill the same responsibilities within the community, a role
becomes a set of responsibilities that can be fulfilled in different
ways. A role is a slot in the software machinery to be filled with an
appropriate object as the program runs.

OBJECT ROLE STEREOTYPES

A well-defined object supports a clearly defined role. We use pur-
poseful oversimplifications, or role stereotypes, to help focus an
object’s responsibilities. Stereotypes are characterizations of the
roles needed by an application. Because our goal is to build consis-
tent and easy-to-use objects, it is advantageous to stereotype
objects, ignoring specifics of their behaviors and thinking about
them at a higher level. By oversimplifying and characterizing it, we
can ponder the nature of an object’s role more easily. We find these
stereotypes to be useful:

� Information holder—knows and provides information

� Structurer—maintains relationships between objects and infor-
mation about those relationships

� Service provider—performs work and, in general, offers com-
puting services

� Coordinator—reacts to events by delegating tasks to others

� Controller—makes decisions and closely directs others’ actions

� Interfacer—transforms information and requests between dis-
tinct parts of our system

Once we assign and characterize an object’s role, its attendant
responsibilities will follow. An object may fit into more than one
stereotype.

But is it playing one or two roles? Often we find that a service
provider holds information that it needs to provide its service. In
doing so, it assumes two stereotypes—information holder and ser-
vice provider—but only one role because the responsibilities are all

A role is a set of responsibilities that can be used interchangeably.

Just as an actor tries to play a
believable part in a play, an
object takes on a character in
an application by assuming
responsibilities that define a
meaningful role.

Software machinery is made
of computation of information,
maintenance of relationships,
control of external programs
and devices, formatting of
information for display,
responding to external events
and inputs, error handling,
and decision making.

Wirfs.book Page 4 Friday, October 11, 2002 11:44 AM

Roles, Responsibilities, and Collaborations

5

wrapped up together for the same customers to use. If its informa-
tion is being used solely to support its service, it assumes two ste-
reotypes but only one role. But if it is perceived as serving two
different types of clients for different purposes, it is likely playing
two roles.

Some objects are hard to stereotype because they seem to fit into
more than one category. They’re fuzzy. How can you choose? You
must decide what you want to emphasize. A transmission is a ser-
vice provider if you emphasize the multiplication of power by the
gears. It is an interfacer if you emphasize its connections to the
engine and wheels. Can objects have more than one stereotype? If
you want to emphasize more than one aspect, that’s OK. There are
blends of stereotypes, just as there are blends of emphasis.

ROLES, RESPONSIBILITIES, AND COLLABORATIONS

An application implements a system of responsibilities. Responsibili-
ties are assigned to roles. Roles collaborate to carry out their
responsibilities. A good application is structured to effectively fulfill
these responsibilities. We start design by inventing objects, assign-
ing responsibilities to them for knowing information and doing the
application’s work. Collectively, these objects work together to fulfill
the larger responsibilities of the application.

One object calls on, or collaborates with, another because it needs
something. Both parties are involved. One needs help; the other pro-
vides a service. Objects work in concert to fulfill larger responsibili-
ties. Designing collaborations forces us to consider objects as
cooperating partners and not as isolated individuals. Design is an
iterative and incremental process of envisioning objects and their
responsibilities and inventing flexible collaborations within small
neighborhoods.

The services that an object holds and the information that an object
provides define how it behaves when it exists alongside other
objects. In early design, it is enough to know that particular respon-
sibilities are clustered into objects. First and foremost, an object is
responsible for providing and doing for others. A design model
arranges responsibilities among objects. We will explore this issue in
greater detail later, but, for now, consider this:

An object embodies a set of roles with a designated set of responsi-
bilities.

Objects and their
responsibilities provide the
common core for our new
development process,
techniques, and tools.

Clearly defined objects that
stick to the point when
implementing their roles are
easier to understand and
maintain.

Wirfs.book Page 5 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

6

As shown in Figure 1-2, an application is a community of objects
working together. They collaborate by sending requests and receiv-
ing replies. Every object is held responsible. Each contributes its
knowledge and services.

An object can be more intelligent if it does something with what it
knows. The smarter it gets, the fewer details a client must know to
use its services. So the client is liberated to do its work rather than
take on the details of figuring out something that it could have been
told. Blending stereotypes makes the responsibilities of clients using
these hybrids easier, streamlined, and to the point. Such clients can
focus on their problem, not on putting little details together that
their helpers could have done. Making objects smarter has a net
effect of raising the IQ of the whole neighborhood.

Figure 1-2
Objects collaborate to solve larger problems than they can handle alone.

Making objects smarter also
makes the system more
efficient. Objects can stick
to their specific tasks, rather
than worrying about details
that are peripheral to their
main purpose.

Wirfs.book Page 6 Friday, October 11, 2002 11:44 AM

Object Contracts

7

When objects do collaborate, they are designed to follow certain
protocols and observe specific conventions: Make requests only for
advertised services. Provide appropriate information. Use services
under certain conditions. Finally, accept the consequences of using
them. Object contracts should describe all these terms.

However, some of the value of a given object is determined by its
neighbors. As we conceive our design, we must constantly consider
each object’s value to its immediate neighborhood. Does it provide a
useful service? Is it easy to talk to? Is it a pest because it is con-
stantly asking for help? Are its effects the desired ones? The fewer
demands an object makes, the easier it is to use. The more it can
take on, the more useful it is. If an object can accommodate many dif-
ferent kinds of objects that might be provided as helpers, it makes
fewer demands about the exact kinds of objects it needs around it to
perform its responsibilities. Although we don’t want an object’s
clients to have to know all these details, we designers must consider
this as we balance what each object offers to its clients with the
requirements and demands that it places on its neighbors.

Roles! Responsibilities! Collaborations! We use the roles-responsibili-
ties-collaborations model in each of our activities to keep our focus
on the behaviors of our software machinery. As our understanding of
the problem grows, the roles and responsibilities of our objects
evolve. We design and redesign the community’s neighborhoods and
the ways they interact. We reinvent the object roles and shift respon-
sibilities among them until they “fit,” work together, satisfy external
constraints, and their responsibilities clearly support their purposes.
We pin down more of the details until we reach the point where we
can eventually bind the responsibilities to executable code.

OBJECT CONTRACTS

In well-bounded situations, it is possible to know a good deal about
whom an object interacts with, the circumstances under which it is
used, and what long-term effects an object has on its environment.
These are spelled out in object contracts. They deepen our knowl-
edge of an object’s responsibilities and build our confidence in our
design. Without saying how these things are accomplished, they
show the conditions under which these responsibilities are called
upon (conditions-of-use guarantees), and what marks they leave
when they are finished (aftereffect guarantees).

An object contract describes
the conditions under which it
guarantees its work and the
effects it leaves behind when
its work is complete.

Wirfs.book Page 7 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

8

Conditions-of-Use and Aftereffect Guarantees

Knowing who collaborates with whom says nothing about when col-
laborations can succeed. “What do they expect from me? Under
what conditions do I guarantee my services? My methods may only
be called in this order!” For the designer to be confident that the
object will perform the request, the requirements it places on its
context must be described in its conditions-of-use. For each respon-
sibility, any objects or internal values (or both) that affect its behav-
ior should be noted, and any controls on them should be described.

This fine print of a contract specifies the conditions-of-use for each
service and specifies the aftereffects of using each of the object’s ser-
vices. When an object is used outside its specified conditions-of-use,
it is not obligated to fulfill the request! If an Account object has
responsibilities for withdrawing cash, what are the conditions-of-
use? One is that the balance be greater than or equal to the amount
being withdrawn! Or it may be more complex than that, depending
on the bank’s policies regarding individual customers. The extra
effort in describing these conditions-of-use pays off in increased reli-
ability and robustness.

Remember, an object’s contracts with others describe how it inter-
acts with them, the conditions under which it guarantees its work,
and the effects it has on other members of the community. For our
purposes in design, it is sufficient to know that particular services
are clustered in interfaces and that these services will call on each
other and succeed given the correct conditions.

DOMAIN OBJECTS

Domain objects provide a common ground in which developers and
users can meet and discuss the application. Domain objects repre-
sent concepts that are familiar to users and experts in a specific field
of interest. We reason about a banking application using accounts,
deposits, withdrawals, interest rates, and the like. In an airline book-
ing application, we speak of reservations, airplanes, seats, destina-
tions, schedules, and so on, as concepts that we will find in our
software object model. Later, we develop the underlying structures
and code and run scenarios for using the software. Given that users
and experts are familiar with these domain concepts, they can dis-
cuss these aspects of the application easily. They feel comfortable
manipulating these domain objects’ information directly, and they
understand the procedures for requesting their services.

Contracts are really
meaningful only in the
programmer’s mind. Objects
don’t look for advertisements
and read contracts; a
programmer does, and writes
code with those contracts
in mind.

Wirfs.book Page 8 Friday, October 11, 2002 11:44 AM

Domain Objects

9

For the developers, these domain objects are only the starting point
for constructing a model of the domain and for developing the inter-
nal representations of these and additional concepts that will exist in
the software machinery. Although the original, “common” concepts
might not prove valuable in the executable system, they should be
traceable through the design because they clearly express the stake-
holders’ understanding and issues surrounding the application.

In an object-oriented application, the domain is made of information
and services that the user needs, along with structures that relate
the two (see Figure 1-3). For example, an inventory control system
consists of monitoring the stock on hand (information), adding and
removing the stock (services), and supporting policies for maintain-
ing related stock (relations). These three aspects (information, ser-
vices, and structures) apply to virtually all data-centric applications,
and we use them to guide our development of objects that fulfill
these roles.

The objects in a domain model embody the application’s logic in
their interactions. The domain model captures, at the most abstract
level, the semantics of the application and its responses to the envi-
ronment. It doesn’t represent all concepts of a domain but only
those that are necessary to support the application’s intended

Although not every software
design effort starts by
creating a domain model,
most designs consist of
certain objects that represent
concepts familiar to experts in
a particular domain supported
by the application.

Figure 1-3
A domain model does not represent the entire domain as it is in the real world.
It includes only the concepts that are needed to support the application.

Wirfs.book Page 9 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

10

scenarios of usage. The individual objects in the domain model hold
the real, concrete responsibilities for responding to the user actions
and for creating the new information that the user requires. If we are
only describing a car and aren’t building a model to execute on a
computer, it’s enough to construct a domain model that includes,
among other things, a frame, an engine, a transmission, a steering
wheel, a steering box, a steering column, wheels, and brakes. But
when we must run it on a computer and design user interactions, we
find that the domain of real-world race cars lacks many important
behaviors. We need a richer set of objects and a richer domain—that
of a simulated race car in a computer game. It is important to choose
the right domain for your design problem and to recognize that
objects designed to work in one domain won’t easily slip into
another, seemingly similar domain.

For example, in a race car simulation, the cockpit, racetrack, and
competing cars must appear on the screen as visual images. What
object from the domain of the real-world race car will do this?
There isn’t one! So for this specialized purpose, we must invent an
object that presents the program images and captures user input:
an interfacer.

APPLICATION-SPECIFIC OBJECTS

Similarly, we need objects to translate the computer’s user inputs
(mouse clicks, joystick movements) to commands to appropriate
objects in the racing application. These objects transform or filter
user information and then call other appropriate objects to action.
Or they may sequence movement from one screen to another,
switching views of the race track and replaying the images and
sounds of exciting crashes. These computer and application-specific
objects—the interfacers, coordinators, and special service provid-
ers—supplement the domain model of the simulated race car with
program-specific behaviors and glue the application together.

As we shift our view from the model of the domain to objects that are
important to the actual workings of the software, we encounter
many such application objects. For example, when a typical applica-
tion is launched, there is at least one special startup object that cre-
ates the first population of objects. When this group is initialized and
ready, the startup object passes control to them. The application is
off and running. As the user navigates through the application, this
initial group of objects responds to user actions, either by directly
fulfilling the requirements of the application or by creating and dele-

Object-oriented software is a
community of objects. In this
community, each citizen
provides information and
computing services to a
select group of its neighbors.
The design of well-formed
patterns of collaboration lies
at the heart of any object
design.

Wirfs.book Page 10 Friday, October 11, 2002 11:44 AM

Application-Specific Objects

11

gating work to a new batch of objects that have been designed for
specific purposes. As execution continues, new citizens of this
object community are born, live, and die, according to the needs
(and design) of the application.

Designers construct an executable application that is “true” (by
some argument) to other stakeholders’ views, even as it adds many
new application-specific objects: objects that monitor inputs and
user events; application-specific data formatters, converters, and fil-
ters that act out their roles behind the scenes; and other objects that
reach out to the external world of databases, devices, networks, and
other computer programs (see Figure 1-4). Developers naturally
need a more detailed view.

The user’s and the designer’s views represent two different levels of
thinking about applications and objects. The user view holds a repre-
sentation of the highest-level concepts—the information, services,
and rules of the domain under consideration. The designer invents
aspects of coordination and connectivity to other systems and
devices, reasoning about the application in a fundamentally differ-
ent, lower level: the level of computer processes, computations,
translation, conditional execution, delegation, and inputs and

Figure 1-4
An application model supplements the domain model with computer-specific
objects for responding to the user, controlling execution, and connecting to out-
side resources.

The user interface,
application specifics, domain
concepts, and even persistent
stores can be viewed logically
or concretely. Users and
domain experts typically are
concerned only with a more
abstract, or logical, view.
Developers are interested in
all views of the system and
they must move among
implementation details,
design, and more abstract
concepts if they want to
communicate effectively.

Wirfs.book Page 11 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

12

outputs. The key to developing a successful application lies in our
ability as designers to wed these two views without compromising
either.

INTERFACES

Eventually, an object expresses its responsibilities for knowing and
doing for others in methods containing code. An interface describes
the vocabulary used in the dialog between an object and its custom-
ers: “Shine my shoes. Give me my shoes. That’ll be five bucks,
please. Here’s your receipt.” The interface advertises the services
and explains how to ask for them.

It is often important to know more than just what an interface
declares. To use an object’s services, the conditions under which a
service can be invoked may be important. Or an important side
effect may need to be revealed.

Consider a gear in a machine. The number of teeth and the spacing
between the teeth defines the gear’s interface. This determines
whether a gear will fit into a machine. But what if we replace one
gear with another, built from a different alloy than the other gears?
This new gear fits the interface, but as the gears turn, it may tend to
overheat or break because it has different stress load characteris-
tics. Its interface says nothing about this real-world limitation.

The more we publish about the behavior of an object, the more likely
it is that it will be used as its designer intended. From a client’s view-
point, an object is more than its interface:

So what about information hiding? We’re not talking about exposing
everything about an object, but only the services and terms that are
of concern to the client. We purposely hide the workings of our
object’s machinery. An object is a semiautonomous member of the
community, stating, “It’s none of your business how I do my job, as
long as I do it according to our agreement! I don’t want customers
peeking inside to see how I conduct my business.” It is the imple-
mentation of the object, not what to expect from it, that should be
hidden.

An object implements interfaces and affects other objects.

We separate an object’s
design into three parts: its
public interface, the terms
and conditions of use, and the
private details of how it
conducts its business.

Only the designers of an
object’s inner machinery
should care about how an
object implements its
responsibilities.

Wirfs.book Page 12 Friday, October 11, 2002 11:44 AM

Classes

13

CLASSES

The term class is used, in mathematics and in everyday life, to
describe a set of like things. It describes all of these elements in a
general way but allows each instance of the class to vary in non-
essential features. Whereas the class is abstract and conceptual, the
instances are concrete, physical objects. The visual image that
appears to us at the mere mention of a tree contains the essential
features that enable us to recognize any of the instances of tree when
we see one. We easily distinguish between a car and a truck when
one vehicle adheres to one description or the other, sport utility
vehicles aside.

This everyday notion of a class also applies to software objects. We
build our applications from sets of like objects. But a software class
has some features that are specific to the software world. An object-
oriented programming language allows a programmer to describe
objects using classes and to define their behaviors using methods.
There are additional requirements of an object-oriented program-
ming language, but these two are key. They provide us with all that
we need to build an application from objects.

Unlike a mathematical class, a software class is not simply an
abstraction. Like the instances that it describes, it is concrete. To
see it, you don’t have to conjure it from nothing because it is
described on index cards, diagrammed with a design notation, and
written in programming code. You can pick it up, turn it over, read its
description. It is an object. The features that we give the class are
the features that we desire in its instances. Every responsibility for
“knowing,” “doing,” or “deciding” that we assign to its instances
becomes concrete in the class definition and the instance methods
that the class contains.

Two Roles

If a software class provides two distinct sets of services, usually to
two different sorts of clients, the class is said to play two roles. First,
it plays a role that has no real-world analog. During program execu-
tion, a class acts as a factory for manufacturing, or instantiating, the
instances required by the program (see Figure 1-5). It populates the
computer memory with physical, electromagnetic objects, and it
binds these memory areas to sets of instructions that they are
responsible for. Our design objects—the abstract machines, roles,
and clusters of responsibility that we invent to satisfy our design
requirements—become classes in program code.

Classes play two roles. First,
they act as factories,
instantiating instances and
implementing responsibilities
on their behalf. Second, they
act as an independent
provider, serving clients in
their neighborhood.

Wirfs.book Page 13 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

14

A class holds the blueprints for building instances. By defining a set
of instance methods, it declares the names of the behaviors that
other client objects can use. When an instance responds to a request
from a client, it performs the corresponding method scripted in its
class. The details of how the instances perform a task are pinned
down in the instance’s class definition and in its collection of
instance method definitions. By browsing the instance’s class and
its instance methods, you can see whether the instance performs its
responsibilities alone or delegates portions of its task to other
objects in its neighborhood.

Classes are the building blocks of our application. Just as we
describe a single object through the attributes and operations
defined in its class, we describe the relations among instances via
corresponding relations among classes. For example, the millions of
owner relations between people and cars can be abstracted into a
single owner relation between the classes of the two.

In addition to its role as an object factory, the class can act as an
object itself, with its own set of responsibilities. In this role, it pro-
vides information and services to other objects through its own
interface. Often, its only clients are the instances that it has pro-
duced, but in other cases, it acts as the sole provider of data and

Figure 1-5
A class, when acting as a factory, manufactures (instantiates) objects that the
application needs.

Classes hold the “shape” of
the objects that they make.

Relations among classes
describe the myriad potential
relations among run-time
instances.

Wirfs.book Page 14 Friday, October 11, 2002 11:44 AM

Classes

15

services to a number of different kinds of objects. In fact, as shown
in Figure 1-6, when a single object of its kind is sufficient, a class can
be designed to shed its instance factory role and assume the role of
the object that is needed.

Given the same conditions, all instances of a given class behave in
the same way. They form a set of like objects. Each has a structure
identical to the others, along with a set of methods that it shares
with the others of its kind. Because each instance is a separate
object with its own internal data areas, it can hold private data that
it shares with no other. When asked to perform one of its responsibil-
ities, it can base its response on this private data. A smart object
encapsulates data that affects its decisions about how it fulfills its
responsibilities.

Each instance performs its tasks in two contexts. It behaves accord-
ing to rules established by the community in which it lives, and it
controls its actions according to its own private rules and data. The
rules are usually embedded in the methods as conditional state-
ments in a programming language. An object’s state is reflected by
data held in instance variables. These variables define the internal
structure of an object and are one way an object sees others in its

Figure 1-6
A class can also act as an object when the application needs only one of
its kind.

Despite a shared definition,
instances will often behave
differently because their
behavior can depend on the
values of their private data or
different helpers in their
neighborhood.

“The object has three
properties, which makes it a
simple, yet powerful model
building block. It has state so
it can model memory. It has
behavior, so that it can model
dynamic processes. And it is
encapsulated, so that it can
hide complexity.”

—Trygve Reenskaug

Wirfs.book Page 15 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

16

neighborhood; an object can hold references to others. These refer-
ences allow an object to “see,” and subsequently interact, with oth-
ers. These references say nothing about how they interact—only
that the potential exists for collaboration.

COMPOSITION

There are only two types of relationships in an object model: compo-
sition and inheritance. Both have analogs in a family tree. A composi-
tion relation is like a marriage between objects. It is dynamic, it
happens during the participating objects’ lifetimes, and it can
change. Objects can discard partners and get new partners to collab-
orate with. Inheritance relations are more like births into the family.
Once it happens, it is forever. Just as both marriage and ancestry
appear in the same family tree, composition and inheritance coexist
in a single object model.

We can extend an object’s capabilities by composing it from others.
When it lacks the features that it needs to fulfill one of its responsibil-
ities, we simply delegate the responsibility for the required informa-
tion or action to one of the objects that the object holds onto. This is
a very flexible scenario for extension. As the program continues exe-
cution, it plugs components together, dynamically, according to the
conditions of the application.

For objects to communicate, they must know about each other for
the duration of their collaborations. Composition is one way to
create those paths of communication. Passing a helper object along
with a request, or creating a new instance, are two other ways that
an object gains visibility of potential collaborations.

INHERITANCE

Inheritance is another way to extend an object’s capabilities. But
whereas composition is dynamic, inheritance isn’t. It’s static. The
merging of the superclass responsibilities and the extension of its
subclasses are done at compile time and not run time. Objects are
not plugged together; instead, the descriptions used to compile
them (the classes) are.

Every inheritance relationship between two classes involves two
roles: the superclass role and the subclass role. Each acts out its role
during development. With few exceptions, a subclass assumes all of
the responsibilities outlined in the superclass and adds new respon-
sibilities of its own. The subclass inherits all of the features encoded

A family tree describes the
structural relations of a group
of people. Someone is added
to the tree in one of two ways:
by marriage or by birth.

An instance uses another’s
responsibilities through
collaboration. An instance
assumes another’s
responsibilities through
inheritance.

Wirfs.book Page 16 Friday, October 11, 2002 11:44 AM

Object Organizations

17

in the superclass and has the responsibility for instantiating objects
having those features. The subclass extends the superclass. In this
arrangement, the superclass contains features that are common to
all of its subclasses, and each subclass not only creates its own
instances but also adds features to them that are not described in
the superclass. A subclass extends the superclass by adding
attributes and operations. An instance’s responsibilities are the
union of all of the responsibilities in its own class and all of the
responsibilities of the superclasses that it inherits from.

Classes sometimes relinquish their responsibility for producing
instances to their subclasses. These abstract classes define many of
the features of instances, but they require subclasses to fill in some
details and to do the actual manufacturing.

OBJECT ORGANIZATIONS

As you begin to decompose your application into logical pieces, you
may identify objects or roles and define classes that implement spe-
cific roles. You may also find design elements that have a certain log-
ical integrity but, on further inspection, can themselves be
decomposed into smaller pieces. A common term for a logical group-
ing of collaborators is subsystem. Another term we use is object
neighborhood. Within these organizations, objects dynamically form
alliances and work together in a loosely knit community. By contract-
ing with each other, such a confederation of objects serves a larger
purpose than is possible for any individual.

Each object in a confederation promises to fulfill the responsibilities
outlined in its contracts. Thus, each object can depend on the others
for a reliable and predictable response to its requests. Confedera-
tions are composed of potentially many objects and often have a
complex collective behavior. The synergy of the cooperative efforts
among the members creates a new, higher-level conceptual entity.

Viewed from the outside, a confederation offers a unified front. Fig-
ure 1-7 shows an example. It isn’t just a “bunch of objects”; it forms a
good abstraction. Although individually each object has a specific
role and responsibilities, it is the collective behaviors of the objects
that define the confederation to the rest of the application. There is
no conceptual difference between the responsibilities of an object
and those of a subsystem of objects; it is simply a matter of scale and
the amount of richness and detail in your design. Often, other
objects interact with a confederation in limited ways. There may be a
single object—a gatekeeper—that stands as the public representa-
tive of the larger group.

It’s common to say that a
subclass “specializes” its
superclass because the
added responsibilities make
the subclass’s role less
general than that of the
superclass.

Inheritance relations
demonstrate the Peter
Principle. The higher in a
hierarchy a class resides, the
less capable of really doing
anything it becomes.

System architects may
partition an application into
subsystems early in design.
But subsystems can be
discovered later, as the
complexity of the system
unfolds.

Wirfs.book Page 17 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

18

COMPONENTS

There are other ways to package and organize pieces of a design.
Components typically are design elements that are intended to be
used in a number of different applications. But designers create com-
ponents for other reasons, too. You can update or replace a compo-
nent without reconfiguring the rest of the system. The insides of a
component are hidden; its services are made available through a
well-defined interface. Well-designed components, regardless of their
implementation, can be plugged in and used by any object-oriented
application. To be adapted for use, a component can provide inter-
faces that allow clients to plug in helper components or to set prop-
erties that control various aspects of its operation. You can design
components to be used independently or to be plugged together to
build larger components or systems.

PATTERNS

So far we’ve presented fundamental object design concepts. But
there is more to object design than applying these basic techniques.
The early adopters of object technology generated many successful
object applications and strategies for solving problems. Wouldn’t it

Figure 1-7
This confederation of objects forms a company devoted to specific tasks.

Although a single class may
not be a useful unit of reuse, a
component that packages a
number of services can be.
Components enable medium-
grained reuse.

Wirfs.book Page 18 Friday, October 11, 2002 11:44 AM

Patterns

19

be marvelous if we had those experts at our sides during our own
projects to roll their expertise into our own problem-solving efforts?
Well, this community of experts has developed a means to do just
that: Patterns.

There is nothing mysterious about patterns. They simply capture the
experience of expert practitioners by presenting solutions to com-
monly recurring problems in a readable and predictable format. But
what good is a solution if the problem is not well understood? What
are the trade-offs? When is the solution applicable? Because prob-
lems and their solutions have an equally important context, patterns
include descriptions of other aspects of the problem and its solution.

Erich Gamma and several of his colleagues wrote the Design Patterns
book (Addison-Wesley) in 1994. Their format for a pattern covers a
lot of territory. It includes:

� Pattern name and classification

� Intent

� Also known as

� Motivation

� Applicability

� Structure

� Participants

� Collaborations

� Consequences

� Implementation

� Sample code

� Known uses

� Related patterns

Most of the newer pattern books aren’t so inclusive. Some patterns
simply give a name to a problem and its solution. Other formats lie
somewhere between these two extremes. For our purposes, let’s boil
a pattern down to this list:

� Name: Communicates the pattern easily

� Problem: Describes a recurring problem

� Forces: Describes what considerations need to be balanced

Wirfs.book Page 19 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

20

� Context: Describes where the solution is appropriate

� Solution: Can be tailored to a specific problem

� Consequences: Let’s be real!

This is not to say that the other elements have no value. But this
intermediate level of detail lets you be productive without getting
bogged down in precision. However you break them down, patterns
offer clear benefits to developers:

� Vocabulary: In a team of any size, communications are a vital
element of a successful project. Patterns establish a concise
way of describing how a group of objects solve a problem,
either behaviorally, structurally, or both.

� Expertise: Patterns capture the expertise of years of develop-
ment. Because they are applicable to any domain, they can
model the behavior and structure of a group of interacting con-
cepts.

� Understanding: Documenting how the system uses patterns
enables new developers to quickly see the logical organization.

By condensing many structural and behavioral aspects of the design
into a few simple concepts, patterns make it easier for team mem-
bers to discuss the design. Let’s look at a common problem and see
how an appropriate pattern contributes to a good design.

Applying Double Dispatch to a Specific Problem

To implement the game “Rock, Paper, Scissors” we need to write
code that determines whether one object “beats” another. The game
has nine possible outcomes based on the three kinds of objects (see
Figure 1-8). The number of interactions is the cross product of the
kinds of objects.

A Solution

Case or switch statements are often governed by the type of data that
is being operated on. The object-oriented language equivalent is to
base its actions on the class of some other object. In Java, it looks
like this:

Wirfs.book Page 20 Friday, October 11, 2002 11:44 AM

Patterns

21

This is not a very good solution. First, the receiver needs to know
too much about the argument. Second, there is one of these nested
conditional statements in each of the three classes. If new kinds of
objects could be added to the game, each of the three classes would
have to be modified.

// In class Rock
public boolean beats(GameObject object) {
 if (object.getClass.getName().equals("Rock") {
 result = false;
 }
 else if (object.getClass.getName().equals("Paper") {
 result = false;
 }
 else if (object.getClass.getName().equals("Scissors") {
 result = true;
 }
 return result;
}

:GameCoordinator :Paper :Rock

beats(aPaper)

getClass().getName()

false [name = “Paper”]

paper object
is passed

as argument
receiver checks
argument type

Figure 1-8
This UML sequence diagram shows the process of deciding who wins, based on
checking object type.

Wirfs.book Page 21 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

22

A Better Solution

We would like to come up with a solution that would let us avoid
touching any working methods. Figure 1-9 shows an example that
uses the double dispatch pattern to do that.

Note that rock does not need to know what kind of object it is com-
paring itself against. The second message clearly identifies the situa-
tion to the second object. Another Rock or a Paper will return false,
but a Scissors will return true.

Here are the GameObject, Rock, and Paper definitions in Java:

public interface GameObject {
 public boolean beats(GameObject o);
 public boolean beatsRock(GameObject o);
 public boolean beatsPaper(GameObject o);
 public boolean beatsScissors(GameObject o);
}

:GameCoordinator :Paper :Rock

beats(aPaper)

beatsRock()

true

true

paper object
is passed

as argument

no if/then
decisions

paper object knows
it beats rock

receiver delegates
to incoming
paper object

Figure 1-9
This UML sequence diagram shows the process of deciding who wins, based on
polymorphism.

Wirfs.book Page 22 Friday, October 11, 2002 11:44 AM

Patterns

23

Extending the application to include another kind of GameObject
simply requires adding a new declaration of the comparison method
to the GameObject interface, defining the new method in the existing
classes, and creating a new class that implements the new Game-
Object interface.

The Double Dispatch Pattern

Here’s the pattern description:

public class Rock implements GameObject {
 public boolean beats(GameObject o);
 // the receiver is a Rock. Ask the argument about rocks.
 return o.beatsRock();
 }
 public beatsRock() {
 // could return either false or true
 return false;
 }
 public beatsPaper() {
 // a Rock doesn't beat a Paper
 return false;
 }
 public beatsScissors() {
 // a Rock beats a Scissors!
 return true;
 }
}

public class Paper implements GameObject {
 public boolean beats(GameObject o) {
 // the receiver is a Paper. Ask the argument about papers.
 return o.beatsPaper();
 }
 public beatsRock() {
 // a Paper beats a Rock
 return true;
 }
 public beatsPaper() {
 // could return either false or true
 return false;
 }
 public beatsScissors() {
 // a Paper doesn't beat a Scissors!
 return false;
 }
}

Name: Double Dispatch

Problem: Select an action based on the type of two objects
appearing in combination.

Wirfs.book Page 23 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

24

Context: Sometimes you need to write code that makes deci-
sions about what to do based on the class of one of the
parameters to a method.

Forces: Case or switch statements are often used in proce-
dural languages to decide what action to take. But deciding
what to do based on the class of a parameter can result in
code that is hard to maintain; each time you add a new class,
working code will have to be modified.

Polymorphism allows an object to send the same message to
objects belonging to many different classes. Code in each of
these classes can subsequently make different decisions and
perform the same requested operation differently.

Solution: Instead of writing code that specifically checks the
class of a parameter, add new methods having the same name
(a secondary method) to each class of all the potential param-
eter objects. Write the original method to simply call this new
secondary method, passing the original receiver as an argu-
ment. It is the responsibility of each object receiving this sec-
ondary message to know specifically what should be done.
Typically, each secondary method turns around and invokes a
specific operation on the original receiver (hence the name
Double Dispatch).

You can tie the specific operation to the class of object by
appending the class name of each class that implements a
secondary method to the name of this specialized operation. If
necessary, pass the original receiver as an argument to these
specialized operations as well.

Consequences: Double Dispatch eliminates case or switch
statements based on the class of a parameter. This makes the
code that implements the design more maintainable. It
doesn’t completely solve the maintenance problem, but it sup-
ports extension by adding methods and not by modifying
them. Double dispatching does have its drawbacks. Adding a
new class of parameter means adding a secondary method to
it, unless you are able to add a single method to a superclass
and have it inherited by its subclasses. It also may mean add-
ing a class-specific method to the original object (or deciding
to invoke an existing operation). A case statement, however, is
usually a worse solution.

Wirfs.book Page 24 Friday, October 11, 2002 11:44 AM

Frameworks, Inc.

25

The Real Benefits of Using Patterns

Imagine that during a design review, one of the team members men-
tions that a group of objects uses Double Dispatch. The discussion
then centers on an analysis of the problem to see whether the pat-
tern fits, the motives for choosing to use it, and a consideration of
the trade-offs involved. The use of the pattern shifts the focus to a
higher-level design concern. Little time is spent describing the
mechanics of the object collaborations because they are condensed
into two little words: double dispatch.

FRAMEWORKS, INC.

The business equivalent of a framework is a franchise. Having
proven that there is a market for its services, a company incorpo-
rates and sells a generic design for its business: a franchise. A fran-
chise provides a general design for providing its products or
services and dictates that franchise owners follow the franchising
company’s rules. Franchise owners tailor their businesses to their
specific markets, within the limits of the franchise contract. With a
franchise, services become better defined and widely known and
used. Because of their familiarity with the business processes, own-
ers often buy multiple franchises, reusing the business design in dif-
ferent locations. A franchise pools business owners’ resources to
advertise, train employees, and provide just-in-time services beyond
those that a single company could offer.

Similarly, a framework is a general design for solving a software prob-
lem (see Figure 1-10). Unlike a pattern, which is an idea of how to
solve a familiar problem, a framework provides a library of classes
that developers can tailor or extend to fit a particular situation. The
success of a framework depends on how useful it is to these develop-
ers and how easily they can tailor its services to their needs.

Here are some of the problems that frameworks have been applied to:

� GUI: The Java Swing framework offers a set of features useful
for building an interactive user interface.

� Simulation: The early Smalltalk-80 language included a frame-
work for building discrete event simulations.

� Programming environments: The Eclipse IDE (integrated devel-
opment environment) has a plug-in architecture that lets tool
providers supply different compilers, refactoring tools, and
debuggers.

Wirfs.book Page 25 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

26

� Web applications: Microsoft’s .NET framework is a unified set of
tools for building distributed applications. It includes frame-
works for building user interfaces, performing transactions and
concurrency, interoperating between platforms, and building
Web services.

Frameworks offer a number of advantages to the developer:

� Efficiency: A framework means less design and coding.

� Richness: Domain expertise is captured in the framework.

� Consistency: Developers become familiar with the approach
imposed by the framework.

� Predictability: A framework has undergone several iterations of
development and testing.

board/interrupts/clock/signals

provide a framework that calls on parts

different sound cards have different behaviors,

but each fits into the framework

slots are interfaces to the parts

and the framework

Figure 1-10
A framework codifies the rules of how things should be done.

Wirfs.book Page 26 Friday, October 11, 2002 11:44 AM

Architecture

27

But they don’t come without costs:

� Complexity: Frameworks often have a steep learning curve.

� If you only have a hammer, everything looks like a nail: Frame-
works require a specific approach to solving the problem.

� Performance: A framework often trades flexibility and reusabil-
ity for performance.

Frameworks are sometimes used as is. In this case, they provide
default behaviors that their designers deemed to be useful across
many potential applications. But most frameworks are meant to be
extended to completion. They provide generic solutions but lack
specific behaviors that vary by application. The behaviors that are
left incomplete are hooks: implementations that are deferred to the
developers for specific applications. When coding these hot spots, a
programmer must accept an inversion of control. This takes some
getting used to. Typically, our code calls other objects and asks them
to do work on our behalf. To use some functionality in a library, for
example, you typically instantiate a library object and then call on it
to provide a service.

In the case of a framework, you must implement the hooks using
code that fits into the framework. The hooks are those areas of the
framework that the framework code will call. Instead of being in con-
trol, our objects are plugged in and must correctly implement hooks
that are called by framework code. To use the features of a frame-
work, you define classes that implement specific interfaces. To use a
framework, you fill in the missing functionality, following the con-
straints dictated by the framework designers.

ARCHITECTURE

There is no single, defining architecture of an application. Often we
see box-and-line drawings purporting to be the architecture. Goof-
juice! An architecture is a collection of behaviors and a set of
descriptions about how they impact one another. Box-and-line draw-
ings describe only the structure. They completely ignore the behav-
ior. A revealing architecture demonstrates the assumptions that
each subsystem or component in the application can make about its
neighbors, whether it be their responsibilities, error-handling abili-
ties, shared resource usage, or performance characteristics. Because
there are many objects in an application, we need different ways of
viewing its parts that hide most of their details. The internal details
of how a group of objects accomplishes a task should not be the

Wirfs.book Page 27 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

28

issue when you consider its architecture. At the architectural level,
the interfaces must tell it all.

Any single architecture description tells only part of the software’s
story. For example, the organization of system functions implies little
about how the modules are divided among team members for devel-
opment. The process synchronization characteristics are conspicu-
ously missing from the descriptions of how components are
distributed across machines and networks. Because there are many
requirements of our software, we often require many views of our
“architecture” to convince us that it meets them.

Which views shed the most light on our applications’ characteris-
tics, of course, depends on the application. But several of these
views are prominent: conceptual views, control flow, and, for object-
oriented applications, views of components and subsystems as well
as objects and interactions. It is important to identify and document
patterns of collaboration. Simply documenting the interfaces of the
objects or components would not show how they collaborate. Writ-
ing the client-server contracts as part of the architectural descrip-
tions clarifies the roles of each and provides a better understanding
of the complexity of the design. Each development project should
determine what subset of these architectures is appropriate. In fact,
choosing which architectural views to represent and study is a key
element of early design.

ARCHITECTURAL STYLES

Just as design patterns offer ways to distribute responsibilities
among collaborators to solve generic design problems, there are
styles for organizing software objects. There are a number of aspects
to consider when you think about architectural style. Two of the
most common viewpoints are component interaction styles and con-
trol styles. Both need to be considered. Component interactions are
concerned with issues that we commonly see addressed with block
structure diagrams. These typically show components or layers of
the system and generally describe how they are allowed to interact.
Typical examples of these styles are layered, pipes-and-filters, and
blackboard. Figure 1-11 shows a layered architecture.

Control style dictates the approaches to distributing responsibilities
for decision making and coordination within or between layers or
components. We can construct a solution along a continuum of con-
trol from highly centralized to overly distributed.

Wirfs.book Page 28 Friday, October 11, 2002 11:44 AM

Architectural Styles

29

Each combination of architectural styles supports one or more char-
acteristics that we may value in a project:

� Usability

� Availability

� Security

� Performance

� Maintainability

� Flexibility

� Portability

Presentation

Application
Services

Technical
Services

Domain
Services

Figure 1-11
A layered architecture separates objects according to their roles in the
application.

Wirfs.book Page 29 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

30

To support these and other qualities before any analysis, design, or
coding takes place, we can start by choosing architectural styles
that support them. Using a particular mix of styles will not guarantee
that desired qualities will prevail, but we have the window of oppor-
tunity left open in which to build them.

Selecting architectural styles is largely dependent on an assessment
of the desired attributes of the application. Most applications
require a mix of these qualities and a combination of architectural
styles. Choosing the right architectural styles can have a big impact.

So before examining a popular component interaction style—the lay-
ered style—let’s examine the continuum of control styles we can
employ.

Centralized Control Style

A procedural program makes a clear distinction between data and
algorithms. Algorithms, whether they are called procedures or func-
tions, use and operate on data. We can simulate a procedural style
by creating a single smart object, filled with algorithms, and sur-
round it with numerous, data-structure-like objects that hold only
information: pure information holders (see Figure 1-12). When the
smart object needs to compute, it asks the information holders for
the information it needs, processes it, and either puts it back or puts
it in some other information holder. The procedures operate on data.
The procedures tend to be redundant because other objects need to
operate on the data, too. Many objects use the information holders,
and many messages flow around the system.

But despite being procedural, a centralized style does have some
advantages. The application logic is centered in only a few objects:
the smart ones. Code may be more difficult to read because it is
embedded in a lot of the other logic, but you have only a few places
to look.

Now try to describe who uses which objects. Any one of the informa-
tion holders has many clients. The processing of their information is
outside of them and is spread across many classes. What if you
wanted to shift the responsibility for knowing a piece of information
from one to another? Many other objects would break because of the
many dependencies.

Dispersed Control: No Centers

In the other extreme, we spread the logic across the entire popula-
tion of objects, keeping each object small and building in as few

Architectural styles have
well-known liabilities. For
example, pipes-and-filters is
computationally expensive
due to the need to cast all
data into a common form,
usually text.

Wirfs.book Page 30 Friday, October 11, 2002 11:44 AM

Architectural Styles

31

dependencies among them as possible. As Figure 1-13 shows, there
are no centers to the design.

When you want to find out how something works, you must trace the
sequence of requests for services across many objects. And they are
not very reusable because no single object contributes much.

Delegated Control

A delegated control style strikes a compromise or balance between
these two extremes. As Figure 1-14 shows, each object encapsulates
most of what it needs to perform its responsibilities, but, on occasion,
it needs help from other, capable objects. Every object has a substan-
tial piece of the pie. It isn’t hard to trace through the few objects
involved to see how something works. On the other hand, because
each object is largely capable of fulfilling its own responsibilities, it is
more reusable. Reusing even the larger responsibilities means includ-
ing only a few collaborators. System functions are organized into
pools of responsibility that can be used in relative isolation.

Figure 1-12
Centralized control concentrates logic into a single object.

Wirfs.book Page 31 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

32

Examining Interactions: A Layered Architecture Example

Let’s take a closer look at the layered architectural style. We use it to
illustrate how it guides our design of system responsibility. We maxi-
mize simplicity and reusability by using a layered style. This archi-
tectural style groups responsibilities into layers. Each layer has a
well-defined number of neighboring layers, typically one or two.
Objects living in each layer communicate mostly with other objects
within the same layer. But there are times when the services that an
object needs are not to be found within its layer, and it will reach out
to an adjacent layer for the selected services. Here is a typical orga-
nization of responsibilities in the layers: One layer is devoted to
interfacing with the outside world. An adjacent layer coordinates
responses to outside events. A third layer provides information and
services that span the entire domain, and another layer provides
technical services for connecting to external devices and programs.
The layered style can contribute to simplicity, maintainability, and
reusability. Information systems, which often fit into this component
interaction style, typically have a long life span, requiring that they
be easy to maintain, scale, and port to new platforms.

Figure 1-13
Dispersed control spreads the logic across many kinds of objects.

Wirfs.book Page 32 Friday, October 11, 2002 11:44 AM

Architectural Styles

33

Using this style gives us flexibility in deciding at run time which
objects will collaborate. It also lets us develop objects in each layer
without concern for which objects in adjacent layers we will collabo-
rate with. Figure 1-15 shows a sample of collaborating objects, lay-
ers, and loose coupling.

This architecture of a Web-based information system application
separates areas of functionality into layers of functionality (layered
style), defines groups of objects within each layer, and broadcasts
events across network connections.

Figure 1-14
Delegated control creates pools of application logic.

Wirfs.book Page 33 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

34

Locating Objects in Layers

We can combine the features just discussed with our notion of object
stereotypes to demonstrate a very general layout of objects in an
object-oriented information system application. As we discussed
earlier, we use these stereotypes to characterize objects’ roles: infor-
mation holder, structurer, service provider, coordinator, controller,
and interfacer. How might we build a layered style application from
them? Where would objects of each stereotype live? The architec-
ture of a layered system of objects looks something like the diagram
in Figure 1-16.

Figure 1-15
Interactive information systems often use layered architectures.

Wirfs.book Page 34 Friday, October 11, 2002 11:44 AM

Architectural Styles

35

Communication between objects tends to follow these rules:

� Objects collaborate mostly within their layer.

� When they do reside in different layers, client objects are usu-
ally above server objects. The messages (requests) flow mostly
down.

� Information (results) flows mostly up.

Figure 1-16
Each layer contains characteristic object roles.

Wirfs.book Page 35 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

36

� When messages flow up, client objects are in lower layers, and
they are loosely coupled to their server objects. This usually
uses an event mechanism.

� Only the topmost and bottommost layers are exposed to the
“outside” world. They hold platform-specific objects: widgets in
the top layer, and network, device, and external system inter-
facers in the bottom layer.

DESIGN DESCRIPTION

As part of a design process, it is essential to communicate your
ideas. During development there are many ways to think about your
design, and many ways to informally describe it. Descriptions can
range from design stories to roughly drawn sketches, to conceptual
“art” that serves as a focal point for discussions, to handwritten CRC
cards describing candidates. Design is an inherently messy process,
and along the way many descriptions are discarded after serving
their purpose.

But there is a time and a place for creating more precise descrip-
tions. The Unified Modeling Language (UML) is a good way to
describe your design using a standard graphical modeling language.
It provides a vocabulary for describing classes, objects, roles, inter-
faces, collaborations, and other design elements. It is a large lan-
guage that includes many more elements than we use in this book.
But the UML is more than a graphical notation. Behind each symbol
are well-defined semantics. This means that you can specify a UML
model using one design tool, and another tool can interpret that
model unambiguously.

Any design model or modeling language has limits to what it can
express. No one view of a design tells all. That is why in this book we
use a rich toolkit that includes both low-tech and more precise ways
to describe our designs.

SUMMARY

Object-oriented applications are composed of objects that come and
go, assuming their roles and fulfilling their responsibilities. Typically,
the initial set of objects that we find represents domain concepts
that designers as well as users are comfortable talking about. Other
objects are invented with specific responsibilities for controlling and
coordinating the user interface, managing the connections to the

CRC cards were invented by
Ward Cunningham and Kent
Beck in 1988 as a means of
describing early design ideas
about classes, their
responsibilities, and
collaborations. Instead of
classes, we use them to
describe candidate objects,
which eventually are realized
by one or more interfaces and
classes.

Wirfs.book Page 36 Friday, October 11, 2002 11:44 AM

Further Reading

37

outside world, and governing the flow of control in the application.
The software itself has properties that emerge. These systemic
behaviors are accounted for by the software patterns, frameworks,
and architectures. They contribute to system-level properties.
Together, they form a collection of perspectives on the system under
development.

The “products” of development—the objects, responsibilities, col-
laborations, contracts, patterns, frameworks, and architectures—are
the focus of a systematic development process, a method. With
many levels and abstractions to account for, we must be opportunis-
tic in the way we approach the tasks. We shift perspective to reveal a
new problem or another facet of an old one; we look for new solu-
tions and explore half-formed ideas. Above all, we keep the focus on
what is important right now. This process is the topic of the next
chapter.

FURTHER READING

Timothy Budd’s wonderful book, An Introduction to Object-Oriented
Programming (Addison-Wesley, 2001), includes a thorough discus-
sion of object-oriented concepts and programming principles.
Although a college text, it is handy for professional developers, too.
Programming languages come on the scene with great rapidity (they
don’t disappear so quickly, but new ones constantly appear). This
book is in its third edition. One of the best things about it is the pre-
sentation of the same applications implemented in various object-
oriented languages ranging from Smalltalk to Java, C#, C++, Object
Pascal, and Oberon.

In addition to inventing the Model-View-Controller concept, Trygve
Reenskaug wrote a definitive book on thinking about objects in
terms of roles. Working With Objects (Manning, 1995), written with
Per Wold and Odd Arid Lehne, explores how patterns of interacting
objects can be abstracted into patterns of interacting roles. We have
been inspired by Trygve’s work over the years and believe that mod-
eling roles is essential to creating well-factored, flexible designs.

The classic Design Patterns: Elements of Reusable Object-Oriented Soft-
ware (Addison-Wesley, 1995), by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, launched the software pattern move-
ment. This book contains twenty-some patterns organized into
behavioral, creational, and structural patterns. If you want to learn
more about the original design patterns that launched the pattern
movement, pick up Gamma’s book. If you are a Java programmer,

Wirfs.book Page 37 Friday, October 11, 2002 11:44 AM

Chapter 1 Design Concepts

38

you’ll learn even more by reading Design Patterns Java™ Workbook
(Addison-Wesley, 2002). In this book, Steve Metsker clearly explains
each and every pattern in the Design Patterns book from a Java pro-
grammer’s perspective.

The best source for learning about the UML is The UML Language
User Guide, (Addison-Wesley, 1999) written by Grady Booch, James
Rumbaugh, and Ivar Jacobson. Others have tried to boil down this
rich language to its fundamentals, but they lose something in the
process.

Wirfs.book Page 38 Friday, October 11, 2002 11:44 AM

Chapter 2
Responsibility-
Driven Design

etty Edwards, author of Drawing on the Artist Within,
argues that many so-called creative talents can be taught.

She poses this delightful thought experiment:

What does it take to teach a child to read? What if we
believed that only those fortunately endowed with inborn
creative ability could learn to read? What if teachers
believed the best way to instruct was to expose children to
lots of materials, then wait to see who possessed innate
reading talent? Fear of stifling the creative reading process
would dampen any attempts to guide new readers. If a child
asked how to read something, a teacher might respond,
“Try whatever you think works. Enjoy it, explore, reading is
fun!” Perhaps one or two in any class would possess that
rare talent and spontaneously learn to read. But of course,
this is an absurd belief! Reading can be taught. So too, can
drawing.

B

Wirfs.book Page 39 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

40

Her book challenges our assumptions that drawing requires rare and
special “artistic” talent and that formal teaching of basic drawing
skills stifles creativity. Basic drawing techniques, like reading tech-
niques, can be taught. No wonder many of us can’t draw! Learning to
draw is a matter of learning basic perceptual skills—the special ways
of seeing required for accurate drawing.

Object design does not require rare and special “design” talent.
Although design is a highly creative activity, the fundamentals can
be easily learned. You can become adept at object design with
enough practice and experience seeing the nature of the design
problem and learning fundamental strategies for producing an
acceptable solution.

This chapter presents basic steps for developing object applications
following an approach called Responsibility-Driven Design. We first
describe the actions and activities for which our software should be
“responsible.” We describe our software’s responsibilities in terms
that application users as well as developers understand. Then we
turn our attention to designing software objects that appropriately
implement these responsibilities.

A PROCESS FOR SEEING, DESCRIBING, AND DESIGNING

We wish to be very clear on one point: Although this book presents
object-oriented development activities in a linear fashion, this is
rarely how design proceeds in practice. Software design processes
are highly fluid and opportunistic, even though the final results are
firmly fixed in code. Our presentation of this flurry of activity is lim-
ited by the constraints of the printed page.

Responsibility-Driven Design is an informal method. It offers many
techniques for honing your thinking about how to divvy an appli-
cation’s responsibilities into objects and coordinating their per-
formance. Our primary tool is the power of abstraction—forming
objects that represent the essence of a working application.

The name of our method emphasizes the thread that runs through
every activity: our focus on software responsibilities. Responsibili-
ties describe what our software must do to accomplish its purpose.
Our work progresses from requirements gathering through roughly
sketched ideas and then on to more detailed descriptions and soft-
ware models. Surprisingly, at the beginning of our process, we don’t
focus on objects. Instead, we focus on describing our system by cap-
turing the viewpoints of many different stakeholders. We need to

This chapter presents
the basic activities of
Responsibility-Driven Design
and introduces examples of
design work. Because object
design is a highly creative
process, designers should
pick and choose when to
apply various tools that help
them conceptualize the
problem and invent solutions.

Possessing object design
talent means that, through
experience or ability, you
“intuit” solutions that others
need to learn how to see
more clearly. You quickly
come to see the essence of a
problem and ways to design
an acceptable solution.

Wirfs.book Page 40 Friday, October 11, 2002 11:44 AM

A Process for Seeing, Describing, and Designing

41

consider multiple perspectives in our solutions. Responsibility-
Driven Design is a clarification process. We move from initial require-
ments to initial descriptions and models; from initial descriptions to
more detailed descriptions and models of objects; from candidate
object models to detailed models of their responsibilities and pat-
terns of collaboration.

We do not follow a straight design path as shown in Figure 2-1. As
shown in Figure 2-2, our design journey is filled with curves, switch-
backs, and side excursions. When tracking down design solutions,

Figure 2-1
Rigid, tightly planned development often leads to failure.

Figure 2-2
The Responsibility-Driven Design path is a flexible one.

Wirfs.book Page 41 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

42

we often switch among different design activities as we discover dif-
ferent aspects of the problem. We are opportunistic. We use a variety
of tools that help us gain perspective, discover information, and
craft solutions. Our work is fluid and malleable.

Our ordering of activities and our focus will, of necessity, change
(see Figure 2-3). Planning, adding new features, setting goals, charac-
terizing the application via a prototype, creating an object model,
identifying the hard problems—these are only some of our tasks.
These tasks vary in their purpose, rigor, scope, emphasis, context,
and applicable tools.

With all but the simplest software, we can’t fathom what lies ahead.
With so much complexity, we won’t always make optimal decisions.
Progress isn’t always steady. Along the way we discover new infor-
mation and constraints. We must take time to breathe and smooth
out these recurring wrinkles.

To address our lack of 20-20 foresight, we plan pauses to reexamine,
adjust, and align our work to a changing set of conditions. This
allows us to incorporate our growing understanding into what we
build. As shown in Figure 2-4, our process is iterative and incremen-
tal. We are simply shifting emphasis along our development timeline
from requirements gathering and specification to analysis, design,
testing and coding. We can always retreat to earlier activities and
rediscover more of the features of our problem.

Our linear presentation of
design activities is due to
constraints imposed by
printed, numbered pages.
As you read this book, ask
yourself, Where can I bring
this technique to bear on my
problem? What thinking tool
would be most effective
to use right now? Be
opportunistic!

Figure 2-3
We continually move our focus from one problem area to another, recasting
relationships and finding new details.

Marvin Minsky says our
intelligence comes from our
ability to negotiate solutions
and resolve conflicts among
competing goals. If part of
your mind proposes solutions
that another part finds
unacceptable, you can
usually find another way.
When one viewpoint fails to
solve a problem, you can
adopt other perspectives.

Wirfs.book Page 42 Friday, October 11, 2002 11:44 AM

A Process for Seeing, Describing, and Designing

43

Figure 2-4
Discovery involves stating an idea, reflecting it back to stakeholders for feed-
back, and then incorporating changes and new insights in the revised model.

Wirfs.book Page 43 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

44

As designers, we naturally think that software objects are the center
of the software universe. However object-oriented we may be,
though, many other participants and perspectives go into the con-
ception, design, and construction of a successful application. Just
like a theater production, software development involves much
more than meets the eye during a performance. And although
objects may take center stage for our work, it is important to recog-
nize the impact that different perspectives and activities have on our
design.

Launching the Production: Project Definition and Planning

We adopt a conventional approach to describing our object develop-
ment process. First things first. It’s desirable to define project goals,
construct a plan for achieving them, and receive buy-in before jump-
ing into a big effort.

In long or complex productions, we need to survey and document
the users’ requirements and demonstrate how our software system
will serve those who have some “skin in the game”—the stakehold-
ers who will be impacted by our success or failure. Even in quick
projects, a little planning goes a long way. This leads us to form a
concise statement of the project, which includes a statement of pur-
pose, an overview, and a definition of the scope and benefits.

Project planning sets the stage for our design ideas. It is our plan for
action. Keeping in mind that our main goal is to please our users and
project sponsors, a project plan describes the following:

� How the software will be developed

� The values that are important to the project and the people
involved

� The people and their roles, the processes, and the expected
outcomes

� The expected deliverables

Although not the focus of this book, project planning and definition
are fundamental. Once we have a plan of action, we consider struc-
tures and processes. Our goal is to understand what our software
should do and how it will support its users.

Setting the Stage: Early Description
Initially, we narrow our scope and our descriptions. We begin with
rough sketches, fudging in those areas that demand detail that we
can’t yet provide. We iterate through cycles of discovery, reflection,

“It is very much a matter of
artistry. The developer, like
ancient bards whose epic
poems were not written down
but recited from memory,
must choose structures that
will be readily remembered,
that will help the audience not
to lose the thread of the
story.”

 —Michael Jackson

Wirfs.book Page 44 Friday, October 11, 2002 11:44 AM

A Process for Seeing, Describing, and Designing

45

and description. Bit by bit we add details, pin down the ambiguous,
and resolve conflicting requirements. Initially our descriptions aren’t
object-oriented; we add an object perspective after we’ve described
our system more generally. Object concepts will form the kernel of a
model of our system’s inner workings. But our recipe for analysis
looks something like Table 2-1.

Table 2-1 Analysis includes system definition, system description, and object
analysis activities.

Responsibility-Driven Analysis

Phase Activity Results

System
Definition

Develop high-level
system architecture.

Diagram of system boundaries.

High-level diagrams of technical
architecture

System concepts discussion and
diagrams

Identify initial system
concepts.

Glossary of terms

Identify system
responsibilities.

System perspective and functions

Usage characteristics

General constraints, assumptions, and
dependencies

Detailed
Description

Specify development
environment.

Documentation of existing development
frameworks, external programs, APIs, and
computer-based tools.

Write text descriptions
of the ways users
expect to perform
their tasks.

A list of the different types of users and
external systems that interact with our
system: actors

Free-form text descriptions of the users’
tasks: use case narratives

Text descriptions of concrete usage
examples: scenarios and conversations

Analyze special
requirements for
impact on design.

Strategies for increasing performance,
maps to legacy data, plans for handling
distributed data and computing, fault tol-
erance, and reliability

Continues

Wirfs.book Page 45 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

46

Of course, results vary from project to project. Depending on appli-
cation specifics, certain descriptions may not add value. If your
application doesn’t interact with users, screen specifications aren’t
appropriate. To design responsibly, we develop only those descrip-
tions that give us a meaningful perspective. Certain requirements
unfold during discussions with stakeholders. They correspond
roughly to the users’ requirements but include a number of cus-
tomer or administrator requirements:

� Usage

� Performance

� Configuration

� Authentication

� Concurrency

� Scalability

� Security

� Reliability

We may also uncover these requirements during development and
during initial use of early software versions by developers, testers,
and beta users. Many requirements and concerns overlap, and differ-
ent stakeholders often articulate them in various ways. Security may

Detailed
Description
(Cont.)

Document system
dynamics.

Activity diagrams showing constraints
between use cases

Show screens and
interactions from
users’ perspective.

Screen specifications

Navigation model

Object
Analysis

Identify domain-
familiar objects with
intuitive sets of
responsibilities.

CRC cards that describe object roles and
responsibilities

A candidate object model

Document additional
concepts and terms.

Glossaries defining concepts, descrip-
tions of behavior, and business rules

Table 2-1 Analysis includes system definition, system description, and object
analysis activities. (Cont.)

Responsibility-Driven Analysis

Phase Activity Results

Wirfs.book Page 46 Friday, October 11, 2002 11:44 AM

A Process for Seeing, Describing, and Designing

47

be of utmost concern to users who “don’t want credit card informa-
tion pilfered over the Web,” but this is a far less detailed requirement
than those of the Web site administrator who speaks as a Web secu-
rity expert.

In addition to the more obvious requirements that have an apprecia-
ble and direct impact on design, other requirements for flexibility,
maintainability, extensibility, or reusability can constrain acceptable
design solutions, even though they aren’t readily glimpsed by con-
sidering how our users interact with our software. In many cases, it
is these “ilities” that, when ignored, cause a project to fail. As design-
ers, we must absorb requirements and present a design that con-
forms to their constraints. Of course, no matter how hard you try,
you won’t identify all the requirements.

Staging the Production: Design

In design, we construct a model of how our system works. We break
the object design process into two major phases: creating an initial
design (exploratory work shown in Table 2-2) and then crafting more
comprehensive solutions (refinement shown in Table 2-3).

At some point after you’ve developed an initial exploratory design,
you want to break away from designing and start coding. This could
occur after a relatively short while, especially if your design is
straightforward and you know what needs to be done. Perhaps you
want to prove part of your design by implementing a prototype
before investing energy designing other parts that rely on that proof
of concept being solid. Or you may want to refine your design a bit

Table 2-2 Exploratory design is focused on producing an initial object model of
a system.

Exploratory Design

Activity Results

Associate domain
objects with
execution-oriented
ones.

Assign responsibili-
ties to objects.

Develop initial col-
laboration model.

A CRC model of objects, roles, responsibilities, and
collaborators

Sequence or collaboration diagrams

Descriptions of subsystem responsibilities and collaborations

Preliminary class definitions

Working prototypes

The time spent exploring and
refining a design, and the
amount of design
documentation you produce,
can vary widely. Our advice:
Work on those design
activities and results that add
value to your project. You
don’t need to do each and
every activity or produce lots
of design documents to
be successful. Use these
activities and results as
general guidelines, and tune
them to your specific needs.

Wirfs.book Page 47 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

48

before starting implementation. Whether you take the time to polish
your design a bit more before coding or you adjust your design dur-
ing implementation, your initial design ideas will change. Most appli-
cations are too complex to “design right” the first time. So creating a
workable design means revisiting initial assumptions to make sure
that your design lives up to stakeholders’ expectations. It may also
mean spending extra time to design a flexible solution or to enable
your design to respond to exceptional conditions.

Design activities—from early explorations to detailed refinements—
are the focus of this book. But before we dive into design, let’s
explore what we need to “see clearly” in order to create an appropri-
ate design.

Table 2-3 Design refinement includes activities that make a design more
predictable, consistent, flexible, and understandable.

Design Refinement

Activity Results

Justify trade-offs. Documentation of design decisions

Distribute application
control.

Control styles identified

Easy-to-understand patterns of decision making and
delegation in the object model

Decide static and
dynamic visibility rela-
tionships between
objects.

Refined class definitions and diagrams

Revise model to make
it more maintainable,
flexible, and consistent.

Creation of new object abstractions

Revision of object roles, including stereotype blends

Simplified, consistent interfaces and patterns of
collaboration

Specification of classes that realize roles

Application of design patterns

Document the design
clearly.

UML diagrams describing packages, components, sub-
system, classes, interaction sequences, collaborations,
interfaces

Code

Formalize the design. Contracts between system components and key classes

Wirfs.book Page 48 Friday, October 11, 2002 11:44 AM

Writing the Script: Analysis Descriptions

49

“Seeing” from Multiple Perspectives

Each stakeholder in our design process has differing needs and val-
ues. Each person will view our work in progress and the emerging
application from a unique perspective. Because many of the stake-
holders do not speak our native object-oriented tongue, we object
designers face two challenges:

� Correctly interpreting stakeholders’ concerns and requirements

� Presenting our design work in terms understood by a wide
audience

Each participant in our software production has differing criteria for
evaluating our software. Their primary concerns and the aspects
they value vary with their points of view.

For example, users want to see that they can easily do their jobs
using the application. They’ll want application controls and process-
ing to be consistent and “feel” natural. A business analyst will want
to know that policies, rules, and processes are understood by the
design team and clearly supported by our design. A tester wants to
see that the actual application matches expected performance and
usability objectives. Some stakeholders will care about our design’s
details, but many will not. All will want assurance that our design
addresses their concerns and needs. Let’s now take a brief tour
through the process and see how we develop a design that meets
each stakeholder’s specific concerns.

WRITING THE SCRIPT: ANALYSIS DESCRIPTIONS

Early in the process, our goal is to understand and reflect important
requirements. We turn vague, formative ideas into specifications of
what we are to build. Errors in product specification are the most
costly because they ripple through all of the downstream activities.
So it’s important to communicate our software’s characteristics in
simple, unambiguous language to those who will use it and to others
who will keep it running. To understand how our software fits into
the immediate environment that it runs on and the extended envi-
ronment of devices, databases, and external programs that it com-
municates with, we view our software from several perspectives as
shown in Figure 2-5.

What language should we use to describe our system? No one lan-
guage is common to users, customers, data analysts, developers,

“Facts are the air of
scientists. Without them
you can never fly.”

—Ivan Pavlov

“There’s no sense being
precise about something
when you don’t even know
what you’re talking about.”

 —John von Neumann

“Descriptions are the
externally visible medium
of thought.”

—Michael Jackson

Wirfs.book Page 49 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

50

and managers that describes our software adequately. We collect a
variety of descriptions using appropriate language and notations.
One of our goals is to make clear what is ambiguous, to collect and
describe with one voice what our software should be responsible for.
We gather various descriptions and reflect these different perspec-
tives in our specifications. We strive to understand where our soft-
ware “ends,” where its external environment “begins,” and what
functions it should perform. Once we draw these boundaries, we
focus on our software’s internal workings and the ways it responds
to its environment. We develop and use a consistent, common
vocabulary for describing the things our software affects, the pro-
cesses it supports, and its responsibilities to its stakeholders.

Usage Descriptions

Because many of an application’s obligations are to its users, we
must clarify their understanding. From a user’s vantage, there is a
boundary around our system that distinguishes the software from
the external world. Users’ understanding of our software is based on
how it supports their tasks. This task-oriented view can be
described by a collection of descriptions, or use cases. Use cases are

Figure 2-5
Stakeholders’ descriptions of a system reflect their unique perspectives.

Use cases and a user
orientation are important, but
they don’t tell the whole story.
A model is a collection of
related descriptions. There
are various types of models—
usage, data, object, state, and
process, to name a few.

Wirfs.book Page 50 Friday, October 11, 2002 11:44 AM

Writing the Script: Analysis Descriptions

51

part of a UML model. We break up a large application’s specification
into use cases, which concisely describe discrete “chunks” of system
functionality from this external perspective.

Actors and Their View of Our System

The Unified Modeling Language defines an actor as some one or
some thing outside the system that interacts with it. These actors
tend to be grouped into three different camps:

� Users

� Administrators

� External programs and devices

Actors have two characteristics in common:

� They are external to the application.

� They take initiative, stimulate, and interact with our software.

By organizing our usage descriptions around these actors, we orient
the software’s responsibilities to each actor’s point of view. We even-
tually will use these descriptions and be guided by the “ilities” that
we wish to preserve. But to develop a single object-oriented model,
at this stage of development we need different, higher-level descrip-
tions than an object model can provide—descriptions rich with
detail, rich with intention, rich with implication and purpose. An
object model prescribes only a solution to a problem. This solution
leaves unspoken the needs, intentions, and day-to-day concerns of
our system’s stakeholders.

These rich and detailed descriptions depict usage, points of variabil-
ity and configuration, and essential system architecture. We identify
the groups of people and the external programs and devices that our
software interacts with, and we describe how they interact. We note
areas where flexibility is needed and variations our software should
accommodate. To the best of our ability, we create descriptions that
can be understood by those who need to know. If we build object
models or code prototypes at this point, it is only to clarify our own
understanding of this multitude of requirements. These prototypes
can be disposable.

Use Cases

Use cases, introduced by Ivar Jacobson in 1992, are part of UML.
Many people use them as a means to describe how a system is to be

Objects best describe
concepts, or things,
their characteristic
responsibilities, and
interactions.

Any expected properties
of our software must be
apparent from some
description. They won’t
emerge on their own.

Wirfs.book Page 51 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

52

used. Others quite happily use hierarchical lists of features, simple
user stories, or lengthy specifications documents. Use cases are
especially valuable for describing an application from an external
usage perspective. We use three forms of use case descriptions: sim-
ple text narratives, scenarios consisting of numbered steps, and con-
versations that emphasize the dialog between user and system. Each
form of use case description has its particular emphasis.

Use cases can be written at differing levels of detail, depending on
their intended audience. We can write high-level overviews and then
add detail and describe the sequences of actions and interactions
between the user and the program. The forms we choose depends
on what we are trying to express.

We may write one or more forms for each use case, depending on the
needs of our audience. Typically, we start by writing narratives that
present a high-level overview. Then, if appropriate, we can write one
or more scenarios or conversations that elaborate this high-level
description.

A Word Processor Example

Consider the use cases we exercised to write this chapter. Our word
processor doesn’t specifically support book writing; it is a generic
document preparation tool. So when we use our word processor, we
map our activities onto those tasks supported by our word proces-
sor: entering text and revising it. Other tasks are not supported
by our word processor: researching, brainstorming, and outlining.
Tasks that do map to our application’s chunks of functionality
include opening a document and creating and editing text.

Writing is a fairly free-form activity. We mix and match writing tasks
in an unpredictable order. Because a word processor is meant to
support a wide variety of writing styles, writing is best described
with smaller use cases that can be exercised in any order. But mean-
ingful tasks for writing a book are larger; they are composed of vari-
ous subtasks. Formatting a page is a series of changes to the
margins, indentations, headers and footers, and so on. Reorganizing
a sequence of paragraphs is a series of cut-and-paste operations. We
name use cases and write them from the user’s point of view—for
example, “Edit Text,” “Save a Document to a File,” or “Look up Online
Help.” In these examples, the use case name takes the form “Perform
an Action on Some Thing.” Here is a use case, written in narrative
form, that describes saving a document.

A use case is “a behaviorally
related sequence of
transactions in a dialogue
with the system.”

 —Ivar Jacobson

Our goal is to state the users’
tasks at the most meaningful
level. Even the simplest high-
level tasks become a series of
decisions and actions on the
part of the user.

Wirfs.book Page 52 Friday, October 11, 2002 11:44 AM

Writing the Script: Analysis Descriptions

53

Alternatively, we could name and describe use cases from our word
processor’s perspective. “Open a Document” might be recast as
“Open a File and Read It into a Text Buffer.” We don’t recommend tak-
ing the system’s point of view. If we do, it gives us an eerie sense of
our system peering out at the user, detailing what it is doing.

Our word processor’s use cases describe rather small functional
chunks. Our rule of thumb is to write use cases that the user finds
meaningful. The level of detail also varies. Users might want to see
general statements, or excruciating detail, depending on how famil-
iar they are with the task and how complex it is. Despite the varia-
tions in the level of abstraction and detail, use case narratives share
one common feature: They describe general facilities in a paragraph
or two of natural language.

Scenarios

Whereas use case narratives describe general capabilities, scenarios
describe specific paths that a user will take to perform a task. A sin-
gle use case might be performed a number of different ways. This
“Save Document to an HTML File” scenario explains how it varies
from its “parent,” the “Save Document to a File” use case narrative:

Documents can be saved in different file formats. When you save a
new document, the default file format is used unless another is spec-
ified. When a Save Document operation has completed saving an
existing document, the file represents accurately the document as
displayed to the user upon saving.

Scenario: Save a Document to an HTML File

1. The user commands the software to save a file.

2. The software presents a File Save dialog box, where the
directory, filename, and document type can be viewed and
modified.

3. If the file is being saved for the first time and it has not been
given a filename by the user, a filename is constructed based
on the first line of text in the document and a default file
extension.

4. The user selects HTML document type from the File dialog’s
options, which replaces the default file extension to “.htm” if
needed.

Continues

Although a system-level
perspective is important, it
isn’t particularly relevant to
our user. Keep the point of
view of the user.

Wirfs.book Page 53 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

54

If we need to be more concrete to clarify how a task is to be per-
formed, we write scenarios that describe the actions and informa-
tion relevant to specific situations. If more detail will be helpful and
we want to emphasize the interactions between user and system, we
expand narratives into conversations.

Conversations

Conversations describe the interactions between the user and the
software as a dialog. Their purpose is to clarify the responsibilities of
each: The user, who initiates the dialog, and the software that moni-
tors and responds to the user’s actions. The more detailed conversa-
tion form allows us to clearly show the application’s responses to
the actions of the user.

Each conversation has two distinct parts: a column of actions and
inputs, and a parallel column of the related software responses.
These responses are a first-order listing of the software responses
and actions. We designers will use these statements as we design our
system and assign responsibilities and actions to a population of
software objects.

Conversations record rounds of interaction between the user and
the system. Each round pairs a sequence of user actions with a
sequence of software responsibilities. Rounds can be highly interac-
tive or batch-oriented, depending on the application. For example, a
highly interactive round in our word processor might capture and
validate every key press, correcting often-mistyped words or signal-
ing the user immediately about an invalid entry. In contrast, the

5. The user adjusts the filename and the directory location as
desired.

6. The user commands the software to complete the Save Docu-
ment command.

7. The software warns the user that formatting information may
be lost if the file is saved in HTML format. The user is pre-
sented with the option of canceling or continuing the save
operation.

8. The user chooses to save the document in HTML format.

9. The software saves the document and redisplays the newly
reformatted contents. Certain formatting information, such as
bullets, indentations, and font choices, may have been altered
from their original.

We develop conversations
and scenarios around a
course of action, sometimes
choosing a single path among
many alternatives.

Wirfs.book Page 54 Friday, October 11, 2002 11:44 AM

Writing the Script: Analysis Descriptions

55

batch-oriented style of Web-based input has you fill out many entry
fields and then submit them all at once.

Figure 2-6 shows a conversation for “Save a Document to a File.”

This conversation shows details not found in either our use case nar-
rative or our scenario. For example, it shows that our system is
working to keep the user informed about all files sharing the same
extension as the to-be-saved document. Presumably this is to help
the user choose a unique filename.

User Actions System Responsibilities

Indicate save file.
Display the name of the file to be saved and the current
directory contents, including all subdirectories and all
files having the same extension as the document to be
saved.

If saving document for the first time, construct a filename
with the extension matching the default document format.

Optionally, change
directory.

Redisplay contents of directory in dialog box.

Optionally, rename file.
Rename file and redisplay filename.

Optionally, change
document format.

Record document format.

Redisplay filename extension to match new format exten-
sion conventions.

Redisplay directory contents showing files whose exten-
sions match the extension of the file to be saved.

Indicate OK to save.
If formatting information will be lost, present notice.

Save document to file.

Redisplay contents if document format changed.

Figure 2-6
A conversation for saving a file lists the user actions and corresponding system
responsibilities.

Wirfs.book Page 55 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

56

Adding Detail

Designers, like users, need to understand exactly how the software
responds to its external environment. The descriptions in conversa-
tions and scenarios shape our design work. System responsibilities
will be assigned to neighborhoods of objects working in concert to
perform various system responsibilities.

Conversation and scenario descriptions need even more detail
before most designers can build a working system and most testers
can write test cases. What are the conventions for handling errors?
What defaults should be assumed? We can describe the following:

� Information supplied by the user and defaults, if any, for miss-
ing information

� Constraints that must be checked before critical system actions
are performed

� Decision points where the user may change course

� Details of key algorithms

� Timing and content of any significant feedback

� References to related specifications

Rather than cram these details into the main body of a use case nar-
rative, scenario, or conversation, we append or reference additional
facts, constraints, information, and concerns. By annotating our
descriptions with these details, we tie usage descriptions to design
constraints and ideas as well as other requirements specifications.

Alternatives, Annotations, and Other Specifications

Conversations and scenarios benefit from their simplicity and
sparseness. However, we may want to capture nit-picky details about
how our software carries out its responsibilities. Our software may
vary its behavior in response to information supplied by the user or
other extenuating conditions. To keep things simple, we separate
these details from the body of the conversation or scenario.

Exceptional Actions

To round out our description, we record deviations from the normal
course of events in the “Exceptions” section:

Exceptions

Attempt to save over an existing file—inform the user and ask him or
her to confirm a choice to replace the existing file.

Conversations can be written
sparsely or can pack more
prose, mimicking talk
between old friends.

Descriptions are easier to
understand if they are written
at a consistent level of detail.
We can include details
outside the main body of
a usage description.

Wirfs.book Page 56 Friday, October 11, 2002 11:44 AM

Writing the Script: Analysis Descriptions

57

Exceptions describe both an atypical condition and its resolution. A
resolution can be a short sentence or two if the response is simple.
Or it can refer to another conversation or scenario that describes a
more complex response. Exceptions describe how our software
should react to anticipated conditions. Sometimes our software can
react and recover. In this case the user continues the task but on an
altered path. At other times, the only response may be to give up and
stop forward progress on the user’s task.

Business and Application Policies

Our system’s responses often depend on explicit application and
business rules. Our software’s behavior must reflect policies such as
“documents should be storable in different formats.” We make perti-
nent policies explicit by listing them separately:

Our growing understanding of our application often gives us ideas
about how the system might be designed. Our guiding principle is
“Be opportunistic!” Rather than rigidly compartmentalize our activi-
ties and documents into “analysis” or “design,” we gather and docu-
ment information as we encounter it.

Design Notes

We note conditions and conventions that are of interest to the
designer in a “Design Notes” section of a use case:

Policies

Do not allow a user to save work to a file that another user has open.

If the document is being saved for the first time, construct and
suggest a filename based on contents of the first line of text in a
document.

Design Notes

Document format is indicated by the file’s extension. Some formats
share the same extension, but information about the actual file for-
mat is in the file format descriptor:

• .doc—standard format files of all versions

• .rtf—rich text format

• .txt—plain text files with or without line breaks

• .html—Hypertext Markup Language format

An idea is an opportunity.
Don’t lose it!

Wirfs.book Page 57 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

58

Other Specifications

Screen layouts, window specifications, documentation of existing
regulations, constraints on system performance, and references to
policy manuals provide even more context. We get even more
insights into our software’s behavior if we tie these to our usage
descriptions. This type of information, although invaluable to
designers, also gives other stakeholders an opportunity to see that
their concerns are being considered.

Glossaries

As we write use cases and other descriptions, we try to use consis-
tent terms. By compiling project-specific definitions for frequently
used words, phrases, and jargon into a glossary, we clarify and make
our specification more consistent:

So far, our descriptions have had little object orientation. Only after
we gather descriptions from many perspectives can we make a stab
at representing them in a unified form—a candidate object model.

Conceptual Objects

We want our design to readily translate to an object-oriented pro-
gramming language. As a first step toward object design, we describe
key concepts—a collection of candidate objects. We have crossed
into object thinking. Our stakeholders understand these high-level
concepts because they directly reflect the core concepts of the
domain. But as we progress into even more detailed design activi-
ties, our objects will take on more computer-related characteristics
and appear even more alien to others.

Document—A document contains text organized into paragraphs and
other bitmap or graphic objects. It is created with the editing tool. Its
contents can be modified using various editing commands.

Graphic Object—A graphic object can be visually displayed in a docu-
ment. A graphic object can be created within the text editor or be
imported from other applications and inserted into a document.
Depending on its properties the user may be able to resize, scale, or
adjust its physical properties.

Wirfs.book Page 58 Friday, October 11, 2002 11:44 AM

Writing the Script: Analysis Descriptions

59

Concentrating on the Core

Our goal is to build well-designed software that works according to
specifications and can accommodate modest changes. It needs a
solid core. This “core” can mean many things:

� Key domain objects, concepts and processes

� Objects implementing complex algorithms

� Technical infrastructure

� Objects managing application tasks

� Custom user interface objects

In our word processing application, those objects that represent
parts of a document—objects such as Document, Page, Paragraph,
and SpellChecker—form a core. They appeared during initial con-
cept formation.

Document

A document contains text and other visual objects that represent the
contents of other applications. Documents are organized as a
sequence of document elements, including paragraphs, graphic
objects, tables, and other document elements that the user formats
and visually arranges on pages.

Page

A page corresponds to what is visually present on a printed docu-
ment page. It is composed of paragraphs and other document ele-
ments and, optionally, headers and footers consisting of text
organized on the top and bottom of each page.

Paragraph

A paragraph is a document element that consists of text or other
graphic objects. A paragraph is created when the user signifies a
paragraph break by pressing Enter. Paragraphs have an associated
paragraph style that is used to display its contents and control spac-
ing between lines of text in the paragraph.

Spell Checker

The spell checker verifies that words within the document or a high-
lighted portion of text are contained in the dictionary that comes

What you consider to be
“core” will depend on the
emphasis in your application
and what your stake is in its
success.

Candidate objects may or may
not survive intact to become
part of the application object
model.

Wirfs.book Page 59 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

60

with the word processing application or have been added by the
user to the user dictionary. The spell checker informs the user about
each misspelled word and presents the user with the opportunity to
correct, ignore, or add the word to the user dictionary.

If these objects survive candidacy and join the ranks of other newly
coined design objects, it means that they represent the application
responsibilities in a fashion that supports our design goals.

CASTING THE CHARACTERS: EXPLORATORY DESIGN

If analysis is about our application’s behaviors, design is about the
underlying objects that we derive from them. In design we are laying
out and paving the streets that our application does business in. Like
a good city planner, a good designer will consider how software will
grow and change and what elements are most likely to be the focal
points for change.

There is a significant distance between conceptual objects and
design objects. Both describe things. However, high-level descrip-
tions ignore details that add heft and definition. This gap rightfully
exists. Concepts and system responsibilities form a bridge to the
work that remains to be done. In design we create a model of objects
that work together to achieve our system’s responsibilities.

Designers examine conceptual objects for merit. These conceptual
objects are only candidates that may be discarded if they are
rejected as unworthy of further consideration. Or they may be incor-
porated into the design and become important elements of it. In our
word processing application, Document proves a worthy design
object. It is responsible for knowing and structuring its contents, a
collection of Paragraphs organized on Pages. Similarly, a Paragraph
is composed of Text, which is formed into Words.

On further examination, Paragraph proves a design gold mine! We
can envision Paragraphs to be composed of Text objects and various
kinds of nontextual objects representing graphics, drawings, figures,
or even elements from external sources. Paragraphs are separated
by ParagraphBreak objects. Text is composed of characters that
form Word objects that compose Sentence objects.

As text is entered, a Parser object forms Text into Words. Words have
a document location—a beginning and an ending position—and
character contents. Words are composed of characters delimited
either by punctuation marks or other nontextual elements. As each
Word is formed, it is passed to the SpellChecker object, which
checks for correctness.

Chapter 3, Finding Objects,
presents strategies for
identifying and characterizing
design objects.

“While most of our mental
models are intuitive and
largely subconscious, the
essence of both science
and business is the creation
of explicit models, called
manifest models, which we
can share and discuss.”

 —Trygve Reenskaug

We glean responsibilities
from various descriptions and
recast them into well-formed
design objects. We add our
own inventions to form a more
complete, detailed model.

Wirfs.book Page 60 Friday, October 11, 2002 11:44 AM

Casting the Characters: Exploratory Design

61

Often, conceptual objects and early candidates are rich design fod-
der—being transformed into several objects as design progresses.
Less commonly, candidates pass directly from analysis to design,
with responsibilities remaining relatively intact. Each object, if it
continues in design, will need a clearly stated role and an appropri-
ate set of responsibilities. Most likely, these responsibilities aren’t
clearly articulated by any earlier description.

Experienced designers, as soon as they hear “requirements,” imme-
diately start thinking about objects and their responsibilities. They
often quickly conceive of additional responsibilities that round out
candidates’ behaviors, seemingly taking a leap from rough concept
to well-formed candidate. And they invent new concepts and soft-
ware machinery on-the-fly to fill in the gaps in their object model.
Sometimes this leap can appear startling to someone relatively new
to object thinking.

For example, as we look further at the SpellChecker, we see that to
actually perform its responsibility for knowing correct spellings, we
might design it to keep base parts of known words in a SpellingDic-
tionary object and to know rules for pluralization and forming
tenses. It is unlikely that the candidate object SpellChecker will sur-
vive as a single object. More likely, as design progresses, it will
become a community of collaborating objects, perhaps a subsystem.

CRC Cards

We record preliminary ideas about candidates, whether they are can-
didate objects or candidate roles, on CRC cards. CRC stands for Can-
didates, Responsibilities, Collaborators. These index cards are
handy, low-tech tools for exploring early design ideas. On the
unlined side of the CRC card, we write an informal description of
each candidate’s purpose and role stereotypes (see Figure 2-7).

Getting more specific, we flip over the CRC card to record its respon-
sibilities for knowing and doing (see Figure 2-8). Responsibilities
spell out the information that an object must know and the actions
that it must perform. Collaborators are those objects whose respon-
sibilities our object calls upon in the course of fulfilling its own.

Cards work well because they are compact, low-tech, and easy. You
move them around and modify or discard them. Because you don’t
invest a lot of time in them, you can toss a card aside with few
regrets if you change your mind. They are places to record your ini-
tial ideas and not permanent design artifacts.

Although CRC cards were
originally intended to
describe classes, their
responsibilities, and
collaborators, we recommend
you look for candidates first.
Decide on how they are
realized as classes later—
once you have an idea they’ll
stick around.

Chapter 4, Responsibilities,
discusses how to identify and
assign responsibilities to
appropriate candidates.

Wirfs.book Page 61 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

62

Because cards are small and not in a computer, you can easily
arrange them on a table and view many (perhaps all) of them at the
same time. You can pick them up, reorganize them, and lay them out
in a new arrangement to amplify a fresh insight. You can leave blank
spots to represent gaps in your design.

It is pointless to insist on cards, however. If you work best with
sheets of blank paper or yellow legal pads, use them. Use a white
board to see the big picture. Describe candidates on Post-it notes,
which you can rearrange in an instant (see Figure 2-9).

The obvious conceptual objects that we identify first on CRC cards
are only one piece of the puzzle. It is the unintuitive inventions that
challenge our creativity. They are the hallmark of a flexible and well-
factored program. They are what we look for during design.

Inventions: Using Patterns

You gain a measurable advantage by knowing where to look for
adaptable solutions. One powerful way to increase design skill is to
seek out good patterns and learn where and when to apply them.

Figure 2-7
The unlined side of a CRC card characterizes the candidate.

Document
Purpose: A Document acts as a container
for graphics and text.

candidate

characterizations

its role in the application

its role in the Composite pattern

Patterns: Composite-component
Stereotypes: Structurer

If you insist on using a
computer, don’t be lulled into
thinking your candidates are
well formed because typed
responsibilities look neater. At
this stage, exploring options
should be fun, easy, and low-
cost.

Good designers short-circuit
the difficult work of invention
by adapting proven solutions.
They study other designs and
reuse their own and others’
experience.

Wirfs.book Page 62 Friday, October 11, 2002 11:44 AM

Casting the Characters: Exploratory Design

63

Figure 2-8
The lined side of a CRC card describes responsibilities and collaborators.

Document
Knows contents TextFlow
Knows storage location
Inserts and removes text,
 graphics, and other elements

candidate

responsibilities

collaborators

Figure 2-9
Post-it notes are easy, compared to CRC “cards.”

Purpose: A document represents
a container that holds text and/
or graphics that the user can
enter and visually arrange on pages.

Document

Stereotypes: Structurer

Wirfs.book Page 63 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

64

Using solutions that have proven themselves useful in a variety of
contexts can help us fill in the gaps in our thinking. These little
“whacks on the side of the head” jar us into thinking about solving
new problems in proven ways.

There is a key aspect of our word processor that we should study:
how it responds to the myriad user actions. The word processor is,
quite literally, “responsible” for interpreting requests for editing,
inserting, finding, formatting, saving, opening, cutting, copying, past-
ing, printing, viewing, checking spelling and grammar, and so on.

� How should we perform these actions?

� Each item selected from a menu represents a request for our
word processor to take action. How can they be undone?

� Many actions affect a specific portion of the document. How do
we keep track of which section to operate on?

For example, a cut action removes highlighted text into a cut buffer,
whereas a bold action sets bold emphasis on either the currently
highlighted text or, if no text is highlighted, the word containing the
current cursor position. Saving a document means writing the docu-
ment to a specific file.

The Command pattern, described in Design Patterns: Elements of
Reusable Object-Oriented Software, turns an action into an object.
Each specific action can be represented by a distinct object that
plays the role of a Command. Using inheritance, these objects can be
implemented by classes in an inheritance hierarchy. As described,
the Command pattern is very general and must be tailored to fit our
word processor application. To use it, we must structure all of our
thinking about responsibilities for performing and undoing our many
word processing actions into various command objects. What
exactly does this mean? How can we fit all actions into the command
pattern form?

We start by declaring that any object playing a Command role has a
responsibility for performing a specific action (see Figure 2-10).
Undoubtedly, our design will need to have many different kinds of
Command objects, and classes that implement them, to model each
of the myriad actions our word processor takes. To support “undo-
ing” of each action, each different kind of Command object will be
responsible for reversing its action. We will define the responsibili-
ties for each different kind of command. To implement our design,
we will construct a superclass Command that declares that all Com-
mands can “execute an action” and can “undo” its effects. Addition-
ally, any Command knows the target of the action. In the word

The problem of how to
exercise control is central
to most applications.

An experienced designer
might recognize the need for
the Command pattern almost
immediately. A new designer
might prototype different
ways to solve the problem of
providing different types of
“command” behavior, before
discovering that the
Command pattern offers a
consistent solution. When you
discover that a design
patterns is a good fit to your
problem, you are leveraging
others’ design experiences.

Wirfs.book Page 64 Friday, October 11, 2002 11:44 AM

Casting the Characters: Exploratory Design

65

processor, a Command’s target is the portion of the document that it
affects.

Each different kind of command object will support all the responsi-
bilities of the Command role—but they will do so in specific ways.
For example, executing a SaveCommand means saving the docu-
ment’s contents to a file. Save is not reversible and will never be
asked to undo. A SaveCommand object knows that the target of the
action is the entire document, and, because it collaborates with the
document to fulfill this responsibility, we show Document as a col-
laborator (see Figure 2-11).

We create a CRC card that shows the responsibilities of each differ-
ent kind of command object. A PasteCommand fulfills the role of a
Command by placing text into a document at the current cursor
location, knowing paste is reversible, and cutting it out if asked to
undo (see Figure 2-12).

As we specify how each command’s responsibilities are delegated,
we add responsibilities to the Document CRC card (see Figure 2-13).

Although we applied the Command pattern in this case to illustrate
the power of applying a proven solution to our particular design prob-
lem, sometimes design is much harder. We must think and rethink our
design ideas, bouncing from one card to another, clarifying object

Figure 2-10
The Command object responsibilities are stated very generally.

Command
general responsibilities for knowing

general responsibilities for doing

Knows target of action request
Knows whether action is reversible
Executes an action
Undoes a reversible action

Wirfs.book Page 65 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

66

Figure 2-11
The SaveCommand object responsibilities are more specific statements.

Knows target..entire document Document
Knows save is not reversible
Saves document
Not available to undo

SaveCommand
exactly what it knows

exactly what it does

a collaborator

Figure 2-12
The PasteCommand object responsibilities fulfill the Command responsibili-
ties, too.

Knows target location in document Document
Knows paste is reversible CutBuffer
Undoes by moving pasted portion
 back to buffer
Pastes cut buffer into document

PasteCommand
this one knows differently

this one does differently

Wirfs.book Page 66 Friday, October 11, 2002 11:44 AM

Casting the Characters: Exploratory Design

67

roles, allocating responsibilities, and developing collaborations.
Sometimes, as we press forward, solutions aren’t readily apparent.
Worse yet, when we know more about our design, our earlier solu-
tions may—on further reflection—seem brittle or inappropriate.

In early design, ideas are fluid. It is easy and desirable to make radi-
cal changes. We can relocate responsibilities, rearrange collabora-
tions, adjust object roles, and introduce new players without much
effort. We gain certainty and conviction by considering options.

Pursuing a Solution

How should you choose among acceptable design alternatives? Con-
sider this simple strategy:

1. If you don't have any predefined notions, create a solution that
seems to work.

2. Explore the limits and strengths of that solution. To hedge your
bets, measure at least one alternative against the first solution.

3. Favor a solution that contributes to design consistency.

4. Don’t overwork a solution.

5. Fit your solution into known design patterns.

Figure 2-13
Working out more details, we add responsibilities and collaborations.

Knows contents TextFlow
Knows storage location
Inserts and removes text,
 graphics, and other elements
Saves contents

Document

a new responsibility

Our primary tool for design is
abstraction. It allows us to
effectively use encapsulation,
inheritance, collaboration,
and other object-oriented
techniques.

Wirfs.book Page 67 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

68

6. Borrow and adapt proven design ideas and archetypes.

7. Be willing to revise earlier decisions when things get ugly.

8. If you don’t have the time, don’t search for insights. Abstrac-
tion or cleverness can’t be forced.

Bouncing Between Ideas and Details

One way to make sure we don’t get off track is to constantly test our
design with detail. A solution that sounds great in principle can
crumble under the weight of detail. We use nitty-gritty descriptions
in conversations and scenarios. We challenge our design with extra
conditions that occur to us as we dig into details. After modeling at a
high level, we spend time working with details. There is a shift in our
design work between modeling and abstraction, elaboration and
detailing.

We can turn to our descriptions for these details. Revisiting the
“Save a Document to a File” conversation, we find many responsibili-
ties that must be assigned to objects (see Figure 2-14). System
responsibilities stated in conversations are a great source for finding
object responsibilities. When we concentrated on the core design,
we purposely ignored these details. To complete our design, we need
to sort through system responsibilities and many other details,
inventing many design objects and collaborations. To give you a hint
at how we assign initial responsibilities, we’ve noted in parentheses
how we made initial assignments of system responsibilities to one or
more potential candidates.

Once we’ve made an initial stab at gleaning responsibilities from con-
versations and assigning them to objects, we need to construct a
more complete solution and weigh its merit against alternatives.
We’ll answer in detail how any objects supports responsibilities
stated at a high level:

� What does it do? How does it contribute to a high-level state-
ment of responsibility?

� How does it collaborate with others that also play a part in sup-
porting this high-level responsibility?

� What does it need to remember?

� What messages does it send to others? In what sequence?

� What are their arguments? What is returned from each request?

We can also use “detail” to
help spot abstractions. By
looking at all the various
commands that one needs in
a word processor, you may
gain insight into what they
have in common and spot the
need for some way to unify
them.

Wirfs.book Page 68 Friday, October 11, 2002 11:44 AM

Casting the Characters: Exploratory Design

69

User Actions System Responsibilities

Indicate save file.
Present a dialog box that displays the name of the file to be
saved and the current directory contents, including all sub-
directories and all files having the same extension as docu-
ment to be saved. (Assign high-level coordination to
SaveDialogController, which is directed by SaveCommand).

If saving document for first time, construct a filename with
the extension matching the default document format.
(Assign to a new service provider?)

Optionally, change
directory.

Redisplay contents of directory in dialog box (SaveDialog-
Controller collaborating with Directory).

Optionally, rename
file.

Rename and redisplay filename (SaveDialogController
collaborating with Document, which collaborates with
File).

Optionally, change
document format.

Record document format (Document).

Redisplay filename extension to match new format exten-
sion conventions. (Assign to SaveDialogController, which
will collaborate with some object that knows the mapping
between extensions and document type—possibly a
FileManager?)

Redisplay directory contents, showing files matching to-
be-saved file’s extension (assign to SaveDialogController).

Indicate OK to save.
If formatting information will be lost, present notice (Save-
DialogController).

Save document to file (SaveCommand collaborating with
Document).

Redisplay contents if document format changed (Save-
Command collaborating with WordProcessingController).

Figure 2-14
System responsibilities are assigned to objects.

Wirfs.book Page 69 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

70

We’ll design object interactions and further divide their responsibili-
ties. We will create additional design documentation and drawings.
We will draw and preserve a few diagrams that depict typical collab-
orations and show the classes that implement our design. Ultimately,
our design will be expressed in code.

TUNING THE PRODUCTION: DESIGN REFINEMENT

As designers, we play a significant part in realizing a smoothly run
production. Exploratory design is only the start. After we mull over
initial ideas and explore enough to know where we are headed, we
systematically give our design a more thorough consideration. We
ask many questions and then make many decisions and adjustments
that will have a broad impact:

� What styles of collaborations should predominate?

� How can our design accommodate users’ varying needs?

� Where should we build in capability for future extension and
modification?

� Can we make our design more consistent, predictable, and easy
to comprehend?

� How robust does our software need to be?

A lot of work remains! Strategies for working on and evaluating these
details form the heart of this book. Let’s briefly touch on some of
these activities.

Determining Collaboration and Control Styles

One important decision is how best to allocate control and decision-
making responsibilities among collaborators. Control questions crop
up in several areas:

� How do we control and coordinate use cases and user-initiated
actions?

� What are the architectural constraints on collaboration and
control styles?

� Where do we place responsibilities for making decisions?

� How should exception detection and recovery be managed?

Answers to these questions have a huge influence on how responsi-
bilities are distributed across the rest of the model. Our goal is to
design consistent, predictable patterns of interactions. Command
objects are the locus of control for user actions. With this design

Chapter 7, Describing
Collaborations, presents
options and advice
for documenting key
collaborations using both
informal techniques and
UML diagrams.

Chapter 5, Collaborations,
discusses how to design
objects to work together.
Chapter 6, Control Style,
presents options for
developing consistent
patterns of collaboration and
application “control centers.”

Wirfs.book Page 70 Friday, October 11, 2002 11:44 AM

Tuning the Production: Design Refinement

71

choice, a clear pattern for controlling user-directed actions emerges.
The Command pattern abstracts what it means to respond to a user
action and gives us a recipe for adding new kinds of user-directed
action controllers. It should be fairly straightforward to fit new user
actions into our existing design by creating new kinds of Command
objects.

But there are other places where we will need to ponder what con-
trol style is appropriate. Consider spell checking. We must make
decisions about how to represent spelling rules and how to detect
and report spelling errors. The control of how documents are saved
and recovered needs careful design. Developing a style of collabora-
tion and control involves deciding how to distribute control among
collaborators as well as deciding on what patterns of collaboration
should be repeated. Our options for distributing these command and
control responsibilities range from more centralized to more distrib-
uted solutions.

Designing to Support User Variations

A typical word processor supports many different user styles, prefer-
ences, and modes of interaction. Numerous features are under the
user’s direct control, ranging from how a document is displayed to
details of how often the document is saved to what spellings are con-
sidered “legal.” In an application of this sort, how best to support
each of the myriad variations will be a predominant design consider-
ation. Our word processor needs to make many tactical decisions as
it executes based on current settings and preferences.

Designing for Flexibility and Extension

Flexibility isn’t intrinsic to any design. To gain flexibility, we add
appropriate bends and folds to our objects’ behaviors that allow for
extension and reconfiguration. We start by characterizing the ways
our software needs to flex. We briefly describe how a behavior var-
ies, note when this variation should occur, and present enough
examples to illustrate the essence of the variation. We write brief
descriptions of variations on hot spot cards (see Figure 2-15). As with
CRC cards, the real estate on a hot spot card is limited. So we record
only the essentials.

Once we’ve characterized how and when our software should flex,
we then can employ one or a combination of design techniques:
abstraction, classification, composition, inheritance, and parameter-
ization.

Chapter 9, Flexibility,
discusses how to design an
application so that it “flexes”
and supports planned
variations. Patterns and
implementing designated
“hooks” are key to adding
flexibility.

Wirfs.book Page 71 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

72

Our word processor must accommodate many user-specified varia-
tions. In addition, we expect to support new features and abilities—
new graphics, new document formats, new and more sophisticated
grammar checking, and document templates. Our software must be
flexible from the start.

There are many techniques we designers use to accommodate
planned variations. They range from simple checks on values to
much more elaborate schemes. We can configure an object’s behav-
ior by passing method parameters. We can design an object to
remember information that it can query to decide how it should per-
form an operation. We can configure an object to vary how it sup-
ports a responsibility by having it delegate to a configurable set of
service providers. For example, we can add support for a new docu-
ment format, plug in the appropriate service provider to generate
that format when the document is saved, and plug in another to read
and interpret it when it is opened.

There isn’t one best strategy to accommodate variation. We favor
simple solutions that build on each other. We can always add com-
plexity if we need a more accommodating solution. Redesign is big
part of sustaining a long-lived production.

Hot Spot Name

General description of the semantics of
some variable behavior

Descriptions of hot spot behavior for at
least two specific situations

Figure 2-15
The hot spot card describes and demonstrates a variation.

Wirfs.book Page 72 Friday, October 11, 2002 11:44 AM

Tuning the Production: Design Refinement

73

Designing for Reliability

Much complexity in a software design is the result of situations that,
although expected, aren’t “normal.” In the word processing applica-
tion, there are many opportunities for our user to supply us with
incomplete information or to ask the software to do something that
isn’t exactly in the script.

What happens when we try to save our document over an existing
file? How should our software respond to requests to save a docu-
ment in an exchange format that would lose formatting information?
These are the easy ones to handle, and there are many more. What
happens when our application doesn’t have enough room to exe-
cute, or when it discovers a place in a document with uninterpret-
able data? These are a bit harder to accommodate. Our users expect
our application to gracefully recover from those situations if it can,
and to politely inform them when it cannot.

We need to design our objects to responsibly and consistently (and
to the best of their abilities) react to these exceptions. Designing
consistent exception-handling policies and locating them systemati-
cally in controllers, service providers, and other “responsible”
objects makes the way our software reacts to exceptions more
predictable.

Making Our Design Predictable, Consistent, and
Comprehensible

The essence of a good design is predictability and consistency. We
handle our application’s complexity by designing consistent solu-
tions. We don’t want our design to be startling. So, if we solve one
design problem in a particular way, we look for places where the
solution might be repeated. Given a complex application, there are
an infinite number of designs that will solve it. Many factors contrib-
ute to a consistent, comprehensible design:

� Objects are grouped in neighborhoods.

� There are few lines of communication between neighborhoods.

� No one object knows, does, or controls too much.

� Objects perform according to their designated role.

� When one solution is designed, variants will be applied to other
parts that are similar.

� There are few patterns of collaboration that repeat throughout
the design.

Chapter 8, Reliable
Collaborations, explores
strategies for increasing an
application’s ability to react
to and handle exceptional
conditions.

Wirfs.book Page 73 Friday, October 11, 2002 11:44 AM

Chapter 2 Responsibility-Driven Design

74

We need to balance a number of forces when we work on developing
a consistent, predictable design. There is no recipe. We weigh vari-
ous design trade-offs and make concerted efforts to be consistent
across our design. Sometimes a system architecture or application
framework will impose a collaboration and control style on the
design. Sometimes using a standard design pattern will help. At
other times, we need to discover and adopt a consistent style as we
move along.

SUMMARY

Just as a good cook alters a recipe’s ingredients or the order of the
instructions, a good designer treats a design method as a guide.
Once you are comfortable with the basics, you should feel more
comfortable adjusting the dials on the design process—producing
what’s needed when it is needed, cutting to the essence, and working
on the hard problems. With experience you’ll learn how to see and
describe the problem and then readily design and build objects that
model a solution.

Responsibility-Driven Design is suitable for a wide variety of projects
because the emphasis is on thinking and creativity. First, guided by
the various stakeholders’ requirements, we determine how our
application should behave. Second, we explore what we know so
that we will find out what we don’t know. Knowing that designs
emerge over time, we create initial design ideas using low-tech tools
such as CRC cards that easily let us change our minds or consider
different options.

Finally, we turn the lights on the shadowy areas. We pin down what
we have fudged. We look for solutions that have proven themselves
elsewhere. Our success is directly related to how much opportunity
we have seized, how much time for discovery, reflection, and
revision we have created, and how satisfied the project’s stakehold-
ers are.

FURTHER READING

Responsibility-Driven Design was first described in a paper by
Rebecca Wirfs-Brock and Brian Wilkerson, “Object-Oriented Design:
A Responsibility-Driven Approach,” presented at the OOPSLA ’89
Conference. A year later, the book Designing Object-Oriented Soft-
ware, (Prentice Hall, 1990) authored by Rebecca Wirfs-Brock, Brian
Wilkerson, and Lauren Wiener, expanded upon ideas presented in

Chapter 10, On Design,
explores three different
design problems—core,
revealing, and the rest—and
discusses how best to
approach them. If you know
the nature of the design
problem you are working on,
you can be prepared and
adjust how you work.

Wirfs.book Page 74 Friday, October 11, 2002 11:44 AM

Further Reading

75

the paper. Since then, the notion of object responsibilities has
become commonplace.

Responsibility-driven thinking fits into and complements most devel-
opment processes and practices. For example, Rational has defined
a process called the Rational Unified Process, or RUP. It defines four
phases of an iterative/incremental development process: inception,
elaboration, construction, and transition. Responsibility-Driven
Design principles can be applied during inception and elaboration
(what others may consider object design) and certainly should not
be forgotten during construction. A good book on RUP is The Ratio-
nal Unified Process: An Introduction (Addison-Wesley, 2000) by Phil-
ippe Kruchten.

Agile, adaptable development processes are a popular topic—and
Responsibility-Driven Design techniques fit here, too. If you are inter-
ested in reading about what makes a development process agile,
pick up Jim Highsmith’s Agile Software Development Ecosystems
(Addison-Wesley, 2002). There are several different processes whose
authors and proponents classify as being agile. The most written
about is Extreme Programming, or XP, which includes just 12 devel-
opment practices. Extreme Programming Applied: Playing to Win
(Addison-Wesley, 2001), by Ken Auer and Roy Miller, summarizes
Extreme Programming practice and then presents many nuggets of
wisdom.

If you are interested in the art and practice of writing good use cases,
there are several books we recommend. Ivar Jacobson introduced
use cases in his classic book, Object-Oriented Software Engineering: A
Use Case Driven Approach (Addison-Wesley, 1994). Several authors
have put their unique spin on use cases and have made several
refinements to Ivar Jacobson’s original ideas. The best of the bunch
are Alistair Cockburn’s Writing Effective Use Cases (Addison-Wesley,
2002) and Larry Constantine and Lucy Lockwood’s Software for Use:
A Practical Guide to the Models and Methods of Usage-Centered Design
(Addison-Wesley, 1999). Alistair Cockburn’s book, an easy read, is
packed full of examples and advice on how to fix common use case
problems. Larry Constantine and Lucy Lockwood’s book isn’t strictly
just about use cases, although it goes to some length in describing
different styles of usage descriptions and their strengths and weak-
nesses. Their book presents a systematic and thorough approach to
developing usable systems and user interfaces, through the develop-
ment of role models, task models, and content models. Anyone who
wants to focus on system usability will find much of value in this
book. It is packed with wisdom, great stories, and many practical
tools and techniques.

Larry Constantine and Lucy
Lockwood introduce the
notion of an essential use
case. It is a structured
narrative expressed in the
language of the application
domain and its users. It
describes a user task in a
simplified, technology-free
and implementation-
independent fashion.
Because it specifically omits
details, it leaves more options
for the user interface design.

Wirfs.book Page 75 Friday, October 11, 2002 11:44 AM

Wirfs.book Page 76 Friday, October 11, 2002 11:44 AM

Chapter 3
Finding Objects

oseph Albers could make colors dance or retreat: “I see
color as motion . . . To put two colors together side by side

really excites me. They breathe together. It’s like a pulse beat . . .
I like to take a very weak color and make it rich and beautiful
by working on its neighbors. I can kill the most brilliant red by
putting it with violet. I can make the dullest grey in the world
dance by setting it against black.” Albers, one of the great
graphics artists of the twentieth century, was a master at mak-
ing visual imagery emerge from form and color. By careful jux-
taposition of colors, textures, and shapes, the artist can make
images leap off the page. Albers calls this the “1 + 1 = 3” effect.
A good design is more than the sum of its parts. A bad design
muddles what should be emphasized. Chartjunk—misuse of
bold lines and color or addition of pretty stuff that adds no
value—shifts attention away from vital information. In graphic
design, composition, form, and focus are everything! An object
design poses similar challenges. It is strengthened by vivid
abstractions and well-formed objects that fit into an overall
structure. It can be weakened by glaring inconsistencies or
muddled concepts.

J

Wirfs.book Page 77 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

78

The abstractions you choose greatly affect your overall design. At
the beginning, you have more options. As you look for candidate
objects, you create and invent. Each invention colors and constrains
your following choices. Initially, it’s good to seek important, vivid
abstractions—those that represent domain concepts, algorithms,
and software mechanisms. Highlight what’s important. If you invent
too many abstractions, your design can get overly complex. Not
enough abstraction, and you’ll end up with a sea of flat, lifeless
objects.

Your goal is to invent and arrange objects in a pleasing fashion. Your
application will be divided into neighborhoods where clusters of
objects work toward a common goal. Your design will be shaped by
the number and quality of abstractions and by how well they com-
plement one another. Composition, form, and focus are everything.

A DISCOVERY STRATEGY

So let’s get to it! Conceiving objects is a highly creative activity, but it
isn’t very mysterious. Finding good candidate objects isn’t a topic
that has received a lot of attention. Early object design books,
including Designing Object-Oriented Software, speak of finding objects
by identifying things (noun phrases) written about in a design speci-
fication. In hindsight, this approach seems naïve. Today, we don’t
advocate underlining nouns and simplistically modeling things in the
real world. It’s much more complicated than that. Finding good
objects means identifying abstractions that are part of your applica-
tion’s domain and its execution machinery. Their correspondence to
real-world things may be tenuous, at best. Even when modeling
domain concepts, you need to look carefully at how those objects fit
into your overall application design.

Although software objects aren’t just waiting for you to find them,
you can identify them somewhat systematically. Although many dif-
ferent factors may be driving your design, there are standard places
to search for objects, and you’ll find many sources of inspiration.
You can use your knowledge of your application domain, your
notions about needed application machinery, lessons learned from
others, and your past design experience.

Our recipe for finding and assessing candidates has a number of steps:

� Write a brief design story. In it, describe what is important
about your application.

� Using this story, identify several major themes that define some
central concerns of your application.

A graphics designer
enhances important
information by layering and
separating it, giving focus to
the data rather than its
container, and by using
multiple signals to remove
ambiguity.

Well-formed abstractions and
careful attention to how they
complement one another
have a direct effect on the
quality of an object design.
This chapter discusses how
to find and arrange software
objects in an initial object
design. The ultimate goal is to
develop a practical solution
that solves the problem.
However, we find that such
designs typically are also
esthetically pleasing ones.

Wirfs.book Page 78 Friday, October 11, 2002 11:44 AM

Looking for Objects and Roles, and Then Classes

79

� Search for candidate objects that surround and support each
theme. Draw on existing resources for inspiration: descriptions
of your system’s behavior, architecture, performance, and
structure.

� Check that these candidates represent key concepts or things
that represent your software’s view of the world outside its
borders.

� Look for candidates that represent additional mechanisms and
machinery.

� Name, describe, and characterize each candidate.

� Organize your candidates. Look for natural ways to divide your
application into neighborhoods—clusters of objects that are
working on a common problem.

� Check for their appropriateness. Test whether they represent
reasonable abstractions.

� Defend each candidate’s reasons for inclusion.

� When discovery slows, move on to modeling responsibilities
and collaborations.

This chapter will cover each of these steps in greater detail. But be
aware that you don’t always complete each step before moving on to
the next. The process of discovery and invention is more fluid than
that. Sometimes you perform several steps at the same time. You
may discard some candidates and start over if they don’t seem to fit
in to your emerging design. But if you start by characterizing what is
vital to your application’s success in a design story, you can then
proceed with an organized search for objects that support this core.

At the end of your initial exploration, you will have several handfuls
of carefully chosen, justified candidates. Many more will be invented
as you proceed. These initial candidates are intentionally chosen to
support some key aspect of your system. They will seed the rest of
your design. Finding and inventing this first batch of candidates
takes careful thought.

LOOKING FOR OBJECTS AND ROLES, AND THEN CLASSES

The first candidates to look for should represent important things:
concepts, machinery, and mechanisms. Typically these kinds of can-
didates are smart—they do things. They may know things, too, but
they perform actions based on what they know. Initially, think very
concretely. Abstraction will come later, after you see more concrete

 Initially, we recommend you
look for candidate roles and
objects. Once you have an
idea that they’ll stick around,
make decisions on how they
are realized as interfaces and
classes.

Wirfs.book Page 79 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

80

objects and understand their relationships to others. To start, iden-
tify distinct objects that have clear roles. Next, decide what candi-
dates should know and do (their responsibilities) and whom they
work with (their collaborators).

Then, thinking more abstractly, you can turn to identifying aspects
that are common to a number of candidates. Shift your focus from
thinking about objects and their individual roles to deciding what
objects have in common. Only after you’ve made decisions about
common responsibilities that are shared by different candidates can
you define common roles. We deem our objects and roles candidates
until their value has been proven. Only then do we decide how they
will be realized as classes and interfaces.

When you transition from candidates to classes and interfaces, you
have options. You can employ inheritance, abstraction, interfaces, and
collaborations to construct a well-factored, flexible design. You will
specify abstract and concrete classes as well as interfaces. An abstract
class provides a partial implementation of responsibilities. It leaves
subclasses with the obligation to implement specific responsibilities.
A concrete class provides a complete implementation. An interface
specifies responsibilities more precisely as method signatures but
leaves their implementation open. Any class can implement an inter-
face, regardless of its position in any class inheritance hierarchy.

WHY TELL A DESIGN STORY?

We suggest you create a framework for searching for potential candi-
dates by writing a story about your application. After you’ve done
this, the candidates you identify should fall into place and support
various aspects of your story. When you state things in your own
words, you get to decide what’s important. Everybody may have
been talking about what your design should do and what will make it
great, but you should make a few bold statements of your own. In
this design story, identify the things about your application that you
know with certainty, as well as things you don’t yet know. Rather
than being driven by one particular view of your software—whether
it be use cases, requirements, architecture, users, or sponsors—pull
together all these factors and craft your own description.

Write a rough story—two paragraphs or less is ideal. Don’t take a lot
of time revising and polishing it. Be quick and to the point. What is
notable about your application? What is it supposed to do? How will
it support its users? Is it connected to a real-world example that you
can study? Have you done something similar? What will make your

 Abstract and concrete
classes are the building
blocks we use to specify an
implementation. Declaring
interfaces is one means to
make it more flexible and
extensible. A reusable role is
best specified as an interface
that can be implemented by
one or more classes.

Wirfs.book Page 80 Friday, October 11, 2002 11:44 AM

Why Tell a Design Story?

81

design a success? What are the most challenging things to work out?
What seems clear? What seems ill defined? You need not answer all
these questions. Simply write about the critical aspects of your
application. If it helps you make your point, draw a rough sketch or
two. Focus on the main ideas.

Here are two design stories that were written quickly. The first one
rambles. It tells of an online banking application:

This application provides Internet access to banking services. It
should be easily configured to work for different banks. It should sup-
port fast access to banking services for potentially thousands of users
at a time. There is a limited number of software resources, such as
database connections and connections to backend banking software,
that are available. A critical element in the design is the declaration of
a common way to call in to different backend banking systems and a
reliable means of sharing scarce resources. We will define a common
set of banking transactions and a framework that will call into bank-
ing-specific code that “plugs into” the standard layer implementing
the details. The rest of our software will only interface with the bank-
independent service layer.

We’ve developed a prototype implementation of this layer and have
configured it to work for two different banks. Although it is still a pro-
totype, we understand how to write a common banking service layer.
Lately, our bank has been busy acquiring other banks and integrating
their software. We’ve been through three system conversions in the
past year. We want to focus on making this service layer easy to
implement and test. At the heart of our system is the ability to rapidly
configure our application to work for different backends and to put a
different pretty face on each. This includes customizing screen lay-
outs, messages, and banner text. The online banking functions are
fairly simple: Customers register to use the online banking services
and then log in and access their accounts to make payments, view
account balances and transaction histories, and transfer funds. This
is straightforward, easy to implement. There is added complexity.
Customers record information and notes about each online transac-
tion. This extra information will be maintained by our application in
its own database because preexisting bank software has no way to
store it. We want a customer to view human-readable information,
not ancient bank software detailed transaction records. When a cus-
tomer asks to view an account’s transaction history we’ll have to
merge this data with records supplied from the backend software.
Multiple users can access a customer’s accounts, each with poten-
tially different access rights. Certain users might have no access to
sensitive accounts. A company executive might view only account
balances, whereas a clerk in the accounts payable department could
make payments and a comptroller might be able to transfer funds
between accounts.

If you are a member of a
larger design team, write your
own story first and then share
it with your team. See how
your concerns differ from
others’. The team can draft a
single, unified story, but this
isn’t necessary. More
importantly, identify the
important themes in these
design stories. Then look for
candidates that support these
themes.

Wirfs.book Page 81 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

82

This next, more focused, story is about a Web-based game. It
describes new design challenges as well as, to us, familiar territory:

Let’s contrast what we can glean from each story and then sketch
out our candidate search strategies. The underlying requirement for
the online banking system is flexibility. Functionality, implementation,

This game playing application supports an Internet variant of chess
called Kriegspiel. Kriegspiel is a chess version of the popular game
Battleship. The novelty is that players make moves not knowing
where their opponent’s pieces are located. Our immediate concern is
how to distribute responsibilities among major software compo-
nents. In this distributed application, we need to consider time lags
and limited communication bandwidth between architectural compo-
nents. We also need to consider the unpredictability of Internet com-
munications. Each player interacts with our application via a Web
browser. Hundreds of games can be played simultaneously. A user
logs in and requests to play a game with another. If no one is avail-
able, the user can elect to play a game with the computer. We will
need to design our software to play a credible game of Kriegspiel as
well as referee games played by humans. A game can be suspended
and resumed. From our computer gaming experience, we know that
computerized games generally have player input directives, rules
about legal actions, some representation of the current state of the
game, and animations. In this application, our animations are simple
and not a major concern. It is worth stating how Kriegspiel is played,
although our application won’t mimic the real-world game. We will
draw design ideas from this description.

In the game of Kriegspiel, three boards and sets of chessmen are
used. There is a referee, whose chess set is in the center, with two
players seated back-to-back, each at his own board. Each player
moves his own chessmen, and the referee duplicates each move on
his own board. The referee tells a player when his attempted move is
impossible. Each player tries to guess what move his opponent is
making. When a player completes a legal move, the referee
announces, “Black (or White) has moved.” When a player tries an
illegal move, the referee waves his hand to prevent it but does not let
the opponent know. When a move results in a capture, the referee
announces, “Black (or White) captures on (the rank, file, long or short
diagonal)” and removes the captured piece from the board of the
player who lost it. A player may ask, “Any?” and be told by the ref-
eree if he has a possible capture with a pawn. That’s the only ques-
tion he is permitted. Having asked the question he must try at least
one pawn capture before making a different move. To summarize,
players make moves, ask “Any?,” suspend or resume a game, claim
a draw, or concede.

Wirfs.book Page 82 Friday, October 11, 2002 11:44 AM

Why Tell a Design Story?

83

and information need to be configurable. The application will
maintain additional user-supplied information and construct account
history from online and other banking transactions.

Our strategy for identifying candidates for this application will be to
focus initially on modeling concepts that represent online banking
services, the common interface to backend banking systems, and
accounts. We should have objects that are responsible for performing
banking functions and storing application-specific information about
online transactions. Because we are building a multiuser online sys-
tem, we also need objects that are responsible for managing access to
limited resources such as the database and backend banking system
connections. The key themes in the banking story are

� Modeling online banking services

� Flexibly configuring behavior

� Sharing scarce software resources among thousands of users

� Supporting different views of accounts and access privileges

The Kriegspiel application, even though it too is an Internet applica-
tion, has fundamentally different drivers. As with any gaming appli-
cation, we need to take a step back from our vivid real-world
reference of the physical board game and ponder what mechanisms
and inventions are needed by a computerized game. This is always a
major design challenge with gaming applications. It is one we are
familiar with from past experience. Our goal in designing Internet
Kriegspiel isn’t to simulate the real world but instead to construct a
model that represents what is needed to run a computerized game.
Choosing the right abstractions to represent the game and moves
will be critical. We also need to consider how running over the Inter-
net will impact our design. This will affect how we divide the work
between application components. Finally, we’ll need to implement a
semi-intelligent computerized game player—something that is smart
enough to play a decent game against a human opponent. Our cen-
tral concerns for Internet Kriegspiel:

� Game modeling

� Computer playing a game

� Partitioning responsibilities across distributed components

Wirfs.book Page 83 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

84

SEARCH STRATEGIES

Once you have identified major themes, you can use them as sources
of inspiration. Make educated guesses about the kinds of inventions
that you will need based on the nature of your application and the
things that are critical to it. Candidates generally represent the
following:

� The work your system performs

� Things directly affected by or connected to the application
(other software, physical machinery, hardware devices)

� Information that flows through your software

� Decision making, control, and coordination activities

� Structures and groups of objects

� Representations of real-world things the application needs to
know something about

We guide our search from these perspectives. The kinds of inven-
tions we seek are closely related to the role stereotypes.

If an application’s central mission boils down to computation, look
to populate it with objects playing the role of service providers that
calculate, compute, transform, and figure. You will likely invent
objects that represent algorithms or operations along with objects
that control work processes. If your application’s major activity is to
assemble and move information from one place to another, identify
candidates that model this information as objects along with others
to coordinate their movement. If your application connects with
other systems, invent external interfacers that form these connec-
tions. Most designs need objects that control or coordinate the work
of others. Depending on the complexity of the control, this design
decision may or may not be a prominent one. If your application
needs to sort through, organize, and make connections between
related objects, structurers need to be identified. There are relatively
direct links between the kinds of objects you look for and the nature
of the work your software carries out.

As you look for candidates one question to ask is, “How much does
our software need to know about things in the external and virtual
worlds it is connected to?” At the borders, model connections to
other systems as interfacer objects. You may include in your design
objects that represent these other software systems. These service
providers will be called upon by other parts of the application. But

The best way to evaluate
potential candidates that
represent external things is to
shift perspective. Climb into
your software and look out
at the world. Take your
application’s viewpoint. Ask
what you need to know about
your users, the systems you
connect to, and things out
there that you affect.

Wirfs.book Page 84 Friday, October 11, 2002 11:44 AM

Search Strategies

85

when should you model things that are outside a computer, such as
your software’s users? If it is only their actions that matter and not
whom they are, leave them out of the design. Users’ actions can be
conveyed via user interface objects (objects charged with translat-
ing user requests and information to other parts of the system).
There is no need to know who is pushing your application’s buttons!
On the other hand, if whom users are makes your software behave
differently, include some representation of them as a candidate.
Some knowledge of its users (and objects to represent that knowl-
edge) is needed if your software bases any decisions on whom it
interacts with. For example, if different users have different access
rights to accounts or if the ability to resume a game requires knowl-
edge of whom the players are, then some representation of these
users should be part of the design.

Tables 3-1 and 3-2 outline our search strategies for our two applica-
tions. Although we consider each perspective, typically only one or
two are relevant to any particular theme. If we find that a particular
perspective does not yield any insights, we move on. For each
theme, we briefly summarize the perspectives that yielded insights
and the kinds of candidates we are looking for.

Table 3-1 The initial search for online banking application candidates is based
on exploring four themes.

Theme Perspective
Candidates That
Specifically Support. . .

Online banking
functions

The work our system
performs

Performing financial transac-
tions, querying accounts

Things our software
affects

Accounts, backend banking
system transactions

Information that
flows through our
software

Information about transac-
tions, account balances, trans-
action amounts, account
history, payments

Representations of
real-world things

Customers, users, and the
accounts they access

Continues

Wirfs.book Page 85 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

86

Flexibly configuring
behavior

Things our software
affects

A common interface to back-
end systems

Information that
flows through our
software

Configurable display of Web
page banners, text, messages,
and account formats

Sharing scarce
resources

Structures and
groups of objects

Managing limited connections
to backend systems and our
online banking application
database

Different views of and
access to accounts

The work our system
performs

Restricting users’ views of and
ability to perform banking
transactions that modify
account balances

Decision making,
coordination, and
control

Prohibiting access to accounts
unless user has specific
privileges

Table 3-2 The initial search for Kriegspiel application candidates is based on
the themes of game modeling, intelligent computerized game playing, and
distributed games.

Theme Perspective
Candidates That
Specifically Support. . .

Game modeling The work our sys-
tem performs

Assigning players to games,
refereeing, storing and
resuming suspended games,
playing a game, determining
the legality of a move, deter-
mining the outcome of a
move, displaying the state of
each player’s board

Information that
flows through our
software

Information about moves and
player requests

Table 3-1 The initial search for online banking application candidates is based
on exploring four themes. (Cont.)

Theme Perspective
Candidates That
Specifically Support. . .

Wirfs.book Page 86 Friday, October 11, 2002 11:44 AM

Search Strategies

87

We will identify candidates that support the relevant perspectives.
Sometimes candidates leap right out of the page from our brief
descriptions; are Player and PlayerAction good candidates based on
the fact that we need to have candidates that support our game’s
real-world view of “players and their actions”? Highly likely. At other
times, we must speculate about exactly how our software might
work in order to come up with candidates; perhaps there should be a
BankingServicesConnectionManager that manages BankingService-
sConnections or a DatabaseConnectionManager to manage Data-
baseConnections that are scarce resources? Often, different themes
and perspectives reiterate and reinforce the need for certain kinds of
candidates. This is good. It builds confidence in the relevance a

Game modeling (Cont.) Representations of
real-world things

Players and their actions

Structures and
groups of objects

Managing saved games, the
various games, game pieces,
and their locations on a
game board

Computer playing a game The work our sys-
tem performs

Playing a game with a user

Decision making,
control, and
coordination

Determining a reasonable
move to make based on the
current view of the game
(which should be just as lim-
ited as any human player’s
view)

Partitioning responsibilities
across distributed compo-
nents

Decision making,
control, and
coordination

Communicating a player
request to the referee and
game state between players,
detecting whether a player is
still connected

Information that
flows through our
software

Player moves, updated
boards, and game state

Table 3-2 The initial search for Kriegspiel application candidates is based on
the themes of game modeling, intelligent computerized game playing, and
distributed games. (Cont.)

Theme Perspective
Candidates That
Specifically Support. . .

Wirfs.book Page 87 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

88

particular candidate has to our application. At other times, ideas do
not come so quickly, and we must think more deeply to come up
with potential candidates.

We won’t find all the key candidates in this first pass; nor will our ini-
tial ideas about our candidates remain fixed. Our notions change as
we give candidates further definition. The initial candidates that we
come up with will seed our design. So it is particularly important to
give each candidate a strong name that suggests its role and pur-
pose. So before we continue searching for candidates, let’s explore
what it takes to find useful names.

WHAT’S IN A NAME?

Good names increase design energy and momentum. You can build
on a good name. When the name of a software object is spoken,
designers infer something about an object’s role and responsibilities.
That’s why grizzled object designers say, “Choose names carefully.”
A well-formed name creates a link to past experience and common
practice. Meaning comes along with any name, whether we like it or
not. Our brains are wired to find connections to things we already
know. So the key to giving an object a good name is to make its name
fit with what you already know while giving a spin on what it should
be doing. Most names fit into a system of names. Different naming
schemes coexist, even within a single application. There isn’t one
universal naming system.

Qualify generic names. One scheme for naming things that are
special cases of a more generic concept is to tack on to the generic
name a description of that special case.

Include only the most revealing and salient facts in a
name. The downside of any descriptive scheme is that names can
become lengthy. Don’t name every distinguishing characteristic of

A Calendar represents a system of dates and time at a particular loca-
tion. GregorianCalendar extends the Calendar class. Following con-
vention, we could invent JulianCalendar or ChineseCalendar classes.
Others familiar with this scheme could make educated guesses about
how their implementations would differ from GregorianCalendar.

“. . . the relation of thought to
word is not a thing but a
process . . . Thought is not
merely expressed in words; it
comes into existence through
them. Every thought tends to
connect something with
something else, to establish a
relationship between things.
Every thought moves, grows
and develops, fulfills a
function, solves a problem.”

—Lev Vygotsky

Wirfs.book Page 88 Friday, October 11, 2002 11:44 AM

What’s in a Name?

89

an object; hide details that might change or should not be known by
other objects.

Consider the Singleton pattern described in the Design Patterns
book. This pattern ensures that a class has only one instance with a
global point of access. We could name every concept that applies
this pattern a MumbleMumbleSingleton. Following our guideline, we
recommend against this. Singleton is a distinction that is more
important to a class implementer than to a client who uses a single-
ton. Give names that will be meaningful to those who will be using
the candidate, not those who will be implementing it. If someone
using your candidate must know the details of its implementation,
you have likely missed an opportunity to do a better job of abstrac-
tion. One possible exception to this rule is to append Singleton to a
class name when it is crucial for its users to know this.

Give service providers “worker” names. Another English lan-
guage naming convention is to end job titles with “er.” Service pro-
vider objects are “workers,” “doers,” “movers,” and “shakers.” If you
can find a “worker name,” it can be a powerful clue to the object’s
role.

If a worker-type name doesn’t sound right, another convention is to
append Service to a name. In the CORBA framework, this is a com-
mon convention—for example, TransactionService, NamingService,
and so on.

Look for additional objects to complement an object
whose name implies broad responsibilities. Sometimes a can-
didate represents a broad concern; sometimes its focus is more

Should people really have to care that they are using a Millisecond-
TimerAccurateWithinPlusOrMinusTwoMilliseconds, or will Timer suf-
fice? Detailed design decisions should not be revealed unless they
are unlikely to change and they have a known impact on the object’s
users. Exposing implementation details makes them hard to change.

Many Java service providers follow this “worker” naming scheme.
Some examples are StringTokenizer, SystemClassLoader, and Applet-
Viewer.

Wirfs.book Page 89 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

90

narrow. If you come across a name that implies a large set of respon-
sibilities, check whether you’ve misnamed a candidate. It could be
that your candidate should have a narrower focus. Or it might mean
that you have uncovered a broad concept that needs to be
expanded. Looking for objects that round out or complement a
broad name can lead to a family of related concepts—and a family of
related candidates. Many times we need both specific and general
concepts in our design. The more generic named thing will define
responsibilities that each specific candidate has in common.

Highlight a general concept with more specific candidates. If you can
think of at least three different special cases, keep both the general
concept and specific ones. If later on, you find that these more spe-
cific candidates don’t share any responsibilities in common, the
more abstract concept can always be discarded. However, if you
have simply assigned a candidate a name that is too generic, by all
means rename it.

Therein lies the art of naming: choosing names that convey enough
meaning while not being overly restrictive. Leave open possibilities
for giving a candidate as much responsibility as it can handle, and
for using it in different situations with minor tweaks. It certainly is a
more powerful design when a candidate can fit into several different
situations. The alternative—having a different kind of object for each
different case—is workable, but not nearly so elegant.

An object named AccountingService likely performs some account-
ing function. The name AccountingService isn’t specific. We cannot
infer information about the kinds of accounting services it performs
by looking only at its name. Either AccountingService is responsible
for performing every type of accounting function in our application,
or it represents an abstraction that other concrete accounting service
objects will expand upon. If this is so, we’d expect additional candi-
dates, each with a more specific name such as BalanceInquirySer-
vice, PaymentService, or FundsTransferService. These more
specifically named candidates would support specific accounting
activities.

If your candidate could represent historical records of many other
things, better to leave it with a more generic name, History, instead. If
you intend to model transaction history, rename your candidate
TransactionHistory. You decide how specific you want to be.

Forming an abstraction
by looking at two specific
cases might work,
but comparing and
contrasting three or four
cases is even better. The
more closely related
concepts you can compare
and contrast in order to
identify what they have in
common, the better.

Wirfs.book Page 90 Friday, October 11, 2002 11:44 AM

What’s in a Name?

91

Choose a name that does not limit behavior. Don’t limit a
candidate’s potential by choosing a name that implies too narrow a
range of actions. Given the choice, pick a name that lets an object
take on more responsibility.

Choose a name that lasts for a candidate’s lifetime. Just as
it seems funny to hear a 90-year old called “Junior,” it’s a mistake to
name a candidate for its earliest responsibilities, ignoring what else
it may do later on. And don’t be content to stay with the first name
you give a candidate if its work changes.

Choose a name that fits your current design context. When
you choose names, select ones that fit your current design surround-
ings. Otherwise, your candidates’ names may sound strange. What
sounds reasonable in an accounting application may seem jarring in
an engineering application.

Consider two alternatives for a candidate: Account or AccountRecord.
Each could name an object that maintains customer information.
From common knowledge we know one meaning of record is “infor-
mation or facts set down in writing.” An AccountRecord isn’t likely to
have more than information holding responsibilities if we fit its role
to conventional usage of this name. The name Account, however,
leaves open the possibility for more responsibilities. An Account
object could make informed decisions on the information it repre-
sents. It sounds livelier and more active than AccountRecord.

An object that defines responsibilities for initializing an application
and then monitoring for external events signaling shutdown or
re-initialization, is better named ApplicationCoordinator than
ApplicationInitializer. ApplicationInitializer doesn’t imply having
ongoing responsibilities after the application is up and running.
ApplicationCoordinator is a better name because its more general
meaning encompasses more responsibilities.

A seasoned Smalltalker tried hard to set aside his biases when he
started working with Java. Although he expected Java classes to
have totally different responsibilities, he was surprised to find the
Java Dictionary class to be abstract. In Smalltalk, Dictionary objects
are created and used frequently.

Our thoughts shape our
words, and our words
influence our thoughts.
Names subtly shape our ideas
about our candidate’s
expected behaviors.

Wirfs.book Page 91 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

92

Shed your past biases when they don’t fit your current situation.

Do not overload names. Unlike spoken language, where words
often have multiple meanings, object names should have only one
meaning. It isn’t good form to have two different types of Account
objects with radically different roles that coexist in the same applica-
tion. Some object-oriented programming languages let you assign
the same name to different classes but then force you to uniquely
qualify a name when you reference a particular class in code. In Java,
for example, classes from different packages can have the same
name. In order to uniquely designate a specific one, its name must be
qualified by the name of the package where it is defined.

Names of things that can simultaneously coexist within a single
application should be given different names. Don’t overload a name.
Programmers have only one context—the running application—in
which to interpret names. They already have enough to think about
without adding yet another source of confusion. Compilers are good
at automatically applying the correct qualification to a name.
Humans aren’t!

Eliminate name conflicts by adding an adjective. Some-
times the best names are already chosen. Still, you need to name
your candidate. By adding a descriptive phrase to a name, you can
come up with a unique name.

A word of caution: If your candidate has a radically different mean-
ing, don’t co-opt a familiar name. Follow convention. Designers famil-
iar with existing names will expect your candidate to fit in and work
similarly.

Eliminate conflicts by choosing a name with a similar
meaning. Sometimes, your best bet is to look for a synonym. Each
synonym has a slightly different shade of meaning, so finding a satis-
factory name may be hard.

The candidate TransactionProperties might be a reasonable name for
a candidate whose preferred name conflicts with the preexisting Java
class named Properties.

The synonyms for Property, a class defined in the Java libraries,
include these words: characteristic, attribute, quality, feature, and
trait. Although “attribute” or “feature” might work, “characteristic”
seems stuffy, and “quality” seems strained.

A Java designer can define
classes with the same name,
each residing in a different
package. You should do
so only if one package is
designed as a replacement
for another.

Wirfs.book Page 92 Friday, October 11, 2002 11:44 AM

Describing Candidates

93

Choose names that are readily understood. A name shouldn’t
be too terse. Don’t encode meaning or cut corners to save key-
strokes. If you want others to get a sense of an object’s role without
having to dig into how it works, give it a descriptive name. A name
can be descriptive without being overly long.

DESCRIBING CANDIDATES

We judge an object by how well its name suits its role and how well
its role suits its situation. Stereotyping a candidate’s role provides a
handy means for quickly creating an image about an object’s
intended use. When you find a candidate, name it and then charac-
terize it as fitting one or more stereotypes. Each candidate could be
a service provider, controller, coordinator, structurer, information
holder, or interfacer. To be even more specific, you may want to dis-
tinguish between three different types of interfacers: user interfacers
(objects that interface with users), external interfacers (objects that
interface between your application and others) or intersystem inter-
facers (objects that bridge different parts of an application).

To be more explicit with your intentions, you can distinguish
whether an object is designed to be passive and just hold on to
related information (an information holder), or whether you expect
it take a more active role in managing and maintaining that informa-
tion (an information provider). If these finer distinctions seem too
subtle, don’t fret about them. Don’t worry about giving an object the
“right” stereotype. If your application is populated with objects that
don’t seem to fit these predefined stereotypes, come up with your
own stereotypes. Stereotyping is intended to help get you started
thinking about your candidates, not to bog you down.

If you aren’t sure about the role your candidate will play, make an
educated guess. Use its stereotype as a guide to build a simple defini-
tion. In that definition, explain what your candidate might do and list
any traits that distinguish it from others. Write this brief definition
on the unlined side of a CRC card (see Figure 3-1).

“Acct” is too cryptic. “Account” is better.

If your problem domain has
well-known and understood
abbreviations—such as USD
in banking, or Mhz or Gbyte in
technology—it is reasonable
to include these in a
candidate’s name.

Wirfs.book Page 93 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

94

More generally, a pattern to follow when describing an object is as
follows:

Service providers, controllers, and coordinators are distinguished
by what they do. Here’s a simple way to describe these stereotypes:

If you are working on your own, you may feel less of an urge to write
down these thoughts. After all, you know what you mean! Even so, it
still can be helpful to jot down an abbreviated thought. You don’t
want to forget what was so important about that darned Razzma-
Frazzer by next Friday. Similarly, if you are working in a team, others

An object is a type of thing that does and knows certain things.
Briefly, say what those things are. Then mention one or more inter-
esting facts about the object, perhaps a detail about what it does or
knows or who it works with, just to provide more context.

A service provider (or controller or coordinator) is some kind of thing
that does some kind of work. Briefly, describe this work. Then men-
tion something about what is important or interesting about the work
it performs or whom it interacts with.

RazzmaFrazzer
Purpose: A RazzmaFrazzer is a converter
that accurately and speedily translates Razzma
objects into Frazz objects. As it translates,
it logs statistics on how accurately it translates
and whether any information is lost in the
translation.

Stereotypes: Service Provider

Figure 3-1
The unlined side of a CRC card is used to describe an object’s purpose and
stereotypes. In this case, a RazzmaFrazzer has only one stereotype.

Wirfs.book Page 94 Friday, October 11, 2002 11:44 AM

Describing Candidates

95

likely won’t know what’s important about a candidate unless you tell
them. Any description you can write about a candidate’s purpose
and what you expect it to do will help.

Consider this definition:

Contrast it with this slightly abbreviated definition:

The two definitions are nearly identical. The first adds that a com-
piler is a software program. This seems nit-picky—as software
designers, we all know that compilers are programs. But the first def-
inition provides just enough context so that someone not on our
same wavelength can relate a compiler to other computer programs.
Whenever you can relate something to a widely understood concept
(such as a computer program), its meaning will be clearer to all.

If you and your fellow designers eat, sleep, and breathe design 24
hours a day, a lot may remain unspoken and unwritten. You under-
stand one another because you think alike. However, if there’s ever a
question or disagreement about what a candidate is, it could be that
you are making different assumptions. To make intentions clear, add
enough detail to remove any doubt; then expect to have a discussion
about whose ideas are better. Describe both what a candidate is and
what it is not. Relate it to what’s familiar.

We provide even more context by giving examples of how a candi-
date will be used and a general discussion of its duties. This is partic-
ularly important when you are describing a role that can be assumed
and extended by several different objects.

A compiler is “a program that translates source code into machine
language.”

“A compiler translates source code into machine language.”

A FinancialTransaction represents a single accounting transaction
performed by our online banking application. Successful trans-
actions result in updates to a customer’s accounts. Specific
FinancialTransactions communicate with the banking systems to
perform the actual work. Examples are FundsTransferTransaction and
MakePaymentTransaction.

Wirfs.book Page 95 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

96

If a common meaning suits a candidate, use it to form a
basic definition. Don’t invent jargon for invention’s sake. In the
case of alternative definitions, choose one that most closely matches
your application’s themes. Start with a standard meaning, if it fits.
Then describe what makes that object unique within your application.

The American Heritage Dictionary has six definitions for account:

1. A narrative or record of events

2. A reason given for a particular action

3. A formal banking, brokerage, or business relationship estab-
lished to provide for regular services, dealings, and other finan-
cial transactions

4. A precise list or enumeration of financial transactions

5. Money deposited for checking, savings, or brokerage use

6. A customer having a business or credit relationship with a firm

It isn’t too much of a stretch to conceive of different candidates that
reflect each of these definitions. In our online banking application,
accounts most likely represent money (definition 5). Rules that gov-
ern access to and use of funds are important. Different types of
accounts have different rules. Although it is conceivable that an
account could also be “a precise list of financial transactions” (defi-
nition 4), we reject that usage as being too far off the mark. People in
the banking business think about accounts as money, assets, or lia-
bilities and not as a list of transactions. In the same fashion, we
reject definition 6. It doesn’t specifically mention assets. We easily
reject definitions 1 and 2 as describing something very different from
our notion of accounts in banking. In banking, accounts represent
money. We choose definition 5 because it is the most central concept
to the world of banking:

Add application-specific facts to generic definitions. The
preceding definition is OK, but it is too general for online banking. In
the online banking application, users can perform certain transac-
tions and view their balances and transaction histories. We add
these application specifics to our original description:

An account is a record of money deposited at the bank for checking,
savings, or other purposes.

Wirfs.book Page 96 Friday, October 11, 2002 11:44 AM

Describing Candidates

97

The more focused a candidate is, the better. Of course, a candidate
may be suited to more than one use. Objects can be designed to fit
into more than one application. A framework operates in many dif-
ferent contexts. A utilitarian object can be used in many cases. If you
want your candidate to have a broader use, make this intent clear by
writing the expected usage on the CRC card.

Distinguish candidates by how they behave in your appli-
cation. If distinctions seem blurry in the world outside your soft-
ware, it is especially important to clarify your software objects’
roles. Even if you can distinguish between a customer and an
account, you still need to decide whether it is worth having two can-
didates or to have one merged idea. (Don’t expect the business
experts to help make this decision. It is a purely “technical” model-
ing one.) A candidate that reflects something meaningful in the world
outside your application’s borders may not be valuable to your
design.

Let’s look at the sixth definition of account:

What is the difference between a customer and an account? Are they
the same? If we had chosen this definition, would we need both cus-
tomer and account objects in our banking application?

When you discover overlapping candidates, refine their roles and
make distinctions. Discard a candidate or merge it with another
when its purpose seems too narrow (and could easily be subsumed
by another candidate). When in doubt, keep both.

An account is a record of money deposited at the bank for checking,
savings, or other purposes. In the online banking system customers
can access accounts to transfer funds, view account balances and
transaction historical data, or make payments. A customer may have
several bank accounts.

“An account is a customer having a business or credit relationship
with a firm.”

Wirfs.book Page 97 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

98

During exploratory design, expect a certain degree of ambiguity. You
can always weed out undistinguished candidates when you find they
don’t add any value. Put question marks by candidates that need
more definition. A candidate is just that—a potential contributor.

CHARACTERIZING CANDIDATES

Before eliminating any possibility, consider how a candidate might
work and how it relates to others. It is best to consider a candidate
in a larger context. We can characterize candidates according to
their

� Work habits

� Relationships with others

� Common obligations

� Location within an application architecture

� Abstraction level

To explore a candidate’s work habits, ask, “What does it do, and how
does it fit in?” Take one point of view—from the outside looking in.
This is the same view a peer or client would take. Speculate about
what services it might offer or how it might affect others. Think
about these things, but don’t assign responsibilities just yet. Ask
whether the object is self-contained, working on its own initiative, or
directed by others. Will it be constantly busy? Or will it need to be
prodded into action? Is it an important, central character, or is it
somewhere on the periphery? Ask what each candidate might do

For both Customer and Account to survive candidacy and stick in a
design, their roles must be distinct and add value to the application.
We could conceive of a Customer as a structurer that manages one or
more Account objects. And, in the online banking application, one or
more users can be associated with a Customer. For example, the cus-
tomer “Joe’s Trucking” might have four authorized users, each with
different privileges and access rights to different accounts. Another
option would be to give an Account responsibility for knowing the
customer and users. We could then eliminate Customer. We decide to
include both Customer and Account in our design because giving
those responsibilities to Account objects doesn’t seem appropriate—
we can envision customers and users sticking around even when
their accounts are closed (and perhaps new accounts are opened). So
customers are somewhat independent of accounts.

Wirfs.book Page 98 Friday, October 11, 2002 11:44 AM

Connecting Candidates

99

and be. If you haven’t any idea, dig in and look for its potential value.
If you are undecided, spend a few minutes speculating how it might
fit into its neighborhood and about the nature of its role:

CONNECTING CANDIDATES

Given its limited space, what you can say on a CRC card will be brief.
But CRC cards are much more than a compact space to record
design ideas. They are real and tangible. You can pick up a card and
talk about it as if it were the object itself, forgetting that the card
“stands in” for a “real” object. You can use CRC cards to explore what
candidates are and how they relate to others. You can move a card
closer to any collaborators. You can poke at them, making as many
connections and distinctions as you can. You can pick them up and
lay out a new arrangement that amplifies a fresh insight, looking for
patterns and similarities and differences. Which objects do similar
things? Put them in a pile. Which objects are part of a neighborhood
working on part of the problem? Move them closer. Get a sense of
how your candidates fit and relate. Some useful ways to cluster can-
didates are as follows:

� By application layer

� By use case

� By stereotype role

� By neighborhood

� By abstraction level

� By application theme

We think of an Account as an information holder. So we do not think
of it adjusting its balance on its own—it is probably changed by out-
side requests (both online banking transactions and other account
activity). An Account knows its balance and transaction history. An
account doesn’t manage its customer, so it doesn’t have much of a
structuring role, but it is associated with its customers (does it need
to know its customer, or does its customer know about it?). It isn’t
obvious how backend banking transactions that affect an account’s
status will be controlled (will an Account be involved in delegating
this work or not?) —so we are uncertain how much work it will actu-
ally do. We’ll defer thinking through these issues until we develop a
more detailed blueprint for our application’s control architecture.

CRC cards, as invented by
Ward Cunningham and Kent
Beck, were originally used to
teach object-oriented
concepts. They have far
broader applicability than as
teaching aids. They can help
you think about and link
candidates.

Wirfs.book Page 99 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

100

There is no standard way to fill out or use CRC cards. Several books
have been written on the “art” and “practice” of CRC card modeling.
David Bellin and Susan Suchman Simone’s The CRC Card Book (Addi-
son-Wesley, 1997) talks much about the process and people aspects
of CRC cards. In Nancy Wilkinson’s Using CRC Cards: An Informal
Approach to Object-Oriented Development (SIGS, 1995), a CRC model
for a library application is worked out and its translation to a C++
implementation is described.

Figure out what works best for you. Use CRC cards to express your
ideas. Jot down initial ideas on the unlined side: At the very mini-
mum, record a candidate’s name, a brief description, and its role ste-
reotypes (see Figure 3-2). That’s mainly what you’re initially looking
for. Later you’ll get more specific.

But you can also note things of interest: Does a candidate play a role
in a well-known design pattern? Name that pattern and the candi-
date’s role in it. Is it intended to fit into a narrow context, or, if care-
fully designed, might it be used in different applications? Note
anything unusual and worth remembering. Is it an important
abstraction? Put a big star by its name. As shown in Figure 3-3, use
CRC cards to express what you think is important to know about a
candidate.

Destination
Purpose: A Destination represents any of
several locations where a message can be sent.
It also knows the objects that are responsible
for handling the actual delivery to the
destination that it represents.

Stereotypes: Structurer, Service Provider

Figure 3-2
The purpose of a candidate is recorded on the unlined side of a CRC card.

Wirfs.book Page 100 Friday, October 11, 2002 11:44 AM

Looking for Common Ground

101

LOOKING FOR COMMON GROUND

Earlier, we suggested that you make sharp distinctions between can-
didates. If you couldn’t find enough differences, we recommended
that you merge candidates that have overlapping roles. Now we sug-
gest that you take another, closer look at your candidates. This time
you want to see what your candidates have in common. You should
always be on the lookout for common roles and responsibilities that
candidates share. If you can identify what candidates have in com-
mon, you can consciously make your design more consistent by rec-
ognizing these common aspects and making them evident. You can
identify a common category that objects fit into. You can define a
common role that all objects in a category play. Shared responsibili-
ties can be defined and unified in interfaces. Objects that collaborate
with them can ignore any differences and treat them alike. Further-
more, a class can be defined to implement shared responsibilities
that make up a shared role, guaranteeing that the implementation
of classes that inherit these implemented responsibilities works
consistently.

Destination
Purpose: A Destination represents any of
several locations where a message can be sent.
It also knows the objects that are responsible
for handling the actual delivery to the
destination that it represents.

How involved does it
get in sending the message?

check on
 third-par

ty produc
ts....

who should handle
errors in delivery?

Patterns: Composite-component
Stereotypes: Structurer, Service Provider

Figure 3-3
You can add scribbles, questions, and comments to a CRC card to help you
remember key points.

Wirfs.book Page 101 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

102

You are likely to find several ways to organize your candidates. Some
will be more meaningful than others. Each one that seems useful will
likely contribute to your design’s clarity. The more you can identify
what objects have in common, the more opportunities you have to
make things consistent. Eventually you may define several new roles
that describe commonly shared responsibilities. Your initial cut at
this won’t be your last. Keep looking for what objects have in com-
mon and for ways to exploit commonalities to simplify your design.

Look for powerful abstractions and common roles. Things
in the real world do not directly translate to good software objects!
Form candidates with an eye toward gaining some economy of
expression. Carefully consider which abstractions belong in your
object design.

Look for the right level of abstraction to include in your
design. Finding the right level of abstraction for candidates takes
practice and experimentation. You may have made too many distinc-
tions and created too many candidates—a dull design that works but
is tedious. At the end of the day, discard candidates that add no
value, whether they are too abstract or too concrete. Having too
many candidates with only very minor variations doesn’t make a
good design. Identify candidates that potentially can be used in mul-
tiple scenarios.

In our Kriegspiel game, there are various actions that a player can
perform: “propose a move,” “ask whether a pawn can capture in a
move,” “suspend a game,” and so on. It’s a pretty safe bet that we
have a different candidate for each action: ProposeAMove, Suspend-
AGame, and so on. Proposing a move seems quite distinct from sus-
pending a game. A harder question is whether we should define
PlayerAction as a common role shared by each of these action-
oriented candidates. If we can write a good definition for Player-
Action, we should do so and define a role that is shared by all player
action candidates. There seem to be several things common to all
actions (such as who is making the request and how long it is active).
Eventually, if we find enough common behavior for PlayerAction, it
will be realized in our detailed design as a common interface sup-
ported by different kinds of PlayerAction objects. We may define a
superclass that defines responsibilities common to specific player
action subclasses. Or common behavior might imply the need for
another candidate that is the supplier of that shared behavior.

Common behavior could also
imply the need for another
candidate that is the supplier
of that shared behavior.

Wirfs.book Page 102 Friday, October 11, 2002 11:44 AM

Looking for Common Ground

103

Discard candidates if they can be replaced by a shared
role. To find common ground, you need to let go of the little details
that make objects different in order to find more powerful concepts
that can simplify your design.

Purely and simply, you gloss over minor differences. You don’t need
to include different candidates for each category of thing. In fact,
those distinctions may not be as important to your software as they
are to those who buy and use the items.

Certain actions affect the position of pieces on a board. Should we
have different candidates for each piece’s potential types of moves?
Not likely. This solution is tedious and offers no design economy. If
you can cover more ground with a more abstract representation of
something, do so. A single candidate can always be configured to
behave differently under different situations. Objects encapsulate
information that they can use to decide how to behave. The Propose-
AMove candidate can easily represent all moves suggested by any
chess piece. This single candidate will know what piece is being
moved and its proposed position.

What do books, CDs, and calendars have in common? If you are a
business selling these items over the Internet, they have a lot in com-
mon. Sure, they are different, too. Books likely belong to their own
category of items that can be searched and browsed. But all these
kind of things share much in common. They all have a description
(both visual and text), a set of classifications or search categories
they belong to, an author, an availability, a price, and a discounted
price. It sounds as if their common aspects are more important, from
the Web application’s perspective, than their differences. This sug-
gests that all these different kinds of things could be represented by a
single candidate, InventoryItem, that knows what kind of thing it is
and the categories it belongs to.

When you are shopping for items, you may be thinking of how
they are used—books are read, calendars hung on a wall, and CDs
played—but those distinctions are not important if you are designing
software to sell them. Sure, you want to allow for your software to
recognize what category something belongs to. You want to list all
books together. But you probably want to categorize things in the
same subcategory, whether or not they are the same kind of thing.
Books about jazz and jazz CDs are in the “jazz items” category.

Wirfs.book Page 103 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

104

Only if objects in different categories behave differently in your soft-
ware do you need to keep different categories as distinct candidates.
The real test of whether a category adds value to a design is whether
it can define common responsibilities for things that belong to it.

Blur distinctions. There are times when both concrete candi-
dates and their shared role add value to a design. There are times
when they do not. If you clearly see that candidates that share a
common role have significantly different behavior, then keep them.
Test whether the distinctions you have made are really necessary.

DEFEND CANDIDATES AND LOOK FOR OTHERS

For a candidate to stay in the running, you should be able to state
why it is worth keeping, along with any ideas you want to explore:

By taking short side excursions to look for more candidates, you will
come back with a better sense of whether you are on target. You can
find more candidates by looking for ways to support and comple-
ment the ones you’ve already found:

What value is there in including different kinds of bank accounts,
such as checking or savings accounts in our online banking applica-
tion? Checking accounts, savings accounts, and money market
accounts have different rates of interest, account numbering
schemes, and daily account draw limits. But these distinctions aren’t
important to our online banking application. We pass transactions to
the banking software to handle and let them adjust account balances.
In fact, because our application is designed to support different
banks, each with its own account numbering scheme, a distinction
made on account type (checking or savings) isn’t meaningful. Our
application doesn’t calculate interest. So we choose to include only
BankAccount as a candidate. If we were designing backend banking
software that calculated interest, our decision would be different.

“A user accesses accounts to transfer funds, make payments, or view
transaction history.” In the next breath you can add, “Accounts con-
tain information that enables a customer to perform financial transac-
tions. Accounts know how to describe themselves; they know and
adjust their balance; they are affected by different financial transac-
tions; they know their transaction history. Are there any other candi-
dates we should be identifying to support accounts in their role?”

Marvin Minsky theorizes
about the many agents
working at different levels
during problem solving. Most
people don’t forget that they
are packing a suitcase to go
on a trip when they stop to fill
a toiletry bag. Side excursions
are a normal part of problem
solving.

Wirfs.book Page 104 Friday, October 11, 2002 11:44 AM

Defend Candidates and Look for Others

105

Searching can go on for quite a while if you are full of ideas. Stop
when you feel you are looking too far afield. You need enough candi-
dates so that you can compare and contrast them and to seed your
further design work. There isn’t any magic number. The more you
know about a problem, the more candidates you are likely to invent
in a first pass. Fifty candidates may seem like a lot, but it’s not an
unreasonable number. Twenty is OK, too. You find candidates in
bursts as you consider your design’s themes. It’s pretty common for
candidates to support more than one theme. All this means is that
your objects fit into and support more than one central concern.

Stop brainstorming candidates when you run out of energy. Then
review how these candidates might collectively support the respon-
sibilities implied by a theme. When you think you have enough can-
didates, review them once more for their merit.

Keep any candidate and put it on the “A” list, for acceptable, when
you can

� Give it a good name

� Define it

� Stereotype it

� See that it might be used in support of a particular use case

� See that it is an important architectural element

� Assign it one or two initial responsibilities

� Understand how other objects view it

� See that it is important

� Differentiate it from similar candidates

Potential candidates that complement and support Account:

AccountHistory—A record of transactions against an account

FinancialTransaction—An operation applied to one or more accounts.
A service provider could represent each type of transaction that
affects an account. There are multiple types of transactions that we
support with our online banking application. What’s the difference
between a transaction that affects an account’s balance, and an
inquiry into some aspect of an account such as its balance, history, or
activation status? How should we model each inquiry?

You are always free to decide
all your candidates stink, toss
them, and start over. At the
beginning this is cheap and
relatively painless. Defend
candidates on their merits,
and don’t protect them from
close scrutiny.

Wirfs.book Page 105 Friday, October 11, 2002 11:44 AM

Chapter 3 Finding Objects

106

Discard a candidate when it

� Has responsibilities that overlap with those of other candidates
that you like better

� Seems vague

� Appears to be outside your system’s boundaries

� Doesn’t add value

� Seems insignificant or too clever or too much for what you
need to accomplish

You may still be uncertain about some candidates. Put these on the
“D,” or deferred, list to revisit later. For now, keep them in the run-
ning. The best way to make more progress is to design how these
objects will work together. The very next step we’ll take is to assign
each candidate specific responsibilities. And during that activity, we
will come up with more candidates and reshape those we’ve already
found.

SUMMARY

You can approach the finding of objects somewhat systematically.
Establish a framework for searching for candidates by writing a story
about your application. In this story, write about the important
aspects of your application. The candidates you identify should sup-
port various aspects of your story. You can use CRC cards to record
your preliminary ideas about these candidates. CRC stands for can-
didates, responsibilities, collaborators.

Candidates generally represent work performed by your software,
things your software affects, information, control and decision mak-
ing, ways to structure and arrange groups of objects, and representa-
tions of things in the world that your software needs to know
something about.

Good names for candidates are important. Choose them with care.
Choose names that fit within a consistent naming scheme and aren’t
too limiting or overly specific. Once you’ve named and described
each candidate’s purpose, you can compare and contrast the candi-
dates. For a candidate to stay in the running, you should be able to
defend why it is worth keeping.

But your initial ideas are just educated guesses about the kinds of
objects that you will need based on the nature of our application and
the things that are critical to it. The real test of each candidate’s

Wirfs.book Page 106 Friday, October 11, 2002 11:44 AM

Further Reading

107

worth will be when you can assign it specific responsibilities and
design it to collaborate with others.

FURTHER READING

Timothy Budd, in An Introduction to Object-Oriented Programming
(Addison-Wesley, 2002), presents a thoughtful discussion of abstrac-
tion and object-oriented design. Another source of inspiration is
Martin Fowler’s Analysis Patterns: Reusable Object Models (Addison-
Wesley, 1996). This book reveals how a good modeler and analyst
thinks through issues and comes up with useful abstractions.

Wirfs.book Page 107 Friday, October 11, 2002 11:44 AM

Wirfs.book Page 108 Friday, October 11, 2002 11:44 AM

Chapter 4
Responsibilities

hristopher Alexander states, “Form is part of the world
over which we have control, and which we decide to

shape while leaving the rest of the world as it is.” The measure
of a design’s goodness is how well the form fits into its con-
text. When we shape an object’s responsibilities, we are
inventing a form that should fit smoothly into its environment.
We have the luxury of shaping both form and context when we
distribute responsibilities among collaborators.

C

Wirfs.book Page 109 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

110

The rightness of a form, according to Alexander, depends on how
effortlessly it contacts with its environment. To make informed deci-
sions about an object’s responsibilities, we should divide form and
context across several dimensions and consider several aspects of
the problem. Looking at several possible divisions of form (that
which we can shape and make whole) and context (that which we
cannot control) sheds light on the problem. You should consider
what the real problem is before you design a solution.

But how many dimensions of a design problem should you consider?
Too much digression, and you never finish. Not enough exploration,
and you hack out a solution while potentially missing a significant
opportunity. You need to strike a proper balance. There’s a lot to be
gained by taking quick side excursions from time to time. It is easier
to reshuffle responsibilities on cards than it is to rewrite thousands
of lines of code. Consider some alternatives before you spend a lot of
time building the wrong solution.

WHAT ARE RESPONSIBILITIES?

Responsibilities are general statements about software objects. They
include three major items:

� The actions an object performs

� The knowledge an object maintains

� Major decisions an object makes that affect others

 Physical objects, unlike our intelligent software objects, typically do
work or hold on to things or information. A phone book is a physical
object but it takes no action. A thermostat exists, and it makes deci-
sions and sends control signals. A teakettle exists, but it does little
more than act as a reservoir (and occasionally whistles to send a sig-
nal). Physical objects usually don’t make informed decisions. How-
ever, a dog is man’s best friend and companion and does many
different things on its own behalf. Our software objects lie some-
where between these extremes: They aren’t sentient beings, but they
can be more or less lively, depending on what responsibilities we
give them.

Let’s consider the design of a simple physical object. Alexander, in
Notes on Synthesis and Form, asks what the right form is for a kettle.
A teakettle holds water that can be heated until boiling. People
safely pick it up when it is filled with boiling water and pour a cup of
tea. And, if we follow convention, a teakettle signals us by whistling

A careful designer considers
several divisions, identifies
those that provide fruitful
distinctions, and then designs
the form.

Wirfs.book Page 110 Friday, October 11, 2002 11:44 AM

Where Do Responsibilities Come From?

111

when the water boils. We can rephrase these characteristics as gen-
eral responsibilities:

� Pour contents without spilling or splashing

� Hold water that can be heated until boiling

� Notify when water boils

� Offers a convenient means for carrying in a safe manner

How do we know whether we’ve got these right? Sure, some design-
ers shamelessly redraw boundaries between the form they are work-
ing on and the context within which it exists. Overzealous framework
designers we’ve known come to mind. If you think “outside the box,”
you can always change the boundary between a form and its con-
text. You can claim that it is not the kettle that needs to be designed,
but the method of heating water. Then the kettle becomes part of the
context, and the stove or heating appliance becomes the form under
consideration. In this case, lateral thinking might lead to innova-
tion—an “instant hot” unit that heats tap water as it flows through it.
We walk a fine line when we invent design solutions. If we are clever
in redrawing the boundaries of the problem, we may come up with a
novel solution. But we also risk creating unnecessary complexity
instead of following a more straightforward path.

The key is to know when to push on redefining the problem and
when to push on defining a solution. In this chapter we explore the
art of finding, defining, and assigning object responsibilities . . . and
striking a balance between thinking through alternatives and making
reasonable responsibility assignments.

WHERE DO RESPONSIBILITIES COME FROM?

Our strategy for assigning responsibilities to objects is very simple:
Cover areas that have big impacts. Look for actions to be performed
and information that needs to be maintained or created. You can
glean information from several sources: Perhaps you have a specifica-
tion of your software’s usage; you may have written some use cases;
or you may know of additional requirements or desired characteris-
tics of your software. Responsibilities emerge from these sources and
from ideas about how your software machinery should work.

You will need to reformulate demands and characteristics and soft-
ware descriptions into responsibility statements. If statements seem
too broad to be assigned to individual objects, create smaller duties
that can be. These smaller subresponsibilities collectively add up to

“Do not try to design objects
to have all the conceivable
behavior shown in the real
world. Rather, make software
objects only as smart as the
application needs them to be
and no smarter.”

—Jon Kern

Responsibilities aren’t
just there waiting for us.
Ouch, I’ve bumped into a
responsibility, better assign
it to one of my candidates!
How to optimally distribute
individual responsibilities
between objects is often the
most difficult problem in
object design.

Wirfs.book Page 111 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

112

larger ones. Formulating and assigning responsibilities to objects
involves inspiration, invention, and translation of constraints and
general descriptions into specific responsibilities. Assigning respon-
sibilities to objects gives them shape and form. Once you make ini-
tial responsibility assignments, you should test whether they are
well formed. Let’s consider several activities for forming responsibil-
ities. We do the following:

� Identify system responsibilities stated or implied in use cases

� Plug inherent gaps in use cases and other system descriptions
with additional lower-level responsibilities

� Tease out additional system behavior from themes and soft-
ware stories

� Follow “what if. . . then. . . and how?” chains of reasoning

� Identify stereotypical responsibilities to match stereotypical
roles

� Search each candidate’s deeper nature

� Identify responsibilities to support relationships and depen-
dencies between candidates

� Identify responsibilities associated with objects’ major “life
events”

� Identify technical responsibilities that need to be assumed by
objects to fit into a specific software environment

Responsibilities come from statements or implications of
system behavior found in use cases. There is a gap between
use case descriptions and object responsibilities. Responsibilities
are general statements about what an object knows, does, or
decides. Use case descriptions are statements about our system’s
behavior and how actors interact with it. Use cases describe our
software from the perspective of an outside observer. They don’t tell
how something is accomplished. Use cases provide a rough idea of
how our system will work and the tasks involved. As designers we
bridge this gap by transforming descriptions found in use cases into
explicit statements about actions, information, or decision-making
responsibilities. This is a three-step process:

� Identify things the system does and information it manages.

� Restate these as responsibilities.

� Break them down into smaller parts if necessary, and assign
them to appropriate objects.

Activities for identifying
responsibilities fall into one of
three categories: finding them
from external descriptions,
inventing, and adding details.

Wirfs.book Page 112 Friday, October 11, 2002 11:44 AM

Where Do Responsibilities Come From?

113

Consider this narrative that describes how a university student reg-
isters for courses. It leaves out a lot of details (such as how the user
interface is laid out and the specific rules that affect registration),
which we presume are found elsewhere:

Depending on how much detail is included in a use case, it can be
more or less difficult to find statements about our software’s behav-
ior. Use cases aren’t packed with actions or behaviors that are
readily ascribed to individual objects. However, even from this high-
level narrative we can glean these responsibilities and in parenthe-
ses suggest some ideas about how they might be dealt with:

Use Case: Register Online For Classes

A student can register online for classes by filling out and submitting
an online registration form for approval. While filling out the registra-
tion form, a student can browse the course schedules and cross-
listed courses, audit degree requirements, and update personal and
financial aid information. The student can also access the Wait-list
Class and Drop Class functions.

Each course on a student’s schedule has the following information:
grading option, term, course title, section number, and class number.
Although not prohibited from adding courses with time conflicts, a
student should be made aware of any potential problems when build-
ing a schedule. When a proposed schedule is submitted for approval,
it will be checked for conformance to all of the rules that the univer-
sity specifies for course load, prerequisites, and required approvals.
The system should notify the students of full classes and allow stu-
dents to add themselves to the wait list for a particular class. In some
cases, exceptions to the rules can be requested (such as time con-
flicts or overload of credit), but these actions are performed sepa-
rately. Once students have received confirmation of an approved
course schedule, they are considered registered for the term.

Generate and display an online registration form. (Something needs
to know the structure of a registration form and the details of how it
is displayed.)

Provide feedback as the student enters course selections about con-
flicts or problems. (Something needs to check that the student can
sign up for a course, given the student’s academic standing, and then
there is a UI component that displays feedback.)

Continues

Wirfs.book Page 113 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

114

By intent, use cases leave out design details. They are descriptive,
not prescriptive. They tell a story. Use cases are descriptions that we
use as general guides as we build our design. Use case scenarios
describe step-by-step sequences. Supposedly they include more
detail than an overview. Let’s see what additional responsibilities we
can glean from this scenario:

Provide capabilities for browsing, auditing degree requirements,
updating personal and financial information. (Browsing sounds like a
large responsibility involving several objects. Auditing degree
requirements seems complex. We don’t know how much work is
involved in comparing a student’s transcript and major against
required courses. This needs further investigation. Updating personal
and financial information seems specific. It will involve objects with
responsibilities for displaying and editing this information.)

Provide capabilities for wait listing and dropping classes. (These
two functions will likely involve several objects: Something needs
to coordinate both tasks, update the waiting list, and adjust the
student’s schedule.)

Validate that each course in a schedule meets constraints such as
pre-requisites, approvals, etc. (Sounds like a specific task that could
be assigned to a StudentSchedule object.)

Notify the student of approved course selections (Notification seems
like a subresponsibility that could be assigned to the same object
who has responsibility for coordinating the work of schedule valida-
tion and reports the results to the user. The means of notification will
likely involve instantiating and using objects from pre-existing UI
components)

Notify the student of conflicts and allow him to resolve them (Again,
notification seems like a responsibility of an object responsible for
coordinating the registration task; other objects will likely be involved
in the resolution of conflicts.)

Use Case Scenario: Register Online For Classes

1. Student pulls up the registration form and identifies self.

2. System verifies that student is allowed to register at this time.

3. Student enters the following for each course: course number,
section number, and grading option.

4. Student submits course schedule for approval.

Wirfs.book Page 114 Friday, October 11, 2002 11:44 AM

Where Do Responsibilities Come From?

115

We find a few additional responsibilities that are more specific:

Most of these statements only hint at part of the work that needs to
be done. They tell that confirmations are displayed, but not that they
should be constructed by formatting specific registration informa-
tion. They don’t define acceptable responses to errors. They don’t
tell which system responsibilities interact. They don’t tell what
actions will be complex, nor do they specify timing constraints. Use
cases describe the general nature of our work. We must shape all the
details.

5. System verifies that the student meets credit load policies and
course prerequisites and that none of the requested courses
are full.

6. System returns approved courses in proposed schedule for
confirmation.

7. Student confirms schedule.

8. System adds student to each class roster and returns confir-
mation of successful registration.

Check that the student is eligible to register. (From step 2. Probably
can be assigned to an object that coordinates the registration activity.)

Add student to course rosters. (From step 8. Seems pretty specific.
Some object will undoubtedly coordinate registration and ask the
course roster to be updated.)

Display confirmation of registration. (From step 8. Again, UI elements
are involved, and something that coordinates the work.)

Validate that each course in a schedule meets constraints such as
prerequisites, approvals, etc. (Sounds like a specific task that could
be assigned to a StudentSchedule object.)

Notify the student of approved course selections. (Notification seems
like a subresponsibility that could be assigned to the same object that
responsibility for coordinating the work of schedule validation and
reports the results to the user. This will likely involve instantiating
and using preexisting UI components.)

Notify the student of conflicts and allow him or her to resolve them.
(Again, notification seems like a responsibility of an object responsi-
ble for coordinating the registration task; other objects will likely be
involved in the resolution of conflicts.)

Wirfs.book Page 115 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

116

Additional responsibilities come from plugging inherent
gaps in use case and other system descriptions. To gain con-
fidence in your design, you must dig deeper into the nature of the
problem and ask questions. Just by looking at our list of responsibili-
ties we can come up with questions leading to more responsibilities.
Here are a few:

The sooner you ask and get answers to specific questions that will
shape your system’s behavior, the better. The answers will guide your
thinking as you discover more detailed software responsibilities.

Use cases rarely describe aspects of control, coordination, error
detection, visual display, timing, or synchronization. Designers must
figure out these details. You can push forward with assigning respon-
sibilities, even with many questions left answered. Tag those ques-
tions that will have the biggest impact. If you envision a range of
possible answers and guess at those that are most likely to have the
most impact, you can know where to push for answers.

Take two approaches: Identify responsibilities as well as unresolved
questions. Continue to work on what you do know. Identify questions
that are most likely to significantly impact your design. Once you get

How are course prerequisites specified? They may be part of a course
description that our system can check, or they may be a relationship
between courses, or a course may be responsible for knowing its
prerequisites.

What states does a student’s schedule go through? A student can
build a schedule, submit it for validation, and confirm it. But what
happens when things go wrong or problems are detected? When is a
student really finished with his or her schedule? What different
responsibilities does a student schedule have depending on what
state it is in?

What happens when a student submits a schedule to be validated?
Are the slots in the class reserved after each course is validated? How
long does it take or should it take for prerequisites to be validated?
What happens in exceptional cases?

Does registering happen in “real time,” or does the student receive
notification after work is carried out behind the scenes?

How much help should the system give to a student when things go
wrong? Is notification of problems enough, or should the system pro-
vide support for remedying problems?

Wirfs.book Page 116 Friday, October 11, 2002 11:44 AM

Where Do Responsibilities Come From?

117

answers, you undoubtedly will refine your design. You won’t know
how comprehensive your solution needs to be until you get some
answers.

Defer the specific design of control and coordination responsibilities
until you make choices about how to distribute decision making and
control responsibilities. Test your collaboration model with both
“happy path” and more complicated scenarios. For now, collect and
assign as many specific responsibilities as you can.

Design, and the assignment of responsibilities, is iterative. You make
an initial pass at pinning down responsibilities, and then you rework
your ideas as you come to know more about your objects and their
interactions.

Responsibilities come from themes and design stories.
Earlier, we recommended that you write a brief story that describes
the key ideas behind your software. This design story kept you
focused on what’s important and stimulated your thinking about
appropriate candidates. You can return to this story to extract some
responsibilities. Let’s reconsider the Internet banking story. Phrases
that require system action are bold:

This application provides Internet access to banking services. It
should be easily configured to work for different banks. A critical
element in the design is the declaration of a common way to call in to

different backend banking systems. We will define a common set of
banking transactions and a framework that will call into banking-
specific code that “plugs into” the standard layer implementing the
details. The rest of our software will interface only with the bank-
independent service layer.

We’ve developed a prototype implementation of this layer and have
configured it to work for two different banks. Although it is still a pro-
totype, we understand how to write a common banking service layer.
Lately, our bank has been busy acquiring other banks and integrating
their software. We’ve been through three system conversions in the
past year. We want to focus on making this service layer easy to
implement and test. At the heart of our system is the ability to rapidly
configure our application to work for different backends and to put a
different pretty face on each. This includes customizing screen lay-

outs, messages, and banner text. The online banking functions are
fairly simple: Customers register to use the online banking services
and then log in and access their accounts to make payments, view

account balances and transaction histories, and transfer funds. This

Continues

Wirfs.book Page 117 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

118

Because of the story’s brevity, the responsibilities we find reflect
only the highlights. This story mentions maintaining transaction-
specific information but doesn’t describe anything about registering
for online banking. We search for responsibilities that support some-
thing the story emphasizes. We summarize these responsibilities
and note where they lead us:

is straightforward and easy to implement. There is added complexity.
Customers record information and notes about each online transac-

tion. This extra information will be maintained by our application in
its own database, because preexisting bank software has no way to
store it. We want a customer to view human-readable information,
not ancient bank software detailed transaction records. When a cus-
tomer asks to view an account's transaction history we’ll have to
merge this data with records supplied from the backend software.
Multiple users can access a customer’s accounts, each with poten-
tially different access rights. Certain users might have no access to
sensitive accounts. A company executive might only view account
balances, whereas a clerk in the accounts payable department could
make payments and a comptroller might be able to transfer funds
between accounts.

• Know a specific bank’s configuration of supported features,
default languages, and so on (will lead to designing objects with
responsibilities for knowing a bank’s configurable parameters
and options).

• Translate common service requests to standard backend bank
calls (will lead to designing service providers that handle these
requests).

• Translate results from backend API calls into standard results (will
lead to responsibilities assigned to interfacers between the com-
mon service layer and backend bank systems).

• Manage configurable banners, customized screen layouts, and
user messages (will lead to the design of customization responsi-
bilities and design of external resources).

• Perform financial transactions (will lead to designing objects that
perform individual transactions).

• Record information and transaction notes in the database (will
cause us to design transaction records and a means for storing
them in our database).

The more specific the
responsibility, the easier it is
to assign. Broad statements
need to be broken down into
smaller activities that can be
assigned to one or more
objects.

Wirfs.book Page 118 Friday, October 11, 2002 11:44 AM

Where Do Responsibilities Come From?

119

We can assign responsibilities for managing connections to specific
connection managers. Financial transactions will be performed by
the coordinated work of many objects, each with specific responsi-
bilities. To assign responsibilities for performing transactions, we
need to consider the details of each transaction in turn. Each trans-
action will require a different sequence of work steps, although some
may be in common (for instance, all transactions are logged along
with user-specific notes in the system’s database).

Responsibilities come from following “what if. . . and
then. . . and how?” chains of reasoning. To gain even more
insight, you need to consider how various requirements may impact
your design. This involves more heavy mental lifting than our other
responsibility sources. In this case, you don’t start with a specific
task such as “make a loan payment” or specific action such as “verify
credit load.” Instead, you need to lay a path from a high-level goal,
such as “the software should be offline only during routine mainte-
nance,” to a series of actions or activities that achieve it. Only then
can you make statements about what the system needs to specifi-
cally do as a consequence. Once you’ve come up with these specific
conclusions, you can formulate specific responsibilities.

We can think of many situations when we’ve chased design implica-
tions. Most involved short, solo excursions. Individuals thought
through the problem and followed their instincts. As a group we
might have kicked around the nature of the problem before the indi-
viduals went away and thought through the problem. Reasoning
toward a solution seems to be an individual activity or one taken on
by a small team of like-minded souls.

• Merge notes with bank transaction records (will lead to specific
responsibilities for assembling transaction summaries from notes
and merging them with backend bank data).

• Display and format account histories and current balances (will
lead to UI objects, objects that represent account history, and
responsibilities for coordinating their display).

• Manage users and their access rights to accounts (will lead to
responsibilities for knowing and changing access rights—perhaps
directly associated with customers and users).

• Manage connections to the database and the backend banking
services (leads to specific responsibilities for various connection
and connection managing objects).

Coming up with a plan to
solve a familiar problem is
trivial. We’re talking about
something much harder—
reasoning about an unfamiliar
problem and a solution at the
same time. This involves
making an initial assessment
and then following that to
some logical conclusions.

Wirfs.book Page 119 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

120

Here is one example that shows how thinking about a design con-
straint led to a new understanding and additional responsibilities.
Our online banking application had a design constraint: it needed to
recover from component failure. If a component went down or
became unavailable, our system had to keep working and bring up
another copy of a component. Our timeline for researching solutions
was extremely short.

Len Lutomski, our distributed system expert, quickly assessed that
the weakest link in our architecture was the name server. As the reg-
istry for distributed components, if this server failed, the entire
“memory” was lost of how connections could be made to services. If
this component failed, the entire system went down. This led Len to
conclude that the name servers needed additional responsibilities
for publishing location information changes, and that we needed
additional shadow name servers standing in reserve, ready to be
tapped into service if the leading name server failed. In his own
words, here is how Len came to a workable solution:

Often your initial design will not be as simple or as elegant or as
complete as you’d like. You don’t have time to make many wrong
moves. On the online banking project, the designer followed these
principles: Keep concerns separate, and don’t intermix responsibili-
ties. Each object or component should do its job simply and well.

. . . [the solution] was dictated by the need to get something up fast,
and by my desire to begin by isolating the problems of fault-toler-
ance from the problems of developing support for service groups.
Early moves made on these grounds constrained the possible future
developments, just as though it was a game of chess.

My separation between the fault-tolerance part and the service
groups part was developed prior to a clean understanding of the
problem space . . . I was operating off the intuition that naming con-
texts should be naming contexts and not something else, and the
sense that the fault-tolerance would not be trivial . . . in a good design
the notions of a service group, a naming service, and of fault-toler-
ance and state-replication, would be both orthogonal and simply
composed . . . If I had had the time, I think I could have put in another
level of abstraction . . .

The key to solving design
problems quickly and
adequately is to stick to your
principles while you follow
your hunches.

Wirfs.book Page 120 Friday, October 11, 2002 11:44 AM

Where Do Responsibilities Come From?

121

Following his initial line of reasoning led him to very specific respon-
sibilities. His objects weren’t up to his high standards, but they did
the job.

Responsibilities naturally arise from an object’s stereotyp-
ical roles. Whether an object primarily “knows things,” “does
things,” or “controls and decides” is based on its role stereotype.
Exploring an object’s character will lead to an initial set of responsi-
bilities.

Information holders answer questions. They are responsible for
maintaining facts that support these questions. When assigning
responsibilities to an information holder, ask, “What do other
objects or parts of the system want to ask?” Restate these queries as
responsibilities for “knowing.” Look for specific information that fits
each candidate’s role. Each information holder should support a
coherent, related set of responsibilities. Secondarily, ask, “What else
does this information holder need to know or do in order to carry
out its public obligations?” These will be private responsibilities it
undertakes to carry out its public duties.

When designing a service provider, ask, “What requests should it
handle?” Then turn around and state these as responsibilities for
“doing” or “performing” specific services. Similarly, structurers
should have responsibilities for maintaining relationships between
other objects and for answering questions about them. Interfacers
will have specific duties for translating information and requests
from one part of the system to another (and translating between dif-
ferent levels of abstraction). Coordinators have specific duties for
managing cooperative work. Controllers should be responsible for
fielding important events and also directing the work of others.

Look for private responsibilities that are necessary to sup-
port public responsibilities. Even as you make general state-
ments of responsibilities, you may think about how your objects
might accomplish them. When should you focus on these details? As
a matter of principle, concentrate first on what an object does for
others. Once you’ve arranged these core, publicly visible responsi-
bilities, reach for additional private responsibilities that support
them.

Up to this point, we have
been looking outwardly at
descriptions of our system’s
behavior, its main themes, and
its challenging requirements.
The following activities shift
our focus from external
descriptions to stereotypical
views of objects within their
software environment.

Our early attempts at
characterizing our candidates
naturally leads to ascribing to
them certain responsibilities.
We can find more if we dig
deeper.

Wirfs.book Page 121 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

122

Record responsibilities as you think of them. Make sure you are com-
fortable with your object’s role in its community before you work out
many details. If you know these details, you can record them. What’s
the best way to do this? Should you get more specific with your
responsibility statements, or are there other options?

Earlier, we mentioned that responsibilities are recorded on CRC
cards along with a statement of purpose and a list of collaborators.
Given the limited space on the CRC cards, you should use this real

Consider a BankAccount object designed for the online banking
application. It is a simple information holder. It has these public
responsibilities:

• Maintaining its current balance

• Knowing recent transaction history

• Knowing a displayable representation of itself (an abbreviated
account number)

The fact that it needs to know a unique account identifier (used when
using the backend bank transaction services) and a currency (for rep-
resenting balances and transactions) is incidental to clients that use
its public responsibilities. These responsibilities contribute to fulfill-
ing its public duties but aren’t directly visible to clients.

Consider another example from the online bank: the design of an
ErrorMessage object. This object holds onto specific error informa-
tion and can translate errors into text in multiple languages. It is a
pretty smart information holder. The request “Please translate this
error into a human-readable message!” becomes a responsibility to
“construct an error message.” This high-level statement doesn’t
reveal how messages are formatted into different languages.

We could refine our initial responsibility “construct an error mes-
sage” to read, “construct error message in a specified language.”
Adding “format messages with specific error parameters” is even
more specific. However, we can also revise our object’s purpose to
be, “An ErrorMessage represents a specific error condition in the sys-
tem that can be displayed in a form readily understood by end users.
User-readable messages are constructed from language-specific tem-
plates and include details about the specific error.” If we do this, the
general statement “construct an error message” doesn’t need to be
overloaded with these details. We choose this option, leaving the
responsibility stated simply and expanding the purpose instead.

Nailing these supporting
responsibilities means
the difference between a
workable design and failure.
We live and die by these
details! Although they are
as important to our design
as any publicly visible
responsibilities, don’t get
bogged down in them too
soon.

Wirfs.book Page 122 Friday, October 11, 2002 11:44 AM

Where Do Responsibilities Come From?

123

estate wisely. Make responsibility statements as brief as possible.
Convey necessary information by reworking and revising all parts of
your object’s description. Don’t pack everything into responsibili-
ties. Record details in ways that let you remember them without cre-
ating clutter.

Responsibilities come from examining relationships
between candidates. Examining relationships between candi-
dates can identify additional responsibilities. Objects can be related
in complex ways: “composed of,” “uses,” “owns,” “knows about,” and
“has” have very imprecise meanings in the English language. How-
ever, objects we tag as “structurers” nearly always have responsibili-
ties for “maintaining” or “managing” objects they organize, whether
we think of them as being “composed of,” “owning,” “knowing,” or
“aggregating” those objects.

When an object plays the role of a structurer, it organizes groups of
objects. Because of this role, it likely has responsibilities for answer-
ing questions about the things it knows of. To make specific respon-
sibility assessments, we need to understand why a structurer exists
and how its responsibilities change as its composition changes.

Responsibilities may be associated with important events
during an object’s lifetime. Some objects’ responsibilities are
largely shaped by how they react. These objects are spurred to
action by specific events. Controllers and coordinators fit this profile:
most of the work they do is in response to stimulus they interpret.

We say an object “has” another when it needs to exhibit some prop-
erty related to having that object. Does a meeting have attendees?
Yes. If so, what do we know about the meeting? Answer: the number
of attendees. This begs the question, should we give a meeting
responsibility for knowing the attendees, or the attendees responsi-
bility for knowing their meetings, or both? Viewing a meeting as
“representing a gathering of attendees at a location for a specific
agenda” (a structuring role), we assign a Meeting object responsibil-
ity for knowing all these things. Attendees don’t seem to have much
responsibility on behalf of their relationship to a meeting, and they
shouldn’t! Attendees may keep a calendar (another relationship
between the attendee and a calendar object) that notes meetings to
which they have been invited. We speak of “having a meeting” to go
to, but that isn’t fundamental to our behavior.

UML has two very precise
ways of modeling complex
object structures: as
composition or aggregation
relations. Elements of a
composite are stable,
existing together over time;
aggregates have somewhat
looser ties. These are very
precise distinctions that
don’t give us a clue as to
responsibilities! What we
want to determine is what
related object is responsible
for knowing and doing on
behalf of that relation.

Wirfs.book Page 123 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

124

Not all objects are so externally driven. Some react to internal
changes. When an object is created and when it is no longer used are
common places to find responsibilities for gracefully entering and
leaving the scene. In most object-oriented languages, objects are
notified of their impending exit with a “finalize” notice, allowing them
to release resources before leaving.

Responsibilities may be assumed when an object fits into
its technical environment. The responsibilities we have identi-
fied up to this point have been in support of required system behav-
ior. We mention this source last because it yields responsibilities of a
different nature: those required for an object to fit into its software
context. As a designer, you don’t invent these responsibilities but
you must understand their implications. Quite simply, your objects
won’t function properly unless they take on these implementation-
specific responsibilities.

Let’s look at a Java class library example. Object is the name of the
root class in the inheritance hierarchy. All classes are subclasses of
Object, and thus all objects “get for free” implementations of
responsibilities defined by Object. The Object class provides rea-
sonable default implementations of these responsibilities. Some are
expected to be overridden.

In the online banking application, a UserSession object was responsi-
ble for coordinating user requests. It waited for requests it could dele-
gate to others. Most of its responsibilities were tied to these requests
and the passage of time:

• Know the users and their accounts

• Time user session activity

• Handle user requests by delegating them to appropriate service
providers

• Report results back to the users

• Maintain a session summary

Like clockwork, whenever a user request was received, the UserSes-
sion object would spring to action. It would instantiate the appropri-
ate service provider, ask it to do its work, report its results, and then
idle, waiting to be spurred by another request or the passage of time.
If too much time elapsed before a request was received, it would
drop the user session.

A mark of skilled designers
who use a specific software
environment is that they know
about all the responsibilities
that can be customized.

Inheritance provides a
mechanism for letting a form
be customized in specified
ways to fit with its
environment: Superclasses
can provide default
implementations of
responsibilities that can be
freely overridden or extended
by subclasses.

Wirfs.book Page 124 Friday, October 11, 2002 11:44 AM

Strategies for Assigning Responsibilities

125

To be compared to others of its kind or stored in a structurer, classes
must support two responsibilities: answer whether one object is
equal to another, and produce a value that can be used as an index
into a structure that will store the object. Many more responsibilities
could be redefined.

Implementation-specific responsibilities shouldn’t be your first con-
cern. But if you know where your objects are headed, plan for them.

STRATEGIES FOR ASSIGNING RESPONSIBILITIES

We’ve presented you ways to search for responsibilities. Although all
responsibilities are necessary, they are not of equal significance. It’s
best to spend time and energy assigning responsibilities to those
candidates who will have the most dramatic effects.

Although some objects may be central, they may not have interest-
ing responsibilities. They may be important to begin with, but their
importance quickly fades. Consider objects that are responsible for
handing out work assignments to others. Although they are impor-
tant, after they make work assignments they don’t have much to do.
Others may have intricate responsibilities that, although called on
infrequently, are of critical importance. These objects need to be
well designed for our application to be credible.

Several points determine an object’s stature and relevance:

� What position does it play in the application architecture?
(Objects that bridge between layers or coordinate others’ work
have important responsibilities that knit our system together.)

� How visible is it to its surrounding neighbors? How visible is it
to others outside its immediate neighborhood? (Visible objects
may be important.)

� Is it a central concept in the domain? (Objects that model the
real world or that represent the work of our system can be
important.)

� Are its services complex? (Complex responsibilities take time
to pin down and may impact others.)

� Does it make many decisions that affect others in its commu-
nity? (If so, understanding these decision-making responsibili-
ties is key to understanding how others will be affected.)

� How many steps away from key decision makers is it? (The far-
ther away, the less likely it is to be a central player.)

As you think through your
design, what seems important
may shift. Take a broad pass
over the key aspects of your
design and those important
objects before assigning
more detailed responsibilities.

Wirfs.book Page 125 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

126

� Does it structure and manage relationships between others?
(This is important to know when you follow paths that lead to
information and other objects’ services.)

� How many others use and are aware of its services? (This is an
indicator of relevancy but not importance.)

Look for high-impact objects, and assign them responsibilities that
make them fit with their context. While you assign responsibilities to
individuals, these assignments will impact close neighbors. A
responsibility given to one object lessens the work of others. One
division of labor may mean additional collaborations; another, fewer.
No object is ever designed in isolation. When deciding what an
object’s primary obligations are, ask the following:

� What does each object offer as services to others? What infor-
mation does it provide to others? (These are its public respon-
sibilities.)

� What actions does it take in support of these public responsi-
bilities? (These are its private responsibilities.)

Recording Responsibilities

As we stated earlier, we create a CRC card for each candidate (see
Figure 4-1). When you do this, write the name of each candidate on
the cards, one per card. On the unlined side of the card, state the
candidate’s purpose and stereotypes. Note anything else you think
may be important to remember about that candidate: questions,
concerns, or ideas.

On the lined side, again write the name of the candidate (see Figure
4-2). Draw a horizontal line that divides the card into two uneven
parts: responsibilities on the left, and collaborators on the right.

Although you can write responsibilities directly on cards, sometimes
you don’t know where a responsibility should be located. If that’s the
case, try to capture the responsibility first and then assign it to the
appropriate candidate later. Individual responsibilities can be writ-
ten on Post-it notes that can be allocated to a candidate in one quick
motion (see Figure 4-3). Unassigned responsibilities can be piled in a
cluster, waiting assignment.

Keep a working list of
unassigned responsibilities.
Periodically work at assigning
them to existing or new
candidates. Keep a running
list of unassigned
responsibilities so that they
don’t have to stop and figure
out everything at once.

Wirfs.book Page 126 Friday, October 11, 2002 11:44 AM

Strategies for Assigning Responsibilities

127

EmailAddress
a specialized destination

different stereotypes its role in the Composite pattern

a shared
application-specific role

Role: Destination
Patterns: Composite-leaf
Stereotypes: Information Holder, Service Provider

Purpose: An EmailAddress aggregates two of the
elements of an STMP e-mail message header:
the to address, and the from address. It also
knows information about both the sender and the
receiver it uses during guessing.

Figure 4-1
The unlined side of a CRC card is for listing the candidate’s name, purpose,
stereotypes, and other important notes.

Knows alias of receiver Mailer
Knows signature of sender UserProfile
Knows SMTP address info
Sends a message

EmailAddress
what it knows

what it does collaborators

Figure 4-2
The lined side of a CRC card is divided roughly two-thirds for responsibilities
and one-third for collaborators.

Wirfs.book Page 127 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

128

Making Initial Assignments

Choose those objects you deem central players and concentrate on
them first. Expect to work on more than one object at a time. Here
are some ways to select a cluster of candidates to work on. We
expect that you’ll march through your candidates several times,
tackling one group at a time:

� Candidates that represent domain concepts

� Candidates that participate in a certain use case

� Candidates that support an application theme

� Candidates that interface to the outside world

Look for responsibilities that fit each candidate’s primary role. A
well-formed responsibility is a high-level statement of what an object
knows or does.

To start, state responsibilities generally. Responsibilities are
best stated at a level above individual attributes or operations. Don’t

Notify administrator

of messages that

cannot be sent

Figure 4-3
Write unassigned responsibilities on Post-it notes that can be “assigned” when
you identify the appropriate candidate.

If you insist on using a
computer, don’t be lulled into
thinking your candidates are
well formed because typed
responsibilities look neater. At
this stage, exploring options
should be fun, easy, and low-
cost.

Make broad, encompassing
general statements of
responsibilities. Don’t express
responsibilities as individual
attributes or operations.

Wirfs.book Page 128 Friday, October 11, 2002 11:44 AM

Strategies for Assigning Responsibilities

129

get overly specific in your statements. A statement of responsibility,
if worded generally, can encompass many specific requests. There
may be 10 ways to ask for tax calculations that are covered by the
statement “Calculate all taxes based on locale.” There isn’t enough
room on a CRC card to record very many details. These lower-level
details belong in an information model or some other, more precise
description. Use CRC cards for high-level descriptions.

If you are worried you’ll forget details, jot down hints on the card
that will help you remember them as you work: “knows its name and
preferred ways of being addressed (e.g., title, nicknames, etc.)”.
Space on cards is limited, so use it wisely.

Find the right level of description. How many responsibilities
do you need to shape an object’s character? Responsibilities can be
tersely worded or slightly more descriptive. It’s a matter of personal
and team style. You can be more or less brief, just as long as you and
your teammates understand one another.

Your statements of responsibilities should be understandable with
only a small amount of context setting. Let’s look at the responsibili-
ties for the Model-View-Controller roles as presented in the book
Pattern-Oriented Software Architecture (John Wiley, 1996), or POSA to
see how they are worded.

For example, say a Customer object has a name. That name may
comprise a first name, surname, middle name, and maiden name;
there may be aliases or nicknames. Don’t state each of these as indi-
vidual responsibilities. Write one general statement that covers all
cases: Say that a Customer “knows its name and preferred ways of
being addressed.” Don’t say that a Customer “knows first name,”
“knows last name,” “knows nickname,” “knows title,”and so on.
Besides overflowing the card, this is far too much detail.

The Model-View-Controller framework was first introduced in the
Smalltalk-80 programming environment. MVC divides an application
into three areas: the Model, which represents something in the
domain; a View that displays information to the user; and a Control-
ler, which receives input, usually as events. Events are translated to
service requests to either the model or view. An application can be
constructed with many different objects playing model, view or
controller roles. To be displayed in a View and manipulated via a Con-
troller, an application-specific object needs to assume the responsi-
bilities of a Model object. One Model object can be displayed in
multiple views.

The more broadly you state
responsibilities, the fewer
statements you need.

Wirfs.book Page 129 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

130

Let’s now look at statements of responsibilities for each of these roles:

These responsibility statements are fairly broad. They don’t state
the details of update notification, how or what kind of information is
displayed, or the patterns of collaboration between these roles.
Responsibility statements in POSA are chattier than those found in
Designing Object-Oriented Software (DOOS) (Rebecca, Wirfs-Brock,
Prentice Hall, 1990), the earliest book in which responsibilities were
extensively used. Here is an example from it:

Model

• Represents an application-specific object that can be changed or
viewed

• Registers dependent views and controllers

• Notifies dependent components about changes in state

View

• Creates and initializes its associated controller

• Displays information to the user

• Implements the update procedure

• Retrieves displayable information from the model

Controller

• Accepts user input as events

• Translates events to service requests for the model or to display
requests for the view

• Implements the update procedure, if required

Here are how the responsibilities of a Document (a kind of model that
holds onto the contents of an editable document) and a Display
Frame (a view on a portion of a document) were stated:

Document

• Access and modify elements

• Change the attributes of the elements

• Copy portions of itself

• Maintain the style of the first page

• Knows its views

• Knows its target

Wirfs.book Page 130 Friday, October 11, 2002 11:44 AM

Strategies for Assigning Responsibilities

131

The POSA descriptions are complete statements; the DOOS responsi-
bilities are terse, and more specific. Model-View-Controller responsi-
bilities are more broadly stated because they describe roles that can
be taken on and adapted by application-specific objects. The respon-
sibilities of a Model are general; in contrast, the responsibilities of a
Document (which assumes the role of a Model) are specific to its dis-
tinct purpose. We expect objects, such as Document and Display-
Frame, to be explained more concretely than generalized roles. This
brings up an important consideration. The more concretely you’ve
been thinking about your design, the more likely you are to make
specific responsibility statements.

Use strong descriptions. An object can seem ill defined if its
responsibilities seem hazy. Behind a wall of vagueness can lie details
that should not be ignored. Avoid weakly stated responsibilities if
you can find stronger, more explicit descriptions.

Daryl Kulak and Eamonn Guiney, in their book Use Cases: Require-
ments in Context (Addison-Wesley, 2000), caution against giving use
cases weak names. They suggest that more concrete verbs make for
less vague use case names. If you use weak verbs, it may be because
you are unsure of exactly what your use case should accomplish.
The same principle applies to naming responsibilities for actions.
The more strongly you can state a responsibility, the less you are
fudging. In Table 4-1, contrast the stronger verbs with the weaker ones.

• Knows its name

• Inform views of changes

DisplayFrame

• Displays itself

• Composes itself

• Knows its contents

• Knows its bounding box

Table 4-1 Use strong verbs to state responsibilities.

Strong Verbs Weak Verbs

remove, merge, calculate, credit,
register, debit, activate

organize, record, find, process,
maintain, list, accept

When describing a general
role that can be assumed by
many different kinds of
objects, you can’t get very
specific. The more general a
concept, the more general its
responsibilities. The more
specific a concept, the more
specific its duties.

Wirfs.book Page 131 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

132

Of course, there are always exceptions to the rule. A weak-sounding
phrase may have specific meaning in a certain context. In this case,
don’t look for a stronger term. Listing a property has a very specific
meaning in the real estate business: It means to put a property on
the market for sale.

Be opportunistic. Thinking about one object leads to thinking
about others. When considering an object’s public responsibilities,
you think about why its clients need to call on these services and
what they are ultimately responsible for accomplishing. When you
look at a single responsibility, you think about how it might be accom-
plished. This shift of focus is good (as well as hard to avoid). You test
the fit of an object to its context by looking at both its use and its
effects on others. If you hop around too much, however, you might
leave an object before you have a firm grasp of its responsibilities. To
avoid this, take a first pass at an object’s major responsibilities before
moving too far away from it.

Decide how an object will divide or share the work of a
large or complex responsibility. An object has three options
for fulfilling any responsibility. It can either

� Do all the work itself

� Ask others for help doing portions of the work (collaborate
with others)

� Delegate the entire request to a helper object

When you’re faced with a complex job, ask whether an object is up
to this responsibility or whether it is taking on too much. A responsi-
bility that is too complex to be implemented by a single object essen-
tially introduces a new sub design problem. You need to design a set
of objects that will collaborate to implement this complex responsi-
bility. These objects will have roles and responsibilities that contrib-
ute to the implementation of the larger responsibility.

At this point we’re not asking you to make detailed decisions about
how to design specific collaborations between these objects, only
that you think through your options for assigning subresponsibili-
ties. If a responsibility seems too big for one object, speculate on
how you might break that responsibility into smaller logical chunks.
These can be given as work assignments to other objects. Pursuing
this line of thinking may lead you to new candidates with smaller,
more tightly focused roles.

Wirfs.book Page 132 Friday, October 11, 2002 11:44 AM

Strategies for Assigning Responsibilities

133

Make sure an object isn’t doing too much. If you find an
object with a long laundry list of responsibilities, this could indicate
one of two problems: Either you are stating its responsibilities in too
much detail, or it is taking on too much. It is easy to rewrite responsi-
bilities at a higher level.

However, if your object is too busy, consider splitting it into several
smaller ones that will work together on the problem. Expect these
objects to collaborate with one another. Although it may require
more study before you obtain an overall understanding of this new
system of objects, distributing the work among a number of objects
allows each object to know about relatively fewer things. It results in
a system that is more flexible and easier to modify.

Keep behavior with related information. If an object is
responsible for maintaining certain information, it is logical to assign
it responsibilities for performing any operations on that information.
This makes the object smarter; not only does it know things, but also
it can do things with what it knows. Conversely, if an object requires
certain information to do its job, it is logical (other things being
equal) to assign it the responsibility for maintaining that informa-
tion. In this way, if the information changes, no update messages
need to be sent between objects.

Distribute system intelligence. A system can be thought of as
having a certain amount of intelligence. The sum of a system’s intelli-
gence is what it knows, the actions it can perform, and the impact it
has on other systems and its users. Given their roles within a sys-
tem, some objects can be viewed as being relatively “smart,”
whereas others seem less so. An object incorporates more or less
intelligence according to how much it knows or can do and how
many other objects it affects. For example, structuring objects such
as sets or arrays are usually not viewed as particularly intelligent:
They store and retrieve objects but have relatively little impact on

In banking, Account objects can have more or less behavior. By giv-
ing them responsibilities for knowing the rules of adjusting their bal-
ances, we turn them from simple information holders to hybrid
information holder/service providers. If these resposibilities were
assigned to some controller object, such as a FundsTransferTransac-
tion object, it would mean separating the rules for changing account
balances from the Accounts themselves.

An extreme example of a “big
object doing too much” would
be a design in which a single
object implemented all
responsibilities of an
application. This is obviously
a poorly factored design!

Wirfs.book Page 133 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

134

the objects they store or any other parts of the system. Other struc-
turers can be more intelligent. They have responsibilities not only
for maintaining their contents but also for answering questions
about them collectively.

Objects with responsibilities for controlling activity can be more or
less intelligent, depending on how much work they delegate and how
much they know about the work of those they manage. Guard
against the tendency to make controllers too intelligent. We prefer to
give the collaborating objects as much responsibility as they can
handle. The more intelligent controllers are, the less intelligent are
those that surround them. If you place too much responsibility in a
controller, you lose design flexibility. Our goal isn’t to evenly distrib-
ute intelligence but to give objects those responsibilities they can
handle.

Keep information about one thing in one place. In general,
meeting the responsibility for maintaining specific information is
easier if that information isn’t shared. Sharing implies a duplication
that can lead to inconsistency. Part of making software easier to
maintain is eliminating potential discrepancies. If more than one
object must know the same information to perform an action, three
possible solutions exist:

� A new object could be created with the responsibility for being
the sole repository of this information. This information holder
would be shared among those who have a “need to know.”

� It may be that the information “fits” with the existing responsi-
bilities of one of the existing objects. In that case, it could
assume the added responsibility of maintaining the informa-
tion. Others could request this information when they need it.

� It may be appropriate to collapse various objects that require
the same information into a single object. This means encapsu-
lating the behavior that requires the information into a single
object and obliterating the distinction between the collapsed
objects. Sometimes we go overboard, factoring out responsibil-
ities into roles that are too small. In that case it is better to pull
them back into a single, more responsible object.

Our decision to make Account objects know the rules for adjusting
their balances lets us design a FundsTransferTransaction control
object that is concerned only with coordinating the transfer, handling
errors, and reporting results.

Wirfs.book Page 134 Friday, October 11, 2002 11:44 AM

Strategies for Assigning Responsibilities

135

Make an object’s responsibilities coherent. They should all
relate in some way to the overall role of the object. An object as a
whole should be the sum of its responsibilities. These responsibili-
ties should complement one another. Everything an object knows or
does should contribute to its purpose or fit into your design model.

Restrict an object’s responsibilities to a single domain.
Meilir Page-Jones in Fundamentals of Object-Oriented Design in UML
(Addison-Wesley, 1999) introduces a way of dividing a software sys-
tem (and the objects that live within it) into domains. Domains are
Page-Jones’s way of dividing the machinery of an application into dif-
ferent contexts. According to Page-Jones, objects that live in lower
domains shouldn’t have responsibilities that tie them to objects in a
higher domain. The more you tie objects in a lower domain to a
higher one, the harder it is to reuse them in different contexts.

Page-Jones’s divisions (from higher to lower level domains) are as
follows:

� Application: objects valuable for one application

� Business: objects valuable for one industry or company

� Architectural: objects valuable for one implementation
architecture

� Foundation: objects valuable across all business and
architectures

Foundation objects are further divided into three categories or
subdomains:

� Fundamental: objects so basic that many programming lan-
guages include them as primitive data types, such as integers
or reals

� Structural: objects that organize others, such as sets, collec-
tions, hashtables, or queues

� Semantic objects: objects that represent basic concepts with
specific meaning, such as date, time, or money

Just because a customer’s name appears on an invoice doesn’t mean
that the Invoice should “know the customer name.” When it comes
time to print, it can “know the customer” and collaborate with it by
asking for the name.

If certain responsibilities
seem unrelated, they need to
be reassigned. Especially
insidious are responsibilities
that seem slightly tangential
to an object’s purpose.

Wirfs.book Page 135 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

136

To test whether two different objects are in the same domain, ask,
“Can one object be built without any knowledge of the other?” If so,
these two objects aren’t likely to be in the same domain. But there
are still places where you could tangle domains if you aren’t care-
ful—for example, when you need to convert from one type of object
to another.

Avoid taking on nonessential responsibilities. Avoid diluting
an object’s purpose by having it take on responsibilities that aren’t
central to its main purpose. Taking on responsibilities is easy to do,
especially when you’re deciding who should be responsible for main-
taining a relationship. The obvious first answer is to make one or the
other, or both, related objects be responsible.

Where should you place responsibilities for converting a temperature
reading into a measurement or from one geometric shape to another?
Measurements are readings (of temperatures, among other things)
recorded at a particular time and for a particular instrument and loca-
tion. A Temperature represents a degree of heat or cold on a definite
scale. We can envision Temperatures existing without Measure-
ments, so Temperatures are in a lower domain. It is OK for
Measurements to have the responsibility for “knowing their tempera-
ture.” But don’t give Temperatures the ability to convert to higher
life forms. This doesn’t overburden Temperatures with higher-level
duties. If you follow this advice, Temperatures can readily be used in
other contexts. If they did know about Measurements, you’d have to
drag along Measurements to any new context.

Consider adding the responsibility to a Person object to know how
many dogs it owns. If we’re building an application that handles dog
show registrations, this might be reasonable. But if our Person could
own cats, birds, gerbils, treasury bills, automobiles, life insurance
policies, and so on, we could quickly pile on responsibilities for
“knowing” all these things. This multiowner Person isn’t useful in
any other context because it is encumbered with a variety of respon-
sibilities and links to all those other objects. The Person object
becomes the pathway to these other objects and tends to pile on
responsibility after responsibility after responsibility. In one design
we reviewed, a Person object had more than 500 methods (and way
too many responsibilities)! A better solution is to factor those respon-
sibilities that aren’t intrinsic to a Person into distinct objects.

Typically you are not free to
add responsibilities to
foundation libraries. They
come from the vendor with all
kinds of warnings and
prohibitions. You are
prevented from tinkering with
them. But you may be able to
extend these classes by
creating new subclasses.

Reuse isn’t our only concern.
For maintenance reasons,
clear intent is paramount:
Objects shouldn’t take on
responsibilities that go above
and beyond their specific
purpose. When an object
does “favors” for others, its
role becomes obscured.

Wirfs.book Page 136 Friday, October 11, 2002 11:44 AM

Strategies for Assigning Responsibilities

137

The easy first answer isn’t always the best. Each new responsibility
needs to be considered carefully. It is easy to “slip one in” as an easy
solution and avoid thinking through the consequences. An object
that has a lot of links to others will be harder to maintain and move
to a new context.

Consider creating a new object that is responsible for structuring the
relation between people and dogs, another for people and valued
property, and so on. Each of these new objects knows of a specific
relationship. Instead of one big object knowing many others, the net
result is a few simpler objects, each knowing some specific relation-
ship. This is one way to “straddle” objects in separate domains. It
results in a trimmer Person, unburdened with responsibilities that
aren’t intrinsic to its nature. Of course, this, too, can be carried to
extremes. Too many objects with responsibilities to “glue” others
together can also make a design brittle and hard to understand.
Decide what relations are intrinsic to an object in the context of your
application and which are not. Assign responsibilities for maintain-
ing nonessential relations to new structurers.

Don’t overlap responsibilities. Sometimes you aren’t sure
which object should check, guarantee, or ensure that things are
done the right way. Who should ultimately be responsible? If you
want a robust system, you must make your objects and neighbor-
hoods resistant to careless mistakes and errors.

Should you make the client check before it calls on the services of
another? Should you give service providers responsibilities for check-
ing that their requests are properly formed? If you’re not sure whom
the clients are or under what situations a responsibility will be carried
out, you might be inclined to put in safety checks everywhere.

This line of reasoning leads to overly zealous objects, all of them fret-
ting about the state of the system. It can be extremely costly to main-
tain such a complex system of objects. You are better off developing

If we followed this strategy in the design of physical objects and sys-
tems, we would design teakettles with responsibilities for notifying
when their contents boil, we’d give monitors responsibility for check-
ing water contents of the teakettle, we’d ask the person who filled the
teakettle to determine whether the kettle is boiling, and we’d put
safeguards into a stove burner so that when it detects the kettle
whistling for a period of time, it’d reduce its temperature.

Even if you are building only
one application, avoid big, fat
objects. There are always
reasonable alternatives.
Instead of burdening either
object in a relationship,
consider creating a new
object that is responsible for
structuring the relation.

Wirfs.book Page 137 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

138

a simple, consistent strategy for checking and recovering, and stick-
ing with that. Not everyone needs to be involved or “share in an
important responsibility.”

If you want an object to be impervious to malicious requests, give it
responsibilities for detecting and deflecting them. Once you’ve given
an object that responsibility, design its clients to be more cavalier;
they need only react to bounced requests, not prevent them. We will
return to this topic when we design collaborations. But for now, con-
sider that when you give one object a responsibility, you are poten-
tially relieving the workload of another. It isn’t necessary to build in
overlapping responsibilities unless your system explicitly demands
redundancy.

Getting Unstuck

Even with the best of intentions, you can spin your wheels, unable to
come up with convincing responsibility assignments. Relax and take
a deep cleansing breath. Here are some common “sticky problems”
and ways to move beyond them.

Problem: You have a big responsibility that doesn’t seem
to belong to any candidate. Who should be responsible for solv-
ing world peace or ending world hunger? There aren’t simple
answers because these are extremely broad problems. If you really
wanted to tackle world peace or hunger, you’d have to break these
enormous problems into smaller factors that, if solved, might con-
tribute to lessening friction or reducing hunger. Divide a big problem
into smaller problems, and solve those.

Big software responsibilities can seem equally daunting to those
tasked with solving them. What object should be responsible for
“interacting with the user” or “performing business functions” or
“managing resources” or “doing the work”? If a responsibility seems
too big or too vague, break it into smaller, more specific ones that
can be assigned to individual objects. Treat the “big responsibility”
as a problem statement and reiterate through identifying specific
objects with smaller responsibilities that add up to the larger
responsibility.

Problem: You don’t know what to do with a vague respon-
sibility. If you can’t get more concrete, perhaps you are trying to
add precision to a statement that is so general that you can’t get any
traction. You don’t know enough to break it down into subparts.

Wirfs.book Page 138 Friday, October 11, 2002 11:44 AM

Strategies for Assigning Responsibilities

139

Before you can design a solution, you may need further definition
from someone who knows more about the problem than you do. It’s
always fair to ask, “Can you be more specific about what you mean
by performing business functions?” If you are lucky, your statement
may not really be a problem at all. You may already have assigned
specific responsibilities that are subsumed by a broad unapproach-
able statement.

Problem: You can’t decide between one of several likely
candidates. Sometimes it isn’t obvious which candidate should be
assigned a specific responsibility. When you’re choosing which of
several objects to assign a responsibility, ask, “What are all my
options for assignment? If I choose this possibility, what does that
imply for its surrounding neighbors?” If you have trouble assigning a
particular responsibility, the solution is simple: Make an arbitrary
assignment and walk through the system to see how it feels. There
isn’t necessarily a single “right” answer. Don’t get in a jam thinking that
you must optimally solve the problem or that there is only one opti-
mal assignment. There may be several, or none.

You can try several different approaches to distributing responsibili-
ties. Look at how different responsibility assignments impact objects
in the neighborhood.

Problem: You have trouble assigning a specific responsi-
bility. You may get stuck on a responsibility that seems to be rea-
sonably stated but has nowhere to go. This could mean that you are

“Interacting with the user” may simply not be something you have to
deal with if you know where responsibilities for “redisplay up-to-date
chart information on a periodic basis,” “know chart viewing parame-
ters,” and “perform request to . . .,” “calculate . . .,” “display archived
charts . . .,” responsibilities are covered. If so, relax. You’ve assigned
specific responsibilities; your job is finished.

Should a Session be responsible for timing itself, or should the Ses-
sionManager do so? There may be reasons for both alternatives. The
SessionManager could adjust the session times based on overall sys-
tem performance. Well, each Session could react to changing system
performance characteristics by querying the SessionManager before
deciding to time out. Well, sure. Both seem workable. How can you
decide?

Assign a responsibility to one
object, and then follow
through with how this affects
others. If it seems reasonable,
stick with it. Feel free to play
out several options before
making a final decision. You
can always change your
mind. Assignments will be
revised and adjusted as you
get deeper into design.

Wirfs.book Page 139 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

140

covering new territory and may need to invent a new candidate.
Great! This is progress. Or it could be that even though the responsi-
bility is specific, your existing candidates’ responsibilities are stated
at a higher level of detail. If so, remember that responsibilities are
general statements; what you think of as a specific responsibility you
have trouble assigning may actually be an implementation detail that
doesn’t really belong on a CRC card. If so, save it for later.

Problem: You are worried about how a responsibility is
actually going to be accomplished. You’ve stated responsibili-
ties generally, but you have nagging doubts. How will each object
carry out its duties? Are you concerned because you suspect that
something is missing? If so, follow your instincts and figure that out.
Are you a stickler for details? Until you see running code, you never
believe a design will work. If so, relax. Your design isn’t finished quite
yet. And it will change as you design collaborations, too. Once you
are comfortable with how you’ve arranged responsibilities among a
set of collaborators, then you can pin down responsibilities to a spe-
cific implementation. A responsibility for maintaining knowledge
could mean that

� The object holds on to the fact directly.

� It could derive it from other information sources.

� When asked, it turns around and collaborates with another that
can compute (and is responsible for reporting the results to
others).

At this point, all your options are open. Stating that a Monetary-
Transaction “knows its applicable taxes” could mean that it stores
its taxes directly in variables or that, when asked, it turns around
and delegates this request to a tax calculator object that does all the
work. We don’t have to decide these things just yet. In fact, until we
know our candidates and all the dimensions of the problem better,
we don’t know enough to make informed decisions about how
“knowing” responsibilities are best implemented.

IMPLEMENTING OBJECTS AND RESPONSIBILITIES

Sure, we’re fudging a bit. We have written responsibilities on index
cards, but we haven’t yet decided on an implementation—although
we may have a pretty good idea. So far, we have identified candidate
objects or roles (or both). We have also characterized our objects
and stereotyped their role. We have made no implementation deci-
sions. This shift between objects and their possible implementation

Responsibilities do not dictate
any specific implementation.
When we say that an object
maintains certain knowledge,
we aren’t stating that it stores
it directly as data.

Wirfs.book Page 140 Friday, October 11, 2002 11:44 AM

Implementing Objects and Responsibilities

141

in classes and interface specifications is an important one. When you
make this shift, you have options. There isn’t necessarily a one-to-
one correspondence between a candidate and a class.

An Object Can Play Multiple Roles

Let’s review how objects and roles are related. This will help us spec-
ify implementation classes and interfaces. An object can take on one
or more different roles. We distinguish roles as being one of the
following:

� Primary: comprising of responsibilities that clearly define an
object’s main purpose and its character

� Secondary: comprising of responsibilities that are incidental to
an object’s purpose but necessary for it to fit into its environ-
ment of technical libraries, frameworks, and application-
specific conventions

When you make the transition from candidates to an implementation
specification, you will create abstract and concrete classes that
implement your objects’ responsibilities. An abstract class provides
a partial implementation. It leaves its subclasses with the obligation
to implement specific responsibilities. A concrete class provides a
complete implementation. You are also likely to specify interfaces for
responsibilities that can be implemented by different classes. An
interface specifies method signatures without specifying an imple-
mentation. It defines the vocabulary clients use to invoke responsi-
bilities, regardless of their implementation.

Implicit in the declaration of an interface is the design idea that a
single role can be carried out by several types of objects, regardless
of their implementation. When you suspect that a role might be
played by different kinds of objects, declare an interface. Do so even
if you intend to implement a number of classes belonging to the
same inheritance hierarchy. This makes it clear that your abstract
and concrete classes are just one possible implementation and that
others may be declared in the future without being constrained to a
specific ancestry. It makes clients who use objects that support this
interface more flexible, too. They needn’t know about specific
classes in order to use objects that share a common role declared in
an interface.

An object can have multiple roles. But if you’ve kept your candidates
on the narrow path, each most likely represents only one role. Each
is what it is and does what it does. The mapping from candidate to
implementation is straightforward: You define a class to implement
each candidate that supports a single primary role.

Abstract and concrete
classes are the building
blocks we use to specify an
implementation. Declaring
interfaces is one means to
make it more flexible and
extensible.

Certain object-oriented
languages, such as C++ or
Smalltalk, do not support the
construct of an interface. For
these languages, you are
likely to declare the common
methods in a class that can
be inherited from, in lieu of
defining a common interface.

Wirfs.book Page 141 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

142

A class implements responsibilities that are intrinsic to the roles its
objects play (see Figures 4-4 and 4-5). These can be application-
specific or technical. Consider technical roles after you’re confidant
about your application-specific design and have decided on an
implementation strategy.

Following this guideline, we’d declare a BankAccount class to imple-
ment our BankAccount candidate, with these responsibilities:

• Maintain its balance

• Know its customer

• Know its unique ID

• Know recent transaction history

• Know a printable representation of its ID

The BankAccount class may pick up additional implementation
responsibilities to fit into its software context. If we implement a
BankAccount class in the Enterprise Java Beans framework, our
BankAccount might take on the responsibilities required of
EntityBeans:

• Know its context

• Initialize itself

• Retrieve and store itself from a database

• Activate/passivate itself when asked to by the container

These are declared in the EntityBean interface that our BankAccount
class implements.We also might alter our class’s name from Bank-
Account to BankAccountBean, just to make it clear that it fits into the
J2EE framework.

The roles an object can play can be framework- and technology-
based or domain-specific. Interfaces can also be domain-specific or
technology-based abstractions. For example, if we wanted to push a
bank account object in another, domain-specific direction, we might
declare it to be a FinancialAsset. A FinancialAsset is a role that repre-
sents something held by the bank that has a projected and current
valuation. CertificatesOfDeposit and MoneyMarket Accounts are
other examples of FinancialAssets. We could declare our Bank-
Account candidate to assume this secondary role and adjust its
implementation accordingly.

To sharpen your role modeling
skills, go to your favorite class
libraries and reverse-
engineer some interfaces and
classes into one or more
roles, each with clusters of
responsibilities.

Wirfs.book Page 142 Friday, October 11, 2002 11:44 AM

Implementing Objects and Responsibilities

143

Knows its customer
Knows its unique ID
Knows its transaction history
Maintains its balance

BankAccount
FinancialAsset
EntityBean

three roles

Figure 4-4
A BankAccount candidate is the sum of its one primary and multiple second-
ary roles.

Figure 4-5
The BankAccountBean class represents three roles.

Wirfs.book Page 143 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

144

Designing Methods and Signatures That Support
Responsibilities

Objects may know and do similar things, but because they do them
differently, they require different interfaces and implementations.
When you look for what is in common, you need to look below the
surface. You want to discriminate among that which is in common
and will be implemented identically, that which is common but
requires a different implementation, and that which appears to be in
common but isn’t.

Sharpen your focus and ask, “Are these really the same responsibil-
ity? Do they mean the same to clients?” Let’s look at a simple exam-
ple to see how responsibilities that seem common might be
implemented.

Consider these two candidates and their responsibilities:

Rectangle

• Knows how to draw itself

• Knows its dimensions

Circle

• Knows how to draw itself

• Knows its dimensions

We expect circles and rectangles and other graphic shapes to be
asked to draw in the same way (their clients can draw them inter-
changeably if this is the case, even though the way they draw them-
selves differs). But what about their dimensions? A circle can be
described by its radius; a rectangle, by its width and height. Both
kinds of objects know their dimensions. But they have different ways
of defining them. We expect clients to change and inquire about them
differently. Circle and rectangle will have distinct methods that imple-
ment this responsibility.

We could restate each responsibility to be explicit: A rectangle
“knows its width and height,” or a circle “knows its radius.” But we
won’t. As a natural consequence of getting more precise, you create
different interfaces and implementations. Instead of patching up
cards with this new precision, leave this to detailed design and to
class and interface specifications. At one level of abstraction, circles
and rectangles do share a common responsibility to “know their
dimensions.” Because they do so differently, different classes will
implement them.

Wirfs.book Page 144 Friday, October 11, 2002 11:44 AM

Testing Your Candidates’ Quality

145

TESTING YOUR CANDIDATES’ QUALITY

Responsibilities are general statements that describe software
objects and the actions they take, the information they manage, and
the decisions they make. When you spread responsibilities around
among object neighborhoods, make sure that each object keeps to
its task and doesn’t demand too much or take on responsibilities
better assigned to others. The quality of a form can be tested by how
well it fits into its context.

Here are some ways to test whether an object is well formed:

� Does it stick to its purpose?

� Are its responsibilities clearly stated?

� Do its responsibilities match its role?

� Is it of value to other objects in its neighborhood?

It is relatively easy to remedy one object’s flaws and make it a better
fit. If you have created an all-knowing, all-doing object with too many
responsibilities, carve it up into several cooperating ones. If an
object is responsible for maintaining information, reassign it the
responsibility for performing any operations on that information. If
you’ve dispersed responsibilities, consider consolidating them.

It is somewhat more difficult to adjust the responsibilities of sev-
eral objects. If you have scattered related information across several
objects, you may want to integrate this information in a single
object. When you design a software application, you are inventing
systems of objects. Not only should each fit with its software con-
text, but also objects within natural partitions should work well
together. You are bringing communities of objects into existence.

The quality of a design can be proved only by how well it stands up
to its complex requirements over time. Some designs are better than
others. If every part is connected, then it is hard to limit the effects
of change. So it is better to isolate parts—to identify subsystems of
objects—and establish patterns of communication between them.
Each subpart should have a coherent role; obligations shouldn’t spill
across different areas. This speaks to the heart of encapsulation,
which states that like things belong together.

Although each object has a distinct part to play, object neighbor-
hoods collectively take on larger, related responsibilities. They, too,
have larger roles to play in the application. They, too, should be
coherent wholes. You need to consciously organize and design how

Wirfs.book Page 145 Friday, October 11, 2002 11:44 AM

Chapter 4 Responsibilities

146

objects in different parts of your system interact. In Chapter 5 we
discuss how to develop a model of objects and their collaborations.

SUMMARY

Objects do things, know things, and make decisions. In this sense,
they are responsible. Their responsibilities come from your ideas
about how your software machinery should work. Objects shouldn’t
do too much or too little. They should stay in character. A good test
of whether an object is well formed is that its responsibilities form a
cohesive unit. Does it stick to its purpose? Are its responsibilities
clearly stated? Do they match its role?

Whether an object primarily knows things, does things, or controls
and decides is based on its role stereotype. Exploring an object’s
character will lead to an initial set of responsibilities. Information
holders answer questions and are responsible for maintaining spe-
cific information. Coordinators have specific duties for managing
cooperative work. Service providers field requests from others.
Requests can be restated as responsibilities for performing specific
services.

To come up with responsibilities, you will need to reformulate soft-
ware descriptions into responsibility statements. This process can
be more or less direct. Most of the time you will need to get more
specific and concrete to identify responsibilities that can be
assigned to individual objects. When responsibility statements seem
too broad, create smaller duties that fit with an object’s role. As you
find and assign responsibilities, you will make choices about how
individual objects contribute to the overall working of your applica-
tion. Although each object has a distinct part to play, it fulfills its
responsibilities by interacting with others. So your model won’t be
complete until you understand how objects collaborate.

FURTHER READING

If you haven’t read Christopher Alexander’s Notes on the Synthesis of
Form (Harvard University Press, 1970), you are missing out on one of
the early works of the architect who inspired the software pattern
inventors. Alexander’s book has nuggets of wisdom for those who are
consciously designing complex systems made out of things with inter-
dependent parts, whether they be software or physical structures.

Wirfs.book Page 146 Friday, October 11, 2002 11:44 AM

Further Reading

147

Donald Norman’s The Design of Everyday Things (Basic Books, 2002)
contains many examples of poorly designed physical objects—VCRs,
doors, refrigerators—and discussions of how to improve them. It’s a
matter of paying careful attention to the design of interfaces and
appropriate feedback in response to users’ actions. It doesn’t matter
how many nifty features an object has if people can’t figure out how
to use them! This book is a great source of inspiration for software
designers, too, who also need to pay careful attention to their
objects’ interfaces, side effects, and responses.

Meilir Page-Jones, in Fundamentals of Object-Oriented Design in UML
(Addison-Wesley, 1999), talks about good design using terminology
we’ve never encountered anywhere else. His book contains lots of
good advice. If you want to know more about cohesion, encum-
brances, and valuable design principles, read this book. Be prepared
to increase your vocabulary and to enjoy Meilir’s unique wit and
wisdom.

Craig Larman, in Applying UML and Patterns (Prentice Hall, 2001),
devotes two chapters to the discussion of principles to use when
assigning responsibilities to objects. He defines several patterns for
identifying and assigning well-formed responsibilities.

Wirfs.book Page 147 Friday, October 11, 2002 11:44 AM

Wirfs.book Page 148 Friday, October 11, 2002 11:44 AM

Chapter 5
Collaborations

hristopher Alexander suggests that we solve a design
problem in “the least arbitrary manner possible.” If we do

so, we avoid misfits between form and context. So let’s not be
cavalier about how our objects cooperate! Software objects
are connected through interactions and shared responsibili-
ties. If we design simple, consistent communications, our solu-
tion won’t be arbitrary. Our design will be more adaptable if
parts can be changed without effects rippling throughout the
system. A complex software system becomes manageable
when responsibilities are partitioned and organized and when
collaborations follow predictable patterns.

C

Wirfs.book Page 149 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

150

WHAT IS OBJECT COLLABORATION?

Collaborations are requests from one object to another. One object
calls on, or collaborates with, another because it needs something.
The two objects work in concert to fulfill larger responsibilities.
Designing collaborations forces us to consider objects as cooperat-
ing partners and not as isolated individuals.

Until this point in our design, any discussion of “this object doing
this” and “that object doing that” has been predicated on the notion
that our objects will have information or services within reach at the
precise moment when they need them. As execution flows around
our object model, however, necessary connections between collabo-
rators need to somehow come and go. Our model is incomplete until
we describe how our objects interact and how they connect. The col-
laboration model will describe the dynamic behavior of “how” and
“when” and “with whom.”

As we organize objects into neighborhoods with collective responsi-
bilities, we need to carefully arrange how objects within a neighbor-
hood collaborate to fulfill their larger responsibilities. We also
decide how objects outside a neighborhood will interact with ser-
vices that the neighborhood offers. As a side benefit of this effort, we
should be able to modify parts of our systems without changes rip-
pling throughout the entire system. A well-designed object-oriented
application should absorb a certain amount of change without
buckling.

Preparing for Collaboration

Object-oriented design is fundamentally different from procedural
design. Objects are structured in a network and not a hierarchy.
Procedures separate data from behavior, whereas objects blend
them. The line between these two technologies can get blurry,
though. What about a powerful object that is surrounded by simple
information-holder objects? The all-capable object pauses occa-
sionally to get data from its minions, but otherwise, it doesn’t

Collaborate: To work together, especially in a joint intellectual effort.
—The American Heritage Dictionary

Application responsibilities
are fulfilled by groups of
objects that work together. In
this chapter, our focus shifts
from finding objects and
responsibilities to pinning
down how objects interact to
fulfill their promises.

Designing roles and
responsibilities lays out a
floor plan; deciding on
collaborations adds the
wiring and the plumbing.

Wirfs.book Page 150 Friday, October 11, 2002 11:44 AM

What Is Object Collaboration?

151

collaborate or delegate work to anybody. It holds all the logic.
Where is the information hiding? The encapsulation?

A more object-oriented design is organized into neighborhoods, each
having a distinctive character and specialized responsibilities.
Within each neighborhood, each object has a role to play and knows
which of its neighbors to ask for help. Responsibilities are shared
among neighbors. Paths of collaborations are established within and
between neighborhoods. Some objects reach outside their communi-
ties for help. Others stay put, do a well-defined job, and demand little
of others. The architecture of an application dictates certain pat-
terns of communication. Preexisting components or frameworks
impose their preferred styles of interaction. Our collaboration model
must incorporate our inventions into any preexisting fabric.

An object design evolves through iterations that adjust both its
behavior and its support structure. Objects, roles, and responsibili-
ties evolve. Responsibilities shift as we discover better ways to bal-
ance the workload among collaborators. We rearrange interactions
as we discover preferred ways to communicate. Frequent paths
become more efficient; standard ways of accomplishing work
become routine. Patterns of collaboration!

Recording Candidate Collaborations

Early in exploratory design, when our objects, responsibilities, and
collaborations represent initial guesses, we are building a candidate
model. Candidates come and go, responsibilities move from one
object to another, and collaborations shift. As long as we are build-
ing a candidate model, we jot down our thoughts on CRC cards. They
are as dynamic as our thinking. Only when we have evidence that
our objects, responsibilities, and collaborations are “right” do we
document them with more formal tools, or write some code. With
that in mind, how do you write collaborations on CRC cards?

Responsibilities fill up most of the space. Because a collaborator
may be asked to fulfill several responsibilities, we mention it once,
regardless of how many times it is used. When it comes time to write
code, we certainly need to know more. But now it’s enough to say
that the object is a collaborator and list it on the right side of the
card. If you want to be more specific, you can draw a line from one
responsibility to each collaborator it uses (see Figure 5-1).

Using an object-oriented
language promotes, but does
not guarantee object-oriented
thinking. It is how objects are
defined and how they interact
that determines whether a
design solution is object-
oriented.

CRC cards are informal tools
we use to capture rough
ideas about collaborations.
Details of specific message
sequences and interactions
with specific objects are best
shown with collaboration or
sequence diagrams.

Wirfs.book Page 151 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

152

Don’t clutter a card with obvious or uninteresting collaborations. An
object can always use its own information or services, so don’t
bother to list it as a collaborator. If you need two or more objects
playing the same role, record the role only once. Similarly, if an
object plays two roles, then we should list both, each on a separate
CRC card. We list potential collaborations between objects playing
roles and not each individual collaborator.

Avoid recording low-level decisions. If an object’s role is to hold
information, we typically don’t list the objects it uses from a stan-
dard class library to store information (such as numbers or strings
or arrays) unless they are particularly unusual choices. Leave that as
an implementation detail.

THE DESIGN STORY FOR THE SPEAK FOR ME SOFTWARE

As a source of design ideas and examples throughout this book, we
will consider the design of software that enables a person with
severe limitations to communicate with others. Here is the Speak for
Me design story.

Knows contents TextFlow
Knows storage location SaveCommand
Saves contents CutCommand
Inserts and removes text, PasteCommand
 graphics, and other elements

Document

Figure 5-1
Responsibilities can be connected to their collaborators.

Wirfs.book Page 152 Friday, October 11, 2002 11:44 AM

Collaboration Options

153

COLLABORATION OPTIONS

Some objects collaborate a lot; others, little. Some objects offer help
to many others; other objects are used infrequently. An object’s fre-
quency and patterns of collaboration will depend on what its respon-
sibilities are and how it carries them out. We may design an object to
gather information and then make a decision, or we may decide that
it should delegate the decision making to a neighbor that already has
the information. Either choice results in collaboration. Another
object might be designed to perform all of its own responsibilities.
As it gets big and clumsy, we might delegate part of its work to

The Speak for Me Software

Our user is paralyzed and blind and cannot speak. Confined to a hos-
pital bed, she is “locked in,” unable to communicate by any means
other than blinking her eyes to indicate “yes” or “no.” Speak for Me
allows her to spell and send messages. The software speaks the
alphabet to her, using a small motion sensor to monitor for the eye
blinks that she uses to select the letters that she wants. After she
selects each letter, it speaks “space” to her, which she selects to end
a word. If the partially spelled word is longer than one letter, the sys-
tem attempts to guess what she is spelling, using a variety of contex-
tual and linguistic rules for guessing. If it finds an appropriate word to
guess, it speaks it and watches to see whether she selects it. If she
does, it appends the entire word to her message and begins a new
word, presenting the letters from the beginning of the alphabet
again.

When she finishes a message and wants to tell the computer what to
do with it, she spells one of the software’s special command words.
There are commands for ending the current sentence (“ES”), sending
the message to different places (“SM”), displaying the message on
the screen (“DM”), holding the message for later (“HM”), and so on.
Most of the available commands operate on the current message—
the one that she has just finished constructing. A few other com-
mands do not require a current message. For example, when she
wishes to read e-mail, she starts the idling software with an eye-blink
and builds just one word: the command for reading e-mail: (“RE”). Or
she might spell the command for calling for help (“CH”). When the
software recognizes any of these special command words, it exe-
cutes the command’s corresponding behavior.

An object that has grown too
big might be split in two, and
what were the responsibilities
of a single object become a
collaboration between
the two.

Wirfs.book Page 153 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

154

others. After we’ve reassigned responsibilities to others, we’ll have
to form collaborations between these smaller, more focused objects.

Often, objects are designed to fit together as an ensemble. Their
roles and responsibilities are designed at the same time. A responsi-
bility exists in one object because it plays a role that supports
another. Without its collaborator, we couldn’t conceive of a reason
for it to exist.

The fact that a helper turns around and delegates the entire task to
one or more subspecialists isn’t of any concern to the requester. If
we hide from an object’s users the details of how it accomplishes its
responsibilities, we have the flexibility of changing how it accom-
plishes its work without impacting those who use it.

Other collaborations are much looser. Relationships between objects
offering services are established on-the-fly. After a connection is
made, requests flow. In these designs, who actually provides the ser-
vice is less important than how to ask for help.

In Speak for Me, how are Letters and Words spoken? They know their
textual and spoken representation, but it is probably inappropriate
for them to also speak. They need to collaborate with another object,
a Presenter.

The Presenter may do everything, or it may wrap a native code text-
to-speech library and pass the text along again. Letters and Words
know about the Presenter’s public responsibilities but not how it actu-
ally speaks.

In the online banking application, a component logs in to the domain
server by sending a request to the UserSessionManager. The User-
SessionManager, after verifying the user’s password, creates and
returns a UserSession object. The UserSession object is responsible
for handling all subsequent requests for service until a logout request
is received or too much time elapses.

Wirfs.book Page 154 Friday, October 11, 2002 11:44 AM

Collaboration Options

155

Objects that work in the same neighborhoods communicate more
freely with one another than do long-distance collaborators. In a
close-knit neighborhood, the cost of communications is rarely a fac-
tor. The collaboration can be more chatty and collegial; objects can
exchange information without worrying much about communica-
tions overhead. Crosstown collaborators—those objects working
together while located in different processes—need to consider the
cost of collaborations. These collaborations definitely dictate fewer,
more powerful communiqués; requests and information are carefully
planned, communications are typically packaged into large, mean-
ingful chunks, and the cost of sending and receiving information
becomes a significant design consideration. Even if cost were not a
factor, we would still limit the collaborations between neighbor-
hoods in order to decouple their responsibilities.

Who’s In Control?

Control strategies have a strong influence on how responsibilities
are distributed. As we consider alternatives, we seek ways to distrib-
ute control between objects. We prefer a model with moderately
intelligent, collaborating objects over one that concentrates intelli-
gence in only a few. Decisions about where to place responsibilities
for controlling execution are central to our design work. The choices
that we make as we consider the control aspects occur at several
levels:

� How do we control and coordinate application tasks?

� Where do we place responsibilities for making domain-specific
decisions (rules)?

� How should we manage unusual conditions (the design of
exception detection and recovery)?

As we develop a collaboration model, we need to develop a domi-
nant pattern for distributing the flow of control and sequencing of
actions among collaborating objects. An object may incorporate
more or less intelligence according to how much it knows or does
and how many other classes or objects it affects.

How Much Should Objects Trust One Another?

Objects are designed to collaborate with their neighbors. But who
their neighbors are impacts how willing they are to loan out their

If you are traveling to a
distant location to conduct
business, you take care to
make sure the trip is
worthwhile. You agree on an
agenda, pack what you need,
and prepare for
contingencies. The same is
true for communication
between long-distance
collaborators.

Control is decision making
and selection of paths
through the software.

Wirfs.book Page 155 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

156

data and how tightly they lock their doors and windows. Can collab-
orators be trusted? There is another definition of collaboration:

These two very different views of collaboration lead to two
extremes. The first definition is collegial: working together toward a
common goal. When one object asks collaborators for help, it
expects that they will carry out its wishes. There are no hidden sur-
prises. The second definition is a bit startling and has serious impli-
cations. If the object’s collaborators can’t be trusted to do the right
thing, you must build in extra safeguards:

� If you don’t want information to change, you send a copy.

� If you don’t want an object to get out of whack, you make it
read-only by eliminating any features that can modify it. It
becomes idiot-proof.

� If you can’t afford for things to go wrong, after calling on others
for help you double-check to see that things were performed
correctly.

All these tactics add a lot of defensive behavior just to collaborate!
This often results in duplicated responsibilities for error checking.
There’s more chance of introducing errors in code when the check-
ing logic needs to by updated in several places. If you don’t want to
always be on the defensive, you can get more formal, especially
when you need to establish a high degree of trust between disparate
parts of a system. You can use object contracts to spell out explicitly
how objects are designed to interact. Without saying how these
things are accomplished, contracts show who uses which responsi-
bilities (client contracts) and declare under what conditions these
responsibilities are called on (conditions-of-use guarantees) and
what marks they leave when they are finished (aftereffect guaran-
tees). Write contracts when you want to be absolutely clear about
expected usage and side effects of use.

All collaborations—whether among close partners, among different
parts of an application, or among components separated by time or
space or communication overhead—require thought. It isn’t enough
to design a path for collaboration. Collaborations should be effective
and should preserve any natural separations between responsible

Collaborate: 1. To work together, especially in a joint intellectual
effort. 2. To cooperate treasonably, as with an enemy occupation

force.

—The American Heritage Dictionary

Eiffel was the first object-
oriented language to let
programmers define
preconditions that must be
true before a body of code
executes, and postconditions
and invariants that must be
true after a body of code
executes. Writing assertions
that can be checked during
program execution adds teeth
to object contracts.

Wirfs.book Page 156 Friday, October 11, 2002 11:44 AM

Collaboration Options

157

parties. Objects passed along with requests tie collaborators to one
another. Inconsistencies can occur if the overall plan for the ways
information is to be used and maintained is uncertain to either party.

What does it really mean for an object to be untrustworthy? And if
objects can’t be trusted, how did they get that way? Were they built by
a treasonous developer? Or a third-party saboteur? Not likely. “Trea-
son” rarely occurs. Instead, when an object can’t be trusted it is usu-
ally the result of a simple failure to communicate design intentions:

� Failure to specify clearly what the object will do. An object may
seem to promise one thing while actually doing another quite
effectively. It may not document that it changes data that is
passed to it or that the values that it returns can be outside an
expected range. This information cannot be declared in an inter-
face. We can only hope that the designer documented it some-
where that is within our reach, in a contract stating what is
affected.

� Failure to clearly state how the object should be used. A collab-
orator may require special initialization—either of its own state
or of others surrounding it—before it is called on. Again, these
types of constraints won’t be published in an interface. Yet if
we don’t set up its environment correctly before we use an
object, things can break. The conditions required for correct
operation can be declared in a contract. But perhaps the docu-
mentation overstated what an object actually does, and you
believed it.

� Failure to fulfill the object’s promises. Bugs! Errors in logic! The
only way an object can avoid these is to refuse to collaborate
with any unknown source and implement all the behaviors
itself. Unfortunately, no contract can prevent coding bugs, and
contracts cannot specify everything you need to know in order
to avoid problems.

In general, those objects that we design to work in the same neigh-
borhoods can be designed with a high degree of trust. It is those
objects that we pick up from other sources and use that we must be
wary of. When we use services provided by preexisting class librar-
ies or components, our objects must fit with and use the services
that are provided. How much trust we place in these objects and
components depends on how well their designers convey how to use
them and how carefully we conform to their constraints. When we
don’t know much about our collaborators, we make our objects as
autonomous as possible. And when they ask for help, they must do
what they can to ensure that their intentions are fulfilled.

Wirfs.book Page 157 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

158

STRATEGIES FOR IDENTIFYING COLLABORATIONS

Our strategy for giving shape and form to our collaborations model
is very simple: Focus on areas that have big impacts. Instead of con-
centrating on individual objects, we focus on how candidates work
together to perform complex, coordinated actions. Initially, our goal
is to link individual responsibilities to collaborators. Next, we take a
pass at solving more complex scenarios. We explore collaborations
using low-tech tools: CRC cards and rough sketches on white boards.
We simulate collaborations by tossing around Koosh balls and mak-
ing rough sketches.

But before we get locked into any solution, we explore alternative
ways for objects to collaborate. We look for ways to simplify and
streamline communications. Our goal is to create a workable solu-
tion that fits our design constraints and values. We approach finding
collaborations from several angles. Each reveals different insights.
We do the following:

� Look at an individual object’s stereotype. We can think about
collaborations based on the nature of each object. We ask,
based on its stereotype, what an object needs from its neigh-
bors and what it offers them. Whom does it need help from?
Whom does it help?

� Look at individual responsibilities. At the next level of detail,
we make initial decisions about how an object carries out any
responsibility. As we do so, we look for collaborators. If there
are objects that are needed to fulfill specific aspects of a
responsibility, we add them as collaborators.

� Design the details of a complex responsibility. If a responsibility
seems large or complex, we decide how it can be broken into
smaller parts. As we divide complex responsibilities into
smaller ones, we assign them to appropriate objects. These
objects will be involved in a collaborative effort.

� Design collaborations for a specific use case or event. We can
design how a grouping of objects cooperate to fulfill a use case
or, at a lower level, how they respond to a specific event. As we
do so, we make decisions about how objects will work together.

� Look for ways to organize communications. As we think about
each object’s position in the application architecture and natu-
ral arrangements for collaborators, we may find that patterns
of communications can and should be stylized.

Experienced designers spot
and document many
collaborations as they
distribute responsibilities.
Their candidates are linked
from the start. Of course,
there will be gaps in any
preliminary model.
Designers fill these gaps
by demonstrating how
collaborations are enabled
and by testing that they are
well formed.

Wirfs.book Page 158 Friday, October 11, 2002 11:44 AM

Strategies for Identifying Collaborations

159

� Look for ways to simplify. After we’ve established several paths
of communication, we can look for places where collaborations
seem complex or tedious. Are too many objects talking to one
another? Can we consolidate many low-level communications?

We now turn to examining each of these strategies in detail.
Although we have arranged these strategies from simple to complex,
we don’t necessarily march down this list in order. During design, we
often back up and revisit initial decisions, especially as we gain fur-
ther insights. We comb over our entire design once in awhile, just to
get our bearings and see whether we’re still on track. Our goal is to
end up with a collaboration model that adheres to a consistent style,
not an arbitrary one.

Looking at an Individual Object’s Role: Stereotypes Imply
Collaborations

The roles an object plays imply certain kinds of collaborations. We
consider both how an object typically fulfills its responsibilities and
how it is used by others.

Information Holders

When an object is an information holder, it is primarily responsible
for knowing facts. Typically, it won’t collaborate much with other
objects except to acquire any information it is responsible for know-
ing. After it acquires its information, it may not need to ask for it
again. Sometimes, even gathering its information is someone else’s
responsibility. An information holder can be created fully formed
and populated with what it needs to know. Its only real responsibil-
ity, then, is to hold on to and keep its information consistent.

However, there are always exceptions to these general tendencies.
Information holders can always answer questions by turning around
or finding out information from others. They represent to the world
that they know a fact when, indeed, they know it only by referring to
a helper that is hidden from others’ view. Sometimes, information
holders can be charged with additional responsibility for making
their information persist. Or they can compute instead of only hold-
ing on to uninterpreted facts. Each of these design considerations
implies certain responsibilities and collaborations. Ask these ques-
tions of an information holder:

� Where does its information come from? Does the object create
it or ask for it or get told about it? (Whomever it asks will be a
collaborator.) Who knows the information in the first place?

Once we are convinced that
our objects fit together and
work to support a larger set of
responsibilities, we get more
precise. We pin down how
objects become aware of
their collaborators and design
message sequences,
arguments, and return values.

Stereotype roles give clues
as to collaboration needs.
Service providers and
controllers need information.
Coordinators and interfacers
need services. Structurers
organize others.

Wirfs.book Page 159 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

160

� Is any information derived? Who is responsible for calculating
the derived information? Does the object do the calculation
itself or just hold on to the result? (If another object does the
work or holds on to other knowledge, it will be a collaborator.)

� Do the ways that the object derives its facts vary? How are the
variations represented?

� Does the information persist? Who handles the persistence?

� Is information cached and refreshed when its sources change?
When does it need to be updated? How is this coordinated?
(There will be some collaboration in order to keep information
in sync with other sources.)

� Does any information need to be converted to another form
that the requester wants? If so, who does this conversion? (If
another object helps with conversion of “raw” information, it
will be a collaborator.)

Structurers

Most applications organize and structure information and group
objects in different ways. Objects need to be pooled, collected, and
managed. Objects that are responsible for structuring and organizing
must get the things they structure from somewhere. The objects
they organize may come into being through collaborations with
other objects that are responsible for connecting to databases or
devices outside the software. Look for those collaborations. Or
objects being structured can be built up and added to the structurer
as the application executes. Responsibilities for retrieving, match-
ing, and updating the structured information are also places to look
for collaborations. Some of the same questions we ask of information
holders also apply to structurers:

� Where do the objects that are structured come from? Does the
structurer create them, ask for them, or get told about them?

� How are the objects processed? Does the structurer process
the objects that it structures, or does another object “visit”
them?

A transaction record in online banking is built by gathering informa-
tion at the UI and passing it to a service provider that stores it in a
transaction record. The only collaborations that the transaction
record itself uses are persistent storage services to put itself onto
disk.

Don't assume that a
responsibility for knowing
some fact means that an
object holds on to that
information. It can always
turn around and get
information from another
object that knows it.

Wirfs.book Page 160 Friday, October 11, 2002 11:44 AM

Strategies for Identifying Collaborations

161

� Does the structurer (or the objects it structures) persist? Who
handles the persistence?

� How are objects held by a structurer accessed? Is the way a
structurer organizes and relates objects hidden? Or is it visible
to outsiders that collaborate with the structurer? Do other
objects know of this organization and visit?

� Is the structurer responsible for answering cumulative ques-
tions about what it structures? Does it do so itself, or does it
call on others to tabulate information?

Some objects have responsibilities for maintaining complex relation-
ships. These, too, are structuring roles. These structurers aren’t
responsible for maintaining pools of like objects but instead are
responsible for managing connections and constraints among
related things. Each relationship generally implies one or more col-
laborations. A structurer has visibility of other objects because it
needs to know about them for a reason. Similarly, an object being
structured may need to know its structurer (but this is much less
common).

The rules surrounding permanence and connectivity between struc-
turers and their parts is rarely simple or straightforward. Debating
whether a structuring object is a composition or an aggregation can
sometimes be a wasted effort. The important point is that composi-
tion and aggregation are special cases. Many structurers don’t fit
neatly into a compositional or an aggregational role. Networks of
objects often coexist with complex interrelationships, responsibili-
ties, and collaborations. Trying to sort out their interdependencies
is what is important. To get to the crux of the matter, ask these ques-
tions of objects that structure and relate others:

� Why does the relationship between a structurer and those
objects it structures exist? Who needs to know about each
other, and why?

� What responsibilities are implied by the connections between a
structurer and the objects it structures? Is it responsible for
knowing about the objects and answering questions about
them? Does it delegate requests to them? Is a structurer
responsible for knowing how the objects it structures are
related?

� Does the structurer represent new, emergent properties of the
group of objects?

The Unified Modeling
Language lets us denote
two interesting structural
relations: composition and
aggregation. An aggregration
consists of an object that
represents a whole (a
structurer) that has
responsibility for managing its
parts (objects that are related
only through the aggregation).
The UML notion of a
composition relationship
implies a further restriction:
Parts in a composition cannot
exist independently of the
whole.

Wirfs.book Page 161 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

162

� Sometimes an object that is organized by a structurer needs to
turn around and collaborate with it. An object that knows its
structurer should do so for a specific reason. Does the object
tell the structurer when something about it has changed? Or
does it need to delegate the responsibility to its structurer
when it receives a request that it can’t handle?

� Is a structurer responsible for maintaining certain limits or con-
straints on the objects it structures? If so, how does it come to
know about these constraints and know when objects are to be
removed?

Service-Providers

Responsibilities that require specialized skill or computation can be
organized into service-providing roles. Sometimes the member of a
family of service providers are designed together, each member pro-
viding a slightly different means of accomplishing a specific task.
This leads us to ask the following:

� Who has the information that a service provider uses? Does the
service provider get told, or must it ask another?

� Are services configurable? Who has the configuration informa-
tion? How will the service be configured?

� Is any part of a responsibility prone to change? Will it evolve as
the application matures? Should a responsibility that belongs
to one object be removed and isolated in a separate service
provider for this reason?

� Does the application require different forms of the same ser-
vice? How do the services vary, and who is responsible for
each?

In the online banking application, several structurers are involved:
Customers know about BankAccounts and Users. BankAccounts
know about their Customers. Visibility of Accounts can be restricted
among Users. Each of these structuring relationships implies respon-
sibilities for limiting or organizing the views of related objects and
specific collaborations.

Wirfs.book Page 162 Friday, October 11, 2002 11:44 AM

Strategies for Identifying Collaborations

163

Controllers

Objects that make decisions and direct the actions of others are con-
trollers. They always collaborate with others for two reasons: to
gather the information in order to make decisions and to call on oth-
ers to act. Their focus typically is on decision making and not on per-
forming subsequent actions. Their ultimate responsibility for
accomplishing actions is often passed to others that have more spe-
cific responsibilities for part of a larger task that the controller man-
ages. This leads us to ask the following:

� Who knows the information that a controller uses to make the
decisions? How does the controller find out what it needs to
know?

� How much of the actions resulting from decisions is the con-
troller responsible for? Whom does it delegate responsibilities
to if it doesn’t take direct action? (The objects taking these
reponsibilities will be collaborators.)

� Is the decision making complex enough to warrant sharing the
responsibility? (If so, the objects sharing the responsibility will
be collaborators.)

� Are there events or intermediate results that the controlling
object will have to track and respond to?

Each transaction in the online banking application is responsible for
recording information about the transaction on permanent storage. If
a transaction is responsible for logging its actions, it could do it itself
or ask another object. The decision depends on how much is
involved in logging and how narrowly you define the transaction’s
responsibilities.

When a user chooses Save when editing a document in a word pro-
cessor, the software must make several decisions before saving the
file. It decides what format to save the document in (HTML, text, PDF,
etc.), whether or not to invent a name for the file, and the rules for
naming it. The object that is monitoring the user’s actions will either
be directly responsible for these decisions or will share the decision
making among its collaborators.

The distinction between
controller and coordinator is a
matter of degree. Controllers
figure things out and take
action; coordinators are
generally told what to do and
make few, if any, decisions.

Wirfs.book Page 163 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

164

Coordinators

Coordinators exist solely to pass along information and call on oth-
ers to act. Their focus is on holding connections between objects
and forwarding information and requests to them. Their job is to
facilitate communication and the work of others. We can find the col-
laborations related to a coordinator by asking the following:

� How does a coordinator delegate work or pass along requests?

� How does a coordinator inform others of things to do or
changes in state?

� How does a coordinator come to know about those objects that
it delegates to? Do they need to know about the coordinator?

Interfacers

Interfacers provide bridges between naturally disjoint parts. They
can act as a bridge between users and our software (user inter-
facers), between objects in other neighborhoods (internal interfac-
ers), or between our application and outside services and programs
(external interfacers). Each type of interfacer has its own collabora-
tion profile.

User interfacers transmit user requests for action or display informa-
tion that can be updated. User interfacers typically collaborate only
with objects in other non-UI parts of the application to signal events
or changes in the information they display. Ask these questions of a
user interfacer:

� How does a user interfacer let others know about user actions,
gestures, and changes in information it maintains?

� What other objects, in other parts of the application, does a
user interfacer know about?

� How many states does it track and notify others about?

� How do other objects tell a user interfacer they want to know
about certain events or state changes?

If an object listening to the user’s actions simply delegates a series of
requests to those objects around it, it is passing on the responsibili-
ties for making the decisions. It may ask an object for the document
format and then ask another object for the name. These collaborators
know the rules for formatting and naming. The coordinator is respon-
sible only for delegating the work to others.

A coordinator, like a
structurer, holds connections
to other objects. But their
purposes differ. A coordinator
is focused on managing the
actions of a group of workers,
whereas a structurer
manages a grouping of
objects and presents a
coherent view of them to
others.

Wirfs.book Page 164 Friday, October 11, 2002 11:44 AM

Strategies for Identifying Collaborations

165

Internal interfacers provide outsiders a limited view into an object
neighborhood. They serve as the “storefront” to services offered to
outsiders. They convey requests to objects hidden from view. An
internal interfacer collaborates by delegating external requests to
objects in its neighborhood. Whom it collaborates with and how it
does so depend on how transparently it packages the services it
offers. To determine collaborations, ask:

� How does an internal interfacer collaborate with objects in the
part of the application it hides from others’ view?

� How does it come to know about the objects that really offer
the services it provides?

� Does it simply delegate requests, or does it need to collaborate
with others to translate “external speak” to “internal speak”?

External interfacers usually do not collaborate with many other
application objects. They may delegate to service providers the
responsibility to format or convert information that they push or
pull from their external partners, but mostly they just encapsulate
non-object-oriented APIs. Who collaborates with them is much more
interesting than whom they collaborate with. But there are a few

When a user clicks a button labeled Close, a standard message is sent
to an object that has been assigned responsibilities for listening and
responding to this event. The path of communication between the
user interfacer and the event handler it notifies is established when
the UI object is created and configured for display.

In the online banking application, each component has a Session-
Manager object that can create specific Session objects that provide
services to other components. The WebServer component interacts
with only two objects in the DomainServer: the UserSessionManager,
and a UserSession that the manager creates. The UserSessionMan-
ager initially handles all requests from the WebServer component by
creating the appropriate UserSession service provider and then dele-
gating the work to it. When the specific service is completed, the
UserSession reports the results directly to the WebServer. Only the
UserSessionManager and UserSession are visible to outsiders; indi-
vidual service providers in the DomainServer component are hidden.

Wirfs.book Page 165 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

166

questions to ask about their responsibilities that may lead to identi-
fying some interesting collaborators:

� Will the external interfacer have to convert the data into an
object form? Does it make sense to separate the conversion
from the interfacing?

� How does the external interfacer connect to the outside? Are
the connections limitless? Does another object manage a pool
of connections?

� What will the interfacer do if it can’t make the connection or if
it detects errors? Who will handle the problem?

Looking at Individual Responsibilities: They Imply
Collaborations

Object responsibilities come in three flavors: knowing, doing, and
deciding. These responsibilities usually overlap and interact. To do
something, an object might need to know certain information; to
make a decision, an object might need to know certain other infor-
mation; to know something, an object might need to do something.
When we look at individual responsibilities, we are trying to decide
what is needed to actually carry out a particular responsibility. Our
goal is to determine obvious connections between necessary collab-
orators. As we make these decisions, we have many options to
explore.

Conceptually, an object may have a responsibility for knowing a fact,
but it holds on to a grouping of more primitive objects it uses to
represent that knowledge. Objects that have public responsibilities
for knowing can decide to hold on to and yield information directly
or to translate from one internally known form to an externally pre-
sentable one.

In a telco integration application, which coordinates the processing of
service orders across multiple preexisting systems, each integrated
system has its own kind of adapter object. An adapter is responsible
for translating generic service requests into one or more specific API
calls. A request to the BillingSystemAdapter, “Add a Product to a
Customer’s billing account,” for example, translated into multiple
calls to the billing system. Both requests and information had to be
translated to the appropriate format. The BillingSystemAdapter
reported any errors in processing but left the resolution of problems
to others.

Wirfs.book Page 166 Friday, October 11, 2002 11:44 AM

Strategies for Identifying Collaborations

167

There are three primary reasons why we don’t give objects free
access to all others: information hiding, abstraction, and adaptability.
If every object had visibility of every other, then changes to any single
object’s design would impact many, many others. Selectively reveal-
ing things through interfaces creates a barrier between collaborators.
We have a choice in how we represent things an object is responsible
for knowing. We can design a higher-level view of information instead
of presenting a smorgasbord of raw data for public consumption. This
technique lets us change low-level details of how an object actually
knows something without impacting any of its clients.

An object’s responsibilities are often based on information that it
asks others about. For example, an object that computes a corpora-
tion’s annual taxes needs access to many different pieces of informa-
tion: tax tables, income categories, deduction rules, and so on (see
Figure 5-2). Further analysis of this responsibility reveals many sub-
responsibilities. Responsibilities often depend on information, the
information itself may need to be computed, and decisions are
always based on information. We must study an object’s responsibil-
ities, looking for necessary collaborations it should make to acquire
missing information or ask for help.

To form the next guess, Speak for Me’s Guesser object collaborates
with several smaller, more focused guesser objects. Each is responsi-
ble for looking at the current Message and making a guess. The Let-
terGuesser object knows the rules for guessing a next letter, and the
WordGuesser uses different rules to guess a word. These objects, in
turn, hide the actual sources of data that they are using. Because
these data sources are hidden from the Guesser, they can change
their data sources on-the-fly. For example, the LetterGuesser can
switch from an EnglishAlphabet to a SpanishAlphabet (which loads a
different data file) without affecting the Guesser that calls on it.

When we assign an object a
responsibility, we are taking
only the first step. Fulfilling its
responsibility may involve
collaboration with a number
of other neighbors, each with
more specific responsibilities
for knowing or doing.

Figure 5-2
TaxCalculator collaborates with TaxRates to compute tax.

Wirfs.book Page 167 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

168

Designing the Details of a Complex Responsibility

If a responsibility seems large or complicated, a rough sketch of the
collaborations isn’t enough. Instead, we dig deeper into its design
and partition its subresponsibilities into collaborators. We do this by
dividing these subresponsibilities into two parts:

� The major steps of the responsibility (subordinate responsibili-
ties)

� A responsibility for sequencing the execution of the subordi-
nate responsibilities (sequencing responsibility)

The sequencing responsibility will call on the subordinate responsi-
bilities. In this part of the design, spend time identifying the major
steps. Write these down, but don’t assign them to objects just yet.
One complex responsibility can easily be rewritten as 5–10 subre-
sponsibilities. The trick is to keep each of these responsibilities at
the same level of precision and abstraction.

We can assign subordinate responsibilities to the object itself (if it
fits with its role and current set of responsibilities) or to others
(including new ones not yet discovered).

If an object is responsible for calculating taxes but does not know the
tax rates, it must either take on that responsibility or get the tax rate
from another object. Someone must know the tax rate. We choose to
assign this responsibility to a TaxRates object whose knowledge is
used by the TaxCalculator.

Calculating annual corporate taxes, if we are to be more precise,
really means

• Calculating applicable municipality taxes

• Itemizing income, expenses, and allowable state or provincial tax
deductions

• Calculating applicable state or provincial taxes

• Itemizing income, expenses, and allowable federal tax deductions

• Calculating applicable federal taxes

Wirfs.book Page 168 Friday, October 11, 2002 11:44 AM

Strategies for Identifying Collaborations

169

Each time you assign subparts of a complex responsibility, you are
faced with this decision: Where should subordinate responsibilities
be allocated? If the subresponsibilities seem to fit and belong
together, keep them with the initial object. If they don’t seem to fit
with the original object, look for opportunities. Don’t be content to
pile them into the original object. You might invent a new object, and
right away you have a cohesive set of responsibilities for it. Or you
might place them in a near neighbor (increasing its responsibilities
while still keeping it in character).

Sometimes you just don’t know who should have a subordinate
responsibility. It could belong with the complex responsibility, but it
seems slightly out of character. As a last resort, you can always put it
there. However, if you don’t know just yet who should have that
responsibility, put it on an “unassigned” list and move on. Use this
list to jog your design thoughts later, after you’ve made progress in
other areas.

Designing Collaborations for a Specific Task

Starting with a specific use case or event, our goal is to design a can-
didate collaboration model that supports it. The first goal is to
develop a “big picture”: a sketch of the objects, their responsibili-
ties, and their interactions. After we have the general sense of things,
we can pick out an important or seemingly troublesome area and

Part of making any tax calculation involves looking up tax rates. Ear-
lier, we decided to assign this knowing responsibility to the TaxRates
object and decided that the TaxCalculator would collaborate with the
TaxRates object to find the tax rate used in tax calculations. We ini-
tially separate the responsibility for knowing from doing for two rea-
sons: It allows us to update TaxRates independently of their use, and
it keeps any tax calculation object focused on computing.

We choose to assign the responsibilities for calculating taxes, as we
break it down further, to new and separate SpecializedTaxCalculators,
each responsible for a particular tax jurisdiction. Each is responsible
for knowing how to itemize income, expenses, and deductions. These
individual calculators are coordinated by an overall TaxCalculator.
Similarly, we model deductions or expenses as separate service pro-
viders, which know how to calculate their amounts based on informa-
tion that we supply them and the tax rules that they have access to.

Wirfs.book Page 169 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

170

dive into designing a small neighborhood of objects that does only
that one part. The goal of designing collaborations for a specific task
is to answer some key questions:

� What services are being invoked between collaborators? What
is the sequence of the work? Who is in control at any one time?
How do objects work together?

� How and when are the objects created?

� How long and how often do they need to see each other?

� Where are the branches in the logic? Where are the decision
points?

� Do the decision makers have what they need? Where will the
information that they need come from?

� What information holders are passed around? Are we passing
objects or simple data? Are any of them passed everywhere?

After we’ve answered these questions we will have a good idea of
how work is divided among collaborators and a good sense of which
objects are busy and active. But this beginning-to-end-of-a-task view
isn’t a complete picture. Many objects are likely to support more
than one task and accrue additional responsibilities. After we’ve
designed these, we are likely to refine our initial design, splitting
roles into two or more objects, collapsing multiple roles into one,
simplifying collaborations, and applying the tools of object orienta-
tion: patterns, generalization, polymorphism, and information hid-
ing. All the while, we will push toward a well-thought-out, justifiable
design.

Identifying Applicable Patterns

Design patterns can help us assign and arrange responsibilities and
organize collaborations. If we recognize that a particular pattern
might be a good way to factor a shared responsibility among collabo-
rators, then we don’t have to invent a complete solution. Instead, we
adapt a pattern to our particular needs.

To leverage design patterns, you need to know several things. You
need to know how to read pattern descriptions and where to look for
them. Before incorporating a pattern, you need to know how to
weigh the consequences of applying it:

Wirfs.book Page 170 Friday, October 11, 2002 11:44 AM

Strategies for Identifying Collaborations

171

� Does it change your objects’ roles and responsibilities in ways
that improve your design?

� Does it make your design more adaptable? Is this needed, or is
it overkill for the problem you are solving?

� What are some viable alternatives?

� What does the pattern do to your design’s complexity or clar-
ity? Is it a good choice?

Finally, you need to be able to adapt the generic solution offered by a
design pattern to your specific situation. To do this, you need to be
facile at applying the fundamental object technology that underlies
all design patterns: use of messages between collaborators, compo-
sition, polymorphism, and inheritance.

Certain patterns in the Design Patterns book (Erich Gamma et al.,
Addison-Wesley, 1995) are particularly worth studying. Composite,
Facade, State, Strategy, Mediator, Flyweight, Builder, Observer, and
Visitor are patterns we’ve applied in many situations. Each is worthy
of imprinting in your design solution space. If we haven’t mentioned
one of your favorites, don’t feel slighted. Sure, we could list all 23,
but we wanted to prune this list to 10 or fewer, just to keep those
who aren’t pattern-savvy from feeling overwhelmed.

Patterns describe ways to organize and arrange responsibilities.
They aren’t a substitute for thinking. You must consider the conse-
quences and then decide whether a pattern fits with and improves
your design.

A mailing list can hold individual e-mail addresses and other mailing
lists. For example, the “Party” mailing list might contain the “Work”
and “Personal” lists, along with any number of individual addresses.
The recursive nature of this structure brings to mind the Composite
pattern from the Design Patterns book. The intention of the Compos-
ite pattern is to simplify the processing of a structure’s elements. If
the mailing lists or e-mail addresses have similar responsibilities,
then the Composite pattern gives us a standard way to add elements
to a composite and to ask them to perform tasks. Individual
addresses and mailing lists are both types of Destination objects that
can send messages. An object that wants to send mail need not care
which type of destination it has. It simply tells it to send the message.
The MailingList reacts by iterating across its contents, asking each
Destination it holds to send the message. Eventually, the contents of
all of the MailingLists have been exhausted and each of the e-mail
addresses has actually sent the message.

If you know only the 23
patterns described in the
original pattern book written
by Erich Gamma and his
colleagues, you are missing
out on a lot of other wisdom.

Two roles are defined within
the Composite pattern: a leaf
and a composite. A composite
can structure other objects,
whereas a leaf does not. The
Composite pattern is an
aggregation of objects, each
supporting common
responsibilities in addition to
the ability to add and remove
itself from the structure.

Wirfs.book Page 171 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

172

Identifying How Architecture Influences Collaborations

An object’s position in an architecture also may have implications
about its potential collaborations. In a strictly layered architecture,
objects in one layer talk mostly to other objects in the same or adja-
cent layers. Messages flow between layers, but the range of commu-
nication is limited. Other architectures support very stylized means
of communications. In several distributed system frameworks, com-
ponents that provide services register with a ServiceBroker (see Fig-
ure 5-3). Components needing remote services request them from a
ServiceBroker. They may then communicate directly with the remote

Figure 5-3
Distributed systems often use a service broker to find collaborators.

Wirfs.book Page 172 Friday, October 11, 2002 11:44 AM

Strategies for Identifying Collaborations

173

service provider or speak through a Proxy, which has responsibili-
ties for forwarding requests to a remote service and handling the
communications synchronization.

Solving Problems in Collaborations

Collaborations should be simple and powerful. Objects that are
designed to work together should have an easy style of communica-
tion. Here are some common problems and some simple ideas for
streamlining and simplifying them.

Too many connections from outside to objects within a
neighborhood. A common design goal is to minimize dependen-
cies between different parts of the system. Exposing all of a neigh-
borhood’s objects defeats this purpose. Instead of having lots of
objects visible, we can construct portals to services that remain hid-
den. The Facade pattern introduces a single intermediary (called a
facade) between clients and services offered by a neighborhood. A
facade is an internal interfacer with a restricted set of responsibili-
ties. This single point of entry takes on responsibilities for

� Knowing which objects inside the neighborhood are responsi-
ble for handling any external request

� Delegating requests to appropriate objects

The idea of a facade is fairly simple: create a single point of contact
instead of exposing the interfaces of several objects (see Figure 5-4).
Outsiders can speak to the facade and don’t know who is actually ful-
filling a request. Objects within the neighborhood don’t have to
change to work with a facade. Instead of receiving requests directly
from outsiders, they receive requests forwarded by the facade. They
remain oblivious of whom it is that calls them to action.

Applying the Facade pattern promotes a looser coupling between a
neighborhood and its clients (see Figure 5-5). Because only one
object (the facade) is used, designers are freer to change how things
work without impacting clients.

Many low-level messages. Sometimes an object packages its
responsibilities into actions that are too small. Sending a flurry of
messages may add up to a bigger action, but the client must describe
what it wants as tiny steps. If you find a client issuing a stream of
messages, ask whether any of these requests can be bundled into
higher-level ones. The use of fewer, more powerful messages is often

Interfacers can be more or
less intelligent, depending on
how much responsibility you
give them. Typically a facade
doesn’t make complex
decisions about whom should
receive a request, nor does it
translate requests into
sequences of delegated
actions.

Wirfs.book Page 173 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

174

an improvement. Instead of setting up a service provider’s state
through a series of messages, offer a higher-level request that uses
reasonable defaults. This removes the burden of establishing the
right context before using its services from all but the most sophisti-
cated clients.

Too many branches and choices. Communications get overly
complex when many paths are possible and the rules for determin-
ing which path to follow are complicated. You know you have poten-
tial problems when code that implements a responsibility is filled
with checks of object types and conditions. This makes collabora-
tion paths difficult to follow. To fix this, you may need to change both
the client’s code and the interfaces of collaborators. The goal is to

Figure 5-4
Without a facade, client objects must know about the objects in the neighboring system.

Code should rarely, if ever,
explicitly check an object’s
type. If you find yourself
writing code that checks type
and then branches, it
indicates that responsibilities
are misplaced and need
refactoring.

Wirfs.book Page 174 Friday, October 11, 2002 11:44 AM

Strategies for Identifying Collaborations

175

simplify what any client needs to know in order to collaborate. If col-
laborators’ interfaces are similar but not identical, perhaps they can
be made more consistent. If argument types are being checked to
determine which collaborator to use, this too, is a sign that decision
making may be in the wrong place. Not all complexity can be
removed simply by readjusting interfaces and redistributing deci-
sions. Sometimes, things are just complicated and irregular. But be
on the lookout for ways to simplify and make collaborations more
consistent and thereby improve your design’s clarity.

The Double Dispatch pattern is one example of how conditional
checking based on object type can be eliminated. In Figure 5-6, deci-
sions are made based on checking an object’s type.

Figure 5-5
The Facade pattern centralizes the interface to a neighborhood’s services.

Wirfs.book Page 175 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

176

In the Double Dispatch pattern, a common request is issued to
receivers, who turn around and call the right method. This elimi-
nates checks for object type in the caller (see Figure 5-7).

SIMULATING COLLABORATIONS

You can quickly find errors and omissions in your model by simulat-
ing the messaging between objects. It helps you to find new objects
(you will likely have to invent objects with responsibilities for con-
trolling the flow of work or responding to events), to discard ill-
conceived objects, and to elaborate any vague responsibilities, and
it results in responsibilities shifting from one object to another. All
this without writing a line of code! Simulating with low-tech tools is
also a good way to surface and handle missing or ambiguous
requirements.

:PDFDocument:Printer :TextDocument :WordDocument

get document type
print document

get document type
get document type

choice of message
is based on

explicit check
of type of
document

check document type

print PDFDocument

print TextDocument

print WordDocument

Figure 5-6
Before the Double Dispatch pattern is applied, these objects are basing their actions on type checking.

Why simulate? What
collaborations do you
simulate? What are the end
products of a simulation? This
section offers guidance on
planning and running a
simulation, outlines what you
can hope to accomplish, and
describes the changes and
additions you will likely make
to your design.

Wirfs.book Page 176 Friday, October 11, 2002 11:44 AM

Simulating Collaborations

177

The basic idea of simulating a collaboration is simple, but there are
several subtleties to pay attention to. Given that your goal is to
develop an optimal collaborations model, how do you balance the
trade-offs in one decision or another? Although there are no hard-
and-fast rules, the following guidelines should get you started.

Planning a Simulation

It is all too easy to gloss over little details when you work with CRC
cards only. Simulating collaborations will force you to look more
closely at your design. Running a simulation forces you to consider
how one object gains visibility of a collaborator, why one object is
communicating with another, or whether a collaboration sequence is
too simplistic or too complex.

Whether you are working in a design team or developing a design on
your own, it is useful to review your collaboration model with others.

:PDFDocument:Printer :TextDocument :WordDocument

print yourself on me
print document

based on whom
the receiver is

print PDFdocument

print yourself on meourselfrserse

print TextDocumentextDoctDtDo

print yourself on me

print WordDocument

Figure 5-7
The Double Dispatch pattern eliminates type checks.

Wirfs.book Page 177 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

178

Role-play the hard parts first. Not everything is worth simu-
lating. The roles-and-responsibilities model usually reveals specific
areas of the model that will be difficult to design or areas where your
understanding of the design is very rough. Identify these areas, and
put them on the agenda for exploration. They may be whole use
cases or key events that exercise the core of your system. Simulation
may involve modeling your application’s response to specific
actions, or there may be specific parts of your application’s machin-
ery that you want to investigate. When you choose one of the areas
to simulate, identify exactly what it is you are trying to understand.

Set a goal for the simulation. It is best to decide what it is you
are trying to accomplish before running the simulation. Here are some
possible objectives:

� Developing a simple, consistent collaboration style

� Testing or proving your ideas

� Identifying what you know and don’t know

� Exploring the details of a small area

� Studying the coordination and control

� Refining an already working collaborations model

� Finding logical partitions (object neighborhoods)

� Identifying and rewriting responsibilities

The way you conduct simulations changes according to what you are
trying to accomplish. A well-defined goal—such as “Test the pattern
of interactions that act to control this use case” or “Explore alterna-
tive ways to diagnose a disease”—has an implicit statement of which
objects will be involved and for which details are best left out.

Set the boundaries. Based on your goal for the simulation, decide
up front where you will stop—which objects and responsibilities you
will invoke and which ones you won’t. Sometimes it is clear that a
particular responsibility is at a different level of detail from those of
the others that you are simulating. If a piece of the system’s actions
can be isolated because it doesn’t depend on the other objects that
you are studying, defer it. Focus on the particular area as stated in
your objectives for the simulation.

Assign candidates to team members. One way to get everyone
involved is to role-play a simulation. People playing the role of
objects? You bet! Each role player should be assigned at least one

We aren’t simulating to
“prove” anything—at least,
not in the mathematical
sense. We are developing
a model that handles the
external events and actions
well.

Wirfs.book Page 178 Friday, October 11, 2002 11:44 AM

Simulating Collaborations

179

object. Estimate how active each object will be. Dole them out so
that there is a fairly even distribution of message senders and receiv-
ers. Sometimes an object will be a center of activity, a hub. Whoever
has that one should have little or nothing else to do. If a CRC card
shows no collaborators, then the person playing that role won’t col-
laborate with others. That person only handles requests but never
calls on others for help. Try to have everyone role-play at least one
object that will collaborate with another. Otherwise, team members
won’t feel involved.

Simulate use cases. Scenarios or conversations, with their step-
by-step descriptions, are a good place to start. They outline exactly
what the system is responsible for and when it takes specific action.
When the user does this, what objects will answer? How will they ful-
fill the system’s responsibilities at that point? What other actions of
the system lie hidden? How does a scenario start? What actions and
collaborations must be carried out to fulfill the actor’s goal? We may
have waved our hands in the early design, but simulating the exact
response to the users’ actions will iron out the wrinkles in our candi-
date model. Start at the beginning of the use case, and make sure you
can get to the end.

Invent controllers if you need them. Your candidate objects
usually don’t include controllers, at least not initially. It is at this
time that you need to identify new objects that monitor events and
react by delegating work to others, objects that manage the flow of
interaction between objects to accomplish a sequence of action, and
objects with control or coordination responsibilities. If you are simu-
lating a use case, invent at least one object that monitors the user
and delegates to the objects that do the work. You will often find that
you need several more, but you can start simply with one. When a
controller seems to be doing too much work, study it independently.
Try to break up its work and distribute it among collaborations in a
neighborhood. Make the object delegate more to others and become
less involved.

Test one area at a time. Any task that the software can be asked
to do is a candidate for role-playing. These tasks range from entire
use cases to specific computations buried deep in the software. If
you want to demonstrate the high-level decision making and coordi-
nation architecture, ignore the details of the objects that are beneath
the surface.

Use cases divide an
application’s responsibilities,
as seen from a user’s point of
view. Simulating the object
collaborations involved in
each is a good way to verify
(and find) collaborations.

Wirfs.book Page 179 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

180

Test for what you don’t know. If you don’t think that role-
playing a collaboration will reveal any new information, don’t do it.
It is those complicated or interesting collaborations that you have
glossed over that need to be explored. Simulating lets you draw
and redraw alternative collaboration sequences and run through
alternatives, always looking for better ways to distribute object
responsibilities.

Limit the time spent simulating. If you spend more than an
hour or so simulating any collaboration, either you are covering too
much detail or too many variations, your scope is too large, you are
doing too much design work during simulation, or your team isn’t
sticking to the main point.

Running a Simulation

The goal of running a simulation is to make sure your model hangs
together and makes sense. Do collaborations seem reasonable? Are
responsibilities correctly stated? Can you make it all the way
through to accomplishing a specific goal? Are there better ways of
collaborating? Do responsibilities need to be reassigned? Have parts
of the design been ignored or slighted? As you run a simulation, you
will be checking all of these things.

Start with an event. Begin by determining what event starts the
action. A user makes a selection, types in some data, or signals a
choice. A timer signals that time is up, or a port signals that a piece
of data has arrived—whatever. Ignore the details of any interface
objects. Know that they exist and notify some other object of the
user’s intentions or external events. What you are interested in is
which objects in your model are responsible for handling these
events and what chain of collaborations is involved afterward. When
an event occurs, ask these questions:

In Speak for Me, the presentation of letters must be synchronized
with the user’s actions for selecting them. There are only five or six
objects involved in that: the Presenter, the Selector, the Message-
Builder, the Timer, the Message, and the Guesser. We first work with
that small set to design the basic control strategy. Then, to test at a
more detailed level, we simulate what the Guesser does when you
ask it for the next guess, or what the Message does when you tell it to
add a letter to itself. We first pinpoint the fundamental collaborations
between these key objects before exploring further. We design one
small set of collaborations at a time.

Wirfs.book Page 180 Friday, October 11, 2002 11:44 AM

Simulating Collaborations

181

� What object should be informed of the event? Is there a CRC
card that describes the object? If not, make one. Does its role fit
the current situation? If not, change the role or choose a differ-
ent object card.

� What responsibility will we ask the responding object to fulfill?
Is the responsibility listed on its card? If not, write it down.

� Who will it collaborate with to fulfill the responsibility? Will it
do the work itself or call on others?

Express the event as an intention and not as a button click or count-
down timer time-out: “The user chooses to save a file” rather than
“The user selects Save File from the menu.” Express it as a “time for
next guess” event and not an operating system process. All you care
about is that something specific happened.

Now make your objects take responsibility for processing the event.
Follow the action and record the sequence of collaborations. As seen
in Figure 5-8, you can toss a lightweight ball (we prefer a Koosh ball)
to simulate messaging between objects. Tossing a ball gets everyone
kinetically involved. If you don’t want to be so active, you can still
simulate collaborations. Point at a card of a collaborator. It may

Figure 5-8
Rebecca, Alan, and friends run a simulation.

Wirfs.book Page 181 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

182

seem silly, but making connections between collaborators is impor-
tant. Move a card toward its collaborator. Draw lines between collab-
orators. If you can’t explain interactions, then you have found a gap
in your design.

Stay at the same conceptual level. First, develop a breadth-
first, high-level view of key object interactions, tracing object collab-
orations at the same conceptual level (or one step lower) in the
design. Then explore the depths of individual areas, elaborating and
subdividing roles and object responsibilities (see the “Test one area
at a time” guideline in the preceding section). Modeling candidates
at widely differing conceptual levels makes simulation much more
difficult. It requires you to switch gears and think differently.

Follow the simulation closely. Watch both how the messages
flow among objects (if you are tossing a Koosh ball, see how it travels)
and how the cards represent responsibilities and collaborators.
There is a tendency to become occupied with the mechanics of the
simulation at the expense of the critical thinking. Dig in! As the ball is
tossed around or collaborators are pointed at, keep checking that
the collaborations and responsibilities on the cards are in sync with
what is happening. If you spot an omission or inconsistency, stop to
correct it, either on the cards or in the simulation. If you see an alter-
native that simplifies the collaborations, try it out. And pin it down!

Think critically. Be a skeptic. When someone responds to a mes-
sage, ask, “What information did the object need to do be able to do
that?” If you didn’t see the information gathered explicitly through
another collaboration, the object must have known the information
itself. Is that one of its responsibilities? If not, what other object
should it ask? Is that collaboration written down on the object’s
card? If not, get it down.

If you see someone send a message, ask, “Where did the connection
from the sender to the receiver get made?” There are only a handful
of possible ways that an object can hold a reference to another: It
has it in a variable, it received it in a method parameter, it got it as a
return from a message it sent, it created it on-the-fly, or it referred to
a widely visible object. It must be one of these. Defer this question-
ing until you work out most of the collaborations, but then address
it. This is not something you want to leave undecided.

Sketch the collaborations. Lay out the object neighborhood and
design the paths of the communications. You can place CRC cards on
big sheets of paper and draw thick lines to represent general paths

If you were analyzing a
painting, your best strategy
would be to consider the
composition separately from
how the oils were mixed.

As we simulate the run-time
behavior, we inevitably
discover gaps and
inconsistencies in the model.

Wirfs.book Page 182 Friday, October 11, 2002 11:44 AM

Designing Good Collaborations

183

of collaboration. Or you can redraw objects on white boards and
draw collaboration lines between them. Some teams may want to get
more formal and draw UML sequence diagrams. Whatever you do,
connect the collaborators. After you’ve laid out the paths, check out
the sequence of their collaborations.

How many objects does any one object collaborate with? Communi-
cations create dependencies. Are there any traffic hubs? These cre-
ate objects that tend to be bloated with responsibilities. Do any
objects flow through the system and make themselves visible to
everybody? Pay special attention to these. A change to their public
responsibilities will have an impact on their neighbors across the
system.

Write down what you don’t know. Don’t try to decide every-
thing during one simulation. When you encounter a gap in the collab-
orations model, write it down and go on. If you can’t decide which
object should be doing something or who should be collaborated
with, start a list of questions and responsibilities that you need to
consider later.

Rewrite candidate cards. When an object receives a message,
the role player should check the object’s CRC card to verify that one
of the responsibilities covers the message’s intent. If you shift
responsibilities from one object to another, sometimes the responsi-
bility should be reworded. Instead of doing a task itself, an object
may be delegating it to another. It may be ultimately responsible for
getting the task done but is collaborating with another to get a big-
ger job done. Be sure to keep things straight. As you revise your
design during a simulation, write new cards for your objects and take
care to phrase responsibilities correctly and to keep collaborations
up-to-date.

DESIGNING GOOD COLLABORATIONS

There are no hard-and-fast rules for designing collaborations. Our
goal is to design consistent, nonarbitrary communications. We want
to keep things simple and reduce unnecessary coupling between
objects. There are no rules that will lead to the ultimate design. Here
are some guidelines, however, that we find useful.

Don’t pass around primitive data types. If you find yourself pass-
ing text and numbers around among collaborators, ask yourself what

Our initial cut at the roles and
responsibilities is mostly
educated guesses. They
make sense because they
mirror our notion of what the
objects are. Often they have
real-world features. But
as we look for better
collaborations, the objects
expand their responsibilities
and become better software
objects.

Wirfs.book Page 183 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

184

that text and those numbers represent. Words? Money? OrderQuan-
tities? Are you really communicating at the right level? You may have
overlooked some simple concepts when inventing your first set of
candidates. It is best to use high-level representations of these things
during design. When it’s time to implement them, you may choose to
use simple data types, but you may also find that a Money object is a
sensible place to put responsibilities that you had overlooked: Who
should convert from one currency to another? You can’t do that with
a float! Using these placeholder objects gives you places to put new
responsibilities that you encounter later. Give these information
holders names, and get them on the cards.

Keep the big picture in mind. Are there a lot of requests made
of a particular object? Or do any seem to be the primary delegator?
Are too many of the decisions or actions taking place in one object?
Is it possible to shift its responsibilities around to make it less of an
authority? Do any of the objects seem to know about lots of other
objects? Are there any areas of the collaboration where more than
the usual hand-waving is going on?

Watch for collaboration patterns. Some of the collaborations
will look familiar. They may fit a pattern that you recognize, or they
may be similar to something that you have already done. If you use a
consistent collaboration style and keep the collaborations simple,
you’ll find that you have more confidence in your model—without
simulating every scenario—because you have seen a similar pattern
of collaboration that already works.

The Law of Demeter: A Case Study

The best design is one that satisfies its requirements without being
overly complex or inconsistent. Inconsistencies make a design hard
to change or comprehend. Making a design more flexible often
increases its complexity. Many times one design is tossed in favor of
a less elegant, but more justifiable, one. The point is that design
always involves trade-offs, and we are giving you the tools necessary
to adequately consider design trade-offs. Others contend that there
may be “laws” of object design that, if followed, will always lead to a
good design. This is not so. Consider the Law of Demeter.

The Law of Demeter was proposed by Karl Leiberherr and other
researchers as a style to follow for designing collaborations. When
first proposed, this law caused a stir in the object community
because it limits permissible collaborations. “Only talk to your
immediate friends” is its credo. A more general formulation of this

“. . . use small objects for
small tasks, such as money
classes that combine number
and currency, ranges with an
upper and a lower, and
special strings such as
telephone numbers and ZIP
codes.”

—Martin Fowler

Wirfs.book Page 184 Friday, October 11, 2002 11:44 AM

Designing Good Collaborations

185

law is that each object should have only limited knowledge about
others. It should use only objects “closely related” to it. A strict form
of the law suggests that collaborators should be used in very limited
ways. It is worth exploring some of the finer points to see the impact
of this approach on a design.

The Law of Demeter says that if one object needs to request a ser-
vice of another object’s subpart, it should never do so directly (see
Figure 5-9). It is considered bad design to dig into a structurer to
retrieve and use a subcomponent. The more a potential collaborator
knows how to “dig out” internal structures of an object, the more
dependent it is on that deep structure. The design is more brittle. It
is OK to request a service of an object, but if you knowingly request
one of its structural subparts and then request a service of that sub-
part, you’ve violated the Law of Demeter (see Figure 5-10). It sup-
ports the notion that structural details should be concealed from
collaborators. Instead of asking an object for something it knows and
then turning around and asking a second object for something it
knows and then turning around and asking a third object to do some-
thing, requesters should make their requests only to the enclosing

It is hard to call anything in
software design a law. Unlike
the physical world, software
machinery doesn’t have to
obey physical laws, nor are
we issued a citation if we
break one. The intention of
the Law of Demeter was to
indirectly couple objects. We
are more comfortable thinking
of it as a design guideline.

Figure 5-9
The Law of Demeter minimizes object visibilities.

Figure 5-10
These collaborations don’t follow the Law of Demeter.

Wirfs.book Page 185 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

186

object. That structurer should then turn around and take responsi-
bility for propagating this request to all of its subparts. This sounds
reasonable. Why give a potential collaborator the extra burden of
traversing long networks to get what it needs?

However, this technique becomes of questionable design value when
there aren’t so many visibility links to chase. If we strictly adhere to
the law, instead of asking an account object for its transaction his-
tory and then asking the transaction history object for its most
recent item, a client should ask the account for its most recent trans-
action history item. This places the extra burden on the account for
knowing more detail about its history (rather than just holding a ref-
erence to the history object that is responsible for knowing these
details).

More formally, the Law of Demeter states that an object should call
on the services only of the following kinds of objects:

� Itself

� Any objects passed to it as parameters

� Any objects it creates

� Any objects it stores references to that are its own subparts

Although following the Law of Demeter may increase the maintain-
ability and adaptability of a design, it also has the effect of forcing
structurers to have additional responsibilities for propagating
requests to their subparts. Structurers, in turn, must know more
about the abilities of the objects they structure. This may not always
be a good design choice. The law makes the trade-off of hiding struc-
tural details at the expense of adding to structurers’ responsibilities.

Our recommendations for designing collaborations are not so strict.
They are intended to limit visibility and avoid unnecessary coupling.
They are not laws to follow, but guidelines. This means that you as
the designer need to exercise judgment and critical thinking to
choose which parts of your design should be hidden (and change-
able) and which parts should be revealed to clients. We suggest that
you observe these principles:

� Establish a collaboration reference when needed. Discard it
when it is no longer needed.

� Store a reference to a collaborator if it is used repeatedly or
when you discover that it is expensive to re-create or reestab-
lish the connection to the collaborator.

Wirfs.book Page 186 Friday, October 11, 2002 11:44 AM

Making Collaborations Possible

187

� Give structurers added responsibilities to navigate to their
parts and subparts when the way a structurer is organized is
considered a private detail that should be hidden.

� If it is more important to get the right service than to get a spe-
cific object to perform the service, ask for help indirectly.

The goal of all this is to develop a collaboration model in which
object roles are clear and simple, responsibilities fit with roles, and
the number of objects seen by any one object are few and well cho-
sen. Simulating with low-tech tools lays the foundations for refine-
ment. After we have demonstrated that fundamental collaborations
work, we can always simplify, expand, compress, and make things
more consistent.

MAKING COLLABORATIONS POSSIBLE

Objects can collaborate only if the classes that implement them
make it possible. We can use CRC cards and Koosh balls to simulate
the collaborations, but to enable collaborations among objects, we
must design their classes to support them. A collaboration has two
sides. The behavioral side is the most obvious; objects call on each
other for help. UML sequence and collaboration diagrams demon-
strate this flow of control, action, and information much more pre-
cisely than do CRC cards or white board sketches. We will turn to
these means of documenting our design soon enough. But to make
these calls in the first place, the calling objects must have references
to their helpers. This underlying structural side of an object must
show the following:

� How many other objects it will need to know

� How it will refer to them

� How long it should hold their references

A collaborations model is not complete until we have decided how
each and every collaboration will be possible. This level of detail is
very hard to figure out and even harder to show on any UML dia-
gram. Often, a class diagram shows only the static, compile-time
associations among the objects. Not only are we talking about these
connections, but we also are considering run-time associations that
are enabled by these static declarations—references that enable
dynamic connections that may come and go or may be created and
find permanent homes.

Wirfs.book Page 187 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

188

Collaborators on CRC cards will show up as references to variables,
arguments, or return types. Or they may be established by code that
connects objects via events or object creation. But by one means or
another, all objects that collaborate must be made aware of those
objects that they use. The more any one object knows about others,
the more dependent it is on the context provided by those collabora-
tors. An object that is bound to many collaborators must live in close
proximity to them or reach out to other neighborhoods where those
services exist. The less an object knows about and relies on others,
the more neighborhoods it will fit into. This creates a conflict:

The most successful design makes reasonable connections between
collaborators. We try to make decisions about collaborators that
limit unnecessary dependencies.

Guidelines for Making Connections

When implementing a design, the programmer will discover any
hand-waving about object associations done by the designer. There
is a harsh reality to designing collaborations:

Every call from one object to another must be supported by some
practice that establishes the communication path from one to the
other. These associations may be long-term, composition relations
or sporadic and on-demand. Follow these guidelines when you
design collaborations.

Get a collaborator when you need it. Modern languages accom-
modate only a few schemes for associating objects:

� Create a collaborator and then ask it for help.

� Pass a helper as an argument to a request. The receiver will use
it as a collaborator.

� Grab an object reference that is returned from an earlier collab-
oration.

Autonomy versus Collaboration: To collaborate with others, an
object needs to know its neighbors. Collaboration is good. To be
reusable, an object should be as independent as possible. Collabora-
tion creates dependencies. What’s a designer to do?

To collaborate with another, an object must have a reference to it.

Limiting visibility to other
objects and limiting deep
knowledge about how
something does its job on
your behalf are good design
principles to follow. Following
this advice results in fewer
dependencies among objects.

Wirfs.book Page 188 Friday, October 11, 2002 11:44 AM

Making Collaborations Possible

189

Hold on to a collaborator if it is used repeatedly. Creating a
helper on-the-fly is appropriate when help is needed to fulfill a spe-
cific responsibility. If there is too much overhead in creating a new
helper repeatedly, or if the same helper can be reused to fulfill differ-
ent responsibilities, you can cache a reference and use it repeatedly.
Choosing a caching strategy depends on the frequency of use and
the cost of creation. These are low-level concerns. As a first approxi-
mation, an object can always create a helper when needed. If and
when the cost of creation becomes an issue, then maintaining a ref-
erence to a helper in its internal stores (instance and class variables)
is always a viable alternative:

� If an object needs its own collaborator, store a reference to the
collaborator in one of the object’s private instance variables.

� If all the instances of a class need the same collaborator, hold it
in a private class variable. This makes it visible to all the
instances of the class.

� If different kinds of objects need the same collaborator, store a
reference to the collaborator in the object-oriented version of a
global variable: a public class variable. In this way, any object
that can see the class can use the collaborator.

If an object is created when needed and then is forgotten when the
responsibility is completed, the helper is a use-once throwaway. This
may be appropriate. However, if you have the luxury of designing the
object and its collaborators at the same time, it can be useful to give
the helper more intelligence. If it isn’t disposable, it can remember
and adapt to repeated requests. If you design the helper to stick
around, you can gain leverage by having it adapt to repeated use.

Ask for help by service name and not class name. An object
can always create and use a service provider directly. But there are
ways to ask for help that aren’t so direct. They usually increase a
design’s flexibility. Instead of creating the object we need, we can ask
another known object (a service broker) to give us the right kind of
help, based on the kind of help we need. This gives us the option to
design the service broker in a variety of ways. And it gives us the
freedom to change who provides the implementation of a service or
how that service provider is managed without impacting any object
that needs the service. When you need the flexibility, introduce an
intermediary instead of directly creating a helper (see Figure 5-11).

A collaborations model
describes what objects any
given object associates with,
what requests it makes of
them, when it does so, and
how much it trusts them to
help carry out its purpose.

Wirfs.book Page 189 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

190

Designing Reliable Collaborations

It is easy to design objects to work under perfect conditions. It is
much harder to design for exceptional conditions. In general, making
one object more adept at handling its own problems relieves the bur-
den of doing so from those that collaborate with it. At the very least,
if a responsibility completes only partially because of an error, the
object should make its best attempts to leave any resources it
obtained in a consistent state. In general, if an object detects an
error during the middle of its performance, it should tidy up after
itself.

If a side effect of a neighbor’s action could result in catastrophe,
sometimes an object will want full control over its holdings. If an
object is to be used in many different environments or if it will travel
around a distributed network and is designed to work under adverse
conditions, it must raise its guard. We use a simple strategy to
prevent an object from breaking: Hide the object behind a limited

A method in the middle of a long collaboration sequence opens a file
and normally closes it. On error, it takes care to close the file. This
makes it a more responsible citizen.

Figure 5-11
A broker’s role is to provide collaborators to other objects.The difficulty in designing

exception-safe software isn’t
in pinpointing where an
exception gets thrown, or in
determining who eventually
handles it. The real problem
is in designing all the
intermediate collaborations
so that they leave the system
in a reasonable state and
allow the exception handler to
do its job.

Leaving things in a consistent
state shifts the burden to
clients to figure out how to
recover—something they
may not always be equipped
to do.

Wirfs.book Page 190 Friday, October 11, 2002 11:44 AM

When Are We Finished?

191

interface. By narrowing its responsibilities, we let an object restrict
the ways that others can affect it.

In an ideal world, the browser would offer many more services to the
applets. As developers, we would be able to leave images and
sounds—and not just text cookies—on the client machines.

Therein lies the rub. As we narrow the services we provide, we can
make objects more reliable, but we offer fewer services and less flex-
ibility to our neighbors. It is one of the many compromises that we
make.

WHEN ARE WE FINISHED?

Object design is devoted to creating an arrangement of responsibil-
ities among collaborators. Identifying roles defines the partici-
pants; assigning responsibilities distributes the work. Designing

As shown in Figure 5-12, a Web browser can’t possibly anticipate
who its neighbors (applets) will be, so it doesn’t trust them. It pro-
tects itself and its operating system resources from malicious objects
by accepting only a few simple messages.

Figure 5-12
When you use Java applets, visibility and access to system resources is restricted.

Wirfs.book Page 191 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

192

collaborations connects the workers. As we design collaborations,
we readjust and reorganize the roles and responsibilities to make a
better fit between any given participant’s needs and abilities. We
factor responsibilities and design reliable communications.

There are many sources of raw material for building a collaborations
model:

� Use cases

� Events

� Themes derived from application stories

� Real-world views of the domain

� Patterns

� Architectural styles

Designing collaborations will ground any hand-waving that we did
earlier. Browsing (and thinking about!) responsibilities gives a broad
dynamic view. Analyzing the possible factorings of subresponsibili-
ties among cooperating objects and carefully simulating how our
objects interact will fill in many details. Thinking carefully through
visibility, trust, and reliability issues completes even more of the pic-
ture. Although we’ve simulated collaborations, we are still short of
implementing them.

But this invites a question: When is a collaboration model good
enough? It is good enough when it demonstrates that objects inter-
act in consistent ways and that any natural divisions in a system are
preserved. Move on to more detailed work when your objects, their
responsibilities, and their collaborations are no longer candidates;
when they fit together in nonarbitrary ways; and when you have
located the hard places and explored options for solving them as
simply as you can. At this point, you could rightfully declare that you
are finished with exploratory design and ready to move on—either
to refinement or to a first implementation.

Developing a collaboration model has taken us a big step forward.
However, more precision can be added, and many more decisions
must be made. Roles and objects will need to be mapped to their
implementation as interfaces and classes. Decisions will be made
about which relations between collaborators should be static and
which should be fixed. Hooks may be added to the design to support
variation, and extra behaviors to support more reliable collabora-
tions. Whether you make time to refine your design before you start
coding or refine your ideas after you’ve been coding for a while, an

Wirfs.book Page 192 Friday, October 11, 2002 11:44 AM

Further Reading

193

exploratory design model still lacks many details. In reality, design
continues during coding, testing, bug fixing, and code refactoring.

SUMMARY

Collaborations are requests from one object to another. One object
calls on, or collaborates with, another because it needs help. Some
objects collaborate a lot; others, little. Some objects offer help to
many others; others are used infrequently. An object’s frequency and
patterns of collaboration depend on what its responsibilities are and
how it carries them out.

To develop a collaboration model, you need to focus on how candi-
dates work together to perform complex, coordinated actions. Ini-
tially your goal should be to link individual responsibilities to
collaborators. Responsibilities usually overlap and interact. To do
something, an object might need to know certain information, which
it might get by asking a collaborator. To make a decision, an object
might need to know certain other information that it asks another
object about.

When you have a rough idea of how objects call on one another for
help, you can take a pass at solving more complex scenarios. You
can quickly find errors and omissions in your collaboration model by
simulating the messaging between objects. Pick an area of your
design to simulate. Start by asking, What gets things rolling? When
an event starts the simulation, what object should be informed of the
event? What responsibility will you ask it to fulfill? Who will it collab-
orate with to fulfill this responsibility? Follow a chain of collabora-
tions from beginning to end. Explore alternatives for how objects
might work together.

Your goal is to develop a collaboration model in which object roles
are clear and simple, responsibilities fit with roles, and the number of
objects seen by any one object are few and well chosen. After you
have demonstrated that fundamental collaborations work, you can
always simplify, expand, compress, and make things more consistent.

FURTHER READING

Earlier we mentioned that you should look further than Design Pat-
terns (Addison-Wesley, 1995) by Erich Gamma and his colleagues for
design patterns. A rich source for design pattern information is the

Wirfs.book Page 193 Friday, October 11, 2002 11:44 AM

Chapter 5 Collaborations

194

patterns home page: http://www.hillside.net/patterns/. The many
Pattern Languages of Program Design conferences are another rich
source. There are four volumes in the PLoP series published by
Addison-Wesley:

� Pattern Languages of Program Design (James O. Coplien and
Douglas C. Schmidt, 1995)

� Pattern Languages of Program Design 2 (John M. Vlissides et al.,
1996)

� Pattern Languages of Program Design 3 (Robert C. Martin et al.,
1998)

� Pattern Languages of Program Design 4 (Neil Harrison et al.,
2000)

In addition to these books, online PLoP conference proceedings have
even more patterns. Check out http://st-www.cs.uiuc.edu/~plop/.

“How Designs Differ,” by Rebecca Wirfs-Brock, analyzes two designs
for the same problem. This paper explores how control architecture
and level of communication between controllers and the objects
they control can have a major impact on a design. An online version
of the paper can be found at www.wirfs-brock.com.

Wirfs.book Page 194 Friday, October 11, 2002 11:44 AM

Chapter 6
Control Style

ouglas Hofstadter challenged his colleagues and friends
to translate “A une Damoyselle malade,” a poem origi-

nally written in French, into any other language, maintaining
seven properties of the original:

1. The poem is 28 lines long.

2. Each line consists of three syllables.

3. Each line’s main stress falls on its final syllable.

4. The poem is a string of rhyming couplets: AA, BB, CC, etc.

5. Midway, the tone changes from formal (“vous”) to informal (“tu”).

6. The poem’s opening line is echoed precisely at the very bottom.

7. The poet puts his own name directly into his poem.

D

From Le Ton beau de Marot by Diuglass Hofstader. Copyright © 1997 by
Basic Books, a member of Perseus Books, L.L.C. Reprinted with permission
of Basic Books, a member of Perseus Books, L.L.C.

Wirfs.book Page 195 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

196

Hofstadter and his friends penned more than 100 translations, each
with a unique style and twist. For many of the same reasons, “trans-
lating” requirements into a software design results in wide variation.
Given a complex software problem, there are many ways to solve it.
But fortunately, there are only a few options for distributing control
responsibilities—and developing a control style.

WHAT IS CONTROL STYLE?

Writers express style with their choice of words, punctuation marks,
breathers, emphasis devices, phrases, lists, clauses, and sentences.
Their style evolves from a combination of many factors. Finding a
pattern and following a style make a piece consistent. It’s important
to find a style and stick with it.

Translators of poems or works of fiction have an even tougher job.
Not only must they decide on a style and the constraints they will
honor, but also they constantly make micro-decisions as they work.
How will they address new constraints they discover? How will they
deal with concepts or ideas that aren’t easily translated? How liber-
ally or literally should each thought or idea be translated? How
much of their own style and experience should they bring to the
translation?

Software design shares similarities with translation. There are many
constraints on a solution. We loosely translate requirements into a
design. But there is much room for originality and creativity. In no
way is translation from requirements to design direct or straightfor-
ward. Even a simple design problem has many good solutions. It is
important to develop a sense of style and, when possible, to stick
with it.

Many things contribute to a design style: your choice of objects,
their names, the kinds of responsibilities they have, and their pat-
terns of collaboration. Deciding on and developing a consistent con-
trol style is one of the most important decisions a designer makes. In
this chapter we explore how to consistently design control centers—
places where objects charged with controlling and coordinating
reside.

Conceptual integrity is an attribute of a quality design. It implies that
a limited number of design “forms” are used and that they are used
uniformly.
—Alan Davis

The titles of the translations of
the 28-line poem by Marot, “A
une Damoyselle malade,”
imply the broad range of
styles in its translations: “To
a Sick Damsel,” “My Sweet
Maid,” “Hi Toots!”, “Yo There
Dog!”

“I suspect that the welcoming
of constraints is, at bottom,
the deepest secret of
creativity.”

—Douglas Hofstadter

Wirfs.book Page 196 Friday, October 11, 2002 11:44 AM

Control Style Options

197

CONTROL STYLE OPTIONS

Although design variations may seem limitless, it’s fortunate that
there are only a few control styles to pick from. Control style choices
affect the way intelligence is distributed among objects charged
with controlling others’ actions—controllers and coordinators—and
those under their control.

A control style can be centralized, delegated, or dispersed. But there
is a continuum of solutions: One design can be said to be more
centralized or delegated than another. Within this continuum, this
chapter will primarily explore the first two styles: centralized and
delegated.

If you adopt a centralized control style, you place major decision-
making responsibilities in only a few objects—those stereotyped as
controllers. These decisions can be simple or complex, but with cen-
tralized control, most objects that are used by controllers are devoid
of any significant decision-making responsibilities. They do their job,
but generally they are told by the controller how to do it.

A variation of a centralized control style is one in which decision-
making responsibilities are assigned to several controllers, each
working on a small part of the overall control. Control is factored
among a group of objects whose actions are coordinated—a clus-
tered control style.

If you choose a delegated control style, you make concerted efforts
to delegate decisions, not only to other, smaller controllers within a
control center but also to objects having other responsibilities. Deci-
sions made by controllers will be limited to deciding what should be
done. Following this style, objects with control responsibilities tend
to coordinate rather than control every action.

Choosing a dispersed control style means distributing decision-
making responsibilities across many objects involved in a task. In
fact, when you spread actions across a large population of objects, it
can be hard to locate where a control center is—and harder yet to
discern who’s responsible for making major decisions. Every object
has a piece of the action, and all decisions have been reduced to
very small ones.

As shown in Figure 6-1, most control designs fit within a band of solu-
tions ranging from centralized (but not overly so) to delegated (but
not totally dispersed).

Wirfs.book Page 197 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

198

MAKING TRADE-OFFS

There are a number of forces to balance when you choose a control
style. If you make controllers take more responsibility for setting up
and monitoring activities, the objects under their control need not
be so clever. If you make them let go of the little details, the objects
under their control must take care of them. Responsibilities and
workloads shift according to the choices you make.

Many decisions contribute to the design of a control style: How
smart should objects with control responsibilities be? How will
responsibilities be factored between controlling objects and others?
Will work be divided among several controllers working together, or
will it be concentrated in a single controller? What paths of collabo-
ration will exist among controllers and objects under their control?
How much will controllers decide? How much will they push out to
others? These decisions are interrelated. Developing a control style
means working on several aspects of a design at once.

Centralizing Control

With centralized control, generally one object (the controller) makes
most of the important decisions. It may do so by collaborating with
other objects, by querying information they maintain, or by using a
combination of techniques.

Figure 6-1
Control styles lie along a continuum.

Wirfs.book Page 198 Friday, October 11, 2002 11:44 AM

Making Trade-offs

199

Decisions may be delegated, but most often it is the controller that
figures out what to do next. Responsibilities are delegated; after all,
the controller isn’t doing everything! But typically the controller
asks others to perform simple, isolated responsibilities that are
pulled together by the controller.

There is one very good reason for centralizing control: You can
quickly locate control decisions. Decision-making logic is concen-
trated in controllers, making it easy to find. If decisions are regular
and simple, you can use a state model to drive the controller’s
decisions.

On the other hand, plenty can go wrong if you don’t counteract cer-
tain tendencies.

Control logic can get overly complex. Controlling code can get
complicated. Determining what to do next may end up as a nest of
if-then-else-otherwise-until-unless code. Overly complex code with
lots of branching doesn’t always go hand in hand with centralized
control, but it is something to watch for. There are techniques for
refactoring code to make it simpler. If decisions are based on ranges
or related facts, you can make them easy to read and more testable
by factoring them into helper methods that provide yes or no
answers. Or you can design helper methods implemented by the
controller to return partial answers to a series of decision-making
questions, ordered according to their expected frequency of
selection.

Controllers can become dependent on information hold-
ers’ contents. This is a big problem. Centralizing control and deci-
sion making means that other objects tend to do little work. Rather
than being asked to do something significant, they are poked and
prodded by simple, transparent accessor methods. Information is
moved in and out of them by the controller. The controller may
depend on details that should be hidden from it.

Objects can become coupled indirectly through the
actions of their controller. Any change to the surrounding
objects ripples throughout the controller and those objects it con-
trols. If one object is queried for information that is then copied by
the controller into another, these two objects are coupled—even if
they don’t collaborate. If one object changes the way it manages
information, it will affect both the controller and the other controlled
object.

Wirfs.book Page 199 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

200

The only interesting work is done in the controller. Respon-
sibilities can get sucked into a controlling object, leaving collabora-
tors with very minor roles and not much to do. One smart controller
plus many small controlled objects with minor responsibilities
means that only the controller object is of any real interest.

Delegating Control

A delegated control style passes some of the decision making and
much of the action to objects surrounding a control center. Each
neighboring object has a significant role to play. Delegating responsi-
bility for control reaps several very important rewards.

Delegating coordinators tend to know about fewer objects
than dominating controllers. With a delegated control style,
objects surrounding the control center both know and do things.
Objects surrounding the coordinator take on more responsibility,
leaving the coordinator with a simpler task and, typically, fewer
objects to manage.

Dialogs are higher-level. Collaborations between a coordinator
and the objects it coordinates are typically higher-level requests for
work and not simple requests to store or retrieve data. Communica-
tions are more abstract and more powerful. Instead of asking objects
to do small chores or divulge small bits of information, coordinators
typically delegate larger-grained requests.

Changes typically affect fewer objects. With more objects
making decisions and taking on responsibilities, each worker has a
well-defined role and a smaller number of different kinds of objects
to collaborate with. Consequently, changing one responsibility will
have a limited impact.

It is easier to divide design work among team members.
With more objects having interesting responsibilities, challenging
work can be distributed among several designers. With centralized
control—and responsibilities concentrated into a single control cen-
ter—there is less interesting design work on the periphery. With del-
egated control, there still are control centers to be designed, but the
workload among objects (and designers) can be more evenly
distributed.

Of course, there are pitfalls.

Wirfs.book Page 200 Friday, October 11, 2002 11:44 AM

Making Trade-offs

201

Too much distribution of responsibility can lead to weak
objects and weak collaborations. Carried to extremes, a dele-
gated control style results in objects that neither do nor know
enough or that collaborate awkwardly. Look for these characteristics
of weak factorings:

� Small service-provider objects that are used by a single client.
They have been factored out of their controller and instead
should be merged into the controller as helper methods.

� Complicated collaborations between delegator and delegates.
This can happen when not enough context is passed along with
a delegated request.

� Lots of collaborations but not much work getting done.

The Limits of Control Decisions

Our preferred style, given that it suits the problem and meets other
constraints, is a delegated control style. We prefer a design in which
no one object knows or does too much. But there are times when we
must adapt to an existing control style rather than invent one to our
liking. Most frameworks force designers to work with a particular set
of collaborations and initial distribution of responsibilities. Frame-
work designers make choices that predefine certain collaborations
and lead to certain control styles.

When you use a framework, it is best to go with the flow and adopt
its control style. For example, control style in stand-alone, interac-
tive Java applications is dictated by patterns of collaboration with
the user interface library. When designing a control center that han-
dles user interface events, you typically distribute control among
many listeners. Each listener, after registering with its widget, is
responsible for responding to events raised by that widget—a con-
troller per widget distribution of control.

But the Java Swing framework stops short of telling you how to
design how a listener handles a particular event (see Figure 6-2).
After all, frameworks don’t make every choice for you! When a user
pokes at a widget, it turns around and notifies its listener. It’s up to
you to decide what the listener does next and how. You could design
it to delegate responsibilities to others under its control, or to make
most decisions and do the work itself. Your listener could be a coor-
dinator or a controller. You could have either a centralized or a dele-
gated control style, depending on how many responsibilities you
give each listener.

Most frameworks dictate a
particular control style. You
plug your objects in to an
existing control structure.
Control has been designed
by the framework author.

Wirfs.book Page 201 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

202

Most designers who use this framework tend to separate responsibil-
ities for interpreting events from responsibilities for performing
domain-specific actions. Each listener is typically designed to dele-
gate work to one or more objects in the domain layer. This is a con-
scious design choice. It makes good design sense to separate
knowing what to do from knowing how to do it. Separating these
responsibilities into different objects keeps listeners focused on
interpreting and reacting to UI events. It also permits domain-specific
responsibilities to be invoked from several different listeners.

Instead of going with a one controller per widget design, nothing pre-
vents us from hooking up one big listener to several widgets. This lis-
tener would have to react to many widgets’ events. But to do so, it
would have to take on the added responsibility of deciphering what
a particular event meant. A clicked event from one button means a
certain thing, whereas a clicked event from another button means
something else. As seen in Figure 6-3, creating a big listener can even
tighten the coupling between it and the user interface, especially if
the listener must collaborate with UI widgets to determine who said
what in order to figure out what to do.

Figure 6-2
Java Swing uses distributed control among listeners.

Wirfs.book Page 202 Friday, October 11, 2002 11:44 AM

Making Trade-offs

203

Lest we dismiss centralized control too quickly, there are advantages
to locating control decisions into a single controller. The single
controller holds connections to collaborators, so if its context
changes, it is a simple matter for it to refresh and readjust connec-
tions to objects under its control (see Figure 6-4).

However, when we follow the natural style dictated by the Swing
framework, there is a direct relation between each listener and its
corresponding widget. So each listener knows what to do without
deciphering what the event means. Control is dispersed among the
listening objects in the application services layer whose actions may
need to be coordinated. This control style variation might be charac-
terized as many small related controllers.

Often, controllers working in tandem need to be synchronized. Click-
ing on an item in a list may mean populating another widget with

Figure 6-3
Centralized control can lead to concentrated decision making.

Wirfs.book Page 203 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

204

contents extracted from an object in the domain layer associated
with the list item. The identity of this domain object may need to be
passed to one or more controllers, which need to know whom to talk
to whenever their events fire. Coordination can get quite complex.

Taking an even closer look, we can see that many decisions are
involved in designing related controllers: Who sets up and gives
each controller visibility to the objects it needs? How should these
connections be maintained? When an event affects several control-
lers, who should notify them? Are they all listening to the same
event, or does one controller take the lead and inform the others?
How will actions be synchronized and connections to domain
objects be maintained?

By distributing control among related controllers, we eliminate one
design problem—how to interpret many widgets’ events—and swap
it for two others: the need to coordinate actions and synchronize
connections to collaborators (see Figure 6-5).

messages
follow these

paths

Figure 6-4
Centralized control collects connections to the domain.

Wirfs.book Page 204 Friday, October 11, 2002 11:44 AM

Developing Control Centers

205

DEVELOPING CONTROL CENTERS

In all but the simplest applications, you will have multiple control
centers to design. A control center is a place in an application where
a consistent pattern of collaboration needs to exist. Control design is
important in the control of

� User-initiated events

� Complex processes

� The work within a specific object neighborhood

� External software under your application’s control

After you’ve identified those control centers, pick one, decide on a
control style you think is appropriate, and then work on specific
responsibilities and patterns of collaboration. Get down to details.

coordinators

connections
to domain

objects

connections
among

coordinators

Figure 6-5
Distributed control requires distributed connections and synchronization
among interrelated controllers.

Because control centers
that aren’t identified as
important tend to accrue
responsibilities until they are
unmanageable, it is important
to really determine how much
each will need to know or do,
and how many other kinds of
objects it affects.

Wirfs.book Page 205 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

206

What does it really take to fulfill control and decision-making respon-
sibilities? How much work will objects in the control center do? How
much work will those they collaborate with do? How complex are
their responsibilities? Explore your options. Try one distribution of
responsibilities to see whether your control center turns out as you
anticipated. You may want to back up and reconsider an alternative
distribution of responsibilities.

Don’t try to use the same style everywhere. Develop a con-
trol style suited to each control situation. Pick a centralized style
when you want to localize decisions in a single controller. Choose a
delegated style when you want to delegate work to objects that are
more specialized. Several control styles can happily coexist in a
single application. Not all control centers need to have the same
style. Although similar use cases often share similar control style
designs, control style within various neighborhoods varies widely.
Control styles for control centers handling critical events or complex
processes may be quite different; it all depends on what’s right for a
particular area of your design and how diligently you pursue a con-
sistent style.

Developing a control style for a control center means deciding the
following:

� How decisions should be made

� Who should make them

� Whether decisions should be delegated

� What patterns of delegation should be established and
repeated

There are many valid reasons to choose one style over another. But
as a general guideline, it’s best to design collaborations so that like
things work similarly. For example, use cases with the same kinds of
user interactions might share a similar control style even if the par-
ticipating objects differ. This will bring consistency, predictability,
and an overarching style to your entire design.

A CASE STUDY: CONTROL STYLE FOR EXTERNAL USER EVENTS

In a layered architecture, application-specific control is usually
located in an architectural layer that sits between the presentation

Be aware of the cumulative
effect of design decisions.
The more control centers
you’ve designed, the more
difficult it may be to fit a new
style in with established
styles.

Wirfs.book Page 206 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

207

layer and the domain layer. Objects in this application services layer
receive and interpret events passed from interfacer objects located
in the presentation layer. Messages are sent from the presentation
layer to objects in the application services layer. They then react to
user events and coordinate the invocation of related software
actions (see Figure 6-6).

To demonstrate the main feature of this software, take a look at Fig-
ure 6-7, the “Speak for Me” use case for building a message.

To start, we invent a single object that is responsible for responding
to user events and controlling the subsequent action of the “Build a
Message” use case. We name this object MessageBuilder. It must
interpret two events: one from the presentation layer when the user
selects something that has been spoken, and another from the timer,
signaling that time has elapsed without her selecting something. We
initially assign this controller three responsibilities, as shown in
Figure 6-8.

Figure 6-6
Responses to UI events are delegated by controllers and coordinators.

Wirfs.book Page 207 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

208

We know that the MessageBuilder has the overall responsibility for
handling these events, but we don’t yet know how much work it will
take on itself or delegate to others (see Figure 6-9). We’d like to see
how much work is involved and, if things get overly complex for the
MessageBuilder, develop a delegated control style.

Centralizing Control in the MessageBuilder

With such a simple user interface, one might think that one control-
ler should be responsible for receiving notifications as well as
responding to them:

Actor Actions System Responsibilities

Click to start software speaking
Start building a message

Repeat until. . .

Optionally, click to select letter

Determine what to speak (letter, word, sen-
tence, or space):

Speak letter

Add letter to word

Optionally, click to select space
Speak space

Add working word to end of sentence
Start new word

Optionally, click to select word
Speak word

Add word to end of sentence
Start new word

Optionally, click to select sentence
Speak sentence

Add sentence to end of message
Start new sentence, start new word

. . .a command is issued

Process command (a separate use case)

Figure 6-7
This use case conversation describes the user’s interactions with the system as
she builds a message.

Wirfs.book Page 208 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

209

� When the timer ticks, the MessageBuilder will select the best
thing to present next: a letter, a space, a word, and so on. This
depends on the state of the message and what has been previ-
ously presented.

� When the user makes a selection, the MessageBuilder will
update the message with the selection. How it does this
depends on what the user selected.

The MessageBuilder’s response to the user’s selection of what was
spoken depends on many different conditions. As the user builds the
message, the software tries to guess each word (only one word guess
for each letter that she chooses) as it sees more letters. It matches
the partial constructions against complete words in an online vocab-
ulary. Special rules apply to the beginning of a word. In what is called

MessageBuilder

MessageBuilder

Builds message from selections Message
Presents guesses to user Presenter
Controls the pacing

Purpose: The MessageBuilder is a hub of
activity in the application. It coordinates the
timing, the presentation of guesses, the message
construction. It centralizes control and is a
core element of the control architecture.

Stereotypes: Controller or Coordinator?

Figure 6-8
The MessageBuilder’s stereotype depends on how this object interacts with
surrounding collaborators to perform its role.

It is not necessarily the
number of different events
that makes control complex.
It can also be the number of
differing responses to the
same event.

Wirfs.book Page 209 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

210

the onset of the word, there are only a few letters that may follow the
first letter. This consonant co-occurrence provides the software with
a relatively simple way to predict the second and third letters of a
word, given the first letter, or first and second letters, respectively.

Reacting to the selection event involves two subresponsibilities (and
numerous decisions):

1. What action must be performed when the user makes a selection?

� Is the user at the very beginning? If so, she has just clicked
to start the application. Do nothing except set up to han-
dle her first real selection.

� Did she just now select a letter? Add it to the word under
construction.

Figure 6-9
The MessageBuilder listens for events and delegates work to others.

Wirfs.book Page 210 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

211

� Did she just end a word by choosing a space? Add the
word under construction to the message, and get ready to
build a new word.

� Did she just choose a word? Clear out the word under con-
struction and append the chosen word to the message.

� Did she just hear and choose an entire sentence? Replace
the sentence under construction with the one she chose.

2. Depending on the contents of the message, what should be pre-
sented to the user?

� Did the user just now start building a message? Determine
the first letter in the alphabetic (A to Z) or frequency (E to
Z) sequence.

� Did she just select a letter? Give her a “space” (“space”
acts as the end-of-word).

� Did she just end a word by choosing a space? Check to see
whether the word under construction is a command. If it
is not, then start over with the letters in the chosen alpha-
betic sequence.

� Are there two letters in the latest word construction? If so,
ask the Vocabulary for any guesses.

� Are there at least two words in the latest sentence? If
so, get any sentences that match from the SentenceDic-
tionary.

� If the SentenceDictionary and the Vocabulary both have
something to guess, choose the best one and present that
to her.

Initially, reacting to these events might have seemed simple. But it’s
not. If we keep all these decisions inside the MessageBuilder, the
code quickly becomes complex. The simplified code below demon-
strates the kind of checking necessary to control the presentation
and selection of the user’s choices. For brevity, only portions of this
class are shown. Where something is not shown, we will make note
of the fact.

class MessageBuilder {
 // Holds the letters, words, and sentences
 private Message message = new Message();

Continues

Wirfs.book Page 211 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

212

// The source of the letters
 private Alphabet alphabet = new Alphabet();
 … declarations for vocabulary, sentenceDictionary missing
 // The last thing presented to the user (letter, etc.)
 private Object lastPresented = null;
 // The output device for a blind person.
 private Presenter presenter = new Speaker();
 // Controls when the user hears "space"
 … Note: This state variable could easily be replaced with
 … more state objects.
 private boolean spacePresented = false;

 public void handleSelection() {
 … The code for handling Commands, Words, and Sentences is not shown.

… If you did, you would make a type check for each type of selection.
 … Furthermore, you wouldn't admit to having written it.
 if (lastPresented instanceOf Letter) {
 if (((Letter)lastPresented).getValue() == ' ') {
 // The user completed spelling a word, so end the current word
 // and start a new one
 getMessage().endLastWord();
 }
 else {
 // She didn't end the word with a space, so add her selected
 // letter and continue, starting with a space
 getMessage().addLetter((Letter) lastPresented);
 spacePresented = false;
 }
 // Reset the alphabet back to the start of the letter sequence
 alphabet.reset();
 }
 … And on and on. Three increasingly complex if/then blocks would
 … follow to handle the user's selections of Words, Sentences,
 … and Commands.
 }

 public void handleTimeout(){
 … This code doesn't show suspending or presenting Words,
 … Commands, or Sentences. It illustrates only how the user handles
 … the first two letters of a word.
 // This is a call to a private method that checks the length of the
 // last word in the message. If the word has no letters in it, it
 // returns true.
 if (this.gettingFirstLetter()) {
 // While getting the first letter, present only letters
 nextLetter = alphabet.nextLetter();
 getPresenter().presentLetter((Letter)lastPresented);
 }
 // This is true when the last word in the message has exactly
 // one letter.
 if (this.gettingSecondLetter()) {
 // While getting the second letter, present only letters and
 // spaces
 if (!spacePresented) {
 // If we haven't already offered the user a space, do it now.
 // Then, present the sequence of letters. Present the space
 // only once.
 lastPresented = new Letter(' ');
 getPresenter().presentLetter((Letter)lastPresented);
 spacePresented = true;
 }

Wirfs.book Page 212 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

213

Work on understanding the complexity of the decisions that need to
be made. If you fudge on this, your design will end up with black
holes of complexity that will be difficult to implement.

Refactoring Decision Making into Small Controllers

The MessageBuilder must know a lot in order to handle a selection
or timer event. Its correct responses are based on the state of the
message being constructed as well as what has been already spoken.
When an object seems burdened with complex decisions based on
state, you can simplify its processing by distributing state-specific
actions to other objects. The State pattern explicitly addresses mov-
ing decisions from an object into a number of smaller decision mak-
ers working directly on its behalf. If we adopt the State pattern, we’ll
end up with a clustered control style. Each small decision maker will
assume responsibility for responding to the events that the control-
ler is handling given a particular state the controller is in, explaining
the name State pattern.

 else {
 // The space has been presented for this sequence, so present
 // only the letters in sequence until the user selects one.
 lastPresented = alphabet.nextLetter();
 getPresenter().presentLetter((Letter)lastPresented);
 }
 … Code for suspending, handling Words, Commands, and Sentences
 … is not shown
 }
 }
 … other MessageBuilder methods
}

Name: State Pattern

Problem: How to design an object to alter its behavior when
its internal state changes.

Context: Sometimes you need to make complex decisions
about what to do based on the current state of an object. An
object’s state can be represented by a number of different
objects that collectively represent what state the object is in.
The object must change its behavior at run time depending on
that state.

Continues

Don’t be misled by the number
of events that need to be
processed. The number of
events does not equate to
complexity.

Wirfs.book Page 213 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

214

The first step in using the State pattern is to analyze and enumerate
the conditions that cause different responses. For example, in Speak
for Me, the state diagram in Figure 6-10 shows the states the Mes-
sageBuilder goes through as it constructs a message. States are dis-
tinguished by how the MessageBuilder responds to the timer ticks or
the user selections.

After we decide to use the State pattern, it is a simple matter to
assign the responsibilities for each state to a different object (see
Figure 6-11). Each state has its own object to handle the responses!
We end up with seven states, seven different kinds of objects, and
seven pairs of responses to timer ticks and user selections.

Because they must be able to fulfill the same responsibilities but
they have different implementations, we can implement seven con-
crete state classes, as shown in Figure 6-12.

With this new control style design, when the MessageBuilder is noti-
fied about an event it makes no decisions whatsoever. It simply dele-
gates the responsibility to whatever state object is currently plugged

Forces: Complex, multipart conditional expressions are often
used to decide what action to take. But this can result in code
that is hard to maintain.

Solution: Instead of writing code that specifically checks what
state an object is in before deciding how to react, design one
new class for each possible state the object can be in. Reas-
sign responsibilities for handling events to each state object.
Delegate all responsibilities to the state objects, and pass in
whatever context they need to do their work. It is the responsi-
bility of each state object to know specifically what should
be done. Typically, in addition to handling state-specific
responses, each state object also knows what the next state
should be after completing its response.

Consequences: The State pattern puts all behavior associated
with each particular state into distinct objects. New states and
transitions can be easily added by defining new state classes.
The State pattern does have some drawbacks. It distributes
behavior for different states across several state classes and is
less compact than a single class. But such distribution is actu-
ally good if there are many states, something that would oth-
erwise necessitate large conditional statements.

Controllers and coordinators
make decisions, but to
different degrees. A
coordinator decides whom to
pass the buck to, whereas a
controller retains control,
enlisting others under close
supervision.

The states in the State pattern
come from identifying the sets
of different responses to the
same events.

Although you have applied a
pattern, you still must make
choices about the distribution
of responsibilities. Instead
of the state object knowing
what the next state is, the
controller could take on this
responsibility. Just make sure
that one or the other makes
this decision.

Wirfs.book Page 214 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

215

in and is responsible for handling events given the current state.
That state object is responsible for responding to events based on
current conditions, instantiating the next state object, and plugging
it in to its coordinator.

The order in which the state objects are plugged in mirrors the tran-
sitions that appear in the state diagram. Together, the state objects
collectively handle all the conditions that can occur. Each state
object makes two decisions on behalf of the MessageBuilder: what to

Guessing Letters, Words,
and Sentences

Guessing Letters
and Space

Guessing Letters
Only

Idling

Ending Word

after:
wait

selected
[start]

selected
[space]

selected
[space]

/ execute
command

selected
[word]

selected [letter] / add
letter to last word

[is command]

[normal word] / add word to last sentence

selected [letter] / add
letter to last word

selected [letter] / add
letter to last word

[selected sentence] / add
sentence to last message

after:
wait

after:
wait

after:
wait

Executing Command

[selected word] / add
word to last sentence

Figure 6-10
Speak for Me has many states that determine what the event responses will be.

Wirfs.book Page 215 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

216

Suspended
EndingWord

ExecutingCommand
GuessingLettersWordsAndSentences

GuessingLettersAndSpace
GuessingLettersOnly

Idling
Respond to user action
(making a selection)
Respond to timeout

Figure 6-11
Each state becomes an object.

Figure 6-12
The State classes form an inheritance hierarchy.

Wirfs.book Page 216 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

217

do with the selection, and what to do with a timer event. Because
each state object represents one branch of the current state of the
message building process, each object’s methods are a bit simpler
than the original MessageBuilder code. Each is simpler to under-
stand. Let’s look at several classes’ methods to see how relatively
simple each one is.

The Idling class handles the timer and user events with its two
methods. Its only responsibility is to handle message construction:

The GuessingLettersOnly state class is simple too. It is responsible
for presenting only letters to the user and, because the user can only
select letters, only adding them to the Message:

class Idling extends MessageConstructionState {
// This class is used when the user has not signaled to start building
// a message. The clock is ticking, but the software does nothing in
// response.

 public MessageConstructionState handleTimeout(MessageBuilder builder){
 // The clock is ticking, but because we are idling, do nothing, but
 // stay in the same state.
 return this;
 }

 public MessageConstructionState handleSelection(MessageBuilder builder){
 // The user signaled to start building a message.
 // Transition to the next state, the one that will handle presenting
 // and selecting the first letter of a word.
 return new GuessingLettersOnly();
 }
}

class GuessingLettersOnly extends MessageConstructionState {
// This class is used when the last word in the message is empty (the user
// has started the software but hasn't selected a letter yet).

 public MessageConstructionState handleTimeout(MessageBuilder builder) {
 // User is at the beginning of a word. Present only letters.
 Letter nextLetter = alphabet.nextLetter();
 … code for handling end-of-alphabet (suspend) missing
 // Record that this letter was just presented to the user.
 // If she signals before we present a different one, this one
 // will be added to the message.
 builder.setLastPresented(nextLetter);
 builder.getPresenter().presentLetter(nextLetter);
 // Stay in the same state.
 return this;
}

Continues

Wirfs.book Page 217 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

218

GuessingLettersAndSpace is responsible for deciding when to
present a space instead of a letter. Even this decision could be elimi-
nated by creating a MessageConstructionState subclass to handle
this condition:

public MessageConstructionState handleSelection(MessageBuilder builder) {
 // Only letters are being presented to the user, so we know exactly
 // what to do: it must be a letter that the user selected, so add it to
 // the message, reset the sequence of letters to the beginning, and
 // start getting the next letter (but offer the user a space first).
 Letter letter = (Letter) builder.getLastPresented();
 builder.getMessage().addLetter(letter);
 builder.getAlphabet().reset();
 // We have to present a space after each selection from now on, so
 // transition to the state that behaves that way.
 return new GuessingLettersAndSpace();
}

class GuessingLettersAndSpace extends MessageConstructionState {
 // This class is used when the last word in the message has exactly one
 // letter. Under this condition, each letter selection is followed by a
 // space. The user selects the space to terminate the word.
 // This static variable is visible to all of the instances of the class.
 // They use it to know whether a space should be presented. It could
 // be eliminated by creating a MessageConstructionState class
 // that handled the condition of not yet having presented
 // the space (PresentingSpace).
 private static boolean spacePresented = false;

 public MessageConstructionState handleTimeout(MessageBuilder builder) {
 // The user has chosen exactly one letter. Offer a space to allow
 // the user to terminate the word even if it has only one letter
 // (such as "I"), and if the user doesn't select it, present the
 // letters in sequence.
 … The code for handling the case when the user doesn't select a
 … letter or a space (otherwise known as suspending) is not shown.
 Letter nextLetter = null;
 if (!spacePresented){
 // If the space hasn't yet been presented, choose it for
 // presentation to the user.
 nextLetter = new Letter(' ');
 spacePresented = true;
 }
 else {
 // The user didn't select the space when it was presented, so
 // fetch the next letter in the sequence.
 nextLetter = alphabet.nextLetter();
 }
 // Present the space or the letter to the user.
 builder.setPresented(nextLetter);
 builder.getPresenter().presentLetter(nextLetter);
 return this;
 }

Wirfs.book Page 218 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

219

Simplicity comes from having two relatively straightforward
methods implemented by each MessageConstructionState class.
Very cool.

As shown in Figure 6-13, the State pattern is one way of divvying con-
trol responsibilities—pushing them out to a cluster of decision mak-
ers. It does make the MessageBuilder more manageable and state
management systematic, but is it really the solution we want? The
State pattern removes responsibilities for deciding what to do from
the MessageBuilder. But it still leaves decision making in objects that
are located within the control center located in the application con-
trol layer—a clustered control style and not a delegated one.

If a particular pattern improves your design, you may jump on it
without considering other options. Applying any pattern may have
benefits. But there are also consequences. The most important one
is very subtle:

 public MessageConstructionState handleSelection(MessageBuilder builder) {
 // The user could only have selected a space or letter
 State newState = null;
 Letter lastLetter = (Letter) builder.getLastPresented();
 if (lastLetter.getValue() == ' ') {
 // If the user selected the space, it means she has finished
 // building the word.
 builder.getMessage().endLastWord();
 // Start getting the first letter of a new word.
 newState = new GuessingLettersOnly();
 }
 else {
 // The user chose a letter. Add it to the word under construction.
 builder.getMessage().addLetter(lastLetter);
 builder.getAlphabet().reset();
 … The GuessingLettersWordsAndSentences class that will handle
 … presenting letters and guessing words and sentences is not
 … shown.
 // Now we have two letters in the word under construction.
 // Begin guessing words and sentences along with the letters.
 newState = new GuessingLettersWordsAndSentences();
 }
 // We are either going on to guess words and sentences or are
 // getting the first letter of a new word.
 return newState;
 }
}

Choosing a pattern means that you are not designing a solution of
your own.

The State pattern works well
if all the states are discrete
and detectable, and the
transitions between them
are deterministic. This is not
always the case. For example,
a book in a library can be in
multiple states at the same
time: for example, checked-in
and lost.

Wirfs.book Page 219 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

220

Adopting a pattern limits your options for distributing responsibili-
ties to others. Responsibilities fulfilled by objects in a pattern are
responsibilities that might have been assigned elsewhere but
weren’t. There may be other solutions with a different distribution of
responsibilities that are better suited to your design goals. If you
leap on a pattern without thinking things through, you may be apply-
ing a solution to a well-known problem but still not have solved the
problem in a way that matches your control style goals.

Refactoring Decision Making into State Methods within
the MessageBuilder

A state machine is an obvious control choice for our message build-
ing task. But instead of factoring state-based responsibilities into dif-
ferent state objects, we could keep track of the current state within

Figure 6-13
The MessageBuilder delegates responses to its state objects.

What if there is an elegant
solution waiting just around
the bend? You will never get
there if you put on pattern
blinders! Patterns are built on
the tenets of object
orientation. If a pattern
doesn’t suit your style, use
basic strategies—
abstraction, encapsulation,
classification, inheritance,
polymorphism, and
information hiding—and stick
to your design goals.

Wirfs.book Page 220 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

221

the MessageBuilder and redesign its handleSelection() method to
invoke its own action methods based on its current state. Instead of
delegating state-based behavior to state objects, the MessageBuilder
would now comprise several smaller methods, one for each unique
state in our state model. We might prefer this design over the State
pattern if we needed to support slightly different state-based behav-
ior. We could implement a subclass of the MessageBuilder that over-
rode a couple of methods in order to implement different idling or
guessing behaviors.

Abstracting Away Decisions

But to truly adopt a delegated control style, we need to remove deci-
sions from the control center and place them in domain objects. How
can we make our control style delegated? Let’s shelve the State pat-
tern and state-based solutions for now and go back to the drawing
board. Let’s try really hard to push responsibilities out of the Mes-
sageBuilder. What if we reassigned the responsibility for construct-
ing a message to those objects that the user selects? Instead of
making that the MessageBuilder’s responsibility, why not make Let-
ter, Word, and Sentence objects responsible? If a Letter is selected, it
should append itself to the last word in the message. A Word should
add itself to the last Sentence in the Message, replacing the last Word
in the Sentence. Given that each selected object knows what kind of
thing it is, it can add itself to the message without making any deci-
sions whatsoever!

In this new design, the MessageBuilder simply accepts the selection
from the presentation layer, whatever it is, and delegates to the
selected object the responsibility for adding itself to the Message
(see Figure 6-14). The MessageBuilder treats all selected objects
alike. When the Letter is asked to add itself to the message, it turns
around and asks the argument (the Message) to add “this” letter.
How the letter is added to the Message is completely hidden inside
the Message, where it should be.

To make this work, all the kinds of objects the user selects must
share a common role and implement the same interface. The user is
presented with guesses that she can select. When she does so, these
guesses are added to the Message she is building. Let’s define a
Guess role that Letters, Words, and Sentences have in common as
shown in Figures 6-15 and 6-16. By doing so, we delegate work to
Guess objects and eliminate decisions (what to do with a guess)
from the controller.

When you discover a new
role, create a CRC card for it,
and note on the unlined side
any candidate that plays the
role (the fact that it does).

Wirfs.book Page 221 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

222

Figure 6-14
Polymorphism and the Double Dispatch minimize concerns about object type.

:MessageBuilder

handleSelection(Guess)

:Letter

addTo(Message)

addLetter(this)

:Message

Guess
Knows its presentation Message
Adds itself to message

Figure 6-15
The role of Guess is shared by Letters, Words, and Sentences.

Wirfs.book Page 222 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

223

This solution demonstrates some fundamental design principles:

� Abstraction. Without the new role, Guess, we have nothing to
represent the “sameness” of the different kinds of objects that
can be selected by the user.

� Responsibility. So far, a Guess has only one responsibility: add-
ing itself to a Message. But we now have a place to hang other
responsibilities if we need to. Of course, any new responsibili-
ties will have to make sense for all objects that share this com-
mon role.

� Inheritance. All objects that play the role of Guess may be
implemented by different classes in a common hierarchy. Or we
are free to define a common interface for a Guess role that is
implemented by different classes, whether in the same inherit-
ance hierarchy or not. It’s too early to tell. Regardless, each dif-
ferent kind of Guess will implement all Guess responsibilities.

� Polymorphism. This is key. By assigning the responsibility for
adding themselves to a message to Guess objects, we have
reduced the complexity of our controller. This is a much more
extensible and maintainable solution.

Guess
Purpose: Representing something
(such as a letter, word, sentence,
or a message destination) that
the software presents to the
user for selection.

Stereotypes: Information Holder,
 Service Provider

Figure 6-16
Guesses are responsible for adding themselves to a Message.

In Java, abstract,
interchangeable parts can be
implemented by an abstract
class or an interface. When
they share common behavior,
use an abstract class. When
they simply share a role, use
an interface.

Wirfs.book Page 223 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

224

MessageBuilder code for handling a selected Guess is reduced to a
single line that looks something like this:

When an instance of Letter receives the addTo(Message msg) mes-
sage, it turns around and asks the Message to add it:

When an instance of Word receives the addTo(Message msg) mes-
sage, it requests the Message to add it:

With this design choice, the decision making has been removed from
the MessageBuilder and reassigned to each particular kind of Guess.
And each guess knows just what to do without making any decisions
whatsoever!

Delegating More Responsibility

The MessageBuilder must come up with a new Guess every timer
tick. As we’ve seen, this behavior is pretty complex. If the Message-
Builder doesn’t delegate guessing, it will have to evaluate the current
state of the message and any local state that it keeps track of, find all
the possible matches that it has to choose from, and decide which
possibility is best. It must query all the dictionaries that hold the dif-
ferent kinds of guesses and get the best guess given the current state
of the message under construction: the Alphabet, the Vocabulary,
and the SentenceDictionary. Lots of work, lots of collaborators, lots
of connections and low-level information-gathering. Whew!

When you see a controller deciding which of many low-level objects
to call upon, it’s a good idea to move this complexity outside the
controller and into other objects—even if you have to invent them. If
you follow this strategy, objects with control responsibilities will
have narrower coordination responsibilities. As a result, you may
end up with more objects, but each one will be more focused.

 selection.addTo(message);

 msg.addLetter(this) // ask the Message to add the Letter

 msg.addWord(this) // ask the Message to add the Word

The purpose of this section is
to demonstrate how a
“decision” is changed into a
strategy and how varying the
identity of an object can
eliminate conditional
“decisions.”

Wirfs.book Page 224 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

225

Because determining the appropriate guess to present to the user is
not related to controlling message building, it is a cleaner solution to
wrap up all this guessing machinery and put it in a new object: a
Guesser. The Guesser will access the current state of the Message
and various dictionaries (Alphabet, Vocabulary, SentenceDic-
tionary). From the MessageBuilder’s perspective it will simply serve
up a best guess every time it is asked for one. With this final design
decision, the MessageBuilder remains dedicated to coordinating
actions. The complex guessing machinery is wrapped inside the
Guesser (see Figures 6-17 and 6-18).

As a side effect of both this decision and the previous one, the Mes-
sageBuilder truly has become a simple coordinator . . . and we have
designed a delegated control style for the “Build a message” task.

Designing the Control Style for the Guessing
Neighborhood

Pushing out the responsibility for providing the best guess to the
Guesser doesn’t mean we’re finished designing. We still have work to
do. Let’s shift our attention from the MessageBuilder control center
to the neighborhood consisting of the Guesser and various dictionar-
ies. Earlier, we nixed adopting the State pattern. But we are always
on the lookout for patterns that clarify our design. A pattern that

Guesser
Determine next guess Alphabet

 Vocabulary
 Sentence-

 Dictionary

Figure 6-17
The Guesser determines the next guess to present to the user.

Wirfs.book Page 225 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

226

seems to fit this best guess problem is the Blackboard pattern
described in Pattern-Oriented Software Architecture. It is an architec-
tural pattern that is useful when the answer is a best guess. It is real-
ized by three roles: a Blackboard, one or more KnowledgeSources,
and a Control (see Figure 6-19).

To come up with a result (in our situation, a guess), processing is
done in cycles. During each cycle, the Control asks several
KnowledgeSource objects to evaluate information in a common store
(the Blackboard). Each KnowledgeSource determines how relevant
its rules are to the information on the Blackboard and makes a corre-
spondingly low or high bid. The Control simply looks at all of the
KnowledgeSources’ bids and chooses the highest. The chosen object
then updates the information on the Blackboard according to its
rules, and the cycle begins again. This repeats until the Control
decides that the Blackboard contains an answer that none of the
KnowledgeSources can improve upon.

The Control is not making many decisions, and any one Knowledge-
Source has a small portion of the rules governing the program’s exe-
cution. It is a delegated control strategy devoted to the control of
guessing an answer to a problem. The Blackboard pattern provides a
basic architecture for distributing responsibilities among three roles.

Guesser
Purpose: Determines the next guess
to present to the user by querying
various knowledge sources for
the most likely choice.

Stereotypes: Service Provider

Figure 6-18
The Guesser collaborates with several sources to determine the best guess.

Wirfs.book Page 226 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

227

We will use it to guide our invention: a control object, several objects
to embody the knowledge and rules, and a shared information
holder to hold the answer as it evolves. In any given cycle, the
Guesser has several possible guesses: a Letter when there is nothing
better, a Space if there is at least one letter in the last word and it
hasn’t been guessed during this cycle, a Word if the last word in the
Message is long enough and there are some matches, and the same
for the Sentence. Also, the Guesser needs some way to represent
that there are no more guesses possible, not even any more letters.
Where should we put these rules? We should put them as close as we
can to the objects that they apply to!

That means putting the rules and their evaluation into various dictio-
naries that hold Guesses. Matching the Blackboard pattern’s roles to

Manages central data

Evaluates its own applicability Blackboard
Computes a result
Updates blackboard

Monitors blackboard Blackboard
Schedules knowledge Knowledge-
 source activations Source

Blackboard

KnowledgeSource

Control

Figure 6-19
The blackboard architecture uses three object roles.

Wirfs.book Page 227 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

228

our design objects, the Guesser plays the role of Control, GuessDic-
tionaries are KnowledgeSources, and the Message is the Blackboard
they all query (see Figure 6-20).

Each GuessDictionary is asked by the Guesser to check the Message
and make a bid. The Guesser looks at all the GuessDictionaries’ Bids,
selects the Guess from the highest Bid, and returns it to the Message-
Builder as the best guess. Decisions made by the Guesser are limited
to evaluating and choosing the highest bid. The real intelligence is
distributed among the dictionaries.

Instead of adding their results directly to the Blackboard, each
KnowledgeSource instead returns its bid to the Guesser. In our
design, a Bid knows its value and its proposed Guess. You notice that
we’ve slightly modified the Blackboard’s roles and responsibilities as
we adapted this pattern to our design. We’ve done so because the
Guesser’s responsibility isn’t to update the Message directly. Instead,
it needs to return the best guess when asked so that the guess can be

:Guesser

nextGuess(Message)

:SentenceDictionary

bidOn(Message)

bid

:Message

getContents()

guess

:Vocabulary

:Alphabet

evaluate()

chooseHighestBid()

Control
Knowledge Sources

Blackboard

Figure 6-20
Guessing uses a Blackboard architecture.

Wirfs.book Page 228 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

229

presented to the user. Only when the user selects a Guess will the
MessageBuilder add her selected Guess to the message. We’ve had to
adapt the general roles and collaborations described by the Black-
board pattern to suit our specific design situation.

The final design of the MessageBuilder is now pretty simple. We’ve
really pushed out most of the work to objects that the Message-
Builder collaborates with (see Figure 6-21). When it hears the timer
tick, the MessageBuilder passes the current Message to the Guesser
and asks it for the next guess. It gets back a Letter, Word, or Sen-
tence, but it doesn’t know exactly what kind of thing it is. It only
knows that it is a Guess. So it gives the Guess to the Presenter, which
voices it to the user. If she selects it, the MessageBuilder is notified,
and the MessageBuilder asks this Guess, whatever it is, to add itself
to the Message.

Figure 6-21
The Build a Message control center, delegates to the Guesser, Guess, and
Message.

Wirfs.book Page 229 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

230

The MessageBuilder is a pure coordinator. This approach is quite dif-
ferent from our initial one. Control and decision making have been
removed from the MessageBuilder. But where have they gone? Actu-
ally, we’ve given responsibilities to objects that the MessageBuilder
collaborates with. And in the process, we’ve defined away the need
for complex decisions based on explicit states maintained by the
MessageBuilder. The MessageBuilder simply coordinates guessing
and adds guesses to the Message—but it does so by delegating. Dic-
tionaries will have to know some things about the current state of
the message in order to offer a bid, but those decisions are localized
and pretty simple, too. Decisions that before rested with the Mes-
sageBuilder are now accomplished as a side effect of choosing the
highest bid, presenting it to the user, and having her Guesses add
themselves to the Message. Because each different Guess knows
how to add itself to a Message, the decision on how to update a mes-
sage has been replaced with explicit responsibilities of Guess
objects for doing the right thing when asked.

Designing a Similar Control Center: Can We Be
Consistent?

When you develop a simple and effective control architecture for a
given system task, you instinctively try to fit similar tasks to the
same style. However, some applications aren’t regular and consis-
tent; each use case is slightly different, so no common pattern for
designing a use case controller emerges, no matter how hard you
push. If objects and their patterns of collaboration are too dissimilar,
don’t try to fit them into the same mold. However, if things seem sim-
ilar enough—if the objects involved and the patterns of collabora-
tion are close—you might be able to refactor responsibilities and
readjust collaborations to make them more similar than they might
initially appear. You won’t know until you try hard to see how similar
things are.

Can the objects involved in the “Send a Message” use case fit the
same roles and use the same collaboration patterns established by
objects in “Build a Message”? Or do we need an entirely different
control style? Let’s compare the candidates involved in each use
case and see what’s alike and what’s different. Here are the objects
involved in “Build a Message”:

� In the presentation layer:

— Presenter—voices the guesses to the user

— Selector—notifies the MessageBuilder of user actions

You can’t always repeat
collaboration patterns. By
their nature, some design
problems don’t lend
themselves to regular,
consistent solutions.
Sometimes, collaborations
are prickly, and the rough
edges in the problem will be
reflected in the solution.

Wirfs.book Page 230 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

231

� In the application services layer:

— Timer—controls the pacing of the presentation of guesses

— Guesser—serves up the best guess

— MessageBuilder—coordinates the events and responses

� In the domain layer:

— Guess—when selected, adds itself to the Message

— Letter, Word, Sentence—all play the role of a Guess

— GuessDictionary—makes a best guess based on the Message

— Alphabet, Vocabulary, SentenceDictionary—all play the
role of a GuessDictionary

— Bid—associates a bid value with a particular Guess

— Message—structures the series of selections

The “Build a Message” task ends when the user spells the “send the
message” command (the two-letter word SE). Then a new task and a
new group of objects take over. When the software recognizes SE as
a command word, it needs to build the community of objects:
objects to coordinate the activities of building the list of destinations
and, when the addressing is complete, to send the message to those
destinations (see Figure 6-22).

Figure 6-22
Control transfers from one control center to another. We’d like to design related
control centers to work in a similar fashion.

Wirfs.book Page 231 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

232

Again, as an initial placeholder in our design, we invent a control cen-
ter (and a control object, the SendMessageCoordinator) to monitor
the user’s actions and to coordinate the presentation of the addresses.
If we can, we’d like it to follow a delegated style (see Figure 6-23).

As this controller fetches destinations from the business layer’s
AddressBook and presents it to the user, the user chooses what she
hears. Here is the initial list of candidates involved:

� In the presentation layer:

— Presenter—voices the destinations to the user

— Selector—notifies the SendMessageController of address
selections

� In the application services layer:

— Timer—controls the pacing of the presentation of
destinations

— SendMessageCoordinator—controls activities in building
a destination list and sending the message

� In the domain layer:

— AddressBook—knows all the possible destinations

— EmailAddress—knows a recipient’s user name and domain

Figure 6-23
Send a Message control is more centralized than the Build a Message control
center design.

Wirfs.book Page 232 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

233

— NetworkNode—knows a machine’s network address

— DisplayScreen—knows the computer screen

— PagerAddress—knows a network address of a pager

— MailingList—structures the destinations that the user
selects

— Message—knows the text to be sent

When the user makes her selections, the user interface signals our
new controller and passes it the objects that correspond to her
selections: the EmailAddresses, MailingLists, and so on. The control-
ler then delegates to the MailingList the task of holding her selec-
tions. When she indicates that she is finished, the controller passes
the MailingList and the Message to the Mailer for delivery.

We would like the pattern of collaboration to be consistent with
those in “Build a Message.” We can make a few simple checks to eval-
uate whether we can achieve a similar control design.

When you’re designing a control center, check to see
whether the candidates involved are the same as those in
a similar one. If so, there is a possibility that the pattern of collab-
orations can be made to look alike. The messages may be different,
but the paths between the objects might be the same. But if any of
the objects involved are playing more than one role, the collabora-
tion patterns may be too different.

In the “Build a Message” task, the following objects are involved:
Selector, Timer, MessageBuilder, Guesser, Presenter, Message, Guess,
Letter, Word, Sentence, various Dictionaries, and Bid.

“Send a Message” uses Selector, Timer, SendMessageCoordinator,
Presenter, Message, EmailAddress, NetworkNode, DisplayScreen,
PagerAddress, MailingList, and AddressBook. Some of the previous
objects are here, but some key objects are missing: the Guesser, the
Guess, and all the various kinds of objects that play the role of a
Guess.

There are similar coordination and control responsibilities: The
SendMessageCoordinator must build a list of destinations and then
send the message to them; the MessageBuilder must build a mes-
sage. The collaborations between the presentation layer and the
controllers looks identical, but the domain objects are entirely differ-
ent. If objects that at first glance appear to be different are playing
the same role, we might still make the control design mimic the style
that we adopted earlier.

Wirfs.book Page 233 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

234

Check whether responsibilities for actions are separate
from responsibilities for information. When the doing is
located in one or very few objects and the knowing is done by many
others, control is centralized. The object that performs the actions
will be constantly asking for the information that it needs.

As it currently stands, our “Send a Message” use case has only one
area of activity: the SendMessageController. The other objects
involved are simple structurers, information holders, or service pro-
viders. In contrast, the control center for “Build a Message” has
spread responsibilities for constructing the message across the vari-
ous Guess objects, and for guessing among the GuessDictionaries.
Currently, there is none of that blending of action and information in
the “Send a Message” domain objects.

Check to see whether the stereotypes involved are similar.
If so, there is a possibility that they will fit into the other collabora-
tion’s control architecture. But if one style uses lots of hybrids and
while the other uses purer (and simpler) stereotypes, it will take
redistribution of responsibilities to make it fit.

In our “Build a Message” use case control architecture, we had the
following stereotypes:

� Timer—service provider

� Presenter—interfacer

� Selector—interfacer

� MessageBuilder—coordinator

� Guesser—service provider

� Guess—information holder/service provider

� Letter—information holder/service provider

� Word—information holder/service provider

� Sentence—information holder/service provider

� Message—structurer/service provider

Do the objects involved in “Send a Message” have similar roles? Or
do we need an entirely different control style for this new part of the
system? Our first stab at a candidate model resulted in these objects
and stereotypes:

� Timer—service provider

� Presenter—interfacer

Wirfs.book Page 234 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

235

� Selector—interfacer

� SendMessageCoordinator—controller

� AddressBook—structurer

� EmailAddress—information holder

� NetworkNode—information holder

� DisplayScreen—interfacer

� PagerAddress—information holder

� Mailer—service provider

� MailingList—structurer

The stereotypes of objects involved in “Send a Message” reflect a con-
centration of action in the Mailer and the SendMessageCoordinator.

When the roles are similar but not the same, look for com-
mon abstractions. Objects that appear to be different are some-
times similar in essential ways if we look for what they do in common.
By expressing different responsibilities more generally, we can unify
disjoint responsibilities and use a common pattern of interaction.

Taking all these tips into consideration, we look to

� Refactor the responsibilities out of the control center into
domain objects to form smarter, hybrid stereotypes

� Use many of the same roles in our new collaboration

� Condense and unify the responsibilities and collaboration
patterns

First, let’s shift responsibilities for action out of the SendMessage-
Coordinator to the information holders. In addition to representing
an addressable location, we give each one the responsibility for
doing something: adding its addressing information to the message.
We also define a common role, a Destination, shared by all. A Desti-
nation represents all the different kinds of locations where Messages
can be sent. The Message has a new responsibility too: knowing
where it will be sent.

Next, let’s see if we can find any abstraction that would simplify the
collaborations and make it more like the control style for building a
message. The most obvious abstraction missing is the notion of a
Guesser and a Guess. Can we incorporate this idea into this part of
the design? Yes, if we shift our perspective on the EmailAddress, Net-
workNode, DisplayScreen, PagerAddress, and MailingList objects.

Wirfs.book Page 235 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

236

They, too, are kinds of guesses that the software presents to the user.
Once she selects them, they are added to the list of addresses the
message will be sent to. Furthermore, another Guesser could easily
serve up Destination guesses. Voila! If we take this leap at unifying
Destinations with Guesses that can be added to messages, our
design can evolve toward the same delegated style.

In both cases, information holders have additional responsibilities.
Letters, Words, and Sentences add themselves to a Message.
Similarly, EmailAddresses, NeworkNodes, PagerAddresses, Display-
Screens, and MailingLists add their corresponding destination to the
Message. They are hybrid information holder/service providers. The
“Send a Message” control center now resembles the distribution of
responsibilities in the “Build a Message” use case (see Figure 6-24).

When the user finishes addressing the Message, the SendMessage
Coordinator can delegate all responsibility for delivering the
Message to the Mailer. The Mailer will in turn collaborate with the
Message and its various Destinations to send the Message.

Figure 6-24
Objects outside the control center take on more responsibility when we make
the Send a Message control center similar to the Build a Message control center.

Unifying a responsibility can
mean making a more general
statement of that
responsibility.

Wirfs.book Page 236 Friday, October 11, 2002 11:44 AM

Summary

237

SUMMARY

Developing a control style means deciding how objects assigned
responsibilities for controlling action within a control center—
objects stereotyped as controllers or coordinators—interact with
and direct others’ actions. Adopting a particular style narrows your
choices. Repeating it makes your design consistent. Control style is
governed by how decision making and control behaviors are distrib-
uted. Control styles come in three major forms with several variations.
Decisions can be

� Centralized

� Delegated to objects outside the control center

� Spread across many objects with no obvious centers of control

When you design collaborations, look for important control centers
and choose the best control style for each. If you are trying to be
consistent, make similar things work alike. The clarity and simplicity
of your design depend on your ability to refactor responsibilities,
invent roles, and define common patterns of collaboration so that
like things work in similar ways.

Often, the decisions made by a controller depend on information and
services provided by objects in its surrounding neighborhood. So
the neighborhoods must be designed accordingly to provide the
right information and take appropriate action.

We suggest that you select a control style suited to the task at hand.
Choose centralized control when the decisions are few, simple, and
related to a single task. Delegate control when the work or decision
making can be broken into smaller subresponsibilities and when
each subresponsibility has clearly different semantics or requires a
different context. Look for ways to use patterns to simplify your
design choices, as long as they match your design goals. The State
pattern removes decisions into separate state objects, simplifying
the design of a controller and creating a clustered control center. As
you develop decision makers and their collaborators, strive to cre-
ate a design having moderately intelligent, collaborating objects.

Designing a control center takes time and effort. You many not get it
right the first time, especially if you don’t know beforehand which
responsibilities will require complex decisions. Designing a dele-
gated control style generally requires careful thought and effort. But
the payoffs are worth it, especially when the problem is complex.

Wirfs.book Page 237 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

238

The most startling result may be that decision making can be elimi-
nated simply by making objects responsible for doing the right thing,
based on what kind of thing they are. Polymorphism really simplifies
a design!

Wirfs.book Page 238 Friday, October 11, 2002 11:44 AM

Chapter 7
Describing

Collaborations

rancis Galton, a 19th century geneticist, remarked, “It
often happens that after being hard at work, and having

arrived at results that are perfectly clear and satisfactory to
myself, when I try to express them . . . I feel that I must begin
by putting myself upon quite another intellectual plane. I have
to translate my thoughts into a language that does not run
very evenly with them.” We, too, experience a shift when we
move from informal CRC card modeling to more formal
descriptions of collaborations and interaction sequences.
Sometimes we need to paint a broad picture of collaborators;
at other times we need to offer quite exact explanations. When
our models get more detailed, we must change our level of
abstraction. We’re presenting a more concrete view of our
design.

F

Wirfs.book Page 239 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

240

TELLING COLLABORATION STORIES

As you design the way objects collaborate, you will draw many
rough sketches. You won’t keep much of this white board art, but
sometimes you tidy things up, make your collaborations present-
able, and show them to others. You want to explain how things
work—to describe the interplay of objects as they collectively
accomplish system responsibilities. You need to tell a story.

During early design, collaboration stories are less precise and more
evocative. You may have started with CRC cards and now want to
design specific interactions. So you run through a few scenarios,
role-playing some fairly intricate collaborations with your team-
mates. Afterward, your team asks you to draw diagrams to illustrate
the design. How much detail should you include? A lot of things were
mentioned during role-playing, and not all of them seem to fit neatly
on a diagram. Are there things you should definitely highlight?
Should certain things be left out?

Maybe you want to tell how your design supports key use cases.
After people get the gist of these, they should be able extrapolate.
There must be a way to condense information and present it so that
your readers don’t get overwhelmed. How can you avoid creating
lots of very similar diagrams?

Perhaps you drew diagrams that illustrated “happy path” scenarios.
But people want to know how exceptional conditions are handled.
What happens when happy paths aren’t followed? Your colleagues
won’t really believe that your design works until you show them.
Should you add these exception-handling details to your initial draw-
ings, or draw new ones? Is there some way to explain how excep-
tional conditions are handled without drawing lots of new diagrams
or adding complexity to existing ones?

Perhaps you want to explain to newcomers the key aspects of your
design—the subsystems, their responsibilities, and general patterns
of collaboration. You also want to introduce some important objects
and put them through their paces. So you explain your CRC card
model and draw several sequence diagrams that illustrate a few typi-
cal collaborations. But there’s more that you’d like to explain. Is
there a way to explain some alternatives you considered and
rejected without describing them in any great depth?

A story can be more or less involved, depending on what needs to be
said and how complex the interactions are. The best way to commu-
nicate any aspect of a collaboration depends on what you want to
emphasize.

The further along you are, the
more you know. So you can
show and describe more
things—if it’s appropriate.
You can retell a simple
collaboration story,
embellishing certain parts
while leaving others
understated.

Wirfs.book Page 240 Friday, October 11, 2002 11:44 AM

A Strategy for Developing a Collaboration Story

241

A STRATEGY FOR DEVELOPING A COLLABORATION STORY

As you can see, your intent in presenting any story varies widely.
Sometimes you want to show things; many times you also want to
briefly explain them. Mostly, you want to get your ideas across effec-
tively and compactly. You don’t want to leave out the important
points or lose people in too many details. A story is meaningful if it
tells people what they want to know in a form they can easily digest.
Often, multiple forms are needed; no one picture, diagram, or written
description tells all.

One tool that should be part of your design and storytelling reper-
toire is UML. UML, or the Unified Modeling Language, is an industry-
standard visual language for describing object designs. In UML,
several different diagrams can be drawn. We won’t cover UML in any
great depth because that is the subject of other books. We will,
however, touch on those parts of it that are useful to illustrate
collaborations. Specifically, we’ll explain how to describe collaboration
relationships and specific interaction sequences. We’ll discuss how
to draw subsystems, collaboration diagrams, sequence diagrams,
and collaborations. With these diagrams you can show collabora-
tions at different levels of abstraction and in greater or lesser detail.

Before you launch into developing your story, briefly consider what
you’d like to accomplish. Here is a basic plan for developing any col-
laboration story:

� Establish its scope, depth, and tone.

� List the items you want it to cover.

� Decide how detailed your explanations should be.

� Choose the appropriate forms for telling your story.

� Tell it, draw it, describe it.

� Organize your story.

� Revise, clarify, and expand as needed.

Be sure you know what you are trying to communicate and who
needs to understand your story. Establish the appropriate scope,
depth, and tone of your story as well as point to places that deserve
special emphasis. You will make more informed decisions as you
craft your story if you know your reasons for telling it.

The Unified Modeling
Language describes standard
diagramming notations and
their meaning. The UML
symbols and diagrams are
readily understood. UML is a
visual language for describing
designs; it is up to you to use
it effectively.

Wirfs.book Page 241 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

242

ESTABLISHING SCOPE, DEPTH, AND TONE

Your scope—how much or how little territory you cover and how
comprehensively you cover it—depends on your goals. Many stories
have a narrow scope and limited depth. Perhaps you need to explain
how your design supports a use case or to illustrate some collabora-
tions. Often, stories are dashed off quickly to impart knowledge or
get reactions. Their tone is informative but brief. Explanations (if
offered at all) are intentionally sketchy. After all, you are around to
answer questions. The focus is on illustrating collaborations and not
on explaining them at any length. Stories that need to be understood
without your helpful presence likely require some minimal written
explanation in addition to one or more drawings.

You can always adjust your story’s tone and broaden or narrow its
scope. At first, your goal may be to get buy-in. You present issues
and options along with your collaborations. After you’ve nailed
down answers, you illustrate and explain instead of merely propose
and question. You go into slightly more depth. At other times, you
are writing for the record and want to be as precise as you can. But
you don’t want to overwhelm your readers with details.

Diagram choices, as well as word choices, help set the tone.
Sequence diagrams are more formal than collaborations diagrams.
Both serve a nearly identical purpose. There are times when infor-
mality is preferred, especially when you want to throw out a rough
idea for comment and review. At other times more formal presenta-
tions are in order. But don’t think that every part of your story needs
to be told in the same way or to the same depth. CRC cards are infor-
mal, but they convey information about an object’s role and respon-
sibilities that cannot be found on either sequence or collaboration
diagrams. Diagrams as well as cards are valuable parts of a collabo-
ration story. CRC cards informally state what an object knows and
does. These responsibilities can be hard to infer from looking at
more formal method signatures on class diagrams.

Formal and informal descriptions and diagrams all have a place in a
collaboration story. Precision does not go hand in hand with formality.

After a role-playing session, you decide to draw collaboration dia-
grams to illustrate each scenario you discussed. Because you didn’t
get to designing message signatures, you just draw collaboration
diagrams with message names and returned values (where they
matter). You list the issues and ideas that were brought up, too.

The tone of any story can be
adjusted to be more or less
formal, authoritative, precise,
comprehensive, and
instructive. It is up to you
to set the tone by adjusting it
along several dimensions.

Wirfs.book Page 242 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

243

Sequence and collaboration diagrams can be drawn with differing
degrees of precision. It is perfectly “legal” to leave messages unla-
beled or to get highly exact and show message signatures, return val-
ues, branches, and looping, all dressed up with accurate timing
marks. Your story can be more or less formal, precise, or compre-
hensive—depending on your goals.

LISTING WHAT YOU WILL COVER

If your story is a comprehensive one, there will be many things to
say. Even a simple story may have several points. List everything
that comes to mind, whether it is big or small or it overlaps with
something already on your list. Don’t be concerned with how items
on your list relate. Also, list things you want to exclude from
discussion.

For example, if you are illustrating a specific use case, you may want
to explain only a happy path scenario—what actions take place
when nothing goes wrong. Even so, consider how much you want to
tell and what the main points are.

Don’t worry about how to organize your story or the items on your
list until you’ve written a large part of it. Perhaps you need to
develop several subplots, explain each one, and then weave them
together. Even if your story is short and sweet, you won’t know the
best way to present it until you’ve gotten it down. Worry about orga-
nization after your content is in place.

DECIDING ON THE LEVEL OF DETAIL

The same story can be told in different levels of detail. Your choice
of level (or levels) should be based on how much you know about a

Key Points for “Make a Payment” Collaboration

• Use a sequence diagram—keep it simple (not a lot of
adornments).

• Point out calls to backend banking system that could be
bottlenecks.

• Start with a well-formed request (don’t explain UI details).

• Relate the diagram to the “Make a Payment” use case.

Wirfs.book Page 243 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

244

collaboration and how much you want to reveal. There are at least
these different views of a collaboration:

� A bird’s-eye view of system components and subsystems show-
ing the overall architecture and general collaboration paths

� A view showing only participants in some collaboration (and
omitting all interaction)

� A sequence of interactions among collaborators

� An in-depth view that explains how objects interact under
exceptional conditions or that goes into more details

� A focused view that ignores some aspects in order to concen-
trate on specific collaborators and their interactions

� An implementation view

� A generalized view that illustrates how to adapt a collaboration

After you’ve decided what to tell, plot the best way to tell it.

Showing a Bird’s-Eye View

You don’t have to stick to describing collaborations among individ-
ual objects. At the highest level, you can show how a system is
organized into subsystems and illustrate their collaborations. A sub-
system in UML looks like a file folder with either a fork symbol or the
word subsystem enclosed in double angle brackets (see Figure 7-1).
The file folder symbol is called a package symbol. It can be used to
designate a subsystem. To say that one subsystem depends on
another (shown by a dashed line with an open arrow pointing to the
dependent) means that the dependent likely uses services defined
by that subsystem.

In UML, a package can
organize any arrangement of
design elements—from a set
of classes to everything
designed to support a number
of use cases. When labeled
with a fork or <<subsystem>>
designation, a package
represents a subsystem.

Figure 7-1
The UML package symbol can be used to represent subsystems. A dependency
is drawn as a dashed line ending with a stick arrow.

Wirfs.book Page 244 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

245

Paths of communication between subsystems can be shown more or
less precisely. For example, you can illustrate precisely which inter-
faces are offered by each subsystem and which clients use them. An
interface symbol can be drawn rather imprecisely as a lollipop figure
(a circle attached to a line), or more precisely as a box with two com-
partments (see Figure 7-2).

Even if you’re looking at a system from 30,000 feet, you can choose
from among several degrees of precision to describe subsystem col-
laborations. If you’ve just begun, you may choose to show only gen-
eral paths of collaboration. At a more detailed level, you can
enumerate the operations supported by each subsystem interface
(see Figure 7-3). You can always revise drawings and add interfaces
after they’ve been designed.

If you wish you can explain even more about how a subsystem is
designed. You can draw a subsystem that is divided into three com-
partments. These compartments describe interfaces and explain
how they are realized by classes within the subsystem (see Figure
7-4). Most of the time you don’t need to be so precise.

Showing Collaborators Only

You may want to include a high-level explanation of your objects’
responsibilities and collaborators in your story, so use CRC cards.
You can transfer these cards to a high-level design document. But
what next? Sometimes, looking at specific message sequences gets in
the way of seeing the potential pathways between collaborators. To
highlight these pathways, you can illustrate your CRC cards with a

Figure 7-2
Interfaces can be drawn showing more or less detail.

How many diagrams you draw
and how precisely you draw
them should be based on your
project’s goals and design
process. Use diagrams
to communicate ideas.
Diagrams hastily drawn on
white boards are likely to be
less precise than those drawn
in a tool. Consider how much
information your intended
audience really needs to see
before adding it.

If you want to paint
collaborations with broad
brush strokes, stop short of
describing specific messages
between objects or
identifying classes. Instead,
emphasize paths of
communication between key
collaborators.

Wirfs.book Page 245 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

246

simple UML collaboration diagram. In its simplest form, a collabora-
tion diagram includes only objects and their collaboration relation-
ships (see Figure 7-5).

A straight line, called a link, establishes a relationship between two
collaborators. One thing that isn’t apparent from the simple drawing
in Figure 7-5 is who is collaborating with whom. Are two linked
objects both sending messages to each other? Most likely not. Proba-
bly the collaboration is only one-way. To make this perfectly clear, you
can put a visibility arrow at the end of the link pointing to a collabora-
tor that is seen by the object that uses its services (see Figure 7-6).

Extra precision can illuminate, but it can be constraining, too. If you
add visibility arrows to some links, people will expect them every-
where. But what if you don’t yet know who is collaborating with
whom? If you don’t know something, don’t specify it. You can always
redraw any diagram to reflect current reality. If you decide that two

Figure 7-3
A subsystem symbol can be divided into compartments. Publicly accessible operations and interfaces can
be defined.

Wirfs.book Page 246 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

247

Figure 7-4
A subsystem’s interfaces can be mapped to their realization. Not all classes are shown.

Figure 7-5
A simple UML collaboration diagram shows roles and collaboration paths.

Wirfs.book Page 247 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

248

objects are co-collaborators, you can draw arrows on both ends of a
link. But don’t feel compelled to add these details just because UML
lets you.

The degree of precision you use on a diagram should be a conscious
choice. Even if you do know who is collaborating with whom, you
need not specify it diagrammatically. After all, this isn’t your only
means of explanation. A collaboration diagram can include more or
less detail and still be accurate (but less precise). People will proba-
bly understand your collaborations without this extra precision.

Even collaborators can be labeled more or less precisely. You can
distinguish between a role and an object. The way you do so is sub-
tle: The name of a role is preceded by a backslash character (“/”);
the name of an object is not (see Figure 7-7). You can both name an
object and identify its role.

Should you wish to be even more precise, you can specify the class
that implements the object or role (see Figure 7-8). You designate the
class by following its role and instance name with a colon and class
name (“:” class name).

Of course, this may be far more precision than you need. If you’ve
created a role that can be assumed by objects belonging to different
classes, you have no need to ever specify its class. Or if you’ve deter-
mined a role but haven’t yet mapped it to its implementation, desig-
nating its class is premature.

Figure 7-6
The collaboration diagram can be drawn to show object visibility.

“Precision is not the same as
accuracy. If someone tells
you, ‘pi is 4.141592,’ they are
using a lot of precision. . . . If
they say pi is about 3, they are
not using much precision . . .
but they are accurate for as
much as they said.”

—Alistair Cockburn

The less precisely you draw
any diagram, the fewer times
you will need to update it but
the less information it will
convey.

Wirfs.book Page 248 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

249

Figure 7-7
You can specify both role names and object names on a collaboration diagram.

Figure 7-8
Collaborations can show object names, role names, and class names.

Wirfs.book Page 249 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

250

Showing a Sequence of Interactions Among Collaborators

A collaboration diagram, drawn with an appropriate degree of preci-
sion, sets the stage for illustrating subsequent interactions. These
specific interactions can be illustrated either with another, more
elaborate collaboration diagram or with a sequence diagram. To
show sequence, you can add lines with arrows next to collaboration
links on a collaboration diagram (see Figure 7-9). Each line repre-
sents a specific message between two collaborators. The arrow
points from client to collaborator. Sequence is indicated by numbers
that label message names. If you want to show a different sequence,
you draw another collaboration diagram.

As an alternative, you can use a sequence diagram (see Figure 7-10).
It, too, can be used to illustrate a specific interaction. Objects are
located along the top. Their lifelines are drawn as a vertical line.
Instance creation and destruction can be shown. When an instance
is created, its lifeline appears; when it is destroyed, it terminates.
Messages are drawn as lines with arrows, similar to those on the col-
laboration diagram. But they are not numbered. Sequence simply
proceeds from top to bottom.

Sequence diagrams and
collaboration diagrams can
show roughly the same
things, and many tools let you
transform from one form to
another without losing
information. Which form you
choose is a matter of style
and emphasis.

Figure 7-9
A UML collaboration diagram emphasizes relations among objects.

Wirfs.book Page 250 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

251

Showing an In-Depth View

Numerous things can be shown in an interaction sequence: branch-
ing, object creation, destruction, iteration, asynchronous communi-
cation, active objects (those that represent a flow of control), even
recursion. If you need to visually represent complex interactions,
you can get very elaborate.

If an interaction involves complex decisions, you can dress up a dia-
gram to explain alternative paths (see Figure 7-11). Instead of march-
ing along in strict sequence, flow proceeds along a chosen path.
Expressions, called guard expressions and enclosed within brackets,
specify which path will be taken. A guard is an expression that must
evaluate to true before the message can be sent. UML doesn’t specify
the language for guard expressions, so you are free to use plain text,
mathematical expression, or even pseudo-code.

In an application in which timing constraints must be met, sequence
diagrams can be annotated with timing marks, event identifiers, and
timing expressions (see Figure 7-12). To draw a timing mark that
describes how much time has elapsed, you draw a vertical bar with a
time value expression. A timing expression, like a guard condition,
can be written more or less informally. If events that invoke a mes-
sage are added to a diagram, timing expressions can use them.

/Presenter
:SpeakerDLL

/Bidder
:GuessDictionary

:Timer

handleTimeout()

present(Guess)

bidOn(Message)

bid

Present a Guess

guess

:MessageBuilder :Guesser

nextGuess(Message)

Figure 7-10
A UML sequence diagram emphasizes the sequencing of messages.

“Sequence diagrams aren’t
depictions of precise
execution semantics; they
are statements of desired
communications under a
limited set of conditions
which may never occur in a
normal running program.”

—David Harel

Wirfs.book Page 251 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

252

A concurrent application has more than one flow of control—that is,
more than one set of interactions can be happening logically at once.
You can describe interactions for a concurrent application using
only these few additional UML constructs: active objects, asynchro-
nous messages, and broadcast messages (see Figure 7-13). In UML, a

/Guess
:Letter

/Guess
:Word

/Guess
:Sentence

:MessageBuilder

addTo(Message)

addTo(Message)

addTo(Message)

polymorphic
branching

Figure 7-11
A UML sequence diagram can show polymorphic messaging.

:MessageBuilder /Presenter :Timer/Selector

present(Guess)

handleTimeout()

handleSelection(Guess)

{b – a < Guess.WaitPeriod}

{c – a = Guess.WaitPeriod}

b

a
Timing
constraints

c

Timing
constraints

Figure 7-12
You can add timing constraints to a sequence diagram.

Wirfs.book Page 252 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

253

class can be designated as being active. An active class is a class
whose instances are active objects. When an instance of an active
class is created, its associated flow of control starts, too. When the
instance is destroyed, its flow of control terminates. An active class
can create instances that are either heavyweight (processes) or
lighter weight (threads). A process represents a flow that executes
concurrently with other processes, whereas a thread executes con-
currently with other threads in the same process. In a system with
both active and inactive objects, both kinds of objects communicate
with one another. In UML diagrams, an active object is drawn with a
bold border. Messages can be sent asynchronously or can be broad-
cast to a number of objects.

Showing a Focused Interaction

At times, it is desirable to treat part of the system as a black box
whose contents are purposely hidden. This technique lets you focus
on a part that is of particular interest that you want to describe. Per-
haps you want to show how user actions stimulate some part of your
design into action. In this case, you remove most UI details, ignore
the myriad objects in a screen, and assume that those necessary
objects can be assembled and play their interfacer roles. Yes, you

:UserProfile /Presenter :Timer

changed()

changed()

changed()

changed()

broadcast
messages

active object

/Bidder
:Alphabet

/Bidder
:Vocabulary

Figure 7-13
Sequence diagrams can highlight active objects and show message broadcasting.

“Building a system that
encompasses multiple flows
of control is hard. Not only do
you have to decide how best
to divide work across
concurrent active objects . . .
you also have to devise the
right mechanisms for
communication and
synchronization For that
reason, it helps to visualize
the way these flows interact.”

—Grady Booch

Wirfs.book Page 253 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

254

are removing a lot of detail. This detail will have to be dealt with
fairly soon. But you don’t want to explain those objects if your story
is trying to emphasize what happens after the user clicks the Save
button.

Showing an Implementation View

If you are documenting something that is already implemented, you
want to be very accurate; what you see on a diagram is precisely
what has been coded. But even so, your diagrams include fewer
details than are found in code. Diagrams are not executable specifi-
cations. As a consequence, unless you explicitly label it, it will be
impossible to tell whether a diagram illustrates a proposed or a
working solution. Make this perfectly clear in your diagram’s title.
And include specific facts—message signatures, significant return
values, branches, and interaction. But don’t show everything. It is up
to you to decide what deserves emphasis in a diagram. There’s
always code to read.

Showing How to Adapt a Collaboration

You may have designed collaborators to be configurable—to be
adapted by replacing one collaborator with another, by setting

To remove detail about UI interactions, ignore individual keystrokes,
button clicks, or what happens when the cursor moves in and out of
focus. You can represent requests as being UI-independent, if you
like. Instead of notification of button click events in a particular mes-
saging protocol defined by a particular UI implementation, they can
be logically shown as requests to “make a payment” or “view
account history” or “save a file.”

When you draw a sequence diagram with this focus, you aren’t really
lying about the UI. Instead, you are abstracting away its details so
that you can concentrate on what happens when your system
receives notification of an important UI event. Even if your design
must update the UI, these details, too, can be summarized with a
message at the same level of abstraction: “present confirmation” or
“present account history” or “return control to the user.”

UI details are elided for a reason. You are confident that you can con-
struct a lower-level model of the UI using an arrangement of objects
(even though this can be quite a lot of work). But this is not the focus
of your collaboration story (see Figure 7-14).

Have you ever seen those
cartoon-style maps that
exaggerate a particular point
of view and shrink everything
else to minute proportions?
Seen from New York, the rest
of the United States appears
scrunched into a tiny space
until the outline of California
appears. This is the same
technique you use when you
want to focus on one part of a
collaboration.

“You will work with different
semantic levels in developing
an application; it is a normal
part of software design. . . .
Each shift from one level to
another requires a design
step.”

—James Rumbaugh

A diagram is useful only
if it shows the right stuff.
Simply because you can
automatically generate
diagrams from code isn’t a
good reason to create piles
of them. Piles of diagrams
obscure rather than
enlighten.

Wirfs.book Page 254 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

255

certain conditions or parameters, or by plugging in new objects to
complement existing ones. To explain how to adapt a collaboration,
you really need to explain three things: how the current design works,
which aspects are adaptable, and how to make these adaptations.

Start by concretely explaining how your design works. After you’ve
done this, explain how to adapt your design. If your adaptation is
simple, you can use the techniques we’ve already presented. You can
also provide a simple step-by-step description of how to make an
adaptation.

To Add a New Kind of Guess

1. Define a class that implements the Guess interface. This type
of object must know contents, formatted for both display and
speech, know how long to wait before continuing with another
guess, and be able to add itself to a message. Specifically, it
must implement these methods:

public String displayableText()
public String speakableText()
public String getContent()
public Duration waitTime()
void addTo(Message m)

Continues

:SaveCommand :Document

“save the document”
save()

. . .

a message called
“perform()” wouldn’t

describe the semantics

details of how the user saves are represented by a single event

details purposely
omitted

UI

Figure 7-14
A user event from the UI subsystem starts the collaboration.

Wirfs.book Page 255 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

256

To emphasize objects and collaborations that are adaptable on a dia-
gram, use notes to tag places where new collaborators could be
plugged in (see Figure 7-15).

You may have developed a pattern of collaborating roles instead of
collaborating objects. Instead of being adapted, this collaboration
must be adopted (or instantiated) by designing multiple objects that
fill these specific roles and plug into a stylized collaboration archi-
tecture. To communicate how a generalizable collaboration works,
at the very least you must describe each role and discuss its specific
responsibilities and collaborations. Of course, there is much more to
describing a full-blown pattern than what we outline here.

2. Define a class that implements the Bidder interface. This type
of object will contain all of the corresponding Guess objects
and determine which is most relevant to the current message.
Then wrap up the chosen Guess and the numeric bid value in a
Bid object. Specifically, it must implement

Bid bidOn(Message m)

Figure 7-15
Notes can show where collaborators are configurable.

Wirfs.book Page 256 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

257

You can use a UML drawing, called a collaboration, to illustrate a
generalizable grouping of collaborating roles (see Figure 7-16).
Dashed lines are drawn from the named collaboration to each partic-
ipant. Lines are labeled with role names.

This drawing is very similar to a high-level collaboration diagram but
serves a narrower purpose. You can illustrate how a particular
implementation plugs in and realizes the collaboration by showing
how specific classes generalize the roles in the collaboration (see
Figure 7-17).

Figure 7-16
The Observer pattern has two roles: a subject and an observer.

Figure 7-17
A collaboration diagram can show objects that realize the Observer pattern
roles.

Wirfs.book Page 257 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

258

You can identify roles (not just objects and their classes) on a
sequence or collaboration diagram, too (see Figure 7-18). Thus, it is
simple to explicitly illustrate how roles in a collaboration interact.

Where UML Diagrams Fall Short

Still, the best way to “see” isn’t always with a diagram. Consider
complex algorithms. It’s hard enough to figure out that sorting is
going on by reading a sequence diagram, let alone discriminate the
key aspects of the algorithm. A sequence of messages doesn’t illus-
trate any side effects. So you can’t see what happens when an object
is added to a hashtable or when a buffer overflows. And unless you
add explicit annotations, you won’t know what conditions cause
branching, iteration, or the successful completion of the algorithm.
Algorithmic details are better expressed in words, pseudo-code, real
code, a BNF-grammar, a state machine diagram, decision tables, or
pictures that identify and illustrate the important aspects and char-
acteristics of the algorithm (see Figures 7-19 through 7-23). This
doesn’t mean that you shouldn’t draw a sequence diagram; it just
won’t explain these algorithmic details.

observersubject

/subject
:CommandQueue /TaskHandler

update()

getNextCommand()

Figure 7-18
Observer role interactions can be shown in a sequence diagram.

There is only so much you can
piece together by studying a
sequence diagram. Looking at
one is like observing a
butterfly in flight. You can see
what flowers the butterfly
visits and in what order, but
you won’t know why it
chooses to visit one flower
over another or how it affects
a flower. Unless there is some
other explanation, you won’t
know the effect a message
has on the object receiving it.

The algorithm for bubble sort consists of two nested loops. The inner
loop traverses the array, comparing adjacent entries and swapping
them if appropriate, while the outer loop causes the inner loop to make
repeated passes. After the first pass, the largest element is guaranteed
to be at the end of the array; after the second pass, the second largest
element is in position, and so on. That is why the upper bound in the
inner loop decreases with each pass; we don’t have to revisit the end
of the array.

Figure 7-19
Text is often the best way to describe something.

Wirfs.book Page 258 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

259

Consider the array 42,56,13,23

Let’s start sorting.

42,56,13,23 no swap

42,56,13,23 swap

42,13,56,23 swap—end of 1st pass outer loop

42,13,23,56 swap

13,42,23,56 swap—end of 2nd pass outer loop

13,23,42,56 no swap—end of 3rd pass, sorted

Figure 7-20
Visualizing the bubble at work demonstrates the algorithm clearly.

Bubble Sort Code

class BubbleSorter
{
 void sort(int a[])
 {
 for (int i = a.length; --i>=0) {
 boolean swapped = false;
 for (int j = 0; j<i; j++) {
 if (a[j] > a[j+1]) {
 int T = a[j];
 a[j] = a[j+1];
 a[j+1] = T;
 swapped = true;
 }
 if (!swapped) return;
 }
 }
}

Figure 7-21
Code makes the bubble sort algorithm clear . . . to a programmer.

Wirfs.book Page 259 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

260

Every message on a sequence diagram has equal visual significance.
Nothing stands out as special unless you add a note or guard expres-
sion or write some commentary. What appears to be a recurring
pattern may not be. Although the collaboration paths look identical,
the messages vary. So, for example, if you want to emphasize how
exceptions to a happy path scenario are handled, a table can be an
extremely useful addition to your story (see Table 7-1). You can use a
row in a table to describe specific information about each exception:
a general description, where it is detected, and how it is resolved.
You can even highlight, perhaps by shading their row, those excep-
tions that aren’t recoverable.

Explaining these things on a sequence diagram alone would be diffi-
cult, if not impossible.

:BubbleSorter :Array

*[loop thru array array size times]
 get jth element

*[loop pass number-1 times]

 [if a[j] > a[j+1]]

sort(anArray)

get j+1th element

set jth element

set j+1th element

Figure 7-22
A sequence diagram is not the best tool for documenting the bubble sort
algorithm.

Wirfs.book Page 260 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

261

:UserSession :MakePayment
Transaction Legacy ServerUI

performTransaction()

result

result
result

submitRequest()

makePayment()

connect()

prepareRequest()

submitRequest()

disconnect()

logResult()

Figure 7-23
Sequence diagrams are best used to show happy path interactions.

Wirfs.book Page 261 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

262

Table 7-1 A table explains online banking transaction exceptions and their
impacts on the system and its users.

Exception or Error Recovery Action Effect on User

Connection is dropped
between UI and domain
server after transaction
request is issued.

Transaction continues to
completion. Instead of
notifying user of status,
transaction is just logged.
User will be notified of
recent (unviewed) trans-
action results on next
login.

User session is termi-
nated. User could've
caused this by closing
browser, or the system
could have failed. Users
will be notified of trans-
action status the next
time they access the
system.

Failure to write results of
successful transaction to
domain server log.

Administrator is alerted
via console and e-mail
alerts. Transaction infor-
mation is temporarily
logged to alternative
source. If connections
cannot be reestablished,
the system restricts
users to read only and
account maintenance
requests until transaction
logging is reestablished.

Users can see an
unlogged transaction in
transaction history con-
structed from backend
banking query but won't
have it embellished with
any notes they may have
entered.

Connection dropped
between domain server
and backend bank
access layer after
request is issued.

Attempt to reestablish
connection. If this fails
after a configurable num-
ber of retries, transac-
tion results are logged as
“pending” and the user is
informed that the system
is momentarily unavail-
able . . . check in later.
When connections are
reestablished, status is
acquired and logged. Fur-
ther logins are prevented
until backend access is
reestablished.

User will be logged off
with a notice that system
is temporarily unavailable
and will learn of transac-
tion status on next login.

Backend banking request
fails.

Error condition reported
to user. Transaction fails.
Failed transaction is
logged.

User receives error noti-
fication but can continue
using online services.

Wirfs.book Page 262 Friday, October 11, 2002 11:44 AM

Choosing the Appropriate Form

263

CHOOSING THE APPROPRIATE FORM

Drawings you created using a tool have a certain polish. They appear
solid and finished; a design illustrated with them must be good,
right? But they aren’t the only way to communicate. Illustrations,
charts, written explanations, tables, and CRC cards all have a place
(see Table 7-2). Common sense tells us that any diagram should
show less detail than can be found in code, and any written explana-
tion should offer something more than can be found on CRC cards.
This still leaves a lot of leeway.

Consider what you want your readers to learn by studying a particu-
lar collaboration story. Then decide how best to tell each part. Base
your decisions on several factors: where you are in design, what you
want to communicate, and which tools and how much time you have
available. If you are just beginning, your collaboration stories proba-
bly aren’t very elaborate. The further along you are, the more likely
you are to include more detail.

Table 7-2 Many collaboration representations and options are available.

Goal
Simple
Representation Options

Describe responsi-
bilities and
collaborators.

Use CRC cards. Transfer information on cards
to a document.

Show collaboration
relationships among
objects.

Draw a simple collabo-
ration diagram.

Add visibility links to make
explicit who collaborates with
whom.

Show paths of col-
laboration among
subsystems.

Draw a subsystem
diagram with depen-
dencies.

To be more precise, add sub-
system interfaces.

Illustrate an interac-
tion sequence.

Draw a collaboration
diagram.

To be more formal, draw a
sequence diagram.

To explain how objects are
affected, add a running
commentary.

To explain interactions among
subsystems, treat them as “big
objects” and describe mes-
sages between them.

Continues

To tell stories that have
impact and present insights,
you’ll need to develop a wide
range of expression that
includes words, charts, CRC
cards, UML diagrams, and
other illustrations.

Wirfs.book Page 263 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

264

TELL IT, DRAW IT, DESCRIBE IT: GUIDELINES

Theodore Strunk and E.B. White wrote The Elements Style in 1935.
Since then, countless writers have turned to this slim book for
straightforward advice. Strunk and White’s words ring true for soft-
ware designers, too. Form, presentation, and content matter. The fol-
lowing guidelines for describing collaborations are based on the
principles outlined in Strunk and White’s book.

Do not overwrite. Sure, you can keep written explanations brief
and to the point, but what about drawings? If a picture is worth 1,000
words, are 10 pictures worth 10,000 words? Certainly not. Consider
each drawing’s purpose. Your goal should not be to use every UML

Explain complex
algorithms.

Create a visual anima-
tion or storyboard.

Pseudo-code.

Draw an interaction diagram
and annotate it with information
that explains branches and
choices and makes algorithmic
details more evident.

Describe detailed
interactions.

Use either a collabora-
tion or a sequence
diagram.

Add timing marks, guards,
branches, loops, recursive
calls, and notes to the diagram.

Include a running commentary.

Describe design
alternatives.

Write a brief descrip-
tion of alternatives and
rationale for options
chosen.

Additional sequence or collabo-
ration diagrams that illustrate
key alternatives.

Describe how to
reconfigure a collab-
oration.

Define a collaboration.

Define responsibilities
of configurable objects.

Draw a typical interac-
tion sequence. On it,
identify where config-
urable alternates can
be plugged in.

Write a recipe describing a
step-by-step procedure for
configuring a collaboration.

Include examples or sample
code.

Table 7-2 Many collaboration representations and options are available. (Cont.)

Goal
Simple
Representation Options

Joe Molloy, a graphics design
teacher, says that writing and
drawing use parallel
strategies. Although your goal
is probably not to become a
talented writer or visual artist,
you can apply Strunk and
White’s advice to describing
and illustrating your
collaboration stories.

Wirfs.book Page 264 Friday, October 11, 2002 11:44 AM

Tell It, Draw It, Describe It: Guidelines

265

feature in a diagram. Instead, draw at the level of detail your audi-
ence needs. If collaborations are similar, show a typical case first and
then note how remaining ones differ. Draw representative interac-
tions. Consider your readers’ attention span as well as what you
want to communicate.

Do not overstate. Any explanation can include more or less infor-
mation. Our advice: Don’t tell more than what you believe at any
given point in your design. Don’t dress up a collaboration story with
speculation. If you know only general paths of collaboration, don’t
show specific messages. If you know specific messages but not the
arguments, don’t invent arguments just to fill in the blanks. Be as
specific as you can, but don’t state more than you will feel comfort-
able defending in a review.

Omit needless words. Stop short of telling everything. Keep your
explanations to the point. There are ways to avoid clutter in techni-
cal writing. We mention a few particularly relevant techniques. Don’t
start a discussion with metatext—text that describes the text that
follows. Don’t pile on extra words or invent jargon; use simple lan-
guage. Don’t blindly fill in the blanks of a heavy-handed template; say
what you want to say, and stop.

But how can you keep drawings simple without oversimplifying
them? Too much clutter on a diagram will cause your readers to tune
out, just as too many words will. Visual equivalents of needless
words include the following:

� Values returned from message sends

� Internal algorithmic details

� Details of caching and lazy initialization

� Object creation and destruction

Sometimes, these details are important. If so, take exception to our
guideline. Most of the time, however, they just add clutter. Show
return values only when they affect or alter the message flow. Or, if
you can’t see how one object could possibly collaborate with
another, perhaps show that it was returned earlier.

Omit details of how objects do low-level tasks. Stop short of explain-
ing how preexisting objects work. Describe only how they are used
by objects of your design; do not show their collaborations (unless
they interact with your objects). Don’t describe collaborations with
primitive data types unless you really are trying to explain how a col-
lection or string is used. These are probably implementation details.

Wirfs.book Page 265 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

266

Revise and rewrite. If people don’t understand what you are say-
ing, rewrite. If people don’t understand a diagram, redraw it. If certain
people want to see some things and others do not, draw two ver-
sions: an abridged one and an unabridged one. Sometimes, the same
story needs to be told slightly differently to different audiences.

If a diagram becomes too complex, you can break it into smaller sub-
diagrams. UML lets you draw a dangling message arrow on one dia-
gram (meaning that details aren’t shown there) that can lead to a
hanging message arrow in another diagram (see Figures 7-24a and
7-24b). To explain how these diagrams are linked, you’ll need to add
a note.

If a diagram is too simple, add missing details. But think before you
pile them on. What was misunderstood? Was some internal detail
unclear? If so, perhaps it is better explained in another form. Maybe
your readers should be reading code to get these details. Attach an
explanatory note instead of adding several low-level collaborators.
These low-level messages might make the diagram too busy and
might cause important collaborations to become lost in these new
details.

Do not affect a breezy manner. Don’t fudge on details. Are CRC
cards too breezy? They are if you want to explain an interaction
sequence. In that case, CRC cards don’t go far enough. You are being
breezy if you intentionally leave things understated, undrawn, or
unexplained because you cannot be bothered or because you don’t
know the answer.

Just because things are hard to communicate or take time to draw,
don’t leave them unexplained. If you need to illustrate and explain
things, too, don’t worry about being redundant. Repeatedly stating
things in a slightly different fashion adds emphasis. Condense your
work only after you’ve clearly spelled things out. (See the earlier
quideline on revising and rewriting.)

A designer drew two views showing the same collaboration between
subsystems. One view omitted the interface details, and the other
included them. Developers who were going to use these subsystems’
services wanted to know which interfaces to use. Developers who
wanted to understand how their parts of the system were activated
didn’t want to see these details. It was simple enough to draw the
same collaboration both ways. So that’s what the designer did.

A collaboration story, just like
refactored code, improves
whenever it is reworked for
clarity.

When you’re drawing rough
sketches on a white board,
use whatever form seems to
fit your style (and the degree
of precision you are striving
for). White board
collaboration drawings can
be converted to any standard
drawing format when they are
redrawn in a tool.

Wirfs.book Page 266 Friday, October 11, 2002 11:44 AM

Tell It, Draw It, Describe It: Guidelines

267

Don’t arbitrarily limit your diagrams to a single page or to 10 or
fewer objects. Stick with your story. You may have difficulty repro-
ducing a large diagram drawn with a CASE tool on paper or on a Web
page. But worry about that later. Get it down first, and then figure out
how to present it.

Be clear. If you choose the right form of expression, your collabora-
tions will be more understandable. To emphasize message order, use
a sequence diagram. Annotate it to show timing, branching, looping,
return values, and many other things—if these things bring clarity to
your design. If they cause confusion, perhaps you need to explain
things, too. Add a running commentary alongside a sequence dia-
gram, tool permitting, or write commentary in a text editor.

When you want to arrange collaborators in a pleasing fashion, choose
a collaboration diagram. Emphasize which objects are important by

Figure 7-24a
Dangling arrows can be used to link two diagrams.

 If you are focusing on
interactions between domain
objects, stick to a description
of their interactions. Don’t
explain how database
connections are established
in order to store and retrieve
them. This may be interesting,
but why are you talking about
this now?

Wirfs.book Page 267 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

268

placing them in the center. Place a controller in the middle to empha-
size the delegation to objects surrounding it. Messages radiate from
it like spokes on a wheel. Put a coordinator in the middle and
arrange its collaborators around it (see Figure 7-25).

Or you can organize objects according to their position in a layered
architecture. This approach will let you see that messages follow a
layered communication pattern: flowing either between objects in a
given layer or from an object within a given layer to objects in adja-
cent layers. Whatever your strategy, try to arrange collaborators so
that people won’t have to hunt for the next message in sequence.

To improve legibility, you can limit the number of objects and mes-
sages on a diagram. An interaction will be more understandable
when it shows a limited number of messages (25 or fewer) between a
limited number of participants (10 objects or fewer) with nominal
branching.

Figure 7-24b
Hanging arrows can also be used to link two diagrams.

Wirfs.book Page 268 Friday, October 11, 2002 11:44 AM

Tell It, Draw It, Describe It: Guidelines

269

Make sure the reader knows who is speaking. Sticking to a
single point of view is equivalent to speaking in one voice. If you are
telling a story from one perspective, stick to that storyline. If you are
explaining how subsystems collaborate, don’t drop down two levels
of detail and show objects inside those subsystems collaborating
with objects from a standard library. Do not shift between outside
and inside views. Present internal subsystem details in another dia-
gram. To explain things, you often have to dive in and explain how
some things work at the next level of detail. But if you do so, don’t
inadvertently raise more questions than answers or detract from
your main point. So if your intent is to show how a complex responsi-
bility is divided among collaborators, show which helper methods
are invoked. But stop there. Don’t show how the helper methods
work unless these details are relevant to your story. And after you’ve
burrowed down two or three levels or have moved to the side to fol-
low a distant collaborator, it can be easy to get lost.

Figure 7-25
A coordinator is surrounded by the things it delegates to or receives requests
from.

“The first rule of style is to
have something to say. The
second rule of style is to
control yourself when, by
chance, you have two things
to say; say first one, then the
other, not both at the same
time.”

— George Polya

Wirfs.book Page 269 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

270

Don’t change your voice or add new voices to your discussion. Par-
enthetical comments and notes are often spoken with a different
voice and tone. When you point things out too often, people stop
reading. Too many parenthetical comments, cautionary notes in text,
or even notes on diagrams convince your readers that you speak
hesitantly.

Use these devices only when you really have something important to
say and you want it to stand out.

ORGANIZING YOUR WORK

The best way to present a story isn’t likely to be the same way it was
developed. Consider which topics belong together and which ones
deserve special emphasis. Ideally, closely related information
belongs together. But when you’re explaining collaborations, it can
be hard to structure information. Everything is interconnected!
Should you explain your objects, before describing their collabora-
tions? Should you present an overview before going into details?
Should you present details first, and then explain the principles
behind them, or vice versa? What if you are telling your story to peo-
ple who have different interests and backgrounds?

Anticipating questions that would be asked at a presentation, a
designer included answers (parenthetically enclosed) in running
commentary about a high-level interaction. (She chose to parenthe-
size this side commentary so as to not detract from the main flow.)
These parenthetical comments (even with the best of intentions)
were quite distracting and impossible to skip over. (They might
include something of interest, so you just had to read them. But it
turns out they weren’t of general interest. They included only details
that some folks might question.) After she removed the parenthetical
comments, the commentary was surprisingly easy to read.

This is a distraction—ignore it!

NOTE: This is really, really important!! Keep notes to 2% or less of
what you are saying, unless you like writing stuff that nobody
reads.

Wirfs.book Page 270 Friday, October 11, 2002 11:44 AM

Organizing Your Work

271

Adding Emphasis

You can consciously attempt to emphasize or deemphasize certain
parts of your story. Certain things gain prominence, whether you like
it or not, merely by their position or their appearance. You need to
be aware of these factors so that you can give aspects of your story
proper emphasis. Here are some ways to increase emphasis:

� Put something first. Things that appear first have more empha-
sis. That’s why we recommend that you orient your readers
first before plunging into your collaboration story. It’s also why
we relegate topics that aren’t central to an appendix.

� Highlight something. In UML, active objects are drawn with
bold lines.

� Surround text with white space.

Surrounding an example with white space and
making text bold give it double emphasis.

� Give something more space. If explanations are lengthier, are
they necessarily more important and deserving of extra empha-
sis? No. But they will have it. If the name of one object is longer
than another’s and your tool draws a larger shape, the longer-
named object will gain emphasis.

� Place something in the center. Attention is drawn to objects in
the middle of a collaboration diagram.

� Make a bulleted list.

� Refer to something many times. If you talk about some object
or some collaboration pattern or some subsystem in many dif-
ferent places, it will be emphasized.

� Restate things in different forms. Showing exceptional paths as
well as describing them in a table increases their emphasis.
Adding a running commentary to an interaction reemphasizes
the actions.

Unfolding Your Story

There are ways to begin simply and then lead to more interesting or
intricate views. Landscape architects use the principle of progres-
sive realization to design linked scenes. They design views that pur-
posely conceal things that are revealed only as you move through

“Emphasis is a way of
distinguishing the two
percent of the content that is
most important from the
remaining ninety-eight
percent.”

—Ben Kovitz

If explanations are too
lengthy, they can put your
reader to sleep. Giving an
inconsequential item too
much space causes readers
to tune out and ignore
whatever follows.

Wirfs.book Page 271 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

272

the landscape. The idea is to move the viewer to the desired destina-
tion in gradual, interesting steps. Something new and interesting is
around every corner! John Simonds, in his book Landscape Architec-
ture, states, “A view should be totally revealed in its fullest impact
only from that position in the plan where this is most desirable.”
Each view is intriguing in its own right. And each new view contains
new surprises. With progressive realization, pleasure builds in antici-
pation of what’s around the corner.

You, too, can set up your readers to comprehend things more deeply
as they move through your collaboration landscape. Your collabora-
tion stories will benefit from pacing, emphasis, and progressive real-
ization techniques.

Understanding What’s Fundamental

Ben Kovitz, in Practical Software Requirements, admits that achieving
an ideal sequence—in which every explanation precedes its use in
any description that follows—is difficult, if not impossible. Present
your stories in a way that builds interest and momentum instead of
worrying about eliminating forward references. Even if you could
manage to organize your story so that fundamentals were presented
first, it could make for a very dull presentation.

Readers’ interests and backgrounds differ. Some may know more
than others and don’t want to be bored by a review of things they
know. Others may be looking for specific facts. Still others may want
to know only the punchline. There are many reasons to tell a story in
one way or another. If you know that some readers may lack funda-
mentals and while others are not patient enough to wade through
them, you’ll have to choose which things come first. Things that are
only moderately interesting, or are background material, can always
be relegated to an appendix.

When you’re telling a high-level collaboration story, stick to the main
points. Present it as if it were a news flash. Your audience will want to
scan the headlines before deciding to read further. So grab their
attention. Present the fundamentals first: who the players are, what is
important about them, and how their collaborations work. Reveal
only enough to keep readers engaged. After they’ve read this over-
view, direct them to more detailed explanations. After explaining
typical cases, give your readers options to veer off in one of several
directions: to a more detailed view, to exceptional conditions, to
alternatives.

“I must begin not with
hypothesis, but with specific
instances.”

—Paul Klee

Even if you try very hard,
you can’t avoid forward
references. If an object
collaborates with another—
and you haven’t yet read a
description of that second
object’s role and
responsibilities—you can
only guess at why it is being
used.

Wirfs.book Page 272 Friday, October 11, 2002 11:44 AM

Organizing Your Work

273

Deciding whether some information is more fundamental than other
information can be tricky. These heuristics, based on Ben Kovitz’s
work, are equally applicable to collaboration stories as to software
requirements:

� Information not within your power to choose or change is more
fundamental than those things that are under your control. So
descriptions of a problem (which is not something you are
likely to alter) should generally come before solutions (which
are your own creation). This means that use cases are more
fundamental than the collaboration diagrams that illustrate
them.

� Things are more fundamental than relations between them,
their attributes, and their actions. So ideally, you would want to
understand objects, their responsibilities, and their purpose
before understanding their collaborative relationships or how
they participate in specific interaction sequences.

� The normal case is more fundamental than exceptional cases. A
happy path collaboration is more fundamental than an excep-
tional path-filled collaboration. If you want to explain both, you
should separate the two.

Putting It All Together

So can you emphasize new material while building a story’s energy
and momentum? And when and where should you present funda-
mental information? With progressive realization, each step along
the way presents something new. New things, if they are different
enough from what has already been seen, are looked on with fresh
interest. Your new perceptions are colored by memories—past
impressions shape new ones—and your overall impressions accu-
mulate. That’s how a story can build to a dramatic conclusion: It lays
down the important parts and then presents new material in novel,
interesting ways.

Be aware of monotony setting in. After four or five nearly identical
drawings, attention wavers. If you want to keep your readers’ atten-
tion, shift their focus by inserting commentary that explicitly calls
out some details or explains what’s different in the next diagram. Or
point out that the next five diagrams are similar and all but the most
eager readers can skim them in good conscience. You can’t always
spice up your stories. After all, there are only so many ways to draw
sequence diagrams.

Wirfs.book Page 273 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

274

Progressive realization works if your readers want to follow your
lead and you lead them where they want to go. Those who are seek-
ing specific facts won’t sit still for very much nonsense. To help them
search for facts, include an index or a section that answers fre-
quently asked questions (FAQs). There are many different ways to
put together a story. Pick one and make it work. You needn’t present
fundamentals first. Important things that need emphasis should be
stated first. Pointers to supplementary information can always sat-
isfy the needs and curiosity of those lacking fundamental knowledge.

PRESERVING STORIES

Preserving stories requires commitment to a written and drawn
design record. We offer you this thought on why you should go to
this effort: Do you really want to explain your design over and over
again, or have people make gratuitous changes that break your
design? If not, preserve some key collaboration stories even after the
code is released. After the code is working, detailed design drawings
become less valued by those maintaining the code. They rarely look
outside their code browsers for inspiration. But design discussions
and explanations can increase in value, especially if they tell things
that cannot be inferred from the code. So focus on preserving things
that will have value and impact over time.

Some important collaboration stories are likely to become part of
your permanent design record. It is these that you want to keep up-
to-date. It’s important to distinguish between working and archival
documents. But after you’ve pushed further along in design, the
early stories that you preserved can seem naïve. They need retelling
to keep their currency. However, you don’t want to constantly retell
and redraw as you redesign and recode. Yet you don’t want stories to
get hopelessly outdated.

We offer this simple preservation strategy: Whenever you signifi-
cantly readjust your design, update your collaboration stories.
Changing a message or one of its arguments probably isn’t signifi-
cant. Adjusting what several objects do (or don’t do) probably is.
Revise a story whenever responsibilities shift among collaborators
or newly invented objects become central to the story.

Collaboration ideas will
change as you get closer to a
working implementation. You
can spend a lot of time
spinning your wheels revising
collaborations diagrams
every time you make a slight
change. Avoid this—even if
you are using the ultimate
power design drawing tool.

Wirfs.book Page 274 Friday, October 11, 2002 11:44 AM

Further Reading

275

SUMMARY

As you design how objects collaborate, you will draw many rough
sketches. As you work out details, you may want to describe and dia-
gram specific interactions. Maybe you want to show how your
design supports key use cases or explain tricky exception-handling
logic. In each case, you need to tell a collaboration story.

The best way to communicate a collaboration story depends on
what you want to emphasize. How much detail you show should be
based on how much you know about a collaboration and how much
you want to reveal. Sometimes you want to show things; many times
you also want to briefly explain them. Mostly, you want to get your
ideas across effectively and compactly.

You can use UML diagrams to describe collaboration relationships
and specific interaction sequences. Using UML, you can show collab-
orations at different levels of detail. But sometimes the best way to
explain your design isn’t with a diagram. For example, algorithmic
details are better expressed in words, pseudo-code, real code, a
state machine diagram, or decision tables.

Some important collaboration stories are worthy of being part of
your permanent design record. Use these stories to explain your
design to others. Preserving these collaboration stories requires
some commitment. Unless you are using a roundtrip-engineering
tool, changing detailed design diagrams to reflect actual code can be
difficult. We recommend that you update important stories when
you significantly readjust your design.

FURTHER READING

Ben Kovitz’s book, Practical Software Requirements: A Manual of Con-
tent and Style (Manning, 1998), is about writing software require-
ments. But parts of this book are priceless for all those who want to
improve their technical communications. The chapters on organiza-
tion, clear writing, and small details are worth the price of the book.

Bruce Powel Douglass, in Real-Time UML: Developing Efficient Objects
for Embedded Systems (Addison-Wesley, 1999), has packed a lot of
good advice on how to design as well as describe real-time systems.
If you need to design, describe, or define systems with active
objects, hard timing constraints, and complex state-based models,
there’s a wealth of material in this book.

Wirfs.book Page 275 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

276

There are ways to illustrate collaborations other than those we’ve
explored in this chapter. Ray Buhr, a professor at the University of
Ottawa, invented the use case map. Don’t confuse use case maps
with use cases. The two things are totally different. Use case maps
can be drawn to tie together related responsibilities that are invoked
as a result of a specific chain of events so they can be used to illus-
trate use cases.

A thorough explanation of use case maps can be found by browsing
the Web site www.usecasemaps.org, which is devoted to promoting
the use and understanding of use case maps. A good explanation of
use case maps can be found in the chapter Understanding Macro-
scopic Behavior Patterns in Building Application Frameworks: Object-
Oriented Foundations of Framework Design (Mohamed Fayed, ed.,
John Wiley, 1999).

“Use Case Maps can
express the causal flow of
responsibilities, even without
an underlying structure of
components. Afterwards, the
same UCM scenario can be
placed on top of different
such structures, allowing one
to evaluate different
architectural alternatives. . . .
People working directly at the
level of message sequence
diagrams tend to make many
(premature) decisions.”

 —Daniel Amyot

Wirfs.book Page 276 Friday, October 11, 2002 11:44 AM

Chapter 8
Reliable

Collaborations

enry Petroski, structural engineer and historian, talks of
the need to understand the consequences of failure: “The

consequences of structural failure in nuclear plants are so
great that extraordinary redundancies and large safety mar-
gins are incorporated into the designs. At the other extreme,
the frailty of such disposable structures as shoelaces and light
bulbs, whose failure is of little consequence, is accepted as a
reasonable trade-off for an inexpensive product. For most in-
between parts or structures, the choices are not so obvious.
No designers want their structures to fail, and no structure is
deliberately under designed when safety is an issue. Yet
designer, client, and user must inevitably confront the
unpleasant questions of ‘How much redundancy is enough?’
and ‘What cost is too great?’” As software designers, we too
must make our software machinery hold up under its antici-
pated use.

H

Wirfs.book Page 277 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

278

UNDERSTANDING THE CONSEQUENCES OF FAILURE

Software need not be impervious to failure. But it shouldn’t break
easily. A large part of software design involves building our software
to accommodate situations that, although unlikely, still must be
dealt with. What if the user mistypes information? How should the
software react? What if items a customer wants aren’t available?
Even if the consequences of not delivering exactly what the cus-
tomer wants are not catastrophic, this situation must be dealt with
reasonably—in ways that are acceptable to the customer and the
business. When information is mistyped, why not notify the users
and let them reenter it? Not enough stock on hand? Again, ask the
users to cancel or modify their order. Software should detect prob-
lems and then engage the user in fixing them!

But what if a user is unable to guide the software? Shouting “stack
overflow!” or “network unavailable!” won’t be helpful to the disabled
user of Speak for Me. “Punch in the gut” error messages are unac-
ceptable in that design. It should handle many exceptional condi-
tions and keep running without involving the user.

There is an enormous difference between making software more reli-
able and user-attentive, on the one hand, and designing it to recover
from severe failures on the other hand. Fault-tolerant design incorpo-
rates extraordinary measures to ensure that the system works
despite failure:

The more serious the consequences of failure, the more effort you
must take to design in reliability. Alistair Cockburn, in Agile Software
Development (Addison-Wesley, 2001), recommends that the time you
spend designing for reliability fit with your project’s size and critical-
ity. He suggests four levels of criticality:

� Loss of comfort. When the software breaks, there is little
impact. Most shareware falls into this category.

Telephone switching equipment is extremely complex and yet must
be very reliable. Redundancies are built into the hardware and the
software. Complicated mechanisms are designed to log and recover
from many different faults and error conditions. If a hardware compo-
nent breaks, a redundant piece of equipment is provisioned to take its
place. The software keeps the system running under anticipated fail-
ure conditions without losing a beat.

Wirfs.book Page 278 Friday, October 11, 2002 11:44 AM

Understanding the Consequences of Failure

279

� Loss of discretionary monies. When the software breaks, it
costs. Usually there are workarounds, but failures still impact
people, their quality of work, and businesses’ effectiveness.
Many IT applications fall into this category, as do applications
that affect a business’s customers. If a customer gets over-
charged because of a billing miscalculation, this doesn’t cause
the business severe harm. Usually the problem gets fixed, one
way or the other, when the customer calls up and complains!

� Loss of essential monies. On the other hand, some systems are
critical. At this level of criticality, it is no longer possible to cor-
rect the mistake with simple workarounds. The cost of fixing a
fault is prohibitive and would severely tax the business.

� Loss of life. If the software fails, people could get injured or
harmed. People who design air traffic control systems, space
shuttle control software, pacemakers, or antilocking brake con-
trol software spend a lot of time analyzing how to keep the sys-
tem working under extreme operating conditions.

The greater the software’s criticality, the more justification there is
for spending time to design it to work reliably. Even if it is not a
matter of life and death, other factors may drive you to design for
reliability:

� Software that runs unattended for long periods may operate
under fluctuating conditions. Exceptional conditions in its “nor-
mal” operating environment shouldn’t cause it to break.

� Often, software that glues larger systems together must check
for errors in inputs and must work in spite of communications
glitches.

� Components designed to plug in and work without human
intervention need to detect problems in their operating envi-
ronment and run under many different conditions. Otherwise,
“plug and play” wouldn’t work.

� Consumer products need to work, period. Their success in the
marketplace depends on high reliability.

When you’ve gauged how reliable your software needs to be, you’ll
need to consider key collaborations and look for ways to make them
more reliable. As you dig deep into design and implementation, you
will uncover many ways your software might break. But let’s get real!
It is up to us designers to decide what appropriate measures to take,
to propose solutions, and to work out reasoned compromises—but
extraordinary measures aren’t always necessary.

Wirfs.book Page 279 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

280

INCREASING YOUR SYSTEM’S RELIABILITY

Reliability concerns crop up throughout development. But once you
have decided on the basic architecture of your system, have
assigned responsibilities to objects, and have designed collabora-
tions, you can take a closer look at making specific collaborations
more reliable—by designing objects to detect and recover from
exceptional conditions.

We suggest you start by characterizing the different types of collabo-
rations in your existing design. This will give you a sense of where
you need to focus efforts on improving objects and designing them
to be more resilient. Then identify key collaborations that you want
to make more reliable.

After you’ve characterized your system’s patterns of collaborations
and prioritized your work, you need to get very specific:

� List the exceptions and errors cases you want your design to
accommodate.

� Decide on reasonable exception-handling and error recovery
strategies to employ.

� Try out several design alternatives and see how responsibilities
shift among collaborators. Settle on a solution that represents a
best compromise.

� Define additional responsibilities for detecting exceptions and
obligations of other objects for resolving them if that is part of
your solution.

� Look at your design for holes, unnecessary complexity, and
consistency.

A system is only as reliable as its weakest link. So it makes little
sense to design one very reliable object surrounded by brittle collab-
orators, or to make one peripheral task very reliable while leaving
several central ones poorly designed. The system as a whole needs
to be designed for reliability, piece by piece.

DETERMINING WHERE COLLABORATIONS CAN BE TRUSTED

One way to get a handle on how collaborations can be improved is to
carve your software into regions where trusted communications
occur. Generally, objects located within the same trust region can com-
municate collegially, although they may still encounter exceptions and

“At an architectural level,
the basic patterns, policies,
and collaborations for
exception handling need to
be established early, because
it is awkward to insert
exception handling as an
after thought.”

—Craig Larman

Consider conducting an
“environmental impact study”
on the existing or proposed
architectural environment
where your system may live—
is it a software-friendly fit?

Wirfs.book Page 280 Friday, October 11, 2002 11:44 AM

Determining Where Collaborations Can Be Trusted

281

errors as they perform their duties. Within a system there are several
cases to consider:

� Collaborations among objects that interface to the user and the
rest of the system

� Collaborations among objects within the system and objects
that interface with external systems

� Collaborations among objects outside a neighborhood and
objects inside a neighborhood

� Collaborations among objects in different layers

� Collaborations among objects at different abstraction levels

� Collaborations among objects of your design and objects
designed by someone else

� Collaborations among your objects and objects that come from
a vendor-provided library

Whom an object receives a request from is a good indicator of how
likely is it to accept a request at face value. Whom an object calls on
determines how confident it can be that the collaborator will field
the request to the best of its ability. It’s a matter of trust.

Trusted Versus Untrusted Collaborations

When should collaborators be trusted? Two definitions for collabo-
ration are worth reexamining:

The first definition is collegial: objects working together toward a
common goal. As shown in Figure 8-1, when objects are within the
same trust region, their collaborations can be conscientiously
designed to be more collegial. Both client and service provider can
be designed to assume that if any conditions or values are to be vali-
dated, they need be done only once, by the designated responsible
party.

Collaborate: 1. To work together, especially in a joint intellectual
effort. 2. To cooperate treasonably, as with an enemy occupation
force.
—The American Heritage Dictionary

Not every object needs
to take responsibility
for ensuring reliable
collaborations. If every object
took a paranoid stance,
most of the time would be
redundantly spent checking
for preconditions to be
established and busily
guaranteeing that
postconditions are satisfied.
Once you’ve made sure
that appropriate parties
perform their assigned
responsibilities, you can
cut out a lot of design
redundancy.

Wirfs.book Page 281 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

282

In general, when objects are in the same layer or neighborhood, they
can be more trusting of their collaborators. And they can assume
that objects that use their services call on them appropriately.

The second definition requires you to think critically. When collabo-
rators are designed by someone else or when they are in different
layers, or a library, your basic assumptions about the appropriate
design for that collaboration need to be carefully examined. If a col-
laborator can’t be trusted, it doesn’t mean that it is inherently more
unreliable. But a more defensive collaborative stance may be appro-
priate. A client may need to add extra safeguards, potentially both
before and after calling an untrusted service provider.

If a request is from an untrusted or unknown source, extra checks
may be made before a request is honored. There are several situa-
tions to consider:

� When an object sends a request to a trustworthy colleague

� When an object receives a request from a trusted colleague

� When an object uses an untrusted collaborator

Figure 8-1
Objects often trust their collaborators.

I am sending you a request at the
right time with the right information

:PasswordChecker:UserLoginController

isValid(Password)

I assume that I don’t have to
check to see that you have set up

things properly for me to do my job

Wirfs.book Page 282 Friday, October 11, 2002 11:44 AM

Determining Where Collaborations Can Be Trusted

283

� When an object receives a request from an unknown source

� When an object receives a request from a known untrustworthy
source

Collaborations among trusted colleagues. A client that pro-
vides a well-formed request expects its service provider to carry out
that request to the best of its ability. When an object receives a
request from a trusted colleague, it typically assumes that the
request is correctly formed, that it is sent at an appropriate time,
and that data passed along with the request is well formed (unless
there is an explicit design decision that the receiver takes responsi-
bility for validating this information).

During a sequence of collaborations among objects within the same
trust region, there is little need to check on the state of things before
and after each request. If an object cannot fulfill its responsibilities
and is not designed to recover from exceptional conditions, it could
raise an exception or return an error condition, enabling its client
(or someone else in the collaboration chain) to responsibly handle
the problem. But the object may be legitimately designed to not
check. In this case it won’t even notice when things fail. In a trusted
collaboration there is no need to check for invalid collaborations. So
if trust is ever violated, things can go terribly wrong.

When using an untrusted collaborator. When collaborators are
untrusted, extra precautions may need to be taken, especially if the
client is designed to be responsible for making collaborations more
reliable. You may pass along a copy of data instead of sharing it with
an untrusted collaborator. Or you may check on conditions after the
request completes.

When receiving requests from an unknown source. Design-
ers of objects that are used under many different situations—such as
those included in a class library or framework—must balance their
objects’ expected use (or misuse) with overall reliability goals.
There aren’t any universal design rules to follow. Library designers
must make a lot of hard choices. You can design your object to check
and raise exceptions if data and requests are invalid (that’s certainly
a responsible thing to do, but it’s not always necessary) or to ignore
such exceptions (that’s the simplest thing, but not always adequate).
Your goal should be to design your framework or library to be con-
sistent and predictable and to provide enough information so that
clients can attempt to react and recover when you raise exceptions.

There are exception-handling
mechanisms to put in place to
assist with untrustworthy
collaborations, and there are
additional exception-handling
mechanisms that have
nothing to do with
trustworthiness, such as
“out of stock.” In spite of
trust, things can still go
wrong.

Wirfs.book Page 283 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

284

When receiving requests from an untrusted client.
Requests from untrusted sources often are checked for timeliness
and relevance, especially if your goal is to design an object that
works reliably in spite of untrustworthy clients. Of course, there are
degrees of trust and degrees of paranoia. Designing defensive collab-
orations can be expensive and difficult. In fact, designing every
object to collaborate defensively leads to poor performance and
potentially introduces errors.

Implications of Trust

Determining trust regions for a system is straightforward. After you
determine them, it is easier to decide where to place extra responsi-
bilities for making collaborations more reliable.

In a large system, it is useful to distinguish whether collaborations
among components can be trusted and furthermore to identify the
guarantees, obligations, and responsibilities of each component.

In the Speak for Me application, all objects within the core of the
application are designed to work together and are considered to be
within the same trust region. Objects in the application control and
domain layers all assume trusted communications. Objects at the
“edges” of the system—within the user interface and in the technical
services layer—are designed to take precautions to make sure that
outgoing requests are honored and incoming requests are valid. For
example, the Selector debounces user eye blinks and presents only
single “click” requests. And the MessageBuilder quite reasonably
assumes that it receives trusted requests from the objects at the
edges: the Selector and the Timer. Objects controlled by the Mes-
sageBuilder assume that they are getting reasonable requests, too.
So requests to add themselves to a message or to offer the next
guess are done without questioning the validity of input data or the
request. Trusted collaborations within the core of the system greatly
simplify the implementation of the MessageBuilder, the Dictionaries,
the Guesser, the Message, and Letter, Word, and Sentence objects’
responsibilities.

Objects at the edges of the system have additional responsibilities for
detecting exceptions and trying to recover if they can or, if not, to
report them to a higher authority (someone at the nurse’s station).
When a message cannot be reliably delivered, extra effort is made to
send an alarm to the nurse’s station and raise an audio signal.

Objects generally don’t check
on who calls upon their
services at run time.
Decisions about whether
requests are trusted or
untrusted are typically design
decisions, not run time ones.
So responsibilities are
typically implemented
assuming a specific degree of
trust.

Wirfs.book Page 284 Friday, October 11, 2002 11:44 AM

Identifying Collaborations to Be Made Reliable

285

After these constraints are agreed on, each component can be
designed to do its part to ensure that the system as a whole works
more reliably.

IDENTIFYING COLLABORATIONS TO BE MADE RELIABLE

At first, you may not know just exactly what measures to take to
increase your system’s reliability. The first step is to identify several
areas where you want to ensure reliable collaborations. Revisit your
initial design and take a stab at improving it. You might consider the
following:

� How collaborations support a specific use case or task

� How an object neighborhood responds to a specific request

� How an interfacer handles errors and exceptions encountered
in an external system

� How a control center responds to exceptional conditions and
errors raised by objects under its control

The telco integration application receives service order requests and
schedules the work to provision the services and set up billing sys-
tems. The architecture of the system consists of a number of adapter
components that interface to external applications. Collaborations
between an adapter and its “adapted” application are generally
assumed to be untrusted, whereas collaborations between any
adapter and core of the system are trusted.

The order taking adapter component receives requests to create,
modify, or cancel an order from an external Order Taking application.
These requests are converted into an internal format, which is sent to
the scheduler component. The order taking adapter does not trust the
Order Taking application to give it well-formed requests; it assumes
that any number of things can be wrong (and they often are). It takes
extraordinary efforts to guarantee that requests are correctly con-
verted to internal format before it passes them to the scheduler.

Even so, it is still possible to receive requests that are inconsistent
with the actual state of an order: For example, a request to cancel an
order can be received after the work has already been completed. It is
business policy not to “cancel” work that has already been com-
pleted. So although collaborations between the Order Taking adapter
and the scheduler are trusted, well-formed requests still can fail.

Wirfs.book Page 285 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

286

After you’ve identified a particular collaboration to work on, con-
sider what needs to be done. Maybe no additional measures need to
be taken; objects are doing exactly what they should be doing. More
likely, you will want to add specific responsibilities to some objects
for detecting exceptional conditions, and to others for reacting and
recovering from them. The first step in making a collaboration more
reliable is to understand what might go wrong.

What Use Cases Tell Us

Ideally, some requirements document or use case should spell out
the right thing to do when things go wrong. But even if use case writ-
ers have written quite detailed descriptions, rarely have they consid-
ered everything. Alistair Cockburn, in Writing Effective Use Cases,
assigns four precision levels to use cases. Only those in the most
precise level identify failure conditions and describe how the system
should respond to them. Cockburn cautions use case writers not to
write in too much detail too early:

No wonder exception-handling strategies often remain unspecified
until design! Use cases generally describe software in terms of
actors’ actions and system responsibilities and not in terms of
objects and exceptions. At best, use case writers will identify a few
problems and briefly describe how some of them should be handled.

But that doesn’t relieve you of the responsibility for identifying real
problems and resolving them as you encounter them. As you dig into
design, you are likely to identify many exception conditions and
devise ways of handling them. When your solutions are costly or rep-
resent compromises, review them with all who have a stake in your
software’s overall reliability. They should weigh in on your proposed
solutions.

“[Describing exceptions] is often tricky, tiring, and surprising work. It
is surprising because quite often a question about an obscure busi-
ness rule will surface during this writing, or the failure handling will
suddenly reveal a new actor or new goal that needs to be supported.
Most projects are short on time and energy. Managing the precision
level to which you work should therefore be a project priority.”
—Alistair Cockburn

Just because someone
describes a possible
exception doesn’t mean it will
actually happen. Your design
may have successfully
side-stepped the potential
problem.

Wirfs.book Page 286 Friday, October 11, 2002 11:44 AM

Identifying Collaborations to Be Made Reliable

287

Distinguish Between Exceptions and Errors

It is easy to waste a lot of time considering things that might go
wrong or pondering the merit of partial solutions when there is no
easy fix. To avoid getting bogged down, distinguish between errors
and exceptions. Errors are things that are wrong. Errors can result
from malformed data, bad programs or logic errors, or broken hard-
ware. In the face of errors, there is little that can be done to fix things
and proceed. Unless your software is required to take extraordinary
measures, you shouldn’t spend a lot of time designing your software
to recover from them.

For the most part, errors can be ignored. On the other hand, excep-
tions aren’t normal, but they happen and you should design your
software to handle them. This is where the bulk of your energy
should go—solving exceptional conditions. If a use case identifies
exceptional conditions, it may also have identified how they should
be accommodated:

To translate this policy into appropriate objects’ responsibilities,
you’ll need to assign some object the responsibility for validating the
password; several more are likely to be involved in recovering from
this problem. This is pretty easy. There is nothing difficult or chal-
lenging in designing an object to validate a password or report an
error condition to the user.

But wait. Is the event an error or an exception? Mistyped passwords
are a regular, if infrequent, occurrence. We want our software to
react to this condition by giving the user a way to recover, so we
view it as an exception and not an error. In fact, most use cases
describe exceptions that cause the software to veer off its normal
path. Some will be handled deftly, and users will be able to continue
with their original task. These are recoverable exceptions. With oth-
ers, users won’t be able to complete their original task. The use case
will end abnormally, but the application will keep running. From the
user’s perspective, these are unrecoverable exceptions. Rarely will
use cases mention errors unless their authors are experienced at
describing fault-tolerant software.

Invalid password entered—After three incorrect attempts, inform the
users that access is denied to the online banking system until they
contact a bank agent and are assigned a new password.

 “I have long (but quietly)
advocated dealing with
exception handling issues
early in the design of a
system. Unfortunately, there
is a natural tendency to focus
on the main functional flow of
a system, ignoring the impact
of exceptional situations until
later.”

—John Goodenough

List exception conditions you
expect at whatever level you
are working at. If you have
use case descriptions that
you are designing for, start
with those. But don’t expect
them to be a complete or
particularly detailed guide
as you design reliable
collaborations.

Wirfs.book Page 287 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

288

Object Exceptions Versus Use Case Exceptions

Let’s get one thing clear: Exceptions described in use cases are fun-
damentally different from exceptions uncovered in a design. Use
case exceptions reflect the inability of an actor or the system to con-
tinue on the same course. Object exceptions reflect the inability of
an object to perform a requested operation. During execution of a
single step in a use case scenario, potentially several use case-level
exceptions could happen. However, the execution of a single use
case step could result in thousands of requests between collaborators,
any number of which could cause object exceptions. There isn’t a one-
to-one correspondence between exception conditions described in
use cases and object exceptions. Nevertheless, we need to make our
application behave as its use case writers desire. We also need to
make it reasonably handle the many more exceptional conditions
that arise during execution.

Object Exception Basics

Invariably, an exception condition detected during application exe-
cution leads some object or component to veer off its normal path
and fail to complete an operation. Depending on your design, some
object may raise an exception, whereas another object may handle it.
By handling an exception, the system recovers and puts itself into a
predictable state. It keeps running reliably even as it veers off the
normal path—to an expected but exceptional one. Left unhandled,
however, exceptions can lead to system failure, just as unhandled
errors do.

It is up to you to decide what to do when an exception condition is
encountered. Many object-oriented programming languages define
mechanisms for programmers to declare exceptions and error condi-
tions, signal their occurrence, and to write and associate exception-
handling code that executes when signaled (see Figure 8-2).

Alternatively, you could design an object to detect an exception con-
dition, and, instead of raising an exception, it could return a result
indicating that an exception occurred (see Figure 8-3).

In part, it’s a matter of style, but largely it’s the implementation lan-
guage that determines whether you design your objects to raise
exceptions or report exception conditions. Either design described
would “handle the exception condition” of an invalid password.

“A program must be able to
deal with exceptions. A good
design rule is to list explicitly
the situations that may cause
a program to break down.”

—Jorgen Knudsen

Wirfs.book Page 288 Friday, October 11, 2002 11:44 AM

Identifying Collaborations to Be Made Reliable

289

Figure 8-2
Execution transfers directly to callers’ exception-handling code.

third incorrect login
attempt raises exception

:Application
Coordinator

:UserLoginController:Presentation
Controller

login(User, Password)
login(User, Password)

one or more of the callers
handle the exception

«exception»
«exception»

Figure 8-3
A caller can check for an exception condition returned in a result.

creates and returns description
of exception in result

:Application
Coordinator

:UserLoginController:Presentation
Controller

login(User, Password)
login(User, Password)

callers read results
and handle exception

result
result

Wirfs.book Page 289 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

290

The first design (Figure 8-2) uses exception facilities in the program-
ming language; the second (Figure 8-3) returns values that signify an
exceptional condition. Both techniques convey the exceptional con-
dition to the client. Yet another design alternative is to make a ser-
vice provider smart. It might remember that an exception condition
has occurred and provide an interface for querying this fact.

Let’s look further at what it means to define and use exception facili-
ties in an object-oriented programming language. When an object
detects an exception and signals this condition to its client, it is said
to raise an exception. In the Java programming language, the term is
throw an exception. To throw a specific exception, a programmer
would declare that a particular type of Throwable object (which con-
tains contextual information) will be sent along with the exception
signal. An object throws an exception by executing a statement:

The handler of an exception signal has several options. It could fix
things and then transfer control to statements immediately following
the call that raised the exception (resumption). Or it might re-signal
the same or a new exception, leaving the responsibility for handling
it to a possibly more knowledgeable object (propagation). In most
cases, instead of grinding to a halt, it is desirable to make progress.
This involves a cooperative effort on the part of the object raising
the exception, the client sending the exception-causing request, and
one or more objects in the collaboration chain if the requester
chooses not to handle the exception then and there.

There must be enough information available that the object that
takes responsibility for handling the exception can take a meaningful
action. The design of appropriate exception objects that are
returned to the client when an exception is raised is a topic we won’t
explore in great detail. Be aware that when you design an exception
object, you can declare information that it will hold. When the object
that detects the exception condition creates an exception object, it
populates it with this information. Typically, exception objects are
information holders.

if (loginAttempts > MAX_ATTEMPTS) {
 throw new TooManyLoginAttemptsException();

}

In Java, there are subclasses
of Error—for exception
conditions that need not be
handled—or subclasses of
Exception—for conditions
that are required to be
handled or implicitly
rethrown.

Wirfs.book Page 290 Friday, October 11, 2002 11:44 AM

Identifying Collaborations to Be Made Reliable

291

We offer the following general guidelines for declaring and handling
exceptions.

Avoid declaring lots of exception classes. The more classes
of exceptions you define, the more cases an exception handler must
consider (unless it groups categories of exceptions). To keep exception-
handling code simple, define fewer classes of exceptions and design
clients to take different actions based on answers supplied by the
exception object.

Identify exception classes in the same way you identify any other
classes—via responsibilities and collaborations. Unless two excep-
tions will have distinct responsibilities or participate in different
types of collaborations, they shouldn’t need different classes. Out-
side the world of exceptions you wouldn’t normally create two dis-
tinct classes simply to represent two different state values, so why
create multiple exception classes simply to represent different val-
ues of an error code?

Deep exception class hierarchies and wide exception class hierar-
chies are seldom a good idea. They significantly increase the com-
plexity of a system, but the individual classes are seldom actually
used. Compare the complexity of an IOError class hierarchy with 20
subclasses (probably arranged in some sub-hierarchy structure) with
one I/O error class that knows an error code with 20 possible values.
Most programmers can remember and distinguish 5–7 clearly differ-
ent exception classes, but if you give them 20–30 exception classes
with similar names and subtle distinctions, they will never be able to
remember them all and will have to continually refer to the system
documentation.

It makes sense to have different exception classes for FileIOError
and EndOfFile exceptions. Some people might try to treat EndOf-
File as a FileIOError, but this wouldn’t be a good design choice.
FileIOError represents a truly exceptional and unexpected occur-
rence. Its collaborators are likely to have to take drastic actions. End-
OfFile is usually an expected occurrence, and its collaborators are
likely to respond to it by continuing the normal operations of the pro-
gram. Seldom, if ever, do you want to respond in the same way to
both of these exceptions. But you are quite likely to want to respond
in an identical manner to all FileIOErrors.

Wirfs.book Page 291 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

292

Name an exception after what went wrong and not who
raised it. This makes it easy to associate the situation with the the
appropriate action to take (see Figure 8-4). The alternative makes it
less clear why the handler is performing specific actions. An excep-
tion handler may also need to know who originally raised it (espe-
cially if it was delegated upward from a lower-level collaborator), but
this can easily be defined to be included as part of the exception
object.

Recast lower-level exceptions to higher-level ones when-
ever you raise your abstraction level. When very low-level
exceptions percolate up to a high-level handler, there is little context
to assist the handler in making informed decisions. Recast an excep-
tion whenever you cross from one level of abstraction to another.
This enables exception handlers that are way up a collaboration
chain to make more informed decisions and reports. Not taking this
advice can lead your users to believe that your software is broken,
instead of just dealing with unrecoverable errors:

try {
 loginController.login(userName, password);
}
catch (TooManyLoginAttemptsException e) {
 // handle too many login attempts
}

Figure 8-4
TooManyLoginAttemptsException explains what happened and not who threw it.

A compiler can run out of disk space during compilation. There isn’t
much the compiler can do in this case except report this condition to
the user. But it is far better for the compiler to report “insufficient disk
space to continue compilation” than to report “I/O error #xxx.” With
the latter message, the user may be led to believe there is a bug in
the compiler rather than insufficient resources, something that can
be corrected by the user. If this low-level exception were to percolate
up to objects that don’t know how to interpret this I/O error excep-
tion, it will be hard to present a meaningful error message. To pre-
vent this, the compiler designers recast low-level exceptions to
higher-level ones whenever subsystem boundaries are crossed.

Wirfs.book Page 292 Friday, October 11, 2002 11:44 AM

Identifying Collaborations to Be Made Reliable

293

Provide context along with an exception. What’s most impor-
tant to the exception handler is to identify the exception and to gain
information that will aid it in making a more informed response. This
leads to the design of exception objects that are rich information
holders. Specific information can be passed along, including values
of parameters that caused the exception to be raised, detailed
descriptions, error text, and information that can be used to take
corrective action. When recasting exceptions, as shown in Figure 8-5,
some designers also embed lower-level exceptions, providing a com-
plete trace of what went wrong.

Assign exception-handling responsibilities to objects that
can make decisions. There are many different ways to handle an
exception: One way is to log and rethrow it (possibly more than
once) until someone takes corrective action. Who naturally might
handle exceptions? As a first line of defense, consider the initial
requester. If it knows enough to perform corrective action, then the
exception can be taken care of right away and not be propagated. As

Figure 8-5
Exception information is preserved in inner exceptions.

object creates
initial exception

:Application
Coordinator

:TooManyLogin
AttemptsException

:UserAccess
Exception

:UserLoginController

login(User, Password)
login(User, Password)

«create»
«exception»

«exception»
«create»

original description is
preserved in “inner exception”

Wirfs.book Page 293 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

294

a fallback position, it is always appropriate to pass the buck to some
object that takes responsibility for making decisions and controlling
the action. Controllers and objects located within a control center
are naturals for handling exceptions.

Handle exceptions as close to the problem as you can. One ob-
ject raises an exception, and somewhere up the collaboration chain
another object handles it. Sure, this works, but it makes your design
harder to understand. It can make it difficult to follow the action if
you carry this to extremes.

External interfacers often take responsibility for handling faulty con-
ditions in other systems they interface to, relieving their clients of
having to know about lower-level details and recovery strategies.
Service providers often take on the added responsibility to handle
an exception and retry an alternative means of accomplishing the
request.

Consider returning results instead of raising exceptions.
Instead of raising exceptions, you always can design your exception
taking object to return a result or status that is directly checked by
the requester. This makes it more obvious who must take at least
some responsibility: the requester.

Exception- and Error-Handling Strategies

In the case of errors as well as exceptions, handling them is a matter
of how much effort and energy you want to expend. Highly fault-
tolerant systems are designed to respond by taking extraordinary
measures. A highly fault-tolerant system might recover from program-
ming errors by running an alternative algorithm, or from a suddenly
inaccessible disk by printing data on an alternative logging device.
Most ordinary software would break (gracefully or not, depending,
again, on the design and the specific condition).

There are numerous ways to deal with a request that an object can’t
handle. Doug Lea, in Concurrent Programming in Java™ (Addison-
Wesley, 1999), poses the question, “What would you do if you were
asked to write down a phone number and you didn’t have a pencil?”
to explore several options. One possibility is what Lea calls uncondi-
tional action. In this simple scheme, you’d go through the motions of
writing as if you had a pencil, whether you had one or not. Besides
looking silly, this is acceptable only if nobody cares that you fail to
complete your task.

“The major difference
between a thing that might go
wrong and a thing that cannot
possibly go wrong is that
when a thing that cannot
possibly go wrong goes
wrong it usually turns out to
be impossible to get at or
repair.”

—Douglas Adams

Wirfs.book Page 294 Friday, October 11, 2002 11:44 AM

Identifying Collaborations to Be Made Reliable

295

Employing this strategy often leads to unpredictable results. In real
life, you likely wouldn’t be so irresponsible, and your software
objects shouldn’t behave this way either. If an object or component
or system that receives a request isn’t in the proper state to handle
it, nothing can be guaranteed. An unconditional act could cause the
software to trip up immediately or, worse yet, to fail later in unpre-
dictable ways. Ouch! There are more acceptable alternatives:

� Inaction. Ignore the request after determining it cannot be cor-
rectly performed.

� Balk. Admit failure and return an indication to the requester (by
either raising an exception or reporting an error condition).

� Guarded suspension. Suspend execution until conditions for
correct execution are established; then try to perform the
request.

� Provisional action. Pretend to perform the request, but do not
commit to it until success is guaranteed.

� Recovery. Perform an acceptable alternative.

� Appeal to a higher authority. Ask a human to apply judgment
and steer the software to an acceptable resolution.

� Rollback. Try to proceed but, on failure, undo the effects of a
failed action.

� Retry. Repeatedly attempt a failed action after recovering from
failed attempts.

These strategies impact the designs of clients as well as objects ful-
filling requests and, possibly, other participants in recovery activi-
ties. No one strategy is appropriate in every situation.

Inaction is simple but leaves the client uninformed. When an object
balks, at least the requester knows about the failure and can try an
alternative strategy. With guarded suspension, the object would
patiently wait until some other object gave it a pencil (the means by
which someone knows what is needed and supplies it is unspecified).

Provisional action isn’t meaningful in this example, but it makes
sense when a request takes time and can be partially fulfilled in
anticipation of later completion. Recovery could be as simple as
using an alternative resource—a pen instead of a pencil. Appealing
to a higher authority might mean asking some human who always
keeps pencils handy and sharp to write down the number instead.
Rollback doesn’t make much sense in this example because noth-
ing has been partially done—unless the pencil breaks while the

Inaction, balking, and
guarded suspension can be
categorized as pessimistic, or
check-and-act, policies.
Provisional action, appealing
to a higher authority, rollback,
recovery, and retry are try-
and-see, or optimistic,
policies.

“Decisions about these
matters usually need to
be made relatively early in the
design of an application. . . .
Choices among policies
impact method signatures,
internal state representation,
class relations, and client-
visible protocols.”

—Doug Lea

Wirfs.book Page 295 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

296

requester is writing down the number. In this case the object would
throw away the partially written number. Rollback is a common
strategy in which either all or nothing is desired and partial results
are unacceptable. Retrying makes sense only when there is a chance
of success in the future.

There will always be consequences to consider when you’re choos-
ing any recovery strategy:

Mixing or combining strategies often leads to more satisfactory
results. For example, one object could attempt to write down the
phone number but broadcast a request for a pencil if it fails to locate
one. It might then wait for a certain amount of time. But if no one pro-
vided the waiting object with one, ultimately it might ignore the
request. Meanwhile, the requester might wait a while for confirma-
tion and then locate another object to write the phone number after
waiting a predetermined period of time.

The best strategy isn’t always obvious or satisfying. Compromises
don’t always feel like reasonable solutions even if they are the best
you can do under the circumstances.

Determining Who Should Take Action

But objects do fail to fulfill their responsibilities. Because objects do
not work in isolation—they collaborate to fulfill larger responsibili-
ties—a key question to consider is which objects should take on
additional responsibilities for guaranteeing success in spite of indi-
viduals’ failures. In the case of writing a phone number, other than
doing the job yourself, the most assured way of guaranteeing suc-
cess is to hand in a new pencil along with each request! However,
providing the resources an object needs to ensure success isn’t
always practical, nor is it guaranteed to avoid all further failures.
Objects and systems fail for many reasons: They can lack the

“The designer or his client has to choose to what degree and where
there shall be failure. Thus the shape of all designed things is the
product of arbitrary choice. If you vary the terms of your compro-
mise...then you vary the shape of the thing designed. It is quite
impossible for any design to be ‘the logical outcome of the require-
ments’ simply because the requirements being in conflict, their logi-
cal outcome is an impossibility.”
—David Pye

It isn’t always possible to
devise simple solutions to
difficult problems. Systems
that make concerted efforts to
handle exceptions often
employ complex strategies.

Wirfs.book Page 296 Friday, October 11, 2002 11:44 AM

Identifying Collaborations to Be Made Reliable

297

resources they need; they can call on other objects that fail; the
underlying operating systems and networks can fail. Although it is
extremely difficult to build completely fail-safe objects, you certainly
can make them more reliable.

You can do so by placing the burden for success on the requester,
shifting some of it onto the object providing the service, splitting
some extra responsibilities between them, or even designating oth-
ers to get involved when things go wrong. Each choice has conse-
quences.

Asking the Client to Check Before Making a Request

Here are some considerations when you’re deciding to burden the
requester with checking beforehand that an object can do what it is
asked:

Can clients easily check for success? Is it easy to check
whether the service provider is in a state that guarantees success? If
not, you may need to expand the service provider’s interface and
assign it public responsibilities for reporting on what initially
seemed like private implementation details. For example, we could
give our object the added responsibility of reporting whether it has a
pencil. Even if you do this, someone (most likely the initial
requester) still must take some responsibility for reacting appropri-
ately when the answer is no.

What guarantees are there that after an object has been checked for
readiness, it stays ready? In concurrent systems, objects and
resources are shared, and their state changes from moment to
moment. If your service provider is shared or if it turns around and
uses shared resources to fulfill its responsibilities, then between the
time you ask whether it can honor a request and the time you ask it
to perform the request, conditions could change. The pencil may
have broken or may have been passed along to another. To avoid
this, allow clients to check and reserve with a single request.

Is the cost of checking prohibitive? Are conditions for success
readily checked beforehand without incurring too much overhead?
What if the consequences of asking whether an object has a pencil
causes it to ask every one of its backup resources whether it has a
pencil, and this takes a long time? Sometimes, determining whether a
request will be successful involves more computation than simply
performing the request and responding to exceptions.

Wirfs.book Page 297 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

298

Does checking produce undesirable side effects? Checking
may cause undesirable side effects. What if asking whether an object
has a pencil causes it to drop everything and order one from a sup-
plier? Would that be appropriate?

Giving the Client Some Responsibility for Recovery

If you give a client some responsibility for guaranteeing success,
there are many things to consider. How much responsibility should
it take? Is it reasonable for each client to employ individual recov-
ery strategies as it sees fit, or should you design some common
recovery facilities that requesters can use? Or should some object
better equipped to handle the situation be told of the failure?

Giving the Service Provider Some Responsibility for
Recovery

Even if you decide to shift some responsibility to the service pro-
vider for error recovery, don’t be surprised by the demands this
strategy can place on clients. Clients may have to understand the
consequences of alternate courses of action taken by the service
provider.

Is it acceptable to introduce pauses or delays? Is it OK for
the client to wait, perhaps indefinitely, for the service provider to
acquire what it needs? What if the service provider queries its
backup resources when it doesn’t have a pencil? Sometimes these
queries are quickly answered, and at other times, when they are
busy, the responses can take a long time. If the client must turn
around and give the phone number to another object within a pre-
scribed time limit, intermittent and indeterminate pauses introduced
by a more responsible service provider won’t be acceptable.

What is the probability that unavailable resources can be
acquired? If the service provider doesn’t have what it needs, can it
reliably acquire it? If other users of this resource are ill behaved,
then their performance impacts the service provider’s ability to ful-
fill its responsibilities. A service provider is only as reliable as the
resources it depends on.

Are there alternative ways to fulfill failed requests? Does it
make sense for the service provider to have a different means of
accomplishing a request at its disposal, or is this overengineering?
For example, what if our service provider had pens, pencils, and a
variety of paper stock always on hand?

Wirfs.book Page 298 Friday, October 11, 2002 11:44 AM

Designing a Solution

299

Is it easy to detect failure? Of course, it is easy for people to
know whether they’ve written down a phone number. They can scan
a piece of paper and see a legible sequence of numbers. But some-
times, it isn’t so easy for an object to know whether its actions have
had the desired effects, especially if it collaborates with or changes
the state of external devices or systems. The more collaborations
involved in fulfilling a request, the harder it is to guarantee that each
subrequest has the intended effect.

DESIGNING A SOLUTION

So far, we’ve considered strategies for handling failures for a single
request. Making larger responsibilities more reliable can get much
more complex. After you’ve identified a particular collaboration
sequence that you want to make more reliable, think through all the
cases that might cause objects to veer off course.

Start simply and then work up to more challenging problems. Given
the nature of design, not all acceptable solutions may seem reason-
able at first. You may need time for a solution to soak in before it
seems right.

Brainstorm Exception Conditions

Complex collaborations can fail in numerous ways. Even simple col-
laborations can have many places where things can go wrong. Think-
ing through all the ways a collaboration might fail is difficult work.
Make a list. Enumerate all the exceptional conditions you can think
of for a specific chunk of collaborative behavior. Whether you are
working with the collaborations in support of a use case or designing
a collaboration deep inside your system, list everything that you rea-
sonably expect could go wrong. Consider the following:

� Users behaving incorrectly—entering misinformation or failing
to respond within a particular time

� Invalid information

� Unauthorized requests

� Invalid requests

� Untimely requests

� Time out waiting for a response

� Dropped communications

Wirfs.book Page 299 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

300

� Failures due to broken or jammed equipment, such as a printer
being unavailable

� Errors in data your software uses, including corrupt log files,
bad or inconsistent data, missing files

� Critical performance failures or failure to accomplish some
action within a prescribed time limit

This list is intended to jog your thinking. But be reasonable. If some
condition seems highly improbable, leave it off your list. Put it on
another list (the list of exceptions you didn’t design for). If you know
that certain exceptions are common, say so. If you don’t know
whether an exception might occur, put a question mark by it. You
may not know what are reasonable and expected conditions if you
are building something for the first time. People and software and
physical resources can cause exceptions. And the deeper you get
into design and implementation, the more exceptions you’ll find.

Limit Your Scope

Take exception design in bite-sized increments. If you’ve already
designed your objects to collaborate under normal conditions, start
modestly to make the collaboration more reliable. Pick a single
exception that everyone agrees is common and that you think you
know how to handle. If you are designing collaborations for a specific
use case, tackle one unhappy path situation. What actions should
occur when there are insufficient funds when a user tries to make
an online payment? What if the user blinks her eyes too rapidly
and makes a false selection? What if the file is locked by another
application?

After you’ve decided on what seems a reasonable way to handle that
situation, design a solution using the object-oriented design tech-
niques we’ve described. Minimize or purposely ignore certain parts
of your design in order to concentrate on those objects that will take
the exception and those that will resolve it. You needn’t reach all the
way from the user interface to the lowest technical service objects.
Here is what we consider to be both in and out of scope for the
exceptional case of insufficient funds:

Wirfs.book Page 300 Friday, October 11, 2002 11:44 AM

Designing a Solution

301

Determine who should detect an exception and how it
should be resolved. Assume that everything goes according to
plan up to the point where the particular exception you are consider-
ing is detected.

Describe additional responsibilities of collaborators. Ser-
vice providers, controllers, and coordinators are often charged with
exception-handling responsibilities. In our example, the FundsTrans-
ferTransaction—a service provider/coordinator—coordinates the
work of performing a financial transaction. It makes relatively few
decisions, altering its course only when the result is in error. It is
responsible for validating funds transfer information, forwarding the
request to the backend banking interface component, logging suc-
cessful transactions, and reporting results.

Objects within the application server component are within the
same trust region. They receive untrusted requests from the UI com-
ponent and collaborate with the backend banking component (each
of those collaborations spans another trust boundary). The backend

Make a Payment Collaboration: Insufficient Funds

• Assume a well-formed request (no data entry errors).

• Ignore backend system bottlenecks.

• Ignore momentary loss of connections or communication failures
(they will be handled by connection objects in the technical ser-
vice layer).

• Offer the user an opportunity to enter an alternative amount.

We know that the existing backend banking system returns an error
code indicating insufficient funds to our external interface compo-
nent. Now what?

The backend banking component reports the exception via a Result
object to the FundsTransferTransaction that is responsible for coordi-
nating the transaction. The FundsTransferTransaction interprets this
as an “unrecoverable exception,” which causes it to halt and return a
Result (indicating failure) to the UserSession.

Collaboration ideas will
change as you get closer to
a working implementation.
You can spend a lot of time
spinning your wheels revising
collaborations every time
you make a slight change.
Concentrate on who should
be responsible for handling an
error or exception. Designate
places where the buck stops
and where recovery actions
will happen.

Wirfs.book Page 301 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

302

banking component interfaces to the backend banking system, a
trusted external system that either handles the request or reports an
error. Occasionally, communications between the backend bank sys-
tem fail, and then our software must take extraordinary measures.

Objects at the edges of a trust region can either take responsibility
for guaranteeing that incoming requests are well formed, or they can
delegate all or part of that responsibility.

Make sure you have considered the following:

� Who validates information received from untrusted collaborators

� Who detects exceptions

� How exceptions are communicated between collaborators (via
raised exceptions or error results)

� Who recovers from them

� How recovery is accomplished

� Who recovers from failed attempts at recovery

� Who recasts exceptions or translates them to higher levels of
abstraction

Record Exception-Handling Policies

After you’ve decided how to solve one exceptional condition, tackle
another. Often, you can leverage earlier work. If you decide that
“these types of exceptions” are very similar to “those,” you’ll likely
want to handle them consistently.

In the online banking application, any incoming request from the user
component is validated. The UserSession object receives and vali-
dates requests from the UI component and then creates and dele-
gates the request to specific service providers. In the earlier example,
a FundsTransferTransaction is created. It has responsibility for vali-
dating the funds transfer information and reacting to errors reported
from the backend system.

If you have the luxury of
designing a group of objects
to work together, you can
assign certain objects
responsibility for
guaranteeing that information
is correct or that requests are
timely and relevant, and then
turn around and relax some of
the responsibilities of objects
within a trusted boundary.

Wirfs.book Page 302 Friday, October 11, 2002 11:44 AM

Documenting Your Exception-Handling Designs

303

Write down general strategies you will attempt to follow. Deciding on
exception-handling policies can save a lot of work:

DOCUMENTING YOUR EXCEPTION-HANDLING DESIGNS

You will likely want to beef up existing collaboration stories with
exception-handling details. But don’t pile on details. You can easily
make a collaboration story incomprehensible or a diagram illegible,
obscuring the main storyline. Instead, draw new diagrams to show
how specific exceptions are handled. Leave existing diagrams alone.

There are two conditions that can cause a funds transfer request to
fail: The account has a “hold” status that prohibits any monetary
transactions, or the backend system might be too busy to handle the
request within a reasonable time. In each case, the specific condition
is reported to the user and the funds transfer fails.

In the online banking application, both the FundsTransferTransaction
and the UserSession react to exception conditions returned from
requests. The FundsTransferTransaction is responsible for transac-
tion-specific exceptions; the UserSession, a controller, takes on
broader exception-handling responsibilities including unauthorized
account access, invalid requests, and communication failures.

System Exception Policies

Recoverable software exceptions. These are caught exceptions that
do not necessarily mean an unstable state in the software (corrupt
message, time-outs, etc.). The strategy to be followed in these cases
is to first log the exception and then try to handle it (if retrying is
likely to succeed). If not, raise the exception so that it can be handled
(if the caller is within the same process); or return an error (if the
caller is not within the same process).

Unrecoverable software exceptions. These are caught exceptions
that presumably can lead to an unstable state, such as running out of
memory or a task being unresponsive. The response in these cases is
to log the cause of the exception and to restart the application unless
the severity of that specific condition is “hold&do not restart.”

Wirfs.book Page 303 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

304

Any new diagram will look nearly identical to the normal case but
will include additional details about how exceptions are detected,
communicated, and dealt with.

Describe your solution. Your readers will get a much better
sense of your exception design if you explain it. Describe which
exceptions you considered, how each is resolved, and what you con-
sider to be out of scope:

Add a running commentary to existing collaborations.
Accompany a happy path collaboration diagram with commentary
that describes exceptions that you considered at each step. This is
an extremely effective way to present your design. Reviewers are
unlikely to get the big picture by looking at many diagrams, trying to
piece together whether you’ve covered all the bases. So tell them
what might go wrong at each step.

The online banking application is designed to cover communications
failures encountered during a financial transaction. A full set of sin-
gle-point failures was considered. Some double-point failures were
explicitly not considered because they are unlikely and covering
them adds undue complexity to the processing of transactions.
In each case, the general strategy is to ensure that transaction status
is accurately reflected to the user. Failures in validating information
will cause the transaction to fail, whereas intermittent communica-
tions to the external database or to the backend banking system dur-
ing the transaction will not cause a transaction to fail. Here are the
exceptions common to every transaction:

1. Network fails during attempt to send request to backend:
Detect that response times out. Retry request after communi-
cations are restored. If too much time elapses, inform user of
system unavailability and fail the transaction.

2. Failure to log transaction results to local database: Continue,
but report condition to alternate log file and active console.

3. Failure to receive acknowledgment from backend system:
Report system unavailability to user and report backend
request status when connection is reestablished.

Wirfs.book Page 304 Friday, October 11, 2002 11:44 AM

Documenting Your Exception-Handling Designs

305

Understand the limits of what can be explained with a
diagram. If you show an exception being raised, you won’t neces-
sarily know which object handles it unless you explicitly add that
detail. When an object detects an exceptional condition, it can either
raise an exception or return a result whose value indicates an excep-
tion condition.

In UML, an exception is modeled as a signal. To show that an object
raises an exception, draw an asynchronous message between it and
the client whose request caused the exception. This is drawn as a
line with a stick arrowhead (see Figure 8-6). Designate the line as an
<<exception>>. Label it with the name of the exception to distinguish
it from other asynchronous signals.

If you are returning a result to indicate an exception condition, add a
return to your diagram. It is drawn as a dashed line with an open
arrow. The value that is returned can be recorded above the line.

You can describe both normal and exceptional paths on the same
diagram (see Figure 8-7). Show multiple paths emerging from the
same point in the diagram. Label each with a guard condition that
describes the conditions that cause one path to be selected over
another. One branch continues with the normal path; others take
exceptional ones.

Figure 8-6
Labeling exceptions with notes clarifies what’s going on.

:Application
Coordinator

:UserLoginController

login(User, Password)
login(User, Password)

«exception»

«exception»
TooManyLoginAttemptsException

UserAccess
Exception

Wirfs.book Page 305 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

306

Limit the number of diagrams. Create new diagrams only to
illustrate key exception-handling cases or obscure solutions. If cer-
tain exceptions are handled similarly, say so, don’t draw so.

Limit the number of exceptions shown on any single dia-
gram. Don’t show more than one or two exceptions on a single dia-
gram. Piling on details makes diagrams incomprehensible.

Add notes to diagrams to clarify exception-handling
responsibilities. You can’t tell whether or not an object receiving
an exception handles it. To make it absolutely clear that an object
handles an exception, add an explanatory note (see Figure 8-8).

To show that an object recasts an exception, add a note (see Figure 8-9).

Add exceptions to class definitions. The specification of a
class in UML includes a declaration of operations, attributes, and
relationships. An operation can be declared in syntax specific to the
programming language. This enables you to precisely specify the
exceptions raised by each operation. We typically do not go to this
level of detail, leaving it for code comments and documentation.

Figure 8-7
FundsTransferTransaction takes one of two branches, depending on whether or not the transaction is successful.

:UserSession :TransactionLog

validate(iUser, Password)

result

log(Status, User, Password)

login(User, Password)

«subsystem»
UI

«subsystem»
Legacy Access

[success] user_session

[failure] error_msg
alternative actions

Wirfs.book Page 306 Friday, October 11, 2002 11:44 AM

Documenting Your Exception-Handling Designs

307

Add details sparingly. Just because you can embellish a sequence
diagram with exception details or show exception declarations in
method signatures, don’t go overboard. The more you pile on, the
harder it is for viewers to discriminate what’s important. Show those
things that your readers cannot find elsewhere. If your exceptions
can be found by browsing class documentation, do you really need
to include them on class diagrams? Think carefully whether these
embellishments add value or clarity or only another opportunity for
code to get out of sync with your design.

Specifying Formal Contracts

The interplay between collaborators can get complex. In a given col-
laboration, objects are designed according to a set of expectations,
demands, and obligations on both the client and the provider of the
service. When you need to get precise, use contracts to specify how
collaborators should responsibly interact.

Figure 8-8
Clients can trust the commands to handle any exceptions.

:Mailer :SMTPLibrary:SendCommand :Postmaster

send(to, from, msg)

«exception»

scheduleDeliveryOf(Message)

deliver(Message)
process(Message)

«exception»

clients’ trust
boundary

Command handles
Delivery exception

“. . . the low-level design
handling of particular
exceptions is felt by many
developers to be most
appropriately decided during
programming or via less
detailed design descriptions,
rather than via detailed UML
diagrams.”

—Craig Larman

Wirfs.book Page 307 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

308

Bertrand Meyer views contractual relations between collaborators as
an important specification tool. Contracts can be written to define
the expectations and obligations of both client and service provider
for any request. According to Meyer, any contract entails obligations
as well as benefits for both parties; an obligation for one usually can
be restated as a benefit for the other.

Obligations can be stated in terms of preconditions that must be true
before a request is honored, and postconditions that will be guaran-
teed by the service provider:

Figure 8-9
Additional notes explain your exception-handling strategy.

:Mailer :SMTPLibrary:SendCommand :Postmaster

send(to, from, msg)

«exception»

scheduleDeliveryOf(Message)

deliver(Message)

«create»

«create» Thread
Exception

Delivery
Exception

process(Message)

«exception»

clients’ trust
boundary

Command handles
Delivery exception

Mailer recasts
ThreadException to
DeliveryException

“In relations between people or companies, a contract is a written
document that serves to clarify the terms of a relationship. It is really
surprising that in software, where precision is so important and
ambiguity so risky, this idea has taken so long to impose itself. A pre-
condition-postcondition pair . . . will describe the contract that the
routine (the supplier of a certain service) defines for its callers (the
clients of that service).”
—Bertrand Meyer

Eiffel was the first language to
let programmers define
preconditions that must be
true before a body of code
executes and postconditions
that must be true after a body
of code executes. Writing
assertions that can be
checked during program
execution adds teeth to object
contracts.

Wirfs.book Page 308 Friday, October 11, 2002 11:44 AM

Documenting Your Exception-Handling Designs

309

� A precondition obligates a client. It defines the conditions
under which a request is valid. It is an obligation for the client—
to make sure that preconditions are met—and a benefit for the
service provider. Meyer goes so far as to say that if the
requester does not satisfy the preconditions, then the service
provider is not bound to satisfy the request.

� A postcondition obligates the service provider. It defines the
conditions that must be ensured after the request is complete.
It is a benefit for the client and an obligation for the service
provider.

So if a service provider wanted to be very lazy indeed, its contracts
would place high demands on what must be true before it starts
(strong preconditions) and guarantee nothing in return (weak post-
conditions). Only if the preconditions are met will it start to work.

For a trusted collaboration, the service provider expects well-
formed requests and the client expects reasonable attempts at per-
forming the request. In untrusted collaborations, a client might take
special preparations before making a request and possibly make
extra checks afterwards to verify that the service was performed
correctly.

Table 8-1 shows how we might state a contract outlining the obliga-
tions and benefits of a request that spans a trust boundary from the
online banking system to the backend bank system to request a
funds transfer.

Table 8-1 A contract explains both obligations and benefits.

Request: Funds
Transfer Obligations Benefits

Client: online bank-
ing application

(precondition)
User has two accounts.

Funds are transferred and
balances adjusted.

Service provider:
backend banking
system

(preconditions)
Sufficient funds were in
the first account.

Honor request only if both
accounts are active

(postcondition)
Both accounts’ balances
are adjusted to reflect
transfer.

Only needs to check for
sufficient funds and active
accounts, need not check
that user is authorized to
access accounts.

A contract specification is a
job description for the service
provider: Its work will start
from the initial state of the
system as characterized by
the preconditions, and it will
deliver results defined by the
postconditions.

Wirfs.book Page 309 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

310

Meyer’s notions of obligations and benefits is contrary to defensive
collaborations, in which nothing is trusted and everything is
checked. In fact, if you spelled out the contractual obligations
between collaborators in great detail, you could theoretically imple-
ment only a minimum number of checks. The hardest part in imple-
menting objects that fulfill their obligations is ensuring that
postconditions are met. This is especially difficult when a service
provider collaborates with many others to get its job done.

You and your coworkers may go back and forth dickering over what
constitutes “reasonable” benefits and obligations for a specific con-
tract. This is a good exercise. After you decide who should take
responsibility, you can implement collaborators to work within these
constraints.

If you are designing a component that must work reliably in spite of
untrusted requests, you can purposely design it with a defensive
posture—checking everything before it does anything. If checks are
expensive, you should probably assign more obligations to the ser-
vice provider. Decisions about who should take responsibility for
guaranteeing preconditions is partly a matter of style and partly a
matter of the trust between objects.

Defining contracts is good way to reason about the obligations and
benefits of a particular collaboration. But it’s also a lot of work. Not
all collaborations warrant this extra attention. Contracts are espe-
cially useful for defining the obligations and benefits between your
software and external systems:

Contracts make absolutely clear what is expected. They are espe-
cially important for describing collaborations that need to be reliable
and that cross trust boundaries.

In the online banking application, it is reasonable to put the obliga-
tion on the backend bank to keep track of funds in accounts. Other
transactions can be made by other banking applications that affect
account balances, independently of the online banking application.
Even if the online banking application can check beforehand via an
expensive communication, it can’t guarantee that the funds will still
be available by the time it actually makes the request.

Wirfs.book Page 310 Friday, October 11, 2002 11:44 AM

Reviewing Your Design

311

REVIEWING YOUR DESIGN

Even with the best intentions, you can’t spot all the flaws in your
work. Have you ever had an “Aha! moment” when you explained
something to someone else? Simply talking about your design with
someone else helps you to see things clearly. A fresh perspective will
help spot gaps in your design.

The most common bugs in exception-handling design, according to
Charles Howell and Gary Veccellio in Advances in Exception Handling
Techniques (Alexander Romanovsky, ed., Springer 2001), who ana-
lyzed several highly reliable systems, crop up when the following
things happen:

� When writing exception-handling logic, you fail to consider
additional exceptions that might arise. Don’t let your guard
down! Any action performed when an exception is handled
could cause other exceptions. Often, the appropriate solution
to this situation is to raise new exceptions from within the
exception-handling code.

� You map error codes to exceptions. At different locations in
your design, various objects may have the responsibility to
translate between specific return code values and specific
exceptions. The most common source of error is to incom-
pletely consider the range of error codes—mapping some, but
not all, cases. Mapping is often required when different parts of
a system are implemented in different programming languages.

� You propagate exceptions to unprepared clients. Unhandled
exceptions will continue to propagate up the collaboration
chain until either they are handled by some catchall object or
they are left to the run-time environment. Designers usually
want some graceful exception reporting or recovery. What
they’ll get instead, if clients aren’t designed to handle an unex-
pected exception, will be program termination.

� You think an exception has been handled when it has merely
been logged. Exception code should do something meaningful
to get the software back on track. As a first cut, you may imple-
ment a common mechanism to log or report an exception. But
this doesn’t mean it has been handled. You’ve done nothing but
report the problem—something that is only slightly more use-
ful than taking no action at all.

Wirfs.book Page 311 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

312

In addition to these potential sources of error, look for places where
complexity may have sneaked in:

� Redundant validation responsibilities. When you aren’t certain
who should take responsibility, sometimes you put it in several
places. Different levels of validation may be performed by dif-
ferent objects in a collaboration—first checking that the infor-
mation is in the right format, next checking that it is consistent
with other information. It is OK to spread these responsibilities
among collaborators. But avoid two different objects perform-
ing identical semantic checks.

� Unnecessary checks. If you aren’t sure whether some condition
should be checked, why not check anyway? The reason is that
it can decrease system performance and give you a false sense
of security. This is an easy trap to fall into. By doing this, you’ve
done absolutely nothing to increase your software’s reliability
and are likely to confuse those who will maintain your design.

� Embellished recovery actions. At first, extra measures seem to
be a good idea . . . but wait. Is it really necessary to retry a
failed operation, log it, and send e-mail to the system adminis-
trator? Look for places where extra measures detract from sys-
tem performance, make your system more complex, and, on a
really bad day, clog someone’s inbox.

At the end of a review, you should be convinced that your exception-
handling actions are reasonable, cost-effective, and likely make a dif-
ference in your system’s reliability.

SUMMARY

As a first step in increasing your software’s reliability, you need to
understand the consequences of system failure. The more critical
the consequences, the more you can justify the effort and energy of
designing for reliability. To clarify your thinking, distinguish between
exceptions—unlikely conditions that your software must handle—
and errors. Errors are things that go wrong—bad data, programming
errors, logic errors, faulty hardware, broken devices. Most software
doesn’t need to be designed to recover from errors, but it can be
made more reliable by gracefully handling common exceptional
conditions.

Approaches for improving reliability are rarely cut and dried. The
best alternative isn’t always clear. To decide what appropriate
actions should be taken involves sound engineering as well as con-
sideration of costs and impacts on the system’s users.

“Redundant checking . . . is
a standard technique in
hardware. The difference is
that in a hardware system
some object that was found to
be in a correct state at some
point may later have its
integrity destroyed because
of reasons beyond the control
of the system itself. . . [but]
software doesn’t wear out
when used for too long; it is
not subject to line loss, to
interference or noise.”

—Bertrand Meyer

Wirfs.book Page 312 Friday, October 11, 2002 11:44 AM

Further Reading

313

Objects do not work in isolation. To improve system reliability you
must improve how objects work in collaboration. Collaborations can
be analyzed for the degree of trust between collaborators. Within the
same trust boundary, objects can assume that exceptions will be
detected and reported and that responsibilities for checking on con-
ditions and information will be carried out by the appropriately
designated responsible party. In some programming languages,
exceptions can be declared. When an exception is raised, some
other object in the collaboration chain will take responsibility for
handling it. An alternative implementation technique is to return
values from calls that can encode exceptional conditions.

When collaborations span trust boundaries, more precautions may
need to be taken. Defensive collaborations—designing objects to
take precautions before and after calling on a collaborator—are
expensive and error-prone. Not every object should be tasked with
these responsibilities. When you need to be very precise, define con-
tracts between collaborators. Bertrand Meyer uses contracts to
specify the obligations and benefits of the client and the provider of
a service. Spelling out these terms makes it absolutely clear what
each object’s responsibilities are in a given collaboration.

FURTHER READING

Doug Lea has written a very handy book called Concurrent Pro-
gramming in Java™: Design Principles and Patterns, Second Edition
(Addison-Wesley, 2000). This book is invaluable, even to non-Java
programmers. It is packed with in-depth discussions and examples
and good design principles. Even if you aren’t building highly con-
current applications, this book is worth careful study.

Advances in Exception Handling Techniques (Alexander Romanovsky
et al., eds., Springer Verlag, 2001) grew out of a workshop on excep-
tion handling for the 21st century. It is a collection of chapters writ-
ten by programming language researchers, database designers,
distributed system designers, and developers of complex applica-
tions and mission critical systems, who share their vision of the
current state of the art of exception handling and design. You will
find very readable papers that discuss exceptions from multiple
perspectives.

Bertrand Meyer’s book Object-Oriented Software Construction (Second
Edition) (Prentice Hall, 2000) is the definitive work on software engi-
neering using the principle of Design by Contract. It is a weighty
book. But two chapters—Design by Contract: Building Reliable Soft-
ware, and When the Contract is Broken: Exception Handling—are a

Wirfs.book Page 313 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

314

good exposure to thinking in terms of preconditions, postconditions,
invariants, and collaboration contracts.

Henry Petroski talks about the role of failure analysis in successful
design in To Engineer Is Human: The Role of Failure in Successful
Design (Vintage Books, 1992). Software designers clearly don’t
understand the laws that govern software failures as well as struc-
tural engineers understand physics and materials. But you can learn
many lessons from this book.

Wirfs.book Page 314 Friday, October 11, 2002 11:44 AM

Chapter 9
Flexibility

eemingly effortless improvisation—whether in music or
software—requires you to quickly identify and fit some-

thing new alongside what’s already there. You slip in and go
with the flow. Coming up with variations with little apparent
effort is what improvisation is all about. Composing on the
spot. Making it look easy.

Only after you’ve acquired the basic skills can you begin to
improvise. To get really good at it takes talent, sure, but also
lots of practice and experience. How can you get to this level?
If your software has been carefully designed, it’s much easier.
Software that has been designed to flex is set up for ready
extension. It has the structures in place that allow for change,
so you can look good without having to work so hard.

S

Wirfs.book Page 315 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

316

WHAT DOES IT MEAN TO BE FLEXIBLE?

Most people think object software inherently is flexible. It isn’t. Flexi-
bility, even in object software, takes extra effort. It must be explicitly
built into your design. Flexibility is a measure of how easily software
can adapt to a range of design parameters. The larger the scope of
these parameters’ effects, the more flexible the software is.

Designing software as a collection of roles, responsibilities, and col-
laborations is the first step toward creating flexible software. Flexible
software has fewer hard-wired assumptions, fixed values, or static
connections between collaborators. It’s looser. Things can be
slipped in. It is designed to include “knobs” that can be turned to
adjust things. There are explicit places in the design that have been
prepared for adaptation.

Flexible software may dynamically alter its own behavior as it exe-
cutes, reacting to changes in its environment. Or the end user may
be able to customize how the software works. That’s flexibility, too.
Or flexible software may be extended by a developer who adds new
behaviors in prescribed ways—creating new subclasses, defining
new methods, or plugging in new collaborators. In all these cases,
software can be adapted to fit changing requirements.

There is a difference between an adaptable system and a flexibly
designed one. Software can react to various situations even if its
design is inflexible. What distinguishes a flexible design from other
solutions is that it incorporates mechanisms—hooks, if you will—
that enable it to be changed. Designers have anticipated future adap-
tations and have structured their design to accommodate them.
They’ve placed extra mechanisms into the software in anticipation of
its flexing. They have made educated guesses about how the soft-
ware will need to be tweaked and have incorporated design elements
that specifically enable additions and modifications and extensions.
If they’ve make sound choices about where to incorporate these flex-
ion points, their work will have a big impact on maintenance.

What does it take to make software flexible? In part, it depends on
who makes the adjustments. If the person making changes is a pro-
grammer or designer, there will be obvious clues and special hooks
installed in the design. Some of these hooks will exist regardless of

Flexible: Capable of responding or conforming to new or changing
situations.
—Webster’s Seventh New Collegiate Dictionary

“Music is your own
experience, your thoughts,
your wisdom. If you don’t live
it, it won’t come out of your
horn.”

 —Charlie Parker

From the user’s point of
view, flexible software
accommodates varying
conditions or requirements.
From a developer’s point of
view, flexible software can be
modified or extended with
ease.

A design that meets its stated
objectives may or may not be
able to flex and adapt to a
new condition.

Wirfs.book Page 316 Friday, October 11, 2002 11:44 AM

Degrees of Flexibility

317

who makes the changes. But when a system is designed to be
extended, there is even more work involved. Special attention may
have been paid to designing and documenting class hierarchies with
specific extension points. Ideally, when developers need to alter
some behavior or extend the software’s feature set, they should fol-
low a well-understood procedure: Add a class here or override a
method there. This works only if preparations have been made.

In a good design, flexibility isn’t an accident; it’s a byproduct of care-
ful preparation. It takes extra machinery and inventions and design
discipline as well as extra attention to design and coding details. You
might need to identify common roles and document how class hier-
archies can be extended. You might need to include additional
embellishments that enable programmers to dynamically configure
collaborators or varying information. It takes energy to describe and
make points of extension evident. It’s more work to develop coding
examples that illustrate how to make an adaptation or write recipes
that describe how to tinker with the flexible machinery.

Anticipating future changes is a bit of a gamble, sure, but the payoffs
can be immense. Flexibility enables design improvisation.

DEGREES OF FLEXIBILITY

The ways software could flex are limitless. There is never enough
time and energy to realize every idea. Not every good design is a flex-
ible one. And not every object needs to be flexible to make a system
flexible. You should emphasize flexibility when

� It is clearly justified in support of tangible requirements

� It doesn’t compromise other project goals

� Your software will live in an environment with a history of
change

� Your software needs to adapt to different environments

� It is of high value to you, your teammates, and other project
stakeholders

When’s the right time to think about flexibility? As soon as you start
partitioning responsibilities into related chunks, you can start think-
ing about flexible solutions. Monolithic software can be hard to
change. It is easier to add flexibility to software that is organized into
well-defined components and subsystems.

If you need to adapt to varying environmental conditions, it’s better
to structure your system so that points of potential change and

“People never understand
how arranged Bill Evans's
music really was. Sure, it was
free and improvised. But the
reason we could be so free is
that we already know the
beginning, the middle, and the
ending.”

—Chuck Israels

“Patterns are a cornerstone
of object-oriented design,
while test-first programming
and merciless refactoring are
cornerstones of evolutionary
design. To stop over- or
under-engineering, balance
these practices and evolve
only what you need.”

—Joshua Kerievsky

Wirfs.book Page 317 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

318

variation are insulated from the rest of the system. You can inten-
tionally wrap potential points of variation to prevent dependencies
on specific features from permeating other parts of the system. The
sooner you make these decisions, the easier it will be to keep your
options open. Very early decisions can dramatically increase or
inhibit your software’s ability to flex.

But during exploratory design there are also many decisions that
impact flexibility. Choices you make as you assign responsibilities to
objects and design collaborations affect flexibility. Many of the prac-
tices we have mentioned in this book improve your design and, as a
side effect, make it easier to change. Responsibilities are design
placeholders where various object types and behaviors can be
plugged in to replace others. The ways you choose to divide responsi-
bilities among objects enable you to neatly encapsulate any behav-
iors that might change. But only when you add explicit hooks—which
allow responsibilities to be modified or collaborators to be replaced
without affecting working code—do you really support flexibility.

Design patterns typically allow small groups of objects to flex in spe-
cific ways. How you use patterns impacts the ways your software
flexes. Consider the Command pattern. It encapsulates an action in
an object. You can add new operations by inventing new types of
Command objects (see Figure 9-1). You can do so relatively easily as

Whether it be extension,
modification, or run-time
configuration, flexibility isn’t
something that just happens.
It must to be identified and
designed into software.

Figure 9-1
The Command pattern supports varying actions on a target.

Wirfs.book Page 318 Friday, October 11, 2002 11:44 AM

The Consequences of a Flexible Solution

319

long as a new Command object operates under the same assump-
tions as existing Command objects. The mechanism for supporting a
new command is preestablished, leaving the design of the new com-
mand’s behavior for you to concentrate on.

Your choice of patterns and the way your design is organized impact
how amenable your software is to adaptation. But flexibility con-
cerns don’t stop there. At the most detailed level, seemingly small
choices affect your software’s ability to flex. How you construct
methods, specify signatures, declare interfaces, and use inheritance
impact flexibility. Identifying shared roles and then defining common
interfaces make your software more flexible. Encapsulating private
details inside objects makes clients less dependent on others’ inner
workings, thus making it possible to change how they work with-
out rippling changes throughout the design. Code refactorings,
described in Martin Fowler’s Refactoring: Improving the Design of
Existing Code (Addison-Wesley, 1999), improve the structure and
quality of the implementation. Refactorings are intentional restruc-
turings that preserve a design’s intent while preparing it to better
absorb an anticipated change. Whether you refactor during design
or coding, refactorings tend to shift responsibilities among collabo-
rators or move them around in an inheritance hierarchy.

THE CONSEQUENCES OF A FLEXIBLE SOLUTION

Flexibly designed software offers many advantages. The ways to sup-
port specific variation have been preestablished. Hooks are in place,
waiting for you to plug in a new variation. Instead of spending time
devising new mechanisms, you follow set design rules. You just have
to dig in and implement a variation that follows them. Are you impro-
vising? Yes. But you don’t have to be terribly clever. You have pat-
terns and proven mechanisms to extend and augment.

If a new banking service is similar to the design of an existing one,
adding it is fairly easy. Objects that coordinate the new financial ser-
vice need to be designed and coded. But the pattern for doing so is
preestablished. It is a matter of fitting this new service provider into
preexisting patterns of collaboration and calling on existing backend
banking services. Sometimes, additional backend banking system
functions may need to be wrapped and utilized. That takes more
work.

Wirfs.book Page 319 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

320

The learning curve for highly flexible software can be steep. Under-
standing complex software takes time. Understanding complex, flexi-
ble software takes even longer. And if you dwell in a complex system
for a while, you tend to create complex solutions, whether or not
they are warranted. It’s a matter of fitting in and following the estab-
lished style. Yes, software can be too flexible for its own good!
Raphael Malveau and Thomas Mowbray in Software Architect Boot-
camp (Prentice Hall, 2000) caution against “flexibility disease,”
whose symptoms include the following:

� Overly complex procedures. If the recipe for making an exten-
sion has many complex steps to follow, it can be difficult and
error-prone.

� Many documented conventions. Sometimes a design is so flexi-
ble that the only way to extend it properly is to follow complex
coding conventions. The only thing that prevents you from
breaking things is to pay excruciating attention to detail.

� Extra code. To use a configurable service, clients must parame-
terize their requests. And the service provider may be more
complex in order to handle all the options. Extra complexity
can pile up on both sides of a flexible interface.

The major drawback of a flexible design is added complexity. But
creating an inflexible solution isn’t the antidote. Inflexible designs are
difficult to revise and improve on. No one wants to build software
that is creaky, difficult to maintain, and subject to ugly hacks. So the
easier it is to make software adapt, the longer it will stay true to its
original design. The key is to build in flexibility in just the right places.

NAILING DOWN FLEXIBILITY REQUIREMENTS

Not every object needs to be flexible, and not all parts of a design
need to flex. You create a flexible design when you see the similari-
ties and variations on common behavior and subsequently identify
roles that can be shared by different kinds of objects.

Letters, words, sentences, and commands are core concepts of the
Speak for Me domain. Realizing that they are all variations of another
concept, a “guess,” simplifies the design and makes it easy to
extend. There is no explicit statement in the requirements that “the
system will offer several different kinds of guesses to the user.” The
concept had to be invented. But once they were there, we pushed on
it . . . and extrapolated that message Destinations could also be a kind
of guess.

A design chock full of ready-
to-extend abstractions
and brilliantly factored
responsibilities can be
daunting. Patterns can be
applied too heavily, making
the design complex, flexible,
and hard to decipher. This is
because it is harder to think
abstractly than to think
concretely.

Wirfs.book Page 320 Friday, October 11, 2002 11:44 AM

Nailing Down Flexibility Requirements

321

The more variations you see surrounding a common theme, the
more fodder you have to create good abstractions that support a
range of variations. So even without expending lots of extra effort,
you may discover that certain parts of your design may have the
potential to be more flexible, even though flexibility hasn’t been your
focus. But how can you determine where you should concentrate
your efforts?

Identify the real problem. Flexibility requirements are rarely
spelled out in explicit detail. No one says, “Build me the coolest
framework and make it hum!” Often, only when you look closely at
how to satisfy other requirements do you see that a flexible solution
might be the right solution to propose:

Flexibility is rarely the problem that needs solving. Proposing a flexi-
ble solution may allow you to support frequent revisions or adapt to
different environments or users or to add new functionality in a pre-
dictable way. The real need is to support new changes. Flexibility
isn’t a requirement; it’s only one design option.

Establish the vision. When you spot an opportunity to propose a
flexible solution, it is important that you paint pictures of the future
with and without a flexible solution. Make it clear that a flexible solu-
tion will make a difference.

A stated objective for the online banking framework was that it
should be configured and installed at a new location within a month.
The project sponsors also wanted installations to require little or no
programming or design rework because it was difficult to negotiate
time-and-materials contracts and customers were used to fixed
installation costs.

These requirements led us to conclude that facilities needed to
be designed into the software to make it easily tunable during
installation.

The telco integration framework will need to support cases in which
different software components share information and in which data
will need to be collected from more than one source. Rather than
integrate various applications via point-to-point solutions, the frame-
work will serve as the central means to coordinate work among
various applications that it integrates. Limiting visibility between
applications allows for changing external systems without changing
each interdependent application.

Making an application flexible
takes extra work. So it
is important that the
requirements warrant the
effort. When requirements
specify configurable behavior,
or extensibility, or robust
reactions to unanticipated
conditions, that is where
we start.

Wirfs.book Page 321 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

322

Honestly assess whether a flexible solution is affordable.
Although a flexible solution may be important to a project’s success,
you have spotted a potential opportunity and not necessarily the
only workable solution. And because flexibility incurs extra develop-
ment costs, you’ll need to convince yourself and others that a flexi-
ble solution is the appropriate solution.

Flexibility in a design can be of great value. But the variations that you
support should be of value. When you are on a tight schedule, it is
dangerous to spend precious time designing for the unforeseen future.
You can’t sacrifice other project goals just for the sake of flexibility.

Identify places where your architecture should flex. There
may be areas in your design where a flexible solution offers clear
advantages. If you believe that to be true, push on that part of the
design for a bit and don’t let go until you understand more. Before
you can design in flexibility, characterize what variations your soft-
ware needs to support. Then pinpoint appropriate places where a
flexible design solution is warranted.

The system architect of the online banking system was fresh off
another very successful project. A brilliant programmer, he loved the
special challenge of building generalized frameworks, something that
was explicitly demanded in his previous project. He brought his
excitement (and assumptions about requirements) to the online bank-
ing project. But this project was on a tight schedule, with little room
for invention or error. When he became consumed by his desire to
implement a customizable framework, his colleagues had to spend
many long hours to fill in the gaps and meet tight project deadlines.

A small number of design constraints were proposed for the telco
integration project. These included statements such as these: It
should provide transparent integration between different business
applications. It will not provide only hardwired point-to-point com-
munications. Instead, components in the integration framework will
encapsulate the differences among instances of a particular type of
application.

This led us to partition the architecture into adapters that interfaced
with core business processing functions. Adapters were responsible
for transferring requests and information between external applica-
tions and a business process coordination core. Each adapter inter-
faced to a specific application. Resource managers were responsible
for locating information maintained by external applications. Com-
munications between adapters and the core were through a common
set of framework-specific commands.

It is tempting to overdesign
and invent abstractions to
accommodate any number
of imagined design changes.
That’s just another form of
feature creep.

Wirfs.book Page 322 Friday, October 11, 2002 11:44 AM

Nailing Down Flexibility Requirements

323

Demonstrate real benefits. It can be difficult to quantify benefits
and estimate the cost of designing a flexible solution, especially
when you are building something from scratch. We can’t stress this
enough: Flexibility doesn’t come for free! But the need for developing
a flexible solution should be defensible. Identify the benefits that a
more flexible solution provides over a less flexible one.

But be careful. Don’t oversell or propose a difficult solution when a
simpler one is adequate.

Find out what you don’t know. What you don’t know can com-
promise your design efforts. Ask crucial questions before investing a
lot of energy in wasted effort. You can mitigate risks by following an
incremental, iterative development process that places tight con-
trols on how much you will invest in making things flexible. In a nut-
shell, define an increment; identify a set of features that will prove
the merits of some flexibility you want to support in your software;
then design and implement a flexible solution that supports those
features. Evaluate your results and replan for the next increment.
Don’t let unplanned embellishments slip in. Don’t let too much time
slide by without taking a critical look at your design solution. Each
increment buys information about the choices you’ve made and lays
a foundation for future increments. If you are planning to build a very
flexible system, defining the right-sized increments and watching
your investments in flexibility will be key to your success.

With the telco integration framework, a new application can be sup-
ported by defining its services, fitting them into current or new busi-
ness processes, and developing an adapter component. Currently we
must ask each vendor to bid on software modifications and custom-
ized interfaces to other applications. The vendors are in control, and
we have little opportunity to manage development costs.

If the billing system fails, requests will be queued in the integration
framework. Currently, the entire order must be reentered, which is
error-prone. If the billing application’s database becomes corrupted
and needs to be restored, the framework could “replay” previous bill-
ing adjustments. This is possible because all orders are stored in a
database. Currently, the billing system is restored with manual
entries via a complex user interface. Only one or two highly skilled
billing analysts can perform this task with any reliability.

The telco integration framework was sold to management on the
basis of reduced customization costs, increased control over a con-
stantly evolving environment, and increased reliability.

“An architecture is a plan,
and it is said that no plan
survives first contact with the
enemy. The enemies in this
case are change and
ignorance. . . . What we don’t
know can change our
architectural assumptions to
the breaking point.”

—Raphael Malveau and
Thomas Mowbray

Wirfs.book Page 323 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

324

Incremental development lets you validate what you think you know
instead of pressing on in ignorance.

RECORDING VARIATIONS

If you are developing flexible software, it is important to characterize
the types of variability your software needs to support. You can start
by asking the following:

� What functions will change over time or work differently
because of certain conditions? A list of points of variation, or
hot spots, can focus your efforts.

� What is the desired degree of flexibility for each hot spot? Must
the flexible functionality be changeable at run time or by end
users? How flexible does the software need to be? An honest
assessment of how flexible your software needs to be can help
you plan the effort.

Whether you are building a framework or simply trying to design
software that supports some variations, hot spot cards are a great
way to briefly characterize some flexible behavior. Wolfgang Pree
introduced the notion of a hot spot or variation card at an OOPSLA
tutorial in 1995. Like CRC cards, they are a low-tech tool you can use
to describe the essence of a variation.

A hot spot card is divided into three sections (see Figure 9-2). The
top section includes the name of the hot spot. The middle section
summarizes the functionality that varies. This high-level general
description leaves out details. The bottom section is used to sketch

The first deliverable for the telco integration application was a proto-
type, implemented in Java. This was delivered in six months. It han-
dled simple service orders for two types of products. The project
deliverables also included a design model for the core framework
and adapters, a documented subsystem architecture, and a list of
issues and recommendations.

An important objective of the initial telco framework prototype
project was to identify issues that must be addressed in a production-
quality system. After the prototype was completed, the architecture,
design, and issues were reviewed by a select group of internal and
external reviewers. Their feedback was used in planning the next
iteration.

Hot spots, recorded on index
cards, are informal tools for
capturing rough ideas about
the points of variation you
want to support in your
software. Index cards are
indeed a flexible tool—you
can use them to record
variations as well as describe
candidate objects.

Wirfs.book Page 324 Friday, October 11, 2002 11:44 AM

Recording Variations

325

two specific examples of the variation. Ideally, you should capture
just enough detail that you can discriminate similarities and differ-
ences as you consider potential design strategies.

Who fills out hot spots cards? During requirements gathering, people
who articulate business needs—business analysts or end users—
can work with designers to jointly fill out the cards. These cards can
be a tool to briefly characterize run-time flexibility or the possibility
of end-user-directed adaptations (see Figure 9-3). Anyone describing
a hot spot should realize that added flexibility incurs some cost. A
reasonable design solution will include additional mechanisms that
will allow the software to flex in support of the hot spot.

You can also use hot spot cards during design. Document variations
that you spot at the beginning of a design iteration. Use hot spot
cards to reverse-engineer your design—characterize existing varia-
tions—before planning how to absorb new requirements. Ask what’s
already there and how it varies. Understand what you have before
altering your design to slip in a new adaptation.

Imagine if the Sun Java development team had used hot spot cards
to describe desired variable behaviors before inventing design
mechanisms and new interfaces and classes! In Java, all collections
contain a number of elements in a certain data structure. Different

Figure 9-2
The hot spot card describes and demonstrates variations.

Hot Spot Name
General description of the semantics of
some envisioned variable behavior

Descriptions of hot spot behavior for at
least two specific situations

Wirfs.book Page 325 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

326

classes of collections define different structures, optimized for spe-
cific access and usage patterns. Linked lists and hashtables are two
specific examples. An iterator is a mechanism for accessing elements
of a collection without having to know anything about its underlying
structure. In Java, an interface has been defined that describes three
basic operations of an iterator: hasNext(), next(), and remove().
Figure 9-4 shows a description of collection traversal that might have
hatched the Java iterator concept.

There are obvious limits to what can be written on a hot spot card.
Complex algorithms don’t easily fit. If you need to characterize a
variation in more detail, do so. Use cards to sketch out the basic
ideas, and keep them simple. Don’t solve the flexibility requirement
on the card—just sketch what varies. Nothing says you can’t write
more or that you must limit your thoughts to what fits on a card. Use
the card to sketch what varies and not to solve the flexibility require-
ment. A slightly expanded hot spot description might sketch out sev-
eral possible solutions.

Figure 9-3
A guess can be selected in several different ways in Speak for Me. It’s a
hot spot.

Select a Guess
How the user selects guesses depends on her
ability. The software must allow a wide range
of devices to be used to select guesses.

1. User selects guesses by blinking her eyes. An
 eye switch detects the eye motion.

2. User selects guesses by clicking on a sensitive
 “jelly bean” button.

hot spot name

specific examples
general description

A hot spot card should
describe the variation and
not pose a design solution.

Wirfs.book Page 326 Friday, October 11, 2002 11:44 AM

Variations and Realizations

327

Hot spot descriptions are tools to guide your flexibility design
efforts. Discussing hot spots helps a team to come to a deeper
understanding of design variations that need to be supported. Use
them to characterize how flexible a design needs to be.

VARIATIONS AND REALIZATIONS

To “solve” a hot spot, you will likely introduce new design mecha-
nisms that enable your design to flex. This boils down to making

Early in the telco integration project, a 10-page document was written
that described seven hot spots. It also described initial thoughts
on how best to support them. The project sponsors and business
analysts didn’t want to give the team detailed guidance on design
choices, but they wanted the team to focus on the right things. This
document was one tool used to gain buy-in and support for an exten-
sible framework and pinpoint exactly how the integration framework
should flex. It was also used by the team to guide design discussions.

Figure 9-4
Iteration is a hot spot in collection class libraries.

Traverse Different Types of Collections

Traversing different types of collections requires
an algorithm for each data structure.

1. Follow links from node to node for linked lists.

2. Increment an index to move from cell to cell
 in an array.

3. Iterate over the values associated with each key
 in a dictionary.

hot spot name

specific examples general description

Wirfs.book Page 327 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

328

specific responsibilities tunable, replaceable, or extensible. After
you’ve characterized a hot spot, you can get very specific. You can
then do the following:

� Identify the focus and scope of the variation. How big an impact
will it have on your design? Does it require a minor tweak, a
modest investment, or a major design effort? Is it an extension
or modification of what’s already there, or does it require some-
thing new?

� Explore strategies for realizing the flexibility. Solutions can
be as simple as tweaking a single responsibility or something
much more elaborate.

� Evaluate your solution for gaps, unnecessary complexity, and
usability.

� Describe to other designers and, potentially, to your software’s
users how to make the software flex.

Identifying the Impact of a Variation

The focus of a variation is a set of system responsibilities that
directly support the variation. A narrowly focused variation—one
that affects one or two responsibilities—is likely to have a limited
impact on a design.

The scope is a measure of how pervasive that variation is—how
much of the design, it affects. A variation could have a narrow focus
and still have a large scope. This isn’t necessarily the sign of a poorly
factored design, but rather one that needs to be reshaped to accom-
modate a variation. Affected responsibilities may need to be factored
into different objects or subdivided into smaller ones that can be
tuned or replaced. Interfaces to services may need to be reconsid-
ered. Responsibilities may need to be reassigned, and new objects
may need to be inserted into the design.

Enabling the design of Speak for Me to accommodate different pref-
erences in the ordering of the spoken alphabet affects two objects:
the UserPreferences object, which is responsible for knowing the pre-
ferred ordering, and the Alphabet, which is responsible for offering
the next bid to the Guesser.

Wirfs.book Page 328 Friday, October 11, 2002 11:44 AM

Variations and Realizations

329

Exploring Strategies for Realizing Flexibility

Identifying the scope and focus of an adaptation sets the stage for
devising mechanisms to support a variation. If a variation is simple,
with a narrow focus and limited scope, you might get away with
implementing a solution that isn’t flexible. Your solution would sup-
port some variation but would not include mechanisms that would
permit easy adaptations to support other, similar variations. On the
other hand, if you expect similar variations to continue to crop up
and stretch your design, develop a flexible solution.

Here are two examples that push at two ends of the spectrum. The
first example is a variation with a narrow focus. It can be solved with
a simple but inflexible design tweak. The scope could be fairly broad
(it is hard to tell from the description), but even so, it seems that a
reasonable design strategy would be to define a state variable
(encapsulated in an information holder object) that could be
checked:

In contrast, supporting a new product in the telco integration appli-
cation has a broad scope and benefits from a flexible solution:

This variation is more challenging because the executable behavior
of several parts of the design must change. The scope is broad, and
the affected responsibilities are complex: New billing rules must be

A trial version of software checks for a registration when it is
launched. After that first check, it doesn’t check again until the next
launch. If the user isn’t registered, the software disables several fea-
tures (such as printing or creating work products larger than a speci-
fied size). A check-once variation.

When a new product is defined, the software needs to adjust in sev-
eral places: New billing rules and provisioning tasks must be defined.
A description of how to translate between an external order and the
framework’s representation of the order must be described. Initially,
this analysis of the hot spot’s scope surprised the project sponsors.
They didn’t expect that adding a new product would affect so many
parts of the system. A variation that requires definition of new infor-

mation and translation rules.

When is a flexible solution
warranted? It is hard
to characterize how
responsibilities vary until
you have several variations to
compare and contrast. Don’t
invent a flexible solution until
you can test it with at least
three tangible examples.

Wirfs.book Page 329 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

330

described, a provisioning task structure must be specified, and the
external order must be translated into an internal one. This involves
more than a few design tweaks. Each affected area of the design
needs careful consideration and a flexible solution.

Using Templates and Hooks to Support Variations

In addition to conditional logic and branching, there is one basic
technique for making individual object behaviors flex that exploits
inheritance: template methods. As described in Design Patterns
(Erich Gamma, et al., Addison-Wesley, 1995), a template method is a
skeleton of an algorithm. It specifies steps in an operation and identi-
fies specific steps that can be tuned or replaced. A template method
is a skeleton of an algorithm because it is incomplete; some steps are
deferred.

As a designer you are likely to apply the Template Method pattern
when you recognize that there will be differences in how subclasses
should implement certain steps. The template method implements
the fixed parts of an algorithm once, defines the ordering of steps,
and leaves it up to subclass designers to implement the steps that
vary. Code in template methods tends to call one of several kinds of
methods:

� Concrete methods—methods defined in either abstract or con-
crete classes that do not require hooks to be replaced in order
to work. A concrete method may implement default behavior
that can be overridden in a subclass, or it may implement fixed
behavior that is not replaceable.

� Primitive operations—basic operations defined by the specific
programming language environment.

� Factory methods—methods that return new objects.

� Hook methods—placeholder methods that define spots where
specific steps in the algorithm need to be plugged in to flesh
out the skeleton. Often, designers provide default hook method
implementations in abstract classes.

A hook method is a placeholder that gives other developers who are
creating subclasses a chance to insert new behavior at a specific
step in an algorithm. By calling upon a hook, developers can alter
behavior for a particular step without having to alter any template
method code. The template code stays fixed, whereas the contents
of a hook varies and objects returned from factory methods vary
(while supporting the same interface). The algorithm defined in a

There are other techniques
for making software flexible,
but the Template Method
pattern is a basic mechanism
that enables responsibilities
implemented in a class
hierarchy to flex.

Wirfs.book Page 330 Friday, October 11, 2002 11:44 AM

Variations and Realizations

331

template method is flexible and is extensible by a developer who cre-
ates a subclass that implements hook methods.

The Template Method pattern describes one specific technique to
adapt a configurable algorithm whose steps need to vary. But there
are other ways to make specific responsibilities tunable. More gener-
ally, a hook, according to Gary Froehlich and his colleagues who
wrote about them in Building Application Frameworks (Mohamed
Fayad, ed., John Wiley, 1999), is any point in the design that is meant
to be adapted. It is a specific spot where variation is supported.
There are several ways that behavior can be adjusted. Each hook
uses at least one of these techniques:

� Enabling or disabling a feature

� Replacing a feature

� Augmenting a feature

� Adding a feature

� Configuring a feature

In support of an individual hot spot you might define several hooks
or points in your design that are adaptable. To instrument these
hooks you will need to introduce specific design mechanisms that
allow other designers to adjust your design’s behavior. For example,
to enable or disable a feature, you might introduce a new variable

The general algorithm for performing any online banking request is
as follows:

1. Obtain connection to backend banking system (a concrete
action).

2. Prepare request (a hook).

3. Submit request to backend banking service (a hook).

4. Release connection (a concrete action).

5. Log results to transaction history database (a concrete action).

6. Report results to user (a concrete action).

In the online banking application, a template method is defined in
the abstract class OnlineTransaction. Subclasses are designed to
coordinate specific transactions. Subclass designers must implement
two hook methods: prepareRequest() and submitRequest(). All
other steps of the algorithm are implemented by concrete methods
defined in the OnlineTransaction (see Figure 9-5).

Normally, hook mechanisms
wouldn’t be part of your
design. You introduce them
whenever you want to
support planned variations.

Wirfs.book Page 331 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

332

Fi
g

u
re

 9
-5

Te
m

pl
at

e
an

d
ho

ok
 m

et
ho

ds
 d

es
ig

na
te

 w
hi

ch
 p

ar
ts

 a
re

 fr
oz

en
 a

nd
 w

hi
ch

 s
po

ts
 a

re
 h

ot
.

Wirfs.book Page 332 Friday, October 11, 2002 11:44 AM

Variations and Realizations

333

whose value is checked in one or more places to alter the path taken
through a method. To replace a feature, you might need to define
new interfaces that allow designers to introduce new classes. Aug-
menting a feature may involve refactoring your design and making an
extensible class hierarchy that incorporates template and hook
methods. Or you may need to redesign a controller to activate a new
feature.

Determine when something needs to vary. The degree of diffi-
culty of implementing support for a variation increases whenever
software needs to adapt while it is executing. You may have to add
support for synchronizing a number of related adjustments or struc-
ture your software so that the subsequent requests follow new rules,
while a currently executing operation performs under conditions
that were established when it started. Because dynamically adjust-
able software can be more complicated, don’t assume it’s a neces-
sity. One question to ask when you’re designing to support a
variation is when it needs to be accommodated. Are conditions
established when the application is launched, or are they dynami-
cally checked to alter behavior during execution? There is a range of
options.

Consider when your software needs to flex, and design it accordingly.
Sometimes, simpler solutions meet flexibility requirements even
though they don’t support dynamic variation of system behavior.

User access rights to accounts are checked when a user logs in. The
software doesn’t check again until the next time the user logs in. A

check-once variation.

The user of an e-mail application sets parameters that affect how
mail is displayed, when to check for mail, whether to check for spell-
ing errors, what signature to append to a message, how to encode a
mail message, and so on. These variations affect many parts of the
software. Whenever the user changes any setting, the software
responds. Numerous variations enabled by user-initiated events.

To install a new upgrade to software controlling a card in a complex
control system, the operator issues a command. The system reboots
the card and reinitializes the card only after it has successfully down-
loaded the software and stored a backup copy in nonvolatile RAM. If
the card isn’t carrying any active traffic, an upgrade can be loaded at
any time. A dynamic reconfiguration with rollback/recovery con-

straints.

There isn’t a sharp line you
can draw between what is
considered “normal”
conditional checking and
control flow in an application
and a flexible, configurable
solution. Most object designs
can be made to flex. A
good design includes an
appropriate degree of
flexibility.

Wirfs.book Page 333 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

334

Choose the simplest solution. When there is little reason to
choose one design alternative over another, follow the simplest
course of action. There are very simple ways to support variations
that involve enabling or disabling a feature or setting a configurable
parameter to a range of values.

To support optional functionality, you can design your objects to ask
and respond to feature availability. Behavior is tuned by setting
parameters whose values are queried. Depending on the value of a
particular parameter, different branches can be chosen. In a non-
object-oriented solution, these tunable parameters could be imple-
mented as flags. A more object-oriented solution is to create an
information-holder object with responsibility for maintaining config-
urable information. It is queried by objects whose responsibilities
adjust accordingly.

Concentrate variable information into information hold-
ers. Often, many parameters control an application’s variable
behavior. You could locate each of these settable parameters in dif-
ferent objects whose behavior is directly affected. Alternatively,
each affected object could turn around and ask a common source a
question and then vary its behavior depending on the answer.

Supporting a different input device for the Speak for Me application
involves installing a new device driver, defining and implementing a
new interfacer to that device, and adding the device to the user’s con-
figurable preferences. Although Speak for Me could support dynamic
loading of new devices whenever they are detected, this isn’t strictly
necessary. End users do not plug in new devices; hospital staff do. It
is rare that a user is switched from one input device to another. In this
case it is perfectly acceptable to configure the user’s preferences and
then restart the application.

In the online banking application, certain bank installations support
automatic online activation, whereas others require that users submit
information that is later manually verified by a bank agent against
bank records before online access is activated. A BankConfiguration
object is queried to determine whether or not Auto Activation is
enabled. The application alters its behavior to display the appropriate
registration screen and to either invoke automated authorization ser-
vices or queue a registration request for manual activation, depend-
ing on the answer to a simple question.

“When faced with alternative
approaches, choose the
simplest first and change to
a more complex one as
needed.”

—Martin Fowler

Certain variations require no
coding changes. Parameters
stored externally in a file or
database are read to initialize
system behavior. Whether a
developer or an end user,
whoever edits that
information may need to know
what values are valid and
understand dependencies
that exist between
parameters.

Wirfs.book Page 334 Friday, October 11, 2002 11:44 AM

Variations and Realizations

335

We recommend the second approach. Bundled together, config-
urable information can be dealt with as a unit. Sprinkling config-
urable values among many objects makes this information hard to
locate and manage. But don’t let your information holder become
too bulky. Instead of letting it get bloated with disconnected informa-
tion, you can always divide and conquer. Create a number of smaller
information holders that encapsulate related information. Give the
original information holder responsibility for managing these
smaller information holders. Redesign it to hold on to larger-grained
information.

Insert design placeholders. You aren’t likely to discover all vari-
ations at once. But if you are following an incremental, iterative
design process, you can plan to grow your design in specific ways.
Placeholders can be introduced into your design to encapsulate
behavior and information that you expect will grow and vary. You
can invent several placeholders and grow their responsibilities with
successive iterations. This isn’t a technique so much for enabling
variation as it is for keeping it contained to well-known spots.

Steven Jones, in Building Application Frameworks, introduces the
notion of a Placeholder pattern. If you want to reserve a spot for
anticipated improvements in later iterations, define and implement
one or more placeholders and insert them into the design, to be
fleshed out later. As an example, Jones describes a class hierarchy
that includes a specific placeholder for application-centric features.
Using this framework, application developers are expected to define
a new class and add it to this hierarchy for each application they
implement.

In the online banking application there are dozens of parameters that
can be used to tune the application’s behavior: number of user retries
before failing login, time elapsed before session time-out, and default
language, to name a few. The BankConfiguration object is initialized
by reading values from an external source.

Grouping related information into smaller focused information hold-
ers allows parts of the application to ask about specific feature sets.
In an e-mail application, a number of user-specific information hold-
ers might be created and maintained by a UserPreferences object:
IncomingMailOptions, OutgoingMailOptions, UserIdentity, Reply-
Options, and DisplayOptions, to name a few.

Planned for but unused
flexibility increases a design’s
complexity. So do poorly
factored hacks in support of
unplanned variations. But
appropriately located
placeholders can preserve
a design’s integrity.

Wirfs.book Page 335 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

336

The abstract class Application defines common default behaviors
for starting, initializing and shutting down any application. The class
CommonApplication is a subclass of Application, and a placeholder
that provides a home for additional behaviors that will have a global
effect on all applications. Instead of subclassing Application, to fit
into this application framework, developers create their own specific
application’s startup and control behaviors by subclassing Common-
Application. The following future behaviors might be added to
CommonApplication:

� Checking on whether a particular version of the application can
be started on a specific machine.

� Verifying licensing keys or user registration.

� Maintaining banners or welcome messages.

� Registering a distributed application with a naming service.

� Specifying the operational mode of the application—is it in
debug mode or normal operation? Is access limited, or is it
under normal operation?

Some programmers are likely to argue against placeholders; they
consider overdesigning to be bad practice. Designers who’ve been
burned on prior projects might argue fervently for their favorite
placeholder. The value of a placeholder is that it limits the impact of
subsequent design changes. New responsibilities can be given to a
placeholder, with minimal impact on the rest of the design (see Fig-
ure 9-6). Creating an explicit spot—a placeholder—allows for varia-
tions to be localized, encapsulated, and managed.

In the online banking application there are several placeholders—too
many for some designers’ tastes. Several placeholders were intro-
duced by the architect as a result of his past development experi-
ences. Not all team members bought into the need for introducing so
many of them. One noncontroversial placeholder is the BankConfigu-
ration object—a spot where bank-specific configuration information
is maintained. A more controversial placeholder is the user class hier-
archy. Although there are only three known kinds of users—the bank
agent, a system administrator, and end users—an ApplicationUser
inheritance hierarchy was designed. It is intended to support antici-
pated user-specific capabilities and defines specific places for exten-
sion. The placeholder classes weren’t easily accepted by the design
team because early releases of the application supported only end
users.

Debate about whether a
placeholder is necessary or
sufficient is healthy for a
design, as long as camps
don’t form and positions
become entrenched. The real
test will be in the future—
when new adaptations are
rolled into the design.

Wirfs.book Page 336 Friday, October 11, 2002 11:44 AM

Variations and Realizations

337

Create appropriate knobs for developers to turn. As a flexi-
bility designer, you can make other developers’ jobs easier by pro-
viding extra support—adding “knobs” to your implementation that
assist developers in making changes. The alternative is to give them
free rein to the code and let them have at it. Sure, it’s possible to
implement variations without extra support. But it is especially
important when several hooks must be implemented in a particular
order to realize a single variation. Without such support, making
extensions can get tricky.

If several parts of your system need to be configured as a unit and
the ordering of changes is important, consider providing a single
method—a master knob, if you will—that contains the code that con-
figures a variation in one atomic operation. Rather than call on sev-
eral methods to configure a feature, the developer invokes only one
method to make a set of related changes. This is much more reliable
than letting developers write their own scripts.

Sometimes, configuring a variation may involve reading and inter-
preting externally stored settings. Rather than let developers or
users change settings by using a low-level text editor, you might
want to create a tool that assists them in making consistent changes.
A tool can also check and report inconsistent settings.

Figure 9-6
Two placeholder classes—BankAppUser and AppUser—reserve spots for future
behaviors.

Wirfs.book Page 337 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

338

Sometimes, to implement a variation, extensive programming is
required. It is difficult to provide knobs in this case. But at the very
least, you can provide examples to emulate and can outline the steps
developers should follow. Rather than provide a knob, provide them
with a starting point.

There is one more knob that is a hallmark of disciplined develop-
ment practices: a “test” knob. After making a change, a developer
can turn a test knob to check whether an adaptation hasn’t broken
anything. A test knob typically invokes preexisting test code that
asserts whether values are correctly initialized, whether newly
installed objects respond appropriately to standard questions, and
whether new variations of behaviors perform according to estab-
lished scripts.

THE ROLE OF PATTERNS IN FLEXIBLE DESIGNS

Design patterns use composition, inheritance, and abstraction as
tools to enable adaptations. Design patterns make software “soft”
and amenable to extension and modification in prescribed ways.
We’ve already seen that the Template Method pattern defines basic
building blocks for constructing skeleton algorithms. A design pat-
tern typically affects a small segment of the design—a few collabo-
rating objects or a class in an inheritance hierarchy. Let’s look more
closely at three patterns described in Design Patterns to see where
they flex.

Varying an Object’s Behavior with the Strategy Pattern

The Strategy pattern lets you define a family of algorithms. The Strat-
egy pattern encapsulates a single algorithm in an object. Usually
called on by clients fulfilling larger responsibilities, this pattern lets
developers use any object playing the role of the strategy inter-
changeably.

Speak for Me presents the letters of the alphabet in different
sequences according to the wishes of the user. The Guesser dele-
gates the work of guessing letters to the Alphabet. If the Alphabet
plugged in different AlphabetOrder strategy objects according to the
user’s preferences, that would change the way letters are guessed.

The Strategy Pattern factors
a responsibility (often a
private one) out of an
object, replacing it with a
collaboration with another
object that performs that
responsibility. It is particularly
useful when the responsibility
is complicated or might vary.
After a responsibility has
been factored into its own
object, it can be replaced with
other strategies, enabling the
original object’s behavior to
vary.

Wirfs.book Page 338 Friday, October 11, 2002 11:44 AM

The Role of Patterns in Flexible Designs

339

The Strategy pattern presents a design alternative to having the
client select the appropriate algorithm based on conditional logic
and directly executing it. Sure, the client might need to be aware of
different strategies in order to pick the right one. But the appropriate
strategy might be provided by some other third party that knows
which strategy to choose. The responsibility for performing different
variants on the same algorithm has been factored into several differ-
ent kinds of strategy objects. Introduce a new strategy, and you’ve
extended your design.

Hiding Interacting Objects with Mediator

One bugaboo of flexibility is tight coupling. To collaborate with an
object, the client must acquire a reference to that object. If references
are fixed, communication paths and collaborations aren’t flexible.
The Mediator pattern’s sole purpose is to promote looser coupling by
keeping objects from directly calling on one another’s services.

In the Mediator pattern, an object that plays the role of a mediator is
responsible for coordinating the interactions of a group of objects.
Rather than collaborate with each other directly, the objects know
only about the mediator. The mediator is the hub of communication.
It instigates and manages inter-object communications.

The Mediator pattern trades off complexity of interactions between
individual objects for knowledge and visibility of those objects by an
object playing the role of mediator. With this looser coupling, your
design is more flexible. Any object that plays one of several preestab-
lished roles known to the mediator can be plugged in and used inter-
changeably.

Speak for Me’s MessageBuilder is a mediator. Coordinators often
play the role of a mediator. It responds to the application events and
hides the domain objects and their responsibilities from the objects
in the user interface. The user interface objects know about mediator,
but that’s all. The mediator, in turn, knows about the event-handling
responsibilities of all of the domain objects that it delegates to, but
these domain objects and their responsibilities are hidden from the
user interface objects. A mediator acts as a channel for interactions.

By representing the
responsibilities of the objects
that it delegates to, a
Mediator assumes all of their
combined responsibilities.

The distinction between a
mediator and a coordinator is
a subtle one. Your intention
when inventing a coordinator
is to solve a control problem
by creating an object that
coordinates activities of other
objects. A designer may
choose to adapt the Mediator
pattern as a solution—
designing that coordinator to
play a mediator role, or not. A
coordinator can manage the
activities of other objects
without having to be a
mediator.

Wirfs.book Page 339 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

340

Making a Predefined Object or System Fit Using Adapter

You apply the Adapter pattern when something you want to use isn’t
malleable enough to suit your purposes as is and you can’t change it.
Rather than warp the rest of your design to use an object or compo-
nent that has an undesirable interface—it could be clunky, or too
low-level, or not fit in with the rest of the design—you wrap it with a
more desirable one and plug that into your design.

The Adapter pattern allows you to fit new elements into your design
without compromising it. By creating adapters, you preserve your
design’s integrity and don’t let low-level details or a clunky interface
“leak out” and affect other objects.

How Do Patterns Increase Flexibility?

Many of the design patterns described in Design Patterns encourage
the distinction between an interface to a set of operations and its
implementation. To be plugged in and used, an object need only sup-
port a common interface and not a common implementation. This
allows objects that share common roles to be used interchangeably.
Clients are unaware of the classes of objects they use; they only
depend on their interface. This greatly reduces implementation
dependencies among objects and gives designers the flexibility to
replace one interface-compatible object with another.

Variations in behavior that are obtained by composing objects that
support predefined interfaces promotes “black box” use. No internal
details of those objects are visible to their clients. Regardless of
whether you apply a particular pattern, you can always increase flex-
ibility by defining interfaces and having clients rely on them instead
of referring to concrete classes. Declaring an interface as the type of

The telco integration software coordinates the work of a number of
business applications developed by independent software vendors.
In order to insulate the integration core from application specifics, the
system is partitioned into a number of adapters, which transform
requests from the external application into integration software com-
mon commands and/or translates requests from the integration soft-
ware into application-specific API calls (see Figure 9-7). Each adapter
runs in its own process, allowing for asynchronous processing. Parts
of the system can be brought up at different times, and adapters can
be allocated to separate processors.

Wirfs.book Page 340 Friday, October 11, 2002 11:44 AM

The Role of Patterns in Flexible Designs

341

an argument as the value returned by a method, or as the type of a
variable effectively establishes a contract for service without speci-
fying what class of object will perform it. It’s all the same to the client,
but only an object’s creator needs to be aware of its class. If a client’s
only view of a collaborator is its interface, different objects that sup-
port the same interface can be interchanged.

Another technique used in many design patterns is delegation: An
object that receives a request forwards it to an appropriate delegate
(see Figure 9-8). For example, both the State pattern and the Strategy
pattern change the behavior of an object by changing whom
requests are delegated to. Delegation makes it easy to support run-
time variation. By swapping delegates on-the-fly, you can adjust an
object’s behavior.

Figure 9-7
The Adapter pattern can be used to make different objects or components present a similar interface.

Wirfs.book Page 341 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

342

HOW TO DOCUMENT A FLEXIBLE DESIGN

How can you denote a potential point of variation in a collaboration,
or show where an object playing a specific role can be plugged in to
a design? You might think that the first thing to do is to create appro-
priate class and sequence diagrams that identify “flexible ele-
ments”—but exactly how do you show that? UML provides basic
mechanisms for showing classes, roles, interfaces, collaborations,
and patterns. But it doesn’t provide facilities for explicitly denoting
hooks or identifying related template and hook methods.

Although frameworks and extensible software have been developed
for a wide range of applications, UML as it stands today still lacks
adequate ways to describe points where a design can be extended.
Recently, the Unified Modeling Language community has started to
define profiles, which are subsets or extensions of UML targeted for
specific uses. That’s one reason the authors of The UML Profile for
Framework Architectures (Marcus Fontoura et al., Addison-Wesley,
2001) developed a specific profile aimed at aiding framework design-
ers and architects in describing extensible software.

In defining UML-F, Marcus Fontoura, Wolfgang Pree, and Bernhard
Rumpe have made a first attempt at describing points of design flexi-
bility. It remains to be seen whether their proposed notations
become widely adopted or make it into future versions of the UML
standard.

Figure 9-8
Delegation to replaceable collaborators makes a design flexible.

“Delegation is a good design
choice only when it simplifies
more than it complicates. It
isn’t easy to give rules that
tell you exactly when to use
delegation, because how
effective it will be depends on
the context and on how much
experience you have with it.
Delegation works best when
it’s used in highly stylized
ways—that is, in standard
patterns.”

—Erich Gamma et al.

Wirfs.book Page 342 Friday, October 11, 2002 11:44 AM

How to Document a Flexible Design

343

Several notations in UML-F are worth a close look. Designs that have
a large number of classes and interfaces can be difficult to grasp. For
many systems, a complete class diagram that shows every class and
interface as well as associations would be incomprehensible. It is
common to show a partial set of classes on a diagram and to repeat
classes on many different diagrams. It is a necessity to break down a
large design into comprehensible chunks.

But this can be confusing, too—especially when classes are depicted
in greater or lesser detail on different diagrams. On one diagram a
class may include attributes and operations; on another, only a sub-
set of operations may be enumerated. Yet a third diagram might
show the class with no attributes or operations. This is perfectly
legal in UML, and it is good to remove extraneous details so that you
can emphasize what’s important. However, developers studying a
design model in order to make a variation could benefit from a
clearer understanding of exactly what they are seeing.

To address this issue, the UML-F authors extended UML with two
tags that make it explicit whether or not a class, or any other design
element, is fully specified (see Figure 9-9). Tagged with a “©” means
that it is complete. Tagging a design element with a “...” means that it
is incomplete (there’s more detail but it is not shown). By default,
any element not tagged with “©” or “...” is deemed incomplete.

UML-F also lets you annotate individual methods with an explanation
of their intent and implementation. This allows a designer to specify
whether a method’s implementation is

� Abstract and needs to be overridden by subclasses (shown
with a diagonal slash through the rectangle)

� Inherited and not redefined (shown with an unfilled rectangle)

� Newly defined or completely redefined by a class (shown with a
gray-filled rectangle)

� Redefined but uses behavior defined in a superclass via a call to
the superclass’s method (shown with a rectangle that is half
gray, half unfilled)

This is particularly useful for visualizing how inheritance is used
when you specify configurable algorithms using template and hook
methods (see Figure 9-10). You can see at a glance whether a method
has been replaced or superseded in subclasses without having to
read code.

Finally, we introduce one more UML-F construct: template and hook
tags. Methods, classes, and interfaces can be tagged as being

UML profiles are being
proposed to address specific
modeling issues of targeted
application areas. For
example, people are working
on a UML profile for fault-
tolerant designs. Other UML
profiles being proposed at the
time this book is being written
range from enterprise
application integration to
workflow and business
process modeling.

When you are looking at a
UML diagram, you can never
be certain whether you are
looking at a complete or a
partial specification of a class
or inheritance hierarchy.
Sometimes it is easy to forget
this and read more (or less)
into a design than was
intended. That’s why the
UML-F authors included the
“...” notation to tag design
elements as incomplete. This
forces your attention to the
fact that you are seeing only
part of a design.

Wirfs.book Page 343 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

344

templates or hooks. A group of related template and hook tags can
be named. Thus it is possible to see the complete suite of template
and hook methods that support a specific variation (see Figure 9-11).

There is more to UML-F than we describe here. And there is more to
describing how a design supports a variation than can be shown on
any diagram. The main value of UML-F is the ways it can be used to
express design variations and their implementation details.

Consider Your Audience

Although you can document details in UML, consider your audience.
What levels of detail do your readers need (or want) to see? Con-
sider the detailed diagram in Figure 9-12, which shows the implemen-
tation of many hooks in Speak for Me.

Figure 9-9
Adding UML-F tags makes it clear whether you are looking at a partial or a complete specification.

When you look at any UML
diagram it’s hard to know how
much is left out. There are
many valid reasons to leave
out design elements; to
emphasize certain aspects
and remove clutter are two.

Wirfs.book Page 344 Friday, October 11, 2002 11:44 AM

How to Document a Flexible Design

345

Contrast Figure 9-12 with a second, conceptual picture (Figure 9-13)
that generally explains hooks and where they are located in the
design.

Different stakeholders are likely to prefer one view over the other.
Some will prefer a big picture overview. Your fellow designers may
want to examine your design in all its glory—and may not be satis-
fied with any level of detail you can show using UML. No single pic-
ture or diagram can communicate these different perspectives.

Describing How to Make a Variation

If the person making a variation is a developer, he or she will need to
understand at some level how the design works before making it vary.
Diagrams can help, but they aren’t the whole story. Explanations,

Figure 9-10
UML-F has notations for showing implementation inheritance characteristics.

Without knowing whether you
are looking at the whole story
and where aspects of the
design have been explicitly
elided, drawings can only be
viewed as representations,
with the real answers to be
found by reading code.

Wirfs.book Page 345 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

346

Fi
g

u
re

 9
-1

1
G

ue
ss

D
ic

tio
na

ri
es

 s
ha

re
 a

 c
om

m
on

 a
lg

or
ith

m
 fo

r
lo

ad
in

g
da

ta
, b

ut
 e

ac
h

pa
rs

es
 it

s
da

ta
 d

if
fe

re
nt

ly
.

Wirfs.book Page 346 Friday, October 11, 2002 11:44 AM

How to Document a Flexible Design

347

words, written procedures to follow, and code examples all help. But
before you launch into an extensive documentation effort, consider
what the person needs to know in order to make a variation.

If the level of support you have provided for making an adaptation is
high, then developers may not require deep knowledge. Perhaps you

Figure 9-12
UML class diagrams show flexibility in interfaces, abstract classes, and inheritance hierarchies.

Wirfs.book Page 347 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

348

have created a number of prebuilt components or classes. To imple-
ment a variation, a developer simply chooses an existing component
and plugs it in to a particular collaboration by invoking a single
“setter” method. If this is so, designers won’t require deep knowl-
edge of your design or a complex set of instructions. They are likely
to need only a simple set of instructions—a basic recipe to follow.

Figure 9-13
A conceptual diagram can also be used to show how the Speak for Me application can flex without showing
classes and interfaces.

A Basic Recipe for Selecting a New Device Driver:

Choose from one of . . .

Configure into system by doing . . .

Restart and test by calling . . .

Sometimes multiple views of
your design are appropriate.
Don’t expect everyone to
understand your design’s
flexibility at the same level of
detail. Vary your descriptions
according to your audience.

Wirfs.book Page 348 Friday, October 11, 2002 11:44 AM

How to Document a Flexible Design

349

More likely, the developer must change or add at least one class and
modify code in other classes to implement a variation. Examples or
pointers to places where similar variations have been implemented
could be helpful.

More complex variations require more extensive knowledge. A good
recipe needs to provide only enough information to guide someone
making an adaptation. It doesn’t have to tell everything. Here is a
basic recipe template adapted from The UML Profile for Framework
Architectures:

How to add a new banking option

1. Add a method to the BankConfiguration object that can query
whether this feature is enabled.

2. Add a variable declaration in the bank configuration file named
xxxFeature.

3. Initialize the system.

4. General procedure to follow: Code in the affected classes can
be altered to query the Bank object for SupportsXXX and if so,
alter behavior. Typically, Bank features affect specific transac-
tions, specific display, or logging and recovery functions. For
an example, see how supportsAutoActivation is used to vary
the behavior of the RegisterTransaction.

Recipe Name: Usually starts with “How to”

Intent: The reason to use this recipe

Design Description: Which classes and interfaces are involved and
need to be understood, what roles do they play and what collabora-
tions are involved. What responsibilities are adapted via the varia-
tion . . . backed up by supporting UML or UML-F diagrams and other
descriptions.

Related Recipes: Alternative ways to accomplish a similar variation;
or related sub-recipes. If the recipe is complex it may need to be bro-
ken down into several sub-recipes.

Steps 1. First create a class that implements the xyz interface. . .

2. In it define a method named. . .

3. And another method named. . .

4. . . .

Sometimes people who
create a design don’t know
how to limit their descriptions.
The key to writing a good
recipe is to get into the
mindset of the users. Ask,
“What do they need to
know?” instead of thinking,
“What should I tell them?”

Wirfs.book Page 349 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

350

If the end user is making the variation, the recipes aren’t likely to
mention objects or how the software adapts behind the scenes. If it
is more than a single action, users are likely to want step-by-step pro-
cedures, just as developers do—but procedures written at a level
that describes how the user interacts with a tool to make changes.

End users and developers need to understand how to make varia-
tions, but typically at different levels of abstraction. Often, both need
to understand the limits of the software. Certain changes are easy.
Others take time and extra preparation. Good recipes should tell
people what to expect, present options, and tell them what they
need to know to keep on track.

CHANGING A WORKING SYSTEM’S DESIGN

So far we’ve talked about increasing flexibility as if you were
approaching a design with a clean slate. When there are existing
obstacles, bumps, wrinkles, and constraints that you have to put up
with and cannot change, introducing flexibility is more challenging. If
you could have divined the future and accurately predicted future
requirements, you would have designed your software to absorb
changes with minimal impact. Barring that, you need strategies for
wedging variations into your existing software. How can you extend
your software without compromising it?

Earl Ecklund, Lois Delcambre, and Michael Freiling introduced the
idea of change case analysis in a paper presented at OOPSLA 1996.
They suggest you characterize the focus, scope, and degree of defini-
tion of any proposed change before designing a solution. The scope
of a change refers to how much it pervades the software; but to
these authors, scope is more than the impact on the design. After
software is in use, a proposed change can have far-reaching effects
on users, existing requirements, use cases, design documentation,
and testing procedures. Degree of definition refers to how well known
the details of a proposed change are. After a proposed change is well
defined and its impact has been assessed, then Ecklund and his col-
leagues propose that you shift your emphasis to design.

Of course, not all changes warrant creation of a flexible solution. You
may need to bolt on a new feature that doesn’t fit with or naturally

Discussion: This could mention problems that might crop up, how to
test that a variation is correctly installed, or what should not be
attempted using this approach.

Software, unlike the
pyramids, is seldom built as a
memorial, never again to be
touched. To withstand time,
shifting user needs, or the
latest OS release, software
must be flexible.

Not every change to your
software is an opportunity
to make your software
more flexible. But it is an
opportunity to rethink your
design and ask, “Is now the
right time to refactor my
design, or should I simply
make the change as quickly
as possible?”

Wirfs.book Page 350 Friday, October 11, 2002 11:44 AM

Changing a Working System’s Design

351

extend the existing parts of your design. However, if a change repre-
sents a variation on existing behaviors, then you can consider a
flexible solution. If changes occur frequently, and follow common pat-
terns, you are likely to have designed your system to be flexible to
begin with.

However, even though you know it is coming, if a change is ill
defined, it is hard to plan ahead.

When does making a change compel you to a flexible solution
instead of merely applying a fix? Rarely is this a simple decision.
When the scope of a change is broad and will radically alter existing
system behavior, it’s a good time to step back and explore your
options. Redesigning your software to increase flexibility may be the
most expedient way to absorb this type of change. Or it may not be.

Tax laws change every year, so tax preparation software changes
every year. But it changes in predictable ways: Specific calculations
and tax rules change and new tax forms are invented (with their own
rules and calculations). Various items on forms are linked to other
items. Tax preparation software is designed to support rules, calcula-
tions and relationships. Because forms and rules and calculations
vary from year to year, the software designers have developed a
framework for defining rules and relationships between line items,
for defining new forms, and for performing calculations. If new rules
don’t fit into their existing toolkit of predefined calculator objects,
they invent new calculators and fit them into the existing framework.
If new forms are needed, they invent those. But the basic structures—
forms with line items—and ways of performing calculations remain
the same. It’s only when new functionality is required, such as elec-
tronic filing of taxes, that major design work is required.

Knowing that new software will continue to be integrated into the
telco integration framework doesn’t mean that the designers can
make many preparations. Integrating any new software system will
require developing a usage model and then writing an adapter to
interface between it and the existing framework core. But beyond
that, they can’t “prepare” their design to absorb the new software.
Not until a clear model is made of how the new software is to be used
and how it interacts with the existing system can any detailed plans
for design rework or new design features be made.

Wirfs.book Page 351 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

352

When the scope of a change is small—perhaps localized to a single
object—the tendency is to patch in the change. That might be OK.
But the next time you patch that patch, things could get ugly. It is a
matter of deciding whether to pay for redesign now or defer the deci-
sion until later when you know more. You may not know enough
about potential variations until you make that third or fourth
change. When you start to see a pattern, consider refactoring your
design and developing a more flexible solution. Patches may be the
quickest solution, but they impact your software’s ability to flex in
the future. The more patches you make, the harder it is to see your
design and to introduce support for adaptations.

SUMMARY

Flexibility is a measure of how readily software adapts to a range of
design parameters. Only those parts of a system whose behaviors
need to be adjusted—by either a programmer or an end user—need
to be flexibly designed. Flexibility does not necessitate large frame-
works. To support any variation, you can introduce a modest
amount of flexibility into your software. Hot spot cards are a low-
tech tool for analyzing your software’s flexibility requirements. The
essential characteristics of variations, or hot spots, can be quickly
described on index cards. After you’ve described a hot spot, you can
pinpoint the areas of your design that are affected and strategize
how best to alter your design to support the hot spot.

Many design techniques that you are already familiar with can be
used to introduce flexibility into your design. Your intention is to
make your design adaptable along specific dimensions. This requires
extra work. To support any hot spot, you will likely introduce extra
mechanisms—or hooks—into your design that allow others to tune
or extend your design. You are likely to identify shared roles and
define common interfaces. You may create new abstractions, define
abstract classes, and use inheritance to your advantage. You may
introduce placeholders—objects that have minimal behavior and are
intended to accrue more responsibilities in later iterations. Many
design patterns allow for specific extensions and variations. In addi-
tion to these design mechanisms, you may develop sample code for
others to emulate or write recipes that explain how to perform an
adaptation.

Martin Fowler’s Refactoring
describes many ways to
readjust your code in
preparation for a design
change. Instead of patching in
a change, you might need to
refactor code before
changing your design.

Wirfs.book Page 352 Friday, October 11, 2002 11:44 AM

Further Reading

353

FURTHER READING

The UML Profile for Framework Architectures (Addison-Wesley, 2001)
by Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe describes
a set of extensions to UML specifically targeted for developers
describing extensible designs. This slim volume is divided into two
parts. The first section describes the UML-F profile; the second is
devoted to case studies and examples showing actual designs and
recipes of extensible frameworks.

You can learn much about building flexible solutions by studying
extensible designs. Two books, Building Application Frameworks
(1999) and Implementing Application Frameworks (1999), edited by
Mohamed Fayad, Douglas Schmidt, and Ralph Johnson, are full of
experiences recounted by framework designers and architects.
There is much practical advice to be mined from these books!

There are many techniques for introducing flexibility into a design.
Most are based on inheritance, composition, and configuration. We
want to point you to one more interesting idea—called Adaptive
Object Models—introduced at the intriguing technology session at
OOPSLA 2001. The idea behind an Adaptive Object Model is very
simple: Let end users define objects, their relationships, and behav-
iors. Provide tools that let users describe objects and their seman-
tics. Then construct your software to interpret and execute these
self-describing models. Talk about the ultimate in end-user adapta-
tion! Joseph W. Yoder, Federico Balaguer, and Ralph Johnson pre-
sented the paper “Architecture and Design of Adaptive Object
Models” at the OOPSLA 2001 conference. Another paper, “The Adap-
tive Object Model Architectural Style,” coauthored by Yoder and
Johnson, describes in more detail techniques for constructing adap-
tive object modeling systems.

Wolfgang Pree, in Building
Application Frameworks,
introduces the notion of a
framelet—an architectural
unit that is small (fewer than
10 classes), does not take
over main control of an
application, and has a clearly
defined and simple interface.
A framelet can be extended
and specialized, but by intent
is small and narrowly
focused.

Wirfs.book Page 353 Friday, October 11, 2002 11:44 AM

Wirfs.book Page 354 Friday, October 11, 2002 11:44 AM

Chapter 10
On Design

ewis Thomas, noted physician and science writer,
observed, “I’m not as fond of the notion of serendipity as I

used to be. It seems to me now that as you get research
going. . . things are bound to begin happening if you’ve got
your wits about you. You create the lucky accidents.” From
time to time, object designers make startling discoveries,
too—insights that make you want to stand up and shout. New
ideas that you just know you should push on. Revelations that
lead to deep understanding about how your software should
work and what its limitations are. But amid these discoveries,
you must keep working on the problem and not get distracted.
That’s the hard part: keeping design challenges in perspective
while making progress and delivering on your promises.

L

Wirfs.book Page 355 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

356

THE NATURE OF SOFTWARE DESIGN

As a designer, you are expected to be a good problem solver. You
skillfully handle new challenges as they come up, balance conflicting
priorities, and do what’s needed to get the job done. In spite of
uncertainty, you are counted on to devise good solutions.

You can be well prepared with a toolkit full of design techniques and
practices, but design is never predictable. There are always surprises,
additional complexity, and new twists. To keep on track, it helps to fit
your design problems into one or more of these categories:

� Core design problems. The core is the core because without it,
there is no reason to build the rest. Your application won’t meet
its users’ needs or stand up to the rigors of use without a well-
designed core. Core design problems must absolutely, posi-
tively be dealt with.

� Revealing design problems. Revealing problems, when pur-
sued, lead to a fundamentally new, deeper understanding about
the nature of your software. Just because some part of a design
is difficult or tricky, however, doesn’t make it revealing.

� The rest. Although not trivial, the rest requires hard work but
far less creativity or inspiration.

Each type of problem warrants a different approach and has a differ-
ent rhythm to its solution. Core problems must be solved. This is
engineering at its best. You’ve got to give it proper attention. If you
don’t, your project will fail.

Revealing problems are squishy and hard to characterize or even
know when they are completely solved. Each time you look further
into a revealing problem it teaches you something new. Revealing
problems deserve special recognition and attention. They can’t
always be solved in tidy ways. They must be tamed.

But the rest can’t be ignored either. It may include mundane, tedious,
or mildly interesting design work. It is always present and pressing. If
you don’t budget your time, it can soak up all your spare cycles. The
rest needs your attention but not your total devotion.

This chapter presents strategies for designing responsibly in the
face of uncertainty, complex problems that have no obvious
answers, and lots of tedious details. We present ways to approach
different kinds of design problems. To work effectively, you need to
flex and adapt, react and respond, and work steadily on all aspects of
your design.

Wirfs.book Page 356 Friday, October 11, 2002 11:44 AM

Tackling Core Design Problems

357

TACKLING CORE DESIGN PROBLEMS

Designing the core parts of your system requires energy and focused
attention. It can be all too easy to get distracted by minutiae or wan-
der off on a quest to solve a difficult problem. The core of your
design must be well known and solid. It requires steady, persistent
consideration. The key to balancing core design work with other
design activities is to put everything else in perspective. The rest
will always be with you and must be done after the core is well in
hand. Revealing problems can crop up at any time. You can’t plan for
them. They just happen. Work on revealing problems progresses in
fits and spurts. Rarely can revealing problems be solved by relent-
less attention. Core design problems are most often at the front of
your work queue until you nail them and move on.

But what exactly is in the core? It depends. Designing an optimizing
compiler is very different from designing online banking software.
Core to an optimizing compiler is an internal representation of a
computer program and code optimization algorithms. Design of an
appropriate program representation goes hand in hand with the
design of efficient optimization algorithms. The appropriate choice
of structures to represent a program is critical to the algorithm
design.

The core of the online banking system includes the design of online
transactions and a common interface to backend banking services.
Sure, the user interface is important to the project and its sponsors,
but the quality of its design isn’t central to the application’s success.
It just must be there. However, design features that enable perfor-
mance to scale and the system to keep running under certain failure
conditions are critical. Without a solid design for these core parts,
the system won’t be deployable.

Core problems include those fundamental aspects of your design
(no, not every part can be fundamental) that are essential to your
design’s success. Depending on your design requirements, you might
nominate for the core these elements of your design:

� Mechanisms that increase reliability. These could include the
design of exception-handling mechanisms, recovery mecha-
nisms, and connection and synchronization with other systems.

� Key objects in the domain model that your software manipulates.

� Important control centers.

� Support for user interactions.

� Key algorithms.

Wirfs.book Page 357 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

358

How do you decide what’s in and what’s out? When there’s debate on
whether something is in the core, ask what the consequences would
be of fudging that part of the design. What would happen if you
didn’t work so hard or come up with such an all-encompassing
design? Would the project fail? Would other parts of your design be
severely impacted? Then it’s definitely core.

If you encounter disagreement about whether something is core, dig
deeper. Are there fundamentally different expectations for that part
of your design, or does someone know something important that no
one else has thought about? You may be glossing over something
important.

FRAME THE PROBLEM

Most software designs are too big to jump in and solve all at once.
You break design into bite-sized chunks and work on them piece by
piece. Depending on the nature of your software, you naturally focus
on different things. Michael Jackson, in Software Requirements &
Specifications (Addison-Wesley, 1995), identifies five general catego-
ries of problems—or problem frames—that software addresses.
Many software systems can be thought of a set of related and inter-
connected subproblems and as a consequence may comprise sev-
eral different problem frames. Each class of problem has its own
concerns and design issues:

� Control problems occur when software controls state changes of
external devices or machinery according to prescribed rules.
The most obvious questions surround whether your design
needs to determine whether its commands that supposedly
have changed some external thing have had the desired effect.
If so, you will likely design ways to probe whether things are as
you expect. And if they aren’t, well, you’ll need to consider
whether the problem is with your software or an external
device.

� Connection problems occur when software receives or trans-
mits information indirectly through a connection. Sometimes
connections break down, and information gets lost or gets gar-
bled. How reliable does your software have to be? Depending
on the answer, you may need to go to great lengths to establish
an alternative path or get the connection working again.

� Information display problems involve presenting information in
response to queries about things and events known by your

 Whether you classify
something as part of the
“core” or part of the “rest,”
you’ll still have to deal with
it—it’s a matter of emphasis.
The main point is to give
things the attention they
deserve and be clear on your
priorities.

“When you turn on a light, you
probably think of your
movement of the control
button and the illumination of
the light as a single event. In
fact, of course, something
more complex is going on.”

—Michael Jackson

Wirfs.book Page 358 Friday, October 11, 2002 11:44 AM

Frame the Problem

359

software. Typically, the quality and timeliness of information
and the precision and nature of queries are a concern. Does
your design have to accommodate imprecise questions or par-
tial answers? Are users interested in the current information? Is
history important, or timeliness of responses? If so, what do
you need to do to meet these requirements?

� Workpiece problems occur when your software serves as a tool
that allows users to create and manipulate computer-process-
able objects, or workpieces. Just as a lathe is a tool for wood-
working, software helps users create documents, compile and
write programs, compose music, perform calculations, manipu-
late visual images, and generate reports, to mention a few
tasks. Design considerations for workpiece problems involve
the nature of the workpiece and the usability of the tool.

� Transformation problems involve converting some input to one
or more output formats according to well-defined transforma-
tion rules. Transformation problems can be tricky. There may
be constraints on speed or memory utilization. Sometimes
what constitutes an acceptable loss of information is at issue.
Sometimes the reversibility of a transformation is important.

Jackson advocates that you fully understand the nature of the prob-
lems your software is trying to solve before you start design. That
would be ideal. But if you live in a world of imperfect knowledge and
incomplete specifications, you can still prepare yourself by charac-
terizing the problems your design will solve. Even if you don’t have
all the answers, you’ll know what questions to ask and which
aspects of your design are likely to deserve your extra attention.

Consider Jackson’s characterization of connection problems:

If you find that connections between your software and some other
system cannot be ignored—they are not transparent, nor do they
always work flawlessly—then your design will have to address their
quirky behavior. There are two basic strategies for dealing with con-
nection issues. You could readjust your view and consider that your
software is really interacting with “something in the middle” that is

“In many problems you’ll find that you can’t connect the [software]
machine to the relevant parts of the real world in quite the way you
would like. You would prefer a direct connection. . . instead you have
to put up with an indirect connection that introduces various kinds of
delays and distortion into the connection.”

“Problem frames amount to
coherent sets of useful
questions to ask about the
problem domain in order to
invent a problem to solve.”

— Ben Kovitz

Wirfs.book Page 359 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

360

connected to “something out there” that doesn’t always work. Jack-
son presents a classic example of a patient monitoring device as a
connection problem:

To accommodate a faulty connection means treating the analog device
as an untrusted collaborator. Instead of blindly accepting its input,
you validate information transmitted through a faulty connection.

Alternatively, if you determine that there will be interactions among
your software, the connection, and the thing it connects to, all of
which need to be considered, your design problem takes on an
added degree of complexity. You must consider how your software
should react in the face of potential time delays and conflicting
states between connected systems as well as faulty connections.

Characterizing the nature your design—or as Jackson phrases it,
identifying relevant problem frames—helps you to sort through
what’s important and identify potential core design problems. Framing

A monitoring system collects real-time readings of a patient’s tem-
perature, blood pressure, etc. through the use of analog devices.
Analog devices are sometimes unreliable. This must be considered in
the design of your monitoring software. If a patient’s temperature
reading is 132 degrees, considering the normal range of temperature
variation, this reading is invalid. Your design should detect that a
temperature sensing device isn’t functioning properly and raise an
alarm.

In the telco integration framework, there is a bidirectional connection
between the order taking application and the framework: The frame-
work receives orders from the order taking application and transmits
notifications about the state of the order back to the application.
Occasionally, communications between the order taking application
will break down. To accommodate this, queues have been imple-
mented to hold incoming requests and outgoing responses. Addi-
tionally, the interfacer component to the order taking application is
designed to retry transmissions several times before queuing them
and to notify system administrators when communications channels
aren’t working. Sometimes, as a result of delayed communications,
cancel orders are received after orders have already been completed.
Because the framework can’t undo work that has been completed, it
considers the cancel order a problem it can’t solve and notifies a per-
son charged with troubleshooting problem orders.

Wirfs.book Page 360 Friday, October 11, 2002 11:44 AM

Dealing with Revealing Design Problems

361

problems isn’t only for analysts or business folks writing specifica-
tions. As a designer, you should be asking those questions that help
you frame your design problems. Although you can look to use cases
or requirements or user stories for guidance and clarification, they
describe only what your system should do and not the nature of the
problems you are solving.

Even if you have framed the problem and think you know what
you’re in for, there are often surprises. Sometimes, you stumble onto
a meaty problem that can’t be solved through skillful design alone.

DEALING WITH REVEALING DESIGN PROBLEMS

Revealing design problems are always hard. They may be hard
because coming up with a solution is difficult—even though that
solution may eventually be straightforward. A revealing problem
may not have a simple, elegant solution. It may not be solvable in a
general fashion; each maddening detail may have to be tamed, one at
a time. It may require you to stretch your thinking and invent things
that you have never before imagined.

Sometimes when you work on a core problem, you discover it to be a
revealing one, too. Not all core problems are revealing ones. But
those that are deserve special recognition. What distinguishes
revealing problems from core problems is their degree of difficulty
and the element of surprise, discovery, and invention. To solve them
you may need to experiment. They may not be easily solved. People
may disagree on whether any solution is good enough. It may take a
while to know what the real problem is. Working on revealing prob-
lems involves periods of intense concentration, design, reflection,
and implementation, interspersed with open, honest communication
about your progress.

Solutions to revealing problems can touch on any aspect of a design.
They could impact an application’s control architecture, the key
responsibilities of core objects, the design of central services, and
complex algorithms or interfaces to external systems. They can
cause you to completely shift your worldview and discard what you
had assumed to be a fundamental truth about your design, replacing
it with something more complex. If you find yourself saying, “Nah—
that could never be!” to a design challenge, you may have uncovered
a revealing problem.

Let’s look at some revealing design problems and see what we can
learn.

Wirfs.book Page 361 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

362

A Story About Managing Shared Information

The telco integration software glued together several disparate
applications. The system was designed to streamline and, where
possible, automate the process of taking an order, provisioning prod-
ucts that were ordered, and setting up customer billing. The applica-
tions that were integrated by the framework included

� Applications that managed customer service requests and
orders

� Applications that managed the tasks involved in, and the provi-
sioning of, telecommunications equipment and services

� Applications that billed customers for service

Each application had its own worldview and and proprietary data-
bases and complex ways of interacting with users. None was
designed to be plugged in to other applications to provide a compre-
hensive automated system. Right up front, the team faced a big deci-
sion that proved to be an ongoing, revealing design challenge: How
should the framework handle information maintained by each appli-
cation? Who should be the keeper of information about customers,
their products, and orders? Should there be a master source? Not
only did each application have its own worldview, but their views
overlapped and sometimes contradicted one another. Addressing
this fundamental question revealed several deep insights.

One design option that was considered and rejected was that the
integration framework could maintain a master copy of orders, cus-
tomers, and products and be charged with keeping everything in
sync. Alternatively, the framework could take a more arm’s length
view of other systems and their information. It could be designed to
know to ask other systems about the resources they maintained and
coordinate their work.

Past experiences and war stories led the architects to conclude that
the integration framework software should not actively manage all
common information. This was too hard and fraught with data syn-
chronization problems. Instead, the framework was designed to dis-
cover information in these other systems as it processed an order.

Working through an appropriate way to manage and change
resources that are in other systems proved difficult. But deep
insights were gained only after migrating data in one billing system
to another. In a new release, the framework was chartered with
supporting converted products. Sometimes, what was converted

Wirfs.book Page 362 Friday, October 11, 2002 11:44 AM

Dealing with Revealing Design Problems

363

didn’t match any official product. Still, the integration software was
expected to gracefully handle converted products. This led to the
design of strategies for limited support of nonstandard products and
new rules for processing disconnect orders for products with ambig-
uous definitions.

The difficulty in solving how to handle converted products ham-
mered home the lesson that it isn’t always possible for the frame-
work to interpret information that is validly being used by external
applications. Still, the framework had to provide solutions to tame
the difficult problem of product information that didn’t fit standard
definitions. It wasn’t acceptable for the framework not to handle
these products. The compromise, which didn’t satisfy all the stake-
holders, was for the framework to support these products in a lim-
ited way. The framework simply didn’t have enough information to
do anything else.

A Story About Connection Problem Complexity

This next revealing problem was uncovered after the telco integra-
tion software had been in production for several months. Handling
changes to in-progress orders proved to be a revealing problem.

To support the modification of an in-progress order, the designers
developed a complex algorithm to compare a resubmitted order
against the current one and to create new tasks to undo or modify
work in progress. On further investigation, it was concluded that a
change to an existing order could have several effects: Provisioning
tasks might need to be modified; work that had already been com-
pleted might need to be undone; or additional work might need to be
scheduled. And nothing prevented users from repeatedly submitting
change requests. This was difficult, tricky work, but still not reveal-
ing. The revealing problem surfaced when the designers tried to han-
dle several exceptional conditions that could happen when a user
attempted to change an order.

It wasn’t always possible to undo work that had been completed.
And sometimes, even though the framework knew about errors, it
couldn’t report them to the order entry application because that
application wasn’t in a state to accept an error report. The frame-
work couldn’t “kick” this other system and make it receive a report.
The other system couldn’t be modified to accept error reports. It
wasn’t an option. This led to the creation of a problem order queue,
where the software logged orders with problems that could be
resolved only by extremely knowledgeable systems engineers.

Wirfs.book Page 363 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

364

Modifying orders that are being worked on by disparate systems
proved to be a very hard problem. The analogy of trying to put
toothpaste back into the toothpaste tube comes to mind. When tack-
led, it led to deep insights and the revelation that some problems
with orders can be solved only by human intervention and judg-
ment. That’s what made it revealing, as well as plain difficult.

No matter how clever you are, software has its limits. Even with
extraordinary effort you can’t always design software to put things
back the way they should be. Ask Humpty Dumpty if you don’t
believe us! Synchronizing systems can be very difficult. It isn’t possi-
ble to transparently handle every anomaly with a software solution.
Asking intelligent human beings to intervene sometimes may be not
only the best solution, but also the only solution.

A Story About a Design Problem That Never Got Easier

This is a story about the design of an optimizing compiler for Java. In
order to aggressively optimize the code for a method, a compiler
needs to model the possible control flow paths within the method.
In other words, the compiler needs to understand all possible paths
that execution may take through the method. This enables the com-
piler to do things such as eliminate code that will never be executed
and eliminate duplicate computations whose results have already
been computed earlier along a control path. Compilers typically
model control flow by grouping statements into basic blocks. A basic
block is simply a sequence of statements that is always executed
from beginning to end. You can model complex control flow, such as
loops and if statements, by building a graph whose nodes are basic
blocks and whose edges are the possible control transfers between
blocks. Because control transfers within a procedure are normally
explicitly expressed as statements (if, case, for, while, etc.) in the
programming language, normally it is fairly easy for a compiler to
build and maintain the control flow graph.

Programming language features that support exception handling sig-
nificantly complicate the modeling of control flows because excep-
tions can cause implicit transfers of control that are not explicitly
shown in the code of a method. Because of this complication, many
compilers simply do not attempt to optimize methods that throw or
handle exceptions. Because it is quite common for Java methods to
handle or throw exceptions, the designers concluded that their opti-
mization objectives would not be met if they did not optimize such
methods. So they adapted the control flow model to account for
implicit control flow transfers caused by exceptions and enhanced
optimization algorithms to deal with this model.

Wirfs.book Page 364 Friday, October 11, 2002 11:44 AM

Dealing with Revealing Design Problems

365

They succeeded, but not without a lot of work. During testing, the
team kept uncovering optimization bugs that were the result of this
design decision. As they continued to compile more programs, they
continued to find even more sticky problems related to the optimiza-
tion of exceptions. Even after the compiler had been shipping for
several years, it remained the case that the majority of newly discov-
ered optimization bugs were related to exceptions.

The designers didn’t change or relax their design goals. They stuck
to their initial decision and kept tweaking their design. When they
started, they had no idea that optimizing exception handling would
be a continuing source of bugs and new insights. In general, optimiz-
ing compilers are hard to design and debug because there are so
many subtle language features that interact with one another. You
can demonstrate only that a compiler correctly compiles the pro-
grams you have thrown at it. After it successfully compiles a suite of
programs, there are no guarantees that it will compile the next tor-
tured piece of code.

Any design handles only those problems its designers can conceive
of. As with many other kinds of software, the number of different
inputs a compiler must accept and process is infinite. Only over time
and with enough test data can complex designs be adequately
stressed and tamed. Most compilers or any other complex program
will probably never be free of bugs. For systems such as these,
designers simply cannot predict all problems beforehand nor
develop the ultimate test suite. Christopher Alexander, in Notes on
the Synthesis of Form, sums this up nicely: “The process of design,
even when it becomes self-conscious, remains a process of error-
reduction.”

Can Revealing Problems Be Wicked, Too?

In 1973, Horst Rittel and Melvin Webber coined the term wicked prob-
lems to describe questions that can’t be solved using traditional
approaches. Although Rittel and Webber were talking about prob-
lems in planning and setting public policy, their characterizations of
wicked problems strike an eerie chord with our software design
experience. Wicked problems generally have these characteristics:

� They have no definitive formulation. It’s hard to state concisely
what the problem is, and each time you do so, you gain a new
insight.

� It’s difficult to know when one is solved.

When you cannot anticipate
all situations your design
must stand up to, you should
expect to repeatedly confront
a revealing problem until
you’ve thrown enough
rigorous cases at your
design to harden it.

Wirfs.book Page 365 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

366

� Solutions aren’t true or false, but rather good or bad. For better
or worse, it may be difficult to get various stakeholders to agree
on the quality of your solution. Some may consider it good
enough, and others may not.

� There is no obvious way to verify that a solution fixes the
problem.

� Every solution has unforeseen consequences. As you fix one
problem, sometime later more problems may pop up.

� They don’t have a well-described set of potential solutions.

� Each is essentially unique. You can reuse your brain and problem-
solving skills, but you will likely craft a unique solution to each
wicked problem.

� Each can be considered a symptom of another problem. The
nest of interconnected concerns can be hard to untangle. There
is no simple cause and effect.

� The causes can be explained in numerous ways. Different peo-
ple will have different theories on what’s really causing the
problem.

� The planner can’t be wrong. This means that you, the designer,
still must invent some acceptable solution. You can’t ignore the
problem.

We never said it was easy! Solving wicked problems can involve
intensely creative design activity or skillful negotiations. These prob-
lems call on many different problem-solving skills. Revealing problems
may share one or more characteristics of wicked problems. They’re
closely related. Most revealing problems don’t have obvious solu-
tions. Sometimes they require you to redefine the problem. If you are
lucky, you may invent a nifty solution. But there may not be a tidy
solution to your revealing problem. Sometimes the solution repre-
sents a compromise. The hallmark of any revealing problem is that it
forces you to think deeply about your software design.

STRATEGIES FOR SOLVING REVEALING PROBLEMS

You don’t sit down and try to solve a revealing problem through
brute force or sheer willpower. You must look at the problem, roll it
around, and consider perspectives. Viewing the problem from differ-
ent angles gives you fresh insights. Revealing problems aren’t often
solved in predictable ways. George Polya, mathematician and author
of How to Solve It, contrasts how insects and animals and humans
approach problem solving:

Mary Poppendieck says that
“wicked projects arise when
a project is organized as if it
were tame—thus creating a
monster.” To tame wicked
projects, Poppendieck
advises that they “are best
served by an adaptive
process instead of traditional
methodologies.”

Wirfs.book Page 366 Friday, October 11, 2002 11:44 AM

Strategies for Solving Revealing Problems

367

We are great problem solvers because we don’t give up and don’t
often repeat dumb mistakes. Because rarely are we lucky enough to
hit on a solution right away, we keep trying to find a good angle. We
don’t give up, and we are clever. We’re very good at finding solutions
because we weave our past experiences into a solution by what
Polya calls “action of contact”: Our current line of thinking makes
contact with some past experience that may be relevant. Whenever
you shift your perspective, you contact a different set of potentially
relevant experiences. This means that the more experience you have
with a particular class of problems, the more adept you are at shift-
ing quickly to revealing angles and forming fruitful connections.

 Problem solving requires these fundamental skills:

� The ability to shift your perspective and vary the problem

� The ability to gauge whether an approach, if pursued, is likely
to bear fruit

� Knowing when you’ve hit a dead end

Most revealing problems require intense concentration. People get
tired when they concentrate on the same point for very long. So to
stick with it, you must redirect and look at different aspects of the
problem. If there are new points to consider, you stay interested. If
not, your interest lags. To keep working productively on a problem,
you need to take breaks from time to time or shift your point of view.

The principal means we use to vary a problem, according to Polya,
are generalization, specialization, analogy, decomposition, and
recombination. These are an amazing fit with object-oriented design
techniques! By using these techniques as a designer, you keep your
basic reasoning skills sharp. But to solve a revealing problem you’ll
need to think through a problem at many different levels. You may

“An insect tries to escape through the windowpane, tries the same
hopeless thing again and again, and does not try the next window
which is open and through which it came into the room. A mouse
may act more intelligently; caught in the trap, he tries to squeeze
through between two bars, then between the next two bars, then
between other bars; he varies his trials, he explores various possibili-
ties. A man is able, or should be able, to vary his trials still more intel-
ligently, to explore the various possibilities with more understanding,
to learn by his errors and shortcomings. ‘Try, try again’ is popular
advice. It is good advice. The insect, the mouse, and the man follow
it; but if one follows it with more success than the others it is because
he varies his problem more intelligently.”

Before crafting an object-
oriented solution, think about
the nature of the problem and
the solution in general terms.
After you’ve identified a
plausible design strategy,
you can then apply these
techniques to craft a
solution. Don’t mistake the
mechanisms used in the
solution for the general
solution.

Wirfs.book Page 367 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

368

form complex chains of reasoning, or bounce around and recombine
a number of half-baked solutions to finally come up with a three-
quarters-baked solution. It’s a lot of hard work!

Redefining the Problem

Sometimes you can solve a problem by completely shifting your
point of view. Instead of trying to solve the problem, turn the prob-
lem on its head. Imagine that everything worked as you wanted and
the problem you are trying to solve doesn’t exist. Live in that world
awhile. Describe it. Envision how the machinery of your application
might work in this ideal scene. Now, step back and figure out what
you need to do create that ideal scene.

This makes scheduling easier but makes sorting harder. Let’s con-
sider a software example:

Did replacing referencing counting techniques with sophisticated
management of multiple object spaces and efficient marking strate-
gies simplify the design of garbage collectors? No. But it did allow
dramatic improvements in the performance of most applications.
Solving a problem by redefining it doesn’t necessarily simplify your
design. It only opens up new possibilities.

Instead of trying to optimally schedule routes for transporting pack-
ages, FedEx redefined the problem. Instead of working on algorithms
to optimize “a traveling salesman problem”, it defined a whole new
way of doing business. All packages are flown to a central location,
sorted, and then loaded on the appropriate plane. Even packages
shipped within the same city are routed through this central hub.

A programming language that uses garbage collection, such as Java,
C#, or Smalltalk, will automatically recover memory from objects that
are no longer being used. Early implementations of object-oriented
environments used reference counting to manage memory. Every
time a new reference to an object was made, its reference count was
incremented. Each time a memory reference to an object was over-
ridden, its reference count was decremented. If the count went to
zero, the memory for the object was freed. Reference counting is sim-
ple, but very expensive in terms of computational overhead. To
speed up garbage collection algorithms, implementers of the lan-
guages redefined the problem—and now use a sophisticated scav-
enging algorithms.

Wirfs.book Page 368 Friday, October 11, 2002 11:44 AM

Strategies for Solving Revealing Problems

369

Synthesizing a Solution

Another approach to solving a revealing problem is to combine sev-
eral parts of some almost-OK solutions. Even though you know that
these potential solutions are flawed in one way or another, you can
examine each for its strengths and weaknesses. Then propose a solu-
tion that combines the strengths of several flawed solutions and
doesn’t have their weaknesses. When designing reliable collabora-
tions for writing a phone number, we devised a strategy that com-
bined several recovery techniques because no single strategy
proved satisfactory:

Although rather complicated, this solution does handle several
exceptional conditions. It’s better than any individual simple solu-
tion, but is it a good solution? A simpler solution is always prefera-
ble. But if simple solutions aren’t adequate, it’s appropriate to
consider a more complex solution. Sometimes there aren’t any sim-
ple solutions or easy answers.

To solve revealing problems requires concentrated periods of
thought and reflection, interspersed with time away from the prob-
lem. You need time to let things soak in. You need to let your back-
ground mental activity kick in and make connections between the
problem and your experiences.

But on any project there’s a ton of work to do. There’s the core. And
because it’s been identified as being central, it usually gets the atten-
tion it deserves. And then there are revealing problems, which have
their own rhythms—intense periods of concentration interspersed
with background mental processing. Revealing problems are always
either squarely demanding your undivided attention or lurking in the
background. When they require soak time, take a break and work on
something else. There’s plenty of other stuff that needs your atten-
tion, too.

An object would attempt to write down the phone number but broad-
cast a request for a pencil if it failed to locate one. It might then wait
for a certain amount of time. But if no one provided it with one, ulti-
mately it might ignore the request. Meanwhile, the requester might
wait awhile for confirmation and then locate another to write the
phone number after waiting a predetermined period of time.

Wirfs.book Page 369 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

370

WORKING ON THE REST

The rest is what you work on day in and day out, week after week,
when nothing else demands your attention. What items might be
included in the rest?

� Common error logging or reporting mechanisms

� Data conversion

� Exception handlers

� Basic features that are similar to ones you’ve already imple-
mented

� Unhappy path scenarios

� Optional features

� Alternative strategies for accomplishing some behavior

� Support for different ways that users accomplish basic tasks

Several items are on this list just to provoke your thinking. It’s easy
to get caught up in a debate of what’s core and what’s in the rest.
Don’t waste time debating whether common error logging and
reporting mechanisms are considered core design work or part of
the rest. If you know that something is just basic design work that
has to be there—nothing special, nothing fancy—it’s probably part
of the rest. What about exception handling? Why isn’t the 90% of
your design work that supports the unhappy scenario a core design
task? Well, depending on your project, it might be. Or it might not.
When your team agrees that some design task is critical to the suc-
cess of your design, add it to your list of core items. But not every
design task is equally critical. Not everything can have the highest
priority. Core problems should be given more attention. That doesn’t
mean the rest gets slighted. It just isn’t at the top of your list.

The way you organize your design work, and how much time you
spend working in uninterrupted stretches, can be critical to your
success. Design and programming involve thinking, problem solving,
and concentrated efforts. If you don’t give core design activities your
undivided attention, you can expend a lot of energy starting, stop-
ping, and restarting. Alistair Cockburn, in Agile Software Develop-
ment, describes why distractions can be so maddening:

Wirfs.book Page 370 Friday, October 11, 2002 11:44 AM

Designing Responsibly

371

It isn’t always the meeting or the phone call or the overheard conver-
sation that causes you to lose focus. Quitting a design session with-
out coming to a good stopping point can also do you in.

Whether you are working on some core problem or on something
slightly less important, take time to mentally wrap things up when-
ever you break away from design. Because the rest of your design
work fits into days full of meetings, programming, conversations,
and distractions, this isn’t always easy. But it helps if you conclude
(rather than halt) a design episode before switching to another task.

Above all, don’t lose sight of the big picture. The core must be solid,
the rest needs attention, and usually there are places where you’ll
need to cut corners. If you adopt development practices that help
you honestly set and revisit your priorities, you will be much more
comfortable making these design trade-offs.

DESIGNING RESPONSIBLY

“Fudging” on a software project is the equivalent of drawing pictures
that distort the size and relative importance of things. Ever see a
drawing of the United States with New York looming large in the fore-
front and the rest so small as to be indistinguishable? The tiny bits

“Software consists of tying together complex threads of thought. The
programmer spends a great deal of time lifting and holding together
a set of ideas. . . . If she gets called to a meeting . . . her thought struc-
ture falls to the ground and she must rebuild it after the meeting. It
can take 20 minutes to build this structure and an hour to make
progress. Therefore, any phone call, discussion, or meeting that dis-
tracts her for longer than a few minutes causes her to lose up to an
hour of work and an immense amount of energy.”

At the end of the day, it is tempting to leave CRC cards scattered
around a table and white boards full of scribbles and sketches. Drop
everything, the day is over! Time and time again we’ve found that
spending just a minute or two to summarize where you are and
where you might pick up your work can have a big payoff. Scribbling
a couple of notes about the “state of your design” on a whiteboard
before dashing off helps your team to reconnect with the design the
next morning. Even taking a few seconds to group or rearrange CRC
cards, instead of collecting them into a big pile, can help.

The worst thing you can do to
break your flow is to put a
rubber band around a stack
of CRC cards, throw them in
a drawer, and pick them up
after a week.

It’s hard to keep things on
track and give design your
proper attention when you are
constantly distracted. Block
off a chunk of time—at least
an hour at a stretch—to work
on any significant design task.
Unless you are really caught
up in your work, you need
short breaks to keep your
energy level high.

Wirfs.book Page 371 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

372

on the drawing are analogous to the parts of your design you are
fudging on. You make ’em really small and insignificant in order to
leave room for the “important” stuff. Different developers—and dif-
ferent development methods—fudge on different things.

Michael Jackson, in Software Requirements and Specifications, talks
about the consequences of fudging. If you fudge on the wrong things,
your software development effort is doomed. In Jackson’s opinion,
most object-oriented design methods pay attention to developing
abstractions and inventing class hierarchies and understanding
object interactions, but they fudge on correctness. He further argues
that dividing a system into objects and classes makes it easier to
fudge on understanding larger patterns of behavior. In contrast, for-
mal methods are very careful about correctness and mathematical
precision. But they fudge on how software should relate to its users
and environment.

If you view software development (and object design) as only a nar-
row set of activities—focused on producing an object-oriented appli-
cation—Jackson’s assessment may be accurate. We think Jackson’s
view of object design and development practices is too limited. As
designers, we naturally think in terms of software objects and their
roles and interactions. You can zoom in and study individual collabo-
rators, or you can shift your perspective to look at paths of collabo-
ration among object neighborhoods and components. But although
objects take center stage in our work, designing responsibly means
fitting our work into a larger context of people, processes, and orga-
nizations. Design is a collaborative activity that at its heart involves
melding the strengths of a group of individuals in order to produce
something of value: a software design that meets customer needs. To
keep on track, your team must do more than design responsibly. It
must adopt development practices that support your project’s val-
ues. People, development practices, and attention to design are
equally important to a project’s success.

Any development method or team emphasizes certain practices and,
as a consequence, will slight others. Is fudging a bad thing? It is, but
only if you ignore something that shouldn’t be swept aside. The
practices you adopt should support those things you value. If you
need to be more formal, that is something you shouldn’t fudge on.
Don’t use object technology and informal techniques as an excuse
for fudging. You can add more precision and rigor to your design. But
each project must adapt a set of development practices that sup-
ports its specific goals. There is much more to a successful project
than a set of good design practices and techniques. There are

One of the parts of UML that
we’ve fudged on mentioning
in this book is the Object
Constraint Language, or OCL.
It is a modeling language that
is part of UML. Using OCL,
you can formally specify
constraints in your model.
If you need to precisely
specify preconditions,
postconditions, guards,
relations, and operations in
your design model, OCL is one
formal language you can use.

“Basketball is a team sport
filled with individual talent.
Software development is
similar. Collaboration—joint
production of work products,
collaborative decision
making, and knowledge
sharing—builds high-
performance teams out of
groups of individuals.”

—Jim Highsmith

Wirfs.book Page 372 Friday, October 11, 2002 11:44 AM

Designing Responsibly

373

certainly more good design techniques than those we’ve mentioned
in this book.

Designers of highly interactive systems will need additional prac-
tices that help them to identify and design effective user-system
interactions. Embedded software designers often spend a lot of time
on reliability and make trade-offs between memory utilization and
execution speed. They may need to develop complex models that
represent the state of their system, its hardware, and its software.
Yet these designers can still reason about their software in terms of
objects having roles and responsibilities. Although every project’s
concerns are slightly different from those of other projects, its pri-
mary tool—the power of abstraction used to create a model of soft-
ware objects—remains constant.

An intriguing trend in software development is toward “agile” devel-
opment practices. The agile movement embraces the notion that
teams and organizations should flex and adapt to changing condi-
tions. According to Jim Highsmith, those who pursue agile develop-
ment practices “seek to restore credibility to the concept of
methodology. We want to restore a balance. We accept modeling, but
not in order to file some diagram in a dusty corporate repository. We
accept documentation, but not hundreds of pages of never-main-
tained and rarely used tomes. We plan, but recognize the limits of
planning in a turbulent environment.”

Agility advocates want to be nimble. Development practices that
worked well last week may need tuning or changing tomorrow. Fun-
damental to agile practices are the following beliefs:

� Organizations exhibit both chaos and order and cannot be man-
aged by predictive planning and execution practices.

� Collaborative values and principles are vital to a project’s
success.

� Barely sufficient methodology lets a development team concen-
trate on those activities that create value.

Responsibility-Driven Design offers techniques that fit with and com-
plement agile practices. Our emphasis is on software responsibilities.
Following this approach, you start with rough ideas and refine them.
You add as much precision as you need in your design work. Initially,
you identify candidate objects, characterize them, assign them
responsibilities, and develop an understanding of your application’s
control style. You might identify and apply design patterns or work
through issues of trust among collaborators. Or you might develop
exception-handling mechanisms. If you need a flexible design, you

Agile methods do not equate
to good, and non-agile (or
rigid) methods to bad. There
are many places where agile,
adaptable practices are vital.
But there are situations when
software should be developed
in a rigorous fashion.
Software that controls life-
critical systems demands
more formal methods and
practices.

Wirfs.book Page 373 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

374

would pinpoint hot spots and then strategize how best to support
planned variations in your software’s behavior. Along the way you
might develop and document collaboration stories to highlight key
points in your design. Depending on your development practices,
you could either keep these as part of your permanent design record
or discard them after you’ve effectively communicated to others.

Responsibility-Driven Design offers tools and techniques, along with
a galvanizing way of viewing your design. Thinking and reasoning
about software in terms of objects, their roles, and their collective
responsibilities provide a powerful perspective—one that doesn’t
fudge on a model of software as an organization of responsible, col-
laborating objects.

FURTHER READING

How to Solve It by George Polya (Princeton University Press, 1971)
presents many strategies for developing solutions to problems.
Polya, a mathematician, freely uses mathematical examples. If you
are not mathematically inclined, you can get past those parts quite
nicely by not puzzling over them. Instead, concentrate on Polya’s
logical discussions and advice. The book contains summaries of var-
ious problem-solving strategies and questions to ask that are funda-
mental to any kind of problem solving.

Agile development practices are garnering a lot of attention. If you
want to read a thoughtful discussion of the common principles
behind agile development and survey six different agile methods,
pick up Jim Highsmith’s Agile Software Development Ecosystems
(Addison-Wesley, 2002).

Wirfs.book Page 374 Friday, October 11, 2002 11:44 AM

375

Bibliography

Adams, Douglas. Mostly Harmless (Hitchhiker’s Guide Series #5). Ran-
dom House, 1993.

Albers, Josef. “One Plus One Equals Three or More: Factual Facts and
Actual Facts.” In Albers, ed., Search Versus Re-Search. Hartford, 1969.

Alexander, Christopher. Notes on the Synthesis of Form. Harvard Uni-
versity Press, 1970.

Amyot, Daniel, “Frequently Asked Questions, with Answers,” http://
www.usecasemaps.org/, March 23, 1999.

Auer, Ken, and Roy Miller. Extreme Programming Applied: Playing to
Win. Addison-Wesley, 2002.

Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley, 1998.

Beck, Kent, and Ward Cunningham. “A Laboratory for Teaching
Object-Oriented Thinking,” OOPSLA ’89 Conference Proceedings, pp.
1–6.

Bellin, David, and Susan Suchman Simone. The CRC Card Book. Addi-
son-Wesley, 1997.

Bennett, Doug. Designing Hard Software. Prentice Hall, 1997.

Wirfs.book Page 375 Friday, October 11, 2002 11:44 AM

Bibliography

376

Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, 1999.

Budd, Timothy. An Introduction to Object-Oriented Programming. 3rd ed.
Addison-Wesley, 2002.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Micahel Stal. Pattern-Oriented Software Architecture: A System of
Patterns. John Wiley & Sons Ltd., 1996.

Clay, Jean, “Albers: Josef’s Coats of Many Colours,” Realities, August
1968, p. 68.

Cockburn, Alistair. Agile Software Development. Addison-Wesley,
2002.

Cockburn, Alistair. Writing Effective Use Cases. Addison-Wesley, 2001.

Constantine, Larry, and Lucy Lockwood. Software for Use: A Practical
Guide to the Models and Methods of Usage Centered Design. ACM
Press, 1999.

Coplien, James O., and Douglas C. Schmidt, eds. Pattern Languages of
Program Design. Addison-Wesley, 1995

Davis, Alan. 201 Principles of Software Development. McGraw-Hill,
1995.

Douglass, Bruce Powel. Real-Time UML: Developing Efficient Objects
for Embedded Systems. Addison-Wesley, 1998.

Ecklund, Earl, Lois Delcambre, and Michael Freiling, “Change Cases:
Use Cases That Identify Future Requirements,” OOPSLA ’96 Confer-
ence Proceedings.

Edwards, Betty. Drawing on the Artist Within: An Inspirational and
Practical Guide to Increasing Your Creative Powers. Fireside, 1987.

Fayad, Mohamed E., Douglas Schmidt, and Ralph Johnson, eds. Build-
ing Application Frameworks. John Wiley & Sons, 1999.

Fayad, Mohamed E., Douglas Schmidt, and Ralph Johnson, eds.
Implementing Application Frameworks. John Wiley & Sons, 1999.

Fontoura, Marcus, Wolfgang Pree, and Bernhard Rumpe. The UML
Profile for Framework Architectures. Addison-Wesley, 2002.

Fowler, Martin. Analysis Patterns: Reusable Object Models. Addison-
Wesley, 1997.

Fowler, Martin. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

Wirfs.book Page 376 Friday, October 11, 2002 11:44 AM

Bibliography

377

Froehlich, Gary, H. James Noover, Ling Liu, and Paul Sorenson.
“Reusing Hooks.” In Mohamed E. Fayad et al., eds., Building Applica-
tion Frameworks. John Wiley & Sons, 1999.

Galton, Francis. Inquiries into Human Faculty and Its Development.
London: Dent, 1907.

Gamma, Erich, Richard Helm, Ralph Johnson, and John M. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

Goodenough, John. In Alexander Romanovsky et al., eds. Advances in
Exception Handling Techniques. Springer-Verlag, 2001.

Harel, David, “From Play-In Scenarios to Code: An Achievable
Dream,” Technical Report MCS00-06, The Weizmann Institute of Sci-
ence, February 2000.

Harrison, Neil et al., eds. Pattern Languages of Program Design 4.
Addison-Wesley, 2000.

Highsmith, Jim. Agile Software Development Ecosystems. Addison-
Wesley, 2002.

Hofstadter, Douglas. Le Ton Beau De Marot: In Praise of the Music of
Language. Basic Books, 1998.

Howell, Charles, and Gary Veccellio. “Experiences with Error Han-
dling in Critical Systems.” In Alexander Romanovsky et al., eds.,
Advances in Exception Handling Techniques. Springer-Verlag, 2001.

Ingalls, Daniel. “A Simple Technique for Handling Multiple Polymor-
phism,” OOPSLA ’86 Conference Proceedings, pp. 347–349.

Israels, Chuck, quoted in Paul F. Berliner, Thinking in Jazz: The Infi-
nite Art of Improvisation. University of Chicago Press, 1994.

Jackson, Michael. Software Requirements & Specifications: A Lexicon
of Practice, Principles and Prejudices. Addison-Wesley, 1995.

Jackson, Michael. Problem Frames: Analyzing and Structuring Software
Development Problems. Addison-Wesley, 2001.

Jacobson, Ivar et al. Object-Oriented Software Engineering: A Use Case
Driven Approach. Addison-Wesley, 1992.

Jones, Steven R. “A Framework Recipe.” In Mohamed E. Fayad et al.,
eds., Building Application Frameworks. John Wiley & Sons, 1999.

Wirfs.book Page 377 Friday, October 11, 2002 11:44 AM

Bibliography

378

Kay, Alan, quoted in Cade Metz, “The Perfect Architecture.” PC
Magazine, September 4, 2001, http://www.pcmag.com/print_article/
0,3048,a=10175,00.asp.

Kerievsky, Joshua, “Stop Over-Engineering!” Software Development,
Vol. 10, No. 4 (April 2002).

Klee, Paul. Altes Fraulein, 1931. Paris: Spadem, 1976.

Kovitz, Benjamin L. Practical Software Requirements: A Manual of Con-
tent and Style. Manning Publications, 1998.

Kruchten, Philippe. The Rational Unified Process: An Introduction, Sec-
ond Edition. Addison-Wesley, 2000.

Larman, Craig. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process. 2d ed. Prentice-
Hall, 2001.

Lea, Douglas. Concurrent Programming in Java™, Second Edition:
Design Principles and Patterns. Addison-Wesley, 2000.

Malveau, Rapahel, and Thomas Mowbray. Software Architect Boot-
camp. Prentice Hall, 2001.

Martin, Robert C. et al., eds. Pattern Languages of Program Design 3.
Addison-Wesley, 1998.

Metsker, Steven. Design Patterns Java™ Workbook. Addison-Wesley,
2002.

Meyer, Bertrand. Object-Oriented Software Construction. 2d ed. Prentice-
Hall, 2000.

Minsky, Marvin. The Society of Mind. Simon and Schuster, 1988.

Norman, Donald. The Design of Everyday Things. Basic Books, 2002.

Page-Jones, Meilir. Fundamentals of Object-Oriented Design in UML.
Addison-Wesley, 2000.

Peter, Laurence J., and Raymond Hull. The Peter Principle. William
Morrow, 1969.

Petroski, Henry. To Engineer Is Human. Vintage Books, 1992.

Pirsig, Robert. Zen and the Art of Motorcycle Maintenance: An Inquiry
into Values. William Morrow, 1975.

Polya, George. How to Solve It. Princeton University Press, 1971.

Poppendieck, Mary, “Wicked Problems,” Software Development, Vol.
10, No. 5 (May 2002).

Wirfs.book Page 378 Friday, October 11, 2002 11:44 AM

Bibliography

379

Pree, Wolfgang. Design Patterns for Object-Oriented Software Develop-
ment. Addison-Wesley, 1995.

Pree, Wolfgrang. “Framelets—Small Is Beautiful.” In Mohamed E.
Fayad et al., eds., Building Application Frameworks. John Wiley &
Sons, 1999.

Pye, David. The Nature and Aesthetics of Design. Van Nostrand Rein-
hold Company, 1978.

Reenskaug, Trygve, Per Wold, and Odd Arild Lehne. Working With
Objects: The OOram Software Engineering Method. Manning Publica-
tions, 1996.

Rittel, Horst, and Melvin Webber. “Dilemmas in a General Theory of
Planning.” In Policy Sciences, Vol. 4. Elsevier Scientific Publishing,
1973.

Romanovsky, Alexander et al., eds. Advances in Exception Handling
Techniques. Springer, 2001.

Rumbaugh, James. OMT Insights. SIGS Books, 1996.

Strunk, T., and E.B. White. The Elements of Style. Macmillan Publish-
ing Co., 1972.

Tufte, Edward R. The Visual Display of Quantitative Information.
Graphics Press, 1983.

Vlissides, John M. et al., eds. Pattern Languages of Program Design 2.
Addison-Wesley, 1996.

Vygotsky, Lev S. Thought and Language. Rev. ed. MIT Press, 1986.

Wilkinson, Nancy. Using CRC Cards: An Informal Approach to Object-
Oriented Development. Cambridge University Press, 1995.

Wirfs-Brock, Rebecca, and Brian Wilkerson, “Object-Oriented Design:
A Responsibility-Driven Approach,” OOPSLA ’89 Conference Pro-
ceedings, pp. 71–75.

Wirfs-Brock, Rebecca, “Adding to Your Conceptual Toolkit: What’s
Important About Responsibility-Driven Design,” in The Report on
Object Analysis and Design, Vol. 1, No. 2 (1994).

Wirfs-Brock, Rebecca, “Designing Scenarios: Making the Case for a
Use Case Framework,” The Smalltalk Report, Vol. 4, No. 3 (1994).

Wirfs-Brock, Rebecca, “The Art of Meaningful Conversations,” The
Smalltalk Report, Vol. 4, No. 5 (1995).

Wirfs.book Page 379 Friday, October 11, 2002 11:44 AM

Bibliography

380

Wirfs-Brock, Rebecca, Brian Wilkerson, and Lauren Wiener. Designing
Object-Oriented Software. Prentice Hall PTR, 1990.

Wirfs-Brock, Rebecca. “Characterizing Your Objects,” The Smalltalk
Report, Vol. 2, No. 5 (1993).

Wirfs-Brock, Rebecca. “Designing Objects and Their Interactions: A
Brief Look at Responsibility-Driven Design.” In John Carroll, ed.,
Scenario-Based Design: Envisioning the Work and Technology in Sys-
tem Development. John Wiley & Sons, 1995.

Wirfs.book Page 380 Friday, October 11, 2002 11:44 AM

381

Index

A
Abstract classes, 17, 80
Actors (UML), 51
Adapter design pattern, 340, 341
Adaptive Object Model, 353
Aftereffect guarantees, object contracts, 7–8
Applications

application-specific objects, 10–12
Application objects, Page-Jones domain divi-

sions, 135
architecture (See Architecture of applications)
definition, 3
policies, design description, 57

Architectural objects, Page-Jones domain divi-
sions, 135

Architecture of applications
basics, 27–28
object collaborations, building models, 192
object collaborations, influences on, 172–173

Architecture of applications, control styles. See
also Architecture of applications, styles; Con-
trollers, object role stereotype

centralized, 30, 197, 198–200
centralized, advantages/disadvantages, 198,

201–203

control centers, 196, 205
control centers, designing for similar systems,

230–236
delegated, 31–32, 33, 197, 200–201
delegated, advantages/disadvantages, 198,

201–203
dispersed, 30–31, 197
dispersed, advantages/disadvantages, 198, 203,

204–205
Guesser object/dictionaries neighborhood,

225–229
MessageBuilder object event, 205
MessageBuilder object event, basics, 206–208
MessageBuilder object event, centralizing con-

trol, 208–220
MessageBuilder object event, decision making,

moving responsibilities, 224–225
MessageBuilder object event, decision making,

refactoring into state methods, 220–221
MessageBuilder object event, final design,

229–230
object collaborations, 155
overview, 196

Architecture of applications, styles. See also Archi-
tecture of applications, control styles

blackboard, 28

Wirfs.book Page 381 Friday, October 11, 2002 11:44 AM

Index

382

Architecture of applications, (continued)
layered, 28, 29, 32–34
layered, locating objects, 34–36
pipes-and-filter, 28, 30

B
Blackboard architectural style, 28
Builder design pattern, object collaborations, 171
Business objects, Page-Jones domain divisions,

135
Business rules, design description, 57

C
Candidate objects

characterizing in larger context, 98–99
clustering/connecting, 99–101
collaborators, 80
conceptual objects, 58–60
defending, 104–105
descriptions, 93–98
discarding, 103–104
exploratory design stage, 60–61
naming, 88–93
responsibilities, 80
reviewing, 105–106
role stereotypes, 93–98
roles, 79–80, 101–103
search strategies, basics, 84–85
search strategies, themes, 85–87
steps in finding/assessing, 78–79
transitioning to classes and interfaces, 80
writing stories, 80–83
writing stories, collaborations, 152–153, 154

Candidates, Responsibilities, Collaborators. See
CRC cards

Case statements, 20
Classes

abstract, 17, 80
components, 18
concrete, 80
finding candidate objects, 80
inheritance, 16–17
instances, 13–16
libraries of classes in frameworks, 25

superclasses and subclasses, 16–17
Collaboration of objects. See Object collabora-

tions
Collaborators, finding candidate objects, 80. See

also Object collaborations
Command pattern, 64–66
Components, 18
Composite design pattern, object collaborations,

171
Composition, object models, 16
Conceptual objects, 58–60

judging merit, 60–61
running collaboration simulations, 182

Concrete classes, 80
Concrete method, 330
Conditions-of-use guarantees, object contracts,

7–8
collaborations, 156

Consequences, pattern elements
definition, 20
Double Dispatch pattern, 24

Consistency in design, 73–74
Context, pattern elements

definition, 20
Double Dispatch pattern, 24

Contracts, object collaborations, 156, 307
basics, 7–8
contractual relations, 308
definition, 3
obligations and benefits, 309–310
preconditions and postconditions, 308–309

Control styles, application architecture. See also
Architecture of applications, styles; Control-
lers, object role stereotype

centralized, 30, 197, 198–200
centralized, advantages/disadvantages, 198,

201–203
control centers, 196, 205
control centers, designing for similar systems,

230–236
delegated, 31–32, 33, 197, 200–201
delegated, advantages/disadvantages, 198,

201–203
dispersed, 30–31, 197
dispersed, advantages/disadvantages, 198, 203,

204–205
Guesser object/dictionaries neighborhood,

225–229

Wirfs.book Page 382 Friday, October 11, 2002 11:44 AM

Index

383

MessageBuilder object event, 205
MessageBuilder object event, basics, 206–208
MessageBuilder object event, centralizing con-

trol, 208–220
MessageBuilder object event, decision making,

moving responsibilities, 224–225
MessageBuilder object event, decision making,

refactoring into state methods, 220–221
MessageBuilder object event, final design,

229–230
object collaborations, 155
overview, 196

Controllers, object role stereotype, 4. See also
Control styles, application architecture

candidate descriptions, 93–94
collaborations, simulating, 179
in layered style applications, 34–35
object collaborations, 163
object collaborations, versus coordinators, 164

Conversations, design description, 54–55, 56
Coordinators, object role stereotype, 4

candidate descriptions, 93–94
in layered style applications, 34–35
versus mediators, 229
object collaborations, 163, 164

CRC cards
candidate objects, collaborations, recording,

151–152
candidate objects, connecting/clustering cards,

99
candidate objects, defining, 93–94
candidate objects, filling out, 100
candidate objects, finding patterns, 100–101
candidate objects, information required, 61–62,

63, 67
object collaborations, running simulations, 182
origin, 36
recording object responsibilities, 122–123

D
Descriptions (design)

analysis, 49–50
application policies, 57
basics, 36
business rules, 57
design notes, 57

exceptions, 56–57
object responsibilities, 131–132
Responsibility-Driven Design, 44–47
UML (Unified Modeling Language), 241
usage, 50–51
usage, conversations, 54–55, 56
usage, scenarios, 53–54, 56
usage, use cases, 51–53, 56

Design patterns
Adapter, 340, 341
basics, 18–19
benefits to developers, 20, 25
Command pattern, 64–66
delegation technique, 341–342
Double Dispatch pattern, 20–25, 175, 176, 177
increasing flexibility, 340–342
Mediator, 339
object collaborations, 170–171
object collaborations, building models, 192
State, 341
Strategy, 337–338
Template Method, 330–331

Design process. See also Descriptions (design)
agile development practices, 373
analysis, 45–47
basics, 40–42
collaboration objects, responsibilities and con-

trol styles, 70–71
conceptual objects, 58–60
conceptual objects, judging merit, 60–61
connection problems, 358, 363–364
consistency, 73–74
control problems, 358, 362–363, 364–365
core problems, 356, 357–358
CRC cards, 61–62, 63, 67
design decisions, guidelines, 67–68
design decisions, testing designs with details,

68, 70
“fudging”, 371–374
general problems, 370–371
problem frames, 358–361
problems, 356
responsible design, 371–374
revealing problems, 356, 361
revealing problems, and wicked problems,

365–366
revealing problems, redefining before solving,

368

Wirfs.book Page 383 Friday, October 11, 2002 11:44 AM

Index

384

Design process, (continued)
revealing problems, solving, 366–368
revealing problems, synthesizing before solving,

369
transformation problems, 359
workpiece problems, 359

Design reviews for reliable collaborations, 311–312
Dialogs. See Conversations
Domain objects

basics, 8–10
object collaborations, building models, 192
object responsibility restrictions, 135–136
Page-Jones domain divisions, 135

Double Dispatch design pattern, 20–25
object collaborations, 175, 176, 177

E
Errors/exceptions

basics, 288–294
definition, 287
design, limiting scope, 300–302
design, listing possibilities, 299–300
design description, 56–57
handling, 294–296
handling, documenting designs, 303–307
handling, recording policies, 302–303
of objects versus use cases, 288
responsibilities, 296–299

Events (objects)
collaborations, 169–170
collaborations, building models, 192
collaborations, running simulations, 180–182
sources of object responsibilities, 123–124

Exceptions. See Errors/exceptions
External interfacers, object role stereotype

candidate descriptions, 93
collaboration identification, 165–166

F
Facade design pattern, object collaborations, 171,

173, 174, 175
Factory method, 330
Flexibility, 71–72
Flexibility in design, 71–72

documentation, audience considerations,
344–345, 347, 348

documentation, descriptions of variations, 345,
347–350

documentation, UML-F (Unified Modeling Lan-
guage, frameworks), 342–344, 345, 346

documentation, UML (Unified Modeling Lan-
guage), 345, 347

documentation, 342–344, 345
variations, describing for documentation, 345,

347–350
variations, working into existing software,

350–352
Flexible design

advantages/disadvantages, 319–320
decisions, objects needing flexibility, 320–324
degrees of flexibility, 317–319
overview, 316–317
patterns, Adapter, 340, 341
patterns, delegation technique, 341–342
patterns, Mediator, 339
patterns, State, 341
patterns, Strategy, 337–338
patterns, Template Method, 330–331
patterns, ways to increase flexibility, 340–342
Responsibility-Driven Design, 71–72
variations, creating knobs for developers to

turn, 337–338
variations, hot spots, recording on cards,

324–327
variations, hot spots, solving, 327–328
variations, inserting design placeholders,

335–337
variations, placing variable information into

information holders, 334–335
variations, strategies for realizing variations,

329–330
variations, supporting with template and hook

methods, 330–333
variations, times needed, 333–334

Flyweight design pattern, object collaborations,
171

Forces, pattern elements
definition, 19
Double Dispatch pattern, 24

Foundation objects, Page-Jones domain divisions,
135

Framelets, 353

Wirfs.book Page 384 Friday, October 11, 2002 11:44 AM

Index

385

Frameworks
advantages/disadvantages to developers, 26–27
basics, 25–26
control styles, 201
UML-F (Unified Modeling Language, frame-

works), 342–344, 345, 346
Fundamental objects, Page-Jones domain divi-

sions, 135

G–H
Glossaries, 58

Hook method, 330
Hot spots, variations in design

cards, 71, 72
cards, recording variations, 324–327
solving, 327–328

I–K
Information holders, object role stereotype, 4

candidate descriptions, 93
in layered style applications, 34–35
object collaborations, 159–160
variable information in flexible designs, 334–335

Inheritance, classes, superclasses, and subclasses,
16–17

Instances of classes, 13–16
inheritance, 16–17

Integrative and incremental processes, 42–43
Interfacers, object role stereotype, 4

candidate descriptions, 93
in layered style applications, 34–35
object collaborations, 164–166

Interfaces
basics, 12
finding candidate objects, 80

Internal interfacers, object role stereotype
candidate descriptions, 93
collaboration identification, 165

L–M
Layered architectural style, locating objects, 34–36

Libraries of classes in frameworks, 25

Mediator design pattern, 339
object collaborations, 171

Model-View-Controller roles, assigning responsibil-
ities of objects, 129–130, 131

Multiple stakeholder perspectives, 49, 50, 71

N
Names, pattern elements

definition, 19
Double Dispatch pattern, 23

Naming objects, 88–93
Narratives. See Stories
Neighborhood of objects, 17
Neighborhoods of objects

collaborations, 151

O
Object collaborations

architecture’s influences, 172–173
basics, 150
control styles, 70–71, 155
definition, 3
degree of trust, 155–157
design, based on use cases or events, 169–170
design, patterns, 170–171
design stories, 152–153, 154
feasibility of collaborations, 187–188
guidelines for design, 183–184
guidelines for design, exceptional conditions,

190–191
guidelines for design, Law of Demeter case

study, 184–187
guidelines for making connections, 188–190
identification strategies, 158–159
neighborhoods, 17
preparations, 150–151
raw materials for model building, 192
recording candidates on CRD cards, 151–152
roles-responsibilities-collaborations model,

5–7
subsystems, 17
troubleshooting problems, 173–176

Wirfs.book Page 385 Friday, October 11, 2002 11:44 AM

Index

386

Object collaborations, reliability
contracts, 307
contracts, contractual relations, 308
contracts, obligations and benefits, 309–310
contracts, preconditions and postconditions,

308–309
design reviews, 311–312
errors/exceptions, basics, 288–294
errors/exceptions, definition, 287
errors/exceptions, design, limiting scope,

300–302
errors/exceptions, design, listing possibilities,

299–300
errors/exceptions, handling, 294–296
errors/exceptions, handling, documenting

designs, 303–307
errors/exceptions, handling, recording policies,

302–303
errors/exceptions, of objects versus use cases,

288
errors/exceptions, responsibilities, 296–299
failures, consequences, 278–279
information from use cases, 286
overview, 285–286
system reliability, 280
trust regions, 280
trust regions, decisions on placement of respon-

sibilities, 284–285
trusted collaborations, 280–281
trusted collaborations, versus untrusted,

281–284
Object collaborations, responsibilities

connecting objects, 166–167
connecting responsibilities, 151–152
control styles, 70–71
factor in frequency of objects, 153–155
subresponsibilities, 168–169

Object collaborations, role stereotypes
controllers, 163
controllers versus coordinators, 164
coordinators, 163, 164
information holders, 159–160
interfacers, 164–166
service providers, 162
structurers, 160–162

Object collaborations, simulations
basics, 176–177
goal setting, 178

planning, 177–180
running, 180–182

Object collaborations, stories
basics, 240
description guidelines, 264–270
development strategies, 241
final stories, 273–274
limitations of UML diagrams, 258–262
listing items to cover, 243
organization basics, 270–273
preserving stories, 274
scope, depth, and tone, 242–243
selecting forms best-suited for stories, 263–264
views, bird’s eye, 244–245
views, collaborators only, 245–250
views, focused interactions among collabora-

tors, 253–254
views, implementations, 254
views, in-depth, 250–253
views, sequences of interactions among collabo-

rators, 250
Object models

composition relationship, 16
inheritance relationship, 16–17

Object role stereotypes
candidate descriptions, 93–94
controllers, 4, 34–35
coordinators, 4, 34–35
information holders, 4, 34–35
interfacers, 4, 34–35
service providers, 4, 34–35
sources of object responsibilities, 121
structurers, 4, 34–35

Object roles, 3–4
candidate objects, 79–80, 101–103
collaborations, simulating, 178
implementing responsibilities, 141–143
roles-responsibilities-collaborations model, 5–7

Objects
application-specific, 10–12
candidates (See Candidate objects)
class components, 18
classes, instances, 13–16
contracts (See Contracts, object collaborations)
controllers (See Architecture of applications,

control styles)
definition, 3
designer perspective, 11–12

Wirfs.book Page 386 Friday, October 11, 2002 11:44 AM

Index

387

domains, 8–10
events (See Events (objects))
interfaces, 12
naming, 88–93
patterns (See Design patterns)
responsibilities (See Responsibilities of objects)
software versus physical machinery, 2–3
user perspective, 11–12

Observer design pattern, object collaborations,
171

P–Q
Packages (UML), 244–245
Page-Jones domain divisions, 135
Patterns (design)

Adapter, 340, 341
basics, 18–19
benefits to developers, 20, 25
Command pattern, 64–66
delegation technique, 341–342
Double Dispatch pattern, 20–25, 175, 176, 177
increasing flexibility, 340–342
Mediator, 339
object collaborations, 170–171
object collaborations, building models, 192
State, 341
Strategy, 337–338
Template Method, 330–331

Pipes-and-filters architectural style, 28, 30
Predictability in design, 73–74
Problems

design process, 356
design process, connections, 358, 363–364
design process, controls, 358, 362–363, 364–365
design process, core problems, 356, 357–358
design process, general problems, 370–371
design process, problem frames, 358–361
design process, revealing problems, 356, 361
design process, revealing problems, and wicked

problems, 365–366
design process, revealing problems, redefining

before solving, 368
design process, revealing problems, solving,

366–368
design process, revealing problems, synthesiz-

ing before solving, 369

design process, transformations, 359
design process, workpieces, 359
pattern elements, definition, 19
pattern elements, Double Dispatch pattern, 23

Profiles, Unified Modeling Language, 342
Project definition, 44
Project planning, 44

R
Reliability in design, 73
Responsibilities of objects

collaborations, connecting, 151–152, 166–167
collaborations, factor in frequency, 153–155
collaborations, subresponsibilities, 168–169
definition, 3
finding candidate objects, 80
overview, 110–111
recording on CRC cards, 122–123
roles-responsibilities-collaborations model, 5–7
testing for well-formed objects, 145–146

Responsibilities of objects, assignment strategies
basics, 125–126
coherent statements, 135
distributing system intelligence, 133–134
eliminating nonessential or overlapping respon-

sibilities, 136–138
general statements, 128–129
initial assignments, 128
judging ability of object to divide or share work,

132
keeping behaviors with related information, 133
limiting scope, 133
limiting sharing of information, 134–135
Model-View-Controller roles, 129–130, 131
POSA, 129–131
recording on CRC cards, 126–128
restricting to single domain, 135–136
troubleshooting problems, 138–140
varying description length, 129–131
word choices, 131–132

Responsibilities of objects, implementations,
140–141

designing methods supporting responsibilities,
144

implementation-specific responsibilities,
124–125

Wirfs.book Page 387 Friday, October 11, 2002 11:44 AM

Index

388

Responsibilities of objects, sources
basics, 111–112
design stories, 117–119
implementation-specific responsibilities,

124–125
important object events, 123–124
object role stereotypes, 121
private responsibilities supporting public ones,

121–123
relationships between candidates, 123
system behaviors, 112–115
system behaviors, filling needs between system

behaviors and use cases, 116–117
themes, 117–119
theoretical chains of reasoning, 119–120
use cases, 112–115

Responsibility-Driven Design
analysis, 45–47
basics, 40–42
collaboration objects, responsibilities and con-

trol styles, 70–71
conceptual objects, 58–60
conceptual objects, judging merit, 60–61
consistency, 73–74
CRC cards, 61–62, 63, 67
descriptions, 44–47
descriptions, analysis, 49–50
descriptions, application policies, 57
descriptions, business rules, 57
descriptions, design notes, 57
descriptions, exceptions, 56–57
descriptions, usage, 50–51
descriptions, usage, conversations, 54–55, 56
descriptions, usage, scenarios, 53–54, 56
descriptions, usage, stories, 52–53
descriptions, usage, stories for collaborations,

152–153, 154
descriptions, usage, use cases, 51–53, 56
design decisions, guidelines, 67–68
design decisions, testing designs with details,

68, 70
design patterns, 62, 64–67
flexibility, 71–72
glossaries, 58
interactive and incremental processes, 42–43
multiple stakeholder perspectives, 49, 50, 71
predictability, 73–74

project definition, 44
project planning, 44
reliability, 73
stages, exploratory, 47, 60–61
stages, refinement, 48, 70–71

Roles of objects, 3–4
candidate objects, 79–80, 101–103
collaborations, simulating, 178
definition, 3
finding candidate objects, 79–80
implementing responsibilities, 141–143
roles-responsibilities-collaborations model, 5–7

Roles of objects, stereotypes, 4–5
candidate descriptions, 93–94
in layered style applications, 34–35
sources of object responsibilities, 121

Roles-responsibilities-collaborations model, 5–7

S
Scenarios

design description, 53–54, 56
sources of object responsibilities, 112–115

Search strategies for candidate objects
basics, 84–85
steps in finding/assessing, 78–79
themes, 85–87

Semantic objects, Page-Jones domain divisions,
135

Service providers, object role stereotype, 4
candidate descriptions, 93–94
in layered style applications, 34–35
naming, 89
object collaborations, 162

Solutions, pattern elements
definition, 20
Double Dispatch pattern, 24

Sources of object responsibilities
basics, 111–112
design stories, 117–119
implementation-specific responsibilities,

124–125
object role stereotypes, 121
private responsibilities supporting public ones,

121–123
relationships between candidates, 123

Wirfs.book Page 388 Friday, October 11, 2002 11:44 AM

Index

389

system behaviors, 112–115
system behaviors, filling needs between filling

needs between and use cases, 116–117
themes, 117–119
theoretical chains of reasoning, 119–120
use cases, 112–115

Stages of design
exploratory, 47, 60–61
refinement, 48, 70–71

Stakeholder perspectives in design, 49, 50, 71
State design pattern, 341

object collaborations, 171
Stereotypes of object roles

candidate descriptions, 93–94
controllers, 4, 34–35, 163
controllers, versus coordinators, 164
coordinators, 4, 34–35, 164
information holders, 4, 34–35, 159–160
interfacers, 4, 34–35, 164–166
service providers, 4, 34–35, 162
sources of object responsibilities, 121
structurers, 4, 34–35, 160–162

Stories
design description, 52–53
design description, guidelines, 264–270
final stories, 273–274
finding candidate objects, 80–83
limitations of UML diagrams, 258–262
listing items to cover, 243
object collaborations, 152–153, 154
organization basics, 270–273
preserving stories, 274
selecting forms best-suited for stories, 263–264
sources of object responsibilities, 117–119
views, bird’s eye, 244–245
views, collaborators only, 245–250
views, focused interactions among collabora-

tors, 253–254
views, implementations, 254
views, in-depth, 250–253
views, sequences of interactions among collabo-

rators, 250
Strategy design pattern, 337–338

object collaborations, 171
Structural objects, Page-Jones domain divisions,

135
Structurers, object role stereotype, 4

candidate descriptions, 93

in layered style applications, 34–35
object collaborations, 160–162

Subclasses, 16–17
Subsystems of objects, 17
Superclasses, 16–17
Switch statements, 20
System behaviors, sources of object responsibili-

ties, 112–117

T
Template method, 330–331, 332
Template Method design pattern, 330–331
Themes

object collaborations, building models, 192
sources of object responsibilities, 117–119

Troubleshooting problems
object collaborations, 173–176
object responsibilities, assignment strategies,

138–140
Trust regions, 280

decisions on placement of responsibilities,
284–285

Trusted collaborations, 280–281
versus untrusted, 281–284

U
UML-F (Unified Modeling Language, frameworks),

342–344, 345, 346
UML (Unified Modeling Language)

actors, 51
design descriptions, 36
documentation, flexible design, 345, 347
exception handling, 305–307
for frameworks (See UML-F (Unified Modeling

Language, frameworks))
packages, 244–245
profiles, 342
relationships between candidate objects, 123
stories, 241
stories, limitations of UML diagrams, 258–262
stories, views, bird’s eye, 244–245
stories, views, collaborators only, 245–250
stories, views, focused interactions among col-

laborators, 253–254

Wirfs.book Page 389 Friday, October 11, 2002 11:44 AM

Index

390

UML (Unified Modeling Language), (continued)
stories, views, implementations, 254
stories, views, in-depth, 250–253
stories, views, sequences of interactions among

collaborators, 250
systems and subsystems, 244–245

Unified Modeling Language. See UML (Unified Mod-
eling Language)

Use cases
collaborations, building models, 192
collaborations, simulating, 179
conversation form, 54–55
design description, 51–53, 56
essential, 75
narrative form, 52–53
object collaborations, 169–170
scenario form, 53–54
sources of object responsibilities, 112–115,

116–117
Use case map, 276

User interfacers, object role stereotype
candidate descriptions, 93
collaboration identification, 164–165

V–Z
Variations, flexible design

creating knobs for developers to turn, 337–338
hot spots, recording on cards, 324–327
hot spots, solving, 327–328
inserting design placeholders, 335–337
placing variable information into information

holders, 334–335
strategies for realizing variations, 329–330
supporting with template and hook methods,

330–333
times needed, 333–334

Visitor design pattern, object collaborations, 171

Wirfs.book Page 390 Friday, October 11, 2002 11:44 AM

