
A Case Study: Control Style for External User Events

207

layer and the domain layer. Objects in this application services layer
receive and interpret events passed from interfacer objects located
in the presentation layer. Messages are sent from the presentation
layer to objects in the application services layer. They then react to
user events and coordinate the invocation of related software
actions (see Figure 6-6).

To demonstrate the main feature of this software, take a look at Fig-
ure 6-7, the “Speak for Me” use case for building a message.

To start, we invent a single object that is responsible for responding
to user events and controlling the subsequent action of the “Build a
Message” use case. We name this object MessageBuilder. It must
interpret two events: one from the presentation layer when the user
selects something that has been spoken, and another from the timer,
signaling that time has elapsed without her selecting something. We
initially assign this controller three responsibilities, as shown in
Figure 6-8.

Figure 6-6
Responses to UI events are delegated by controllers and coordinators.

Wirfs.book Page 207 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

208

We know that the MessageBuilder has the overall responsibility for
handling these events, but we don’t yet know how much work it will
take on itself or delegate to others (see Figure 6-9). We’d like to see
how much work is involved and, if things get overly complex for the
MessageBuilder, develop a delegated control style.

Centralizing Control in the MessageBuilder

With such a simple user interface, one might think that one control-
ler should be responsible for receiving notifications as well as
responding to them:

Actor Actions System Responsibilities

Click to start software speaking
Start building a message

Repeat until. . .

Optionally, click to select letter

Determine what to speak (letter, word, sen-
tence, or space):

Speak letter

Add letter to word

Optionally, click to select space
Speak space

Add working word to end of sentence
Start new word

Optionally, click to select word
Speak word

Add word to end of sentence
Start new word

Optionally, click to select sentence
Speak sentence

Add sentence to end of message
Start new sentence, start new word

. . .a command is issued

Process command (a separate use case)

Figure 6-7
This use case conversation describes the user’s interactions with the system as
she builds a message.

Wirfs.book Page 208 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

209

� When the timer ticks, the MessageBuilder will select the best
thing to present next: a letter, a space, a word, and so on. This
depends on the state of the message and what has been previ-
ously presented.

� When the user makes a selection, the MessageBuilder will
update the message with the selection. How it does this
depends on what the user selected.

The MessageBuilder’s response to the user’s selection of what was
spoken depends on many different conditions. As the user builds the
message, the software tries to guess each word (only one word guess
for each letter that she chooses) as it sees more letters. It matches
the partial constructions against complete words in an online vocab-
ulary. Special rules apply to the beginning of a word. In what is called

MessageBuilder

MessageBuilder

Builds message from selections Message
Presents guesses to user Presenter
Controls the pacing

Purpose: The MessageBuilder is a hub of
activity in the application. It coordinates the
timing, the presentation of guesses, the message
construction. It centralizes control and is a
core element of the control architecture.

Stereotypes: Controller or Coordinator?

Figure 6-8
The MessageBuilder’s stereotype depends on how this object interacts with
surrounding collaborators to perform its role.

It is not necessarily the
number of different events
that makes control complex.
It can also be the number of
differing responses to the
same event.

Wirfs.book Page 209 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

210

the onset of the word, there are only a few letters that may follow the
first letter. This consonant co-occurrence provides the software with
a relatively simple way to predict the second and third letters of a
word, given the first letter, or first and second letters, respectively.

Reacting to the selection event involves two subresponsibilities (and
numerous decisions):

1. What action must be performed when the user makes a selection?

� Is the user at the very beginning? If so, she has just clicked
to start the application. Do nothing except set up to han-
dle her first real selection.

� Did she just now select a letter? Add it to the word under
construction.

Figure 6-9
The MessageBuilder listens for events and delegates work to others.

Wirfs.book Page 210 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

211

� Did she just end a word by choosing a space? Add the
word under construction to the message, and get ready to
build a new word.

� Did she just choose a word? Clear out the word under con-
struction and append the chosen word to the message.

� Did she just hear and choose an entire sentence? Replace
the sentence under construction with the one she chose.

2. Depending on the contents of the message, what should be pre-
sented to the user?

� Did the user just now start building a message? Determine
the first letter in the alphabetic (A to Z) or frequency (E to
Z) sequence.

� Did she just select a letter? Give her a “space” (“space”
acts as the end-of-word).

� Did she just end a word by choosing a space? Check to see
whether the word under construction is a command. If it
is not, then start over with the letters in the chosen alpha-
betic sequence.

� Are there two letters in the latest word construction? If so,
ask the Vocabulary for any guesses.

� Are there at least two words in the latest sentence? If
so, get any sentences that match from the SentenceDic-
tionary.

� If the SentenceDictionary and the Vocabulary both have
something to guess, choose the best one and present that
to her.

Initially, reacting to these events might have seemed simple. But it’s
not. If we keep all these decisions inside the MessageBuilder, the
code quickly becomes complex. The simplified code below demon-
strates the kind of checking necessary to control the presentation
and selection of the user’s choices. For brevity, only portions of this
class are shown. Where something is not shown, we will make note
of the fact.

class MessageBuilder {
 // Holds the letters, words, and sentences
 private Message message = new Message();

Continues

Wirfs.book Page 211 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

212

// The source of the letters
 private Alphabet alphabet = new Alphabet();
 … declarations for vocabulary, sentenceDictionary missing
 // The last thing presented to the user (letter, etc.)
 private Object lastPresented = null;
 // The output device for a blind person.
 private Presenter presenter = new Speaker();
 // Controls when the user hears "space"
 … Note: This state variable could easily be replaced with
 … more state objects.
 private boolean spacePresented = false;

 public void handleSelection() {
 … The code for handling Commands, Words, and Sentences is not shown.

… If you did, you would make a type check for each type of selection.
 … Furthermore, you wouldn't admit to having written it.
 if (lastPresented instanceOf Letter) {
 if (((Letter)lastPresented).getValue() == ' ') {
 // The user completed spelling a word, so end the current word
 // and start a new one
 getMessage().endLastWord();
 }
 else {
 // She didn't end the word with a space, so add her selected
 // letter and continue, starting with a space
 getMessage().addLetter((Letter) lastPresented);
 spacePresented = false;
 }
 // Reset the alphabet back to the start of the letter sequence
 alphabet.reset();
 }
 … And on and on. Three increasingly complex if/then blocks would
 … follow to handle the user's selections of Words, Sentences,
 … and Commands.
 }

 public void handleTimeout(){
 … This code doesn't show suspending or presenting Words,
 … Commands, or Sentences. It illustrates only how the user handles
 … the first two letters of a word.
 // This is a call to a private method that checks the length of the
 // last word in the message. If the word has no letters in it, it
 // returns true.
 if (this.gettingFirstLetter()) {
 // While getting the first letter, present only letters
 nextLetter = alphabet.nextLetter();
 getPresenter().presentLetter((Letter)lastPresented);
 }
 // This is true when the last word in the message has exactly
 // one letter.
 if (this.gettingSecondLetter()) {
 // While getting the second letter, present only letters and
 // spaces
 if (!spacePresented) {
 // If we haven't already offered the user a space, do it now.
 // Then, present the sequence of letters. Present the space
 // only once.
 lastPresented = new Letter(' ');
 getPresenter().presentLetter((Letter)lastPresented);
 spacePresented = true;
 }

Wirfs.book Page 212 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

213

Work on understanding the complexity of the decisions that need to
be made. If you fudge on this, your design will end up with black
holes of complexity that will be difficult to implement.

Refactoring Decision Making into Small Controllers

The MessageBuilder must know a lot in order to handle a selection
or timer event. Its correct responses are based on the state of the
message being constructed as well as what has been already spoken.
When an object seems burdened with complex decisions based on
state, you can simplify its processing by distributing state-specific
actions to other objects. The State pattern explicitly addresses mov-
ing decisions from an object into a number of smaller decision mak-
ers working directly on its behalf. If we adopt the State pattern, we’ll
end up with a clustered control style. Each small decision maker will
assume responsibility for responding to the events that the control-
ler is handling given a particular state the controller is in, explaining
the name State pattern.

 else {
 // The space has been presented for this sequence, so present
 // only the letters in sequence until the user selects one.
 lastPresented = alphabet.nextLetter();
 getPresenter().presentLetter((Letter)lastPresented);
 }
 … Code for suspending, handling Words, Commands, and Sentences
 … is not shown
 }
 }
 … other MessageBuilder methods
}

Name: State Pattern

Problem: How to design an object to alter its behavior when
its internal state changes.

Context: Sometimes you need to make complex decisions
about what to do based on the current state of an object. An
object’s state can be represented by a number of different
objects that collectively represent what state the object is in.
The object must change its behavior at run time depending on
that state.

Continues

Don’t be misled by the number
of events that need to be
processed. The number of
events does not equate to
complexity.

Wirfs.book Page 213 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

214

The first step in using the State pattern is to analyze and enumerate
the conditions that cause different responses. For example, in Speak
for Me, the state diagram in Figure 6-10 shows the states the Mes-
sageBuilder goes through as it constructs a message. States are dis-
tinguished by how the MessageBuilder responds to the timer ticks or
the user selections.

After we decide to use the State pattern, it is a simple matter to
assign the responsibilities for each state to a different object (see
Figure 6-11). Each state has its own object to handle the responses!
We end up with seven states, seven different kinds of objects, and
seven pairs of responses to timer ticks and user selections.

Because they must be able to fulfill the same responsibilities but
they have different implementations, we can implement seven con-
crete state classes, as shown in Figure 6-12.

With this new control style design, when the MessageBuilder is noti-
fied about an event it makes no decisions whatsoever. It simply dele-
gates the responsibility to whatever state object is currently plugged

Forces: Complex, multipart conditional expressions are often
used to decide what action to take. But this can result in code
that is hard to maintain.

Solution: Instead of writing code that specifically checks what
state an object is in before deciding how to react, design one
new class for each possible state the object can be in. Reas-
sign responsibilities for handling events to each state object.
Delegate all responsibilities to the state objects, and pass in
whatever context they need to do their work. It is the responsi-
bility of each state object to know specifically what should
be done. Typically, in addition to handling state-specific
responses, each state object also knows what the next state
should be after completing its response.

Consequences: The State pattern puts all behavior associated
with each particular state into distinct objects. New states and
transitions can be easily added by defining new state classes.
The State pattern does have some drawbacks. It distributes
behavior for different states across several state classes and is
less compact than a single class. But such distribution is actu-
ally good if there are many states, something that would oth-
erwise necessitate large conditional statements.

Controllers and coordinators
make decisions, but to
different degrees. A
coordinator decides whom to
pass the buck to, whereas a
controller retains control,
enlisting others under close
supervision.

The states in the State pattern
come from identifying the sets
of different responses to the
same events.

Although you have applied a
pattern, you still must make
choices about the distribution
of responsibilities. Instead
of the state object knowing
what the next state is, the
controller could take on this
responsibility. Just make sure
that one or the other makes
this decision.

Wirfs.book Page 214 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

215

in and is responsible for handling events given the current state.
That state object is responsible for responding to events based on
current conditions, instantiating the next state object, and plugging
it in to its coordinator.

The order in which the state objects are plugged in mirrors the tran-
sitions that appear in the state diagram. Together, the state objects
collectively handle all the conditions that can occur. Each state
object makes two decisions on behalf of the MessageBuilder: what to

Guessing Letters, Words,
and Sentences

Guessing Letters
and Space

Guessing Letters
Only

Idling

Ending Word

after:
wait

selected
[start]

selected
[space]

selected
[space]

/ execute
command

selected
[word]

selected [letter] / add
letter to last word

[is command]

[normal word] / add word to last sentence

selected [letter] / add
letter to last word

selected [letter] / add
letter to last word

[selected sentence] / add
sentence to last message

after:
wait

after:
wait

after:
wait

Executing Command

[selected word] / add
word to last sentence

Figure 6-10
Speak for Me has many states that determine what the event responses will be.

Wirfs.book Page 215 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

216

Suspended
EndingWord

ExecutingCommand
GuessingLettersWordsAndSentences

GuessingLettersAndSpace
GuessingLettersOnly

Idling
Respond to user action
(making a selection)
Respond to timeout

Figure 6-11
Each state becomes an object.

Figure 6-12
The State classes form an inheritance hierarchy.

Wirfs.book Page 216 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

217

do with the selection, and what to do with a timer event. Because
each state object represents one branch of the current state of the
message building process, each object’s methods are a bit simpler
than the original MessageBuilder code. Each is simpler to under-
stand. Let’s look at several classes’ methods to see how relatively
simple each one is.

The Idling class handles the timer and user events with its two
methods. Its only responsibility is to handle message construction:

The GuessingLettersOnly state class is simple too. It is responsible
for presenting only letters to the user and, because the user can only
select letters, only adding them to the Message:

class Idling extends MessageConstructionState {
// This class is used when the user has not signaled to start building
// a message. The clock is ticking, but the software does nothing in
// response.

 public MessageConstructionState handleTimeout(MessageBuilder builder){
 // The clock is ticking, but because we are idling, do nothing, but
 // stay in the same state.
 return this;
 }

 public MessageConstructionState handleSelection(MessageBuilder builder){
 // The user signaled to start building a message.
 // Transition to the next state, the one that will handle presenting
 // and selecting the first letter of a word.
 return new GuessingLettersOnly();
 }
}

class GuessingLettersOnly extends MessageConstructionState {
// This class is used when the last word in the message is empty (the user
// has started the software but hasn't selected a letter yet).

 public MessageConstructionState handleTimeout(MessageBuilder builder) {
 // User is at the beginning of a word. Present only letters.
 Letter nextLetter = alphabet.nextLetter();
 … code for handling end-of-alphabet (suspend) missing
 // Record that this letter was just presented to the user.
 // If she signals before we present a different one, this one
 // will be added to the message.
 builder.setLastPresented(nextLetter);
 builder.getPresenter().presentLetter(nextLetter);
 // Stay in the same state.
 return this;
}

Continues

Wirfs.book Page 217 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

218

GuessingLettersAndSpace is responsible for deciding when to
present a space instead of a letter. Even this decision could be elimi-
nated by creating a MessageConstructionState subclass to handle
this condition:

public MessageConstructionState handleSelection(MessageBuilder builder) {
 // Only letters are being presented to the user, so we know exactly
 // what to do: it must be a letter that the user selected, so add it to
 // the message, reset the sequence of letters to the beginning, and
 // start getting the next letter (but offer the user a space first).
 Letter letter = (Letter) builder.getLastPresented();
 builder.getMessage().addLetter(letter);
 builder.getAlphabet().reset();
 // We have to present a space after each selection from now on, so
 // transition to the state that behaves that way.
 return new GuessingLettersAndSpace();
}

class GuessingLettersAndSpace extends MessageConstructionState {
 // This class is used when the last word in the message has exactly one
 // letter. Under this condition, each letter selection is followed by a
 // space. The user selects the space to terminate the word.
 // This static variable is visible to all of the instances of the class.
 // They use it to know whether a space should be presented. It could
 // be eliminated by creating a MessageConstructionState class
 // that handled the condition of not yet having presented
 // the space (PresentingSpace).
 private static boolean spacePresented = false;

 public MessageConstructionState handleTimeout(MessageBuilder builder) {
 // The user has chosen exactly one letter. Offer a space to allow
 // the user to terminate the word even if it has only one letter
 // (such as "I"), and if the user doesn't select it, present the
 // letters in sequence.
 … The code for handling the case when the user doesn't select a
 … letter or a space (otherwise known as suspending) is not shown.
 Letter nextLetter = null;
 if (!spacePresented){
 // If the space hasn't yet been presented, choose it for
 // presentation to the user.
 nextLetter = new Letter(' ');
 spacePresented = true;
 }
 else {
 // The user didn't select the space when it was presented, so
 // fetch the next letter in the sequence.
 nextLetter = alphabet.nextLetter();
 }
 // Present the space or the letter to the user.
 builder.setPresented(nextLetter);
 builder.getPresenter().presentLetter(nextLetter);
 return this;
 }

Wirfs.book Page 218 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

219

Simplicity comes from having two relatively straightforward
methods implemented by each MessageConstructionState class.
Very cool.

As shown in Figure 6-13, the State pattern is one way of divvying con-
trol responsibilities—pushing them out to a cluster of decision mak-
ers. It does make the MessageBuilder more manageable and state
management systematic, but is it really the solution we want? The
State pattern removes responsibilities for deciding what to do from
the MessageBuilder. But it still leaves decision making in objects that
are located within the control center located in the application con-
trol layer—a clustered control style and not a delegated one.

If a particular pattern improves your design, you may jump on it
without considering other options. Applying any pattern may have
benefits. But there are also consequences. The most important one
is very subtle:

 public MessageConstructionState handleSelection(MessageBuilder builder) {
 // The user could only have selected a space or letter
 State newState = null;
 Letter lastLetter = (Letter) builder.getLastPresented();
 if (lastLetter.getValue() == ' ') {
 // If the user selected the space, it means she has finished
 // building the word.
 builder.getMessage().endLastWord();
 // Start getting the first letter of a new word.
 newState = new GuessingLettersOnly();
 }
 else {
 // The user chose a letter. Add it to the word under construction.
 builder.getMessage().addLetter(lastLetter);
 builder.getAlphabet().reset();
 … The GuessingLettersWordsAndSentences class that will handle
 … presenting letters and guessing words and sentences is not
 … shown.
 // Now we have two letters in the word under construction.
 // Begin guessing words and sentences along with the letters.
 newState = new GuessingLettersWordsAndSentences();
 }
 // We are either going on to guess words and sentences or are
 // getting the first letter of a new word.
 return newState;
 }
}

Choosing a pattern means that you are not designing a solution of
your own.

The State pattern works well
if all the states are discrete
and detectable, and the
transitions between them
are deterministic. This is not
always the case. For example,
a book in a library can be in
multiple states at the same
time: for example, checked-in
and lost.

Wirfs.book Page 219 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

220

Adopting a pattern limits your options for distributing responsibili-
ties to others. Responsibilities fulfilled by objects in a pattern are
responsibilities that might have been assigned elsewhere but
weren’t. There may be other solutions with a different distribution of
responsibilities that are better suited to your design goals. If you
leap on a pattern without thinking things through, you may be apply-
ing a solution to a well-known problem but still not have solved the
problem in a way that matches your control style goals.

Refactoring Decision Making into State Methods within
the MessageBuilder

A state machine is an obvious control choice for our message build-
ing task. But instead of factoring state-based responsibilities into dif-
ferent state objects, we could keep track of the current state within

Figure 6-13
The MessageBuilder delegates responses to its state objects.

What if there is an elegant
solution waiting just around
the bend? You will never get
there if you put on pattern
blinders! Patterns are built on
the tenets of object
orientation. If a pattern
doesn’t suit your style, use
basic strategies—
abstraction, encapsulation,
classification, inheritance,
polymorphism, and
information hiding—and stick
to your design goals.

Wirfs.book Page 220 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

221

the MessageBuilder and redesign its handleSelection() method to
invoke its own action methods based on its current state. Instead of
delegating state-based behavior to state objects, the MessageBuilder
would now comprise several smaller methods, one for each unique
state in our state model. We might prefer this design over the State
pattern if we needed to support slightly different state-based behav-
ior. We could implement a subclass of the MessageBuilder that over-
rode a couple of methods in order to implement different idling or
guessing behaviors.

Abstracting Away Decisions

But to truly adopt a delegated control style, we need to remove deci-
sions from the control center and place them in domain objects. How
can we make our control style delegated? Let’s shelve the State pat-
tern and state-based solutions for now and go back to the drawing
board. Let’s try really hard to push responsibilities out of the Mes-
sageBuilder. What if we reassigned the responsibility for construct-
ing a message to those objects that the user selects? Instead of
making that the MessageBuilder’s responsibility, why not make Let-
ter, Word, and Sentence objects responsible? If a Letter is selected, it
should append itself to the last word in the message. A Word should
add itself to the last Sentence in the Message, replacing the last Word
in the Sentence. Given that each selected object knows what kind of
thing it is, it can add itself to the message without making any deci-
sions whatsoever!

In this new design, the MessageBuilder simply accepts the selection
from the presentation layer, whatever it is, and delegates to the
selected object the responsibility for adding itself to the Message
(see Figure 6-14). The MessageBuilder treats all selected objects
alike. When the Letter is asked to add itself to the message, it turns
around and asks the argument (the Message) to add “this” letter.
How the letter is added to the Message is completely hidden inside
the Message, where it should be.

To make this work, all the kinds of objects the user selects must
share a common role and implement the same interface. The user is
presented with guesses that she can select. When she does so, these
guesses are added to the Message she is building. Let’s define a
Guess role that Letters, Words, and Sentences have in common as
shown in Figures 6-15 and 6-16. By doing so, we delegate work to
Guess objects and eliminate decisions (what to do with a guess)
from the controller.

When you discover a new
role, create a CRC card for it,
and note on the unlined side
any candidate that plays the
role (the fact that it does).

Wirfs.book Page 221 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

222

Figure 6-14
Polymorphism and the Double Dispatch minimize concerns about object type.

:MessageBuilder

handleSelection(Guess)

:Letter

addTo(Message)

addLetter(this)

:Message

Guess
Knows its presentation Message
Adds itself to message

Figure 6-15
The role of Guess is shared by Letters, Words, and Sentences.

Wirfs.book Page 222 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

223

This solution demonstrates some fundamental design principles:

� Abstraction. Without the new role, Guess, we have nothing to
represent the “sameness” of the different kinds of objects that
can be selected by the user.

� Responsibility. So far, a Guess has only one responsibility: add-
ing itself to a Message. But we now have a place to hang other
responsibilities if we need to. Of course, any new responsibili-
ties will have to make sense for all objects that share this com-
mon role.

� Inheritance. All objects that play the role of Guess may be
implemented by different classes in a common hierarchy. Or we
are free to define a common interface for a Guess role that is
implemented by different classes, whether in the same inherit-
ance hierarchy or not. It’s too early to tell. Regardless, each dif-
ferent kind of Guess will implement all Guess responsibilities.

� Polymorphism. This is key. By assigning the responsibility for
adding themselves to a message to Guess objects, we have
reduced the complexity of our controller. This is a much more
extensible and maintainable solution.

Guess
Purpose: Representing something
(such as a letter, word, sentence,
or a message destination) that
the software presents to the
user for selection.

Stereotypes: Information Holder,
 Service Provider

Figure 6-16
Guesses are responsible for adding themselves to a Message.

In Java, abstract,
interchangeable parts can be
implemented by an abstract
class or an interface. When
they share common behavior,
use an abstract class. When
they simply share a role, use
an interface.

Wirfs.book Page 223 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

224

MessageBuilder code for handling a selected Guess is reduced to a
single line that looks something like this:

When an instance of Letter receives the addTo(Message msg) mes-
sage, it turns around and asks the Message to add it:

When an instance of Word receives the addTo(Message msg) mes-
sage, it requests the Message to add it:

With this design choice, the decision making has been removed from
the MessageBuilder and reassigned to each particular kind of Guess.
And each guess knows just what to do without making any decisions
whatsoever!

Delegating More Responsibility

The MessageBuilder must come up with a new Guess every timer
tick. As we’ve seen, this behavior is pretty complex. If the Message-
Builder doesn’t delegate guessing, it will have to evaluate the current
state of the message and any local state that it keeps track of, find all
the possible matches that it has to choose from, and decide which
possibility is best. It must query all the dictionaries that hold the dif-
ferent kinds of guesses and get the best guess given the current state
of the message under construction: the Alphabet, the Vocabulary,
and the SentenceDictionary. Lots of work, lots of collaborators, lots
of connections and low-level information-gathering. Whew!

When you see a controller deciding which of many low-level objects
to call upon, it’s a good idea to move this complexity outside the
controller and into other objects—even if you have to invent them. If
you follow this strategy, objects with control responsibilities will
have narrower coordination responsibilities. As a result, you may
end up with more objects, but each one will be more focused.

 selection.addTo(message);

 msg.addLetter(this) // ask the Message to add the Letter

 msg.addWord(this) // ask the Message to add the Word

The purpose of this section is
to demonstrate how a
“decision” is changed into a
strategy and how varying the
identity of an object can
eliminate conditional
“decisions.”

Wirfs.book Page 224 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

225

Because determining the appropriate guess to present to the user is
not related to controlling message building, it is a cleaner solution to
wrap up all this guessing machinery and put it in a new object: a
Guesser. The Guesser will access the current state of the Message
and various dictionaries (Alphabet, Vocabulary, SentenceDic-
tionary). From the MessageBuilder’s perspective it will simply serve
up a best guess every time it is asked for one. With this final design
decision, the MessageBuilder remains dedicated to coordinating
actions. The complex guessing machinery is wrapped inside the
Guesser (see Figures 6-17 and 6-18).

As a side effect of both this decision and the previous one, the Mes-
sageBuilder truly has become a simple coordinator . . . and we have
designed a delegated control style for the “Build a message” task.

Designing the Control Style for the Guessing
Neighborhood

Pushing out the responsibility for providing the best guess to the
Guesser doesn’t mean we’re finished designing. We still have work to
do. Let’s shift our attention from the MessageBuilder control center
to the neighborhood consisting of the Guesser and various dictionar-
ies. Earlier, we nixed adopting the State pattern. But we are always
on the lookout for patterns that clarify our design. A pattern that

Guesser
Determine next guess Alphabet

 Vocabulary
 Sentence-

 Dictionary

Figure 6-17
The Guesser determines the next guess to present to the user.

Wirfs.book Page 225 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

226

seems to fit this best guess problem is the Blackboard pattern
described in Pattern-Oriented Software Architecture. It is an architec-
tural pattern that is useful when the answer is a best guess. It is real-
ized by three roles: a Blackboard, one or more KnowledgeSources,
and a Control (see Figure 6-19).

To come up with a result (in our situation, a guess), processing is
done in cycles. During each cycle, the Control asks several
KnowledgeSource objects to evaluate information in a common store
(the Blackboard). Each KnowledgeSource determines how relevant
its rules are to the information on the Blackboard and makes a corre-
spondingly low or high bid. The Control simply looks at all of the
KnowledgeSources’ bids and chooses the highest. The chosen object
then updates the information on the Blackboard according to its
rules, and the cycle begins again. This repeats until the Control
decides that the Blackboard contains an answer that none of the
KnowledgeSources can improve upon.

The Control is not making many decisions, and any one Knowledge-
Source has a small portion of the rules governing the program’s exe-
cution. It is a delegated control strategy devoted to the control of
guessing an answer to a problem. The Blackboard pattern provides a
basic architecture for distributing responsibilities among three roles.

Guesser
Purpose: Determines the next guess
to present to the user by querying
various knowledge sources for
the most likely choice.

Stereotypes: Service Provider

Figure 6-18
The Guesser collaborates with several sources to determine the best guess.

Wirfs.book Page 226 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

227

We will use it to guide our invention: a control object, several objects
to embody the knowledge and rules, and a shared information
holder to hold the answer as it evolves. In any given cycle, the
Guesser has several possible guesses: a Letter when there is nothing
better, a Space if there is at least one letter in the last word and it
hasn’t been guessed during this cycle, a Word if the last word in the
Message is long enough and there are some matches, and the same
for the Sentence. Also, the Guesser needs some way to represent
that there are no more guesses possible, not even any more letters.
Where should we put these rules? We should put them as close as we
can to the objects that they apply to!

That means putting the rules and their evaluation into various dictio-
naries that hold Guesses. Matching the Blackboard pattern’s roles to

Manages central data

Evaluates its own applicability Blackboard
Computes a result
Updates blackboard

Monitors blackboard Blackboard
Schedules knowledge Knowledge-
 source activations Source

Blackboard

KnowledgeSource

Control

Figure 6-19
The blackboard architecture uses three object roles.

Wirfs.book Page 227 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

228

our design objects, the Guesser plays the role of Control, GuessDic-
tionaries are KnowledgeSources, and the Message is the Blackboard
they all query (see Figure 6-20).

Each GuessDictionary is asked by the Guesser to check the Message
and make a bid. The Guesser looks at all the GuessDictionaries’ Bids,
selects the Guess from the highest Bid, and returns it to the Message-
Builder as the best guess. Decisions made by the Guesser are limited
to evaluating and choosing the highest bid. The real intelligence is
distributed among the dictionaries.

Instead of adding their results directly to the Blackboard, each
KnowledgeSource instead returns its bid to the Guesser. In our
design, a Bid knows its value and its proposed Guess. You notice that
we’ve slightly modified the Blackboard’s roles and responsibilities as
we adapted this pattern to our design. We’ve done so because the
Guesser’s responsibility isn’t to update the Message directly. Instead,
it needs to return the best guess when asked so that the guess can be

:Guesser

nextGuess(Message)

:SentenceDictionary

bidOn(Message)

bid

:Message

getContents()

guess

:Vocabulary

:Alphabet

evaluate()

chooseHighestBid()

Control
Knowledge Sources

Blackboard

Figure 6-20
Guessing uses a Blackboard architecture.

Wirfs.book Page 228 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

229

presented to the user. Only when the user selects a Guess will the
MessageBuilder add her selected Guess to the message. We’ve had to
adapt the general roles and collaborations described by the Black-
board pattern to suit our specific design situation.

The final design of the MessageBuilder is now pretty simple. We’ve
really pushed out most of the work to objects that the Message-
Builder collaborates with (see Figure 6-21). When it hears the timer
tick, the MessageBuilder passes the current Message to the Guesser
and asks it for the next guess. It gets back a Letter, Word, or Sen-
tence, but it doesn’t know exactly what kind of thing it is. It only
knows that it is a Guess. So it gives the Guess to the Presenter, which
voices it to the user. If she selects it, the MessageBuilder is notified,
and the MessageBuilder asks this Guess, whatever it is, to add itself
to the Message.

Figure 6-21
The Build a Message control center, delegates to the Guesser, Guess, and
Message.

Wirfs.book Page 229 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

230

The MessageBuilder is a pure coordinator. This approach is quite dif-
ferent from our initial one. Control and decision making have been
removed from the MessageBuilder. But where have they gone? Actu-
ally, we’ve given responsibilities to objects that the MessageBuilder
collaborates with. And in the process, we’ve defined away the need
for complex decisions based on explicit states maintained by the
MessageBuilder. The MessageBuilder simply coordinates guessing
and adds guesses to the Message—but it does so by delegating. Dic-
tionaries will have to know some things about the current state of
the message in order to offer a bid, but those decisions are localized
and pretty simple, too. Decisions that before rested with the Mes-
sageBuilder are now accomplished as a side effect of choosing the
highest bid, presenting it to the user, and having her Guesses add
themselves to the Message. Because each different Guess knows
how to add itself to a Message, the decision on how to update a mes-
sage has been replaced with explicit responsibilities of Guess
objects for doing the right thing when asked.

Designing a Similar Control Center: Can We Be
Consistent?

When you develop a simple and effective control architecture for a
given system task, you instinctively try to fit similar tasks to the
same style. However, some applications aren’t regular and consis-
tent; each use case is slightly different, so no common pattern for
designing a use case controller emerges, no matter how hard you
push. If objects and their patterns of collaboration are too dissimilar,
don’t try to fit them into the same mold. However, if things seem sim-
ilar enough—if the objects involved and the patterns of collabora-
tion are close—you might be able to refactor responsibilities and
readjust collaborations to make them more similar than they might
initially appear. You won’t know until you try hard to see how similar
things are.

Can the objects involved in the “Send a Message” use case fit the
same roles and use the same collaboration patterns established by
objects in “Build a Message”? Or do we need an entirely different
control style? Let’s compare the candidates involved in each use
case and see what’s alike and what’s different. Here are the objects
involved in “Build a Message”:

� In the presentation layer:

— Presenter—voices the guesses to the user

— Selector—notifies the MessageBuilder of user actions

You can’t always repeat
collaboration patterns. By
their nature, some design
problems don’t lend
themselves to regular,
consistent solutions.
Sometimes, collaborations
are prickly, and the rough
edges in the problem will be
reflected in the solution.

Wirfs.book Page 230 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

231

� In the application services layer:

— Timer—controls the pacing of the presentation of guesses

— Guesser—serves up the best guess

— MessageBuilder—coordinates the events and responses

� In the domain layer:

— Guess—when selected, adds itself to the Message

— Letter, Word, Sentence—all play the role of a Guess

— GuessDictionary—makes a best guess based on the Message

— Alphabet, Vocabulary, SentenceDictionary—all play the
role of a GuessDictionary

— Bid—associates a bid value with a particular Guess

— Message—structures the series of selections

The “Build a Message” task ends when the user spells the “send the
message” command (the two-letter word SE). Then a new task and a
new group of objects take over. When the software recognizes SE as
a command word, it needs to build the community of objects:
objects to coordinate the activities of building the list of destinations
and, when the addressing is complete, to send the message to those
destinations (see Figure 6-22).

Figure 6-22
Control transfers from one control center to another. We’d like to design related
control centers to work in a similar fashion.

Wirfs.book Page 231 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

232

Again, as an initial placeholder in our design, we invent a control cen-
ter (and a control object, the SendMessageCoordinator) to monitor
the user’s actions and to coordinate the presentation of the addresses.
If we can, we’d like it to follow a delegated style (see Figure 6-23).

As this controller fetches destinations from the business layer’s
AddressBook and presents it to the user, the user chooses what she
hears. Here is the initial list of candidates involved:

� In the presentation layer:

— Presenter—voices the destinations to the user

— Selector—notifies the SendMessageController of address
selections

� In the application services layer:

— Timer—controls the pacing of the presentation of
destinations

— SendMessageCoordinator—controls activities in building
a destination list and sending the message

� In the domain layer:

— AddressBook—knows all the possible destinations

— EmailAddress—knows a recipient’s user name and domain

Figure 6-23
Send a Message control is more centralized than the Build a Message control
center design.

Wirfs.book Page 232 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

233

— NetworkNode—knows a machine’s network address

— DisplayScreen—knows the computer screen

— PagerAddress—knows a network address of a pager

— MailingList—structures the destinations that the user
selects

— Message—knows the text to be sent

When the user makes her selections, the user interface signals our
new controller and passes it the objects that correspond to her
selections: the EmailAddresses, MailingLists, and so on. The control-
ler then delegates to the MailingList the task of holding her selec-
tions. When she indicates that she is finished, the controller passes
the MailingList and the Message to the Mailer for delivery.

We would like the pattern of collaboration to be consistent with
those in “Build a Message.” We can make a few simple checks to eval-
uate whether we can achieve a similar control design.

When you’re designing a control center, check to see
whether the candidates involved are the same as those in
a similar one. If so, there is a possibility that the pattern of collab-
orations can be made to look alike. The messages may be different,
but the paths between the objects might be the same. But if any of
the objects involved are playing more than one role, the collabora-
tion patterns may be too different.

In the “Build a Message” task, the following objects are involved:
Selector, Timer, MessageBuilder, Guesser, Presenter, Message, Guess,
Letter, Word, Sentence, various Dictionaries, and Bid.

“Send a Message” uses Selector, Timer, SendMessageCoordinator,
Presenter, Message, EmailAddress, NetworkNode, DisplayScreen,
PagerAddress, MailingList, and AddressBook. Some of the previous
objects are here, but some key objects are missing: the Guesser, the
Guess, and all the various kinds of objects that play the role of a
Guess.

There are similar coordination and control responsibilities: The
SendMessageCoordinator must build a list of destinations and then
send the message to them; the MessageBuilder must build a mes-
sage. The collaborations between the presentation layer and the
controllers looks identical, but the domain objects are entirely differ-
ent. If objects that at first glance appear to be different are playing
the same role, we might still make the control design mimic the style
that we adopted earlier.

Wirfs.book Page 233 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

234

Check whether responsibilities for actions are separate
from responsibilities for information. When the doing is
located in one or very few objects and the knowing is done by many
others, control is centralized. The object that performs the actions
will be constantly asking for the information that it needs.

As it currently stands, our “Send a Message” use case has only one
area of activity: the SendMessageController. The other objects
involved are simple structurers, information holders, or service pro-
viders. In contrast, the control center for “Build a Message” has
spread responsibilities for constructing the message across the vari-
ous Guess objects, and for guessing among the GuessDictionaries.
Currently, there is none of that blending of action and information in
the “Send a Message” domain objects.

Check to see whether the stereotypes involved are similar.
If so, there is a possibility that they will fit into the other collabora-
tion’s control architecture. But if one style uses lots of hybrids and
while the other uses purer (and simpler) stereotypes, it will take
redistribution of responsibilities to make it fit.

In our “Build a Message” use case control architecture, we had the
following stereotypes:

� Timer—service provider

� Presenter—interfacer

� Selector—interfacer

� MessageBuilder—coordinator

� Guesser—service provider

� Guess—information holder/service provider

� Letter—information holder/service provider

� Word—information holder/service provider

� Sentence—information holder/service provider

� Message—structurer/service provider

Do the objects involved in “Send a Message” have similar roles? Or
do we need an entirely different control style for this new part of the
system? Our first stab at a candidate model resulted in these objects
and stereotypes:

� Timer—service provider

� Presenter—interfacer

Wirfs.book Page 234 Friday, October 11, 2002 11:44 AM

A Case Study: Control Style for External User Events

235

� Selector—interfacer

� SendMessageCoordinator—controller

� AddressBook—structurer

� EmailAddress—information holder

� NetworkNode—information holder

� DisplayScreen—interfacer

� PagerAddress—information holder

� Mailer—service provider

� MailingList—structurer

The stereotypes of objects involved in “Send a Message” reflect a con-
centration of action in the Mailer and the SendMessageCoordinator.

When the roles are similar but not the same, look for com-
mon abstractions. Objects that appear to be different are some-
times similar in essential ways if we look for what they do in common.
By expressing different responsibilities more generally, we can unify
disjoint responsibilities and use a common pattern of interaction.

Taking all these tips into consideration, we look to

� Refactor the responsibilities out of the control center into
domain objects to form smarter, hybrid stereotypes

� Use many of the same roles in our new collaboration

� Condense and unify the responsibilities and collaboration
patterns

First, let’s shift responsibilities for action out of the SendMessage-
Coordinator to the information holders. In addition to representing
an addressable location, we give each one the responsibility for
doing something: adding its addressing information to the message.
We also define a common role, a Destination, shared by all. A Desti-
nation represents all the different kinds of locations where Messages
can be sent. The Message has a new responsibility too: knowing
where it will be sent.

Next, let’s see if we can find any abstraction that would simplify the
collaborations and make it more like the control style for building a
message. The most obvious abstraction missing is the notion of a
Guesser and a Guess. Can we incorporate this idea into this part of
the design? Yes, if we shift our perspective on the EmailAddress, Net-
workNode, DisplayScreen, PagerAddress, and MailingList objects.

Wirfs.book Page 235 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

236

They, too, are kinds of guesses that the software presents to the user.
Once she selects them, they are added to the list of addresses the
message will be sent to. Furthermore, another Guesser could easily
serve up Destination guesses. Voila! If we take this leap at unifying
Destinations with Guesses that can be added to messages, our
design can evolve toward the same delegated style.

In both cases, information holders have additional responsibilities.
Letters, Words, and Sentences add themselves to a Message.
Similarly, EmailAddresses, NeworkNodes, PagerAddresses, Display-
Screens, and MailingLists add their corresponding destination to the
Message. They are hybrid information holder/service providers. The
“Send a Message” control center now resembles the distribution of
responsibilities in the “Build a Message” use case (see Figure 6-24).

When the user finishes addressing the Message, the SendMessage
Coordinator can delegate all responsibility for delivering the
Message to the Mailer. The Mailer will in turn collaborate with the
Message and its various Destinations to send the Message.

Figure 6-24
Objects outside the control center take on more responsibility when we make
the Send a Message control center similar to the Build a Message control center.

Unifying a responsibility can
mean making a more general
statement of that
responsibility.

Wirfs.book Page 236 Friday, October 11, 2002 11:44 AM

Summary

237

SUMMARY

Developing a control style means deciding how objects assigned
responsibilities for controlling action within a control center—
objects stereotyped as controllers or coordinators—interact with
and direct others’ actions. Adopting a particular style narrows your
choices. Repeating it makes your design consistent. Control style is
governed by how decision making and control behaviors are distrib-
uted. Control styles come in three major forms with several variations.
Decisions can be

� Centralized

� Delegated to objects outside the control center

� Spread across many objects with no obvious centers of control

When you design collaborations, look for important control centers
and choose the best control style for each. If you are trying to be
consistent, make similar things work alike. The clarity and simplicity
of your design depend on your ability to refactor responsibilities,
invent roles, and define common patterns of collaboration so that
like things work in similar ways.

Often, the decisions made by a controller depend on information and
services provided by objects in its surrounding neighborhood. So
the neighborhoods must be designed accordingly to provide the
right information and take appropriate action.

We suggest that you select a control style suited to the task at hand.
Choose centralized control when the decisions are few, simple, and
related to a single task. Delegate control when the work or decision
making can be broken into smaller subresponsibilities and when
each subresponsibility has clearly different semantics or requires a
different context. Look for ways to use patterns to simplify your
design choices, as long as they match your design goals. The State
pattern removes decisions into separate state objects, simplifying
the design of a controller and creating a clustered control center. As
you develop decision makers and their collaborators, strive to cre-
ate a design having moderately intelligent, collaborating objects.

Designing a control center takes time and effort. You many not get it
right the first time, especially if you don’t know beforehand which
responsibilities will require complex decisions. Designing a dele-
gated control style generally requires careful thought and effort. But
the payoffs are worth it, especially when the problem is complex.

Wirfs.book Page 237 Friday, October 11, 2002 11:44 AM

Chapter 6 Control Style

238

The most startling result may be that decision making can be elimi-
nated simply by making objects responsible for doing the right thing,
based on what kind of thing they are. Polymorphism really simplifies
a design!

Wirfs.book Page 238 Friday, October 11, 2002 11:44 AM

Chapter 7
Describing

Collaborations

rancis Galton, a 19th century geneticist, remarked, “It
often happens that after being hard at work, and having

arrived at results that are perfectly clear and satisfactory to
myself, when I try to express them . . . I feel that I must begin
by putting myself upon quite another intellectual plane. I have
to translate my thoughts into a language that does not run
very evenly with them.” We, too, experience a shift when we
move from informal CRC card modeling to more formal
descriptions of collaborations and interaction sequences.
Sometimes we need to paint a broad picture of collaborators;
at other times we need to offer quite exact explanations. When
our models get more detailed, we must change our level of
abstraction. We’re presenting a more concrete view of our
design.

F

Wirfs.book Page 239 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

240

TELLING COLLABORATION STORIES

As you design the way objects collaborate, you will draw many
rough sketches. You won’t keep much of this white board art, but
sometimes you tidy things up, make your collaborations present-
able, and show them to others. You want to explain how things
work—to describe the interplay of objects as they collectively
accomplish system responsibilities. You need to tell a story.

During early design, collaboration stories are less precise and more
evocative. You may have started with CRC cards and now want to
design specific interactions. So you run through a few scenarios,
role-playing some fairly intricate collaborations with your team-
mates. Afterward, your team asks you to draw diagrams to illustrate
the design. How much detail should you include? A lot of things were
mentioned during role-playing, and not all of them seem to fit neatly
on a diagram. Are there things you should definitely highlight?
Should certain things be left out?

Maybe you want to tell how your design supports key use cases.
After people get the gist of these, they should be able extrapolate.
There must be a way to condense information and present it so that
your readers don’t get overwhelmed. How can you avoid creating
lots of very similar diagrams?

Perhaps you drew diagrams that illustrated “happy path” scenarios.
But people want to know how exceptional conditions are handled.
What happens when happy paths aren’t followed? Your colleagues
won’t really believe that your design works until you show them.
Should you add these exception-handling details to your initial draw-
ings, or draw new ones? Is there some way to explain how excep-
tional conditions are handled without drawing lots of new diagrams
or adding complexity to existing ones?

Perhaps you want to explain to newcomers the key aspects of your
design—the subsystems, their responsibilities, and general patterns
of collaboration. You also want to introduce some important objects
and put them through their paces. So you explain your CRC card
model and draw several sequence diagrams that illustrate a few typi-
cal collaborations. But there’s more that you’d like to explain. Is
there a way to explain some alternatives you considered and
rejected without describing them in any great depth?

A story can be more or less involved, depending on what needs to be
said and how complex the interactions are. The best way to commu-
nicate any aspect of a collaboration depends on what you want to
emphasize.

The further along you are, the
more you know. So you can
show and describe more
things—if it’s appropriate.
You can retell a simple
collaboration story,
embellishing certain parts
while leaving others
understated.

Wirfs.book Page 240 Friday, October 11, 2002 11:44 AM

A Strategy for Developing a Collaboration Story

241

A STRATEGY FOR DEVELOPING A COLLABORATION STORY

As you can see, your intent in presenting any story varies widely.
Sometimes you want to show things; many times you also want to
briefly explain them. Mostly, you want to get your ideas across effec-
tively and compactly. You don’t want to leave out the important
points or lose people in too many details. A story is meaningful if it
tells people what they want to know in a form they can easily digest.
Often, multiple forms are needed; no one picture, diagram, or written
description tells all.

One tool that should be part of your design and storytelling reper-
toire is UML. UML, or the Unified Modeling Language, is an industry-
standard visual language for describing object designs. In UML,
several different diagrams can be drawn. We won’t cover UML in any
great depth because that is the subject of other books. We will,
however, touch on those parts of it that are useful to illustrate
collaborations. Specifically, we’ll explain how to describe collaboration
relationships and specific interaction sequences. We’ll discuss how
to draw subsystems, collaboration diagrams, sequence diagrams,
and collaborations. With these diagrams you can show collabora-
tions at different levels of abstraction and in greater or lesser detail.

Before you launch into developing your story, briefly consider what
you’d like to accomplish. Here is a basic plan for developing any col-
laboration story:

� Establish its scope, depth, and tone.

� List the items you want it to cover.

� Decide how detailed your explanations should be.

� Choose the appropriate forms for telling your story.

� Tell it, draw it, describe it.

� Organize your story.

� Revise, clarify, and expand as needed.

Be sure you know what you are trying to communicate and who
needs to understand your story. Establish the appropriate scope,
depth, and tone of your story as well as point to places that deserve
special emphasis. You will make more informed decisions as you
craft your story if you know your reasons for telling it.

The Unified Modeling
Language describes standard
diagramming notations and
their meaning. The UML
symbols and diagrams are
readily understood. UML is a
visual language for describing
designs; it is up to you to use
it effectively.

Wirfs.book Page 241 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

242

ESTABLISHING SCOPE, DEPTH, AND TONE

Your scope—how much or how little territory you cover and how
comprehensively you cover it—depends on your goals. Many stories
have a narrow scope and limited depth. Perhaps you need to explain
how your design supports a use case or to illustrate some collabora-
tions. Often, stories are dashed off quickly to impart knowledge or
get reactions. Their tone is informative but brief. Explanations (if
offered at all) are intentionally sketchy. After all, you are around to
answer questions. The focus is on illustrating collaborations and not
on explaining them at any length. Stories that need to be understood
without your helpful presence likely require some minimal written
explanation in addition to one or more drawings.

You can always adjust your story’s tone and broaden or narrow its
scope. At first, your goal may be to get buy-in. You present issues
and options along with your collaborations. After you’ve nailed
down answers, you illustrate and explain instead of merely propose
and question. You go into slightly more depth. At other times, you
are writing for the record and want to be as precise as you can. But
you don’t want to overwhelm your readers with details.

Diagram choices, as well as word choices, help set the tone.
Sequence diagrams are more formal than collaborations diagrams.
Both serve a nearly identical purpose. There are times when infor-
mality is preferred, especially when you want to throw out a rough
idea for comment and review. At other times more formal presenta-
tions are in order. But don’t think that every part of your story needs
to be told in the same way or to the same depth. CRC cards are infor-
mal, but they convey information about an object’s role and respon-
sibilities that cannot be found on either sequence or collaboration
diagrams. Diagrams as well as cards are valuable parts of a collabo-
ration story. CRC cards informally state what an object knows and
does. These responsibilities can be hard to infer from looking at
more formal method signatures on class diagrams.

Formal and informal descriptions and diagrams all have a place in a
collaboration story. Precision does not go hand in hand with formality.

After a role-playing session, you decide to draw collaboration dia-
grams to illustrate each scenario you discussed. Because you didn’t
get to designing message signatures, you just draw collaboration
diagrams with message names and returned values (where they
matter). You list the issues and ideas that were brought up, too.

The tone of any story can be
adjusted to be more or less
formal, authoritative, precise,
comprehensive, and
instructive. It is up to you
to set the tone by adjusting it
along several dimensions.

Wirfs.book Page 242 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

243

Sequence and collaboration diagrams can be drawn with differing
degrees of precision. It is perfectly “legal” to leave messages unla-
beled or to get highly exact and show message signatures, return val-
ues, branches, and looping, all dressed up with accurate timing
marks. Your story can be more or less formal, precise, or compre-
hensive—depending on your goals.

LISTING WHAT YOU WILL COVER

If your story is a comprehensive one, there will be many things to
say. Even a simple story may have several points. List everything
that comes to mind, whether it is big or small or it overlaps with
something already on your list. Don’t be concerned with how items
on your list relate. Also, list things you want to exclude from
discussion.

For example, if you are illustrating a specific use case, you may want
to explain only a happy path scenario—what actions take place
when nothing goes wrong. Even so, consider how much you want to
tell and what the main points are.

Don’t worry about how to organize your story or the items on your
list until you’ve written a large part of it. Perhaps you need to
develop several subplots, explain each one, and then weave them
together. Even if your story is short and sweet, you won’t know the
best way to present it until you’ve gotten it down. Worry about orga-
nization after your content is in place.

DECIDING ON THE LEVEL OF DETAIL

The same story can be told in different levels of detail. Your choice
of level (or levels) should be based on how much you know about a

Key Points for “Make a Payment” Collaboration

• Use a sequence diagram—keep it simple (not a lot of
adornments).

• Point out calls to backend banking system that could be
bottlenecks.

• Start with a well-formed request (don’t explain UI details).

• Relate the diagram to the “Make a Payment” use case.

Wirfs.book Page 243 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

244

collaboration and how much you want to reveal. There are at least
these different views of a collaboration:

� A bird’s-eye view of system components and subsystems show-
ing the overall architecture and general collaboration paths

� A view showing only participants in some collaboration (and
omitting all interaction)

� A sequence of interactions among collaborators

� An in-depth view that explains how objects interact under
exceptional conditions or that goes into more details

� A focused view that ignores some aspects in order to concen-
trate on specific collaborators and their interactions

� An implementation view

� A generalized view that illustrates how to adapt a collaboration

After you’ve decided what to tell, plot the best way to tell it.

Showing a Bird’s-Eye View

You don’t have to stick to describing collaborations among individ-
ual objects. At the highest level, you can show how a system is
organized into subsystems and illustrate their collaborations. A sub-
system in UML looks like a file folder with either a fork symbol or the
word subsystem enclosed in double angle brackets (see Figure 7-1).
The file folder symbol is called a package symbol. It can be used to
designate a subsystem. To say that one subsystem depends on
another (shown by a dashed line with an open arrow pointing to the
dependent) means that the dependent likely uses services defined
by that subsystem.

In UML, a package can
organize any arrangement of
design elements—from a set
of classes to everything
designed to support a number
of use cases. When labeled
with a fork or <<subsystem>>
designation, a package
represents a subsystem.

Figure 7-1
The UML package symbol can be used to represent subsystems. A dependency
is drawn as a dashed line ending with a stick arrow.

Wirfs.book Page 244 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

245

Paths of communication between subsystems can be shown more or
less precisely. For example, you can illustrate precisely which inter-
faces are offered by each subsystem and which clients use them. An
interface symbol can be drawn rather imprecisely as a lollipop figure
(a circle attached to a line), or more precisely as a box with two com-
partments (see Figure 7-2).

Even if you’re looking at a system from 30,000 feet, you can choose
from among several degrees of precision to describe subsystem col-
laborations. If you’ve just begun, you may choose to show only gen-
eral paths of collaboration. At a more detailed level, you can
enumerate the operations supported by each subsystem interface
(see Figure 7-3). You can always revise drawings and add interfaces
after they’ve been designed.

If you wish you can explain even more about how a subsystem is
designed. You can draw a subsystem that is divided into three com-
partments. These compartments describe interfaces and explain
how they are realized by classes within the subsystem (see Figure
7-4). Most of the time you don’t need to be so precise.

Showing Collaborators Only

You may want to include a high-level explanation of your objects’
responsibilities and collaborators in your story, so use CRC cards.
You can transfer these cards to a high-level design document. But
what next? Sometimes, looking at specific message sequences gets in
the way of seeing the potential pathways between collaborators. To
highlight these pathways, you can illustrate your CRC cards with a

Figure 7-2
Interfaces can be drawn showing more or less detail.

How many diagrams you draw
and how precisely you draw
them should be based on your
project’s goals and design
process. Use diagrams
to communicate ideas.
Diagrams hastily drawn on
white boards are likely to be
less precise than those drawn
in a tool. Consider how much
information your intended
audience really needs to see
before adding it.

If you want to paint
collaborations with broad
brush strokes, stop short of
describing specific messages
between objects or
identifying classes. Instead,
emphasize paths of
communication between key
collaborators.

Wirfs.book Page 245 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

246

simple UML collaboration diagram. In its simplest form, a collabora-
tion diagram includes only objects and their collaboration relation-
ships (see Figure 7-5).

A straight line, called a link, establishes a relationship between two
collaborators. One thing that isn’t apparent from the simple drawing
in Figure 7-5 is who is collaborating with whom. Are two linked
objects both sending messages to each other? Most likely not. Proba-
bly the collaboration is only one-way. To make this perfectly clear, you
can put a visibility arrow at the end of the link pointing to a collabora-
tor that is seen by the object that uses its services (see Figure 7-6).

Extra precision can illuminate, but it can be constraining, too. If you
add visibility arrows to some links, people will expect them every-
where. But what if you don’t yet know who is collaborating with
whom? If you don’t know something, don’t specify it. You can always
redraw any diagram to reflect current reality. If you decide that two

Figure 7-3
A subsystem symbol can be divided into compartments. Publicly accessible operations and interfaces can
be defined.

Wirfs.book Page 246 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

247

Figure 7-4
A subsystem’s interfaces can be mapped to their realization. Not all classes are shown.

Figure 7-5
A simple UML collaboration diagram shows roles and collaboration paths.

Wirfs.book Page 247 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

248

objects are co-collaborators, you can draw arrows on both ends of a
link. But don’t feel compelled to add these details just because UML
lets you.

The degree of precision you use on a diagram should be a conscious
choice. Even if you do know who is collaborating with whom, you
need not specify it diagrammatically. After all, this isn’t your only
means of explanation. A collaboration diagram can include more or
less detail and still be accurate (but less precise). People will proba-
bly understand your collaborations without this extra precision.

Even collaborators can be labeled more or less precisely. You can
distinguish between a role and an object. The way you do so is sub-
tle: The name of a role is preceded by a backslash character (“/”);
the name of an object is not (see Figure 7-7). You can both name an
object and identify its role.

Should you wish to be even more precise, you can specify the class
that implements the object or role (see Figure 7-8). You designate the
class by following its role and instance name with a colon and class
name (“:” class name).

Of course, this may be far more precision than you need. If you’ve
created a role that can be assumed by objects belonging to different
classes, you have no need to ever specify its class. Or if you’ve deter-
mined a role but haven’t yet mapped it to its implementation, desig-
nating its class is premature.

Figure 7-6
The collaboration diagram can be drawn to show object visibility.

“Precision is not the same as
accuracy. If someone tells
you, ‘pi is 4.141592,’ they are
using a lot of precision. . . . If
they say pi is about 3, they are
not using much precision . . .
but they are accurate for as
much as they said.”

—Alistair Cockburn

The less precisely you draw
any diagram, the fewer times
you will need to update it but
the less information it will
convey.

Wirfs.book Page 248 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

249

Figure 7-7
You can specify both role names and object names on a collaboration diagram.

Figure 7-8
Collaborations can show object names, role names, and class names.

Wirfs.book Page 249 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

250

Showing a Sequence of Interactions Among Collaborators

A collaboration diagram, drawn with an appropriate degree of preci-
sion, sets the stage for illustrating subsequent interactions. These
specific interactions can be illustrated either with another, more
elaborate collaboration diagram or with a sequence diagram. To
show sequence, you can add lines with arrows next to collaboration
links on a collaboration diagram (see Figure 7-9). Each line repre-
sents a specific message between two collaborators. The arrow
points from client to collaborator. Sequence is indicated by numbers
that label message names. If you want to show a different sequence,
you draw another collaboration diagram.

As an alternative, you can use a sequence diagram (see Figure 7-10).
It, too, can be used to illustrate a specific interaction. Objects are
located along the top. Their lifelines are drawn as a vertical line.
Instance creation and destruction can be shown. When an instance
is created, its lifeline appears; when it is destroyed, it terminates.
Messages are drawn as lines with arrows, similar to those on the col-
laboration diagram. But they are not numbered. Sequence simply
proceeds from top to bottom.

Sequence diagrams and
collaboration diagrams can
show roughly the same
things, and many tools let you
transform from one form to
another without losing
information. Which form you
choose is a matter of style
and emphasis.

Figure 7-9
A UML collaboration diagram emphasizes relations among objects.

Wirfs.book Page 250 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

251

Showing an In-Depth View

Numerous things can be shown in an interaction sequence: branch-
ing, object creation, destruction, iteration, asynchronous communi-
cation, active objects (those that represent a flow of control), even
recursion. If you need to visually represent complex interactions,
you can get very elaborate.

If an interaction involves complex decisions, you can dress up a dia-
gram to explain alternative paths (see Figure 7-11). Instead of march-
ing along in strict sequence, flow proceeds along a chosen path.
Expressions, called guard expressions and enclosed within brackets,
specify which path will be taken. A guard is an expression that must
evaluate to true before the message can be sent. UML doesn’t specify
the language for guard expressions, so you are free to use plain text,
mathematical expression, or even pseudo-code.

In an application in which timing constraints must be met, sequence
diagrams can be annotated with timing marks, event identifiers, and
timing expressions (see Figure 7-12). To draw a timing mark that
describes how much time has elapsed, you draw a vertical bar with a
time value expression. A timing expression, like a guard condition,
can be written more or less informally. If events that invoke a mes-
sage are added to a diagram, timing expressions can use them.

/Presenter
:SpeakerDLL

/Bidder
:GuessDictionary

:Timer

handleTimeout()

present(Guess)

bidOn(Message)

bid

Present a Guess

guess

:MessageBuilder :Guesser

nextGuess(Message)

Figure 7-10
A UML sequence diagram emphasizes the sequencing of messages.

“Sequence diagrams aren’t
depictions of precise
execution semantics; they
are statements of desired
communications under a
limited set of conditions
which may never occur in a
normal running program.”

—David Harel

Wirfs.book Page 251 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

252

A concurrent application has more than one flow of control—that is,
more than one set of interactions can be happening logically at once.
You can describe interactions for a concurrent application using
only these few additional UML constructs: active objects, asynchro-
nous messages, and broadcast messages (see Figure 7-13). In UML, a

/Guess
:Letter

/Guess
:Word

/Guess
:Sentence

:MessageBuilder

addTo(Message)

addTo(Message)

addTo(Message)

polymorphic
branching

Figure 7-11
A UML sequence diagram can show polymorphic messaging.

:MessageBuilder /Presenter :Timer/Selector

present(Guess)

handleTimeout()

handleSelection(Guess)

{b – a < Guess.WaitPeriod}

{c – a = Guess.WaitPeriod}

b

a
Timing
constraints

c

Timing
constraints

Figure 7-12
You can add timing constraints to a sequence diagram.

Wirfs.book Page 252 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

253

class can be designated as being active. An active class is a class
whose instances are active objects. When an instance of an active
class is created, its associated flow of control starts, too. When the
instance is destroyed, its flow of control terminates. An active class
can create instances that are either heavyweight (processes) or
lighter weight (threads). A process represents a flow that executes
concurrently with other processes, whereas a thread executes con-
currently with other threads in the same process. In a system with
both active and inactive objects, both kinds of objects communicate
with one another. In UML diagrams, an active object is drawn with a
bold border. Messages can be sent asynchronously or can be broad-
cast to a number of objects.

Showing a Focused Interaction

At times, it is desirable to treat part of the system as a black box
whose contents are purposely hidden. This technique lets you focus
on a part that is of particular interest that you want to describe. Per-
haps you want to show how user actions stimulate some part of your
design into action. In this case, you remove most UI details, ignore
the myriad objects in a screen, and assume that those necessary
objects can be assembled and play their interfacer roles. Yes, you

:UserProfile /Presenter :Timer

changed()

changed()

changed()

changed()

broadcast
messages

active object

/Bidder
:Alphabet

/Bidder
:Vocabulary

Figure 7-13
Sequence diagrams can highlight active objects and show message broadcasting.

“Building a system that
encompasses multiple flows
of control is hard. Not only do
you have to decide how best
to divide work across
concurrent active objects . . .
you also have to devise the
right mechanisms for
communication and
synchronization For that
reason, it helps to visualize
the way these flows interact.”

—Grady Booch

Wirfs.book Page 253 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

254

are removing a lot of detail. This detail will have to be dealt with
fairly soon. But you don’t want to explain those objects if your story
is trying to emphasize what happens after the user clicks the Save
button.

Showing an Implementation View

If you are documenting something that is already implemented, you
want to be very accurate; what you see on a diagram is precisely
what has been coded. But even so, your diagrams include fewer
details than are found in code. Diagrams are not executable specifi-
cations. As a consequence, unless you explicitly label it, it will be
impossible to tell whether a diagram illustrates a proposed or a
working solution. Make this perfectly clear in your diagram’s title.
And include specific facts—message signatures, significant return
values, branches, and interaction. But don’t show everything. It is up
to you to decide what deserves emphasis in a diagram. There’s
always code to read.

Showing How to Adapt a Collaboration

You may have designed collaborators to be configurable—to be
adapted by replacing one collaborator with another, by setting

To remove detail about UI interactions, ignore individual keystrokes,
button clicks, or what happens when the cursor moves in and out of
focus. You can represent requests as being UI-independent, if you
like. Instead of notification of button click events in a particular mes-
saging protocol defined by a particular UI implementation, they can
be logically shown as requests to “make a payment” or “view
account history” or “save a file.”

When you draw a sequence diagram with this focus, you aren’t really
lying about the UI. Instead, you are abstracting away its details so
that you can concentrate on what happens when your system
receives notification of an important UI event. Even if your design
must update the UI, these details, too, can be summarized with a
message at the same level of abstraction: “present confirmation” or
“present account history” or “return control to the user.”

UI details are elided for a reason. You are confident that you can con-
struct a lower-level model of the UI using an arrangement of objects
(even though this can be quite a lot of work). But this is not the focus
of your collaboration story (see Figure 7-14).

Have you ever seen those
cartoon-style maps that
exaggerate a particular point
of view and shrink everything
else to minute proportions?
Seen from New York, the rest
of the United States appears
scrunched into a tiny space
until the outline of California
appears. This is the same
technique you use when you
want to focus on one part of a
collaboration.

“You will work with different
semantic levels in developing
an application; it is a normal
part of software design. . . .
Each shift from one level to
another requires a design
step.”

—James Rumbaugh

A diagram is useful only
if it shows the right stuff.
Simply because you can
automatically generate
diagrams from code isn’t a
good reason to create piles
of them. Piles of diagrams
obscure rather than
enlighten.

Wirfs.book Page 254 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

255

certain conditions or parameters, or by plugging in new objects to
complement existing ones. To explain how to adapt a collaboration,
you really need to explain three things: how the current design works,
which aspects are adaptable, and how to make these adaptations.

Start by concretely explaining how your design works. After you’ve
done this, explain how to adapt your design. If your adaptation is
simple, you can use the techniques we’ve already presented. You can
also provide a simple step-by-step description of how to make an
adaptation.

To Add a New Kind of Guess

1. Define a class that implements the Guess interface. This type
of object must know contents, formatted for both display and
speech, know how long to wait before continuing with another
guess, and be able to add itself to a message. Specifically, it
must implement these methods:

public String displayableText()
public String speakableText()
public String getContent()
public Duration waitTime()
void addTo(Message m)

Continues

:SaveCommand :Document

“save the document”
save()

. . .

a message called
“perform()” wouldn’t

describe the semantics

details of how the user saves are represented by a single event

details purposely
omitted

UI

Figure 7-14
A user event from the UI subsystem starts the collaboration.

Wirfs.book Page 255 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

256

To emphasize objects and collaborations that are adaptable on a dia-
gram, use notes to tag places where new collaborators could be
plugged in (see Figure 7-15).

You may have developed a pattern of collaborating roles instead of
collaborating objects. Instead of being adapted, this collaboration
must be adopted (or instantiated) by designing multiple objects that
fill these specific roles and plug into a stylized collaboration archi-
tecture. To communicate how a generalizable collaboration works,
at the very least you must describe each role and discuss its specific
responsibilities and collaborations. Of course, there is much more to
describing a full-blown pattern than what we outline here.

2. Define a class that implements the Bidder interface. This type
of object will contain all of the corresponding Guess objects
and determine which is most relevant to the current message.
Then wrap up the chosen Guess and the numeric bid value in a
Bid object. Specifically, it must implement

Bid bidOn(Message m)

Figure 7-15
Notes can show where collaborators are configurable.

Wirfs.book Page 256 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

257

You can use a UML drawing, called a collaboration, to illustrate a
generalizable grouping of collaborating roles (see Figure 7-16).
Dashed lines are drawn from the named collaboration to each partic-
ipant. Lines are labeled with role names.

This drawing is very similar to a high-level collaboration diagram but
serves a narrower purpose. You can illustrate how a particular
implementation plugs in and realizes the collaboration by showing
how specific classes generalize the roles in the collaboration (see
Figure 7-17).

Figure 7-16
The Observer pattern has two roles: a subject and an observer.

Figure 7-17
A collaboration diagram can show objects that realize the Observer pattern
roles.

Wirfs.book Page 257 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

258

You can identify roles (not just objects and their classes) on a
sequence or collaboration diagram, too (see Figure 7-18). Thus, it is
simple to explicitly illustrate how roles in a collaboration interact.

Where UML Diagrams Fall Short

Still, the best way to “see” isn’t always with a diagram. Consider
complex algorithms. It’s hard enough to figure out that sorting is
going on by reading a sequence diagram, let alone discriminate the
key aspects of the algorithm. A sequence of messages doesn’t illus-
trate any side effects. So you can’t see what happens when an object
is added to a hashtable or when a buffer overflows. And unless you
add explicit annotations, you won’t know what conditions cause
branching, iteration, or the successful completion of the algorithm.
Algorithmic details are better expressed in words, pseudo-code, real
code, a BNF-grammar, a state machine diagram, decision tables, or
pictures that identify and illustrate the important aspects and char-
acteristics of the algorithm (see Figures 7-19 through 7-23). This
doesn’t mean that you shouldn’t draw a sequence diagram; it just
won’t explain these algorithmic details.

observersubject

/subject
:CommandQueue /TaskHandler

update()

getNextCommand()

Figure 7-18
Observer role interactions can be shown in a sequence diagram.

There is only so much you can
piece together by studying a
sequence diagram. Looking at
one is like observing a
butterfly in flight. You can see
what flowers the butterfly
visits and in what order, but
you won’t know why it
chooses to visit one flower
over another or how it affects
a flower. Unless there is some
other explanation, you won’t
know the effect a message
has on the object receiving it.

The algorithm for bubble sort consists of two nested loops. The inner
loop traverses the array, comparing adjacent entries and swapping
them if appropriate, while the outer loop causes the inner loop to make
repeated passes. After the first pass, the largest element is guaranteed
to be at the end of the array; after the second pass, the second largest
element is in position, and so on. That is why the upper bound in the
inner loop decreases with each pass; we don’t have to revisit the end
of the array.

Figure 7-19
Text is often the best way to describe something.

Wirfs.book Page 258 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

259

Consider the array 42,56,13,23

Let’s start sorting.

42,56,13,23 no swap

42,56,13,23 swap

42,13,56,23 swap—end of 1st pass outer loop

42,13,23,56 swap

13,42,23,56 swap—end of 2nd pass outer loop

13,23,42,56 no swap—end of 3rd pass, sorted

Figure 7-20
Visualizing the bubble at work demonstrates the algorithm clearly.

Bubble Sort Code

class BubbleSorter
{
 void sort(int a[])
 {
 for (int i = a.length; --i>=0) {
 boolean swapped = false;
 for (int j = 0; j<i; j++) {
 if (a[j] > a[j+1]) {
 int T = a[j];
 a[j] = a[j+1];
 a[j+1] = T;
 swapped = true;
 }
 if (!swapped) return;
 }
 }
}

Figure 7-21
Code makes the bubble sort algorithm clear . . . to a programmer.

Wirfs.book Page 259 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

260

Every message on a sequence diagram has equal visual significance.
Nothing stands out as special unless you add a note or guard expres-
sion or write some commentary. What appears to be a recurring
pattern may not be. Although the collaboration paths look identical,
the messages vary. So, for example, if you want to emphasize how
exceptions to a happy path scenario are handled, a table can be an
extremely useful addition to your story (see Table 7-1). You can use a
row in a table to describe specific information about each exception:
a general description, where it is detected, and how it is resolved.
You can even highlight, perhaps by shading their row, those excep-
tions that aren’t recoverable.

Explaining these things on a sequence diagram alone would be diffi-
cult, if not impossible.

:BubbleSorter :Array

*[loop thru array array size times]
 get jth element

*[loop pass number-1 times]

 [if a[j] > a[j+1]]

sort(anArray)

get j+1th element

set jth element

set j+1th element

Figure 7-22
A sequence diagram is not the best tool for documenting the bubble sort
algorithm.

Wirfs.book Page 260 Friday, October 11, 2002 11:44 AM

Deciding on the Level of Detail

261

:UserSession :MakePayment
Transaction Legacy ServerUI

performTransaction()

result

result
result

submitRequest()

makePayment()

connect()

prepareRequest()

submitRequest()

disconnect()

logResult()

Figure 7-23
Sequence diagrams are best used to show happy path interactions.

Wirfs.book Page 261 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

262

Table 7-1 A table explains online banking transaction exceptions and their
impacts on the system and its users.

Exception or Error Recovery Action Effect on User

Connection is dropped
between UI and domain
server after transaction
request is issued.

Transaction continues to
completion. Instead of
notifying user of status,
transaction is just logged.
User will be notified of
recent (unviewed) trans-
action results on next
login.

User session is termi-
nated. User could've
caused this by closing
browser, or the system
could have failed. Users
will be notified of trans-
action status the next
time they access the
system.

Failure to write results of
successful transaction to
domain server log.

Administrator is alerted
via console and e-mail
alerts. Transaction infor-
mation is temporarily
logged to alternative
source. If connections
cannot be reestablished,
the system restricts
users to read only and
account maintenance
requests until transaction
logging is reestablished.

Users can see an
unlogged transaction in
transaction history con-
structed from backend
banking query but won't
have it embellished with
any notes they may have
entered.

Connection dropped
between domain server
and backend bank
access layer after
request is issued.

Attempt to reestablish
connection. If this fails
after a configurable num-
ber of retries, transac-
tion results are logged as
“pending” and the user is
informed that the system
is momentarily unavail-
able . . . check in later.
When connections are
reestablished, status is
acquired and logged. Fur-
ther logins are prevented
until backend access is
reestablished.

User will be logged off
with a notice that system
is temporarily unavailable
and will learn of transac-
tion status on next login.

Backend banking request
fails.

Error condition reported
to user. Transaction fails.
Failed transaction is
logged.

User receives error noti-
fication but can continue
using online services.

Wirfs.book Page 262 Friday, October 11, 2002 11:44 AM

Choosing the Appropriate Form

263

CHOOSING THE APPROPRIATE FORM

Drawings you created using a tool have a certain polish. They appear
solid and finished; a design illustrated with them must be good,
right? But they aren’t the only way to communicate. Illustrations,
charts, written explanations, tables, and CRC cards all have a place
(see Table 7-2). Common sense tells us that any diagram should
show less detail than can be found in code, and any written explana-
tion should offer something more than can be found on CRC cards.
This still leaves a lot of leeway.

Consider what you want your readers to learn by studying a particu-
lar collaboration story. Then decide how best to tell each part. Base
your decisions on several factors: where you are in design, what you
want to communicate, and which tools and how much time you have
available. If you are just beginning, your collaboration stories proba-
bly aren’t very elaborate. The further along you are, the more likely
you are to include more detail.

Table 7-2 Many collaboration representations and options are available.

Goal
Simple
Representation Options

Describe responsi-
bilities and
collaborators.

Use CRC cards. Transfer information on cards
to a document.

Show collaboration
relationships among
objects.

Draw a simple collabo-
ration diagram.

Add visibility links to make
explicit who collaborates with
whom.

Show paths of col-
laboration among
subsystems.

Draw a subsystem
diagram with depen-
dencies.

To be more precise, add sub-
system interfaces.

Illustrate an interac-
tion sequence.

Draw a collaboration
diagram.

To be more formal, draw a
sequence diagram.

To explain how objects are
affected, add a running
commentary.

To explain interactions among
subsystems, treat them as “big
objects” and describe mes-
sages between them.

Continues

To tell stories that have
impact and present insights,
you’ll need to develop a wide
range of expression that
includes words, charts, CRC
cards, UML diagrams, and
other illustrations.

Wirfs.book Page 263 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

264

TELL IT, DRAW IT, DESCRIBE IT: GUIDELINES

Theodore Strunk and E.B. White wrote The Elements Style in 1935.
Since then, countless writers have turned to this slim book for
straightforward advice. Strunk and White’s words ring true for soft-
ware designers, too. Form, presentation, and content matter. The fol-
lowing guidelines for describing collaborations are based on the
principles outlined in Strunk and White’s book.

Do not overwrite. Sure, you can keep written explanations brief
and to the point, but what about drawings? If a picture is worth 1,000
words, are 10 pictures worth 10,000 words? Certainly not. Consider
each drawing’s purpose. Your goal should not be to use every UML

Explain complex
algorithms.

Create a visual anima-
tion or storyboard.

Pseudo-code.

Draw an interaction diagram
and annotate it with information
that explains branches and
choices and makes algorithmic
details more evident.

Describe detailed
interactions.

Use either a collabora-
tion or a sequence
diagram.

Add timing marks, guards,
branches, loops, recursive
calls, and notes to the diagram.

Include a running commentary.

Describe design
alternatives.

Write a brief descrip-
tion of alternatives and
rationale for options
chosen.

Additional sequence or collabo-
ration diagrams that illustrate
key alternatives.

Describe how to
reconfigure a collab-
oration.

Define a collaboration.

Define responsibilities
of configurable objects.

Draw a typical interac-
tion sequence. On it,
identify where config-
urable alternates can
be plugged in.

Write a recipe describing a
step-by-step procedure for
configuring a collaboration.

Include examples or sample
code.

Table 7-2 Many collaboration representations and options are available. (Cont.)

Goal
Simple
Representation Options

Joe Molloy, a graphics design
teacher, says that writing and
drawing use parallel
strategies. Although your goal
is probably not to become a
talented writer or visual artist,
you can apply Strunk and
White’s advice to describing
and illustrating your
collaboration stories.

Wirfs.book Page 264 Friday, October 11, 2002 11:44 AM

Tell It, Draw It, Describe It: Guidelines

265

feature in a diagram. Instead, draw at the level of detail your audi-
ence needs. If collaborations are similar, show a typical case first and
then note how remaining ones differ. Draw representative interac-
tions. Consider your readers’ attention span as well as what you
want to communicate.

Do not overstate. Any explanation can include more or less infor-
mation. Our advice: Don’t tell more than what you believe at any
given point in your design. Don’t dress up a collaboration story with
speculation. If you know only general paths of collaboration, don’t
show specific messages. If you know specific messages but not the
arguments, don’t invent arguments just to fill in the blanks. Be as
specific as you can, but don’t state more than you will feel comfort-
able defending in a review.

Omit needless words. Stop short of telling everything. Keep your
explanations to the point. There are ways to avoid clutter in techni-
cal writing. We mention a few particularly relevant techniques. Don’t
start a discussion with metatext—text that describes the text that
follows. Don’t pile on extra words or invent jargon; use simple lan-
guage. Don’t blindly fill in the blanks of a heavy-handed template; say
what you want to say, and stop.

But how can you keep drawings simple without oversimplifying
them? Too much clutter on a diagram will cause your readers to tune
out, just as too many words will. Visual equivalents of needless
words include the following:

� Values returned from message sends

� Internal algorithmic details

� Details of caching and lazy initialization

� Object creation and destruction

Sometimes, these details are important. If so, take exception to our
guideline. Most of the time, however, they just add clutter. Show
return values only when they affect or alter the message flow. Or, if
you can’t see how one object could possibly collaborate with
another, perhaps show that it was returned earlier.

Omit details of how objects do low-level tasks. Stop short of explain-
ing how preexisting objects work. Describe only how they are used
by objects of your design; do not show their collaborations (unless
they interact with your objects). Don’t describe collaborations with
primitive data types unless you really are trying to explain how a col-
lection or string is used. These are probably implementation details.

Wirfs.book Page 265 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

266

Revise and rewrite. If people don’t understand what you are say-
ing, rewrite. If people don’t understand a diagram, redraw it. If certain
people want to see some things and others do not, draw two ver-
sions: an abridged one and an unabridged one. Sometimes, the same
story needs to be told slightly differently to different audiences.

If a diagram becomes too complex, you can break it into smaller sub-
diagrams. UML lets you draw a dangling message arrow on one dia-
gram (meaning that details aren’t shown there) that can lead to a
hanging message arrow in another diagram (see Figures 7-24a and
7-24b). To explain how these diagrams are linked, you’ll need to add
a note.

If a diagram is too simple, add missing details. But think before you
pile them on. What was misunderstood? Was some internal detail
unclear? If so, perhaps it is better explained in another form. Maybe
your readers should be reading code to get these details. Attach an
explanatory note instead of adding several low-level collaborators.
These low-level messages might make the diagram too busy and
might cause important collaborations to become lost in these new
details.

Do not affect a breezy manner. Don’t fudge on details. Are CRC
cards too breezy? They are if you want to explain an interaction
sequence. In that case, CRC cards don’t go far enough. You are being
breezy if you intentionally leave things understated, undrawn, or
unexplained because you cannot be bothered or because you don’t
know the answer.

Just because things are hard to communicate or take time to draw,
don’t leave them unexplained. If you need to illustrate and explain
things, too, don’t worry about being redundant. Repeatedly stating
things in a slightly different fashion adds emphasis. Condense your
work only after you’ve clearly spelled things out. (See the earlier
quideline on revising and rewriting.)

A designer drew two views showing the same collaboration between
subsystems. One view omitted the interface details, and the other
included them. Developers who were going to use these subsystems’
services wanted to know which interfaces to use. Developers who
wanted to understand how their parts of the system were activated
didn’t want to see these details. It was simple enough to draw the
same collaboration both ways. So that’s what the designer did.

A collaboration story, just like
refactored code, improves
whenever it is reworked for
clarity.

When you’re drawing rough
sketches on a white board,
use whatever form seems to
fit your style (and the degree
of precision you are striving
for). White board
collaboration drawings can
be converted to any standard
drawing format when they are
redrawn in a tool.

Wirfs.book Page 266 Friday, October 11, 2002 11:44 AM

Tell It, Draw It, Describe It: Guidelines

267

Don’t arbitrarily limit your diagrams to a single page or to 10 or
fewer objects. Stick with your story. You may have difficulty repro-
ducing a large diagram drawn with a CASE tool on paper or on a Web
page. But worry about that later. Get it down first, and then figure out
how to present it.

Be clear. If you choose the right form of expression, your collabora-
tions will be more understandable. To emphasize message order, use
a sequence diagram. Annotate it to show timing, branching, looping,
return values, and many other things—if these things bring clarity to
your design. If they cause confusion, perhaps you need to explain
things, too. Add a running commentary alongside a sequence dia-
gram, tool permitting, or write commentary in a text editor.

When you want to arrange collaborators in a pleasing fashion, choose
a collaboration diagram. Emphasize which objects are important by

Figure 7-24a
Dangling arrows can be used to link two diagrams.

 If you are focusing on
interactions between domain
objects, stick to a description
of their interactions. Don’t
explain how database
connections are established
in order to store and retrieve
them. This may be interesting,
but why are you talking about
this now?

Wirfs.book Page 267 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

268

placing them in the center. Place a controller in the middle to empha-
size the delegation to objects surrounding it. Messages radiate from
it like spokes on a wheel. Put a coordinator in the middle and
arrange its collaborators around it (see Figure 7-25).

Or you can organize objects according to their position in a layered
architecture. This approach will let you see that messages follow a
layered communication pattern: flowing either between objects in a
given layer or from an object within a given layer to objects in adja-
cent layers. Whatever your strategy, try to arrange collaborators so
that people won’t have to hunt for the next message in sequence.

To improve legibility, you can limit the number of objects and mes-
sages on a diagram. An interaction will be more understandable
when it shows a limited number of messages (25 or fewer) between a
limited number of participants (10 objects or fewer) with nominal
branching.

Figure 7-24b
Hanging arrows can also be used to link two diagrams.

Wirfs.book Page 268 Friday, October 11, 2002 11:44 AM

Tell It, Draw It, Describe It: Guidelines

269

Make sure the reader knows who is speaking. Sticking to a
single point of view is equivalent to speaking in one voice. If you are
telling a story from one perspective, stick to that storyline. If you are
explaining how subsystems collaborate, don’t drop down two levels
of detail and show objects inside those subsystems collaborating
with objects from a standard library. Do not shift between outside
and inside views. Present internal subsystem details in another dia-
gram. To explain things, you often have to dive in and explain how
some things work at the next level of detail. But if you do so, don’t
inadvertently raise more questions than answers or detract from
your main point. So if your intent is to show how a complex responsi-
bility is divided among collaborators, show which helper methods
are invoked. But stop there. Don’t show how the helper methods
work unless these details are relevant to your story. And after you’ve
burrowed down two or three levels or have moved to the side to fol-
low a distant collaborator, it can be easy to get lost.

Figure 7-25
A coordinator is surrounded by the things it delegates to or receives requests
from.

“The first rule of style is to
have something to say. The
second rule of style is to
control yourself when, by
chance, you have two things
to say; say first one, then the
other, not both at the same
time.”

— George Polya

Wirfs.book Page 269 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

270

Don’t change your voice or add new voices to your discussion. Par-
enthetical comments and notes are often spoken with a different
voice and tone. When you point things out too often, people stop
reading. Too many parenthetical comments, cautionary notes in text,
or even notes on diagrams convince your readers that you speak
hesitantly.

Use these devices only when you really have something important to
say and you want it to stand out.

ORGANIZING YOUR WORK

The best way to present a story isn’t likely to be the same way it was
developed. Consider which topics belong together and which ones
deserve special emphasis. Ideally, closely related information
belongs together. But when you’re explaining collaborations, it can
be hard to structure information. Everything is interconnected!
Should you explain your objects, before describing their collabora-
tions? Should you present an overview before going into details?
Should you present details first, and then explain the principles
behind them, or vice versa? What if you are telling your story to peo-
ple who have different interests and backgrounds?

Anticipating questions that would be asked at a presentation, a
designer included answers (parenthetically enclosed) in running
commentary about a high-level interaction. (She chose to parenthe-
size this side commentary so as to not detract from the main flow.)
These parenthetical comments (even with the best of intentions)
were quite distracting and impossible to skip over. (They might
include something of interest, so you just had to read them. But it
turns out they weren’t of general interest. They included only details
that some folks might question.) After she removed the parenthetical
comments, the commentary was surprisingly easy to read.

This is a distraction—ignore it!

NOTE: This is really, really important!! Keep notes to 2% or less of
what you are saying, unless you like writing stuff that nobody
reads.

Wirfs.book Page 270 Friday, October 11, 2002 11:44 AM

Organizing Your Work

271

Adding Emphasis

You can consciously attempt to emphasize or deemphasize certain
parts of your story. Certain things gain prominence, whether you like
it or not, merely by their position or their appearance. You need to
be aware of these factors so that you can give aspects of your story
proper emphasis. Here are some ways to increase emphasis:

� Put something first. Things that appear first have more empha-
sis. That’s why we recommend that you orient your readers
first before plunging into your collaboration story. It’s also why
we relegate topics that aren’t central to an appendix.

� Highlight something. In UML, active objects are drawn with
bold lines.

� Surround text with white space.

Surrounding an example with white space and
making text bold give it double emphasis.

� Give something more space. If explanations are lengthier, are
they necessarily more important and deserving of extra empha-
sis? No. But they will have it. If the name of one object is longer
than another’s and your tool draws a larger shape, the longer-
named object will gain emphasis.

� Place something in the center. Attention is drawn to objects in
the middle of a collaboration diagram.

� Make a bulleted list.

� Refer to something many times. If you talk about some object
or some collaboration pattern or some subsystem in many dif-
ferent places, it will be emphasized.

� Restate things in different forms. Showing exceptional paths as
well as describing them in a table increases their emphasis.
Adding a running commentary to an interaction reemphasizes
the actions.

Unfolding Your Story

There are ways to begin simply and then lead to more interesting or
intricate views. Landscape architects use the principle of progres-
sive realization to design linked scenes. They design views that pur-
posely conceal things that are revealed only as you move through

“Emphasis is a way of
distinguishing the two
percent of the content that is
most important from the
remaining ninety-eight
percent.”

—Ben Kovitz

If explanations are too
lengthy, they can put your
reader to sleep. Giving an
inconsequential item too
much space causes readers
to tune out and ignore
whatever follows.

Wirfs.book Page 271 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

272

the landscape. The idea is to move the viewer to the desired destina-
tion in gradual, interesting steps. Something new and interesting is
around every corner! John Simonds, in his book Landscape Architec-
ture, states, “A view should be totally revealed in its fullest impact
only from that position in the plan where this is most desirable.”
Each view is intriguing in its own right. And each new view contains
new surprises. With progressive realization, pleasure builds in antici-
pation of what’s around the corner.

You, too, can set up your readers to comprehend things more deeply
as they move through your collaboration landscape. Your collabora-
tion stories will benefit from pacing, emphasis, and progressive real-
ization techniques.

Understanding What’s Fundamental

Ben Kovitz, in Practical Software Requirements, admits that achieving
an ideal sequence—in which every explanation precedes its use in
any description that follows—is difficult, if not impossible. Present
your stories in a way that builds interest and momentum instead of
worrying about eliminating forward references. Even if you could
manage to organize your story so that fundamentals were presented
first, it could make for a very dull presentation.

Readers’ interests and backgrounds differ. Some may know more
than others and don’t want to be bored by a review of things they
know. Others may be looking for specific facts. Still others may want
to know only the punchline. There are many reasons to tell a story in
one way or another. If you know that some readers may lack funda-
mentals and while others are not patient enough to wade through
them, you’ll have to choose which things come first. Things that are
only moderately interesting, or are background material, can always
be relegated to an appendix.

When you’re telling a high-level collaboration story, stick to the main
points. Present it as if it were a news flash. Your audience will want to
scan the headlines before deciding to read further. So grab their
attention. Present the fundamentals first: who the players are, what is
important about them, and how their collaborations work. Reveal
only enough to keep readers engaged. After they’ve read this over-
view, direct them to more detailed explanations. After explaining
typical cases, give your readers options to veer off in one of several
directions: to a more detailed view, to exceptional conditions, to
alternatives.

“I must begin not with
hypothesis, but with specific
instances.”

—Paul Klee

Even if you try very hard,
you can’t avoid forward
references. If an object
collaborates with another—
and you haven’t yet read a
description of that second
object’s role and
responsibilities—you can
only guess at why it is being
used.

Wirfs.book Page 272 Friday, October 11, 2002 11:44 AM

Organizing Your Work

273

Deciding whether some information is more fundamental than other
information can be tricky. These heuristics, based on Ben Kovitz’s
work, are equally applicable to collaboration stories as to software
requirements:

� Information not within your power to choose or change is more
fundamental than those things that are under your control. So
descriptions of a problem (which is not something you are
likely to alter) should generally come before solutions (which
are your own creation). This means that use cases are more
fundamental than the collaboration diagrams that illustrate
them.

� Things are more fundamental than relations between them,
their attributes, and their actions. So ideally, you would want to
understand objects, their responsibilities, and their purpose
before understanding their collaborative relationships or how
they participate in specific interaction sequences.

� The normal case is more fundamental than exceptional cases. A
happy path collaboration is more fundamental than an excep-
tional path-filled collaboration. If you want to explain both, you
should separate the two.

Putting It All Together

So can you emphasize new material while building a story’s energy
and momentum? And when and where should you present funda-
mental information? With progressive realization, each step along
the way presents something new. New things, if they are different
enough from what has already been seen, are looked on with fresh
interest. Your new perceptions are colored by memories—past
impressions shape new ones—and your overall impressions accu-
mulate. That’s how a story can build to a dramatic conclusion: It lays
down the important parts and then presents new material in novel,
interesting ways.

Be aware of monotony setting in. After four or five nearly identical
drawings, attention wavers. If you want to keep your readers’ atten-
tion, shift their focus by inserting commentary that explicitly calls
out some details or explains what’s different in the next diagram. Or
point out that the next five diagrams are similar and all but the most
eager readers can skim them in good conscience. You can’t always
spice up your stories. After all, there are only so many ways to draw
sequence diagrams.

Wirfs.book Page 273 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

274

Progressive realization works if your readers want to follow your
lead and you lead them where they want to go. Those who are seek-
ing specific facts won’t sit still for very much nonsense. To help them
search for facts, include an index or a section that answers fre-
quently asked questions (FAQs). There are many different ways to
put together a story. Pick one and make it work. You needn’t present
fundamentals first. Important things that need emphasis should be
stated first. Pointers to supplementary information can always sat-
isfy the needs and curiosity of those lacking fundamental knowledge.

PRESERVING STORIES

Preserving stories requires commitment to a written and drawn
design record. We offer you this thought on why you should go to
this effort: Do you really want to explain your design over and over
again, or have people make gratuitous changes that break your
design? If not, preserve some key collaboration stories even after the
code is released. After the code is working, detailed design drawings
become less valued by those maintaining the code. They rarely look
outside their code browsers for inspiration. But design discussions
and explanations can increase in value, especially if they tell things
that cannot be inferred from the code. So focus on preserving things
that will have value and impact over time.

Some important collaboration stories are likely to become part of
your permanent design record. It is these that you want to keep up-
to-date. It’s important to distinguish between working and archival
documents. But after you’ve pushed further along in design, the
early stories that you preserved can seem naïve. They need retelling
to keep their currency. However, you don’t want to constantly retell
and redraw as you redesign and recode. Yet you don’t want stories to
get hopelessly outdated.

We offer this simple preservation strategy: Whenever you signifi-
cantly readjust your design, update your collaboration stories.
Changing a message or one of its arguments probably isn’t signifi-
cant. Adjusting what several objects do (or don’t do) probably is.
Revise a story whenever responsibilities shift among collaborators
or newly invented objects become central to the story.

Collaboration ideas will
change as you get closer to a
working implementation. You
can spend a lot of time
spinning your wheels revising
collaborations diagrams
every time you make a slight
change. Avoid this—even if
you are using the ultimate
power design drawing tool.

Wirfs.book Page 274 Friday, October 11, 2002 11:44 AM

Further Reading

275

SUMMARY

As you design how objects collaborate, you will draw many rough
sketches. As you work out details, you may want to describe and dia-
gram specific interactions. Maybe you want to show how your
design supports key use cases or explain tricky exception-handling
logic. In each case, you need to tell a collaboration story.

The best way to communicate a collaboration story depends on
what you want to emphasize. How much detail you show should be
based on how much you know about a collaboration and how much
you want to reveal. Sometimes you want to show things; many times
you also want to briefly explain them. Mostly, you want to get your
ideas across effectively and compactly.

You can use UML diagrams to describe collaboration relationships
and specific interaction sequences. Using UML, you can show collab-
orations at different levels of detail. But sometimes the best way to
explain your design isn’t with a diagram. For example, algorithmic
details are better expressed in words, pseudo-code, real code, a
state machine diagram, or decision tables.

Some important collaboration stories are worthy of being part of
your permanent design record. Use these stories to explain your
design to others. Preserving these collaboration stories requires
some commitment. Unless you are using a roundtrip-engineering
tool, changing detailed design diagrams to reflect actual code can be
difficult. We recommend that you update important stories when
you significantly readjust your design.

FURTHER READING

Ben Kovitz’s book, Practical Software Requirements: A Manual of Con-
tent and Style (Manning, 1998), is about writing software require-
ments. But parts of this book are priceless for all those who want to
improve their technical communications. The chapters on organiza-
tion, clear writing, and small details are worth the price of the book.

Bruce Powel Douglass, in Real-Time UML: Developing Efficient Objects
for Embedded Systems (Addison-Wesley, 1999), has packed a lot of
good advice on how to design as well as describe real-time systems.
If you need to design, describe, or define systems with active
objects, hard timing constraints, and complex state-based models,
there’s a wealth of material in this book.

Wirfs.book Page 275 Friday, October 11, 2002 11:44 AM

Chapter 7 Describing Collaborations

276

There are ways to illustrate collaborations other than those we’ve
explored in this chapter. Ray Buhr, a professor at the University of
Ottawa, invented the use case map. Don’t confuse use case maps
with use cases. The two things are totally different. Use case maps
can be drawn to tie together related responsibilities that are invoked
as a result of a specific chain of events so they can be used to illus-
trate use cases.

A thorough explanation of use case maps can be found by browsing
the Web site www.usecasemaps.org, which is devoted to promoting
the use and understanding of use case maps. A good explanation of
use case maps can be found in the chapter Understanding Macro-
scopic Behavior Patterns in Building Application Frameworks: Object-
Oriented Foundations of Framework Design (Mohamed Fayed, ed.,
John Wiley, 1999).

“Use Case Maps can
express the causal flow of
responsibilities, even without
an underlying structure of
components. Afterwards, the
same UCM scenario can be
placed on top of different
such structures, allowing one
to evaluate different
architectural alternatives. . . .
People working directly at the
level of message sequence
diagrams tend to make many
(premature) decisions.”

 —Daniel Amyot

Wirfs.book Page 276 Friday, October 11, 2002 11:44 AM

Chapter 8
Reliable

Collaborations

enry Petroski, structural engineer and historian, talks of
the need to understand the consequences of failure: “The

consequences of structural failure in nuclear plants are so
great that extraordinary redundancies and large safety mar-
gins are incorporated into the designs. At the other extreme,
the frailty of such disposable structures as shoelaces and light
bulbs, whose failure is of little consequence, is accepted as a
reasonable trade-off for an inexpensive product. For most in-
between parts or structures, the choices are not so obvious.
No designers want their structures to fail, and no structure is
deliberately under designed when safety is an issue. Yet
designer, client, and user must inevitably confront the
unpleasant questions of ‘How much redundancy is enough?’
and ‘What cost is too great?’” As software designers, we too
must make our software machinery hold up under its antici-
pated use.

H

Wirfs.book Page 277 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

278

UNDERSTANDING THE CONSEQUENCES OF FAILURE

Software need not be impervious to failure. But it shouldn’t break
easily. A large part of software design involves building our software
to accommodate situations that, although unlikely, still must be
dealt with. What if the user mistypes information? How should the
software react? What if items a customer wants aren’t available?
Even if the consequences of not delivering exactly what the cus-
tomer wants are not catastrophic, this situation must be dealt with
reasonably—in ways that are acceptable to the customer and the
business. When information is mistyped, why not notify the users
and let them reenter it? Not enough stock on hand? Again, ask the
users to cancel or modify their order. Software should detect prob-
lems and then engage the user in fixing them!

But what if a user is unable to guide the software? Shouting “stack
overflow!” or “network unavailable!” won’t be helpful to the disabled
user of Speak for Me. “Punch in the gut” error messages are unac-
ceptable in that design. It should handle many exceptional condi-
tions and keep running without involving the user.

There is an enormous difference between making software more reli-
able and user-attentive, on the one hand, and designing it to recover
from severe failures on the other hand. Fault-tolerant design incorpo-
rates extraordinary measures to ensure that the system works
despite failure:

The more serious the consequences of failure, the more effort you
must take to design in reliability. Alistair Cockburn, in Agile Software
Development (Addison-Wesley, 2001), recommends that the time you
spend designing for reliability fit with your project’s size and critical-
ity. He suggests four levels of criticality:

� Loss of comfort. When the software breaks, there is little
impact. Most shareware falls into this category.

Telephone switching equipment is extremely complex and yet must
be very reliable. Redundancies are built into the hardware and the
software. Complicated mechanisms are designed to log and recover
from many different faults and error conditions. If a hardware compo-
nent breaks, a redundant piece of equipment is provisioned to take its
place. The software keeps the system running under anticipated fail-
ure conditions without losing a beat.

Wirfs.book Page 278 Friday, October 11, 2002 11:44 AM

Understanding the Consequences of Failure

279

� Loss of discretionary monies. When the software breaks, it
costs. Usually there are workarounds, but failures still impact
people, their quality of work, and businesses’ effectiveness.
Many IT applications fall into this category, as do applications
that affect a business’s customers. If a customer gets over-
charged because of a billing miscalculation, this doesn’t cause
the business severe harm. Usually the problem gets fixed, one
way or the other, when the customer calls up and complains!

� Loss of essential monies. On the other hand, some systems are
critical. At this level of criticality, it is no longer possible to cor-
rect the mistake with simple workarounds. The cost of fixing a
fault is prohibitive and would severely tax the business.

� Loss of life. If the software fails, people could get injured or
harmed. People who design air traffic control systems, space
shuttle control software, pacemakers, or antilocking brake con-
trol software spend a lot of time analyzing how to keep the sys-
tem working under extreme operating conditions.

The greater the software’s criticality, the more justification there is
for spending time to design it to work reliably. Even if it is not a
matter of life and death, other factors may drive you to design for
reliability:

� Software that runs unattended for long periods may operate
under fluctuating conditions. Exceptional conditions in its “nor-
mal” operating environment shouldn’t cause it to break.

� Often, software that glues larger systems together must check
for errors in inputs and must work in spite of communications
glitches.

� Components designed to plug in and work without human
intervention need to detect problems in their operating envi-
ronment and run under many different conditions. Otherwise,
“plug and play” wouldn’t work.

� Consumer products need to work, period. Their success in the
marketplace depends on high reliability.

When you’ve gauged how reliable your software needs to be, you’ll
need to consider key collaborations and look for ways to make them
more reliable. As you dig deep into design and implementation, you
will uncover many ways your software might break. But let’s get real!
It is up to us designers to decide what appropriate measures to take,
to propose solutions, and to work out reasoned compromises—but
extraordinary measures aren’t always necessary.

Wirfs.book Page 279 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

280

INCREASING YOUR SYSTEM’S RELIABILITY

Reliability concerns crop up throughout development. But once you
have decided on the basic architecture of your system, have
assigned responsibilities to objects, and have designed collabora-
tions, you can take a closer look at making specific collaborations
more reliable—by designing objects to detect and recover from
exceptional conditions.

We suggest you start by characterizing the different types of collabo-
rations in your existing design. This will give you a sense of where
you need to focus efforts on improving objects and designing them
to be more resilient. Then identify key collaborations that you want
to make more reliable.

After you’ve characterized your system’s patterns of collaborations
and prioritized your work, you need to get very specific:

� List the exceptions and errors cases you want your design to
accommodate.

� Decide on reasonable exception-handling and error recovery
strategies to employ.

� Try out several design alternatives and see how responsibilities
shift among collaborators. Settle on a solution that represents a
best compromise.

� Define additional responsibilities for detecting exceptions and
obligations of other objects for resolving them if that is part of
your solution.

� Look at your design for holes, unnecessary complexity, and
consistency.

A system is only as reliable as its weakest link. So it makes little
sense to design one very reliable object surrounded by brittle collab-
orators, or to make one peripheral task very reliable while leaving
several central ones poorly designed. The system as a whole needs
to be designed for reliability, piece by piece.

DETERMINING WHERE COLLABORATIONS CAN BE TRUSTED

One way to get a handle on how collaborations can be improved is to
carve your software into regions where trusted communications
occur. Generally, objects located within the same trust region can com-
municate collegially, although they may still encounter exceptions and

“At an architectural level,
the basic patterns, policies,
and collaborations for
exception handling need to
be established early, because
it is awkward to insert
exception handling as an
after thought.”

—Craig Larman

Consider conducting an
“environmental impact study”
on the existing or proposed
architectural environment
where your system may live—
is it a software-friendly fit?

Wirfs.book Page 280 Friday, October 11, 2002 11:44 AM

Determining Where Collaborations Can Be Trusted

281

errors as they perform their duties. Within a system there are several
cases to consider:

� Collaborations among objects that interface to the user and the
rest of the system

� Collaborations among objects within the system and objects
that interface with external systems

� Collaborations among objects outside a neighborhood and
objects inside a neighborhood

� Collaborations among objects in different layers

� Collaborations among objects at different abstraction levels

� Collaborations among objects of your design and objects
designed by someone else

� Collaborations among your objects and objects that come from
a vendor-provided library

Whom an object receives a request from is a good indicator of how
likely is it to accept a request at face value. Whom an object calls on
determines how confident it can be that the collaborator will field
the request to the best of its ability. It’s a matter of trust.

Trusted Versus Untrusted Collaborations

When should collaborators be trusted? Two definitions for collabo-
ration are worth reexamining:

The first definition is collegial: objects working together toward a
common goal. As shown in Figure 8-1, when objects are within the
same trust region, their collaborations can be conscientiously
designed to be more collegial. Both client and service provider can
be designed to assume that if any conditions or values are to be vali-
dated, they need be done only once, by the designated responsible
party.

Collaborate: 1. To work together, especially in a joint intellectual
effort. 2. To cooperate treasonably, as with an enemy occupation
force.
—The American Heritage Dictionary

Not every object needs
to take responsibility
for ensuring reliable
collaborations. If every object
took a paranoid stance,
most of the time would be
redundantly spent checking
for preconditions to be
established and busily
guaranteeing that
postconditions are satisfied.
Once you’ve made sure
that appropriate parties
perform their assigned
responsibilities, you can
cut out a lot of design
redundancy.

Wirfs.book Page 281 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

282

In general, when objects are in the same layer or neighborhood, they
can be more trusting of their collaborators. And they can assume
that objects that use their services call on them appropriately.

The second definition requires you to think critically. When collabo-
rators are designed by someone else or when they are in different
layers, or a library, your basic assumptions about the appropriate
design for that collaboration need to be carefully examined. If a col-
laborator can’t be trusted, it doesn’t mean that it is inherently more
unreliable. But a more defensive collaborative stance may be appro-
priate. A client may need to add extra safeguards, potentially both
before and after calling an untrusted service provider.

If a request is from an untrusted or unknown source, extra checks
may be made before a request is honored. There are several situa-
tions to consider:

� When an object sends a request to a trustworthy colleague

� When an object receives a request from a trusted colleague

� When an object uses an untrusted collaborator

Figure 8-1
Objects often trust their collaborators.

I am sending you a request at the
right time with the right information

:PasswordChecker:UserLoginController

isValid(Password)

I assume that I don’t have to
check to see that you have set up

things properly for me to do my job

Wirfs.book Page 282 Friday, October 11, 2002 11:44 AM

Determining Where Collaborations Can Be Trusted

283

� When an object receives a request from an unknown source

� When an object receives a request from a known untrustworthy
source

Collaborations among trusted colleagues. A client that pro-
vides a well-formed request expects its service provider to carry out
that request to the best of its ability. When an object receives a
request from a trusted colleague, it typically assumes that the
request is correctly formed, that it is sent at an appropriate time,
and that data passed along with the request is well formed (unless
there is an explicit design decision that the receiver takes responsi-
bility for validating this information).

During a sequence of collaborations among objects within the same
trust region, there is little need to check on the state of things before
and after each request. If an object cannot fulfill its responsibilities
and is not designed to recover from exceptional conditions, it could
raise an exception or return an error condition, enabling its client
(or someone else in the collaboration chain) to responsibly handle
the problem. But the object may be legitimately designed to not
check. In this case it won’t even notice when things fail. In a trusted
collaboration there is no need to check for invalid collaborations. So
if trust is ever violated, things can go terribly wrong.

When using an untrusted collaborator. When collaborators are
untrusted, extra precautions may need to be taken, especially if the
client is designed to be responsible for making collaborations more
reliable. You may pass along a copy of data instead of sharing it with
an untrusted collaborator. Or you may check on conditions after the
request completes.

When receiving requests from an unknown source. Design-
ers of objects that are used under many different situations—such as
those included in a class library or framework—must balance their
objects’ expected use (or misuse) with overall reliability goals.
There aren’t any universal design rules to follow. Library designers
must make a lot of hard choices. You can design your object to check
and raise exceptions if data and requests are invalid (that’s certainly
a responsible thing to do, but it’s not always necessary) or to ignore
such exceptions (that’s the simplest thing, but not always adequate).
Your goal should be to design your framework or library to be con-
sistent and predictable and to provide enough information so that
clients can attempt to react and recover when you raise exceptions.

There are exception-handling
mechanisms to put in place to
assist with untrustworthy
collaborations, and there are
additional exception-handling
mechanisms that have
nothing to do with
trustworthiness, such as
“out of stock.” In spite of
trust, things can still go
wrong.

Wirfs.book Page 283 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

284

When receiving requests from an untrusted client.
Requests from untrusted sources often are checked for timeliness
and relevance, especially if your goal is to design an object that
works reliably in spite of untrustworthy clients. Of course, there are
degrees of trust and degrees of paranoia. Designing defensive collab-
orations can be expensive and difficult. In fact, designing every
object to collaborate defensively leads to poor performance and
potentially introduces errors.

Implications of Trust

Determining trust regions for a system is straightforward. After you
determine them, it is easier to decide where to place extra responsi-
bilities for making collaborations more reliable.

In a large system, it is useful to distinguish whether collaborations
among components can be trusted and furthermore to identify the
guarantees, obligations, and responsibilities of each component.

In the Speak for Me application, all objects within the core of the
application are designed to work together and are considered to be
within the same trust region. Objects in the application control and
domain layers all assume trusted communications. Objects at the
“edges” of the system—within the user interface and in the technical
services layer—are designed to take precautions to make sure that
outgoing requests are honored and incoming requests are valid. For
example, the Selector debounces user eye blinks and presents only
single “click” requests. And the MessageBuilder quite reasonably
assumes that it receives trusted requests from the objects at the
edges: the Selector and the Timer. Objects controlled by the Mes-
sageBuilder assume that they are getting reasonable requests, too.
So requests to add themselves to a message or to offer the next
guess are done without questioning the validity of input data or the
request. Trusted collaborations within the core of the system greatly
simplify the implementation of the MessageBuilder, the Dictionaries,
the Guesser, the Message, and Letter, Word, and Sentence objects’
responsibilities.

Objects at the edges of the system have additional responsibilities for
detecting exceptions and trying to recover if they can or, if not, to
report them to a higher authority (someone at the nurse’s station).
When a message cannot be reliably delivered, extra effort is made to
send an alarm to the nurse’s station and raise an audio signal.

Objects generally don’t check
on who calls upon their
services at run time.
Decisions about whether
requests are trusted or
untrusted are typically design
decisions, not run time ones.
So responsibilities are
typically implemented
assuming a specific degree of
trust.

Wirfs.book Page 284 Friday, October 11, 2002 11:44 AM

Identifying Collaborations to Be Made Reliable

285

After these constraints are agreed on, each component can be
designed to do its part to ensure that the system as a whole works
more reliably.

IDENTIFYING COLLABORATIONS TO BE MADE RELIABLE

At first, you may not know just exactly what measures to take to
increase your system’s reliability. The first step is to identify several
areas where you want to ensure reliable collaborations. Revisit your
initial design and take a stab at improving it. You might consider the
following:

� How collaborations support a specific use case or task

� How an object neighborhood responds to a specific request

� How an interfacer handles errors and exceptions encountered
in an external system

� How a control center responds to exceptional conditions and
errors raised by objects under its control

The telco integration application receives service order requests and
schedules the work to provision the services and set up billing sys-
tems. The architecture of the system consists of a number of adapter
components that interface to external applications. Collaborations
between an adapter and its “adapted” application are generally
assumed to be untrusted, whereas collaborations between any
adapter and core of the system are trusted.

The order taking adapter component receives requests to create,
modify, or cancel an order from an external Order Taking application.
These requests are converted into an internal format, which is sent to
the scheduler component. The order taking adapter does not trust the
Order Taking application to give it well-formed requests; it assumes
that any number of things can be wrong (and they often are). It takes
extraordinary efforts to guarantee that requests are correctly con-
verted to internal format before it passes them to the scheduler.

Even so, it is still possible to receive requests that are inconsistent
with the actual state of an order: For example, a request to cancel an
order can be received after the work has already been completed. It is
business policy not to “cancel” work that has already been com-
pleted. So although collaborations between the Order Taking adapter
and the scheduler are trusted, well-formed requests still can fail.

Wirfs.book Page 285 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

286

After you’ve identified a particular collaboration to work on, con-
sider what needs to be done. Maybe no additional measures need to
be taken; objects are doing exactly what they should be doing. More
likely, you will want to add specific responsibilities to some objects
for detecting exceptional conditions, and to others for reacting and
recovering from them. The first step in making a collaboration more
reliable is to understand what might go wrong.

What Use Cases Tell Us

Ideally, some requirements document or use case should spell out
the right thing to do when things go wrong. But even if use case writ-
ers have written quite detailed descriptions, rarely have they consid-
ered everything. Alistair Cockburn, in Writing Effective Use Cases,
assigns four precision levels to use cases. Only those in the most
precise level identify failure conditions and describe how the system
should respond to them. Cockburn cautions use case writers not to
write in too much detail too early:

No wonder exception-handling strategies often remain unspecified
until design! Use cases generally describe software in terms of
actors’ actions and system responsibilities and not in terms of
objects and exceptions. At best, use case writers will identify a few
problems and briefly describe how some of them should be handled.

But that doesn’t relieve you of the responsibility for identifying real
problems and resolving them as you encounter them. As you dig into
design, you are likely to identify many exception conditions and
devise ways of handling them. When your solutions are costly or rep-
resent compromises, review them with all who have a stake in your
software’s overall reliability. They should weigh in on your proposed
solutions.

“[Describing exceptions] is often tricky, tiring, and surprising work. It
is surprising because quite often a question about an obscure busi-
ness rule will surface during this writing, or the failure handling will
suddenly reveal a new actor or new goal that needs to be supported.
Most projects are short on time and energy. Managing the precision
level to which you work should therefore be a project priority.”
—Alistair Cockburn

Just because someone
describes a possible
exception doesn’t mean it will
actually happen. Your design
may have successfully
side-stepped the potential
problem.

Wirfs.book Page 286 Friday, October 11, 2002 11:44 AM

Identifying Collaborations to Be Made Reliable

287

Distinguish Between Exceptions and Errors

It is easy to waste a lot of time considering things that might go
wrong or pondering the merit of partial solutions when there is no
easy fix. To avoid getting bogged down, distinguish between errors
and exceptions. Errors are things that are wrong. Errors can result
from malformed data, bad programs or logic errors, or broken hard-
ware. In the face of errors, there is little that can be done to fix things
and proceed. Unless your software is required to take extraordinary
measures, you shouldn’t spend a lot of time designing your software
to recover from them.

For the most part, errors can be ignored. On the other hand, excep-
tions aren’t normal, but they happen and you should design your
software to handle them. This is where the bulk of your energy
should go—solving exceptional conditions. If a use case identifies
exceptional conditions, it may also have identified how they should
be accommodated:

To translate this policy into appropriate objects’ responsibilities,
you’ll need to assign some object the responsibility for validating the
password; several more are likely to be involved in recovering from
this problem. This is pretty easy. There is nothing difficult or chal-
lenging in designing an object to validate a password or report an
error condition to the user.

But wait. Is the event an error or an exception? Mistyped passwords
are a regular, if infrequent, occurrence. We want our software to
react to this condition by giving the user a way to recover, so we
view it as an exception and not an error. In fact, most use cases
describe exceptions that cause the software to veer off its normal
path. Some will be handled deftly, and users will be able to continue
with their original task. These are recoverable exceptions. With oth-
ers, users won’t be able to complete their original task. The use case
will end abnormally, but the application will keep running. From the
user’s perspective, these are unrecoverable exceptions. Rarely will
use cases mention errors unless their authors are experienced at
describing fault-tolerant software.

Invalid password entered—After three incorrect attempts, inform the
users that access is denied to the online banking system until they
contact a bank agent and are assigned a new password.

 “I have long (but quietly)
advocated dealing with
exception handling issues
early in the design of a
system. Unfortunately, there
is a natural tendency to focus
on the main functional flow of
a system, ignoring the impact
of exceptional situations until
later.”

—John Goodenough

List exception conditions you
expect at whatever level you
are working at. If you have
use case descriptions that
you are designing for, start
with those. But don’t expect
them to be a complete or
particularly detailed guide
as you design reliable
collaborations.

Wirfs.book Page 287 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

288

Object Exceptions Versus Use Case Exceptions

Let’s get one thing clear: Exceptions described in use cases are fun-
damentally different from exceptions uncovered in a design. Use
case exceptions reflect the inability of an actor or the system to con-
tinue on the same course. Object exceptions reflect the inability of
an object to perform a requested operation. During execution of a
single step in a use case scenario, potentially several use case-level
exceptions could happen. However, the execution of a single use
case step could result in thousands of requests between collaborators,
any number of which could cause object exceptions. There isn’t a one-
to-one correspondence between exception conditions described in
use cases and object exceptions. Nevertheless, we need to make our
application behave as its use case writers desire. We also need to
make it reasonably handle the many more exceptional conditions
that arise during execution.

Object Exception Basics

Invariably, an exception condition detected during application exe-
cution leads some object or component to veer off its normal path
and fail to complete an operation. Depending on your design, some
object may raise an exception, whereas another object may handle it.
By handling an exception, the system recovers and puts itself into a
predictable state. It keeps running reliably even as it veers off the
normal path—to an expected but exceptional one. Left unhandled,
however, exceptions can lead to system failure, just as unhandled
errors do.

It is up to you to decide what to do when an exception condition is
encountered. Many object-oriented programming languages define
mechanisms for programmers to declare exceptions and error condi-
tions, signal their occurrence, and to write and associate exception-
handling code that executes when signaled (see Figure 8-2).

Alternatively, you could design an object to detect an exception con-
dition, and, instead of raising an exception, it could return a result
indicating that an exception occurred (see Figure 8-3).

In part, it’s a matter of style, but largely it’s the implementation lan-
guage that determines whether you design your objects to raise
exceptions or report exception conditions. Either design described
would “handle the exception condition” of an invalid password.

“A program must be able to
deal with exceptions. A good
design rule is to list explicitly
the situations that may cause
a program to break down.”

—Jorgen Knudsen

Wirfs.book Page 288 Friday, October 11, 2002 11:44 AM

Identifying Collaborations to Be Made Reliable

289

Figure 8-2
Execution transfers directly to callers’ exception-handling code.

third incorrect login
attempt raises exception

:Application
Coordinator

:UserLoginController:Presentation
Controller

login(User, Password)
login(User, Password)

one or more of the callers
handle the exception

«exception»
«exception»

Figure 8-3
A caller can check for an exception condition returned in a result.

creates and returns description
of exception in result

:Application
Coordinator

:UserLoginController:Presentation
Controller

login(User, Password)
login(User, Password)

callers read results
and handle exception

result
result

Wirfs.book Page 289 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

290

The first design (Figure 8-2) uses exception facilities in the program-
ming language; the second (Figure 8-3) returns values that signify an
exceptional condition. Both techniques convey the exceptional con-
dition to the client. Yet another design alternative is to make a ser-
vice provider smart. It might remember that an exception condition
has occurred and provide an interface for querying this fact.

Let’s look further at what it means to define and use exception facili-
ties in an object-oriented programming language. When an object
detects an exception and signals this condition to its client, it is said
to raise an exception. In the Java programming language, the term is
throw an exception. To throw a specific exception, a programmer
would declare that a particular type of Throwable object (which con-
tains contextual information) will be sent along with the exception
signal. An object throws an exception by executing a statement:

The handler of an exception signal has several options. It could fix
things and then transfer control to statements immediately following
the call that raised the exception (resumption). Or it might re-signal
the same or a new exception, leaving the responsibility for handling
it to a possibly more knowledgeable object (propagation). In most
cases, instead of grinding to a halt, it is desirable to make progress.
This involves a cooperative effort on the part of the object raising
the exception, the client sending the exception-causing request, and
one or more objects in the collaboration chain if the requester
chooses not to handle the exception then and there.

There must be enough information available that the object that
takes responsibility for handling the exception can take a meaningful
action. The design of appropriate exception objects that are
returned to the client when an exception is raised is a topic we won’t
explore in great detail. Be aware that when you design an exception
object, you can declare information that it will hold. When the object
that detects the exception condition creates an exception object, it
populates it with this information. Typically, exception objects are
information holders.

if (loginAttempts > MAX_ATTEMPTS) {
 throw new TooManyLoginAttemptsException();

}

In Java, there are subclasses
of Error—for exception
conditions that need not be
handled—or subclasses of
Exception—for conditions
that are required to be
handled or implicitly
rethrown.

Wirfs.book Page 290 Friday, October 11, 2002 11:44 AM

Identifying Collaborations to Be Made Reliable

291

We offer the following general guidelines for declaring and handling
exceptions.

Avoid declaring lots of exception classes. The more classes
of exceptions you define, the more cases an exception handler must
consider (unless it groups categories of exceptions). To keep exception-
handling code simple, define fewer classes of exceptions and design
clients to take different actions based on answers supplied by the
exception object.

Identify exception classes in the same way you identify any other
classes—via responsibilities and collaborations. Unless two excep-
tions will have distinct responsibilities or participate in different
types of collaborations, they shouldn’t need different classes. Out-
side the world of exceptions you wouldn’t normally create two dis-
tinct classes simply to represent two different state values, so why
create multiple exception classes simply to represent different val-
ues of an error code?

Deep exception class hierarchies and wide exception class hierar-
chies are seldom a good idea. They significantly increase the com-
plexity of a system, but the individual classes are seldom actually
used. Compare the complexity of an IOError class hierarchy with 20
subclasses (probably arranged in some sub-hierarchy structure) with
one I/O error class that knows an error code with 20 possible values.
Most programmers can remember and distinguish 5–7 clearly differ-
ent exception classes, but if you give them 20–30 exception classes
with similar names and subtle distinctions, they will never be able to
remember them all and will have to continually refer to the system
documentation.

It makes sense to have different exception classes for FileIOError
and EndOfFile exceptions. Some people might try to treat EndOf-
File as a FileIOError, but this wouldn’t be a good design choice.
FileIOError represents a truly exceptional and unexpected occur-
rence. Its collaborators are likely to have to take drastic actions. End-
OfFile is usually an expected occurrence, and its collaborators are
likely to respond to it by continuing the normal operations of the pro-
gram. Seldom, if ever, do you want to respond in the same way to
both of these exceptions. But you are quite likely to want to respond
in an identical manner to all FileIOErrors.

Wirfs.book Page 291 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

292

Name an exception after what went wrong and not who
raised it. This makes it easy to associate the situation with the the
appropriate action to take (see Figure 8-4). The alternative makes it
less clear why the handler is performing specific actions. An excep-
tion handler may also need to know who originally raised it (espe-
cially if it was delegated upward from a lower-level collaborator), but
this can easily be defined to be included as part of the exception
object.

Recast lower-level exceptions to higher-level ones when-
ever you raise your abstraction level. When very low-level
exceptions percolate up to a high-level handler, there is little context
to assist the handler in making informed decisions. Recast an excep-
tion whenever you cross from one level of abstraction to another.
This enables exception handlers that are way up a collaboration
chain to make more informed decisions and reports. Not taking this
advice can lead your users to believe that your software is broken,
instead of just dealing with unrecoverable errors:

try {
 loginController.login(userName, password);
}
catch (TooManyLoginAttemptsException e) {
 // handle too many login attempts
}

Figure 8-4
TooManyLoginAttemptsException explains what happened and not who threw it.

A compiler can run out of disk space during compilation. There isn’t
much the compiler can do in this case except report this condition to
the user. But it is far better for the compiler to report “insufficient disk
space to continue compilation” than to report “I/O error #xxx.” With
the latter message, the user may be led to believe there is a bug in
the compiler rather than insufficient resources, something that can
be corrected by the user. If this low-level exception were to percolate
up to objects that don’t know how to interpret this I/O error excep-
tion, it will be hard to present a meaningful error message. To pre-
vent this, the compiler designers recast low-level exceptions to
higher-level ones whenever subsystem boundaries are crossed.

Wirfs.book Page 292 Friday, October 11, 2002 11:44 AM

Identifying Collaborations to Be Made Reliable

293

Provide context along with an exception. What’s most impor-
tant to the exception handler is to identify the exception and to gain
information that will aid it in making a more informed response. This
leads to the design of exception objects that are rich information
holders. Specific information can be passed along, including values
of parameters that caused the exception to be raised, detailed
descriptions, error text, and information that can be used to take
corrective action. When recasting exceptions, as shown in Figure 8-5,
some designers also embed lower-level exceptions, providing a com-
plete trace of what went wrong.

Assign exception-handling responsibilities to objects that
can make decisions. There are many different ways to handle an
exception: One way is to log and rethrow it (possibly more than
once) until someone takes corrective action. Who naturally might
handle exceptions? As a first line of defense, consider the initial
requester. If it knows enough to perform corrective action, then the
exception can be taken care of right away and not be propagated. As

Figure 8-5
Exception information is preserved in inner exceptions.

object creates
initial exception

:Application
Coordinator

:TooManyLogin
AttemptsException

:UserAccess
Exception

:UserLoginController

login(User, Password)
login(User, Password)

«create»
«exception»

«exception»
«create»

original description is
preserved in “inner exception”

Wirfs.book Page 293 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

294

a fallback position, it is always appropriate to pass the buck to some
object that takes responsibility for making decisions and controlling
the action. Controllers and objects located within a control center
are naturals for handling exceptions.

Handle exceptions as close to the problem as you can. One ob-
ject raises an exception, and somewhere up the collaboration chain
another object handles it. Sure, this works, but it makes your design
harder to understand. It can make it difficult to follow the action if
you carry this to extremes.

External interfacers often take responsibility for handling faulty con-
ditions in other systems they interface to, relieving their clients of
having to know about lower-level details and recovery strategies.
Service providers often take on the added responsibility to handle
an exception and retry an alternative means of accomplishing the
request.

Consider returning results instead of raising exceptions.
Instead of raising exceptions, you always can design your exception
taking object to return a result or status that is directly checked by
the requester. This makes it more obvious who must take at least
some responsibility: the requester.

Exception- and Error-Handling Strategies

In the case of errors as well as exceptions, handling them is a matter
of how much effort and energy you want to expend. Highly fault-
tolerant systems are designed to respond by taking extraordinary
measures. A highly fault-tolerant system might recover from program-
ming errors by running an alternative algorithm, or from a suddenly
inaccessible disk by printing data on an alternative logging device.
Most ordinary software would break (gracefully or not, depending,
again, on the design and the specific condition).

There are numerous ways to deal with a request that an object can’t
handle. Doug Lea, in Concurrent Programming in Java™ (Addison-
Wesley, 1999), poses the question, “What would you do if you were
asked to write down a phone number and you didn’t have a pencil?”
to explore several options. One possibility is what Lea calls uncondi-
tional action. In this simple scheme, you’d go through the motions of
writing as if you had a pencil, whether you had one or not. Besides
looking silly, this is acceptable only if nobody cares that you fail to
complete your task.

“The major difference
between a thing that might go
wrong and a thing that cannot
possibly go wrong is that
when a thing that cannot
possibly go wrong goes
wrong it usually turns out to
be impossible to get at or
repair.”

—Douglas Adams

Wirfs.book Page 294 Friday, October 11, 2002 11:44 AM

Identifying Collaborations to Be Made Reliable

295

Employing this strategy often leads to unpredictable results. In real
life, you likely wouldn’t be so irresponsible, and your software
objects shouldn’t behave this way either. If an object or component
or system that receives a request isn’t in the proper state to handle
it, nothing can be guaranteed. An unconditional act could cause the
software to trip up immediately or, worse yet, to fail later in unpre-
dictable ways. Ouch! There are more acceptable alternatives:

� Inaction. Ignore the request after determining it cannot be cor-
rectly performed.

� Balk. Admit failure and return an indication to the requester (by
either raising an exception or reporting an error condition).

� Guarded suspension. Suspend execution until conditions for
correct execution are established; then try to perform the
request.

� Provisional action. Pretend to perform the request, but do not
commit to it until success is guaranteed.

� Recovery. Perform an acceptable alternative.

� Appeal to a higher authority. Ask a human to apply judgment
and steer the software to an acceptable resolution.

� Rollback. Try to proceed but, on failure, undo the effects of a
failed action.

� Retry. Repeatedly attempt a failed action after recovering from
failed attempts.

These strategies impact the designs of clients as well as objects ful-
filling requests and, possibly, other participants in recovery activi-
ties. No one strategy is appropriate in every situation.

Inaction is simple but leaves the client uninformed. When an object
balks, at least the requester knows about the failure and can try an
alternative strategy. With guarded suspension, the object would
patiently wait until some other object gave it a pencil (the means by
which someone knows what is needed and supplies it is unspecified).

Provisional action isn’t meaningful in this example, but it makes
sense when a request takes time and can be partially fulfilled in
anticipation of later completion. Recovery could be as simple as
using an alternative resource—a pen instead of a pencil. Appealing
to a higher authority might mean asking some human who always
keeps pencils handy and sharp to write down the number instead.
Rollback doesn’t make much sense in this example because noth-
ing has been partially done—unless the pencil breaks while the

Inaction, balking, and
guarded suspension can be
categorized as pessimistic, or
check-and-act, policies.
Provisional action, appealing
to a higher authority, rollback,
recovery, and retry are try-
and-see, or optimistic,
policies.

“Decisions about these
matters usually need to
be made relatively early in the
design of an application. . . .
Choices among policies
impact method signatures,
internal state representation,
class relations, and client-
visible protocols.”

—Doug Lea

Wirfs.book Page 295 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

296

requester is writing down the number. In this case the object would
throw away the partially written number. Rollback is a common
strategy in which either all or nothing is desired and partial results
are unacceptable. Retrying makes sense only when there is a chance
of success in the future.

There will always be consequences to consider when you’re choos-
ing any recovery strategy:

Mixing or combining strategies often leads to more satisfactory
results. For example, one object could attempt to write down the
phone number but broadcast a request for a pencil if it fails to locate
one. It might then wait for a certain amount of time. But if no one pro-
vided the waiting object with one, ultimately it might ignore the
request. Meanwhile, the requester might wait a while for confirma-
tion and then locate another object to write the phone number after
waiting a predetermined period of time.

The best strategy isn’t always obvious or satisfying. Compromises
don’t always feel like reasonable solutions even if they are the best
you can do under the circumstances.

Determining Who Should Take Action

But objects do fail to fulfill their responsibilities. Because objects do
not work in isolation—they collaborate to fulfill larger responsibili-
ties—a key question to consider is which objects should take on
additional responsibilities for guaranteeing success in spite of indi-
viduals’ failures. In the case of writing a phone number, other than
doing the job yourself, the most assured way of guaranteeing suc-
cess is to hand in a new pencil along with each request! However,
providing the resources an object needs to ensure success isn’t
always practical, nor is it guaranteed to avoid all further failures.
Objects and systems fail for many reasons: They can lack the

“The designer or his client has to choose to what degree and where
there shall be failure. Thus the shape of all designed things is the
product of arbitrary choice. If you vary the terms of your compro-
mise...then you vary the shape of the thing designed. It is quite
impossible for any design to be ‘the logical outcome of the require-
ments’ simply because the requirements being in conflict, their logi-
cal outcome is an impossibility.”
—David Pye

It isn’t always possible to
devise simple solutions to
difficult problems. Systems
that make concerted efforts to
handle exceptions often
employ complex strategies.

Wirfs.book Page 296 Friday, October 11, 2002 11:44 AM

Identifying Collaborations to Be Made Reliable

297

resources they need; they can call on other objects that fail; the
underlying operating systems and networks can fail. Although it is
extremely difficult to build completely fail-safe objects, you certainly
can make them more reliable.

You can do so by placing the burden for success on the requester,
shifting some of it onto the object providing the service, splitting
some extra responsibilities between them, or even designating oth-
ers to get involved when things go wrong. Each choice has conse-
quences.

Asking the Client to Check Before Making a Request

Here are some considerations when you’re deciding to burden the
requester with checking beforehand that an object can do what it is
asked:

Can clients easily check for success? Is it easy to check
whether the service provider is in a state that guarantees success? If
not, you may need to expand the service provider’s interface and
assign it public responsibilities for reporting on what initially
seemed like private implementation details. For example, we could
give our object the added responsibility of reporting whether it has a
pencil. Even if you do this, someone (most likely the initial
requester) still must take some responsibility for reacting appropri-
ately when the answer is no.

What guarantees are there that after an object has been checked for
readiness, it stays ready? In concurrent systems, objects and
resources are shared, and their state changes from moment to
moment. If your service provider is shared or if it turns around and
uses shared resources to fulfill its responsibilities, then between the
time you ask whether it can honor a request and the time you ask it
to perform the request, conditions could change. The pencil may
have broken or may have been passed along to another. To avoid
this, allow clients to check and reserve with a single request.

Is the cost of checking prohibitive? Are conditions for success
readily checked beforehand without incurring too much overhead?
What if the consequences of asking whether an object has a pencil
causes it to ask every one of its backup resources whether it has a
pencil, and this takes a long time? Sometimes, determining whether a
request will be successful involves more computation than simply
performing the request and responding to exceptions.

Wirfs.book Page 297 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

298

Does checking produce undesirable side effects? Checking
may cause undesirable side effects. What if asking whether an object
has a pencil causes it to drop everything and order one from a sup-
plier? Would that be appropriate?

Giving the Client Some Responsibility for Recovery

If you give a client some responsibility for guaranteeing success,
there are many things to consider. How much responsibility should
it take? Is it reasonable for each client to employ individual recov-
ery strategies as it sees fit, or should you design some common
recovery facilities that requesters can use? Or should some object
better equipped to handle the situation be told of the failure?

Giving the Service Provider Some Responsibility for
Recovery

Even if you decide to shift some responsibility to the service pro-
vider for error recovery, don’t be surprised by the demands this
strategy can place on clients. Clients may have to understand the
consequences of alternate courses of action taken by the service
provider.

Is it acceptable to introduce pauses or delays? Is it OK for
the client to wait, perhaps indefinitely, for the service provider to
acquire what it needs? What if the service provider queries its
backup resources when it doesn’t have a pencil? Sometimes these
queries are quickly answered, and at other times, when they are
busy, the responses can take a long time. If the client must turn
around and give the phone number to another object within a pre-
scribed time limit, intermittent and indeterminate pauses introduced
by a more responsible service provider won’t be acceptable.

What is the probability that unavailable resources can be
acquired? If the service provider doesn’t have what it needs, can it
reliably acquire it? If other users of this resource are ill behaved,
then their performance impacts the service provider’s ability to ful-
fill its responsibilities. A service provider is only as reliable as the
resources it depends on.

Are there alternative ways to fulfill failed requests? Does it
make sense for the service provider to have a different means of
accomplishing a request at its disposal, or is this overengineering?
For example, what if our service provider had pens, pencils, and a
variety of paper stock always on hand?

Wirfs.book Page 298 Friday, October 11, 2002 11:44 AM

Designing a Solution

299

Is it easy to detect failure? Of course, it is easy for people to
know whether they’ve written down a phone number. They can scan
a piece of paper and see a legible sequence of numbers. But some-
times, it isn’t so easy for an object to know whether its actions have
had the desired effects, especially if it collaborates with or changes
the state of external devices or systems. The more collaborations
involved in fulfilling a request, the harder it is to guarantee that each
subrequest has the intended effect.

DESIGNING A SOLUTION

So far, we’ve considered strategies for handling failures for a single
request. Making larger responsibilities more reliable can get much
more complex. After you’ve identified a particular collaboration
sequence that you want to make more reliable, think through all the
cases that might cause objects to veer off course.

Start simply and then work up to more challenging problems. Given
the nature of design, not all acceptable solutions may seem reason-
able at first. You may need time for a solution to soak in before it
seems right.

Brainstorm Exception Conditions

Complex collaborations can fail in numerous ways. Even simple col-
laborations can have many places where things can go wrong. Think-
ing through all the ways a collaboration might fail is difficult work.
Make a list. Enumerate all the exceptional conditions you can think
of for a specific chunk of collaborative behavior. Whether you are
working with the collaborations in support of a use case or designing
a collaboration deep inside your system, list everything that you rea-
sonably expect could go wrong. Consider the following:

� Users behaving incorrectly—entering misinformation or failing
to respond within a particular time

� Invalid information

� Unauthorized requests

� Invalid requests

� Untimely requests

� Time out waiting for a response

� Dropped communications

Wirfs.book Page 299 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

300

� Failures due to broken or jammed equipment, such as a printer
being unavailable

� Errors in data your software uses, including corrupt log files,
bad or inconsistent data, missing files

� Critical performance failures or failure to accomplish some
action within a prescribed time limit

This list is intended to jog your thinking. But be reasonable. If some
condition seems highly improbable, leave it off your list. Put it on
another list (the list of exceptions you didn’t design for). If you know
that certain exceptions are common, say so. If you don’t know
whether an exception might occur, put a question mark by it. You
may not know what are reasonable and expected conditions if you
are building something for the first time. People and software and
physical resources can cause exceptions. And the deeper you get
into design and implementation, the more exceptions you’ll find.

Limit Your Scope

Take exception design in bite-sized increments. If you’ve already
designed your objects to collaborate under normal conditions, start
modestly to make the collaboration more reliable. Pick a single
exception that everyone agrees is common and that you think you
know how to handle. If you are designing collaborations for a specific
use case, tackle one unhappy path situation. What actions should
occur when there are insufficient funds when a user tries to make
an online payment? What if the user blinks her eyes too rapidly
and makes a false selection? What if the file is locked by another
application?

After you’ve decided on what seems a reasonable way to handle that
situation, design a solution using the object-oriented design tech-
niques we’ve described. Minimize or purposely ignore certain parts
of your design in order to concentrate on those objects that will take
the exception and those that will resolve it. You needn’t reach all the
way from the user interface to the lowest technical service objects.
Here is what we consider to be both in and out of scope for the
exceptional case of insufficient funds:

Wirfs.book Page 300 Friday, October 11, 2002 11:44 AM

Designing a Solution

301

Determine who should detect an exception and how it
should be resolved. Assume that everything goes according to
plan up to the point where the particular exception you are consider-
ing is detected.

Describe additional responsibilities of collaborators. Ser-
vice providers, controllers, and coordinators are often charged with
exception-handling responsibilities. In our example, the FundsTrans-
ferTransaction—a service provider/coordinator—coordinates the
work of performing a financial transaction. It makes relatively few
decisions, altering its course only when the result is in error. It is
responsible for validating funds transfer information, forwarding the
request to the backend banking interface component, logging suc-
cessful transactions, and reporting results.

Objects within the application server component are within the
same trust region. They receive untrusted requests from the UI com-
ponent and collaborate with the backend banking component (each
of those collaborations spans another trust boundary). The backend

Make a Payment Collaboration: Insufficient Funds

• Assume a well-formed request (no data entry errors).

• Ignore backend system bottlenecks.

• Ignore momentary loss of connections or communication failures
(they will be handled by connection objects in the technical ser-
vice layer).

• Offer the user an opportunity to enter an alternative amount.

We know that the existing backend banking system returns an error
code indicating insufficient funds to our external interface compo-
nent. Now what?

The backend banking component reports the exception via a Result
object to the FundsTransferTransaction that is responsible for coordi-
nating the transaction. The FundsTransferTransaction interprets this
as an “unrecoverable exception,” which causes it to halt and return a
Result (indicating failure) to the UserSession.

Collaboration ideas will
change as you get closer to
a working implementation.
You can spend a lot of time
spinning your wheels revising
collaborations every time
you make a slight change.
Concentrate on who should
be responsible for handling an
error or exception. Designate
places where the buck stops
and where recovery actions
will happen.

Wirfs.book Page 301 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

302

banking component interfaces to the backend banking system, a
trusted external system that either handles the request or reports an
error. Occasionally, communications between the backend bank sys-
tem fail, and then our software must take extraordinary measures.

Objects at the edges of a trust region can either take responsibility
for guaranteeing that incoming requests are well formed, or they can
delegate all or part of that responsibility.

Make sure you have considered the following:

� Who validates information received from untrusted collaborators

� Who detects exceptions

� How exceptions are communicated between collaborators (via
raised exceptions or error results)

� Who recovers from them

� How recovery is accomplished

� Who recovers from failed attempts at recovery

� Who recasts exceptions or translates them to higher levels of
abstraction

Record Exception-Handling Policies

After you’ve decided how to solve one exceptional condition, tackle
another. Often, you can leverage earlier work. If you decide that
“these types of exceptions” are very similar to “those,” you’ll likely
want to handle them consistently.

In the online banking application, any incoming request from the user
component is validated. The UserSession object receives and vali-
dates requests from the UI component and then creates and dele-
gates the request to specific service providers. In the earlier example,
a FundsTransferTransaction is created. It has responsibility for vali-
dating the funds transfer information and reacting to errors reported
from the backend system.

If you have the luxury of
designing a group of objects
to work together, you can
assign certain objects
responsibility for
guaranteeing that information
is correct or that requests are
timely and relevant, and then
turn around and relax some of
the responsibilities of objects
within a trusted boundary.

Wirfs.book Page 302 Friday, October 11, 2002 11:44 AM

Documenting Your Exception-Handling Designs

303

Write down general strategies you will attempt to follow. Deciding on
exception-handling policies can save a lot of work:

DOCUMENTING YOUR EXCEPTION-HANDLING DESIGNS

You will likely want to beef up existing collaboration stories with
exception-handling details. But don’t pile on details. You can easily
make a collaboration story incomprehensible or a diagram illegible,
obscuring the main storyline. Instead, draw new diagrams to show
how specific exceptions are handled. Leave existing diagrams alone.

There are two conditions that can cause a funds transfer request to
fail: The account has a “hold” status that prohibits any monetary
transactions, or the backend system might be too busy to handle the
request within a reasonable time. In each case, the specific condition
is reported to the user and the funds transfer fails.

In the online banking application, both the FundsTransferTransaction
and the UserSession react to exception conditions returned from
requests. The FundsTransferTransaction is responsible for transac-
tion-specific exceptions; the UserSession, a controller, takes on
broader exception-handling responsibilities including unauthorized
account access, invalid requests, and communication failures.

System Exception Policies

Recoverable software exceptions. These are caught exceptions that
do not necessarily mean an unstable state in the software (corrupt
message, time-outs, etc.). The strategy to be followed in these cases
is to first log the exception and then try to handle it (if retrying is
likely to succeed). If not, raise the exception so that it can be handled
(if the caller is within the same process); or return an error (if the
caller is not within the same process).

Unrecoverable software exceptions. These are caught exceptions
that presumably can lead to an unstable state, such as running out of
memory or a task being unresponsive. The response in these cases is
to log the cause of the exception and to restart the application unless
the severity of that specific condition is “hold&do not restart.”

Wirfs.book Page 303 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

304

Any new diagram will look nearly identical to the normal case but
will include additional details about how exceptions are detected,
communicated, and dealt with.

Describe your solution. Your readers will get a much better
sense of your exception design if you explain it. Describe which
exceptions you considered, how each is resolved, and what you con-
sider to be out of scope:

Add a running commentary to existing collaborations.
Accompany a happy path collaboration diagram with commentary
that describes exceptions that you considered at each step. This is
an extremely effective way to present your design. Reviewers are
unlikely to get the big picture by looking at many diagrams, trying to
piece together whether you’ve covered all the bases. So tell them
what might go wrong at each step.

The online banking application is designed to cover communications
failures encountered during a financial transaction. A full set of sin-
gle-point failures was considered. Some double-point failures were
explicitly not considered because they are unlikely and covering
them adds undue complexity to the processing of transactions.
In each case, the general strategy is to ensure that transaction status
is accurately reflected to the user. Failures in validating information
will cause the transaction to fail, whereas intermittent communica-
tions to the external database or to the backend banking system dur-
ing the transaction will not cause a transaction to fail. Here are the
exceptions common to every transaction:

1. Network fails during attempt to send request to backend:
Detect that response times out. Retry request after communi-
cations are restored. If too much time elapses, inform user of
system unavailability and fail the transaction.

2. Failure to log transaction results to local database: Continue,
but report condition to alternate log file and active console.

3. Failure to receive acknowledgment from backend system:
Report system unavailability to user and report backend
request status when connection is reestablished.

Wirfs.book Page 304 Friday, October 11, 2002 11:44 AM

Documenting Your Exception-Handling Designs

305

Understand the limits of what can be explained with a
diagram. If you show an exception being raised, you won’t neces-
sarily know which object handles it unless you explicitly add that
detail. When an object detects an exceptional condition, it can either
raise an exception or return a result whose value indicates an excep-
tion condition.

In UML, an exception is modeled as a signal. To show that an object
raises an exception, draw an asynchronous message between it and
the client whose request caused the exception. This is drawn as a
line with a stick arrowhead (see Figure 8-6). Designate the line as an
<<exception>>. Label it with the name of the exception to distinguish
it from other asynchronous signals.

If you are returning a result to indicate an exception condition, add a
return to your diagram. It is drawn as a dashed line with an open
arrow. The value that is returned can be recorded above the line.

You can describe both normal and exceptional paths on the same
diagram (see Figure 8-7). Show multiple paths emerging from the
same point in the diagram. Label each with a guard condition that
describes the conditions that cause one path to be selected over
another. One branch continues with the normal path; others take
exceptional ones.

Figure 8-6
Labeling exceptions with notes clarifies what’s going on.

:Application
Coordinator

:UserLoginController

login(User, Password)
login(User, Password)

«exception»

«exception»
TooManyLoginAttemptsException

UserAccess
Exception

Wirfs.book Page 305 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

306

Limit the number of diagrams. Create new diagrams only to
illustrate key exception-handling cases or obscure solutions. If cer-
tain exceptions are handled similarly, say so, don’t draw so.

Limit the number of exceptions shown on any single dia-
gram. Don’t show more than one or two exceptions on a single dia-
gram. Piling on details makes diagrams incomprehensible.

Add notes to diagrams to clarify exception-handling
responsibilities. You can’t tell whether or not an object receiving
an exception handles it. To make it absolutely clear that an object
handles an exception, add an explanatory note (see Figure 8-8).

To show that an object recasts an exception, add a note (see Figure 8-9).

Add exceptions to class definitions. The specification of a
class in UML includes a declaration of operations, attributes, and
relationships. An operation can be declared in syntax specific to the
programming language. This enables you to precisely specify the
exceptions raised by each operation. We typically do not go to this
level of detail, leaving it for code comments and documentation.

Figure 8-7
FundsTransferTransaction takes one of two branches, depending on whether or not the transaction is successful.

:UserSession :TransactionLog

validate(iUser, Password)

result

log(Status, User, Password)

login(User, Password)

«subsystem»
UI

«subsystem»
Legacy Access

[success] user_session

[failure] error_msg
alternative actions

Wirfs.book Page 306 Friday, October 11, 2002 11:44 AM

Documenting Your Exception-Handling Designs

307

Add details sparingly. Just because you can embellish a sequence
diagram with exception details or show exception declarations in
method signatures, don’t go overboard. The more you pile on, the
harder it is for viewers to discriminate what’s important. Show those
things that your readers cannot find elsewhere. If your exceptions
can be found by browsing class documentation, do you really need
to include them on class diagrams? Think carefully whether these
embellishments add value or clarity or only another opportunity for
code to get out of sync with your design.

Specifying Formal Contracts

The interplay between collaborators can get complex. In a given col-
laboration, objects are designed according to a set of expectations,
demands, and obligations on both the client and the provider of the
service. When you need to get precise, use contracts to specify how
collaborators should responsibly interact.

Figure 8-8
Clients can trust the commands to handle any exceptions.

:Mailer :SMTPLibrary:SendCommand :Postmaster

send(to, from, msg)

«exception»

scheduleDeliveryOf(Message)

deliver(Message)
process(Message)

«exception»

clients’ trust
boundary

Command handles
Delivery exception

“. . . the low-level design
handling of particular
exceptions is felt by many
developers to be most
appropriately decided during
programming or via less
detailed design descriptions,
rather than via detailed UML
diagrams.”

—Craig Larman

Wirfs.book Page 307 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

308

Bertrand Meyer views contractual relations between collaborators as
an important specification tool. Contracts can be written to define
the expectations and obligations of both client and service provider
for any request. According to Meyer, any contract entails obligations
as well as benefits for both parties; an obligation for one usually can
be restated as a benefit for the other.

Obligations can be stated in terms of preconditions that must be true
before a request is honored, and postconditions that will be guaran-
teed by the service provider:

Figure 8-9
Additional notes explain your exception-handling strategy.

:Mailer :SMTPLibrary:SendCommand :Postmaster

send(to, from, msg)

«exception»

scheduleDeliveryOf(Message)

deliver(Message)

«create»

«create» Thread
Exception

Delivery
Exception

process(Message)

«exception»

clients’ trust
boundary

Command handles
Delivery exception

Mailer recasts
ThreadException to
DeliveryException

“In relations between people or companies, a contract is a written
document that serves to clarify the terms of a relationship. It is really
surprising that in software, where precision is so important and
ambiguity so risky, this idea has taken so long to impose itself. A pre-
condition-postcondition pair . . . will describe the contract that the
routine (the supplier of a certain service) defines for its callers (the
clients of that service).”
—Bertrand Meyer

Eiffel was the first language to
let programmers define
preconditions that must be
true before a body of code
executes and postconditions
that must be true after a body
of code executes. Writing
assertions that can be
checked during program
execution adds teeth to object
contracts.

Wirfs.book Page 308 Friday, October 11, 2002 11:44 AM

Documenting Your Exception-Handling Designs

309

� A precondition obligates a client. It defines the conditions
under which a request is valid. It is an obligation for the client—
to make sure that preconditions are met—and a benefit for the
service provider. Meyer goes so far as to say that if the
requester does not satisfy the preconditions, then the service
provider is not bound to satisfy the request.

� A postcondition obligates the service provider. It defines the
conditions that must be ensured after the request is complete.
It is a benefit for the client and an obligation for the service
provider.

So if a service provider wanted to be very lazy indeed, its contracts
would place high demands on what must be true before it starts
(strong preconditions) and guarantee nothing in return (weak post-
conditions). Only if the preconditions are met will it start to work.

For a trusted collaboration, the service provider expects well-
formed requests and the client expects reasonable attempts at per-
forming the request. In untrusted collaborations, a client might take
special preparations before making a request and possibly make
extra checks afterwards to verify that the service was performed
correctly.

Table 8-1 shows how we might state a contract outlining the obliga-
tions and benefits of a request that spans a trust boundary from the
online banking system to the backend bank system to request a
funds transfer.

Table 8-1 A contract explains both obligations and benefits.

Request: Funds
Transfer Obligations Benefits

Client: online bank-
ing application

(precondition)
User has two accounts.

Funds are transferred and
balances adjusted.

Service provider:
backend banking
system

(preconditions)
Sufficient funds were in
the first account.

Honor request only if both
accounts are active

(postcondition)
Both accounts’ balances
are adjusted to reflect
transfer.

Only needs to check for
sufficient funds and active
accounts, need not check
that user is authorized to
access accounts.

A contract specification is a
job description for the service
provider: Its work will start
from the initial state of the
system as characterized by
the preconditions, and it will
deliver results defined by the
postconditions.

Wirfs.book Page 309 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

310

Meyer’s notions of obligations and benefits is contrary to defensive
collaborations, in which nothing is trusted and everything is
checked. In fact, if you spelled out the contractual obligations
between collaborators in great detail, you could theoretically imple-
ment only a minimum number of checks. The hardest part in imple-
menting objects that fulfill their obligations is ensuring that
postconditions are met. This is especially difficult when a service
provider collaborates with many others to get its job done.

You and your coworkers may go back and forth dickering over what
constitutes “reasonable” benefits and obligations for a specific con-
tract. This is a good exercise. After you decide who should take
responsibility, you can implement collaborators to work within these
constraints.

If you are designing a component that must work reliably in spite of
untrusted requests, you can purposely design it with a defensive
posture—checking everything before it does anything. If checks are
expensive, you should probably assign more obligations to the ser-
vice provider. Decisions about who should take responsibility for
guaranteeing preconditions is partly a matter of style and partly a
matter of the trust between objects.

Defining contracts is good way to reason about the obligations and
benefits of a particular collaboration. But it’s also a lot of work. Not
all collaborations warrant this extra attention. Contracts are espe-
cially useful for defining the obligations and benefits between your
software and external systems:

Contracts make absolutely clear what is expected. They are espe-
cially important for describing collaborations that need to be reliable
and that cross trust boundaries.

In the online banking application, it is reasonable to put the obliga-
tion on the backend bank to keep track of funds in accounts. Other
transactions can be made by other banking applications that affect
account balances, independently of the online banking application.
Even if the online banking application can check beforehand via an
expensive communication, it can’t guarantee that the funds will still
be available by the time it actually makes the request.

Wirfs.book Page 310 Friday, October 11, 2002 11:44 AM

Reviewing Your Design

311

REVIEWING YOUR DESIGN

Even with the best intentions, you can’t spot all the flaws in your
work. Have you ever had an “Aha! moment” when you explained
something to someone else? Simply talking about your design with
someone else helps you to see things clearly. A fresh perspective will
help spot gaps in your design.

The most common bugs in exception-handling design, according to
Charles Howell and Gary Veccellio in Advances in Exception Handling
Techniques (Alexander Romanovsky, ed., Springer 2001), who ana-
lyzed several highly reliable systems, crop up when the following
things happen:

� When writing exception-handling logic, you fail to consider
additional exceptions that might arise. Don’t let your guard
down! Any action performed when an exception is handled
could cause other exceptions. Often, the appropriate solution
to this situation is to raise new exceptions from within the
exception-handling code.

� You map error codes to exceptions. At different locations in
your design, various objects may have the responsibility to
translate between specific return code values and specific
exceptions. The most common source of error is to incom-
pletely consider the range of error codes—mapping some, but
not all, cases. Mapping is often required when different parts of
a system are implemented in different programming languages.

� You propagate exceptions to unprepared clients. Unhandled
exceptions will continue to propagate up the collaboration
chain until either they are handled by some catchall object or
they are left to the run-time environment. Designers usually
want some graceful exception reporting or recovery. What
they’ll get instead, if clients aren’t designed to handle an unex-
pected exception, will be program termination.

� You think an exception has been handled when it has merely
been logged. Exception code should do something meaningful
to get the software back on track. As a first cut, you may imple-
ment a common mechanism to log or report an exception. But
this doesn’t mean it has been handled. You’ve done nothing but
report the problem—something that is only slightly more use-
ful than taking no action at all.

Wirfs.book Page 311 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

312

In addition to these potential sources of error, look for places where
complexity may have sneaked in:

� Redundant validation responsibilities. When you aren’t certain
who should take responsibility, sometimes you put it in several
places. Different levels of validation may be performed by dif-
ferent objects in a collaboration—first checking that the infor-
mation is in the right format, next checking that it is consistent
with other information. It is OK to spread these responsibilities
among collaborators. But avoid two different objects perform-
ing identical semantic checks.

� Unnecessary checks. If you aren’t sure whether some condition
should be checked, why not check anyway? The reason is that
it can decrease system performance and give you a false sense
of security. This is an easy trap to fall into. By doing this, you’ve
done absolutely nothing to increase your software’s reliability
and are likely to confuse those who will maintain your design.

� Embellished recovery actions. At first, extra measures seem to
be a good idea . . . but wait. Is it really necessary to retry a
failed operation, log it, and send e-mail to the system adminis-
trator? Look for places where extra measures detract from sys-
tem performance, make your system more complex, and, on a
really bad day, clog someone’s inbox.

At the end of a review, you should be convinced that your exception-
handling actions are reasonable, cost-effective, and likely make a dif-
ference in your system’s reliability.

SUMMARY

As a first step in increasing your software’s reliability, you need to
understand the consequences of system failure. The more critical
the consequences, the more you can justify the effort and energy of
designing for reliability. To clarify your thinking, distinguish between
exceptions—unlikely conditions that your software must handle—
and errors. Errors are things that go wrong—bad data, programming
errors, logic errors, faulty hardware, broken devices. Most software
doesn’t need to be designed to recover from errors, but it can be
made more reliable by gracefully handling common exceptional
conditions.

Approaches for improving reliability are rarely cut and dried. The
best alternative isn’t always clear. To decide what appropriate
actions should be taken involves sound engineering as well as con-
sideration of costs and impacts on the system’s users.

“Redundant checking . . . is
a standard technique in
hardware. The difference is
that in a hardware system
some object that was found to
be in a correct state at some
point may later have its
integrity destroyed because
of reasons beyond the control
of the system itself. . . [but]
software doesn’t wear out
when used for too long; it is
not subject to line loss, to
interference or noise.”

—Bertrand Meyer

Wirfs.book Page 312 Friday, October 11, 2002 11:44 AM

Further Reading

313

Objects do not work in isolation. To improve system reliability you
must improve how objects work in collaboration. Collaborations can
be analyzed for the degree of trust between collaborators. Within the
same trust boundary, objects can assume that exceptions will be
detected and reported and that responsibilities for checking on con-
ditions and information will be carried out by the appropriately
designated responsible party. In some programming languages,
exceptions can be declared. When an exception is raised, some
other object in the collaboration chain will take responsibility for
handling it. An alternative implementation technique is to return
values from calls that can encode exceptional conditions.

When collaborations span trust boundaries, more precautions may
need to be taken. Defensive collaborations—designing objects to
take precautions before and after calling on a collaborator—are
expensive and error-prone. Not every object should be tasked with
these responsibilities. When you need to be very precise, define con-
tracts between collaborators. Bertrand Meyer uses contracts to
specify the obligations and benefits of the client and the provider of
a service. Spelling out these terms makes it absolutely clear what
each object’s responsibilities are in a given collaboration.

FURTHER READING

Doug Lea has written a very handy book called Concurrent Pro-
gramming in Java™: Design Principles and Patterns, Second Edition
(Addison-Wesley, 2000). This book is invaluable, even to non-Java
programmers. It is packed with in-depth discussions and examples
and good design principles. Even if you aren’t building highly con-
current applications, this book is worth careful study.

Advances in Exception Handling Techniques (Alexander Romanovsky
et al., eds., Springer Verlag, 2001) grew out of a workshop on excep-
tion handling for the 21st century. It is a collection of chapters writ-
ten by programming language researchers, database designers,
distributed system designers, and developers of complex applica-
tions and mission critical systems, who share their vision of the
current state of the art of exception handling and design. You will
find very readable papers that discuss exceptions from multiple
perspectives.

Bertrand Meyer’s book Object-Oriented Software Construction (Second
Edition) (Prentice Hall, 2000) is the definitive work on software engi-
neering using the principle of Design by Contract. It is a weighty
book. But two chapters—Design by Contract: Building Reliable Soft-
ware, and When the Contract is Broken: Exception Handling—are a

Wirfs.book Page 313 Friday, October 11, 2002 11:44 AM

Chapter 8 Reliable Collaborations

314

good exposure to thinking in terms of preconditions, postconditions,
invariants, and collaboration contracts.

Henry Petroski talks about the role of failure analysis in successful
design in To Engineer Is Human: The Role of Failure in Successful
Design (Vintage Books, 1992). Software designers clearly don’t
understand the laws that govern software failures as well as struc-
tural engineers understand physics and materials. But you can learn
many lessons from this book.

Wirfs.book Page 314 Friday, October 11, 2002 11:44 AM

Chapter 9
Flexibility

eemingly effortless improvisation—whether in music or
software—requires you to quickly identify and fit some-

thing new alongside what’s already there. You slip in and go
with the flow. Coming up with variations with little apparent
effort is what improvisation is all about. Composing on the
spot. Making it look easy.

Only after you’ve acquired the basic skills can you begin to
improvise. To get really good at it takes talent, sure, but also
lots of practice and experience. How can you get to this level?
If your software has been carefully designed, it’s much easier.
Software that has been designed to flex is set up for ready
extension. It has the structures in place that allow for change,
so you can look good without having to work so hard.

S

Wirfs.book Page 315 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

316

WHAT DOES IT MEAN TO BE FLEXIBLE?

Most people think object software inherently is flexible. It isn’t. Flexi-
bility, even in object software, takes extra effort. It must be explicitly
built into your design. Flexibility is a measure of how easily software
can adapt to a range of design parameters. The larger the scope of
these parameters’ effects, the more flexible the software is.

Designing software as a collection of roles, responsibilities, and col-
laborations is the first step toward creating flexible software. Flexible
software has fewer hard-wired assumptions, fixed values, or static
connections between collaborators. It’s looser. Things can be
slipped in. It is designed to include “knobs” that can be turned to
adjust things. There are explicit places in the design that have been
prepared for adaptation.

Flexible software may dynamically alter its own behavior as it exe-
cutes, reacting to changes in its environment. Or the end user may
be able to customize how the software works. That’s flexibility, too.
Or flexible software may be extended by a developer who adds new
behaviors in prescribed ways—creating new subclasses, defining
new methods, or plugging in new collaborators. In all these cases,
software can be adapted to fit changing requirements.

There is a difference between an adaptable system and a flexibly
designed one. Software can react to various situations even if its
design is inflexible. What distinguishes a flexible design from other
solutions is that it incorporates mechanisms—hooks, if you will—
that enable it to be changed. Designers have anticipated future adap-
tations and have structured their design to accommodate them.
They’ve placed extra mechanisms into the software in anticipation of
its flexing. They have made educated guesses about how the soft-
ware will need to be tweaked and have incorporated design elements
that specifically enable additions and modifications and extensions.
If they’ve make sound choices about where to incorporate these flex-
ion points, their work will have a big impact on maintenance.

What does it take to make software flexible? In part, it depends on
who makes the adjustments. If the person making changes is a pro-
grammer or designer, there will be obvious clues and special hooks
installed in the design. Some of these hooks will exist regardless of

Flexible: Capable of responding or conforming to new or changing
situations.
—Webster’s Seventh New Collegiate Dictionary

“Music is your own
experience, your thoughts,
your wisdom. If you don’t live
it, it won’t come out of your
horn.”

 —Charlie Parker

From the user’s point of
view, flexible software
accommodates varying
conditions or requirements.
From a developer’s point of
view, flexible software can be
modified or extended with
ease.

A design that meets its stated
objectives may or may not be
able to flex and adapt to a
new condition.

Wirfs.book Page 316 Friday, October 11, 2002 11:44 AM

Degrees of Flexibility

317

who makes the changes. But when a system is designed to be
extended, there is even more work involved. Special attention may
have been paid to designing and documenting class hierarchies with
specific extension points. Ideally, when developers need to alter
some behavior or extend the software’s feature set, they should fol-
low a well-understood procedure: Add a class here or override a
method there. This works only if preparations have been made.

In a good design, flexibility isn’t an accident; it’s a byproduct of care-
ful preparation. It takes extra machinery and inventions and design
discipline as well as extra attention to design and coding details. You
might need to identify common roles and document how class hier-
archies can be extended. You might need to include additional
embellishments that enable programmers to dynamically configure
collaborators or varying information. It takes energy to describe and
make points of extension evident. It’s more work to develop coding
examples that illustrate how to make an adaptation or write recipes
that describe how to tinker with the flexible machinery.

Anticipating future changes is a bit of a gamble, sure, but the payoffs
can be immense. Flexibility enables design improvisation.

DEGREES OF FLEXIBILITY

The ways software could flex are limitless. There is never enough
time and energy to realize every idea. Not every good design is a flex-
ible one. And not every object needs to be flexible to make a system
flexible. You should emphasize flexibility when

� It is clearly justified in support of tangible requirements

� It doesn’t compromise other project goals

� Your software will live in an environment with a history of
change

� Your software needs to adapt to different environments

� It is of high value to you, your teammates, and other project
stakeholders

When’s the right time to think about flexibility? As soon as you start
partitioning responsibilities into related chunks, you can start think-
ing about flexible solutions. Monolithic software can be hard to
change. It is easier to add flexibility to software that is organized into
well-defined components and subsystems.

If you need to adapt to varying environmental conditions, it’s better
to structure your system so that points of potential change and

“People never understand
how arranged Bill Evans's
music really was. Sure, it was
free and improvised. But the
reason we could be so free is
that we already know the
beginning, the middle, and the
ending.”

—Chuck Israels

“Patterns are a cornerstone
of object-oriented design,
while test-first programming
and merciless refactoring are
cornerstones of evolutionary
design. To stop over- or
under-engineering, balance
these practices and evolve
only what you need.”

—Joshua Kerievsky

Wirfs.book Page 317 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

318

variation are insulated from the rest of the system. You can inten-
tionally wrap potential points of variation to prevent dependencies
on specific features from permeating other parts of the system. The
sooner you make these decisions, the easier it will be to keep your
options open. Very early decisions can dramatically increase or
inhibit your software’s ability to flex.

But during exploratory design there are also many decisions that
impact flexibility. Choices you make as you assign responsibilities to
objects and design collaborations affect flexibility. Many of the prac-
tices we have mentioned in this book improve your design and, as a
side effect, make it easier to change. Responsibilities are design
placeholders where various object types and behaviors can be
plugged in to replace others. The ways you choose to divide responsi-
bilities among objects enable you to neatly encapsulate any behav-
iors that might change. But only when you add explicit hooks—which
allow responsibilities to be modified or collaborators to be replaced
without affecting working code—do you really support flexibility.

Design patterns typically allow small groups of objects to flex in spe-
cific ways. How you use patterns impacts the ways your software
flexes. Consider the Command pattern. It encapsulates an action in
an object. You can add new operations by inventing new types of
Command objects (see Figure 9-1). You can do so relatively easily as

Whether it be extension,
modification, or run-time
configuration, flexibility isn’t
something that just happens.
It must to be identified and
designed into software.

Figure 9-1
The Command pattern supports varying actions on a target.

Wirfs.book Page 318 Friday, October 11, 2002 11:44 AM

The Consequences of a Flexible Solution

319

long as a new Command object operates under the same assump-
tions as existing Command objects. The mechanism for supporting a
new command is preestablished, leaving the design of the new com-
mand’s behavior for you to concentrate on.

Your choice of patterns and the way your design is organized impact
how amenable your software is to adaptation. But flexibility con-
cerns don’t stop there. At the most detailed level, seemingly small
choices affect your software’s ability to flex. How you construct
methods, specify signatures, declare interfaces, and use inheritance
impact flexibility. Identifying shared roles and then defining common
interfaces make your software more flexible. Encapsulating private
details inside objects makes clients less dependent on others’ inner
workings, thus making it possible to change how they work with-
out rippling changes throughout the design. Code refactorings,
described in Martin Fowler’s Refactoring: Improving the Design of
Existing Code (Addison-Wesley, 1999), improve the structure and
quality of the implementation. Refactorings are intentional restruc-
turings that preserve a design’s intent while preparing it to better
absorb an anticipated change. Whether you refactor during design
or coding, refactorings tend to shift responsibilities among collabo-
rators or move them around in an inheritance hierarchy.

THE CONSEQUENCES OF A FLEXIBLE SOLUTION

Flexibly designed software offers many advantages. The ways to sup-
port specific variation have been preestablished. Hooks are in place,
waiting for you to plug in a new variation. Instead of spending time
devising new mechanisms, you follow set design rules. You just have
to dig in and implement a variation that follows them. Are you impro-
vising? Yes. But you don’t have to be terribly clever. You have pat-
terns and proven mechanisms to extend and augment.

If a new banking service is similar to the design of an existing one,
adding it is fairly easy. Objects that coordinate the new financial ser-
vice need to be designed and coded. But the pattern for doing so is
preestablished. It is a matter of fitting this new service provider into
preexisting patterns of collaboration and calling on existing backend
banking services. Sometimes, additional backend banking system
functions may need to be wrapped and utilized. That takes more
work.

Wirfs.book Page 319 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

320

The learning curve for highly flexible software can be steep. Under-
standing complex software takes time. Understanding complex, flexi-
ble software takes even longer. And if you dwell in a complex system
for a while, you tend to create complex solutions, whether or not
they are warranted. It’s a matter of fitting in and following the estab-
lished style. Yes, software can be too flexible for its own good!
Raphael Malveau and Thomas Mowbray in Software Architect Boot-
camp (Prentice Hall, 2000) caution against “flexibility disease,”
whose symptoms include the following:

� Overly complex procedures. If the recipe for making an exten-
sion has many complex steps to follow, it can be difficult and
error-prone.

� Many documented conventions. Sometimes a design is so flexi-
ble that the only way to extend it properly is to follow complex
coding conventions. The only thing that prevents you from
breaking things is to pay excruciating attention to detail.

� Extra code. To use a configurable service, clients must parame-
terize their requests. And the service provider may be more
complex in order to handle all the options. Extra complexity
can pile up on both sides of a flexible interface.

The major drawback of a flexible design is added complexity. But
creating an inflexible solution isn’t the antidote. Inflexible designs are
difficult to revise and improve on. No one wants to build software
that is creaky, difficult to maintain, and subject to ugly hacks. So the
easier it is to make software adapt, the longer it will stay true to its
original design. The key is to build in flexibility in just the right places.

NAILING DOWN FLEXIBILITY REQUIREMENTS

Not every object needs to be flexible, and not all parts of a design
need to flex. You create a flexible design when you see the similari-
ties and variations on common behavior and subsequently identify
roles that can be shared by different kinds of objects.

Letters, words, sentences, and commands are core concepts of the
Speak for Me domain. Realizing that they are all variations of another
concept, a “guess,” simplifies the design and makes it easy to
extend. There is no explicit statement in the requirements that “the
system will offer several different kinds of guesses to the user.” The
concept had to be invented. But once they were there, we pushed on
it . . . and extrapolated that message Destinations could also be a kind
of guess.

A design chock full of ready-
to-extend abstractions
and brilliantly factored
responsibilities can be
daunting. Patterns can be
applied too heavily, making
the design complex, flexible,
and hard to decipher. This is
because it is harder to think
abstractly than to think
concretely.

Wirfs.book Page 320 Friday, October 11, 2002 11:44 AM

Nailing Down Flexibility Requirements

321

The more variations you see surrounding a common theme, the
more fodder you have to create good abstractions that support a
range of variations. So even without expending lots of extra effort,
you may discover that certain parts of your design may have the
potential to be more flexible, even though flexibility hasn’t been your
focus. But how can you determine where you should concentrate
your efforts?

Identify the real problem. Flexibility requirements are rarely
spelled out in explicit detail. No one says, “Build me the coolest
framework and make it hum!” Often, only when you look closely at
how to satisfy other requirements do you see that a flexible solution
might be the right solution to propose:

Flexibility is rarely the problem that needs solving. Proposing a flexi-
ble solution may allow you to support frequent revisions or adapt to
different environments or users or to add new functionality in a pre-
dictable way. The real need is to support new changes. Flexibility
isn’t a requirement; it’s only one design option.

Establish the vision. When you spot an opportunity to propose a
flexible solution, it is important that you paint pictures of the future
with and without a flexible solution. Make it clear that a flexible solu-
tion will make a difference.

A stated objective for the online banking framework was that it
should be configured and installed at a new location within a month.
The project sponsors also wanted installations to require little or no
programming or design rework because it was difficult to negotiate
time-and-materials contracts and customers were used to fixed
installation costs.

These requirements led us to conclude that facilities needed to
be designed into the software to make it easily tunable during
installation.

The telco integration framework will need to support cases in which
different software components share information and in which data
will need to be collected from more than one source. Rather than
integrate various applications via point-to-point solutions, the frame-
work will serve as the central means to coordinate work among
various applications that it integrates. Limiting visibility between
applications allows for changing external systems without changing
each interdependent application.

Making an application flexible
takes extra work. So it
is important that the
requirements warrant the
effort. When requirements
specify configurable behavior,
or extensibility, or robust
reactions to unanticipated
conditions, that is where
we start.

Wirfs.book Page 321 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

322

Honestly assess whether a flexible solution is affordable.
Although a flexible solution may be important to a project’s success,
you have spotted a potential opportunity and not necessarily the
only workable solution. And because flexibility incurs extra develop-
ment costs, you’ll need to convince yourself and others that a flexi-
ble solution is the appropriate solution.

Flexibility in a design can be of great value. But the variations that you
support should be of value. When you are on a tight schedule, it is
dangerous to spend precious time designing for the unforeseen future.
You can’t sacrifice other project goals just for the sake of flexibility.

Identify places where your architecture should flex. There
may be areas in your design where a flexible solution offers clear
advantages. If you believe that to be true, push on that part of the
design for a bit and don’t let go until you understand more. Before
you can design in flexibility, characterize what variations your soft-
ware needs to support. Then pinpoint appropriate places where a
flexible design solution is warranted.

The system architect of the online banking system was fresh off
another very successful project. A brilliant programmer, he loved the
special challenge of building generalized frameworks, something that
was explicitly demanded in his previous project. He brought his
excitement (and assumptions about requirements) to the online bank-
ing project. But this project was on a tight schedule, with little room
for invention or error. When he became consumed by his desire to
implement a customizable framework, his colleagues had to spend
many long hours to fill in the gaps and meet tight project deadlines.

A small number of design constraints were proposed for the telco
integration project. These included statements such as these: It
should provide transparent integration between different business
applications. It will not provide only hardwired point-to-point com-
munications. Instead, components in the integration framework will
encapsulate the differences among instances of a particular type of
application.

This led us to partition the architecture into adapters that interfaced
with core business processing functions. Adapters were responsible
for transferring requests and information between external applica-
tions and a business process coordination core. Each adapter inter-
faced to a specific application. Resource managers were responsible
for locating information maintained by external applications. Com-
munications between adapters and the core were through a common
set of framework-specific commands.

It is tempting to overdesign
and invent abstractions to
accommodate any number
of imagined design changes.
That’s just another form of
feature creep.

Wirfs.book Page 322 Friday, October 11, 2002 11:44 AM

Nailing Down Flexibility Requirements

323

Demonstrate real benefits. It can be difficult to quantify benefits
and estimate the cost of designing a flexible solution, especially
when you are building something from scratch. We can’t stress this
enough: Flexibility doesn’t come for free! But the need for developing
a flexible solution should be defensible. Identify the benefits that a
more flexible solution provides over a less flexible one.

But be careful. Don’t oversell or propose a difficult solution when a
simpler one is adequate.

Find out what you don’t know. What you don’t know can com-
promise your design efforts. Ask crucial questions before investing a
lot of energy in wasted effort. You can mitigate risks by following an
incremental, iterative development process that places tight con-
trols on how much you will invest in making things flexible. In a nut-
shell, define an increment; identify a set of features that will prove
the merits of some flexibility you want to support in your software;
then design and implement a flexible solution that supports those
features. Evaluate your results and replan for the next increment.
Don’t let unplanned embellishments slip in. Don’t let too much time
slide by without taking a critical look at your design solution. Each
increment buys information about the choices you’ve made and lays
a foundation for future increments. If you are planning to build a very
flexible system, defining the right-sized increments and watching
your investments in flexibility will be key to your success.

With the telco integration framework, a new application can be sup-
ported by defining its services, fitting them into current or new busi-
ness processes, and developing an adapter component. Currently we
must ask each vendor to bid on software modifications and custom-
ized interfaces to other applications. The vendors are in control, and
we have little opportunity to manage development costs.

If the billing system fails, requests will be queued in the integration
framework. Currently, the entire order must be reentered, which is
error-prone. If the billing application’s database becomes corrupted
and needs to be restored, the framework could “replay” previous bill-
ing adjustments. This is possible because all orders are stored in a
database. Currently, the billing system is restored with manual
entries via a complex user interface. Only one or two highly skilled
billing analysts can perform this task with any reliability.

The telco integration framework was sold to management on the
basis of reduced customization costs, increased control over a con-
stantly evolving environment, and increased reliability.

“An architecture is a plan,
and it is said that no plan
survives first contact with the
enemy. The enemies in this
case are change and
ignorance. . . . What we don’t
know can change our
architectural assumptions to
the breaking point.”

—Raphael Malveau and
Thomas Mowbray

Wirfs.book Page 323 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

324

Incremental development lets you validate what you think you know
instead of pressing on in ignorance.

RECORDING VARIATIONS

If you are developing flexible software, it is important to characterize
the types of variability your software needs to support. You can start
by asking the following:

� What functions will change over time or work differently
because of certain conditions? A list of points of variation, or
hot spots, can focus your efforts.

� What is the desired degree of flexibility for each hot spot? Must
the flexible functionality be changeable at run time or by end
users? How flexible does the software need to be? An honest
assessment of how flexible your software needs to be can help
you plan the effort.

Whether you are building a framework or simply trying to design
software that supports some variations, hot spot cards are a great
way to briefly characterize some flexible behavior. Wolfgang Pree
introduced the notion of a hot spot or variation card at an OOPSLA
tutorial in 1995. Like CRC cards, they are a low-tech tool you can use
to describe the essence of a variation.

A hot spot card is divided into three sections (see Figure 9-2). The
top section includes the name of the hot spot. The middle section
summarizes the functionality that varies. This high-level general
description leaves out details. The bottom section is used to sketch

The first deliverable for the telco integration application was a proto-
type, implemented in Java. This was delivered in six months. It han-
dled simple service orders for two types of products. The project
deliverables also included a design model for the core framework
and adapters, a documented subsystem architecture, and a list of
issues and recommendations.

An important objective of the initial telco framework prototype
project was to identify issues that must be addressed in a production-
quality system. After the prototype was completed, the architecture,
design, and issues were reviewed by a select group of internal and
external reviewers. Their feedback was used in planning the next
iteration.

Hot spots, recorded on index
cards, are informal tools for
capturing rough ideas about
the points of variation you
want to support in your
software. Index cards are
indeed a flexible tool—you
can use them to record
variations as well as describe
candidate objects.

Wirfs.book Page 324 Friday, October 11, 2002 11:44 AM

Recording Variations

325

two specific examples of the variation. Ideally, you should capture
just enough detail that you can discriminate similarities and differ-
ences as you consider potential design strategies.

Who fills out hot spots cards? During requirements gathering, people
who articulate business needs—business analysts or end users—
can work with designers to jointly fill out the cards. These cards can
be a tool to briefly characterize run-time flexibility or the possibility
of end-user-directed adaptations (see Figure 9-3). Anyone describing
a hot spot should realize that added flexibility incurs some cost. A
reasonable design solution will include additional mechanisms that
will allow the software to flex in support of the hot spot.

You can also use hot spot cards during design. Document variations
that you spot at the beginning of a design iteration. Use hot spot
cards to reverse-engineer your design—characterize existing varia-
tions—before planning how to absorb new requirements. Ask what’s
already there and how it varies. Understand what you have before
altering your design to slip in a new adaptation.

Imagine if the Sun Java development team had used hot spot cards
to describe desired variable behaviors before inventing design
mechanisms and new interfaces and classes! In Java, all collections
contain a number of elements in a certain data structure. Different

Figure 9-2
The hot spot card describes and demonstrates variations.

Hot Spot Name
General description of the semantics of
some envisioned variable behavior

Descriptions of hot spot behavior for at
least two specific situations

Wirfs.book Page 325 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

326

classes of collections define different structures, optimized for spe-
cific access and usage patterns. Linked lists and hashtables are two
specific examples. An iterator is a mechanism for accessing elements
of a collection without having to know anything about its underlying
structure. In Java, an interface has been defined that describes three
basic operations of an iterator: hasNext(), next(), and remove().
Figure 9-4 shows a description of collection traversal that might have
hatched the Java iterator concept.

There are obvious limits to what can be written on a hot spot card.
Complex algorithms don’t easily fit. If you need to characterize a
variation in more detail, do so. Use cards to sketch out the basic
ideas, and keep them simple. Don’t solve the flexibility requirement
on the card—just sketch what varies. Nothing says you can’t write
more or that you must limit your thoughts to what fits on a card. Use
the card to sketch what varies and not to solve the flexibility require-
ment. A slightly expanded hot spot description might sketch out sev-
eral possible solutions.

Figure 9-3
A guess can be selected in several different ways in Speak for Me. It’s a
hot spot.

Select a Guess
How the user selects guesses depends on her
ability. The software must allow a wide range
of devices to be used to select guesses.

1. User selects guesses by blinking her eyes. An
 eye switch detects the eye motion.

2. User selects guesses by clicking on a sensitive
 “jelly bean” button.

hot spot name

specific examples
general description

A hot spot card should
describe the variation and
not pose a design solution.

Wirfs.book Page 326 Friday, October 11, 2002 11:44 AM

Variations and Realizations

327

Hot spot descriptions are tools to guide your flexibility design
efforts. Discussing hot spots helps a team to come to a deeper
understanding of design variations that need to be supported. Use
them to characterize how flexible a design needs to be.

VARIATIONS AND REALIZATIONS

To “solve” a hot spot, you will likely introduce new design mecha-
nisms that enable your design to flex. This boils down to making

Early in the telco integration project, a 10-page document was written
that described seven hot spots. It also described initial thoughts
on how best to support them. The project sponsors and business
analysts didn’t want to give the team detailed guidance on design
choices, but they wanted the team to focus on the right things. This
document was one tool used to gain buy-in and support for an exten-
sible framework and pinpoint exactly how the integration framework
should flex. It was also used by the team to guide design discussions.

Figure 9-4
Iteration is a hot spot in collection class libraries.

Traverse Different Types of Collections

Traversing different types of collections requires
an algorithm for each data structure.

1. Follow links from node to node for linked lists.

2. Increment an index to move from cell to cell
 in an array.

3. Iterate over the values associated with each key
 in a dictionary.

hot spot name

specific examples general description

Wirfs.book Page 327 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

328

specific responsibilities tunable, replaceable, or extensible. After
you’ve characterized a hot spot, you can get very specific. You can
then do the following:

� Identify the focus and scope of the variation. How big an impact
will it have on your design? Does it require a minor tweak, a
modest investment, or a major design effort? Is it an extension
or modification of what’s already there, or does it require some-
thing new?

� Explore strategies for realizing the flexibility. Solutions can
be as simple as tweaking a single responsibility or something
much more elaborate.

� Evaluate your solution for gaps, unnecessary complexity, and
usability.

� Describe to other designers and, potentially, to your software’s
users how to make the software flex.

Identifying the Impact of a Variation

The focus of a variation is a set of system responsibilities that
directly support the variation. A narrowly focused variation—one
that affects one or two responsibilities—is likely to have a limited
impact on a design.

The scope is a measure of how pervasive that variation is—how
much of the design, it affects. A variation could have a narrow focus
and still have a large scope. This isn’t necessarily the sign of a poorly
factored design, but rather one that needs to be reshaped to accom-
modate a variation. Affected responsibilities may need to be factored
into different objects or subdivided into smaller ones that can be
tuned or replaced. Interfaces to services may need to be reconsid-
ered. Responsibilities may need to be reassigned, and new objects
may need to be inserted into the design.

Enabling the design of Speak for Me to accommodate different pref-
erences in the ordering of the spoken alphabet affects two objects:
the UserPreferences object, which is responsible for knowing the pre-
ferred ordering, and the Alphabet, which is responsible for offering
the next bid to the Guesser.

Wirfs.book Page 328 Friday, October 11, 2002 11:44 AM

Variations and Realizations

329

Exploring Strategies for Realizing Flexibility

Identifying the scope and focus of an adaptation sets the stage for
devising mechanisms to support a variation. If a variation is simple,
with a narrow focus and limited scope, you might get away with
implementing a solution that isn’t flexible. Your solution would sup-
port some variation but would not include mechanisms that would
permit easy adaptations to support other, similar variations. On the
other hand, if you expect similar variations to continue to crop up
and stretch your design, develop a flexible solution.

Here are two examples that push at two ends of the spectrum. The
first example is a variation with a narrow focus. It can be solved with
a simple but inflexible design tweak. The scope could be fairly broad
(it is hard to tell from the description), but even so, it seems that a
reasonable design strategy would be to define a state variable
(encapsulated in an information holder object) that could be
checked:

In contrast, supporting a new product in the telco integration appli-
cation has a broad scope and benefits from a flexible solution:

This variation is more challenging because the executable behavior
of several parts of the design must change. The scope is broad, and
the affected responsibilities are complex: New billing rules must be

A trial version of software checks for a registration when it is
launched. After that first check, it doesn’t check again until the next
launch. If the user isn’t registered, the software disables several fea-
tures (such as printing or creating work products larger than a speci-
fied size). A check-once variation.

When a new product is defined, the software needs to adjust in sev-
eral places: New billing rules and provisioning tasks must be defined.
A description of how to translate between an external order and the
framework’s representation of the order must be described. Initially,
this analysis of the hot spot’s scope surprised the project sponsors.
They didn’t expect that adding a new product would affect so many
parts of the system. A variation that requires definition of new infor-

mation and translation rules.

When is a flexible solution
warranted? It is hard
to characterize how
responsibilities vary until
you have several variations to
compare and contrast. Don’t
invent a flexible solution until
you can test it with at least
three tangible examples.

Wirfs.book Page 329 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

330

described, a provisioning task structure must be specified, and the
external order must be translated into an internal one. This involves
more than a few design tweaks. Each affected area of the design
needs careful consideration and a flexible solution.

Using Templates and Hooks to Support Variations

In addition to conditional logic and branching, there is one basic
technique for making individual object behaviors flex that exploits
inheritance: template methods. As described in Design Patterns
(Erich Gamma, et al., Addison-Wesley, 1995), a template method is a
skeleton of an algorithm. It specifies steps in an operation and identi-
fies specific steps that can be tuned or replaced. A template method
is a skeleton of an algorithm because it is incomplete; some steps are
deferred.

As a designer you are likely to apply the Template Method pattern
when you recognize that there will be differences in how subclasses
should implement certain steps. The template method implements
the fixed parts of an algorithm once, defines the ordering of steps,
and leaves it up to subclass designers to implement the steps that
vary. Code in template methods tends to call one of several kinds of
methods:

� Concrete methods—methods defined in either abstract or con-
crete classes that do not require hooks to be replaced in order
to work. A concrete method may implement default behavior
that can be overridden in a subclass, or it may implement fixed
behavior that is not replaceable.

� Primitive operations—basic operations defined by the specific
programming language environment.

� Factory methods—methods that return new objects.

� Hook methods—placeholder methods that define spots where
specific steps in the algorithm need to be plugged in to flesh
out the skeleton. Often, designers provide default hook method
implementations in abstract classes.

A hook method is a placeholder that gives other developers who are
creating subclasses a chance to insert new behavior at a specific
step in an algorithm. By calling upon a hook, developers can alter
behavior for a particular step without having to alter any template
method code. The template code stays fixed, whereas the contents
of a hook varies and objects returned from factory methods vary
(while supporting the same interface). The algorithm defined in a

There are other techniques
for making software flexible,
but the Template Method
pattern is a basic mechanism
that enables responsibilities
implemented in a class
hierarchy to flex.

Wirfs.book Page 330 Friday, October 11, 2002 11:44 AM

Variations and Realizations

331

template method is flexible and is extensible by a developer who cre-
ates a subclass that implements hook methods.

The Template Method pattern describes one specific technique to
adapt a configurable algorithm whose steps need to vary. But there
are other ways to make specific responsibilities tunable. More gener-
ally, a hook, according to Gary Froehlich and his colleagues who
wrote about them in Building Application Frameworks (Mohamed
Fayad, ed., John Wiley, 1999), is any point in the design that is meant
to be adapted. It is a specific spot where variation is supported.
There are several ways that behavior can be adjusted. Each hook
uses at least one of these techniques:

� Enabling or disabling a feature

� Replacing a feature

� Augmenting a feature

� Adding a feature

� Configuring a feature

In support of an individual hot spot you might define several hooks
or points in your design that are adaptable. To instrument these
hooks you will need to introduce specific design mechanisms that
allow other designers to adjust your design’s behavior. For example,
to enable or disable a feature, you might introduce a new variable

The general algorithm for performing any online banking request is
as follows:

1. Obtain connection to backend banking system (a concrete
action).

2. Prepare request (a hook).

3. Submit request to backend banking service (a hook).

4. Release connection (a concrete action).

5. Log results to transaction history database (a concrete action).

6. Report results to user (a concrete action).

In the online banking application, a template method is defined in
the abstract class OnlineTransaction. Subclasses are designed to
coordinate specific transactions. Subclass designers must implement
two hook methods: prepareRequest() and submitRequest(). All
other steps of the algorithm are implemented by concrete methods
defined in the OnlineTransaction (see Figure 9-5).

Normally, hook mechanisms
wouldn’t be part of your
design. You introduce them
whenever you want to
support planned variations.

Wirfs.book Page 331 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

332

Fi
g

u
re

 9
-5

Te
m

pl
at

e
an

d
ho

ok
 m

et
ho

ds
 d

es
ig

na
te

 w
hi

ch
 p

ar
ts

 a
re

 fr
oz

en
 a

nd
 w

hi
ch

 s
po

ts
 a

re
 h

ot
.

Wirfs.book Page 332 Friday, October 11, 2002 11:44 AM

Variations and Realizations

333

whose value is checked in one or more places to alter the path taken
through a method. To replace a feature, you might need to define
new interfaces that allow designers to introduce new classes. Aug-
menting a feature may involve refactoring your design and making an
extensible class hierarchy that incorporates template and hook
methods. Or you may need to redesign a controller to activate a new
feature.

Determine when something needs to vary. The degree of diffi-
culty of implementing support for a variation increases whenever
software needs to adapt while it is executing. You may have to add
support for synchronizing a number of related adjustments or struc-
ture your software so that the subsequent requests follow new rules,
while a currently executing operation performs under conditions
that were established when it started. Because dynamically adjust-
able software can be more complicated, don’t assume it’s a neces-
sity. One question to ask when you’re designing to support a
variation is when it needs to be accommodated. Are conditions
established when the application is launched, or are they dynami-
cally checked to alter behavior during execution? There is a range of
options.

Consider when your software needs to flex, and design it accordingly.
Sometimes, simpler solutions meet flexibility requirements even
though they don’t support dynamic variation of system behavior.

User access rights to accounts are checked when a user logs in. The
software doesn’t check again until the next time the user logs in. A

check-once variation.

The user of an e-mail application sets parameters that affect how
mail is displayed, when to check for mail, whether to check for spell-
ing errors, what signature to append to a message, how to encode a
mail message, and so on. These variations affect many parts of the
software. Whenever the user changes any setting, the software
responds. Numerous variations enabled by user-initiated events.

To install a new upgrade to software controlling a card in a complex
control system, the operator issues a command. The system reboots
the card and reinitializes the card only after it has successfully down-
loaded the software and stored a backup copy in nonvolatile RAM. If
the card isn’t carrying any active traffic, an upgrade can be loaded at
any time. A dynamic reconfiguration with rollback/recovery con-

straints.

There isn’t a sharp line you
can draw between what is
considered “normal”
conditional checking and
control flow in an application
and a flexible, configurable
solution. Most object designs
can be made to flex. A
good design includes an
appropriate degree of
flexibility.

Wirfs.book Page 333 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

334

Choose the simplest solution. When there is little reason to
choose one design alternative over another, follow the simplest
course of action. There are very simple ways to support variations
that involve enabling or disabling a feature or setting a configurable
parameter to a range of values.

To support optional functionality, you can design your objects to ask
and respond to feature availability. Behavior is tuned by setting
parameters whose values are queried. Depending on the value of a
particular parameter, different branches can be chosen. In a non-
object-oriented solution, these tunable parameters could be imple-
mented as flags. A more object-oriented solution is to create an
information-holder object with responsibility for maintaining config-
urable information. It is queried by objects whose responsibilities
adjust accordingly.

Concentrate variable information into information hold-
ers. Often, many parameters control an application’s variable
behavior. You could locate each of these settable parameters in dif-
ferent objects whose behavior is directly affected. Alternatively,
each affected object could turn around and ask a common source a
question and then vary its behavior depending on the answer.

Supporting a different input device for the Speak for Me application
involves installing a new device driver, defining and implementing a
new interfacer to that device, and adding the device to the user’s con-
figurable preferences. Although Speak for Me could support dynamic
loading of new devices whenever they are detected, this isn’t strictly
necessary. End users do not plug in new devices; hospital staff do. It
is rare that a user is switched from one input device to another. In this
case it is perfectly acceptable to configure the user’s preferences and
then restart the application.

In the online banking application, certain bank installations support
automatic online activation, whereas others require that users submit
information that is later manually verified by a bank agent against
bank records before online access is activated. A BankConfiguration
object is queried to determine whether or not Auto Activation is
enabled. The application alters its behavior to display the appropriate
registration screen and to either invoke automated authorization ser-
vices or queue a registration request for manual activation, depend-
ing on the answer to a simple question.

“When faced with alternative
approaches, choose the
simplest first and change to
a more complex one as
needed.”

—Martin Fowler

Certain variations require no
coding changes. Parameters
stored externally in a file or
database are read to initialize
system behavior. Whether a
developer or an end user,
whoever edits that
information may need to know
what values are valid and
understand dependencies
that exist between
parameters.

Wirfs.book Page 334 Friday, October 11, 2002 11:44 AM

Variations and Realizations

335

We recommend the second approach. Bundled together, config-
urable information can be dealt with as a unit. Sprinkling config-
urable values among many objects makes this information hard to
locate and manage. But don’t let your information holder become
too bulky. Instead of letting it get bloated with disconnected informa-
tion, you can always divide and conquer. Create a number of smaller
information holders that encapsulate related information. Give the
original information holder responsibility for managing these
smaller information holders. Redesign it to hold on to larger-grained
information.

Insert design placeholders. You aren’t likely to discover all vari-
ations at once. But if you are following an incremental, iterative
design process, you can plan to grow your design in specific ways.
Placeholders can be introduced into your design to encapsulate
behavior and information that you expect will grow and vary. You
can invent several placeholders and grow their responsibilities with
successive iterations. This isn’t a technique so much for enabling
variation as it is for keeping it contained to well-known spots.

Steven Jones, in Building Application Frameworks, introduces the
notion of a Placeholder pattern. If you want to reserve a spot for
anticipated improvements in later iterations, define and implement
one or more placeholders and insert them into the design, to be
fleshed out later. As an example, Jones describes a class hierarchy
that includes a specific placeholder for application-centric features.
Using this framework, application developers are expected to define
a new class and add it to this hierarchy for each application they
implement.

In the online banking application there are dozens of parameters that
can be used to tune the application’s behavior: number of user retries
before failing login, time elapsed before session time-out, and default
language, to name a few. The BankConfiguration object is initialized
by reading values from an external source.

Grouping related information into smaller focused information hold-
ers allows parts of the application to ask about specific feature sets.
In an e-mail application, a number of user-specific information hold-
ers might be created and maintained by a UserPreferences object:
IncomingMailOptions, OutgoingMailOptions, UserIdentity, Reply-
Options, and DisplayOptions, to name a few.

Planned for but unused
flexibility increases a design’s
complexity. So do poorly
factored hacks in support of
unplanned variations. But
appropriately located
placeholders can preserve
a design’s integrity.

Wirfs.book Page 335 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

336

The abstract class Application defines common default behaviors
for starting, initializing and shutting down any application. The class
CommonApplication is a subclass of Application, and a placeholder
that provides a home for additional behaviors that will have a global
effect on all applications. Instead of subclassing Application, to fit
into this application framework, developers create their own specific
application’s startup and control behaviors by subclassing Common-
Application. The following future behaviors might be added to
CommonApplication:

� Checking on whether a particular version of the application can
be started on a specific machine.

� Verifying licensing keys or user registration.

� Maintaining banners or welcome messages.

� Registering a distributed application with a naming service.

� Specifying the operational mode of the application—is it in
debug mode or normal operation? Is access limited, or is it
under normal operation?

Some programmers are likely to argue against placeholders; they
consider overdesigning to be bad practice. Designers who’ve been
burned on prior projects might argue fervently for their favorite
placeholder. The value of a placeholder is that it limits the impact of
subsequent design changes. New responsibilities can be given to a
placeholder, with minimal impact on the rest of the design (see Fig-
ure 9-6). Creating an explicit spot—a placeholder—allows for varia-
tions to be localized, encapsulated, and managed.

In the online banking application there are several placeholders—too
many for some designers’ tastes. Several placeholders were intro-
duced by the architect as a result of his past development experi-
ences. Not all team members bought into the need for introducing so
many of them. One noncontroversial placeholder is the BankConfigu-
ration object—a spot where bank-specific configuration information
is maintained. A more controversial placeholder is the user class hier-
archy. Although there are only three known kinds of users—the bank
agent, a system administrator, and end users—an ApplicationUser
inheritance hierarchy was designed. It is intended to support antici-
pated user-specific capabilities and defines specific places for exten-
sion. The placeholder classes weren’t easily accepted by the design
team because early releases of the application supported only end
users.

Debate about whether a
placeholder is necessary or
sufficient is healthy for a
design, as long as camps
don’t form and positions
become entrenched. The real
test will be in the future—
when new adaptations are
rolled into the design.

Wirfs.book Page 336 Friday, October 11, 2002 11:44 AM

Variations and Realizations

337

Create appropriate knobs for developers to turn. As a flexi-
bility designer, you can make other developers’ jobs easier by pro-
viding extra support—adding “knobs” to your implementation that
assist developers in making changes. The alternative is to give them
free rein to the code and let them have at it. Sure, it’s possible to
implement variations without extra support. But it is especially
important when several hooks must be implemented in a particular
order to realize a single variation. Without such support, making
extensions can get tricky.

If several parts of your system need to be configured as a unit and
the ordering of changes is important, consider providing a single
method—a master knob, if you will—that contains the code that con-
figures a variation in one atomic operation. Rather than call on sev-
eral methods to configure a feature, the developer invokes only one
method to make a set of related changes. This is much more reliable
than letting developers write their own scripts.

Sometimes, configuring a variation may involve reading and inter-
preting externally stored settings. Rather than let developers or
users change settings by using a low-level text editor, you might
want to create a tool that assists them in making consistent changes.
A tool can also check and report inconsistent settings.

Figure 9-6
Two placeholder classes—BankAppUser and AppUser—reserve spots for future
behaviors.

Wirfs.book Page 337 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

338

Sometimes, to implement a variation, extensive programming is
required. It is difficult to provide knobs in this case. But at the very
least, you can provide examples to emulate and can outline the steps
developers should follow. Rather than provide a knob, provide them
with a starting point.

There is one more knob that is a hallmark of disciplined develop-
ment practices: a “test” knob. After making a change, a developer
can turn a test knob to check whether an adaptation hasn’t broken
anything. A test knob typically invokes preexisting test code that
asserts whether values are correctly initialized, whether newly
installed objects respond appropriately to standard questions, and
whether new variations of behaviors perform according to estab-
lished scripts.

THE ROLE OF PATTERNS IN FLEXIBLE DESIGNS

Design patterns use composition, inheritance, and abstraction as
tools to enable adaptations. Design patterns make software “soft”
and amenable to extension and modification in prescribed ways.
We’ve already seen that the Template Method pattern defines basic
building blocks for constructing skeleton algorithms. A design pat-
tern typically affects a small segment of the design—a few collabo-
rating objects or a class in an inheritance hierarchy. Let’s look more
closely at three patterns described in Design Patterns to see where
they flex.

Varying an Object’s Behavior with the Strategy Pattern

The Strategy pattern lets you define a family of algorithms. The Strat-
egy pattern encapsulates a single algorithm in an object. Usually
called on by clients fulfilling larger responsibilities, this pattern lets
developers use any object playing the role of the strategy inter-
changeably.

Speak for Me presents the letters of the alphabet in different
sequences according to the wishes of the user. The Guesser dele-
gates the work of guessing letters to the Alphabet. If the Alphabet
plugged in different AlphabetOrder strategy objects according to the
user’s preferences, that would change the way letters are guessed.

The Strategy Pattern factors
a responsibility (often a
private one) out of an
object, replacing it with a
collaboration with another
object that performs that
responsibility. It is particularly
useful when the responsibility
is complicated or might vary.
After a responsibility has
been factored into its own
object, it can be replaced with
other strategies, enabling the
original object’s behavior to
vary.

Wirfs.book Page 338 Friday, October 11, 2002 11:44 AM

The Role of Patterns in Flexible Designs

339

The Strategy pattern presents a design alternative to having the
client select the appropriate algorithm based on conditional logic
and directly executing it. Sure, the client might need to be aware of
different strategies in order to pick the right one. But the appropriate
strategy might be provided by some other third party that knows
which strategy to choose. The responsibility for performing different
variants on the same algorithm has been factored into several differ-
ent kinds of strategy objects. Introduce a new strategy, and you’ve
extended your design.

Hiding Interacting Objects with Mediator

One bugaboo of flexibility is tight coupling. To collaborate with an
object, the client must acquire a reference to that object. If references
are fixed, communication paths and collaborations aren’t flexible.
The Mediator pattern’s sole purpose is to promote looser coupling by
keeping objects from directly calling on one another’s services.

In the Mediator pattern, an object that plays the role of a mediator is
responsible for coordinating the interactions of a group of objects.
Rather than collaborate with each other directly, the objects know
only about the mediator. The mediator is the hub of communication.
It instigates and manages inter-object communications.

The Mediator pattern trades off complexity of interactions between
individual objects for knowledge and visibility of those objects by an
object playing the role of mediator. With this looser coupling, your
design is more flexible. Any object that plays one of several preestab-
lished roles known to the mediator can be plugged in and used inter-
changeably.

Speak for Me’s MessageBuilder is a mediator. Coordinators often
play the role of a mediator. It responds to the application events and
hides the domain objects and their responsibilities from the objects
in the user interface. The user interface objects know about mediator,
but that’s all. The mediator, in turn, knows about the event-handling
responsibilities of all of the domain objects that it delegates to, but
these domain objects and their responsibilities are hidden from the
user interface objects. A mediator acts as a channel for interactions.

By representing the
responsibilities of the objects
that it delegates to, a
Mediator assumes all of their
combined responsibilities.

The distinction between a
mediator and a coordinator is
a subtle one. Your intention
when inventing a coordinator
is to solve a control problem
by creating an object that
coordinates activities of other
objects. A designer may
choose to adapt the Mediator
pattern as a solution—
designing that coordinator to
play a mediator role, or not. A
coordinator can manage the
activities of other objects
without having to be a
mediator.

Wirfs.book Page 339 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

340

Making a Predefined Object or System Fit Using Adapter

You apply the Adapter pattern when something you want to use isn’t
malleable enough to suit your purposes as is and you can’t change it.
Rather than warp the rest of your design to use an object or compo-
nent that has an undesirable interface—it could be clunky, or too
low-level, or not fit in with the rest of the design—you wrap it with a
more desirable one and plug that into your design.

The Adapter pattern allows you to fit new elements into your design
without compromising it. By creating adapters, you preserve your
design’s integrity and don’t let low-level details or a clunky interface
“leak out” and affect other objects.

How Do Patterns Increase Flexibility?

Many of the design patterns described in Design Patterns encourage
the distinction between an interface to a set of operations and its
implementation. To be plugged in and used, an object need only sup-
port a common interface and not a common implementation. This
allows objects that share common roles to be used interchangeably.
Clients are unaware of the classes of objects they use; they only
depend on their interface. This greatly reduces implementation
dependencies among objects and gives designers the flexibility to
replace one interface-compatible object with another.

Variations in behavior that are obtained by composing objects that
support predefined interfaces promotes “black box” use. No internal
details of those objects are visible to their clients. Regardless of
whether you apply a particular pattern, you can always increase flex-
ibility by defining interfaces and having clients rely on them instead
of referring to concrete classes. Declaring an interface as the type of

The telco integration software coordinates the work of a number of
business applications developed by independent software vendors.
In order to insulate the integration core from application specifics, the
system is partitioned into a number of adapters, which transform
requests from the external application into integration software com-
mon commands and/or translates requests from the integration soft-
ware into application-specific API calls (see Figure 9-7). Each adapter
runs in its own process, allowing for asynchronous processing. Parts
of the system can be brought up at different times, and adapters can
be allocated to separate processors.

Wirfs.book Page 340 Friday, October 11, 2002 11:44 AM

The Role of Patterns in Flexible Designs

341

an argument as the value returned by a method, or as the type of a
variable effectively establishes a contract for service without speci-
fying what class of object will perform it. It’s all the same to the client,
but only an object’s creator needs to be aware of its class. If a client’s
only view of a collaborator is its interface, different objects that sup-
port the same interface can be interchanged.

Another technique used in many design patterns is delegation: An
object that receives a request forwards it to an appropriate delegate
(see Figure 9-8). For example, both the State pattern and the Strategy
pattern change the behavior of an object by changing whom
requests are delegated to. Delegation makes it easy to support run-
time variation. By swapping delegates on-the-fly, you can adjust an
object’s behavior.

Figure 9-7
The Adapter pattern can be used to make different objects or components present a similar interface.

Wirfs.book Page 341 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

342

HOW TO DOCUMENT A FLEXIBLE DESIGN

How can you denote a potential point of variation in a collaboration,
or show where an object playing a specific role can be plugged in to
a design? You might think that the first thing to do is to create appro-
priate class and sequence diagrams that identify “flexible ele-
ments”—but exactly how do you show that? UML provides basic
mechanisms for showing classes, roles, interfaces, collaborations,
and patterns. But it doesn’t provide facilities for explicitly denoting
hooks or identifying related template and hook methods.

Although frameworks and extensible software have been developed
for a wide range of applications, UML as it stands today still lacks
adequate ways to describe points where a design can be extended.
Recently, the Unified Modeling Language community has started to
define profiles, which are subsets or extensions of UML targeted for
specific uses. That’s one reason the authors of The UML Profile for
Framework Architectures (Marcus Fontoura et al., Addison-Wesley,
2001) developed a specific profile aimed at aiding framework design-
ers and architects in describing extensible software.

In defining UML-F, Marcus Fontoura, Wolfgang Pree, and Bernhard
Rumpe have made a first attempt at describing points of design flexi-
bility. It remains to be seen whether their proposed notations
become widely adopted or make it into future versions of the UML
standard.

Figure 9-8
Delegation to replaceable collaborators makes a design flexible.

“Delegation is a good design
choice only when it simplifies
more than it complicates. It
isn’t easy to give rules that
tell you exactly when to use
delegation, because how
effective it will be depends on
the context and on how much
experience you have with it.
Delegation works best when
it’s used in highly stylized
ways—that is, in standard
patterns.”

—Erich Gamma et al.

Wirfs.book Page 342 Friday, October 11, 2002 11:44 AM

How to Document a Flexible Design

343

Several notations in UML-F are worth a close look. Designs that have
a large number of classes and interfaces can be difficult to grasp. For
many systems, a complete class diagram that shows every class and
interface as well as associations would be incomprehensible. It is
common to show a partial set of classes on a diagram and to repeat
classes on many different diagrams. It is a necessity to break down a
large design into comprehensible chunks.

But this can be confusing, too—especially when classes are depicted
in greater or lesser detail on different diagrams. On one diagram a
class may include attributes and operations; on another, only a sub-
set of operations may be enumerated. Yet a third diagram might
show the class with no attributes or operations. This is perfectly
legal in UML, and it is good to remove extraneous details so that you
can emphasize what’s important. However, developers studying a
design model in order to make a variation could benefit from a
clearer understanding of exactly what they are seeing.

To address this issue, the UML-F authors extended UML with two
tags that make it explicit whether or not a class, or any other design
element, is fully specified (see Figure 9-9). Tagged with a “©” means
that it is complete. Tagging a design element with a “...” means that it
is incomplete (there’s more detail but it is not shown). By default,
any element not tagged with “©” or “...” is deemed incomplete.

UML-F also lets you annotate individual methods with an explanation
of their intent and implementation. This allows a designer to specify
whether a method’s implementation is

� Abstract and needs to be overridden by subclasses (shown
with a diagonal slash through the rectangle)

� Inherited and not redefined (shown with an unfilled rectangle)

� Newly defined or completely redefined by a class (shown with a
gray-filled rectangle)

� Redefined but uses behavior defined in a superclass via a call to
the superclass’s method (shown with a rectangle that is half
gray, half unfilled)

This is particularly useful for visualizing how inheritance is used
when you specify configurable algorithms using template and hook
methods (see Figure 9-10). You can see at a glance whether a method
has been replaced or superseded in subclasses without having to
read code.

Finally, we introduce one more UML-F construct: template and hook
tags. Methods, classes, and interfaces can be tagged as being

UML profiles are being
proposed to address specific
modeling issues of targeted
application areas. For
example, people are working
on a UML profile for fault-
tolerant designs. Other UML
profiles being proposed at the
time this book is being written
range from enterprise
application integration to
workflow and business
process modeling.

When you are looking at a
UML diagram, you can never
be certain whether you are
looking at a complete or a
partial specification of a class
or inheritance hierarchy.
Sometimes it is easy to forget
this and read more (or less)
into a design than was
intended. That’s why the
UML-F authors included the
“...” notation to tag design
elements as incomplete. This
forces your attention to the
fact that you are seeing only
part of a design.

Wirfs.book Page 343 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

344

templates or hooks. A group of related template and hook tags can
be named. Thus it is possible to see the complete suite of template
and hook methods that support a specific variation (see Figure 9-11).

There is more to UML-F than we describe here. And there is more to
describing how a design supports a variation than can be shown on
any diagram. The main value of UML-F is the ways it can be used to
express design variations and their implementation details.

Consider Your Audience

Although you can document details in UML, consider your audience.
What levels of detail do your readers need (or want) to see? Con-
sider the detailed diagram in Figure 9-12, which shows the implemen-
tation of many hooks in Speak for Me.

Figure 9-9
Adding UML-F tags makes it clear whether you are looking at a partial or a complete specification.

When you look at any UML
diagram it’s hard to know how
much is left out. There are
many valid reasons to leave
out design elements; to
emphasize certain aspects
and remove clutter are two.

Wirfs.book Page 344 Friday, October 11, 2002 11:44 AM

How to Document a Flexible Design

345

Contrast Figure 9-12 with a second, conceptual picture (Figure 9-13)
that generally explains hooks and where they are located in the
design.

Different stakeholders are likely to prefer one view over the other.
Some will prefer a big picture overview. Your fellow designers may
want to examine your design in all its glory—and may not be satis-
fied with any level of detail you can show using UML. No single pic-
ture or diagram can communicate these different perspectives.

Describing How to Make a Variation

If the person making a variation is a developer, he or she will need to
understand at some level how the design works before making it vary.
Diagrams can help, but they aren’t the whole story. Explanations,

Figure 9-10
UML-F has notations for showing implementation inheritance characteristics.

Without knowing whether you
are looking at the whole story
and where aspects of the
design have been explicitly
elided, drawings can only be
viewed as representations,
with the real answers to be
found by reading code.

Wirfs.book Page 345 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

346

Fi
g

u
re

 9
-1

1
G

ue
ss

D
ic

tio
na

ri
es

 s
ha

re
 a

 c
om

m
on

 a
lg

or
ith

m
 fo

r
lo

ad
in

g
da

ta
, b

ut
 e

ac
h

pa
rs

es
 it

s
da

ta
 d

if
fe

re
nt

ly
.

Wirfs.book Page 346 Friday, October 11, 2002 11:44 AM

How to Document a Flexible Design

347

words, written procedures to follow, and code examples all help. But
before you launch into an extensive documentation effort, consider
what the person needs to know in order to make a variation.

If the level of support you have provided for making an adaptation is
high, then developers may not require deep knowledge. Perhaps you

Figure 9-12
UML class diagrams show flexibility in interfaces, abstract classes, and inheritance hierarchies.

Wirfs.book Page 347 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

348

have created a number of prebuilt components or classes. To imple-
ment a variation, a developer simply chooses an existing component
and plugs it in to a particular collaboration by invoking a single
“setter” method. If this is so, designers won’t require deep knowl-
edge of your design or a complex set of instructions. They are likely
to need only a simple set of instructions—a basic recipe to follow.

Figure 9-13
A conceptual diagram can also be used to show how the Speak for Me application can flex without showing
classes and interfaces.

A Basic Recipe for Selecting a New Device Driver:

Choose from one of . . .

Configure into system by doing . . .

Restart and test by calling . . .

Sometimes multiple views of
your design are appropriate.
Don’t expect everyone to
understand your design’s
flexibility at the same level of
detail. Vary your descriptions
according to your audience.

Wirfs.book Page 348 Friday, October 11, 2002 11:44 AM

How to Document a Flexible Design

349

More likely, the developer must change or add at least one class and
modify code in other classes to implement a variation. Examples or
pointers to places where similar variations have been implemented
could be helpful.

More complex variations require more extensive knowledge. A good
recipe needs to provide only enough information to guide someone
making an adaptation. It doesn’t have to tell everything. Here is a
basic recipe template adapted from The UML Profile for Framework
Architectures:

How to add a new banking option

1. Add a method to the BankConfiguration object that can query
whether this feature is enabled.

2. Add a variable declaration in the bank configuration file named
xxxFeature.

3. Initialize the system.

4. General procedure to follow: Code in the affected classes can
be altered to query the Bank object for SupportsXXX and if so,
alter behavior. Typically, Bank features affect specific transac-
tions, specific display, or logging and recovery functions. For
an example, see how supportsAutoActivation is used to vary
the behavior of the RegisterTransaction.

Recipe Name: Usually starts with “How to”

Intent: The reason to use this recipe

Design Description: Which classes and interfaces are involved and
need to be understood, what roles do they play and what collabora-
tions are involved. What responsibilities are adapted via the varia-
tion . . . backed up by supporting UML or UML-F diagrams and other
descriptions.

Related Recipes: Alternative ways to accomplish a similar variation;
or related sub-recipes. If the recipe is complex it may need to be bro-
ken down into several sub-recipes.

Steps 1. First create a class that implements the xyz interface. . .

2. In it define a method named. . .

3. And another method named. . .

4. . . .

Sometimes people who
create a design don’t know
how to limit their descriptions.
The key to writing a good
recipe is to get into the
mindset of the users. Ask,
“What do they need to
know?” instead of thinking,
“What should I tell them?”

Wirfs.book Page 349 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

350

If the end user is making the variation, the recipes aren’t likely to
mention objects or how the software adapts behind the scenes. If it
is more than a single action, users are likely to want step-by-step pro-
cedures, just as developers do—but procedures written at a level
that describes how the user interacts with a tool to make changes.

End users and developers need to understand how to make varia-
tions, but typically at different levels of abstraction. Often, both need
to understand the limits of the software. Certain changes are easy.
Others take time and extra preparation. Good recipes should tell
people what to expect, present options, and tell them what they
need to know to keep on track.

CHANGING A WORKING SYSTEM’S DESIGN

So far we’ve talked about increasing flexibility as if you were
approaching a design with a clean slate. When there are existing
obstacles, bumps, wrinkles, and constraints that you have to put up
with and cannot change, introducing flexibility is more challenging. If
you could have divined the future and accurately predicted future
requirements, you would have designed your software to absorb
changes with minimal impact. Barring that, you need strategies for
wedging variations into your existing software. How can you extend
your software without compromising it?

Earl Ecklund, Lois Delcambre, and Michael Freiling introduced the
idea of change case analysis in a paper presented at OOPSLA 1996.
They suggest you characterize the focus, scope, and degree of defini-
tion of any proposed change before designing a solution. The scope
of a change refers to how much it pervades the software; but to
these authors, scope is more than the impact on the design. After
software is in use, a proposed change can have far-reaching effects
on users, existing requirements, use cases, design documentation,
and testing procedures. Degree of definition refers to how well known
the details of a proposed change are. After a proposed change is well
defined and its impact has been assessed, then Ecklund and his col-
leagues propose that you shift your emphasis to design.

Of course, not all changes warrant creation of a flexible solution. You
may need to bolt on a new feature that doesn’t fit with or naturally

Discussion: This could mention problems that might crop up, how to
test that a variation is correctly installed, or what should not be
attempted using this approach.

Software, unlike the
pyramids, is seldom built as a
memorial, never again to be
touched. To withstand time,
shifting user needs, or the
latest OS release, software
must be flexible.

Not every change to your
software is an opportunity
to make your software
more flexible. But it is an
opportunity to rethink your
design and ask, “Is now the
right time to refactor my
design, or should I simply
make the change as quickly
as possible?”

Wirfs.book Page 350 Friday, October 11, 2002 11:44 AM

Changing a Working System’s Design

351

extend the existing parts of your design. However, if a change repre-
sents a variation on existing behaviors, then you can consider a
flexible solution. If changes occur frequently, and follow common pat-
terns, you are likely to have designed your system to be flexible to
begin with.

However, even though you know it is coming, if a change is ill
defined, it is hard to plan ahead.

When does making a change compel you to a flexible solution
instead of merely applying a fix? Rarely is this a simple decision.
When the scope of a change is broad and will radically alter existing
system behavior, it’s a good time to step back and explore your
options. Redesigning your software to increase flexibility may be the
most expedient way to absorb this type of change. Or it may not be.

Tax laws change every year, so tax preparation software changes
every year. But it changes in predictable ways: Specific calculations
and tax rules change and new tax forms are invented (with their own
rules and calculations). Various items on forms are linked to other
items. Tax preparation software is designed to support rules, calcula-
tions and relationships. Because forms and rules and calculations
vary from year to year, the software designers have developed a
framework for defining rules and relationships between line items,
for defining new forms, and for performing calculations. If new rules
don’t fit into their existing toolkit of predefined calculator objects,
they invent new calculators and fit them into the existing framework.
If new forms are needed, they invent those. But the basic structures—
forms with line items—and ways of performing calculations remain
the same. It’s only when new functionality is required, such as elec-
tronic filing of taxes, that major design work is required.

Knowing that new software will continue to be integrated into the
telco integration framework doesn’t mean that the designers can
make many preparations. Integrating any new software system will
require developing a usage model and then writing an adapter to
interface between it and the existing framework core. But beyond
that, they can’t “prepare” their design to absorb the new software.
Not until a clear model is made of how the new software is to be used
and how it interacts with the existing system can any detailed plans
for design rework or new design features be made.

Wirfs.book Page 351 Friday, October 11, 2002 11:44 AM

Chapter 9 Flexibility

352

When the scope of a change is small—perhaps localized to a single
object—the tendency is to patch in the change. That might be OK.
But the next time you patch that patch, things could get ugly. It is a
matter of deciding whether to pay for redesign now or defer the deci-
sion until later when you know more. You may not know enough
about potential variations until you make that third or fourth
change. When you start to see a pattern, consider refactoring your
design and developing a more flexible solution. Patches may be the
quickest solution, but they impact your software’s ability to flex in
the future. The more patches you make, the harder it is to see your
design and to introduce support for adaptations.

SUMMARY

Flexibility is a measure of how readily software adapts to a range of
design parameters. Only those parts of a system whose behaviors
need to be adjusted—by either a programmer or an end user—need
to be flexibly designed. Flexibility does not necessitate large frame-
works. To support any variation, you can introduce a modest
amount of flexibility into your software. Hot spot cards are a low-
tech tool for analyzing your software’s flexibility requirements. The
essential characteristics of variations, or hot spots, can be quickly
described on index cards. After you’ve described a hot spot, you can
pinpoint the areas of your design that are affected and strategize
how best to alter your design to support the hot spot.

Many design techniques that you are already familiar with can be
used to introduce flexibility into your design. Your intention is to
make your design adaptable along specific dimensions. This requires
extra work. To support any hot spot, you will likely introduce extra
mechanisms—or hooks—into your design that allow others to tune
or extend your design. You are likely to identify shared roles and
define common interfaces. You may create new abstractions, define
abstract classes, and use inheritance to your advantage. You may
introduce placeholders—objects that have minimal behavior and are
intended to accrue more responsibilities in later iterations. Many
design patterns allow for specific extensions and variations. In addi-
tion to these design mechanisms, you may develop sample code for
others to emulate or write recipes that explain how to perform an
adaptation.

Martin Fowler’s Refactoring
describes many ways to
readjust your code in
preparation for a design
change. Instead of patching in
a change, you might need to
refactor code before
changing your design.

Wirfs.book Page 352 Friday, October 11, 2002 11:44 AM

Further Reading

353

FURTHER READING

The UML Profile for Framework Architectures (Addison-Wesley, 2001)
by Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe describes
a set of extensions to UML specifically targeted for developers
describing extensible designs. This slim volume is divided into two
parts. The first section describes the UML-F profile; the second is
devoted to case studies and examples showing actual designs and
recipes of extensible frameworks.

You can learn much about building flexible solutions by studying
extensible designs. Two books, Building Application Frameworks
(1999) and Implementing Application Frameworks (1999), edited by
Mohamed Fayad, Douglas Schmidt, and Ralph Johnson, are full of
experiences recounted by framework designers and architects.
There is much practical advice to be mined from these books!

There are many techniques for introducing flexibility into a design.
Most are based on inheritance, composition, and configuration. We
want to point you to one more interesting idea—called Adaptive
Object Models—introduced at the intriguing technology session at
OOPSLA 2001. The idea behind an Adaptive Object Model is very
simple: Let end users define objects, their relationships, and behav-
iors. Provide tools that let users describe objects and their seman-
tics. Then construct your software to interpret and execute these
self-describing models. Talk about the ultimate in end-user adapta-
tion! Joseph W. Yoder, Federico Balaguer, and Ralph Johnson pre-
sented the paper “Architecture and Design of Adaptive Object
Models” at the OOPSLA 2001 conference. Another paper, “The Adap-
tive Object Model Architectural Style,” coauthored by Yoder and
Johnson, describes in more detail techniques for constructing adap-
tive object modeling systems.

Wolfgang Pree, in Building
Application Frameworks,
introduces the notion of a
framelet—an architectural
unit that is small (fewer than
10 classes), does not take
over main control of an
application, and has a clearly
defined and simple interface.
A framelet can be extended
and specialized, but by intent
is small and narrowly
focused.

Wirfs.book Page 353 Friday, October 11, 2002 11:44 AM

Wirfs.book Page 354 Friday, October 11, 2002 11:44 AM

Chapter 10
On Design

ewis Thomas, noted physician and science writer,
observed, “I’m not as fond of the notion of serendipity as I

used to be. It seems to me now that as you get research
going. . . things are bound to begin happening if you’ve got
your wits about you. You create the lucky accidents.” From
time to time, object designers make startling discoveries,
too—insights that make you want to stand up and shout. New
ideas that you just know you should push on. Revelations that
lead to deep understanding about how your software should
work and what its limitations are. But amid these discoveries,
you must keep working on the problem and not get distracted.
That’s the hard part: keeping design challenges in perspective
while making progress and delivering on your promises.

L

Wirfs.book Page 355 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

356

THE NATURE OF SOFTWARE DESIGN

As a designer, you are expected to be a good problem solver. You
skillfully handle new challenges as they come up, balance conflicting
priorities, and do what’s needed to get the job done. In spite of
uncertainty, you are counted on to devise good solutions.

You can be well prepared with a toolkit full of design techniques and
practices, but design is never predictable. There are always surprises,
additional complexity, and new twists. To keep on track, it helps to fit
your design problems into one or more of these categories:

� Core design problems. The core is the core because without it,
there is no reason to build the rest. Your application won’t meet
its users’ needs or stand up to the rigors of use without a well-
designed core. Core design problems must absolutely, posi-
tively be dealt with.

� Revealing design problems. Revealing problems, when pur-
sued, lead to a fundamentally new, deeper understanding about
the nature of your software. Just because some part of a design
is difficult or tricky, however, doesn’t make it revealing.

� The rest. Although not trivial, the rest requires hard work but
far less creativity or inspiration.

Each type of problem warrants a different approach and has a differ-
ent rhythm to its solution. Core problems must be solved. This is
engineering at its best. You’ve got to give it proper attention. If you
don’t, your project will fail.

Revealing problems are squishy and hard to characterize or even
know when they are completely solved. Each time you look further
into a revealing problem it teaches you something new. Revealing
problems deserve special recognition and attention. They can’t
always be solved in tidy ways. They must be tamed.

But the rest can’t be ignored either. It may include mundane, tedious,
or mildly interesting design work. It is always present and pressing. If
you don’t budget your time, it can soak up all your spare cycles. The
rest needs your attention but not your total devotion.

This chapter presents strategies for designing responsibly in the
face of uncertainty, complex problems that have no obvious
answers, and lots of tedious details. We present ways to approach
different kinds of design problems. To work effectively, you need to
flex and adapt, react and respond, and work steadily on all aspects of
your design.

Wirfs.book Page 356 Friday, October 11, 2002 11:44 AM

Tackling Core Design Problems

357

TACKLING CORE DESIGN PROBLEMS

Designing the core parts of your system requires energy and focused
attention. It can be all too easy to get distracted by minutiae or wan-
der off on a quest to solve a difficult problem. The core of your
design must be well known and solid. It requires steady, persistent
consideration. The key to balancing core design work with other
design activities is to put everything else in perspective. The rest
will always be with you and must be done after the core is well in
hand. Revealing problems can crop up at any time. You can’t plan for
them. They just happen. Work on revealing problems progresses in
fits and spurts. Rarely can revealing problems be solved by relent-
less attention. Core design problems are most often at the front of
your work queue until you nail them and move on.

But what exactly is in the core? It depends. Designing an optimizing
compiler is very different from designing online banking software.
Core to an optimizing compiler is an internal representation of a
computer program and code optimization algorithms. Design of an
appropriate program representation goes hand in hand with the
design of efficient optimization algorithms. The appropriate choice
of structures to represent a program is critical to the algorithm
design.

The core of the online banking system includes the design of online
transactions and a common interface to backend banking services.
Sure, the user interface is important to the project and its sponsors,
but the quality of its design isn’t central to the application’s success.
It just must be there. However, design features that enable perfor-
mance to scale and the system to keep running under certain failure
conditions are critical. Without a solid design for these core parts,
the system won’t be deployable.

Core problems include those fundamental aspects of your design
(no, not every part can be fundamental) that are essential to your
design’s success. Depending on your design requirements, you might
nominate for the core these elements of your design:

� Mechanisms that increase reliability. These could include the
design of exception-handling mechanisms, recovery mecha-
nisms, and connection and synchronization with other systems.

� Key objects in the domain model that your software manipulates.

� Important control centers.

� Support for user interactions.

� Key algorithms.

Wirfs.book Page 357 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

358

How do you decide what’s in and what’s out? When there’s debate on
whether something is in the core, ask what the consequences would
be of fudging that part of the design. What would happen if you
didn’t work so hard or come up with such an all-encompassing
design? Would the project fail? Would other parts of your design be
severely impacted? Then it’s definitely core.

If you encounter disagreement about whether something is core, dig
deeper. Are there fundamentally different expectations for that part
of your design, or does someone know something important that no
one else has thought about? You may be glossing over something
important.

FRAME THE PROBLEM

Most software designs are too big to jump in and solve all at once.
You break design into bite-sized chunks and work on them piece by
piece. Depending on the nature of your software, you naturally focus
on different things. Michael Jackson, in Software Requirements &
Specifications (Addison-Wesley, 1995), identifies five general catego-
ries of problems—or problem frames—that software addresses.
Many software systems can be thought of a set of related and inter-
connected subproblems and as a consequence may comprise sev-
eral different problem frames. Each class of problem has its own
concerns and design issues:

� Control problems occur when software controls state changes of
external devices or machinery according to prescribed rules.
The most obvious questions surround whether your design
needs to determine whether its commands that supposedly
have changed some external thing have had the desired effect.
If so, you will likely design ways to probe whether things are as
you expect. And if they aren’t, well, you’ll need to consider
whether the problem is with your software or an external
device.

� Connection problems occur when software receives or trans-
mits information indirectly through a connection. Sometimes
connections break down, and information gets lost or gets gar-
bled. How reliable does your software have to be? Depending
on the answer, you may need to go to great lengths to establish
an alternative path or get the connection working again.

� Information display problems involve presenting information in
response to queries about things and events known by your

 Whether you classify
something as part of the
“core” or part of the “rest,”
you’ll still have to deal with
it—it’s a matter of emphasis.
The main point is to give
things the attention they
deserve and be clear on your
priorities.

“When you turn on a light, you
probably think of your
movement of the control
button and the illumination of
the light as a single event. In
fact, of course, something
more complex is going on.”

—Michael Jackson

Wirfs.book Page 358 Friday, October 11, 2002 11:44 AM

Frame the Problem

359

software. Typically, the quality and timeliness of information
and the precision and nature of queries are a concern. Does
your design have to accommodate imprecise questions or par-
tial answers? Are users interested in the current information? Is
history important, or timeliness of responses? If so, what do
you need to do to meet these requirements?

� Workpiece problems occur when your software serves as a tool
that allows users to create and manipulate computer-process-
able objects, or workpieces. Just as a lathe is a tool for wood-
working, software helps users create documents, compile and
write programs, compose music, perform calculations, manipu-
late visual images, and generate reports, to mention a few
tasks. Design considerations for workpiece problems involve
the nature of the workpiece and the usability of the tool.

� Transformation problems involve converting some input to one
or more output formats according to well-defined transforma-
tion rules. Transformation problems can be tricky. There may
be constraints on speed or memory utilization. Sometimes
what constitutes an acceptable loss of information is at issue.
Sometimes the reversibility of a transformation is important.

Jackson advocates that you fully understand the nature of the prob-
lems your software is trying to solve before you start design. That
would be ideal. But if you live in a world of imperfect knowledge and
incomplete specifications, you can still prepare yourself by charac-
terizing the problems your design will solve. Even if you don’t have
all the answers, you’ll know what questions to ask and which
aspects of your design are likely to deserve your extra attention.

Consider Jackson’s characterization of connection problems:

If you find that connections between your software and some other
system cannot be ignored—they are not transparent, nor do they
always work flawlessly—then your design will have to address their
quirky behavior. There are two basic strategies for dealing with con-
nection issues. You could readjust your view and consider that your
software is really interacting with “something in the middle” that is

“In many problems you’ll find that you can’t connect the [software]
machine to the relevant parts of the real world in quite the way you
would like. You would prefer a direct connection. . . instead you have
to put up with an indirect connection that introduces various kinds of
delays and distortion into the connection.”

“Problem frames amount to
coherent sets of useful
questions to ask about the
problem domain in order to
invent a problem to solve.”

— Ben Kovitz

Wirfs.book Page 359 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

360

connected to “something out there” that doesn’t always work. Jack-
son presents a classic example of a patient monitoring device as a
connection problem:

To accommodate a faulty connection means treating the analog device
as an untrusted collaborator. Instead of blindly accepting its input,
you validate information transmitted through a faulty connection.

Alternatively, if you determine that there will be interactions among
your software, the connection, and the thing it connects to, all of
which need to be considered, your design problem takes on an
added degree of complexity. You must consider how your software
should react in the face of potential time delays and conflicting
states between connected systems as well as faulty connections.

Characterizing the nature your design—or as Jackson phrases it,
identifying relevant problem frames—helps you to sort through
what’s important and identify potential core design problems. Framing

A monitoring system collects real-time readings of a patient’s tem-
perature, blood pressure, etc. through the use of analog devices.
Analog devices are sometimes unreliable. This must be considered in
the design of your monitoring software. If a patient’s temperature
reading is 132 degrees, considering the normal range of temperature
variation, this reading is invalid. Your design should detect that a
temperature sensing device isn’t functioning properly and raise an
alarm.

In the telco integration framework, there is a bidirectional connection
between the order taking application and the framework: The frame-
work receives orders from the order taking application and transmits
notifications about the state of the order back to the application.
Occasionally, communications between the order taking application
will break down. To accommodate this, queues have been imple-
mented to hold incoming requests and outgoing responses. Addi-
tionally, the interfacer component to the order taking application is
designed to retry transmissions several times before queuing them
and to notify system administrators when communications channels
aren’t working. Sometimes, as a result of delayed communications,
cancel orders are received after orders have already been completed.
Because the framework can’t undo work that has been completed, it
considers the cancel order a problem it can’t solve and notifies a per-
son charged with troubleshooting problem orders.

Wirfs.book Page 360 Friday, October 11, 2002 11:44 AM

Dealing with Revealing Design Problems

361

problems isn’t only for analysts or business folks writing specifica-
tions. As a designer, you should be asking those questions that help
you frame your design problems. Although you can look to use cases
or requirements or user stories for guidance and clarification, they
describe only what your system should do and not the nature of the
problems you are solving.

Even if you have framed the problem and think you know what
you’re in for, there are often surprises. Sometimes, you stumble onto
a meaty problem that can’t be solved through skillful design alone.

DEALING WITH REVEALING DESIGN PROBLEMS

Revealing design problems are always hard. They may be hard
because coming up with a solution is difficult—even though that
solution may eventually be straightforward. A revealing problem
may not have a simple, elegant solution. It may not be solvable in a
general fashion; each maddening detail may have to be tamed, one at
a time. It may require you to stretch your thinking and invent things
that you have never before imagined.

Sometimes when you work on a core problem, you discover it to be a
revealing one, too. Not all core problems are revealing ones. But
those that are deserve special recognition. What distinguishes
revealing problems from core problems is their degree of difficulty
and the element of surprise, discovery, and invention. To solve them
you may need to experiment. They may not be easily solved. People
may disagree on whether any solution is good enough. It may take a
while to know what the real problem is. Working on revealing prob-
lems involves periods of intense concentration, design, reflection,
and implementation, interspersed with open, honest communication
about your progress.

Solutions to revealing problems can touch on any aspect of a design.
They could impact an application’s control architecture, the key
responsibilities of core objects, the design of central services, and
complex algorithms or interfaces to external systems. They can
cause you to completely shift your worldview and discard what you
had assumed to be a fundamental truth about your design, replacing
it with something more complex. If you find yourself saying, “Nah—
that could never be!” to a design challenge, you may have uncovered
a revealing problem.

Let’s look at some revealing design problems and see what we can
learn.

Wirfs.book Page 361 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

362

A Story About Managing Shared Information

The telco integration software glued together several disparate
applications. The system was designed to streamline and, where
possible, automate the process of taking an order, provisioning prod-
ucts that were ordered, and setting up customer billing. The applica-
tions that were integrated by the framework included

� Applications that managed customer service requests and
orders

� Applications that managed the tasks involved in, and the provi-
sioning of, telecommunications equipment and services

� Applications that billed customers for service

Each application had its own worldview and and proprietary data-
bases and complex ways of interacting with users. None was
designed to be plugged in to other applications to provide a compre-
hensive automated system. Right up front, the team faced a big deci-
sion that proved to be an ongoing, revealing design challenge: How
should the framework handle information maintained by each appli-
cation? Who should be the keeper of information about customers,
their products, and orders? Should there be a master source? Not
only did each application have its own worldview, but their views
overlapped and sometimes contradicted one another. Addressing
this fundamental question revealed several deep insights.

One design option that was considered and rejected was that the
integration framework could maintain a master copy of orders, cus-
tomers, and products and be charged with keeping everything in
sync. Alternatively, the framework could take a more arm’s length
view of other systems and their information. It could be designed to
know to ask other systems about the resources they maintained and
coordinate their work.

Past experiences and war stories led the architects to conclude that
the integration framework software should not actively manage all
common information. This was too hard and fraught with data syn-
chronization problems. Instead, the framework was designed to dis-
cover information in these other systems as it processed an order.

Working through an appropriate way to manage and change
resources that are in other systems proved difficult. But deep
insights were gained only after migrating data in one billing system
to another. In a new release, the framework was chartered with
supporting converted products. Sometimes, what was converted

Wirfs.book Page 362 Friday, October 11, 2002 11:44 AM

Dealing with Revealing Design Problems

363

didn’t match any official product. Still, the integration software was
expected to gracefully handle converted products. This led to the
design of strategies for limited support of nonstandard products and
new rules for processing disconnect orders for products with ambig-
uous definitions.

The difficulty in solving how to handle converted products ham-
mered home the lesson that it isn’t always possible for the frame-
work to interpret information that is validly being used by external
applications. Still, the framework had to provide solutions to tame
the difficult problem of product information that didn’t fit standard
definitions. It wasn’t acceptable for the framework not to handle
these products. The compromise, which didn’t satisfy all the stake-
holders, was for the framework to support these products in a lim-
ited way. The framework simply didn’t have enough information to
do anything else.

A Story About Connection Problem Complexity

This next revealing problem was uncovered after the telco integra-
tion software had been in production for several months. Handling
changes to in-progress orders proved to be a revealing problem.

To support the modification of an in-progress order, the designers
developed a complex algorithm to compare a resubmitted order
against the current one and to create new tasks to undo or modify
work in progress. On further investigation, it was concluded that a
change to an existing order could have several effects: Provisioning
tasks might need to be modified; work that had already been com-
pleted might need to be undone; or additional work might need to be
scheduled. And nothing prevented users from repeatedly submitting
change requests. This was difficult, tricky work, but still not reveal-
ing. The revealing problem surfaced when the designers tried to han-
dle several exceptional conditions that could happen when a user
attempted to change an order.

It wasn’t always possible to undo work that had been completed.
And sometimes, even though the framework knew about errors, it
couldn’t report them to the order entry application because that
application wasn’t in a state to accept an error report. The frame-
work couldn’t “kick” this other system and make it receive a report.
The other system couldn’t be modified to accept error reports. It
wasn’t an option. This led to the creation of a problem order queue,
where the software logged orders with problems that could be
resolved only by extremely knowledgeable systems engineers.

Wirfs.book Page 363 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

364

Modifying orders that are being worked on by disparate systems
proved to be a very hard problem. The analogy of trying to put
toothpaste back into the toothpaste tube comes to mind. When tack-
led, it led to deep insights and the revelation that some problems
with orders can be solved only by human intervention and judg-
ment. That’s what made it revealing, as well as plain difficult.

No matter how clever you are, software has its limits. Even with
extraordinary effort you can’t always design software to put things
back the way they should be. Ask Humpty Dumpty if you don’t
believe us! Synchronizing systems can be very difficult. It isn’t possi-
ble to transparently handle every anomaly with a software solution.
Asking intelligent human beings to intervene sometimes may be not
only the best solution, but also the only solution.

A Story About a Design Problem That Never Got Easier

This is a story about the design of an optimizing compiler for Java. In
order to aggressively optimize the code for a method, a compiler
needs to model the possible control flow paths within the method.
In other words, the compiler needs to understand all possible paths
that execution may take through the method. This enables the com-
piler to do things such as eliminate code that will never be executed
and eliminate duplicate computations whose results have already
been computed earlier along a control path. Compilers typically
model control flow by grouping statements into basic blocks. A basic
block is simply a sequence of statements that is always executed
from beginning to end. You can model complex control flow, such as
loops and if statements, by building a graph whose nodes are basic
blocks and whose edges are the possible control transfers between
blocks. Because control transfers within a procedure are normally
explicitly expressed as statements (if, case, for, while, etc.) in the
programming language, normally it is fairly easy for a compiler to
build and maintain the control flow graph.

Programming language features that support exception handling sig-
nificantly complicate the modeling of control flows because excep-
tions can cause implicit transfers of control that are not explicitly
shown in the code of a method. Because of this complication, many
compilers simply do not attempt to optimize methods that throw or
handle exceptions. Because it is quite common for Java methods to
handle or throw exceptions, the designers concluded that their opti-
mization objectives would not be met if they did not optimize such
methods. So they adapted the control flow model to account for
implicit control flow transfers caused by exceptions and enhanced
optimization algorithms to deal with this model.

Wirfs.book Page 364 Friday, October 11, 2002 11:44 AM

Dealing with Revealing Design Problems

365

They succeeded, but not without a lot of work. During testing, the
team kept uncovering optimization bugs that were the result of this
design decision. As they continued to compile more programs, they
continued to find even more sticky problems related to the optimiza-
tion of exceptions. Even after the compiler had been shipping for
several years, it remained the case that the majority of newly discov-
ered optimization bugs were related to exceptions.

The designers didn’t change or relax their design goals. They stuck
to their initial decision and kept tweaking their design. When they
started, they had no idea that optimizing exception handling would
be a continuing source of bugs and new insights. In general, optimiz-
ing compilers are hard to design and debug because there are so
many subtle language features that interact with one another. You
can demonstrate only that a compiler correctly compiles the pro-
grams you have thrown at it. After it successfully compiles a suite of
programs, there are no guarantees that it will compile the next tor-
tured piece of code.

Any design handles only those problems its designers can conceive
of. As with many other kinds of software, the number of different
inputs a compiler must accept and process is infinite. Only over time
and with enough test data can complex designs be adequately
stressed and tamed. Most compilers or any other complex program
will probably never be free of bugs. For systems such as these,
designers simply cannot predict all problems beforehand nor
develop the ultimate test suite. Christopher Alexander, in Notes on
the Synthesis of Form, sums this up nicely: “The process of design,
even when it becomes self-conscious, remains a process of error-
reduction.”

Can Revealing Problems Be Wicked, Too?

In 1973, Horst Rittel and Melvin Webber coined the term wicked prob-
lems to describe questions that can’t be solved using traditional
approaches. Although Rittel and Webber were talking about prob-
lems in planning and setting public policy, their characterizations of
wicked problems strike an eerie chord with our software design
experience. Wicked problems generally have these characteristics:

� They have no definitive formulation. It’s hard to state concisely
what the problem is, and each time you do so, you gain a new
insight.

� It’s difficult to know when one is solved.

When you cannot anticipate
all situations your design
must stand up to, you should
expect to repeatedly confront
a revealing problem until
you’ve thrown enough
rigorous cases at your
design to harden it.

Wirfs.book Page 365 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

366

� Solutions aren’t true or false, but rather good or bad. For better
or worse, it may be difficult to get various stakeholders to agree
on the quality of your solution. Some may consider it good
enough, and others may not.

� There is no obvious way to verify that a solution fixes the
problem.

� Every solution has unforeseen consequences. As you fix one
problem, sometime later more problems may pop up.

� They don’t have a well-described set of potential solutions.

� Each is essentially unique. You can reuse your brain and problem-
solving skills, but you will likely craft a unique solution to each
wicked problem.

� Each can be considered a symptom of another problem. The
nest of interconnected concerns can be hard to untangle. There
is no simple cause and effect.

� The causes can be explained in numerous ways. Different peo-
ple will have different theories on what’s really causing the
problem.

� The planner can’t be wrong. This means that you, the designer,
still must invent some acceptable solution. You can’t ignore the
problem.

We never said it was easy! Solving wicked problems can involve
intensely creative design activity or skillful negotiations. These prob-
lems call on many different problem-solving skills. Revealing problems
may share one or more characteristics of wicked problems. They’re
closely related. Most revealing problems don’t have obvious solu-
tions. Sometimes they require you to redefine the problem. If you are
lucky, you may invent a nifty solution. But there may not be a tidy
solution to your revealing problem. Sometimes the solution repre-
sents a compromise. The hallmark of any revealing problem is that it
forces you to think deeply about your software design.

STRATEGIES FOR SOLVING REVEALING PROBLEMS

You don’t sit down and try to solve a revealing problem through
brute force or sheer willpower. You must look at the problem, roll it
around, and consider perspectives. Viewing the problem from differ-
ent angles gives you fresh insights. Revealing problems aren’t often
solved in predictable ways. George Polya, mathematician and author
of How to Solve It, contrasts how insects and animals and humans
approach problem solving:

Mary Poppendieck says that
“wicked projects arise when
a project is organized as if it
were tame—thus creating a
monster.” To tame wicked
projects, Poppendieck
advises that they “are best
served by an adaptive
process instead of traditional
methodologies.”

Wirfs.book Page 366 Friday, October 11, 2002 11:44 AM

Strategies for Solving Revealing Problems

367

We are great problem solvers because we don’t give up and don’t
often repeat dumb mistakes. Because rarely are we lucky enough to
hit on a solution right away, we keep trying to find a good angle. We
don’t give up, and we are clever. We’re very good at finding solutions
because we weave our past experiences into a solution by what
Polya calls “action of contact”: Our current line of thinking makes
contact with some past experience that may be relevant. Whenever
you shift your perspective, you contact a different set of potentially
relevant experiences. This means that the more experience you have
with a particular class of problems, the more adept you are at shift-
ing quickly to revealing angles and forming fruitful connections.

 Problem solving requires these fundamental skills:

� The ability to shift your perspective and vary the problem

� The ability to gauge whether an approach, if pursued, is likely
to bear fruit

� Knowing when you’ve hit a dead end

Most revealing problems require intense concentration. People get
tired when they concentrate on the same point for very long. So to
stick with it, you must redirect and look at different aspects of the
problem. If there are new points to consider, you stay interested. If
not, your interest lags. To keep working productively on a problem,
you need to take breaks from time to time or shift your point of view.

The principal means we use to vary a problem, according to Polya,
are generalization, specialization, analogy, decomposition, and
recombination. These are an amazing fit with object-oriented design
techniques! By using these techniques as a designer, you keep your
basic reasoning skills sharp. But to solve a revealing problem you’ll
need to think through a problem at many different levels. You may

“An insect tries to escape through the windowpane, tries the same
hopeless thing again and again, and does not try the next window
which is open and through which it came into the room. A mouse
may act more intelligently; caught in the trap, he tries to squeeze
through between two bars, then between the next two bars, then
between other bars; he varies his trials, he explores various possibili-
ties. A man is able, or should be able, to vary his trials still more intel-
ligently, to explore the various possibilities with more understanding,
to learn by his errors and shortcomings. ‘Try, try again’ is popular
advice. It is good advice. The insect, the mouse, and the man follow
it; but if one follows it with more success than the others it is because
he varies his problem more intelligently.”

Before crafting an object-
oriented solution, think about
the nature of the problem and
the solution in general terms.
After you’ve identified a
plausible design strategy,
you can then apply these
techniques to craft a
solution. Don’t mistake the
mechanisms used in the
solution for the general
solution.

Wirfs.book Page 367 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

368

form complex chains of reasoning, or bounce around and recombine
a number of half-baked solutions to finally come up with a three-
quarters-baked solution. It’s a lot of hard work!

Redefining the Problem

Sometimes you can solve a problem by completely shifting your
point of view. Instead of trying to solve the problem, turn the prob-
lem on its head. Imagine that everything worked as you wanted and
the problem you are trying to solve doesn’t exist. Live in that world
awhile. Describe it. Envision how the machinery of your application
might work in this ideal scene. Now, step back and figure out what
you need to do create that ideal scene.

This makes scheduling easier but makes sorting harder. Let’s con-
sider a software example:

Did replacing referencing counting techniques with sophisticated
management of multiple object spaces and efficient marking strate-
gies simplify the design of garbage collectors? No. But it did allow
dramatic improvements in the performance of most applications.
Solving a problem by redefining it doesn’t necessarily simplify your
design. It only opens up new possibilities.

Instead of trying to optimally schedule routes for transporting pack-
ages, FedEx redefined the problem. Instead of working on algorithms
to optimize “a traveling salesman problem”, it defined a whole new
way of doing business. All packages are flown to a central location,
sorted, and then loaded on the appropriate plane. Even packages
shipped within the same city are routed through this central hub.

A programming language that uses garbage collection, such as Java,
C#, or Smalltalk, will automatically recover memory from objects that
are no longer being used. Early implementations of object-oriented
environments used reference counting to manage memory. Every
time a new reference to an object was made, its reference count was
incremented. Each time a memory reference to an object was over-
ridden, its reference count was decremented. If the count went to
zero, the memory for the object was freed. Reference counting is sim-
ple, but very expensive in terms of computational overhead. To
speed up garbage collection algorithms, implementers of the lan-
guages redefined the problem—and now use a sophisticated scav-
enging algorithms.

Wirfs.book Page 368 Friday, October 11, 2002 11:44 AM

Strategies for Solving Revealing Problems

369

Synthesizing a Solution

Another approach to solving a revealing problem is to combine sev-
eral parts of some almost-OK solutions. Even though you know that
these potential solutions are flawed in one way or another, you can
examine each for its strengths and weaknesses. Then propose a solu-
tion that combines the strengths of several flawed solutions and
doesn’t have their weaknesses. When designing reliable collabora-
tions for writing a phone number, we devised a strategy that com-
bined several recovery techniques because no single strategy
proved satisfactory:

Although rather complicated, this solution does handle several
exceptional conditions. It’s better than any individual simple solu-
tion, but is it a good solution? A simpler solution is always prefera-
ble. But if simple solutions aren’t adequate, it’s appropriate to
consider a more complex solution. Sometimes there aren’t any sim-
ple solutions or easy answers.

To solve revealing problems requires concentrated periods of
thought and reflection, interspersed with time away from the prob-
lem. You need time to let things soak in. You need to let your back-
ground mental activity kick in and make connections between the
problem and your experiences.

But on any project there’s a ton of work to do. There’s the core. And
because it’s been identified as being central, it usually gets the atten-
tion it deserves. And then there are revealing problems, which have
their own rhythms—intense periods of concentration interspersed
with background mental processing. Revealing problems are always
either squarely demanding your undivided attention or lurking in the
background. When they require soak time, take a break and work on
something else. There’s plenty of other stuff that needs your atten-
tion, too.

An object would attempt to write down the phone number but broad-
cast a request for a pencil if it failed to locate one. It might then wait
for a certain amount of time. But if no one provided it with one, ulti-
mately it might ignore the request. Meanwhile, the requester might
wait awhile for confirmation and then locate another to write the
phone number after waiting a predetermined period of time.

Wirfs.book Page 369 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

370

WORKING ON THE REST

The rest is what you work on day in and day out, week after week,
when nothing else demands your attention. What items might be
included in the rest?

� Common error logging or reporting mechanisms

� Data conversion

� Exception handlers

� Basic features that are similar to ones you’ve already imple-
mented

� Unhappy path scenarios

� Optional features

� Alternative strategies for accomplishing some behavior

� Support for different ways that users accomplish basic tasks

Several items are on this list just to provoke your thinking. It’s easy
to get caught up in a debate of what’s core and what’s in the rest.
Don’t waste time debating whether common error logging and
reporting mechanisms are considered core design work or part of
the rest. If you know that something is just basic design work that
has to be there—nothing special, nothing fancy—it’s probably part
of the rest. What about exception handling? Why isn’t the 90% of
your design work that supports the unhappy scenario a core design
task? Well, depending on your project, it might be. Or it might not.
When your team agrees that some design task is critical to the suc-
cess of your design, add it to your list of core items. But not every
design task is equally critical. Not everything can have the highest
priority. Core problems should be given more attention. That doesn’t
mean the rest gets slighted. It just isn’t at the top of your list.

The way you organize your design work, and how much time you
spend working in uninterrupted stretches, can be critical to your
success. Design and programming involve thinking, problem solving,
and concentrated efforts. If you don’t give core design activities your
undivided attention, you can expend a lot of energy starting, stop-
ping, and restarting. Alistair Cockburn, in Agile Software Develop-
ment, describes why distractions can be so maddening:

Wirfs.book Page 370 Friday, October 11, 2002 11:44 AM

Designing Responsibly

371

It isn’t always the meeting or the phone call or the overheard conver-
sation that causes you to lose focus. Quitting a design session with-
out coming to a good stopping point can also do you in.

Whether you are working on some core problem or on something
slightly less important, take time to mentally wrap things up when-
ever you break away from design. Because the rest of your design
work fits into days full of meetings, programming, conversations,
and distractions, this isn’t always easy. But it helps if you conclude
(rather than halt) a design episode before switching to another task.

Above all, don’t lose sight of the big picture. The core must be solid,
the rest needs attention, and usually there are places where you’ll
need to cut corners. If you adopt development practices that help
you honestly set and revisit your priorities, you will be much more
comfortable making these design trade-offs.

DESIGNING RESPONSIBLY

“Fudging” on a software project is the equivalent of drawing pictures
that distort the size and relative importance of things. Ever see a
drawing of the United States with New York looming large in the fore-
front and the rest so small as to be indistinguishable? The tiny bits

“Software consists of tying together complex threads of thought. The
programmer spends a great deal of time lifting and holding together
a set of ideas. . . . If she gets called to a meeting . . . her thought struc-
ture falls to the ground and she must rebuild it after the meeting. It
can take 20 minutes to build this structure and an hour to make
progress. Therefore, any phone call, discussion, or meeting that dis-
tracts her for longer than a few minutes causes her to lose up to an
hour of work and an immense amount of energy.”

At the end of the day, it is tempting to leave CRC cards scattered
around a table and white boards full of scribbles and sketches. Drop
everything, the day is over! Time and time again we’ve found that
spending just a minute or two to summarize where you are and
where you might pick up your work can have a big payoff. Scribbling
a couple of notes about the “state of your design” on a whiteboard
before dashing off helps your team to reconnect with the design the
next morning. Even taking a few seconds to group or rearrange CRC
cards, instead of collecting them into a big pile, can help.

The worst thing you can do to
break your flow is to put a
rubber band around a stack
of CRC cards, throw them in
a drawer, and pick them up
after a week.

It’s hard to keep things on
track and give design your
proper attention when you are
constantly distracted. Block
off a chunk of time—at least
an hour at a stretch—to work
on any significant design task.
Unless you are really caught
up in your work, you need
short breaks to keep your
energy level high.

Wirfs.book Page 371 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

372

on the drawing are analogous to the parts of your design you are
fudging on. You make ’em really small and insignificant in order to
leave room for the “important” stuff. Different developers—and dif-
ferent development methods—fudge on different things.

Michael Jackson, in Software Requirements and Specifications, talks
about the consequences of fudging. If you fudge on the wrong things,
your software development effort is doomed. In Jackson’s opinion,
most object-oriented design methods pay attention to developing
abstractions and inventing class hierarchies and understanding
object interactions, but they fudge on correctness. He further argues
that dividing a system into objects and classes makes it easier to
fudge on understanding larger patterns of behavior. In contrast, for-
mal methods are very careful about correctness and mathematical
precision. But they fudge on how software should relate to its users
and environment.

If you view software development (and object design) as only a nar-
row set of activities—focused on producing an object-oriented appli-
cation—Jackson’s assessment may be accurate. We think Jackson’s
view of object design and development practices is too limited. As
designers, we naturally think in terms of software objects and their
roles and interactions. You can zoom in and study individual collabo-
rators, or you can shift your perspective to look at paths of collabo-
ration among object neighborhoods and components. But although
objects take center stage in our work, designing responsibly means
fitting our work into a larger context of people, processes, and orga-
nizations. Design is a collaborative activity that at its heart involves
melding the strengths of a group of individuals in order to produce
something of value: a software design that meets customer needs. To
keep on track, your team must do more than design responsibly. It
must adopt development practices that support your project’s val-
ues. People, development practices, and attention to design are
equally important to a project’s success.

Any development method or team emphasizes certain practices and,
as a consequence, will slight others. Is fudging a bad thing? It is, but
only if you ignore something that shouldn’t be swept aside. The
practices you adopt should support those things you value. If you
need to be more formal, that is something you shouldn’t fudge on.
Don’t use object technology and informal techniques as an excuse
for fudging. You can add more precision and rigor to your design. But
each project must adapt a set of development practices that sup-
ports its specific goals. There is much more to a successful project
than a set of good design practices and techniques. There are

One of the parts of UML that
we’ve fudged on mentioning
in this book is the Object
Constraint Language, or OCL.
It is a modeling language that
is part of UML. Using OCL,
you can formally specify
constraints in your model.
If you need to precisely
specify preconditions,
postconditions, guards,
relations, and operations in
your design model, OCL is one
formal language you can use.

“Basketball is a team sport
filled with individual talent.
Software development is
similar. Collaboration—joint
production of work products,
collaborative decision
making, and knowledge
sharing—builds high-
performance teams out of
groups of individuals.”

—Jim Highsmith

Wirfs.book Page 372 Friday, October 11, 2002 11:44 AM

Designing Responsibly

373

certainly more good design techniques than those we’ve mentioned
in this book.

Designers of highly interactive systems will need additional prac-
tices that help them to identify and design effective user-system
interactions. Embedded software designers often spend a lot of time
on reliability and make trade-offs between memory utilization and
execution speed. They may need to develop complex models that
represent the state of their system, its hardware, and its software.
Yet these designers can still reason about their software in terms of
objects having roles and responsibilities. Although every project’s
concerns are slightly different from those of other projects, its pri-
mary tool—the power of abstraction used to create a model of soft-
ware objects—remains constant.

An intriguing trend in software development is toward “agile” devel-
opment practices. The agile movement embraces the notion that
teams and organizations should flex and adapt to changing condi-
tions. According to Jim Highsmith, those who pursue agile develop-
ment practices “seek to restore credibility to the concept of
methodology. We want to restore a balance. We accept modeling, but
not in order to file some diagram in a dusty corporate repository. We
accept documentation, but not hundreds of pages of never-main-
tained and rarely used tomes. We plan, but recognize the limits of
planning in a turbulent environment.”

Agility advocates want to be nimble. Development practices that
worked well last week may need tuning or changing tomorrow. Fun-
damental to agile practices are the following beliefs:

� Organizations exhibit both chaos and order and cannot be man-
aged by predictive planning and execution practices.

� Collaborative values and principles are vital to a project’s
success.

� Barely sufficient methodology lets a development team concen-
trate on those activities that create value.

Responsibility-Driven Design offers techniques that fit with and com-
plement agile practices. Our emphasis is on software responsibilities.
Following this approach, you start with rough ideas and refine them.
You add as much precision as you need in your design work. Initially,
you identify candidate objects, characterize them, assign them
responsibilities, and develop an understanding of your application’s
control style. You might identify and apply design patterns or work
through issues of trust among collaborators. Or you might develop
exception-handling mechanisms. If you need a flexible design, you

Agile methods do not equate
to good, and non-agile (or
rigid) methods to bad. There
are many places where agile,
adaptable practices are vital.
But there are situations when
software should be developed
in a rigorous fashion.
Software that controls life-
critical systems demands
more formal methods and
practices.

Wirfs.book Page 373 Friday, October 11, 2002 11:44 AM

Chapter 10 On Design

374

would pinpoint hot spots and then strategize how best to support
planned variations in your software’s behavior. Along the way you
might develop and document collaboration stories to highlight key
points in your design. Depending on your development practices,
you could either keep these as part of your permanent design record
or discard them after you’ve effectively communicated to others.

Responsibility-Driven Design offers tools and techniques, along with
a galvanizing way of viewing your design. Thinking and reasoning
about software in terms of objects, their roles, and their collective
responsibilities provide a powerful perspective—one that doesn’t
fudge on a model of software as an organization of responsible, col-
laborating objects.

FURTHER READING

How to Solve It by George Polya (Princeton University Press, 1971)
presents many strategies for developing solutions to problems.
Polya, a mathematician, freely uses mathematical examples. If you
are not mathematically inclined, you can get past those parts quite
nicely by not puzzling over them. Instead, concentrate on Polya’s
logical discussions and advice. The book contains summaries of var-
ious problem-solving strategies and questions to ask that are funda-
mental to any kind of problem solving.

Agile development practices are garnering a lot of attention. If you
want to read a thoughtful discussion of the common principles
behind agile development and survey six different agile methods,
pick up Jim Highsmith’s Agile Software Development Ecosystems
(Addison-Wesley, 2002).

Wirfs.book Page 374 Friday, October 11, 2002 11:44 AM

375

Bibliography

Adams, Douglas. Mostly Harmless (Hitchhiker’s Guide Series #5). Ran-
dom House, 1993.

Albers, Josef. “One Plus One Equals Three or More: Factual Facts and
Actual Facts.” In Albers, ed., Search Versus Re-Search. Hartford, 1969.

Alexander, Christopher. Notes on the Synthesis of Form. Harvard Uni-
versity Press, 1970.

Amyot, Daniel, “Frequently Asked Questions, with Answers,” http://
www.usecasemaps.org/, March 23, 1999.

Auer, Ken, and Roy Miller. Extreme Programming Applied: Playing to
Win. Addison-Wesley, 2002.

Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley, 1998.

Beck, Kent, and Ward Cunningham. “A Laboratory for Teaching
Object-Oriented Thinking,” OOPSLA ’89 Conference Proceedings, pp.
1–6.

Bellin, David, and Susan Suchman Simone. The CRC Card Book. Addi-
son-Wesley, 1997.

Bennett, Doug. Designing Hard Software. Prentice Hall, 1997.

Wirfs.book Page 375 Friday, October 11, 2002 11:44 AM

Bibliography

376

Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, 1999.

Budd, Timothy. An Introduction to Object-Oriented Programming. 3rd ed.
Addison-Wesley, 2002.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Micahel Stal. Pattern-Oriented Software Architecture: A System of
Patterns. John Wiley & Sons Ltd., 1996.

Clay, Jean, “Albers: Josef’s Coats of Many Colours,” Realities, August
1968, p. 68.

Cockburn, Alistair. Agile Software Development. Addison-Wesley,
2002.

Cockburn, Alistair. Writing Effective Use Cases. Addison-Wesley, 2001.

Constantine, Larry, and Lucy Lockwood. Software for Use: A Practical
Guide to the Models and Methods of Usage Centered Design. ACM
Press, 1999.

Coplien, James O., and Douglas C. Schmidt, eds. Pattern Languages of
Program Design. Addison-Wesley, 1995

Davis, Alan. 201 Principles of Software Development. McGraw-Hill,
1995.

Douglass, Bruce Powel. Real-Time UML: Developing Efficient Objects
for Embedded Systems. Addison-Wesley, 1998.

Ecklund, Earl, Lois Delcambre, and Michael Freiling, “Change Cases:
Use Cases That Identify Future Requirements,” OOPSLA ’96 Confer-
ence Proceedings.

Edwards, Betty. Drawing on the Artist Within: An Inspirational and
Practical Guide to Increasing Your Creative Powers. Fireside, 1987.

Fayad, Mohamed E., Douglas Schmidt, and Ralph Johnson, eds. Build-
ing Application Frameworks. John Wiley & Sons, 1999.

Fayad, Mohamed E., Douglas Schmidt, and Ralph Johnson, eds.
Implementing Application Frameworks. John Wiley & Sons, 1999.

Fontoura, Marcus, Wolfgang Pree, and Bernhard Rumpe. The UML
Profile for Framework Architectures. Addison-Wesley, 2002.

Fowler, Martin. Analysis Patterns: Reusable Object Models. Addison-
Wesley, 1997.

Fowler, Martin. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

Wirfs.book Page 376 Friday, October 11, 2002 11:44 AM

Bibliography

377

Froehlich, Gary, H. James Noover, Ling Liu, and Paul Sorenson.
“Reusing Hooks.” In Mohamed E. Fayad et al., eds., Building Applica-
tion Frameworks. John Wiley & Sons, 1999.

Galton, Francis. Inquiries into Human Faculty and Its Development.
London: Dent, 1907.

Gamma, Erich, Richard Helm, Ralph Johnson, and John M. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

Goodenough, John. In Alexander Romanovsky et al., eds. Advances in
Exception Handling Techniques. Springer-Verlag, 2001.

Harel, David, “From Play-In Scenarios to Code: An Achievable
Dream,” Technical Report MCS00-06, The Weizmann Institute of Sci-
ence, February 2000.

Harrison, Neil et al., eds. Pattern Languages of Program Design 4.
Addison-Wesley, 2000.

Highsmith, Jim. Agile Software Development Ecosystems. Addison-
Wesley, 2002.

Hofstadter, Douglas. Le Ton Beau De Marot: In Praise of the Music of
Language. Basic Books, 1998.

Howell, Charles, and Gary Veccellio. “Experiences with Error Han-
dling in Critical Systems.” In Alexander Romanovsky et al., eds.,
Advances in Exception Handling Techniques. Springer-Verlag, 2001.

Ingalls, Daniel. “A Simple Technique for Handling Multiple Polymor-
phism,” OOPSLA ’86 Conference Proceedings, pp. 347–349.

Israels, Chuck, quoted in Paul F. Berliner, Thinking in Jazz: The Infi-
nite Art of Improvisation. University of Chicago Press, 1994.

Jackson, Michael. Software Requirements & Specifications: A Lexicon
of Practice, Principles and Prejudices. Addison-Wesley, 1995.

Jackson, Michael. Problem Frames: Analyzing and Structuring Software
Development Problems. Addison-Wesley, 2001.

Jacobson, Ivar et al. Object-Oriented Software Engineering: A Use Case
Driven Approach. Addison-Wesley, 1992.

Jones, Steven R. “A Framework Recipe.” In Mohamed E. Fayad et al.,
eds., Building Application Frameworks. John Wiley & Sons, 1999.

Wirfs.book Page 377 Friday, October 11, 2002 11:44 AM

Bibliography

378

Kay, Alan, quoted in Cade Metz, “The Perfect Architecture.” PC
Magazine, September 4, 2001, http://www.pcmag.com/print_article/
0,3048,a=10175,00.asp.

Kerievsky, Joshua, “Stop Over-Engineering!” Software Development,
Vol. 10, No. 4 (April 2002).

Klee, Paul. Altes Fraulein, 1931. Paris: Spadem, 1976.

Kovitz, Benjamin L. Practical Software Requirements: A Manual of Con-
tent and Style. Manning Publications, 1998.

Kruchten, Philippe. The Rational Unified Process: An Introduction, Sec-
ond Edition. Addison-Wesley, 2000.

Larman, Craig. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process. 2d ed. Prentice-
Hall, 2001.

Lea, Douglas. Concurrent Programming in Java™, Second Edition:
Design Principles and Patterns. Addison-Wesley, 2000.

Malveau, Rapahel, and Thomas Mowbray. Software Architect Boot-
camp. Prentice Hall, 2001.

Martin, Robert C. et al., eds. Pattern Languages of Program Design 3.
Addison-Wesley, 1998.

Metsker, Steven. Design Patterns Java™ Workbook. Addison-Wesley,
2002.

Meyer, Bertrand. Object-Oriented Software Construction. 2d ed. Prentice-
Hall, 2000.

Minsky, Marvin. The Society of Mind. Simon and Schuster, 1988.

Norman, Donald. The Design of Everyday Things. Basic Books, 2002.

Page-Jones, Meilir. Fundamentals of Object-Oriented Design in UML.
Addison-Wesley, 2000.

Peter, Laurence J., and Raymond Hull. The Peter Principle. William
Morrow, 1969.

Petroski, Henry. To Engineer Is Human. Vintage Books, 1992.

Pirsig, Robert. Zen and the Art of Motorcycle Maintenance: An Inquiry
into Values. William Morrow, 1975.

Polya, George. How to Solve It. Princeton University Press, 1971.

Poppendieck, Mary, “Wicked Problems,” Software Development, Vol.
10, No. 5 (May 2002).

Wirfs.book Page 378 Friday, October 11, 2002 11:44 AM

Bibliography

379

Pree, Wolfgang. Design Patterns for Object-Oriented Software Develop-
ment. Addison-Wesley, 1995.

Pree, Wolfgrang. “Framelets—Small Is Beautiful.” In Mohamed E.
Fayad et al., eds., Building Application Frameworks. John Wiley &
Sons, 1999.

Pye, David. The Nature and Aesthetics of Design. Van Nostrand Rein-
hold Company, 1978.

Reenskaug, Trygve, Per Wold, and Odd Arild Lehne. Working With
Objects: The OOram Software Engineering Method. Manning Publica-
tions, 1996.

Rittel, Horst, and Melvin Webber. “Dilemmas in a General Theory of
Planning.” In Policy Sciences, Vol. 4. Elsevier Scientific Publishing,
1973.

Romanovsky, Alexander et al., eds. Advances in Exception Handling
Techniques. Springer, 2001.

Rumbaugh, James. OMT Insights. SIGS Books, 1996.

Strunk, T., and E.B. White. The Elements of Style. Macmillan Publish-
ing Co., 1972.

Tufte, Edward R. The Visual Display of Quantitative Information.
Graphics Press, 1983.

Vlissides, John M. et al., eds. Pattern Languages of Program Design 2.
Addison-Wesley, 1996.

Vygotsky, Lev S. Thought and Language. Rev. ed. MIT Press, 1986.

Wilkinson, Nancy. Using CRC Cards: An Informal Approach to Object-
Oriented Development. Cambridge University Press, 1995.

Wirfs-Brock, Rebecca, and Brian Wilkerson, “Object-Oriented Design:
A Responsibility-Driven Approach,” OOPSLA ’89 Conference Pro-
ceedings, pp. 71–75.

Wirfs-Brock, Rebecca, “Adding to Your Conceptual Toolkit: What’s
Important About Responsibility-Driven Design,” in The Report on
Object Analysis and Design, Vol. 1, No. 2 (1994).

Wirfs-Brock, Rebecca, “Designing Scenarios: Making the Case for a
Use Case Framework,” The Smalltalk Report, Vol. 4, No. 3 (1994).

Wirfs-Brock, Rebecca, “The Art of Meaningful Conversations,” The
Smalltalk Report, Vol. 4, No. 5 (1995).

Wirfs.book Page 379 Friday, October 11, 2002 11:44 AM

Bibliography

380

Wirfs-Brock, Rebecca, Brian Wilkerson, and Lauren Wiener. Designing
Object-Oriented Software. Prentice Hall PTR, 1990.

Wirfs-Brock, Rebecca. “Characterizing Your Objects,” The Smalltalk
Report, Vol. 2, No. 5 (1993).

Wirfs-Brock, Rebecca. “Designing Objects and Their Interactions: A
Brief Look at Responsibility-Driven Design.” In John Carroll, ed.,
Scenario-Based Design: Envisioning the Work and Technology in Sys-
tem Development. John Wiley & Sons, 1995.

Wirfs.book Page 380 Friday, October 11, 2002 11:44 AM

381

Index

A
Abstract classes, 17, 80
Actors (UML), 51
Adapter design pattern, 340, 341
Adaptive Object Model, 353
Aftereffect guarantees, object contracts, 7–8
Applications

application-specific objects, 10–12
Application objects, Page-Jones domain divi-

sions, 135
architecture (See Architecture of applications)
definition, 3
policies, design description, 57

Architectural objects, Page-Jones domain divi-
sions, 135

Architecture of applications
basics, 27–28
object collaborations, building models, 192
object collaborations, influences on, 172–173

Architecture of applications, control styles. See
also Architecture of applications, styles; Con-
trollers, object role stereotype

centralized, 30, 197, 198–200
centralized, advantages/disadvantages, 198,

201–203

control centers, 196, 205
control centers, designing for similar systems,

230–236
delegated, 31–32, 33, 197, 200–201
delegated, advantages/disadvantages, 198,

201–203
dispersed, 30–31, 197
dispersed, advantages/disadvantages, 198, 203,

204–205
Guesser object/dictionaries neighborhood,

225–229
MessageBuilder object event, 205
MessageBuilder object event, basics, 206–208
MessageBuilder object event, centralizing con-

trol, 208–220
MessageBuilder object event, decision making,

moving responsibilities, 224–225
MessageBuilder object event, decision making,

refactoring into state methods, 220–221
MessageBuilder object event, final design,

229–230
object collaborations, 155
overview, 196

Architecture of applications, styles. See also Archi-
tecture of applications, control styles

blackboard, 28

Wirfs.book Page 381 Friday, October 11, 2002 11:44 AM

Index

382

Architecture of applications, (continued)
layered, 28, 29, 32–34
layered, locating objects, 34–36
pipes-and-filter, 28, 30

B
Blackboard architectural style, 28
Builder design pattern, object collaborations, 171
Business objects, Page-Jones domain divisions,

135
Business rules, design description, 57

C
Candidate objects

characterizing in larger context, 98–99
clustering/connecting, 99–101
collaborators, 80
conceptual objects, 58–60
defending, 104–105
descriptions, 93–98
discarding, 103–104
exploratory design stage, 60–61
naming, 88–93
responsibilities, 80
reviewing, 105–106
role stereotypes, 93–98
roles, 79–80, 101–103
search strategies, basics, 84–85
search strategies, themes, 85–87
steps in finding/assessing, 78–79
transitioning to classes and interfaces, 80
writing stories, 80–83
writing stories, collaborations, 152–153, 154

Candidates, Responsibilities, Collaborators. See
CRC cards

Case statements, 20
Classes

abstract, 17, 80
components, 18
concrete, 80
finding candidate objects, 80
inheritance, 16–17
instances, 13–16
libraries of classes in frameworks, 25

superclasses and subclasses, 16–17
Collaboration of objects. See Object collabora-

tions
Collaborators, finding candidate objects, 80. See

also Object collaborations
Command pattern, 64–66
Components, 18
Composite design pattern, object collaborations,

171
Composition, object models, 16
Conceptual objects, 58–60

judging merit, 60–61
running collaboration simulations, 182

Concrete classes, 80
Concrete method, 330
Conditions-of-use guarantees, object contracts,

7–8
collaborations, 156

Consequences, pattern elements
definition, 20
Double Dispatch pattern, 24

Consistency in design, 73–74
Context, pattern elements

definition, 20
Double Dispatch pattern, 24

Contracts, object collaborations, 156, 307
basics, 7–8
contractual relations, 308
definition, 3
obligations and benefits, 309–310
preconditions and postconditions, 308–309

Control styles, application architecture. See also
Architecture of applications, styles; Control-
lers, object role stereotype

centralized, 30, 197, 198–200
centralized, advantages/disadvantages, 198,

201–203
control centers, 196, 205
control centers, designing for similar systems,

230–236
delegated, 31–32, 33, 197, 200–201
delegated, advantages/disadvantages, 198,

201–203
dispersed, 30–31, 197
dispersed, advantages/disadvantages, 198, 203,

204–205
Guesser object/dictionaries neighborhood,

225–229

Wirfs.book Page 382 Friday, October 11, 2002 11:44 AM

Index

383

MessageBuilder object event, 205
MessageBuilder object event, basics, 206–208
MessageBuilder object event, centralizing con-

trol, 208–220
MessageBuilder object event, decision making,

moving responsibilities, 224–225
MessageBuilder object event, decision making,

refactoring into state methods, 220–221
MessageBuilder object event, final design,

229–230
object collaborations, 155
overview, 196

Controllers, object role stereotype, 4. See also
Control styles, application architecture

candidate descriptions, 93–94
collaborations, simulating, 179
in layered style applications, 34–35
object collaborations, 163
object collaborations, versus coordinators, 164

Conversations, design description, 54–55, 56
Coordinators, object role stereotype, 4

candidate descriptions, 93–94
in layered style applications, 34–35
versus mediators, 229
object collaborations, 163, 164

CRC cards
candidate objects, collaborations, recording,

151–152
candidate objects, connecting/clustering cards,

99
candidate objects, defining, 93–94
candidate objects, filling out, 100
candidate objects, finding patterns, 100–101
candidate objects, information required, 61–62,

63, 67
object collaborations, running simulations, 182
origin, 36
recording object responsibilities, 122–123

D
Descriptions (design)

analysis, 49–50
application policies, 57
basics, 36
business rules, 57
design notes, 57

exceptions, 56–57
object responsibilities, 131–132
Responsibility-Driven Design, 44–47
UML (Unified Modeling Language), 241
usage, 50–51
usage, conversations, 54–55, 56
usage, scenarios, 53–54, 56
usage, use cases, 51–53, 56

Design patterns
Adapter, 340, 341
basics, 18–19
benefits to developers, 20, 25
Command pattern, 64–66
delegation technique, 341–342
Double Dispatch pattern, 20–25, 175, 176, 177
increasing flexibility, 340–342
Mediator, 339
object collaborations, 170–171
object collaborations, building models, 192
State, 341
Strategy, 337–338
Template Method, 330–331

Design process. See also Descriptions (design)
agile development practices, 373
analysis, 45–47
basics, 40–42
collaboration objects, responsibilities and con-

trol styles, 70–71
conceptual objects, 58–60
conceptual objects, judging merit, 60–61
connection problems, 358, 363–364
consistency, 73–74
control problems, 358, 362–363, 364–365
core problems, 356, 357–358
CRC cards, 61–62, 63, 67
design decisions, guidelines, 67–68
design decisions, testing designs with details,

68, 70
“fudging”, 371–374
general problems, 370–371
problem frames, 358–361
problems, 356
responsible design, 371–374
revealing problems, 356, 361
revealing problems, and wicked problems,

365–366
revealing problems, redefining before solving,

368

Wirfs.book Page 383 Friday, October 11, 2002 11:44 AM

Index

384

Design process, (continued)
revealing problems, solving, 366–368
revealing problems, synthesizing before solving,

369
transformation problems, 359
workpiece problems, 359

Design reviews for reliable collaborations, 311–312
Dialogs. See Conversations
Domain objects

basics, 8–10
object collaborations, building models, 192
object responsibility restrictions, 135–136
Page-Jones domain divisions, 135

Double Dispatch design pattern, 20–25
object collaborations, 175, 176, 177

E
Errors/exceptions

basics, 288–294
definition, 287
design, limiting scope, 300–302
design, listing possibilities, 299–300
design description, 56–57
handling, 294–296
handling, documenting designs, 303–307
handling, recording policies, 302–303
of objects versus use cases, 288
responsibilities, 296–299

Events (objects)
collaborations, 169–170
collaborations, building models, 192
collaborations, running simulations, 180–182
sources of object responsibilities, 123–124

Exceptions. See Errors/exceptions
External interfacers, object role stereotype

candidate descriptions, 93
collaboration identification, 165–166

F
Facade design pattern, object collaborations, 171,

173, 174, 175
Factory method, 330
Flexibility, 71–72
Flexibility in design, 71–72

documentation, audience considerations,
344–345, 347, 348

documentation, descriptions of variations, 345,
347–350

documentation, UML-F (Unified Modeling Lan-
guage, frameworks), 342–344, 345, 346

documentation, UML (Unified Modeling Lan-
guage), 345, 347

documentation, 342–344, 345
variations, describing for documentation, 345,

347–350
variations, working into existing software,

350–352
Flexible design

advantages/disadvantages, 319–320
decisions, objects needing flexibility, 320–324
degrees of flexibility, 317–319
overview, 316–317
patterns, Adapter, 340, 341
patterns, delegation technique, 341–342
patterns, Mediator, 339
patterns, State, 341
patterns, Strategy, 337–338
patterns, Template Method, 330–331
patterns, ways to increase flexibility, 340–342
Responsibility-Driven Design, 71–72
variations, creating knobs for developers to

turn, 337–338
variations, hot spots, recording on cards,

324–327
variations, hot spots, solving, 327–328
variations, inserting design placeholders,

335–337
variations, placing variable information into

information holders, 334–335
variations, strategies for realizing variations,

329–330
variations, supporting with template and hook

methods, 330–333
variations, times needed, 333–334

Flyweight design pattern, object collaborations,
171

Forces, pattern elements
definition, 19
Double Dispatch pattern, 24

Foundation objects, Page-Jones domain divisions,
135

Framelets, 353

Wirfs.book Page 384 Friday, October 11, 2002 11:44 AM

Index

385

Frameworks
advantages/disadvantages to developers, 26–27
basics, 25–26
control styles, 201
UML-F (Unified Modeling Language, frame-

works), 342–344, 345, 346
Fundamental objects, Page-Jones domain divi-

sions, 135

G–H
Glossaries, 58

Hook method, 330
Hot spots, variations in design

cards, 71, 72
cards, recording variations, 324–327
solving, 327–328

I–K
Information holders, object role stereotype, 4

candidate descriptions, 93
in layered style applications, 34–35
object collaborations, 159–160
variable information in flexible designs, 334–335

Inheritance, classes, superclasses, and subclasses,
16–17

Instances of classes, 13–16
inheritance, 16–17

Integrative and incremental processes, 42–43
Interfacers, object role stereotype, 4

candidate descriptions, 93
in layered style applications, 34–35
object collaborations, 164–166

Interfaces
basics, 12
finding candidate objects, 80

Internal interfacers, object role stereotype
candidate descriptions, 93
collaboration identification, 165

L–M
Layered architectural style, locating objects, 34–36

Libraries of classes in frameworks, 25

Mediator design pattern, 339
object collaborations, 171

Model-View-Controller roles, assigning responsibil-
ities of objects, 129–130, 131

Multiple stakeholder perspectives, 49, 50, 71

N
Names, pattern elements

definition, 19
Double Dispatch pattern, 23

Naming objects, 88–93
Narratives. See Stories
Neighborhood of objects, 17
Neighborhoods of objects

collaborations, 151

O
Object collaborations

architecture’s influences, 172–173
basics, 150
control styles, 70–71, 155
definition, 3
degree of trust, 155–157
design, based on use cases or events, 169–170
design, patterns, 170–171
design stories, 152–153, 154
feasibility of collaborations, 187–188
guidelines for design, 183–184
guidelines for design, exceptional conditions,

190–191
guidelines for design, Law of Demeter case

study, 184–187
guidelines for making connections, 188–190
identification strategies, 158–159
neighborhoods, 17
preparations, 150–151
raw materials for model building, 192
recording candidates on CRD cards, 151–152
roles-responsibilities-collaborations model,

5–7
subsystems, 17
troubleshooting problems, 173–176

Wirfs.book Page 385 Friday, October 11, 2002 11:44 AM

Index

386

Object collaborations, reliability
contracts, 307
contracts, contractual relations, 308
contracts, obligations and benefits, 309–310
contracts, preconditions and postconditions,

308–309
design reviews, 311–312
errors/exceptions, basics, 288–294
errors/exceptions, definition, 287
errors/exceptions, design, limiting scope,

300–302
errors/exceptions, design, listing possibilities,

299–300
errors/exceptions, handling, 294–296
errors/exceptions, handling, documenting

designs, 303–307
errors/exceptions, handling, recording policies,

302–303
errors/exceptions, of objects versus use cases,

288
errors/exceptions, responsibilities, 296–299
failures, consequences, 278–279
information from use cases, 286
overview, 285–286
system reliability, 280
trust regions, 280
trust regions, decisions on placement of respon-

sibilities, 284–285
trusted collaborations, 280–281
trusted collaborations, versus untrusted,

281–284
Object collaborations, responsibilities

connecting objects, 166–167
connecting responsibilities, 151–152
control styles, 70–71
factor in frequency of objects, 153–155
subresponsibilities, 168–169

Object collaborations, role stereotypes
controllers, 163
controllers versus coordinators, 164
coordinators, 163, 164
information holders, 159–160
interfacers, 164–166
service providers, 162
structurers, 160–162

Object collaborations, simulations
basics, 176–177
goal setting, 178

planning, 177–180
running, 180–182

Object collaborations, stories
basics, 240
description guidelines, 264–270
development strategies, 241
final stories, 273–274
limitations of UML diagrams, 258–262
listing items to cover, 243
organization basics, 270–273
preserving stories, 274
scope, depth, and tone, 242–243
selecting forms best-suited for stories, 263–264
views, bird’s eye, 244–245
views, collaborators only, 245–250
views, focused interactions among collabora-

tors, 253–254
views, implementations, 254
views, in-depth, 250–253
views, sequences of interactions among collabo-

rators, 250
Object models

composition relationship, 16
inheritance relationship, 16–17

Object role stereotypes
candidate descriptions, 93–94
controllers, 4, 34–35
coordinators, 4, 34–35
information holders, 4, 34–35
interfacers, 4, 34–35
service providers, 4, 34–35
sources of object responsibilities, 121
structurers, 4, 34–35

Object roles, 3–4
candidate objects, 79–80, 101–103
collaborations, simulating, 178
implementing responsibilities, 141–143
roles-responsibilities-collaborations model, 5–7

Objects
application-specific, 10–12
candidates (See Candidate objects)
class components, 18
classes, instances, 13–16
contracts (See Contracts, object collaborations)
controllers (See Architecture of applications,

control styles)
definition, 3
designer perspective, 11–12

Wirfs.book Page 386 Friday, October 11, 2002 11:44 AM

Index

387

domains, 8–10
events (See Events (objects))
interfaces, 12
naming, 88–93
patterns (See Design patterns)
responsibilities (See Responsibilities of objects)
software versus physical machinery, 2–3
user perspective, 11–12

Observer design pattern, object collaborations,
171

P–Q
Packages (UML), 244–245
Page-Jones domain divisions, 135
Patterns (design)

Adapter, 340, 341
basics, 18–19
benefits to developers, 20, 25
Command pattern, 64–66
delegation technique, 341–342
Double Dispatch pattern, 20–25, 175, 176, 177
increasing flexibility, 340–342
Mediator, 339
object collaborations, 170–171
object collaborations, building models, 192
State, 341
Strategy, 337–338
Template Method, 330–331

Pipes-and-filters architectural style, 28, 30
Predictability in design, 73–74
Problems

design process, 356
design process, connections, 358, 363–364
design process, controls, 358, 362–363, 364–365
design process, core problems, 356, 357–358
design process, general problems, 370–371
design process, problem frames, 358–361
design process, revealing problems, 356, 361
design process, revealing problems, and wicked

problems, 365–366
design process, revealing problems, redefining

before solving, 368
design process, revealing problems, solving,

366–368
design process, revealing problems, synthesiz-

ing before solving, 369

design process, transformations, 359
design process, workpieces, 359
pattern elements, definition, 19
pattern elements, Double Dispatch pattern, 23

Profiles, Unified Modeling Language, 342
Project definition, 44
Project planning, 44

R
Reliability in design, 73
Responsibilities of objects

collaborations, connecting, 151–152, 166–167
collaborations, factor in frequency, 153–155
collaborations, subresponsibilities, 168–169
definition, 3
finding candidate objects, 80
overview, 110–111
recording on CRC cards, 122–123
roles-responsibilities-collaborations model, 5–7
testing for well-formed objects, 145–146

Responsibilities of objects, assignment strategies
basics, 125–126
coherent statements, 135
distributing system intelligence, 133–134
eliminating nonessential or overlapping respon-

sibilities, 136–138
general statements, 128–129
initial assignments, 128
judging ability of object to divide or share work,

132
keeping behaviors with related information, 133
limiting scope, 133
limiting sharing of information, 134–135
Model-View-Controller roles, 129–130, 131
POSA, 129–131
recording on CRC cards, 126–128
restricting to single domain, 135–136
troubleshooting problems, 138–140
varying description length, 129–131
word choices, 131–132

Responsibilities of objects, implementations,
140–141

designing methods supporting responsibilities,
144

implementation-specific responsibilities,
124–125

Wirfs.book Page 387 Friday, October 11, 2002 11:44 AM

Index

388

Responsibilities of objects, sources
basics, 111–112
design stories, 117–119
implementation-specific responsibilities,

124–125
important object events, 123–124
object role stereotypes, 121
private responsibilities supporting public ones,

121–123
relationships between candidates, 123
system behaviors, 112–115
system behaviors, filling needs between system

behaviors and use cases, 116–117
themes, 117–119
theoretical chains of reasoning, 119–120
use cases, 112–115

Responsibility-Driven Design
analysis, 45–47
basics, 40–42
collaboration objects, responsibilities and con-

trol styles, 70–71
conceptual objects, 58–60
conceptual objects, judging merit, 60–61
consistency, 73–74
CRC cards, 61–62, 63, 67
descriptions, 44–47
descriptions, analysis, 49–50
descriptions, application policies, 57
descriptions, business rules, 57
descriptions, design notes, 57
descriptions, exceptions, 56–57
descriptions, usage, 50–51
descriptions, usage, conversations, 54–55, 56
descriptions, usage, scenarios, 53–54, 56
descriptions, usage, stories, 52–53
descriptions, usage, stories for collaborations,

152–153, 154
descriptions, usage, use cases, 51–53, 56
design decisions, guidelines, 67–68
design decisions, testing designs with details,

68, 70
design patterns, 62, 64–67
flexibility, 71–72
glossaries, 58
interactive and incremental processes, 42–43
multiple stakeholder perspectives, 49, 50, 71
predictability, 73–74

project definition, 44
project planning, 44
reliability, 73
stages, exploratory, 47, 60–61
stages, refinement, 48, 70–71

Roles of objects, 3–4
candidate objects, 79–80, 101–103
collaborations, simulating, 178
definition, 3
finding candidate objects, 79–80
implementing responsibilities, 141–143
roles-responsibilities-collaborations model, 5–7

Roles of objects, stereotypes, 4–5
candidate descriptions, 93–94
in layered style applications, 34–35
sources of object responsibilities, 121

Roles-responsibilities-collaborations model, 5–7

S
Scenarios

design description, 53–54, 56
sources of object responsibilities, 112–115

Search strategies for candidate objects
basics, 84–85
steps in finding/assessing, 78–79
themes, 85–87

Semantic objects, Page-Jones domain divisions,
135

Service providers, object role stereotype, 4
candidate descriptions, 93–94
in layered style applications, 34–35
naming, 89
object collaborations, 162

Solutions, pattern elements
definition, 20
Double Dispatch pattern, 24

Sources of object responsibilities
basics, 111–112
design stories, 117–119
implementation-specific responsibilities,

124–125
object role stereotypes, 121
private responsibilities supporting public ones,

121–123
relationships between candidates, 123

Wirfs.book Page 388 Friday, October 11, 2002 11:44 AM

Index

389

system behaviors, 112–115
system behaviors, filling needs between filling

needs between and use cases, 116–117
themes, 117–119
theoretical chains of reasoning, 119–120
use cases, 112–115

Stages of design
exploratory, 47, 60–61
refinement, 48, 70–71

Stakeholder perspectives in design, 49, 50, 71
State design pattern, 341

object collaborations, 171
Stereotypes of object roles

candidate descriptions, 93–94
controllers, 4, 34–35, 163
controllers, versus coordinators, 164
coordinators, 4, 34–35, 164
information holders, 4, 34–35, 159–160
interfacers, 4, 34–35, 164–166
service providers, 4, 34–35, 162
sources of object responsibilities, 121
structurers, 4, 34–35, 160–162

Stories
design description, 52–53
design description, guidelines, 264–270
final stories, 273–274
finding candidate objects, 80–83
limitations of UML diagrams, 258–262
listing items to cover, 243
object collaborations, 152–153, 154
organization basics, 270–273
preserving stories, 274
selecting forms best-suited for stories, 263–264
sources of object responsibilities, 117–119
views, bird’s eye, 244–245
views, collaborators only, 245–250
views, focused interactions among collabora-

tors, 253–254
views, implementations, 254
views, in-depth, 250–253
views, sequences of interactions among collabo-

rators, 250
Strategy design pattern, 337–338

object collaborations, 171
Structural objects, Page-Jones domain divisions,

135
Structurers, object role stereotype, 4

candidate descriptions, 93

in layered style applications, 34–35
object collaborations, 160–162

Subclasses, 16–17
Subsystems of objects, 17
Superclasses, 16–17
Switch statements, 20
System behaviors, sources of object responsibili-

ties, 112–117

T
Template method, 330–331, 332
Template Method design pattern, 330–331
Themes

object collaborations, building models, 192
sources of object responsibilities, 117–119

Troubleshooting problems
object collaborations, 173–176
object responsibilities, assignment strategies,

138–140
Trust regions, 280

decisions on placement of responsibilities,
284–285

Trusted collaborations, 280–281
versus untrusted, 281–284

U
UML-F (Unified Modeling Language, frameworks),

342–344, 345, 346
UML (Unified Modeling Language)

actors, 51
design descriptions, 36
documentation, flexible design, 345, 347
exception handling, 305–307
for frameworks (See UML-F (Unified Modeling

Language, frameworks))
packages, 244–245
profiles, 342
relationships between candidate objects, 123
stories, 241
stories, limitations of UML diagrams, 258–262
stories, views, bird’s eye, 244–245
stories, views, collaborators only, 245–250
stories, views, focused interactions among col-

laborators, 253–254

Wirfs.book Page 389 Friday, October 11, 2002 11:44 AM

Index

390

UML (Unified Modeling Language), (continued)
stories, views, implementations, 254
stories, views, in-depth, 250–253
stories, views, sequences of interactions among

collaborators, 250
systems and subsystems, 244–245

Unified Modeling Language. See UML (Unified Mod-
eling Language)

Use cases
collaborations, building models, 192
collaborations, simulating, 179
conversation form, 54–55
design description, 51–53, 56
essential, 75
narrative form, 52–53
object collaborations, 169–170
scenario form, 53–54
sources of object responsibilities, 112–115,

116–117
Use case map, 276

User interfacers, object role stereotype
candidate descriptions, 93
collaboration identification, 164–165

V–Z
Variations, flexible design

creating knobs for developers to turn, 337–338
hot spots, recording on cards, 324–327
hot spots, solving, 327–328
inserting design placeholders, 335–337
placing variable information into information

holders, 334–335
strategies for realizing variations, 329–330
supporting with template and hook methods,

330–333
times needed, 333–334

Visitor design pattern, object collaborations, 171

Wirfs.book Page 390 Friday, October 11, 2002 11:44 AM

