
SENDING EMAIL USING ASP.NET

A Typical Contact Form
I often hear from readers asking me how to create a form in Expression

Web that collects information from a site visitor and sends an email con-

taining the information collected from the form. Many sites offer just

such a contact form. In fact, these forms have become so commonplace

on the Internet that Expression Web users expect to be able to create

one with a few clicks here and there. Such an expectation is certainly

understandable, but the truth is that creating a contact form with email

capabilities isn’t that easy.

In this chapter, we’ll walk through creating an email contact form that

sends email using ASP.NET. One of the main benefits of using ASP.NET

is that you can take advantage of the ASP.NET validation controls avail-

able in Expression Web 3. As you’ll see later in this chapter, these vali-

dation controls provide a powerful means of ensuring that the data you

collect is what you expect.

The first step in creating an email contact form is to create the actual

form itself.

35

9780789739810_ch35.qxd 9/10/09 2:00 PM Page 1

Sending Email Using ASP.NET

Creating the Contact Form
The first step in creating our contact form is to create the

form itself. We’ll create a fairly simple form, but you can eas-

ily add additional fields to the form later. To create the form,

follow these steps:

1. Click File, New, Page.

2. Select ASPX from the page types and make sure to select C#

as your language.

3. Type Enter your name: and press Enter.

4. Add a new ASP.NET TextBox control from the Standard sec-

tion of the ASP.NET controls in the Toolbox.

5. Make sure that the TextBox you just added is selected, and activate the Tag Properties panel.

6. Change the ID property of the TextBox to Name, as shown in Figure 35.1. If you wish, you can

also change the width of the TextBox so that it’s wider than the default size.

2

VII

P
A

R
T

note
If you’d like to download the com-
pleted form, you can do so from
the website that accompanies this
book.

tip
If the Tag Properties panel isn’t
visible, select Panels, Tag
Properties to activate it.

Figure 35.1
The Tag Properties panel is a convenient
and easy way to set properties on
ASP.NET controls.

7. Press the right arrow key to deselect the TextBox control, and press Enter twice to add two new

lines.

8. Type Enter your email address:, and press Enter.

9. Add a new TextBox control.

10. Set the ID property of the TextBox control to Email.

9780789739810_ch35.qxd 9/10/09 2:00 PM Page 2

3Creating the Contact Form

11. Add two new lines after the TextBox control.

12. Type Enter your message: and press Enter.

13. Add a new TextBox control.

14. Set the ID of the TextBox control to Message.

15. Set the TextMode property to MultiLine.

16. Set the Height property to 200 and the width property to 400.

17. Press Enter twice to add two new lines.

18. Add a new ASP.NET Button control.

19. Set the Width property to 140.

20. Set the Text property to Send Message.

21. Set the ID property to Send.

22. Save the page as default.aspx.

Your form should now look like the one shown in Figure 35.2.

35

C
H

A
P

T
E

R

Figure 35.2
The form’s design
has been com-
pleted, but it does-
n’t do anything yet.

9780789739810_ch35.qxd 9/10/09 2:00 PM Page 3

Sending Email Using ASP.NET

We now have the necessary ASP.NET controls to collect information from site visitors. However, vis-

itors can submit the form without adding any information or entering a valid email address.

Fortunately, ASP.NET offers controls that will allow us to add form validation easily.

Adding and Configuring ASP.NET Validation
Controls

When you use forms in a site, you should always validate the user’s input so that you ensure that

you get the data you are looking for. In our case, we want to make sure that none of the form fields

are empty. We also want to make sure that the email appears to be a valid email address so that we

can send a copy of the form to the visitor who filled it out. We’ll use two different ASP.NET valida-

tion controls to do this: the RequiredFieldValidator and RegularExpressionValidator controls.

Adding the Validation Controls
Because we want to ensure that visitors fill in all our fields, we’ll add a RequiredFieldValidator

to each control. Click the Name TextBox control, and then press the right arrow key to move the

insertion point just to the right of the TextBox. Press the spacebar to add a couple of spaces, and

then drag and drop a RequiredFieldValidator control from the Validation section of the toolbox as

shown in Figure 35.3.

4

VII

P
A

R
T

Figure 35.3
The ASP.NET vali-
dation controls
are located in the
Validation section
of the Toolbox.

9780789739810_ch35.qxd 9/10/09 2:00 PM Page 4

5Adding and Configuring ASP.NET Val idation Controls

Select the RequiredFieldValidator control you just added to the page and set the ErrorMessage

property to Name is Required. Click the drop-down next to the ControlToValidate property and

select Name, as shown in Figure 35.4.

35

C
H

A
P

T
E

R

Figure 35.4
The ControlToValidate property associates a validator control
with a control on the page.

Repeat the same process to add a RequiredFieldValidator control next to the Email TextBox and

the Message TextBox control. Set the ErrorMessage property appropriately for each of the

TextBoxes, and select the correct control for the ControlToValidate property. Your form should

now look like the one shown in Figure 35.5.

➥ For more information on ASP.NET validation controls, see Chapter 29, “Form Validation with

ASP.NET” of the print version of this book.

Finally, we need to add a RegularExpressionValidator to the Email TextBox so that we can

ensure that the text entered in that field is in the form of an email address.

Add a RegularExpressionValidator control to the right of the RequiredFieldValidator control

that you added to the Email TextBox earlier. Set the ErrorMessage property to Email Invalid and

set the ControlToValidate property to Email. Click the ellipse next to the ValidationExpression

property and select Internet Email Address from the list of expressions, as shown in Figure 35.6.

Click OK.

9780789739810_ch35.qxd 9/10/09 2:00 PM Page 5

Sending Email Using ASP.NET6

VII

P
A

R
T

Figure 35.5
The form now has a
RequiredFieldValidator control
next to each TextBox.

Figure 35.6
The ValidationExpression property of the
RegularExpressionValidator control makes it easy to validate
form data against popular patterns.

We have one final step to complete the configuration of the validation controls. If a site visitor

enters a value in the Email TextBox that isn’t in the format of an email address, the error message

for the RegularExpressionValidator control will appear too far away from the Email field, as

shown in Figure 35.7 because ASP.NET is reserving space for the RequiredFieldValidator control

that’s also used by the Email field.

9780789739810_ch35.qxd 9/10/09 2:00 PM Page 6

7Writ ing ASP.NET Code to Send Email

To fix this problem, select the RequiredFieldValidator control next to the Email field and change

the DisplayMode property from Static to Dynamic. ASP.NET will then no longer reserve space on

the page for the RequiredFieldValidator control, and the error message for the

RegularExpressionValidator control will appear immediately to the right of the Email field.

Our form now has a significant amount of functionality with regard to validation, but it doesn’t do

anything when you submit it. For the form to send email, we’ll need to add some ASP.NET code to it.

Writing ASP.NET Code to Send Email
When a visitor fills out our form and clicks the Send Message button, we want an email to be sent

to an email address that we specify and a copy to be sent to the user who filled out the form. You

might be surprised at how little code is required to send email using ASP.NET. Listing 35.1 shows

the code that is used to send the email. (Line numbers appear for reference only.)

35

C
H

A
P

T
E

R

Figure 35.7
The
RegularExpressionValidator’s
error message appears too far
from the Email field by default.

9780789739810_ch35.qxd 9/10/09 2:00 PM Page 7

Sending Email Using ASP.NET

Listing 35.1 Code to Send Email

1 <%@ Import Namespace=”System.Net.Mail” %>

2 <%@ Import Namespace=”System.Text” %>

3 <script runat=”server”>

4 protected void Page_Load(object sender, EventArgs e)

5 {

6 if (IsPostBack)

7 {

8 SmtpClient sc = new SmtpClient(“smtp.yourServer.com”);

9 StringBuilder sb = new StringBuilder();

10 MailMessage msg = null;

11 sb.Append(“Email from: “);

12 sb.Append(Name.Text);

13 sb.Append(“ (“);

14 sb.Append(Email.Text);

15 sb.Append(“)\n”);

16 sb.Append(“Message : “);

17 sb.Append(Message.Text);

18 sb.Append(“\n”);

19 msg = new MailMessage(Email.Text,

20 “yourEmail@domain.com”, “Message from Web Site”,

21 sb.ToString());

22 MailAddress CopyAddress = new MailAddress(Email.Text);

23 msg.CC.Add(CopyAddress);

24 sc.Send(msg);

25 if (msg != null)

26 {

27 msg.Dispose();

28 }

29 }

30 }

31 </script>

Lines 1 and 2 of this code are @Import directives that import

a couple of .NET Framework namespaces that we use in the

code. By importing these namespaces, we can refer to classes

within them (such as StringBuilder and MailMessage) with-

out using the entire name. In other words, instead of

System.Text.StringBuilder, after we import the

System.Text namespace, we can simply use StringBuilder.

Line 3 is a typical <script> element with the addition of a

runat attribute set to server. The runat attribute lets

ASP.NET know that the code in the <script> block is server-

side ASP.NET code and not client-side script.

8

VII

P
A

R
T

note
Namespaces and classes are terms
used in object-oriented program-
ming. It’s not necessary to under-
stand what these terms mean in
order to use this code. If you are
interested in learning more about
object-oriented programming, read
Sams Teach Yourself Object
Oriented Programming in 24 Hours
from Sams Publishing.

9780789739810_ch35.qxd 9/10/09 2:00 PM Page 8

9Writ ing ASP.NET Code to Send Email

Line 4 is the signature of the Page_Load event. It specifies that the code within the curly braces

(lines 5 and 28) runs every time the ASP.NET page loads. Obviously, we don’t want the form to try

to send email unless the page is loading because the Send Message button was clicked, so line 6

checks to see whether the loading of the page is caused by a postback (the result of a form being

posted) and runs the code to send mail only when a postback occurs.

Line 8 creates a new SmtpClient instance. SmtpClient is a class in the .NET Framework that

allows you to easily connect to an Internet mail server. You will want to replace

“smtp.YourSever.com” with the address of your SMTP mail server. The SMTP mail server is typi-

cally the same SMTP server that you use when configuring your email software, but if you don’t

know what it is, ask your hosting company.

Line 9 creates a new instance of the StringBuilder class. The StringBuilder class is a specialized

class that efficiently handles combining string (text) values.

Line 10 declares a MailMessage object. The MailMessage class is part of the .NET Framework as

well and allows for easily sending mail using the .NET Framework.

Lines 11–18 use the Append method of the StringBuilder class to build the body of the email mes-

sage. The value that appears in parenthesis after the Append method is tacked onto the end of the

existing StringBuilder value until the entire mail message has been created.

Lines 19–21 set the msg variable declared on line 10 to a new instance of the MailMessage class.

When we create the MailMessage instance, we specify the sending address of the email, the desti-

nation email address, the subject of the email, and the body of the email. The body of the email is

created using the ToString method of the StringBuilder. The ToString method gives you a string

made up of all the text you appended to the StringBuilder in lines 11–18.

Line 22 creates a new MailAddress instance that is used to copy the user who filled out the form

when the mail is sent. Line 23 adds the MailAddress created in line 22 to the CC for the mail.

Finally, line 24 sends the message using the Send method of the SmtpClient instance that you cre-

ated on line 8.

Lines 25–28 is cleanup code that uses the Dispose method to clean

up the MailMessage after the mail has been sent. Doing this is a

best practice when dealing with the .NET Framework.

I realize that this is a lot of code to throw at those of you who

aren’t programmers. If you find yourself feeling completely lost at

this point, don’t worry about it—you don’t need to understand all

this code to send email with ASP.NET. Simply copy the code to

your page, replace smtp.yourServer.com with your server name,

and replace yourEmail@domain.com with your email address and

you’re good to go.

If you browse the form at this point, fill in the information, and

click Send Message, you should receive an email with the informa-

tion you entered into the form.

35

C
H

A
P

T
E

R

tip
If you get an error when submit-
ting the form, you can get more
information about what went
wrong by changing the @Page
directive on the page. Simply
change <%@Page Language=
”C#”%> to <%@Page Language=
”C#” Debug=”True”%> and
you’ll get additional information
about any errors.

Be sure to remove the Debug
attribute (or set it to False)
before your page goes live.

9780789739810_ch35.qxd 9/10/09 2:00 PM Page 9

Sending Email Using ASP.NET

Lagniappe: Displaying a Confirmation Page
When you click Send Message in the form, the mail is sent as expected, but the user isn’t presented

with any kind of helpful message indicating that an email has been sent. It would be much more

user-friendly to have a confirmation page that lets the user know that his or her form submission

was successful.

If you’d like to display a confirmation page after sending the email, first create a confirmation page

that displays a helpful message such as “Thank you for sending your message!” You’ll then need to

add one line to the ASP.NET code to redirect the user to the confirmation page after the form is sub-

mitted.

Save your confirmation page as confirm.aspx, and then add the following line of code immediately

below line 28 in Listing 35.1:

Response.Redirect(“confirm.aspx”);

This line of code causes the user’s browser to be redirected to a page called confirm.aspx after the

form is submitted.

10

VII

P
A

R
T

9780789739810_ch35.qxd 9/10/09 2:00 PM Page 10

