
IN THIS APPENDIX

 ▶ How to Extend Hardware 
Inventory

 ▶ Example of Extending Inventory

APPENDIX E

Extending Hardware 
Inventory 

System Center Configuration Manager (ConfigMgr)’s hard-
ware inventory component queries Windows Management 
Instrumentation (WMI) on each ConfigMgr managed client 
to gather data about that device. What is queried depends 
on the classes that are enabled; these are specified using 
client settings. Chapter 3, “Looking Inside Configuration 
Manager,” discusses WMI and how ConfigMgr interacts 
with it.

CAUTION: BE CAREFUL WHEN EXTENDING INVENTORY

Before extending hardware inventory, confirm that it is 
necessary. Application deployment types now handle 
many scenarios that previously required extending inven-
tory. Be careful when extending hardware inventory, 
understand how it works, and test each modification on a 
standalone client, as described in the following section. 
Errors could lead to WMI corruption on all clients receiv-
ing the modifications. Modifications to hardware inven-
tory are more difficult to remove than to add. Examine 
the existing classes to see if they will meet your needs 
before making any modifications.

How to Extend Hardware Inventory
Extending hardware inventory consists of executing the 
 following tasks:

 ▶ Creating a new version of Configuration.mof for test-
ing, and checking and testing modifications to this 
file using Mofcomp.exe and WBEMTest.exe.

 ▶ Replacing the current Configuration.mof, found in 
<ConfigMgrInstallPath> under inboxes\clifiles.src\hinv, 
with this new Configuration.mof.

Z05_Meyler_Appendix E_p001-020.indd   1Z05_Meyler_Appendix E_p001-020.indd   1 14/05/18   8:21 PM14/05/18   8:21 PM



2 APPENDIX E  Extending Hardware Inventory

 ▶ Checking whether your Configuration.mof changes were accepted by inspecting the 
dataldr.log file residing on the site server, and confirming that the changes were 
executed on your clients by checking the inventoryagent.log file on the client.

 ▶ Selecting the classes with their attributes to be inventoried by modifying the 
 hardware inventory settings, using the default settings at the hierarchy level.

 ▶ Enabling the classes and attributes that should be inventoried with custom client 
settings.

TIP: USING COMMUNITY TOOLS TO EXTEND HARDWARE INVENTORY

Numerous community-written tools and guidelines address challenges associated with 
extending hardware inventory. Although the majority of these focus on ConfigMgr 2007, 
the information is still valid, with minimal modifications required for ConfigMgr Current 
Branch.

Sherry Kissinger, a former Enterprise Mobility MVP, provides extensive examples of how 
to extend hardware inventory, including some that can help solve your hardware inventory 
challenges. Sherry blogs at https://mnscug.org/blogs/sherry-kissinger.

Mark Cochrane’s RegKeyToMOF tool can assist in using the hardware inventory feature 
to inventory a specific Registry key. The tool allows you to browse for a Registry key and 
presents the corresponding sections to add to Configuration.mof and information to import 
in the hardware inventoried classes. RegKeyToMOF is available at http://mnscug.org/
images/Sherry/RegKeyToMOFv33a.zip.

Using tools does not absolve you from understanding what is occurring and how cus-
tom MOF files work before implementing them in a production environment. Test all 
your MOF file edits in an offline environment; if in doubt, consult one of the experts 
on the Microsoft forums, at https://social.technet.microsoft.com/Forums/en-US/
home?forum=ConfigMgrCBGeneral.

After modifying Configuration.mof and adding the classes using the client agent settings, 
use the Resource Explorer to view the new hardware. You can report on this by using 
 ConfigMgr reporting, discussed in Chapter 21, “Configuration Manager Reporting.”

Example of Extending Inventory
The examples in the next sections show how to inventory several values from the 
HKLM\Software\Microsoft\MPSD\OSD key, created during operating system deploy-
ment (OSD) when using Microsoft Deployment Toolkit (MDT) integration. This key 
includes information about when the deployment took place and the version of the 
task sequence used, captured by setting a TSVersion task sequence variable. Test your 
customizations on a test system; use a standalone system, preferably a virtual machine, 
to perform your tests.

Z05_Meyler_Appendix E_p001-020.indd   2Z05_Meyler_Appendix E_p001-020.indd   2 14/05/18   8:21 PM14/05/18   8:21 PM

http://mnscug.org/images/Sherry/RegKeyToMOFv33a.zip
http://mnscug.org/images/Sherry/RegKeyToMOFv33a.zip
https://social.technet.microsoft.com/Forums/en-US/home?forum=ConfigMgrCBGeneral
https://social.technet.microsoft.com/Forums/en-US/home?forum=ConfigMgrCBGeneral


3Example of Extending Inventory

CAUTION: PRECAUTIONS WHEN MODIFYING MOF FILES

Always open MOF files using Windows Notepad or another script editor. Verify that there 
are no special characters. To take additional precautions, modify Configuration.mof offline 
and check the file with the mofcomp.exe utility, using the -check switch to check syntax. 
This utility is located in %windir%\System32\wbem. You can also use mofcomp.exe to 
import the MOF file into the local WMI repository and WBEMTest.exe to verify that the 
changes end up in the expected location.

Creating MOF Files Using the RegKeyToMOF Tool

The following procedure shows how to use RegKeyToMOF to convert a Registry key into 
MOF files you can import into ConfigMgr. Follow these steps:

 1. Download RegKeyToMOF from http://mnscug.org/images/Sherry/
RegKeyToMOFv33a.zip. Start the utility on a test machine containing the 
Registry key and its necessary values. The key in this example is located at 
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MPSD\OSD, as shown in Figure E.1.

FIGURE E.1 Registry Editor showing the OSD Registry key.

 2. On the central administration site (CAS), copy Configuration.mof from 
<ConfigMgrInstallPath>\inboxes\clifiles.src\hinv to your test machine.

Z05_Meyler_Appendix E_p001-020.indd   3Z05_Meyler_Appendix E_p001-020.indd   3 14/05/18   8:21 PM14/05/18   8:21 PM

http://mnscug.org/images/Sherry/RegKeyToMOFv33a.zip
http://mnscug.org/images/Sherry/RegKeyToMOFv33a.zip


4 APPENDIX E  Extending Hardware Inventory

 3. Start RegKeyToMOF and browse to the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
MPSD\OSD Registry value. You can modify the values of Group, ClassName (which 
must be unique and in this case is Unleashed), and Version, as shown in Figure E.2. 
The RegKeyToMOF utility displays the changes to be made to ConfigMgr 2012, 
ConfigMgr 2007, and Systems Management Server (SMS) 2003; this example uses 
ConfigMgr 2012 suggested modifications, which are also valid for ConfigMgr 
Current Branch. Click Save MOF to export the settings specified in the configura-
tion.mof tab and the to import in… tab of the utility.

To add Registry keys for 32-bit applications on 64 bit-Windows, enable the Enable 
64bits (for Regkeys not written in Wow6432Node) option and add the following 
two lines to the CM12Import.mof file, which tell it to look in the 32-bit Registry on 
64-bit systems:

SMS_Context_1("__ProviderArchitecture=32|uint32"),

SMS_Context_2("__RequiredArchitecture=true|boolean")

FIGURE E.2 RegKeyToMOF utility.

 4. Add the content of the CM12Config.mof file (available in Appendix D, “Available 
Online,”) to your offline Configuration.mof file, between the Added extensions 
Start and Added extensions End sections. 

Adding the content in Listing E.1 to Configuration.mof creates the Unleashed data 
class in WMI under the root\CIMV2 namespace, which contains the data classes and 

Z05_Meyler_Appendix E_p001-020.indd   4Z05_Meyler_Appendix E_p001-020.indd   4 14/05/18   8:21 PM14/05/18   8:21 PM



5Example of Extending Inventory

instances. This namespace is used because the root\CIMV2 namespace is selected in 
Configuration.mof just before the Added extensions section; thus, this namespace is 
used to fill values of the Unleashed class unless declared otherwise. Data classes can 
reside in other classes.

Within root\CIMV2, you can access the data class information or use a pointer to 
where the data can be retrieved. The Unleashed data class will be created on the 
machines receiving Configuration.mof, which are all in the ConfigMgr hierarchy.

LISTING E.1 Content to Add from the CM12Config.mof File

// RegKeyToMOF by Mark Cochrane (with help from Skissinger, SteveRac, Jonas Hettich, 

➥Kent Agerlund & Barker)

// this section tells the inventory agent what to collect

// 10/20/2016 9:56:56 AM

#pragma namespace ("\\\\.\\root\\cimv2")

#pragma deleteclass("Unleashed", NOFAIL)

[DYNPROPS]

Class Unleashed

{

[key] string KeyName;

String InstalledOn;

String DeploymentType;

String OSDAdapterCount;

String OSDAnswerFilePath;

String OSDAnswerFilePathSysprep;

String OSDBaseVariableName;

String OSDComputerName;

String OSDDiskPart;

String OSDEnableTCPIPFiltering;

String OSDEndTime;

String OSDImageCreator;

String OSDImagePackageId;

String OSDImageVersion;

String OSDInstallType;

String OSDPartitionActive;

String OSDPartitionWithDriveLetter;

String OSDPreserveDriveLetter;

String OSDRandomAdminPassword;

String OSDStartTime;

String OSDStateSMPRetryCount;

String OSDStateSMPRetryTime;

String OSDTargetDriveCache;

String OSDTargetSystemDrive;

String OSDTargetSystemParition;

String OSDTargetSystemRoot;

String OSDisk;

Z05_Meyler_Appendix E_p001-020.indd   5Z05_Meyler_Appendix E_p001-020.indd   5 14/05/18   8:21 PM14/05/18   8:21 PM



6 APPENDIX E  Extending Hardware Inventory

String TSVersion;

String TsApplicationBaseVariable;

};

[DYNPROPS]

Instance of Unleashed

{

KeyName="RegKeyToMOF_32";

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥InstalledOn")

,Dynamic,Provider("RegPropProv")] InstalledOn;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥DeploymentType")

,Dynamic,Provider("RegPropProv")] DeploymentType;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDAdapterCount")

,Dynamic,Provider("RegPropProv")] OSDAdapterCount;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDAnswerFilePath")

,Dynamic,Provider("RegPropProv")] OSDAnswerFilePath;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDAnswerFilePathSysprep")

,Dynamic,Provider("RegPropProv")] OSDAnswerFilePathSysprep;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDBaseVariableName")

,Dynamic,Provider("RegPropProv")] OSDBaseVariableName;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDComputerName")

,Dynamic,Provider("RegPropProv")] OSDComputerName;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDDiskPart")

,Dynamic,Provider("RegPropProv")] OSDDiskPart;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDEnableTCPIPFiltering")

,Dynamic,Provider("RegPropProv")] OSDEnableTCPIPFiltering;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDEndTime")

,Dynamic,Provider("RegPropProv")] OSDEndTime;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDImageCreator")

,Dynamic,Provider("RegPropProv")] OSDImageCreator;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDImagePackageId")

,Dynamic,Provider("RegPropProv")] OSDImagePackageId;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDImageVersion")

Z05_Meyler_Appendix E_p001-020.indd   6Z05_Meyler_Appendix E_p001-020.indd   6 14/05/18   8:21 PM14/05/18   8:21 PM



7Example of Extending Inventory

,Dynamic,Provider("RegPropProv")] OSDImageVersion;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDInstallType")

,Dynamic,Provider("RegPropProv")] OSDInstallType;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDPartitionActive")

,Dynamic,Provider("RegPropProv")] OSDPartitionActive;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDPartitionWithDriveLetter")

,Dynamic,Provider("RegPropProv")] OSDPartitionWithDriveLetter;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDPreserveDriveLetter")

,Dynamic,Provider("RegPropProv")] OSDPreserveDriveLetter;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDRandomAdminPassword")

,Dynamic,Provider("RegPropProv")] OSDRandomAdminPassword;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDStartTime"),Dynamic,Provider("RegPropProv")] OSDStartTime;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDStateSMPRetryCount")

,Dynamic,Provider("RegPropProv")] OSDStateSMPRetryCount;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDStateSMPRetryTime")

,Dynamic,Provider("RegPropProv")] OSDStateSMPRetryTime;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDTargetDriveCache")

,Dynamic,Provider("RegPropProv")] OSDTargetDriveCache;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDTargetSystemDrive")

,Dynamic,Provider("RegPropProv")] OSDTargetSystemDrive;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDTargetSystemParition")

,Dynamic,Provider("RegPropProv")] OSDTargetSystemParition;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDTargetSystemRoot")

,Dynamic,Provider("RegPropProv")] OSDTargetSystemRoot;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥OSDisk")

,Dynamic,Provider("RegPropProv")] OSDisk;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥TSVersion")

,Dynamic,Provider("RegPropProv")] TSVersion;

[PropertyContext("Local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\MPSD\\OSD|

➥TsApplicationBaseVariable")

,Dynamic,Provider("RegPropProv")] TsApplicationBaseVariable;

};

Z05_Meyler_Appendix E_p001-020.indd   7Z05_Meyler_Appendix E_p001-020.indd   7 14/05/18   8:21 PM14/05/18   8:21 PM



8 APPENDIX E  Extending Hardware Inventory

The Unleashed data class is extended with the following instances:

 ▶ Keyname as string and as key value

 ▶ InstalledOn as string

 ▶ DeploymentType as string

 ▶ OSDAdapterCount as string

 ▶ OSDAnswerFilePath as string

 ▶ OSDAnswerFilePathSysprep as string

 ▶ OSDBaseVariableName as string

 ▶ OSDComputerName as string

 ▶ OSDDiskPart as string

 ▶ OSDEnableTCPIPFiltering as string

 ▶ OSDEndTime as string

 ▶ OSDImageCreator as string

 ▶ OSDImagePackageId as string

 ▶ OSDImageVersion as string

 ▶ OSDInstallType as string

 ▶ OSDPartitionActive as string

 ▶ OSDPartitionWithDriveLetter as string

 ▶ OSDPreserveDriveLetter as string

 ▶ OSDRandomAdminPassword as string

 ▶ OSDStartTime as string

 ▶ OSDStateSMPRetryCount as string

 ▶ OSDStateSMPRetryTime as string

 ▶ OSDTargetDriveCache as string

 ▶ OSDTargetSystemDrive as string

 ▶ OSDTargetSystemParition as string

 ▶ OSDTargetSystemRoot as string

 ▶ OSDisk as string

 ▶ TSVersion as string

 ▶ TsApplicationBaseVariable as string

Z05_Meyler_Appendix E_p001-020.indd   8Z05_Meyler_Appendix E_p001-020.indd   8 14/05/18   8:21 PM14/05/18   8:21 PM



9Example of Extending Inventory

After defining the data class and its instances, the next section in the file fills the proper-
ties. The Keyname property is filled with the RegKeyToMOF value, and the InstalledOn 
property is filled with the value of the Installed On Registry key under HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\MPSD\OSD, using the WMI Registry provider. The other 
properties are filled with other values coming from the Registry.

TIP: DOCUMENTING YOUR EDITS

Document your edits and add them in a well-formatted manner. If you do, when adding or 
troubleshooting the extensions, things are easily readable in the MOF file.

Verifying the Syntax of the MOF Files

Importing MOF files into ConfigMgr is risky, so take extra precautions to verify that the 
MOF files you create are working as expected. This section shows how to check the syntax 
of the files and import them to a test system where you can check the outcome of import-
ing them. Follow these steps:

 1. Use Mofcomp.exe with the -check option to check the syntax of the Configuration.
mof file (see Figure E.3):

FIGURE E.3 mofcomp -check output.

C:\Mof>mofcomp -check configuration.mof

Microsoft (R) MOF Compiler Version 10.0.14393.0

Copyright (c) Microsoft Corp. 1997-2006. All rights reserved.

Parsing MOF file: configuration.mof

MOF file has been successfully parsed

Syntax check complete.

WARNING: File configuration.mof does not contain #PRAGMA AUTORECOVER.

If the WMI repository is rebuilt in the future, the contents of this MOF 

➥file will not be included in the new WMI repository.

➥To include this MOF file when the WMI Repository is automatically 

Z05_Meyler_Appendix E_p001-020.indd   9Z05_Meyler_Appendix E_p001-020.indd   9 14/05/18   8:21 PM14/05/18   8:21 PM



10 APPENDIX E  Extending Hardware Inventory

➥ reconstructed, place the #PRAGMA AUTORECOVER statement on the first 

➥ line of the MOF file.

Done!

 2. Now use Mofcomp.exe with the argument configuration.mof to import the 
contents of Configuration.mof into WMI on the test machine:

C:\Mof>mofcomp configuration.mof

Microsoft (R) MOF Compiler Version 10.0.14393.0

Copyright (c) Microsoft Corp. 1997-2006. All rights reserved.

Parsing MOF file: configuration.mof

MOF file has been successfully parsed

Storing data in the repository...

WARNING: File configuration.mof does not contain #PRAGMA AUTORECOVER.

If the WMI repository is rebuilt in the future, the contents of this MOF 

➥file will not be included in the new WMI repository.

To include this MOF file when the WMI Repository is automatically 

➥reconstructed, place the #PRAGMA AUTORECOVER statement on the first line

➥ of the MOF file.

Done!

 3. To use WBEMTest to query WMI to verify that the Unleashed class was created, open 
WBEMTest.exe and click Connect. In the NameSpace field, type root\cimv2 because 
that is where you added the Unleashed class. Click Connect. Once connected, 
click Enum Classes to open the Superclass Info box. Select Recursive and click OK 
to open the Query Result box. Browse the query result box to see if Unleashed is 
 available; it should be situated below StdRegProv, as shown in Figure E.4.

FIGURE E.4 WBEMTest query result.

As discussed in the previous section, data classes do not necessarily have to reside in 
root\cimv2; they can reside in other locations within WMI, although root\cimv2 is most 
 commonly used. See Chapter 3 for additional information about WMI and locations 
where data can reside.

Z05_Meyler_Appendix E_p001-020.indd   10Z05_Meyler_Appendix E_p001-020.indd   10 14/05/18   8:21 PM14/05/18   8:21 PM



11Example of Extending Inventory

Importing Files into the Configuration Manager Environment

After verifying the correct syntax of the MOF files and importing those files to a test 
 system, you should be confident that they are working as expected. To import the files 
into the ConfigMgr environment, modify the Configuration.mof file and import another 
MOF file into the Default Client Settings -> Hardware Inventory section of the ConfigMgr 
console. Follow these steps:

 1. Copy your Configuration.mof over the existing one in the <ConfigMgrInstallPath>\
inboxes\clifiles.src\hinv folder.

 2. Open dataldr.log in the log files folder under <ConfigMgrInstallPath> using CMTrace 
or Notepad to determine whether ConfigMgr is accepting the change. You should 
see the following text:

Configuration.Mof change detected

Compiling MOF files and converting to policy

Confirm that the modification was added successfully by checking for the following:

Running MOFCOMP on F:\Program Files\Microsoft Configuration

Manager\inboxes\clifiles.src\hinv\configuration.mof

MOF backed up to F:\Program Files\Microsoft Configuration

Manager\data\hinvarchive\configuration.mof.bak

Successfully updated configuration.mof in the database.

End of cimv2\sms\inv_config-to-policy conversion; returning 0x0

 3. After modifications to Configuration.mof are successfully translated to a policy, ver-
ify that the new configuration is being applied to your clients. Ensure that the client 
has received its new policy by manually initiating a machine policy refresh on the 
client. To initiate the refresh, open the Configuration Manager Control Panel applet 
and select Actions. Select the Machine Policy Retrieval & Evaluation Cycle action 
and click Run Now. On the client, open the PolicyEvaluator.log file in %windir%\
CMM\Logs and confirm that the client has received a new policy.

 4. Using WBEMTest, query WMI to ensure that the Unleashed class was created, using 
the same procedure described in step 3 of the procedure in the “Verifying the Syntax 
of the MOF Files” section, earlier in this appendix.

 5. After verifying that the OSD class is created on the client, select it by modifying the 
default client settings in the Administration workspace. In the ConfigMgr console, 
browse to Administration -> Client Settings -> Default Client Settings. Under 
Default Client Settings, open Hardware Inventory and select Set Classes. The 
Hardware Inventory Classes box provides two options:

 ▶ Import the provided CM12Import.mof file (see Appendix D), provided by the 
RegKeyToMOF utility.

 ▶ Browse to the classes on a remote machine using the Add Hardware Inventory 
Class tool.

Z05_Meyler_Appendix E_p001-020.indd   11Z05_Meyler_Appendix E_p001-020.indd   11 14/05/18   8:21 PM14/05/18   8:21 PM



12 APPENDIX E  Extending Hardware Inventory

To import the classes using the CM12Import.mof file, click Import in the Hardware 
Inventory Classes page, browse to the CM12Import.mof from the MOF snippet, and 
click Open. The Import Summary page appears, providing options to import the 
hardware inventory classes and settings, or only the settings. Select the option to 
import only the inventory classes, as you will enable the classes with custom client 
settings later. If the CM12Import file is accepted, a green check mark appears, and 
you can click Import to use the MOF file. 

Once back in the Hardware Inventory Classes window, verify that the Unleashed 
class was added to the list. Click OK to close the Hardware Inventory Classes 
 window and the Default Client Settings window.

Listing E.2 shows the contents of the CM12Import.mof file.

LISTING E.2 Contents of the CM12Import.mof File

// RegKeyToMOF by Mark Cochrane (with help from Skissinger, SteveRac, Jonas Hettich, 

➥Kent Agerlund & Barker)

// this section tells the inventory agent what to report to the server

// 10/21/2016 12:45:36 PM

#pragma namespace ("\\\\.\\root\\cimv2\\SMS")

#pragma deleteclass("Unleashed", NOFAIL)

[SMS_Report(FALSE),SMS_Group_Name("Unleashed"),SMS_Class_ID("Unleashed")]

Class Unleashed: SMS_Class_Template

{

[SMS_Report(FALSE),key] string KeyName;

[SMS_Report(FALSE)] String InstalledOn;

[SMS_Report(FALSE)] String DeploymentType;

[SMS_Report(FALSE)] String OSDAdapterCount;

[SMS_Report(FALSE)] String OSDAnswerFilePath;

[SMS_Report(FALSE)] String OSDAnswerFilePathSysprep;

[SMS_Report(FALSE)] String OSDBaseVariableName;

[SMS_Report(FALSE)] String OSDComputerName;

[SMS_Report(FALSE)] String OSDDiskPart;

[SMS_Report(FALSE)] String OSDEnableTCPIPFiltering;

[SMS_Report(FALSE)] String OSDEndTime;

[SMS_Report(FALSE)] String OSDImageCreator;

[SMS_Report(FALSE)] String OSDImagePackageId;

[SMS_Report(FALSE)] String OSDImageVersion;

[SMS_Report(FALSE)] String OSDInstallType;

[SMS_Report(FALSE)] String OSDPartitionActive;

[SMS_Report(FALSE)] String OSDPartitionWithDriveLetter;

[SMS_Report(FALSE)] String OSDPreserveDriveLetter;

[SMS_Report(FALSE)] String OSDRandomAdminPassword;

[SMS_Report(FALSE)] String OSDStartTime;

[SMS_Report(FALSE)] String OSDStateSMPRetryCount;

Z05_Meyler_Appendix E_p001-020.indd   12Z05_Meyler_Appendix E_p001-020.indd   12 14/05/18   8:21 PM14/05/18   8:21 PM



13Example of Extending Inventory

[SMS_Report(FALSE)] String OSDStateSMPRetryTime;

[SMS_Report(FALSE)] String OSDTargetDriveCache;

[SMS_Report(FALSE)] String OSDTargetSystemDrive;

[SMS_Report(FALSE)] String OSDTargetSystemParition;

[SMS_Report(FALSE)] String OSDTargetSystemRoot;

[SMS_Report(FALSE)] String OSDisk;

[SMS_Report(FALSE)] String TSVersion;

[SMS_Report(FALSE)] String TsApplicationBaseVariable;

};

NOTE: MORE ABOUT HARDWARE INVENTORY

When hardware inventory starts, it checks the root\CIMV2\SMS namespace on the 
local machine for the reporting classes, which contain entries corresponding to the data 
classes in root\CIMV2.

Note that the data classes and corresponding reporting classes share the same name. 
The CM12Import.mof file starts with the SMS_Report (FALSE) part, which tells hard-
ware inventory that the block of code containing the Unleashed reporting class should 
be reported to ConfigMgr. The SMS_Report (FALSE) value is actually the property you 
can now control using custom client settings, allowing you to specify whether ConfigMgr 
should report on devices in a certain collection only.

Each field also contains a SMS_Report (FALSE) section, which allows you to specify 
whether reporting should be enabled for that property field; you can also use custom 
 client settings to specify what fields to enable.

SMS_Group_Name specifies the name of the group displayed in the Resource Explorer; 
SMS_Class_ID with value Unleashed is the unique identifier for the class, Unleashed, 
which stands for the class group. The class Unleashed is the declaration, where the 
name of the class must be identical to the corresponding data class, which you created 
using an addition to Configuration.mof, or it already existed.

 6. You now return to the Add Hardware Inventory Class page. The Inventory classes are 
loaded, as displayed in Figure E.5. These classes should now include Unleashed if the 
policy was received and the WMI extensions were added. Ensure that the Unleashed 
check box is checked. You can select Edit to modify the properties so its value rep-
resents a unit that can be Megabytes, Kilobytes, Decimal String, Seconds, Hex String, 
or Date String; the default is None.

The units are not modified in this example, so click OK. Notice that the Unleashed 
class is added and selected. Deselect the Unleashed class on the Default Settings 
level, if enabled, as you will enable these settings with custom client settings later. 
Click OK to close the Hardware Inventory Classes dialog and click OK to close the 
Default Settings box.

Z05_Meyler_Appendix E_p001-020.indd   13Z05_Meyler_Appendix E_p001-020.indd   13 14/05/18   8:21 PM14/05/18   8:21 PM



14 APPENDIX E  Extending Hardware Inventory

FIGURE E.5 Hardware inventory classes.

 7. With the Unleashed class imported, enable it using custom client settings that will 
be applied to one of your collections. Under Administration -> Client Settings, 
select Create Custom Client Settings from the ribbon bar to open the Create 
Custom Client Device Settings page. Provide a name to identify the setting and 
select the Hardware Inventory check box. For more information about default and 
custom client settings, see Chapter 9, “Client Management.”

Select Hardware Inventory under General on the left side of the page to open 
the hardware inventory settings and then click Set Classes to open the Hardware 
Inventory Classes page. Select the Unleashed class and select the settings you want 
to inventory, as shown in Figure E.6, and click OK to save the custom client set-
tings. With your custom client settings still selected, select Deploy from the ribbon 
bar and select the collection where you want to deploy your custom client settings. 
Click OK to finish.

Z05_Meyler_Appendix E_p001-020.indd   14Z05_Meyler_Appendix E_p001-020.indd   14 14/05/18   8:21 PM14/05/18   8:21 PM



15Example of Extending Inventory

FIGURE E.6 Enabling inventory classes in custom client settings.

Performing and Verifying Hardware Inventory with the New Settings

After importing the MOF files into ConfigMgr, you can trigger a hardware inventory to 
check whether the necessary information is inventoried and is in the correct places in the 
database. You will also want to verify that hardware inventory shows up in the Resource 
Explorer. Perform the following steps:

 1. With the Unleashed class enabled in a custom client setting and that custom client 
setting deployed to a collection, trigger hardware inventory on a client belonging to 
that collection:

 ▶ Initiate Machine Policy Retrieval & Evaluation Cycle from the Configuration 
Manager Control Panel applet and check the PolicyEvaluator.log file to deter-
mine whether the new policy was retrieved from the management point.

 ▶ Once the policy is successfully retrieved, initiate a hardware inventory cycle. 
From the Actions tab in the Control Panel applet, select Hardware Inventory 
Cycle and click Run Now.

Z05_Meyler_Appendix E_p001-020.indd   15Z05_Meyler_Appendix E_p001-020.indd   15 14/05/18   8:21 PM14/05/18   8:21 PM



16 APPENDIX E  Extending Hardware Inventory

 ▶ Check the inventoryagent.log file in %windir%\CCM\Logs to see whether the 
hardware inventory was successful. Search the file for the Unleashed text to 
verify that the requested new classes were inventoried and check the lines that 
follow in the log file to determine if there were problems during inventory. 
Following is an example:

Collection: Namespace = \\.\root\cimv2; Query = SELECT __CLASS, __PATH,

➥__RELPATH, KeyName, InstalledOn, OSDComputerName, OSDStartTime, TSVersion

➥FROM Unleashed; Timeout = 600 secs.

 2. Knowing hardware inventory was successful on the client, determine whether its site 
server is processing the inventoried data. It may take some time for all the data to be 
replicated to the CAS if the client is a member of a primary site below the CAS. On 
the primary site server hosting the site to which the client belongs, open the 
dataldr.log file and locate the Processing Inventory for Machine: <your machine 
name> line to determine if the inventoried data has been processed. Following is an 
example of information after that line:

Processing Inventory for Machine: ALBERT   Version 1.25

➥  Generated: 10/16/2016 05:33:14

$$<SMS_INVENTORY_DATA_LOADER><10-16-2016 05:33:27.041+420><thread=6640 (0x19F0)>

Begin transaction: Machine=ALBERT(GUID:954E5F00-31F9-4716-9CFE-4441E5F3F081)

$$<SMS_INVENTORY_DATA_LOADER><10-16-2016 05:33:27.045+420><thread=6640 (0x19F0)>

~Done with job queueing.  $$<SMS_INVENTORY_DATA_LOADER><10-16-2016

05:33:27.037+420><thread=3944 (0xF68)>

Blocking until completion.  $$<SMS_INVENTORY_DATA_LOADER><10-16-2016

05:33:27.058+420><thread=3944 (0xF68)>

Commit transaction: Machine=ALBERT(GUID:954E5F00-31F9-4716-9CFE-4441E5F3F081)

$$<SMS_INVENTORY_DATA_LOADER><10-16-2016 05:33:27.138+420><thread=6640 (0x19F0)>

Done: Machine=ALBERT(GUID:954E5F00-31F9-4716-9CFE-4441E5F3F081) 

➥code=0 (29 stored procs

in XHPED6F6R.MIF)  $$<SMS_INVENTORY_DATA_LOADER><10-16-2016 

➥05:33:27.138+420><thread=6640

(0x19F0)>

 3. Verify that the necessary database tables were created by opening SQL Server 
Management Studio. Connect to the server hosting the ConfigMgr site database and 
open the database. Under Views, you should see a table called dbo.v.GS_Unleashed0. 
Select this table, right-click, and choose Select Top 1000 rows to query the table. If any 
information is in the table, it is reflected in the query results, as shown in Figure E.7.

 4. Since inventory has occurred, verify that the data is available in the Resource 
Explorer, initiated from the ConfigMgr console on the client’s primary site server. 
Open the console and navigate to Assets and Compliance, select the collection 
you just targeted with your custom client settings, and select the device where you 
just ran the hardware inventory. Now use Start -> Resource Explorer to open the 
Resource Explorer for that device. As you can see in Figure E.8, Unleashed has been 
added to the Resource Explorer.

Z05_Meyler_Appendix E_p001-020.indd   16Z05_Meyler_Appendix E_p001-020.indd   16 14/05/18   8:21 PM14/05/18   8:21 PM



17Example of Extending Inventory

FIGURE E.7 SQL Server Management Studio, showing the top 1,000 rows.

FIGURE E.8 Resource Explorer.

Z05_Meyler_Appendix E_p001-020.indd   17Z05_Meyler_Appendix E_p001-020.indd   17 14/05/18   8:21 PM14/05/18   8:21 PM



18 APPENDIX E  Extending Hardware Inventory

Creating a Device Collection

After verifying that the Unleashed information shows correctly in the Resource Explorer, 
say that you want to use this information to create a device collection containing all the 
clients with TSVersion 0.3. To create the device collection, follow these steps:

 1. Navigate in the ConfigMgr console to Assets and Compliance -> Device 
Collections.

 2. In the ribbon bar, click Create and then click Create Device Collection to open the 
Create Device Collection Wizard.

 3. Provide the following information on the General page:

 ▶ Name: TSVersion

 ▶ Description: Device Collection containing information about TSVersion

 ▶ Limiting Collection: All Desktop and Server Clients

Click Next.

 4. On the Membership Rules page, click Add Rule to open the Query Rule Properties 
dialog and then select Query rule. Provide a name for the query, such as TSVersion, 
and click Edit Query Statement to open the Query Statement Properties dialog.

 5. On the Query Statement Properties dialog, select the Criteria tab and click the 
starburst icon to open the Criterion Properties dialog. Click Select to open the 
Select Attribute dialog. Select UNLEASHED from the Attribute Class dropdown list. 
Select TSVersion from the Attribute dropdown list. Click OK to return to Criterion 
Properties page.

 6. Click Value on the Criterion Properties dialog to select a value from the list; select 
0.3 if already inventoried and available in the list or provide 0.3 as a value. Click OK 
to close this page.

 7. Click OK in the Query Statement Properties dialog to return to the Query Rule 
Properties dialog, shown in Figure E.9.

 8. Click OK in the Query Rule Properties dialog to return to the Membership Rules 
page of the Create Device Collection Wizard. Optionally select if you want to use 
incremental updates for the collection and specify when a full update of the collec-
tion should be scheduled. Click Next to continue.

 9. Verify the settings on the Summary page and click Next. Click Close after the wizard 
successfully creates the device collection.

Z05_Meyler_Appendix E_p001-020.indd   18Z05_Meyler_Appendix E_p001-020.indd   18 14/05/18   8:21 PM14/05/18   8:21 PM



19Example of Extending Inventory

FIGURE E.9 Query Rule Properties dialog.

The device collection is added. You can now create a ConfigMgr application and deploy it 
to that collection.

Z05_Meyler_Appendix E_p001-020.indd   19Z05_Meyler_Appendix E_p001-020.indd   19 14/05/18   8:21 PM14/05/18   8:21 PM



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /None
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
  >>
  /ExportLayers /ExportVisiblePrintableLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        13.500000
        13.500000
        13.500000
        13.500000
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /WorkingCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 30
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




