Bonus Material for Unity 5 Users
GUI COMPATIBILITY ADJUSTMENTS FOR UNITY 5
While nearly all of the book’s code is completely compatible with Unity 5, there are noticeable differences in the way that the Game_Over and Game_Win scenes are constructed using Unity’s improved GUI capabilities. The HUD used to display health and coin count, however, was created outside of either GUI system and is entirely compatible with Unity 5.3 so no changes will be made to it.
Recreating the Game End Scenes
The code outlined in the book will still function but it has been deprecated; relying on deprecated systems can be dangerous as you never know when the software will cease to support them.

Outlined below is a way to construct the same scenes, functionally, using the new GUI system. This can be accomplished with the following:
· The Game_Over scene
· The Game_Win scene
· A functionality script that will be shared by both
Creating the Game_Over Scene
As with the old Game Over menu, the player will be presented with the option to retry or restart the game. A button allowing the player to exit the game will also be present if the game is running as a standalone application. Let’s start by creating the basic canvas and hooking it up to a camera.
1.
Create a new scene and name it “Game_Over”

2.
Right-click in the Hierarchy panel and select UI -> Canvas

3.
Select the newly created canvas GameObject and set its layer to “UI”

4.
Set the Screen Space property to “Screen Space – Camera”
5.
Set the Render Camera property to the Main Camera GameObject
6.
Right click on the Canvas GameObject and select UI -> Text

7.
Select the new Text GameObject and rename it “Text_GameOver”

8.
Change the Text property to read “Game Over”

9.
Set the Text Alignment properties to Center

10.
Change the color of the text to black so that it shows up more clearly

You now have a canvas that is rendered to the camera. Any UI GameObjects you add to it will also be visible, such as the text that we added. There’s nothing for the player to interact with yet so let’s go ahead and get some buttons placed as well!
1.
Right-click the Canvas GameObject and select UI -> Button

2.
Name the new Button GameObject “Button_Retry”

3.
Select the Text child GameObject and set its Text property to “Retry”

4.
Create a new Button beneath the first and name it “Button_Restart”
5.
Change the new Button GameObject’s Text property to “Restart”
6.
Create a third Button beneath the previous and name it “Button_Quit”
7.
Change the third Button GameObject’s Text property to read “Quit”
8.
Set the Button_Quit GameObject’s state to inactive
If you run the game at this time, your Game Over scene should look similar to Figure 1.1 below.
	[image: image1.png]

	Figure 1.1 The Game_Over Scene

Right now, we have a Game Over GUI that does nothing but it’s much faster and easier to see how your GUI will turn out compared to the old system. It’s time to create the underlying code from which the buttons will draw their functionality:

1.
Navigate to the _scripts directory in the Project View

2.
Right-click and select Create -> C# Script

3.
Name the new script “MenuFunctions” and drag it onto the Main Camera GameObject

The script will be fairly short but it will provide the player with a way to restart the game, retry the most recent level, or quit the application entirely in standalone builds. Open the MenuFunctions script and fill it out as shown in Listing 1.1.
Listing 1.1 The MenuFunctions Script
Using UnityEngine.SceneManagement;

public class MenuFunctions : MonoBehaviour
{

 public GameObject buttonQuit;
 public void Retry()
{
 SceneManager.LoadScene(PlayerPrefs.GetInt

 (Constants.PREF_CURRENT_LEVEL));

}

public void Restart()
{

 SceneManager.LoadScene(Constants.SCENE_LEVEL_1);

}

public void Quit()
{

 Application.Quit();

}

 #if UNITY_STANDALONE
 void Awake()
{
 this.buttonQuit.SetActive(true);

}

 #endif
}
The script utilizes only a single public variable – buttonQuit – that allows you to plug in the inactive Button_Quit GameObject we created earlier. Let’s take a look at what each function does.
Retry

This function calls for the SceneManager to load the scene whose ID number matches the value of PREF_CURRENT_LEVEL in our Constants file. This should be the level that the player was on when they were defeated.
Restart

This function calls for the SceneManager to load the scene whose ID number matches the value of SCENE_LEVEL_1 in our Constants file. This should be the first level of the game.

Quit

This function simply calls for the application to terminate itself. Some builds, such as web deployments, don’t support this function and that is why we’ve made the Quit button inactive by default.
Awake

This function will activate the Quit button when the scene instance is loaded. We’ve encased it within the #if UNITY_STANDALONE region so that it is only called for appropriate builds. This way, the Quit button is only ever present if it actually serves a purpose!

In order for some of this to work, we’ll have to make a couple of minor adjustments to the PlayerStats script as well. Let’s go ahead and make those now. See Listing 1.2 below for the changes.
Listing 1.2 The PlayerStats Script

using UnityEngine.SceneManagement;
void Start()

{

spriteRenderer = this.gameObject.GetComponent<SpriteRenderer>();

if(SceneManager.GetActiveScene().buildIndex != Constants.SCENE_LEVEL_1)

{

 coinsCollected = PlayerPrefs.GetInt(Constants.PREF_COINS);

}

PlayerPres.SetInt(Constants.PREF_CURRENT_LEVEL,

 SceneManager.GetActiveScene().buildIndex);

HUDCamera = GameObject.FindGameObjectWithTag(“HUDCamera”);

HUDSprite = GameObject.FindGameObjectWithTag(“HUDSprite”);

}

void Update()

{

If(this.isImmune == true)

{

 SpriteFlicker();

 immunityTime = immunityTime + Time.deltaTime;

 if(immunityTime >= immunityDuration)

 {

 this.isImmune = false;

 this.spriteRenderer.Enabled = true;
 }

}

If(this.isDead == true)

{

 this.deathTimeElapsed = this.deathTimeElapsed + Time.deltaTime;

 if(this.deathTimeElapsed >= 2.0f)

 {

 SceneManager.LoadScene(Constants.SCENE_GAME_OVER);

 }

}

}

Start

We stripped some deprecated Application.Load() functions out and replaced them with SceneManager function calls instead. In order to use those, a new include statement was added to the top of the script as well.
Update
Another deprecated Application.Load() function was swapped for a SceneManager.LoadScene() function instead. In both of these cases, the deprecated code may have continued to work but we might as well bring it up to date while we’re here!
We’re almost done with our Game Over menu now. The last thing we need to do is plug the appropriate methods into each of the buttons and link our Quit button to the variable in the script itself. Take the following steps now:
1.
Select the Main Camera GameObject
2.
Drag the Button_Quit GameObject into the Quit Button property of the Menu Functions component
3.
Select the Button_Retry GameObject
4.
Click the + button in the On Click () section of the Button (Script) component to create an event hook
5.
Point the Object field to the Main Camera GameObject
6.
Click the Function property and select Menu Functions -> Retry
7.
Repeat steps 4-6 for the Button_Restart and Button_Quit GameObjects, pointing to their relevant methods in each case.
That’s it! By setting up those event hooks, you’ve told the game what script and method it should call when each of those buttons is clicked. Fire the scene up and give it a try!
Creating the Game_Win Scene

The scene we show when the player wins is nearly identical to the Game_Over scene, so we’ll streamline the creation process as much as possible.

1.
Duplicate the Game_Over scene and rename it “Game_Win”
2.
Open the newly named Scene file
3.
Select the Text_GameOver GameObject and rename it to “Text_YouWon”
4.
Change the Text property on the Text_YouWon GameObject to read “You Won!”
5.
Delete the Button_Retry GameObject
With that, the GUIs for winning and losing are done! They aren’t pretty but they’re functional. They also serve as a good indication of how much faster and cleaner Unity’s improved GUI system can be. The WYSIWYG (What You See Is What You Get) approach to developing your interface makes much more sense and allows for significantly faster iteration.

