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The Problem

Definition. Given the real vector x[n], compute the

maximum sum found in any contiguous subvector.

An Example. If the input vector is
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then the program returns the sum of x[2..6], or 187.
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A Cubic Algorithm

Idea. For all pairs of integers / and j satisfying
0<i<j<n, check whether the sum of x[I.. /] is greater
than the maximum sum so far.

Code.

maxsofar = 0O

for i =0, n)
for j =11, n)

sum= 0
for k =1Ti, j]
sum += X[ k]
[* sumis sumof x[i..]] */
maxsof ar = max(naxsofar, sum

Run Time. O(n3 ).

From Programming Pearls, Copyright [J 2000, Lucent Technologies Pearls-8-3



A Quadratic Algorithm

Idea. The sum of x[Ii.. ] is close to the previous
sum, x[/..j—1].

Code.

maxsofar = 0O
for i =0, n)
sum = 0
for | =11, n)
sum += X[ ]
[* sumis sumof x[i..]] */
maxsof ar = max(nmaxsofar, sum

Run Time. O(n2 ).

Other Quadratic Algorithms?
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Another Quadratic Algorithm

Idea. A “cumulative array’” allows sums to be com-
puted quickly. If ytd[i] contains year-to-date sales
through month J, then sales from March through
September are given by ytd[sep] — ytd| feb].

Implementation. Use the cumulative array cumarr.
Initialize cumarr[i] = x[0]+ - - - +x[i]. The sum of
the values in x[i..j] is cumarr| f]—cumarr[i-1].

Code for Algorithm 2b.
cumarr[-1] =0

for i =0, n)
cumarr[i] = cumarr[i-1] + x[i]
maxsofar = 0O
for i =10, n)
for | =11, n)
sum = cumarr[j] - cumarr|i-1]

[* sumis sumof Xx[i..]] */
maxsof ar = max(nmaxsofar, sum

Run Time. O(n2 ).
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An O(n log n) Algorithm

The Divide-and-Conquer Schema. To solve a prob-
lem of size n, recursively solve two subproblems of
size n/2 and combine their solutions.

The Idea. Divide into two subproblems.

a b

Recursively find maximum in subvectors.

ma mp

Find maximum crossing subvector.

me

Return max of m4, mp and me.

Run Time. O(n log n).
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Code for the O(N log N) Algorithm

float maxsunB(l, u)
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1f (I >u) [/* zero elenents */
return O

1f (I == u) [* one elenent */
return max(0, x[I])

m= (I +u) / 2
[* find max crossing to left */
| max = sum = 0
for (i =m 1 >=1; i--)
sum += X[ 1]
| max = max(| max, sum
[* find max crossing to right */
rmax = sum= 0
for i = (m u]
sum += X[ 1]
rmax = max(rmx, sum

return max(| max+r max,
maxsunB(l, m,
maxsunB8(m:l, u))
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A Linear Algorithm

Idea. How can we extend a solution for x[0../—1]
Into a solution for x[0../]? Key variables:

maxsofar maxhere

Code.

maxsofar = 0
maxhere = 0

for i =10, n)
/[* invariant: maxhere and nmaxsof ar
are accurate for x[O0..i-1] */

maxhere = max(maxhere + x[i], 0)
maxsof ar = max(maxsof ar, naxhere)

Run Time. O(n).
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Summary of the Algorithms

ALGORITHM (] 1 O 2 0 3 0 4
: . | O | O
Run time in O 1.3n® O 10n? UO47nlogo, n O 48n
nanoseconds H H ] ]
Timeto O 103 B 1.3 secs 510 msecs g 4 msecs H.05msecs
solve a B 104 0O 22 mins 0O 1 sec 0 6 msecs 0 .5 msecs
problem 5 10° [ 15days [ 17min [ 78 msecs [ 5msecs
ofsize¢ [ 109 0O 441 yrs [0 28hrs [0 .94secs [148 msecs
0 107 U41millenia U 1.7wks U 11secs U .48secs
Maxsize 7 sec [ 920 [ 10,000 [ 1.0x10°® [ 2.1x10’
problem [0 min O 3600 O 77,000 O 4.9x107 O 1.3x10°
solvedin O hr B 14,000 B6.O><105 g 2.4x10° E?.melo
one H day 5 41,000 2.9x10° - 5.0x10° -1.8x1012
Tomuliplesby 10, = 1500 5 100 g 10+ g 10
time multiplies by - - = =
If time multiplies by E E E E
10, n multiplies by  H 2:15 H 3.16 H 10 H 10
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An Extreme Comparison

Algorithm 1 at 533MHz is 0.58n°3 nanoseconds.
Algorithm 4 interpreted at 2.03MHz is 19.5n millisec-
onds, or 19,500,000 n nanoseconds.

[11999 ALPHA 21164A, [0 1980 TRS-80,

n ] C, [] BASIC,
U CuBIC ALGORITHM ULINEAR ALGORITHM
10 H 0.6 microsecs H 200 millisecs
100 0 0.6 millisecs 0 2.0 secs
1000 0 0.6 secs B 20 secs
10,000 [ 10 mins B 3.2 mins
100,000 [ 7 days ] 32 mins
1,000,000 H 19 yrs H 5.4 hrs
10 18 | — century
1015 _ — month
Run Time 102 = hour Run Time in
in 109 _ _ second Common
Nanoseconds - o Units
106 — millisecond
103 - - microsecond
100 | Alpha | nanosecond

[ [ [ [ [
10° 10! 102 103 104 10° 10°
Problem Size (n)
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Design Techniques

Save state to avoid recomputation.

Algorithms 2 and 4.

Preprocess information into data structures.

Algorithm 2b.

Divide-and-conquer algorithms.

Algorithm 3.

Scanning algorithms.

Algorithm 4.

Cumulatives.

Algorithm 2b.

Lower bounds.

Algorithm 4.
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