
13BONUS CHAPTER

JavaFX

In this chapter

• 13.1 A Brief History of Java GUI Programming, page 1

• 13.2 Displaying Information in a Scene, page 3

• 13.3 Event Handling, page 16

• 13.4 Layout, page 28

• 13.5 User Interface Controls, page 47

• 13.6 Properties and Bindings, page 82

• 13.7 Long-Running Tasks in User Interface Callbacks, page 91

JavaFX is a user interface toolkit for writing rich client applications with Java.
It is bundled with some versions of Java 7 through 10, and is available through
the OpenJFX project (https://wiki.openjdk.java.net/display/OpenJFX/Main) for newer
versions of Java. In this chapter, you will learn the basics of JavaFX
development.

13.1 A Brief History of Java GUI Programming

When Java was born, the Internet was in its infancy and personal computers
were on every desktop. Business applications were implemented with “fat
clients”—programs with lots of buttons and sliders and text fields that com-
municated with a server. This was considered a lot nicer than the “dumb
terminal” applications from an even earlier era. Java 1.0 included the AWT,

1

a toolkit for graphical user interfaces, that had the distinction of being cross-
platform. The idea was to serve up the fat clients over the nascent Web,
eliminating the cost of managing and updating the applications on every
desktop.

The AWT had a noble idea: provide a common programming interface for
the native buttons, sliders, text fields, and so on of various operating systems.
But it didn’t work very well. There were subtle differences in the functionality
of the user interface controls in each operating system, and what should have
been “write once, run anywhere” turned into “write many times, debug
everywhere.”

Next came Swing. The central idea behind Swing was not to use the native
controls, but to paint its own. That way, the user interface would look and
feel the same on every platform. Or, if users preferred, they could ask for the
native look-and-feel of their platform, and the Swing controls would be
painted to match the native ones. Of course, all that painting was slow, and
users complained. After a while, computers got faster, and users complained
that Swing was ugly—indeed, it had fallen behind the native controls that
had been spruced up with animations and fancy effects. More ominously,
Flash was increasingly used to create user interfaces with even flashier effects
that didn’t use the native controls at all.

In 2007, Sun Microsystems introduced a new technology, called JavaFX, as a
competitor to Flash. It ran on the Java VM but had its own programming
language, called JavaFX Script. The language was optimized for programming
animations and fancy effects. Programmers complained about the need to
learn a new language, and they stayed away in droves. In 2011, Oracle released
a new version, JavaFX 2.0, that had a Java API and no longer needed a sepa-
rate programming language. As of Java 7 update 6, JavaFX 2.2 has been
bundled with the JDK and JRE. Since it wouldn’t be a true part of Java if it
didn’t have crazy jumps in version numbers, the version accompanying Java 8
was called JavaFX 8. JavaFX versions 9 and 10 were bundled with Java 9
and 10.

Of course, Flash is now a bad memory, and most user interfaces live in a
browser or a mobile device. Still, there are situations where a “fat client” on
a desktop makes users more productive. Also, Java now runs on ARM proces-
sors, and there are embedded systems that need user interfaces, such as kiosks
and in-car displays. Why didn’t Oracle just put the good parts of JavaFX into
Swing? Swing would have to be redesigned from the ground up to run effi-
ciently on modern graphics hardware. Oracle decided that it wasn’t worth
the trouble. In fact, as of Java 11, Oracle doesn’t even think it worth the
trouble bundling JavaFX with Java. Hopefully, JavaFX will continue to thrive
as an open source project.

Chapter 13 JavaFX2

In this chapter, we go over the basics of writing user interfaces in JavaFX,
focusing on boring business applications with buttons, sliders, and text fields,
not the flashy effects that were the original motivation behind JavaFX.

13.2 Displaying Information in a Scene

In the following sections, you will learn about the basic architecture of a
JavaFX application. You will also see how to write simple JavaFX programs
that display text and shapes.

13.2.1 Our First JavaFX Application

Let’s start with a simple program that shows a message (see Figure 13.1). We
use a text node to show the message and set the x- and y-position so that the
message is approximately centered. The base point of the first character in
the string will start at a position 75 pixels to the right and 100 pixels down.
(You will see later in this chapter how to position text precisely.)

Text message = new Text(75, 100, "Not a Hello World program");

Figure 13.1 A window that displays information

Anything that you display in JavaFX is a Node. This includes both shapes and
user interface controls. You collect nodes in a Parent (a Node that can organize
other nodes) called the root node. If you don’t need automatic positioning
of nodes, use a Pane as the root.

It is also a good idea to set a preferred size for the pane. Otherwise, the pane
is sized to exactly hold the shapes, without a margin.

313.2 Displaying Information in a Scene

Pane root = new Pane(message);
root.setPrefSize(PREFERRED_WIDTH, PREFERRED_HEIGHT);

Then you construct a scene from the pane.

Scene scene = new Scene(root);

Next, the scene must reside in a stage, a window on a desktop (see
Figure 13.2). The stage is passed as a parameter to the start method that you
override in a subclass of the Application class. You can optionally set a window
title. Finally, call the show method to show the window.

Figure 13.2 Internal structure of a stage

public class NotHelloWorld extends Application
{
 public void start(Stage stage)
 {
 . . .

Chapter 13 JavaFX4

 stage.setScene(scene);
 stage.setTitle("NotHelloWorld");
 stage.show();
 }
}

You can see the complete program in Listing 13.1. The UML diagram in
Figure 13.3 shows the relationships between the JavaFX classes that we use
in this program.

Figure 13.3 Relationships between core JavaFX classes

Listing 13.1 notHelloWorld/NotHelloWorld.java

 1 package notHelloWorld;
 2

 3 import javafx.application.*;
 4 import javafx.scene.*;
 5 import javafx.scene.layout.*;
 6 import javafx.scene.text.*;
 7 import javafx.stage.*;
 8

 9 /**
10 @version 1.4 2017-12-23
11 @author Cay Horstmann
12 */

(Continues)

513.2 Displaying Information in a Scene

Listing 13.1 (Continued)

13 public class NotHelloWorld extends Application
14 {
15 private static final int MESSAGE_X = 75;
16 private static final int MESSAGE_Y = 100;
17

18 private static final int PREFERRED_WIDTH = 300;
19 private static final int PREFERRED_HEIGHT = 200;
20

21 public void start(Stage stage)
22 {
23 Text message = new Text(MESSAGE_X, MESSAGE_Y,
24 "Not a Hello World program");
25

26 Pane root = new Pane(message);
27 root.setPrefSize(PREFERRED_WIDTH, PREFERRED_HEIGHT);
28

29 Scene scene = new Scene(root);
30 stage.setScene(scene);
31 stage.setTitle("NotHelloWorld");
32 stage.show();
33 }
34 }

NOTE: As you see from this example, no main method is required to launch a
JavaFX application. The java program launcher knows about JavaFX and calls
its launch method.

In previous versions of JavaFX, you were required to include a main method of
the form

public class MyApp extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }
 . . .
}

You can still do this if your tool chain is flustered by an absence of public static
void main.

Chapter 13 JavaFX6

javafx.stage.Stage

• void setScene(Scene value)

sets the scene to be shown on this stage.

• void setTitle(String value)

sets the title that is shown in the window’s title bar.

• void show()

shows the window.

javafx.scene.layout.Pane

• Pane(Node... children)

constructs a pane holding the given child nodes.

javafx.scene.layout.Region

• void setPrefSize(double prefWidth, double prefHeight)

sets the preferred size of this region to the given width and height.

javafx.scene.text.Text

• Text(double x, double y, String text)

constructs a Text node with the given position and contents.

13.2.2 Drawing Shapes

In JavaFX, geometric shapes are subclasses of the Shape class, itself a subclass
of Node. To draw an image made up of rectangles, lines, circles, and other
shapes, you simply construct the shapes and then construct a root node
containing the shapes:

Rectangle rect = new Rectangle(leftX, topY, width, height);
Line line = new Line(centerX, centerY, centerX + radius, centerY);
Pane root = new Pane(rect, line);

If you need to add a node afterwards, call the getChildren method of the root
pane, which yields a mutable List<Node>. By adding or removing nodes, you
can update the children of the pane.

713.2 Displaying Information in a Scene

Circle circle = new Circle(centerX, centerY, radius);
root.getChildren().add(circle);

NOTE:Object-oriented design purists complain that methods such as getChildren
violate the “Law of Demeter” since they give out mutable innards of an object.
But this is common practice in JavaFX.

NOTE: In JavaFX, you construct circles and ellipses from the center points and
radii. This is different (and more convenient) than with AWT and Swing, where
you need to specify the bounding rectange.

NOTE: To draw shapes in Swing or Android, you need to place drawing opera-
tions into a paintComponent or onDraw callback. The JavaFX API is much simpler.
You simply add the nodes that you want to be drawn to the scene. If you move
the nodes, the scene gets automatically redrawn.

Listing 13.2 draw/DrawTest.java

 1 package draw;
 2

 3 import javafx.application.*;
 4 import javafx.scene.*;
 5 import javafx.scene.layout.*;
 6 import javafx.scene.paint.*;
 7 import javafx.scene.shape.*;
 8 import javafx.stage.*;
 9

10 /**
11 @version 1.4 2017-12-23
12 @author Cay Horstmann
13 */
14 public class DrawTest extends Application
15 {
16 private static final int PREFERRED_WIDTH = 400;
17 private static final int PREFERRED_HEIGHT = 400;
18

19 public void start(Stage stage)
20 {
21 double leftX = 100;
22 double topY = 100;

Chapter 13 JavaFX8

23 double width = 200;
24 double height = 150;
25

26 Rectangle rect = new Rectangle(leftX, topY, width, height);
27 rect.setFill(Color.TRANSPARENT);
28 rect.setStroke(Color.BLACK);
29 // an ellipse touching the rectangle
30 double centerX = leftX + width / 2;
31 double centerY = topY + height / 2;
32 Ellipse ellipse = new Ellipse(centerX, centerY, width / 2, height / 2);
33 ellipse.setFill(Color.PEACHPUFF);
34 // a diagonal line
35 Line diagonal = new Line(leftX, topY, leftX + width, topY + height);
36 // a circle with the same center as the ellipse
37 double radius = 150;
38 Circle circle = new Circle(centerX, centerY, radius);
39 circle.setFill(Color.TRANSPARENT);
40 circle.setStroke(Color.RED);
41 Pane root = new Pane(rect, ellipse, diagonal, circle);
42 root.setPrefSize(PREFERRED_WIDTH, PREFERRED_HEIGHT);
43 stage.setScene(new Scene(root));
44 stage.setTitle("DrawTest");
45 stage.show();
46 }
47 }

Nodes of type Line, Path, and Polygon are by default drawn in black. For a different
color, call the setStroke method:

radius.setStroke(Color.RED);

Shapes other than Line, Path, and Polygon are filled with a black color. You can
change the fill color:

rect.setFill(Color.YELLOW);

Or, if you don’t want the interior of the shape colored, choose a transparent
fill. Then you need to set a stroke color for the shape’s outline:

rect.setFill(Color.TRANSPARENT);
rect.setStroke(Color.BLACK);

The setFill and setStroke methods accept a Paint parameter type. The Color class
is a subclass of Paint, as are classes for gradients and image patterns that we
do not discuss here. There are predefined constants for all 147 CSS3 color
names from Color.ALICEBLUE to Color.YELLOWGREEN.

Listing 13.2 contains a program that draws the shapes shown in Figure 13.4.

913.2 Displaying Information in a Scene

Figure 13.4 Drawing geometric shapes

javafx.scene.shape.Rectangle

• Rectangle(double x, double y, double width, double height)

constructs a rectangle with the given top left corner, width, and height.

javafx.scene.shape.Circle

• Circle(double centerX, double centerY, double radius)

constructs a circle with the given center and radius.

javafx.scene.shape.Ellipse

• Ellipse(double centerX, double centerY, double radiusX, double radiusY)

constructs an ellipse with the given center and radii.

javafx.scene.shape.Line

• Line(double startX, double startY, double endX, double endY)

constructs a line with the given start and end points.

Chapter 13 JavaFX10

class javafx.scene.layout.Pane

• ObservableList<Node> getChildren()

yields a mutable list of all children of this pane.

javafx.scene.shape.Shape

• void setStroke(Paint value)

sets the paint for drawing the boundary of this shape, or in the case of Line,
Polyline, and Path, the shape itself.

• void setFill(Paint value)

sets the paint for drawing the interior of this shape.

13.2.3 Text and Images

The “Not a Hello World” program at the beginning of this chapter displayed
a string in the “System” font at its default size. Often, you will want to show
your text in a different font. Use one of the static Font.font methods to obtain
the font, and then call the setFont method on the Text object to set the font.

message.setFont(Font.font("Times New Roman", 36));

This Font factory method makes a font object representing the font with the
given family name and point size. You can specify a bold and italic version
by calling

Font.font("Times New Roman", FontWeight.BOLD, FontPosture.ITALIC, 36);

Fonts for the family names

System
Serif
SansSerif
Monospaced

are always available. The JDK ships with three font families:

Lucida Bright
Lucida Sans
Lucida Sans Typewriter

The static method Font.getFamilies yields a list of all available family names.

1113.2 Displaying Information in a Scene

CAUTION: Any number of fonts may share a given family name. For example,
the Lucida Bright family has members named Lucida Bright Regular, Lucida
Bright Demibold, and Lucida Bright Demibold Italic. These names are of limited
utility since the JavaFX API does not allow you to choose a font by its name.

To further confuse matters, the FontWeight enumeration has values THIN, EXTRA_LIGHT,
LIGHT, NORMAL, MEDIUM, SEMI_BOLD, BOLD, EXTRA_BOLD, and BLACK, and you are on your own
trying to map a string such as “Demibold” to a supported weight.

The y-position of a Text node indicates the baseline of the text (see Figure 13.5).
To find the extent of the text, call

Bounds messageBounds = message.getBoundsInParent();

You can then compute the ascent (the distance from the baseline to the top
of a letter such as ‘b’ or ‘k’) and the descent (the distance from the baseline
to the bottom of a letter such as ‘p’ or ‘q’):

double ascent = message.getY() - messageBounds.getMinY();
double descent = messageBounds.getMaxY() - message.getY();
double width = messageBounds.getWidth();

CAUTION: The Node class has three methods to determine the bounds of a node:
getLayoutBounds, getBoundsInLocal, and getBoundsInParent. Only the getBoundsInParent
method takes stroke widths, effects, and transforms into account. Use that
method whenever you want to know the extent of a node as it is actually drawn.

Figure 13.5 Typesetting terms illustrated

The program in Listing 13.3 shows how to accurately position a Text node.
We construct the text at the origin, and measure its ascent, descent, and
width. Then we center the text horizontally and place the baseline at the
desired position, using the relocate method of the Node class. That method

Chapter 13 JavaFX12

Figure 13.6 Drawing the baseline and text bounds

relocates the top left corner, not the base point, and we need to adjust the
y-position by the ascent.

To show that all the computations are accurate, we draw the bounding rect-
angle and the baseline (see Figure 13.6). We use the French version of “Hello,
World!” so that the message contains a letter with a descender.

Next, we place an image directly below the text. To add an image, construct
an ImageView from the image path or URL. You cannot specify the top left corner
in the constructor. Therefore, we use the relocate method to move the
image view.

Listing 13.3 font/FontTest.java

 1 package font;
 2

 3 import javafx.application.*;
 4 import javafx.geometry.*;
 5 import javafx.scene.*;
 6 import javafx.scene.image.*;
 7 import javafx.scene.layout.*;
 8 import javafx.scene.paint.*;
 9 import javafx.scene.shape.*;
10 import javafx.scene.text.*;
11 import javafx.stage.*;

(Continues)

1313.2 Displaying Information in a Scene

Listing 13.3 (Continued)

12

13 /**
14 @version 1.4 2017-12-23
15 @author Cay Horstmann
16 */
17 public class FontTest extends Application
18 {
19 private static final int PREFERRED_WIDTH = 400;
20 private static final int PREFERRED_HEIGHT = 400;
21

22 public void start(Stage stage)
23 {
24 // construct message at (0, 0)
25 Text message = new Text("Bonjour le monde!");
26 Font f = Font.font("Lucida Bright", FontWeight.BOLD, 36);
27 message.setFont(f);
28

29 // get message dimensions
30 Bounds messageBounds = message.getBoundsInParent();
31 double ascent = -messageBounds.getMinY();
32 double descent = messageBounds.getMaxY();
33 double width = messageBounds.getWidth();
34

35 // center message horizontally
36 double baseY = 100;
37 double topY = baseY - ascent;
38 double leftX = (PREFERRED_WIDTH - width) / 2;
39 message.relocate(leftX, topY);
40

41 // construct bounding rectangle and baseline
42 Rectangle rect = new Rectangle(leftX, topY, width, ascent + descent);
43 rect.setFill(Color.TRANSPARENT);
44 rect.setStroke(Color.GRAY);
45 Line baseline = new Line(leftX, baseY, leftX + width, baseY);
46 baseline.setStroke(Color.GRAY);
47

48 // center image directly below the message
49 ImageView image = new ImageView("font/world.png");
50 Bounds imageBounds = image.getBoundsInParent();
51 image.relocate((PREFERRED_WIDTH - imageBounds.getWidth()) / 2, baseY + descent);
52

53 Pane root = new Pane(message, rect, baseline, image);
54 root.setPrefSize(PREFERRED_WIDTH, PREFERRED_HEIGHT);
55 stage.setScene(new Scene(root));
56 stage.setTitle("FontTest");
57 stage.show();
58 }
59 }

Chapter 13 JavaFX14

javafx.scene.text.Font

• static Font.font(double size)
• static Font.font(String family)
• static Font.font(String family, double size)
• static Font.font(String family, FontWeight weight, double size)
• static Font.font(String family, FontPosture posture, double size)
• static Font.font(String family, FontWeight weight, FontPosture posture, double size)

obtains a font with the given family name (or “System”), weight and posture
(or FontWeight.NORMAL and FontPosture.REGULAR), and point size.

javafx.scene.text.Text

• void setFont(Font value)

sets this text to the given font.

• double getX()
• double getY()

gets the x- and y-position of the basepoint of this text node.

javafx.scene.Node

• Bounds getBoundsInParent()

gets the bounds of this node after applying any strokes, clips, effects, and
transformations.

• void relocate(double x, double y)

relocates this node so that its top left corner falls on the given x- and y-values.

javafx.geometry.Bounds

• double getMinX()
• double getMinY()
• double getMaxX()
• double getMaxY()

gets the smallest or largest x- and y-value of these bounds.

• double getWidth()
• double getHeight()

gets the width and height of these bounds.

1513.2 Displaying Information in a Scene

javafx.scene.image.ImageView

• ImageView(String url)

constructs an image from the given url string. The string should either be a
valid construction parameter for the java.net.URL class, or a path to a resource.
(See Chapter 5 about resources.)

13.3 Event Handling

A graphical user interface environment monitors input devices for events
such as keystrokes or mouse clicks and directs them to the appropriate pro-
gram. The program then figures out which user interface control should
process the event, translating low-level events to semantic events as appropri-
ate. For example, when a user clicks on a button, JavaFX processes the se-
quence of events that consists of depressing and releasing the mouse button
over the surface of the button control. That event sequence is then interpreted
as a “click.”

In order for the program to react to such an event, the programmer needs to
register an event handler with the user interface control from which the event
originates.

13.3.1 Implementing Event Handlers

In the case of a button click, the event handler must implement the
EventHandler<ActionEvent> interface. EventHandler<T> is a functional interface with a
single method

void handle(T event)

You can simply use a lambda expression to specify the button action:

Button button = new Button("Click me!");
button.setOnAction(event -> System.out.println("I was clicked."));

In this case, the lambda expression did not make use of the event parameter.
An ActionEvent doesn’t have many interesting properties. The most useful one
is probably the event source—the control from which the action originated.
In this case, we know which button is the source. However, if you share one
handler among multiple controls, you can call event.getSource() to find out which
one triggered it.

Here is another application of event handling where you are interested in
the event object. When the user closes a window, the window gets a “close

Chapter 13 JavaFX16

request” event. You can install a handler in which you consume the event if
you want to deny the request:

stage.setOnCloseRequest(event ->
 {
 if (not OK to close) event.consume()
 });

NOTE: If you need to add more than one event to a node, use the addEventHandler
method:

button.addEventHandler(javafx.event.ActionEvent.ACTION,
 event -> System.out.println("I was clicked"));

13.3.2 Reacting to Property Changes

Many JavaFX controls provide a different mechanism for event handling.
Consider a slider, as shown in Figure 13.7. When the slider is adjusted, its
value changes. However, you shouldn’t listen to the low-level events that the
slider emits to indicate those changes. Instead, the slider has a JavaFX property
called value, and the property emits events when it changes. We will discuss
properties in detail in Section 13.6, “Properties and Bindings,” on p. 82. Here
is how you can listen to the property’s events and adjust the font size of a
message:

slider.valueProperty().addListener(property ->
 message.setFont(Font.font(family, slider.getValue())));

Here, the property parameter is not very useful—it is easier to get the updated
value from the slider.

Listening to properties is very common in JavaFX. For example, if you want
to change a part of the user interface as a user enters text into a text field,
simply add a listener to the text property.

The program in Listing 13.4 shows action and property change events at
work. When you click on the “Random font” button, a Text node is set to the
name of a random font and displayed in the same font—see Figure 13.7.

When the slider moves, the font size is adjusted.

When the user closes the window, the event listener checks whether the
slider is at 100%. If so, the program refuses to close, assuming that the user
hasn’t yet tried out the slider.

The button, slider, and text node are stacked vertically inside a VBox. We discuss
this class in Section 13.4, “Layout,” on p. 28.

1713.3 Event Handling

Figure 13.7 Processing action and property change events

Listing 13.4 event/EventTest.java

 1 package event;
 2

 3 import java.util.*;
 4

 5 import javafx.application.*;
 6 import javafx.scene.*;
 7 import javafx.scene.control.*;
 8 import javafx.scene.control.Alert.*;
 9 import javafx.scene.layout.*;
10 import javafx.scene.text.*;
11 import javafx.stage.*;
12

13 /**
14 @version 1.0 2017-12-23
15 @author Cay Horstmann
16 */
17 public class EventTest extends Application
18 {
19 public void start(Stage stage)
20 {
21 Button button = new Button("Random font");
22 Text message = new Text("Times New Roman");
23 message.setFont(Font.font("Gloucester MT Extra Condensed", 100));
24 List<String> families = Font.getFamilies();
25 Random generator = new Random();
26 button.setOnAction(event ->
27 {
28 String newFamily = families.get(
29 generator.nextInt(families.size()));
30 message.setText(newFamily);
31 message.setFont(Font.font(
32 newFamily, message.getFont().getSize()));
33 });
34

35 Slider slider = new Slider();
36 slider.setValue(100);

Chapter 13 JavaFX18

37 slider.valueProperty().addListener(property ->
38 {
39 double newSize = slider.getValue();
40 message.setFont(Font.font(
41 message.getFont().getFamily(), newSize));
42 });
43

44 VBox root = new VBox(button, slider, message);
45 Scene scene = new Scene(root);
46

47 stage.setTitle("EventTest");
48 stage.setScene(scene);
49 stage.setOnCloseRequest(event ->
50 {
51 if (slider.getValue() == 100)
52 {
53 event.consume(); // Stops window from closing
54 Alert alert = new Alert(AlertType.INFORMATION,
55 "Move the slider before quitting.");
56 alert.showAndWait();
57 }
58 });
59 stage.show();
60 }
61 }

EventHandler<T extends Event>

• void handle(T event)

override this method to handle the given event.

javafx.scene.control.ButtonBase

• void setOnAction(EventHandler<ActionEvent> value)

sets the action event listener for this control.

javafx.event.Event

• void consume()

marks this event as consumed.

• boolean isConsumed()

returns true if this event has been marked as consumed.

1913.3 Event Handling

java.util.EventObject 1.1

• Object getSource()

gets the object responsible for emitting this event.

javafx.stage.Window

• public final void setOnCloseRequest(EventHandler<WindowEvent> value)

sets the close request handler for this window. The handler should consume
the event to reject the close request.

13.3.3 Mouse and Keyboard Events

You do not need to handle mouse events explicitly if you just want the user
to be able to click on a button or drag a slider. These mouse operations are
handled internally by the various controls in the user interface. However, if
you want to enable the user to draw with the mouse, you will need to trap
the events that happen as the user moves the mouse and clicks the mouse
buttons.

In this section, we will show you a simple graphics editor application that
allows the user to place, move, and erase dots on a canvas (see Figure 13.8).

Figure 13.8 Arranging dots with the mouse and keyboard

Chapter 13 JavaFX20

When the user clicks a mouse button, three events are generated: “mouse
pressed,” when the mouse button is first pressed; “mouse released,” when
the mouse button is released; and, finally, “mouse clicked,” after pressing and
releasing the button. In our example, we capture mouse presses because we
don’t want to delay the visual feedback until the mouse button is released.

By using the getX and getY methods on the MouseEvent argument, you can obtain
the x- and y-coordinates of the mouse pointer.

root.setOnMousePressed(event ->
 {
 double x = event.getX();
 double y = event.getY();
 Circle dot = new Circle(x, y, RADIUS);
 root.getChildren().add(dot);
 });

To distinguish between single, double, and triple (!) clicks, use the getClickCount
method. To find out which button was pressed, call the getButton method:

if (event.getButton() == MouseButton.SECONDARY) . . . // right click

Some user interface designers inflict mouse click and keyboard modifier
combinations, such as Control+Shift+click, on their users. We find this practice
reprehensible, but if you disagree, call one of the following methods:

isShiftDown
isControlDown
isAltDown
isMetaDown
isShortcutDown

The Alt key is labeled Option () on the Mac. The Meta key is the Windows
or Command () key. The isShortcutDown method tests for the preferred modifier
of the platform—Control on Linux and Windows, Meta on the Mac.

As the mouse moves, a steady stream of mouse movement events are gener-
ated. Any node can ask to be notified when the mouse passes over it. Our
test application traps mouse motion events to change the cursor to a different
shape (a cross hair) when it is over a dot:

dot.setOnMouseEntered(event -> scene.setCursor(Cursor.CROSSHAIR));
dot.setOnMouseExited(event -> scene.setCursor(Cursor.DEFAULT));

Table 10.3 lists the available cursors.

2113.3 Event Handling

Table 13.1 Cursor Shapes

ConstantIconConstantIcon

N_RESIZEDEFAULT

NE_RESIZECROSSHAIR

E_RESIZEHAND

SE_RESIZEOPEN_HAND

S_RESIZECLOSED_HAND

SW_RESIZEMOVE

W_RESIZETEXT

NW_RESIZEWAIT

H_RESIZEDISAPPEAR

V_RESIZENONE

NOTE: You can also define your own cursor types through the use of the
ImageCursor class:

Image img = new Image("dynamite.gif");
Cursor dynamiteCursor = new ImageCursor(img, 10, 10);

The second and third parameters of the constructor give the offset of the “hot
spot” of the cursor that represents the mouse position.

If the user presses a mouse button while the mouse is in motion, “mouse
dragged” events are generated instead of “mouse moved” events. Our test
application lets a user drag the dot under the cursor. We simply update the
dot to be centered under the mouse position.

dot.setOnMouseDragged(event ->
 {
 dot.setCenterX(event.getX());
 dot.setCenterY(event.getY());
 });

A mouse event is sent to the node under the mouse cursor. But if a key event
occurs, which node should be notified? The recipient is a specific node that
has the keyboard focus. A node can request keyboard focus with the requestFocus
method.

Chapter 13 JavaFX22

Similar to clicking a mouse button, key events occur as a key is pressed or
released. When pressing and releasing one or more keys yields text input, a
“key typed” event is generated. For example, if the user presses the Shift key,
then presses and releases the A key, an uppercase ‘A’ is typed.

source.setOnKeyTyped(event ->
 {
 String input = event.getCharacter();
 . . .
 });

The getCharacter method gets the input as a string (in case some keyboard
produces emoji that require two UTF-16 code units, or decomposed accents,
or some other input that doesn’t fit in a single char value).

However, if you process cursor or function keys, you want to listen to “key
pressed” events and call the getCode method. You get a value of the KeyCode
enumeration, which has over 200 values with every imaginable key that
can appear on someone’s keyboard, such as KeyCode.A, KeyCode.DELETE, and
KeyCode.EURO_SIGN.

source.setOnKeyPressed(event ->
 {
 KeyCode code = event.getCode();
 if (code == KeyCode.DELETE) . . .;
 });

The program in Listing 13.5 demonstrates mouse and key events. Use the
mouse to click on an empty space to add a new dot, or drag an existing dot
to a new location. If you double-click on a dot, it is erased. The dot with
keyboard focus is colored red. You can delete it with the Delete key and move
it with the cursor keys. If you hold down the Shift key, it moves by a greater
distance.

Note that each dot listens to “mouse entered/exited/pressed/dragged” and
“key pressed” events. We simply rely on the JavaFX framework to deliver the
events to the affected nodes. The “mouse pressed” event is also handled by
the root pane so that we can add new dots.

A mouse event is first presented to child nodes and then to parent nodes. To
avoid creating another dot, the “mouse pressed” handler of the dot consumes
the event.

Alternatively, we could have implemented a single “mouse pressed” handler
for the root pane. But then we would have had to check if a node is under
the mouse pointer. The JavaFX way is to work as much as possible with the
“scene graph” (the nodes and their parent/child relationships).

2313.3 Event Handling

Listing 13.5 mouse/MouseTest.java

 1 package mouse;
 2

 3 import javafx.application.*;
 4 import javafx.scene.*;
 5 import javafx.scene.input.*;
 6 import javafx.scene.layout.*;
 7 import javafx.scene.paint.*;
 8 import javafx.scene.shape.*;
 9 import javafx.stage.*;
10

11 /**
12 @version 1.40 2017-12-27
13 @author Cay Horstmann
14 */
15 public class MouseTest extends Application
16 {
17 private static final int PREFERRED_WIDTH = 300;
18 private static final int PREFERRED_HEIGHT = 200;
19 private static final int RADIUS = 5;
20 private Scene scene;
21 private Pane root;
22 private Circle selected;
23

24 private Circle makeDot(double x, double y)
25 {
26 Circle dot = new Circle(x, y, RADIUS);
27 dot.setOnMouseEntered(event ->
28 scene.setCursor(Cursor.CROSSHAIR));
29 dot.setOnMouseExited(event ->
30 scene.setCursor(Cursor.DEFAULT));
31 dot.setOnMouseDragged(event ->
32 {
33 dot.setCenterX(event.getX());
34 dot.setCenterY(event.getY());
35 });
36 dot.setOnMousePressed(event ->
37 {
38 if (event.getClickCount() > 1)
39 {
40 root.getChildren().remove(selected);
41 select(null);
42 }
43 else
44 {
45 select(dot);
46 }
47 event.consume();
48 });

Chapter 13 JavaFX24

49

50 dot.setOnKeyPressed(event ->
51 {
52 KeyCode code = event.getCode();
53 int distance = event.isShiftDown() ? 10 : 1;
54 if (code == KeyCode.DELETE)
55 root.getChildren().remove(dot);
56 else if (code == KeyCode.UP)
57 dot.setCenterY(dot.getCenterY() - distance);
58 else if (code == KeyCode.DOWN)
59 dot.setCenterY(dot.getCenterY() + distance);
60 else if (code == KeyCode.LEFT)
61 dot.setCenterX(dot.getCenterX() - distance);
62 else if (code == KeyCode.RIGHT)
63 dot.setCenterX(dot.getCenterX() + distance);
64 });
65

66 return dot;
67 }
68

69 private void select(Circle dot)
70 {
71 if (selected == dot) return;
72 if (selected != null) selected.setFill(Color.BLACK);
73 selected = dot;
74 if (selected != null)
75 {
76 selected.requestFocus();
77 selected.setFill(Color.RED);
78 }
79 }
80

81 public void start(Stage stage)
82 {
83 root = new Pane();
84 root.setOnMousePressed(event ->
85 {
86 double x = event.getX();
87 double y = event.getY();
88 Circle dot = makeDot(x, y);
89 root.getChildren().add(dot);
90 select(dot);
91 });
92 scene = new Scene(root);
93 root.setPrefSize(PREFERRED_WIDTH, PREFERRED_HEIGHT);
94 stage.setScene(scene);
95 stage.setTitle("MouseTest");
96 stage.show();
97 }
98 }

2513.3 Event Handling

javafx.scene.Node

• void setOnMousePressed(EventHandler<? super MouseEvent> value)
• void setOnMouseReleased(EventHandler<? super MouseEvent> value)
• void setOnMouseClicked(EventHandler<? super MouseEvent> value)
• void setOnMouseEntered(EventHandler<? super MouseEvent> value)
• void setOnMouseExited(EventHandler<? super MouseEvent> value)
• void setOnMouseMoved(EventHandler<? super MouseEvent> value)
• void setOnMouseDragged(EventHandler<? super MouseEvent> value)

sets the handler for the given mouse event type.

• void setOnKeyPressed(EventHandler<? super KeyEvent> value)
• void setOnKeyReleased(EventHandler<? super KeyEvent> value)
• void setOnKeyTyped(EventHandler<? super KeyEvent> value)

sets the handler for the given key event type.

• void requestFocus()

requests that the keyboard focus be set to this node.

javafx.scene.input.MouseEvent

• double getX()
• double getY()

yields the x- and y-coordinate of the mouse pointer in the coordinate system
of the event source.

• double getScreenX()
• double getScreenY()

yields the x- and y-coordinate of the mouse pointer in the screen coordinate
system.

• int getClickCount()

gets the number of times a mouse button has been clicked (within a small
region and a short amount of time).

• MouseButton getButton()

returns one of the values PRIMARY, SECONDARY, MIDDLE, or NONE of the MouseButton
enumeration.

(Continues)

Chapter 13 JavaFX26

javafx.scene.input.MouseEvent (Continued)

• boolean isShiftDown()
• boolean isControlDown()
• boolean isAltDown()
• boolean isMetaDown()
• boolean isShortcutDown()

returns true if the Shift, Control, Alt/Option, Windows/Command, or Control/
Command modifier key is pressed during this event.

javafx.scene.Scene

• void setCursor(Cursor value)

sets the mouse cursor for this scene. See Table 10.3 for predefined cursor shapes.

javafx.scene.ImageCursor

• ImageCursor(Image image, double hotspotX, double hotspotY)

constructs an image cursor from the given image. The cursor will be placed so
that the given hotspot offset is at the cursor position.

javafx.scene.input.KeyEvent

• String getCharacter()

if this is a “key typed” event, gets the input that was typed.

• KeyCode getCode()

if this is a “key pressed” or “key released” event, gets the key that was pressed
or released.

• boolean isShiftDown()
• boolean isControlDown()
• boolean isAltDown()
• boolean isMetaDown()
• boolean isShortcutDown()

returns true if the Shift, Control, Alt/Option, Windows/Command, or Control/
Command modifier key is pressed during this event.

2713.3 Event Handling

13.4 Layout

When a graphical user interface contains multiple controls, they need to be
arranged on the screen in a functional and attractive way. One way to obtain
a layout is with a design tool. The tool’s user, often a graphics designer, drags
images of the controls onto a design view and arranges, resizes, and configures
them. However, this approach can be problematic when the sizes of the
elements change—for example, because labels have different lengths in
international versions of a program.

Alternatively, the layout can be achieved programmatically, by writing code
in a setup method that adds the user interface controls to specific positions.
That is what was done in Swing, using layout manager objects.

Another approach is to specify the layout in a declarative language. For exam-
ple, web pages are laid out with HTML and CSS. Similarly, Android has an
XML language for specifying layouts.

JavaFX supports all three approaches. The JavaFX Scene Builder is a visual
GUI builder. You can download it from http://gluonhq.com/products/scene-builder.
Figure 13.9 shows a screenshot.

Figure 13.9 The JavaFX Scene Builder

Chapter 13 JavaFX28

We won’t discuss the Scene Builder program further. When you understand
the concepts of the following sections, you will find it straightforward to use.
Read on for laying out elements with layout panes and with the FXML markup
language.

13.4.1 Layout Panes

In JavaFX, you can arrange controls with panes—parent nodes with a layout
policy. For example, a BorderPane has five areas: Top, Bottom, Left, Right, and
Center. Here we place a button into each:

BorderPane pane = new BorderPane();
pane.setTop(new Button("Top"));
pane.setRight(new Button("Right"));
pane.setBottom(new Button("Bottom"));
pane.setLeft(new Button("Left"));
pane.setCenter(new Button("Center"));
stage.setScene(new Scene(pane));

Figure 13.10 shows the result.

Figure 13.10 The BorderPane layout

NOTE: With the Swing BorderLayout, buttons were expanded to fill each region
of the layout. In JavaFX, a button does not expand past its natural size.

Now suppose you want more than one button in the bottom area. Use an
HBox (see Figure 13.11):

HBox buttons = new HBox(10, yesButton, noButton, maybeButton);
 // ten pixels between controls
pane.setBottom(buttons);

Of course, there is a VBox for laying out controls vertically. The layout in
Figure 13.11 was achieved like this:

VBox pane = new VBox(10, question, buttons);
pane.setPadding(new Insets(10));

2913.4 Layout

Figure 13.11 Laying out buttons with an HBox

Note the padding property. Without it, the label and the buttons would touch
the window border.

CAUTION: In JavaFX, dimensions are specified in pixels. In our example, we
use ten pixels for the box spacing and padding. This is not really appropriate
nowadays, when pixel densities can vary widely. One way to overcome this is
to compute dimensions in rem, as you would do in CSS3. (A rem or “root em”
is the height of the default font of the document root.)

final double rem = new Text("").getBoundsInParent().getHeight();
pane.setPadding(new Insets(0.8 * rem));

There is only so much you can achieve with horizontal and vertical boxes.
Just as Swing had the GridBagLayout as “the mother of all layout managers,”
JavaFX has the GridPane. Think of a GridPane as an equivalent of an HTML table.
You can set the horizontal and vertical alignment of all cells. If desired, cells
can span multiple rows and columns. Consider the login dialog in Figure 13.12.

Note the following:

• The labels “User name:” and “Password:” are right-aligned.
• The buttons are in an HBox that spans two columns.

When you add a child to a GridPane, specify its column and row index (in that
order; think x- and y-coordinates).

Figure 13.12 A GridPane can arrange the controls for this login dialog.

Chapter 13 JavaFX30

pane.add(usernameLabel, 0, 0);
pane.add(username, 1, 0);
pane.add(passwordLabel, 0, 1);
pane.add(password, 1, 1);

If a child spans multiple columns or rows, specify the spans after the positions.
For example, the button panel spans two columns and one row:

pane.add(buttons, 0, 2, 2, 1);

If you want a child to span all remaining rows or columns, use GridPane.REMAINING.

To set the horizontal alignment of a child, use the static setHalignment method,
and pass the child reference and a constant LEFT, CENTER, or RIGHT from the HPos
enumeration.

GridPane.setHalignment(usernameLabel, HPos.RIGHT);

Similarly, for vertical alignment, call setValignment and use TOP, CENTER, BASELINE, or
BOTTOM from the VPos enumeration.

NOTE: These static calls look rather inelegant in Java code, but they make
sense in the FXML markup language—see the next section.

TIP: For debugging, it can be useful to see the cell boundaries (see Figure 13.13).
Call

pane.setGridLinesVisible(true);

If you want to see the borders of an individual child (for example, to see whether
it has grown to fill the entire cell), set its border. This is most easily done
with CSS:

buttons.setStyle("-fx-border-color: red;");

Figure 13.13 Use visible grid lines when debugging a GridPane.

3113.4 Layout

CAUTION: Do not center the HBox with the buttons inside the grid. That box has
expanded to the full horizontal size, and centering will not change its position.
Instead, tell the HBox to center its contents:

buttons.setAlignment(Pos.CENTER);

You will also want to provide some spacing around the rows and columns
and some padding around the table:

pane.setHgap(0.8 * rem);
pane.setVgap(0.8 * rem);
pane.setPadding(new Insets(0.8 * rem));

The layout panes that you have seen in this section should suffice for the
majority of applications. Table 13.2 shows all layouts that come with JavaFX.

Listing 13.6 shows the complete program for this layout. For more information
about the user interface controls that the program uses, turn to Section 13.5.1,
“Text Input,” on p. 47.

Table 13.2 JavaFX Layouts

DescriptionPane Class

Lines up children horizontally or vertically.HBox, VBox

Lays out children in a tabular grid, similar to the Swing GridBagLayout.GridPane

Lays out children in a grid, giving them all the same size, similar
to the Swing GridLayout.

TilePane

Provides the areas North, East, South, West, and Center, similar to
the Swing BorderLayout.

BorderPane

Flows children in rows, making new rows when there isn’t sufficient
space, similar to the Swing FlowLayout.

FlowPane

Places children in absolute positions or relative to the pane’s
boundaries. This is the default in the Scene Builder layout tool.

AnchorPane

Stacks children above each other. Can be useful for decorating
controls, such as stacking a button over a colored rectangle.

StackPane

TIP: Scala, Kotlin, and Groovy provide JavaFX bindings (http://www.scalafx.org,
http://tornadofx.io, http://groovyfx.org) with convenient “domain-specific lan-
guages” for building user interfaces that are reminiscent of the old FX Script
builder syntax.

Chapter 13 JavaFX32

Listing 13.6 gridPane/GridPaneDemo.java

 1 package gridPane;
 2

 3 import javafx.application.*;
 4 import javafx.geometry.*;
 5 import javafx.scene.*;
 6 import javafx.scene.control.*;
 7 import javafx.scene.layout.*;
 8 import javafx.scene.text.*;
 9 import javafx.stage.*;
10

11 public class GridPaneDemo extends Application
12 {
13 public void start(Stage stage)
14 {
15 final double rem = new Text("").getLayoutBounds().getHeight();
16

17 GridPane pane = new GridPane();
18 // uncomment for debugging
19 // pane.setGridLinesVisible(true);
20

21 pane.setHgap(0.8 * rem);
22 pane.setVgap(0.8 * rem);
23 pane.setPadding(new Insets(0.8 * rem));
24 Label usernameLabel = new Label("User name:");
25 Label passwordLabel = new Label("Password:");
26 TextField username = new TextField();
27 PasswordField password = new PasswordField();
28

29 Button okButton = new Button("Ok");
30 Button cancelButton = new Button("Cancel");
31

32 HBox buttons = new HBox(0.8 * rem);
33 buttons.getChildren().addAll(okButton, cancelButton);
34 buttons.setAlignment(Pos.CENTER);
35 // uncomment for debugging
36 // buttons.setStyle("-fx-border-color: red;");
37

38 pane.add(usernameLabel, 0, 0);
39 pane.add(username, 1, 0);
40 pane.add(passwordLabel, 0, 1);
41 pane.add(password, 1, 1);
42 pane.add(buttons, 0, 2, 2, 1);
43

44 GridPane.setHalignment(usernameLabel, HPos.RIGHT);
45 GridPane.setHalignment(passwordLabel, HPos.RIGHT);

(Continues)

3313.4 Layout

Listing 13.6 (Continued)

46 stage.setScene(new Scene(pane));
47 stage.show();
48 }
49 }

javafx.scene.layout.BorderPane

• BorderPane()

constructs an empty border pane.

• void setTop(Node value)
• void setRight(Node value)
• void setBottom(Node value)
• void setLeft(Node value)
• void setCenter(Node value)

places a node into an area of this border pane.

javafx.scene.layout.HBox

• HBox(double spacing, Node... children)

constructs a horizontal box with the given children, separated by the number
of pixels given in spacing.

• void setAlignment(Pos pos)

sets the alignment for the children. The Pos enumeration has values TOP_LEFT,
TOP_CENTER, TOP_RIGHT, CENTER_LEFT, CENTER, CENTER_RIGHT, BASELINE_LEFT, BASELINE_CENTER,
BASELINE_RIGHT, BOTTOM_LEFT, BOTTOM_CENTER, BOTTOM_RIGHT.

javafx.scene.layout.VBox

• VBox(double spacing, Node... children)

constructs a vertical box with the given children, separated by the number of
pixels given in spacing.

class javafx.scene.layout.Region

• void setPadding(Insets value)

sets the padding around the contents of this region.

Chapter 13 JavaFX34

javafx.geometry.Insets

• public Insets(double topRightBottomLeft)
• public Insets(double top, double right, double bottom, double left)

constructs insets with the given number of pixels to the top, right, bottom,
and left.

javafx.scene.layout.GridPane

• GridPane()

constructs an empty grid pane.

• void add(Node child, int columnIndex, int rowIndex)
• void add(Node child, int columnIndex, int rowIndex, int colspan, int rowspan)

adds a node at the given position. The second method has the control
occupy multiple grid cells. To occupy all remaining rows or columns, pass
GridPane.REMAINING.

• static void setHalignment(Node child, HPos value)

sets the horizontal alignment of the given node within its grid cell. The HPos
enumeration has values LEFT, RIGHT, and CENTER.

• static void setValignment(Node child, VPos value)

sets the vertical alignment of the given node within its grid cell. The VPos
enumeration has values TOP, CENTER, BASELINE, and BOTTOM.

• void setHgap(double value)
• void setVgap(double value)

sets the horizontal or vertical gap between rows or columns to the given
number of pixels.

13.4.2 FXML

The markup language that JavaFX uses to describe layouts is called FXML.
We discuss it in some detail because the concepts are interesting beyond the
needs of JavaFX, and the implementation is fairly general.

Here is the FXML markup for the login dialog of the preceding section:

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.geometry.*?>
<?import javafx.scene.control.*?>

3513.4 Layout

<?import javafx.scene.text.*?>
<?import javafx.scene.layout.*?>

<GridPane hgap="10" vgap="10">
 <padding>
 <Insets top="10" right="10" bottom="10" left="10"/>
 </padding>
 <children>
 <Label text="User name:" GridPane.columnIndex="0" GridPane.rowIndex="0"
 GridPane.halignment="RIGHT"/>
 <Label text="Password:" GridPane.columnIndex="0" GridPane.rowIndex="1"
 GridPane.halignment="RIGHT"/>
 <TextField GridPane.columnIndex="1" GridPane.rowIndex="0"/>
 <PasswordField GridPane.columnIndex="1" GridPane.rowIndex="1"/>
 <HBox GridPane.columnIndex="0" GridPane.rowIndex="2"
 GridPane.columnSpan="2" alignment="CENTER" spacing="10">
 <children>
 <Button text="Ok"/>
 <Button text="Cancel"/>
 </children>
 </HBox>
 </children>
</GridPane>

Have a closer look at the FXML file. Note the “processing instructions” <?import
. . .?> for importing Java packages. (In general, XML processing instructions
are an “escape hatch” for application-specific processing of XML documents.)

Now look at the structure of the document. First off, the nesting of the GridPane,
the labels and text fields, the HBox and its button children reflects the nesting
that we built up with Java code in the preceding section.

Most of the attributes correspond to property setters. For example,

<GridPane hgap="10" vgap="10">

means “construct a GridPane and then set the hgap and vgap properties.”

When an attribute starts with a class name and a static method, that method
is invoked. For example,

<TextField GridPane.columnIndex="1" GridPane.rowIndex="0"/>

means that the static methods GridPane.setColumnIndex(thisTextField, 1) and GridPane
.setRowIndex(thisTextField, 0) will be called.

When a property value is too complex to express as a string, one uses nested
elements instead of attributes. Consider, for example,

Chapter 13 JavaFX36

<GridPane hgap="10" vgap="10">
 <padding>
 <Insets top="10" right="10" bottom="10" left="10"/>
 </padding>
 . . .

The padding property has type Insets, and the Insets object is constructed with
an <Insets . . .> child element that specifies how to set its properties.

Finally, there is a special rule for list properties. For example, children is a list
property. Calling

<HBox . . .>
 <children>
 <Button text="Ok" />
 <Button text="Cancel" />
 </children>
 </HBox>

adds the buttons to the list returned by getChildren.

NOTE: You can localize text strings by using resource keys starting with %, such
as <Button text="%ok">. Then you must provide a resource bundle that maps re-
source keys to localized values. We discuss resource bundles in Chapter 7 of
Volume II.

You can write FXML files by hand, or you can use a GUI builder such as
Scene Builder. Once you have such a file, load it like this:

public void start(Stage stage)
{
 try
 {
 Parent root = FXMLLoader.load(getClass().getResource("dialog.fxml"));
 stage.setScene(new Scene(root));
 stage.show();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 System.exit(0);
 }
}

3713.4 Layout

Of course, this is not yet useful by itself. The user interface is displayed, but
the program cannot access the values that the user provides. One way of es-
tablishing a connection between the controls and the program is to use id
attributes, as you would in JavaScript. Provide the id attributes in the
FXML file:

<TextField id="username" GridPane.columnIndex="1" GridPane.rowIndex="0"/>

In the program, look up the control:

TextField username = (TextField) root.lookup("#username");

But there is a better way. You can use the @FXML annotation to “inject” the
control objects into a controller class. The controller class must implement
the Initializable interface. In the controller’s initialize method, you wire up the
event handlers. Any class can be the controller, even the FX application itself.

For example, here is a controller for our login dialog:

public class LoginDialogController implements Initializable
{
 @FXML private TextField username;
 @FXML private PasswordField password;
 @FXML private Button okButton;
 @FXML private Button cancelButton;

 public void initialize(URL url, ResourceBundle rb)
 {
 okButton.setOnAction(event -> . . .);
 cancelButton.setOnAction(event ->
 {
 username.setText("");
 password.setText("");
 });
 }
}

Provide the names of the controller’s instance variables to the corresponding
control elements in the FXML file, using the fx:id (not id) attribute:

<TextField fx:id="username" GridPane.columnIndex="1" GridPane.rowIndex="0"/>
<PasswordField fx:id="password" GridPane.columnIndex="1" GridPane.rowIndex="1" />
<Button fx:id="okButton" text="Ok" />

In the root element, you also need to declare the controller class, using the
fx:controller attribute:

<GridPane xmlns:fx="http://javafx.com/fxml" hgap="10" vgap="10"
 fx:controller="LoginDialogController">

Note the namespace attribute to introduce the FXML namespace.

Chapter 13 JavaFX38

When the FXML file is loaded, the scene graph is constructed, and references
to the named control objects are injected into the annotated fields of the
controller object. Then its initialize method is called.

NOTE: If your controller doesn’t have a default constructor (perhaps because
it is being initialized with a reference to a business service), you can set it
programmatically:

FXMLLoader loader = new FXMLLoader(getClass().getResource(. . .));
loader.setController(new Controller(service));
Parent root = loader.load();

CAUTION: If you set the controller programmatically, really use the code from
the preceding note. The following code will compile, but it will invoke the static
FXMLLoader.load method, ignoring the constructed loader:

FXMLLoader loader = new FXMLLoader();
loader.setController(new Controller(service));
Parent root = loader.load(getClass().getResource(. . .));
 // ERROR--calls static method

It is even possible to do much of the initialization in the FXML file. You
can define simple bindings, and you can set annotated controller methods
as event listeners. It is also possible to add scripts in JavaScript or
another scripting language to an FXML file. The syntax is documented at
https://docs.oracle.com/javase/9/docs/api/javafx/fxml/doc-files/introduction_to_fxml.html.
However, let’s not dwell on these features. It seems better to separate the
visual design from the program behavior, so that a user interface designer
can produce the design and a programmer can implement the behavior.

Listing 13.7 fxml/FXMLDemo.java

 1 package fxml;
 2

 3 import java.io.*;
 4 import java.net.*;
 5 import java.util.*;
 6

 7 import javafx.application.*;
 8 import javafx.fxml.*;
 9 import javafx.scene.*;
10 import javafx.scene.control.*;

(Continues)

3913.4 Layout

Listing 13.7 (Continued)

11 import javafx.scene.control.Alert.*;
12 import javafx.stage.*;
13

14 /**
15 @version 1.0 2017-12-29
16 @author Cay Horstmann
17 */
18 public class FXMLDemo extends Application implements Initializable
19 {
20 @FXML private TextField username;
21 @FXML private PasswordField password;
22 @FXML private Button okButton;
23 @FXML private Button cancelButton;
24

25 public void initialize(URL url, ResourceBundle rb)
26 {
27 okButton.setOnAction(event ->
28 {
29 Alert alert = new Alert(AlertType.INFORMATION,
30 "Verifying " + username.getText() + ":" + password.getText());
31 alert.showAndWait();
32 });
33 cancelButton.setOnAction(event ->
34 {
35 username.setText("");
36 password.setText("");
37 });
38 }
39

40 public void start(Stage stage)
41 {
42 try
43 {
44 Parent root = FXMLLoader.load(
45 getClass().getResource("dialog.fxml"));
46 stage.setScene(new Scene(root));
47 stage.setTitle("FXMLDemo");
48 stage.show();
49 }
50 catch (IOException e)
51 {
52 e.printStackTrace();
53 }
54 }
55 }

Chapter 13 JavaFX40

Listing 13.8 fxml/dialog.fxml

 1 <?xml version="1.0" encoding="UTF-8"?>
 2

 3 <?import java.lang.*?>
 4 <?import java.util.*?>
 5 <?import javafx.geometry.*?>
 6 <?import javafx.scene.control.*?>
 7 <?import javafx.scene.text.*?>
 8 <?import javafx.scene.layout.*?>
 9

10 <GridPane xmlns:fx="http://javafx.com/fxml" hgap="10" vgap="10"
11 fx:controller="fxml.FXMLDemo">
12 <padding>
13 <Insets top="10" right="10" bottom="10" left="10"/>
14 </padding>
15 <children>
16 <Label text="User name:" GridPane.columnIndex="0"
17 GridPane.rowIndex="0" GridPane.halignment="RIGHT"/>
18 <Label text="Password:" GridPane.columnIndex="0"
19 GridPane.rowIndex="1" GridPane.halignment="RIGHT"/>
20 <TextField fx:id="username" GridPane.columnIndex="1"
21 GridPane.rowIndex="0"/>
22 <PasswordField fx:id="password"
23 GridPane.columnIndex="1" GridPane.rowIndex="1"/>
24 <HBox GridPane.columnIndex="0" GridPane.rowIndex="2"
25 GridPane.columnSpan="2" alignment="CENTER" spacing="10">
26 <children>
27 <Button fx:id="okButton" text="Ok"/>
28 <Button fx:id="cancelButton" text="Cancel"/>
29 </children>
30 </HBox>
31 </children>
32 </GridPane>

javafx.fxml.FXMLLoader

• static <T> T load(URL location)
• static <T> T load(URL location, ResourceBundle resources)

returns the object described by the FXML document at the given location. The
second method uses the given resource bundle for resolving resource keys
prefixed by %.

(Continues)

4113.4 Layout

javafx.fxml.FXMLLoader (Continued)

• FXMLLoader(URL location)
• FXMLLoader(URL location, ResourceBundle resources)

constructs a loader that will load an object from the FXML document at the
given location, using the given resource bundle for resolving resource keys.

• void setController(Object controller)

sets the controller for the root element. This method must be called before
loading the FXML document.

• <T> T load()

returns the object described by the FXML document of this loader.

javafx.fxml.Initializable

• void initialize(URL location, ResourceBundle resources)

This method is called when the FXMLLoader has constructed the root element and
its controller. The location and resources are those of the loader.

13.4.3 CSS

JavaFX lets you change the visual appearance of the user interface with CSS,
which is usually more convenient than supplying FXML attributes or calling
Java methods.

You can load a CSS stylesheet programmatically and have it applied to a
scene graph:

Scene scene = new Scene(pane);
scene.getStylesheets().add("scene.css");

In the stylesheet, you can reference any controls that have an ID. For example,
here is how you can control the appearance of a GridPane. In the code, set
the ID:

GridPane pane = new GridPane();
pane.setId("pane");

Don’t set any padding or spacing in the code. Instead, use CSS.

#pane {
 -fx-padding: 0.5em;
 -fx-hgap: 0.5em;
 -fx-vgap: 0.5em;

Chapter 13 JavaFX42

 -fx-background-image: url("metal.jpg")
}

Unfortunately, you can’t use the familiar CSS attributes but need to know
FX-specific attributes that start with -fx-. The attribute names are formed by
changing the property names to lowercase and using hyphens instead of
camel case. For example, the textAlignment property turns into -fx-text-alignment.
You can find all supported attributes in the JavaFX CSS reference at
https://docs.oracle.com/javase/9/docs/api/javafx/scene/doc-files/cssref.html.

Using CSS is nicer than cluttering up the code with layout minutiae. Moreover,
you can easily use resolution-independent em units. Of course, CSS can be
used both for good and for evil (see Figure 13.14), and hopefully you will
resist the temptation to apply gratuitous background textures to your login
dialogs.

Figure 13.14 Using CSS to style a user interface

Instead of styling by individual IDs, you can use style classes. Add the class
to the node object:

HBox buttons = new HBox();
buttons.getStyleClass().add("buttonrow");

Then style it, using the CSS class notation:

.buttonrow {
 -fx-spacing: 0.5em;
}

Every JavaFX control and shape class belongs to a CSS class whose name is
the decapitalized Java class name. For example, all Label nodes have class label.
Here is how you can change the font for all labels to Comic Sans:

.label {
 -fx-font-family: "Comic Sans MS";
}

But please don’t.

4313.4 Layout

You can also use CSS with FXML layouts. Attach the stylesheet to the
root pane:

<GridPane id="pane" stylesheets="scene.css">

Supply id or styleClass attributes in the FXML code. For example,

<HBox styleClass="buttonrow">

Then you can specify most styling in CSS, and use FXML only for layout.
Unfortunately, you can’t completely remove all styling from the FXML. For
example, there is currently no way to specify grid cell alignment in CSS.

NOTE: You can also apply a CSS style programmatically, such as

buttons.setStyle("-fx-border-color: red;");

That can be handy for debugging, but in general, it’s better to use an external
stylesheet.

The program in Listing 13.9 demonstrates the use of stylesheets. The stylesheet
in Listing 13.10 is loaded directly by the program. The second stylesheet
(Listing 13.11) is loaded by the FXML file in Listing 13.12.

Listing 13.9 css/CSSDemo.java

 1 package css;
 2

 3 import java.io.*;
 4 import javafx.application.*;
 5 import javafx.fxml.*;
 6 import javafx.scene.*;
 7 import javafx.scene.control.*;
 8 import javafx.stage.*;
 9

10 public class CSSDemo extends Application
11 {
12 public void start(Stage stage)
13 {
14 try
15 {
16 Parent root = FXMLLoader.load(getClass().getResource("dialog.fxml"));
17 root.lookup("#username").getStyleClass().add("highlight");
18 Scene scene = new Scene(root);
19 scene.getStylesheets().add("css/scene1.css");

Chapter 13 JavaFX44

20 stage.setScene(scene);
21 stage.setTitle("CSSDemo");
22 stage.show();
23 }
24 catch (IOException ex)
25 {
26 ex.printStackTrace();
27 Platform.exit();
28 }
29 }
30 }

Listing 13.10 css/scene1.css

 1 .label {
 2 -fx-text-fill: white;
 3 -fx-font-family: "Comic Sans MS";
 4 }
 5

 6 #pane {
 7 -fx-padding: 0.5em;
 8 -fx-hgap: 0.5em;
 9 -fx-vgap: 0.5em;
10 -fx-background-image: url("metal.jpg");
11 }
12

13 .highlight:focused {
14 -fx-border-color: yellow;
15 }

Listing 13.11 css/scene2.css

 1 .buttonrow {
 2 -fx-spacing: 0.5em;
 3 -fx-alignment: center;
 4 }
 5

Listing 13.12 css/dialog.fxml

 1 <?xml version="1.0" encoding="UTF-8"?>
 2

 3 <?import java.lang.*?>
 4 <?import java.util.*?>
 5 <?import javafx.geometry.*?>

(Continues)

4513.4 Layout

Listing 13.12 (Continued)

 6 <?import javafx.scene.control.*?>
 7 <?import javafx.scene.text.*?>
 8 <?import javafx.scene.layout.*?>
 9

10 <GridPane id="pane" xmlns:fx="http://javafx.com/fxml" stylesheets="css/scene2.css">
11 <children>
12 <Label text="User name:" GridPane.columnIndex="0" GridPane.rowIndex="0"
13 GridPane.halignment="RIGHT"/>
14 <Label text="Password: " GridPane.columnIndex="0" GridPane.rowIndex="1"
15 GridPane.halignment="RIGHT"/>
16 <TextField id="username" GridPane.columnIndex="1" GridPane.rowIndex="0"/>
17 <PasswordField GridPane.columnIndex="1" GridPane.rowIndex="1"/>
18 <HBox styleClass="buttonrow" GridPane.columnIndex="0" GridPane.rowIndex="2"
19 GridPane.columnSpan="2">
20 <children>
21 <Button text="Ok"/>
22 <Button text="Cancel"/>
23 </children>
24 </HBox>
25 </children>
26 </GridPane>

javafx.scene.Scene

• ObservableList<String> getStylesheets()

returns the list of URL strings for the CSS stylesheets of this scene.

javafx.scene.Node

• void setId(String value)

sets an ID for this node. The ID can be used in CSS stylesheets.

• void setStyle(String value)

sets the CSS style of this node.

javafx.css.Styleable

• ObservableList<String> getStyleClass()

returns the list of CSS style class names for this node.

Chapter 13 JavaFX46

13.5 User Interface Controls

In the following sections, we go over common user interface controls: text
controls, checkboxes, radio buttons, combo boxes, menus, and simple dialogs.

13.5.1 Text Input

We begin with the controls that let a user input and edit text. A TextField can
accept only one line of text; a TextArea accepts multiple lines of text. As you
can see in Figure 13.15, these are both subclasses of TextInputControl, which is
itself a subclass of Control, the ancestor of all user interface controls in JavaFX.
The JPasswordField class is a subclass of TextField and accepts one line of text
without showing the contents.

Figure 13.15 The inheritance hierary of text input controls

The TextInputControl class has methods getText, setText, and appendText for geting
and setting the text, or appending to it.

4713.5 User Interface Controls

By calling the setPrefColumnCount method of a TextField, you give a hint for the
preferred size. One column is the expected width of one character in the font
you are using for the text. The user can still type in longer strings, but the
input scrolls when the text exceeds the width of the field. For text areas, there
is also a setPrefRowCount method.

NOTE: Scrollbars automatically appear if there is more text than a text area
can display, and they vanish again if text is deleted and the remaining text fits
inside the area.

You can enable wrapping of long lines in a text area by calling

textArea.setWrapText(true);

Then the text area will not use horizontal scroll bars.

All text controls can be made read-only:

textArea.setEditable(false);

A read-only text area can be used to display a large amount of information.
This does not change the appearance of the text area. In contrast, a disabled
control has a distinct visual appearance that indicates its disabled status to
the user.

If you set the prompt text, it is shown in gray if the control is empty (see
Figure 13.16).

Figure 13.16 Text controls

Chapter 13 JavaFX48

username.setPromptText("Choose a user name");

Unlike buttons, text controls need to be labeled with an external Label instance
that you place nearby:

Label usernameLabel = new Label("User name:");

A Label is similar to a Text node, but a Text is a Shape, meant to be used for
drawing. In contrast, a Label is a Control. It inherits methods from the Labeled
superclass for tasks such as setting a graphic decoration and controlling how
the text should be truncated if there is insufficient space to display it.

Listing 13.13 demonstrates the various text controls. This program shows a
text field, a password field, and a text area with scrollbars. The text field and
password field are labeled. Click on “Ok” to insert the field contents into the
text area.

Listing 13.13 text/TextControlTest.java

 1 package text;
 2

 3 import javafx.application.*;
 4 import javafx.geometry.*;
 5 import javafx.scene.*;
 6 import javafx.scene.control.*;
 7 import javafx.scene.layout.*;
 8 import javafx.scene.text.*;
 9 import javafx.stage.*;
10

11 /**
12 @version 1.5 2017-12-29
13 @author Cay Horstmann
14 */
15 public class TextControlTest extends Application
16 {
17 public void start(Stage stage)
18 {
19 final double rem = new Text("").getLayoutBounds().getHeight();
20

21 GridPane pane = new GridPane();
22 pane.setHgap(0.8 * rem);
23 pane.setVgap(0.8 * rem);
24 pane.setPadding(new Insets(0.8 * rem));
25

26 Label usernameLabel = new Label("User name:");
27 Label passwordLabel = new Label("Password:");
28

(Continues)

4913.5 User Interface Controls

Listing 13.13 (Continued)

29

30 TextField username = new TextField();
31 username.setPromptText("Choose a user name");
32 PasswordField password = new PasswordField();
33 password.setPromptText("Choose a password");
34 TextArea textArea = new TextArea();
35 textArea.setPrefRowCount(10);
36 textArea.setPrefColumnCount(20);
37 textArea.setWrapText(true);
38 textArea.setEditable(false);
39

40 Button okButton = new Button("Ok");
41 okButton.setOnAction(event ->
42 textArea.appendText("User name: " + username.getText()
43 + "\nPassword: " + password.getText() + "\n"));
44

45 pane.add(usernameLabel, 0, 0);
46 pane.add(username, 1, 0);
47 pane.add(passwordLabel, 0, 1);
48 pane.add(password, 1, 1);
49 pane.add(textArea, 0, 2, 2, 1);
50 pane.add(okButton, 0, 3, 2, 1);
51

52 GridPane.setHalignment(usernameLabel, HPos.RIGHT);
53 GridPane.setHalignment(passwordLabel, HPos.RIGHT);
54 GridPane.setHalignment(okButton, HPos.CENTER);
55

56 stage.setScene(new Scene(pane));
57 stage.setTitle("TextControlTest");
58 stage.show();
59 }
60 }

javafx.scene.Node

• void setDisable(boolean value)

disables or enables this node and its children. Subclasses of Control render
themselves differently when they are disabled.

Chapter 13 JavaFX50

javafx.scene.control.TextInputControl

• String getText()
• void setText(String value)

gets or sets the text in this control.

• void appendText(String text)

appends the given text to the text in this control.

• void setEditable(boolean value)

makes this control editable or read-only.

• void setPromptText(String value)

sets the prompt text that is displayed in the control.

javafx.scene.control.TextField

• void setPrefColumnCount(int value)

sets the preferred column count of this text field.

javafx.scene.control.TextArea

• void setPrefRowCount(int value)
• void setPrefColumnCount(int value)

sets the preferred row and column count of this text area.

• void setWrapText(boolean value)

enables or disables text wrapping for lines whose length exceeds the width of
this text area.

javafx.scene.control.Label

• Label(String text)

constructs a label with the given text.

5113.5 User Interface Controls

javafx.scene.control.Labeled

• void setGraphic(Node value)

adds a decorative node to this labeled control.

• void setTextOverrun(OverrunStyle value)

sets the text overrun policy to indicate where the ellipses (...) should appear
when the label text needs to be truncated: not at all; at the beginning, middle
or end; at character or word boundaries. Use one of the following values
of the OverrunStyle enumeration: CLIP, ELLIPSIS, WORD_ELLIPSIS, LEADING_ELLIPSIS,
LEADING_WORD_ELLIPSIS, CENTER_ELLIPSIS, CENTER_WORD_ELLIPSIS.

13.5.2 Choices

You now know how to collect text input from users, but there are many oc-
casions where you would rather give users a finite set of choices than have
them enter the data in a text control. Using radio buttons or a list of items
tells your users what choices they have. It also saves you the trouble of error
checking. In this section, you will learn how to program checkboxes, radio
buttons, and combo boxes.

In our example program, you will be able to choose the font weight, posture,
size, and family, as shown in Figure 13.17.

Figure 13.17 Choice controls for selecting a font

If you want to collect just a “yes” or “no” input, use a checkbox control. For
example, a font is italic, or it isn’t. Checkboxes come with labels that identify
them. Give the label text in the constructor:

CheckBox italic = new CheckBox("Italic");

Chapter 13 JavaFX52

The user can check the box by clicking inside it and turn off the checkmark
by clicking inside the box again. Pressing the space bar when the focus is in
the checkbox also toggles the checkmark.

Use the setSelected method to turn a checkbox on or off. For example:

italic.setSelected(true);

The isSelected method retrieves the current state of a checkbox. It is false if
unchecked, true if checked.

When the user clicks on a checkbox, this triggers an action event. As always,
you call the setOnAction method to attach an event handler to the checkbox.
The CheckBox class inherits this method from the ButtonBase superclass.

In our example program, we offer checkboxes for bold and italic fonts. The
user can check either, both, or neither of the two checkboxes.

In many cases, we want the user to check only one of several boxes. When
another box is checked, the previous box is automatically unchecked. Such
a group of boxes is called a radio button group because the buttons work
like the station selector buttons on an old-fashioned radio. When you push
in one button, the previously depressed button pops out. (Admittedly, that
analogy made much more sense thirty years ago than it does now. But these
controls are still called radio buttons.)

A typical example is the font size selection in our sample program. We allow
the user to select a font size from among four choices—Small, Medium, Large,
or Extra Large—but, of course, we will allow selecting only one size at a time.

Constructing a radio button is straightforward:

RadioButton small = new RadioButton("Small");

To get the desired behavior of having the previously selected button turn off
when a new one is selected, all buttons need to be in the same toggle group:

ToggleGroup group = new ToggleGroup();
small.setToggleGroup(group);
medium.setToggleGroup(group);
. . .

You also want to make sure that one of the buttons is selected at the outset:

medium.setSelected(true);

As with checkboxes, radio buttons send action events when they are clicked.
You could attach a separate event handler to each radio button, but that gets
repetitive. We will share a single handler, but we want to avoid code that

5313.5 User Interface Controls

checks whether the event source was the Small, Medium, Large, or Extra
Large button. All we care about is the desired size of the font.

User data provide a convenient mechanism for transferring arbitrary data from
a control to a shared handler. You can set arbitrary objects as user data of a
control. We will set the desired font sizes:

small.setUserData(8);
medium.setUserData(14);
. . .

In the shared event handler, we retrieve the user data from the currently
selected button in the toggle group:

int size = (int) group.getSelectedToggle().getUserData();

If you look again at Figure 13.17, you will note that the appearance of the
radio buttons is different from that of checkboxes. Checkboxes are square
and contain a checkmark when selected. Radio buttons are round and contain
a dot when selected.

If you have more than a handful of alternatives, radio buttons are not a good
choice because they take up too much screen space. Instead, use a combo
box. When the user clicks on this control, a list of choices drops down, and
the user can then select one of them (see Figure 13.18).

If the drop-down list box is set to be editable, you can edit the current selec-
tion as if it were a text field. For that reason, this control is called a combo
box—it combines the flexibility of a text field with a set of predefined choices.
The ComboBox class provides a combo box control.

Call the setEditable method to make the combo box editable. Note that editing
affects only the selected item. It does not change the list of choices in any way.

In the example program, the user can choose a font family from a list of all
available families. We add all choices to the list returned by getItems:

ComboBox<String> families = new ComboBox<>();
families.getItems().addAll(Font.getFamilies());

NOTE: ComboBox<T> is a generic class. The type parameter denotes the type of
the items. If the item type is not String, then a converter needs to convert be-
tween the item type and the strings that the user views and potentially edits.
We take up that issue in Chapter 11 of Volume II.

Chapter 13 JavaFX54

Figure 13.18 A combo box

You can obtain the current selection, which may have been edited if the
combo box is editable, by calling the getValue method. Call setValue to specify
an initial value.

As with the other choice controls, a ComboBox fires an action event when the
user makes a selection. In our sample program, shown in Listing 13.14, it is
not worth having separate event handlers for each control. Instead, all controls
share a single handler that determines a font from the selected values in the
checkboxes, radio buttons, and combo box.

Listing 13.14 choices/ChoiceTest.java

 1 package choices;
 2

 3 import javafx.application.*;
 4 import javafx.event.*;
 5 import javafx.geometry.*;
 6 import javafx.scene.*;
 7 import javafx.scene.control.*;
 8 import javafx.scene.layout.*;

(Continues)

5513.5 User Interface Controls

Listing 13.14 (Continued)

 9 import javafx.scene.text.*;
10 import javafx.stage.*;
11

12 /**
13 @version 1.4 2017-12-29
14 @author Cay Horstmann
15 */
16 public class ChoiceTest extends Application
17 {
18 private static final double rem = new Text("").getLayoutBounds().getHeight();
19

20 private static HBox hbox(Node... children)
21 {
22 HBox box = new HBox(0.8 * rem, children);
23 box.setPadding(new Insets(0.8 * rem));
24 return box;
25 }
26

27 public void start(Stage stage)
28 {
29 Label sampleText = new Label("The quick brown fox jumps over the lazy dog.");
30 sampleText.setPrefWidth(40 * rem);
31 sampleText.setPrefHeight(5 * rem);
32 sampleText.setFont(Font.font(14));
33

34 CheckBox bold = new CheckBox("Bold");
35 CheckBox italic = new CheckBox("Italic");
36

37 RadioButton small = new RadioButton("Small");
38 RadioButton medium = new RadioButton("Medium");
39 RadioButton large = new RadioButton("Large");
40 RadioButton extraLarge = new RadioButton("Extra Large");
41

42 small.setUserData(8);
43 medium.setUserData(14);
44 large.setUserData(18);
45 extraLarge.setUserData(36);
46

47 ToggleGroup group = new ToggleGroup();
48 small.setToggleGroup(group);
49 medium.setToggleGroup(group);
50 large.setToggleGroup(group);
51 extraLarge.setToggleGroup(group);
52 medium.setSelected(true);
53

54 ComboBox<String> families = new ComboBox<>();
55 families.getItems().addAll(Font.getFamilies());

Chapter 13 JavaFX56

56 families.setValue("System");
57

58 EventHandler<ActionEvent> listener = event ->
59 {
60 int size = (int) group.getSelectedToggle().getUserData();
61 Font font = Font.font(
62 families.getValue(),
63 bold.isSelected() ? FontWeight.BOLD : FontWeight.NORMAL,
64 italic.isSelected() ? FontPosture.ITALIC : FontPosture.REGULAR,
65 size);
66 sampleText.setFont(font);
67 };
68 small.setOnAction(listener);
69 medium.setOnAction(listener);
70 large.setOnAction(listener);
71 extraLarge.setOnAction(listener);
72 bold.setOnAction(listener);
73 italic.setOnAction(listener);
74 families.setOnAction(listener);
75

76 VBox root = new VBox(0.8 * rem,
77 hbox(sampleText),
78 hbox(bold, italic),
79 hbox(small, medium, large, extraLarge),
80 hbox(families));
81

82 stage.setScene(new Scene(root));
83 stage.setTitle("ChoiceTest");
84 stage.show();
85 }
86 }

javafx.scene.control.CheckBox

• CheckBox(String text)

constructs a checkbox labeled with the given text.

• boolean isSelected()
• void setSelected(boolean value)

gets or sets the selected state of this checkbox.

javafx.scene.control.RadioButton

• RadioButton(String text)

constructs a radio button labeled with the given text.

5713.5 User Interface Controls

javafx.scene.control.ToggleButton

• void setToggleGroup(ToggleGroup value)

sets the toggle group for this button.

• boolean isSelected()
• void setSelected(boolean value)

gets or sets the selected state of this button.

javafx.scene.control.ToggleGroup

• ToggleGroup()

constructs an empty toggle group.

• Toggle getSelectedToggle()

gets the selected item from this toggle group.

javafx.scene.control.Toggle

• void setUserData(Object value)
• Object getUserData()

sets and gets a data item that is associated with this toggle control.

javafx.scene.control.ComboBox<T>

• ComboBox()

constructs a combo box with no items.

• ObservableList<T> getItems()

yields a mutable list of items in this combo box.

javafx.scene.control.ComboBoxBase<T>

• void setValue(T)
• T getValue()

sets or gets the currently selected value.

• void setOnAction(EventHandler<ActionEvent)

sets the action event listener for this control.

Chapter 13 JavaFX58

13.5.3 Menus

We started by introducing the most common controls that you might want
to place into a window, such as various kinds of buttons, text fields, and
combo boxes. JavaFX also supports another type of user interface element—
pull-down menus that are familiar from GUI applications.

A menu bar at the top of a window contains the names of the pull-down
menus. Clicking on a name opens the menu containing menu items and
submenus. When the user clicks on a menu item, an action event is triggered.
Figure 13.19 shows a typical menu with a submenu.

Figure 13.19 A menu with a submenu

You construct a menu item by providing the menu text and, optionally, a
graphical decoration. The decoration can be any Node, but it is most common
to provide an image.

MenuItem newItem = new MenuItem("New");
MenuItem cutItem = new MenuItem("Cut", new ImageView("menu/cut.gif"));

You construct a Menu object in the same way.

Menu editMenu = new Menu("Edit");

Add menu items, separators, and submenus to a menu object by adding them
to the list of items:

editMenu.getItems().addAll(cutItem, copyItem, pasteItem);

Alternatively, you can provide the children when you construct the menu:

Menu optionsMenu = new Menu("Options", new ImageView("menu/options.gif"),
 readOnlyItem, insertItem, overtypeItem);

If you don’t want a decoration, supply null as the second argument.

Add the top-level menus to a MenuBar, and add the menu bar to the root pane:

5913.5 User Interface Controls

MenuBar bar = new MenuBar(fileMenu, editMenu, helpMenu);
VBox root = new VBox(bar, . . .);

When the user selects a menu, an action event is triggered. You need to install
an event handler for each menu item:

exitItem.setOnAction(event -> Platform.exit());

CheckMenuItem and RadioMenuItem controls display a check mark next to the item.
They work exactly like checkboxes and radio buttons. You must add radio
buttons to a toggle group. When one of the items in a group is selected, all
others are automatically deselected.

CheckMenuItem readOnlyItem = new CheckMenuItem("Read-only");

ToggleGroup group = new ToggleGroup();
RadioMenuItem insertItem = new RadioMenuItem("Insert");
insertItem.setToggleGroup(group);
insertItem.setSelected(true);
RadioMenuItem overtypeItem = new RadioMenuItem("Overtype");
overtypeItem.setToggleGroup(group);

In our sample application, checking the “Read-only” item deactivates the
“Save” and “Save as” menu items. You can achieve this by installing an event
listener:

readOnlyItem.setOnAction(event ->
 {
 saveItem.setDisable(readOnlyItem.isSelected());
 saveAsItem.setDisable(readOnlyItem.isSelected());
 });

Alternatively, as you will see in Section 13.6.2, “Bindings,” on p. 84, you can
use a more elegant approach and bind properties:

saveItem.disableProperty().bind(readOnlyItem.selectedProperty());
saveAsItem.disableProperty().bind(readOnlyItem.selectedProperty());

A disabled menu item is grayed out—see Figure 13.20.

Accelerators are keyboard shortcuts that let you select menu items without
ever opening a menu. For example, many programs attach the accelerators
Control+O and Control+S (or Command+O and Command+S on the Mac)
to the Open and Save items in the File menu. Use the setAccelerator method to
attach an accelerator key to a menu item.

openItem.setAccelerator(KeyCombination.keyCombination("Shortcut+O"));

Chapter 13 JavaFX60

Figure 13.20 Disabled menu items

The “Shortcut” modifier denotes the Control key on Windows/Linux and the
Command key on the Mac. The accelerator is displayed next to the menu
item—see Figure 13.21.

Typing the accelerator key combination automatically selects the menu option
and fires an action event, as if the user had selected the menu option
manually. You can attach accelerators only to menu items, not to menus.

Figure 13.21 Accelerators

There is a limited number of accelerators available, even if you add modifier
keys. Besides, few users have the mental power to remember shortcuts like
Control+Shift+F11. On Linux and Windows, keyboard mnemonics allow users
to navigate menus with the keyboard by pressing the Alt key and typing un-
derlined letters. For example, in the menu shown in Figure 13.22, hitting
Alt+H C selects the Help menu and then the “About Core Java” item. Unlike
keyboard shortcuts, mnemonics let you reach all menu items with key
combinations that are fairly easy to remember.

6113.5 User Interface Controls

Figure 13.22 Keyboard mnemonics

You create a keyboard mnemonic for a menu or menu item by adding an
underscore before the mnemonic letter in the menu item constructor:

MenuItem aboutProgramItem = new MenuItem("_About this program");
MenuItem aboutCoreJavaItem = new MenuItem("About _Core Java");
Menu helpMenu = new Menu("_Help", null, aboutProgramItem, aboutCoreJavaItem);

NOTE: In a misguided effort to reduce “visual noise,” most user interface envi-
ronments (including JavaFX) hide mnemonics until you press the Alt key. MacOS
doesn’t support mnemonics at all.

A context menu is a menu that is not attached to a menu bar but floats some-
where (see Figure 13.23). Create a context menu just as you create a regular
menu, except that a context menu has no title. Then attach the context menu
to a control. The context menu pops up when you right-click on the control.
(On the Mac, hold down the Control key and click.)

ContextMenu contextMenu = new ContextMenu(cutItem, copyItem, pasteItem);
textArea.setContextMenu(contextMenu);

Figure 13.23 A context menu

Chapter 13 JavaFX62

NOTE: If you want a context menu to pop up over an arbitrary node, you have
to work a bit harder and show the menu when the user right-clicks on the node.

node.setOnContextMenuRequested(e ->
 contextMenu.show(node, e.getScreenX(), e.getScreenY()));

The program in Listing 13.15 demonstrates all the features that you saw in
this section: nested menus, disabled menu items, checkbox and radio menu
items, a context menu, and keyboard mnemonics and accelerators.

Listing 13.15 menu/MenuTest.java

 1 package menu;
 2

 3 import javafx.application.*;
 4 import javafx.event.*;
 5 import javafx.scene.*;
 6 import javafx.scene.control.*;
 7 import javafx.scene.image.*;
 8 import javafx.scene.input.*;
 9 import javafx.scene.layout.*;
10 import javafx.stage.*;
11

12 /**
13 @version 1.3 2017-12-29
14 @author Cay Horstmann
15 */
16 public class MenuTest extends Application
17 {
18 private TextArea textArea = new TextArea();
19

20 /**
21 Makes this item or, if a menu, its descendant items, carry out the
22 given action if there isn't already an action defined.
23 @param item the menu item (which may be a menu)
24 @param action the default action
25 */
26 private void defaultAction(MenuItem item, EventHandler<ActionEvent> action)
27 {
28 if (item instanceof Menu)
29 for (MenuItem child : ((Menu) item).getItems())
30 defaultAction(child, action);
31 else if (item.getOnAction() == null)
32 item.setOnAction(action);
33 }
34

(Continues)

6313.5 User Interface Controls

Listing 13.15 (Continued)

35 public void start(Stage stage)
36 {
37 Menu fileMenu = new Menu("File");
38 MenuItem exitItem = new MenuItem("Exit");
39 exitItem.setOnAction(event -> Platform.exit());
40

41 // demonstrate accelerators
42

43 MenuItem newItem = new MenuItem("New");
44 MenuItem openItem = new MenuItem("Open ...");
45 openItem.setAccelerator(KeyCombination.keyCombination("Shortcut+O"));
46 MenuItem saveItem = new MenuItem("Save");
47 saveItem.setAccelerator(KeyCombination.keyCombination("Shortcut+S"));
48 MenuItem saveAsItem = new MenuItem("Save as ...");
49

50 fileMenu.getItems().addAll(newItem,
51 openItem,
52 saveItem,
53 saveAsItem,
54 new SeparatorMenuItem(),
55 exitItem);
56

57 // demonstrate checkbox and radio button menus
58

59 CheckMenuItem readOnlyItem = new CheckMenuItem("Read-only");
60 readOnlyItem.setOnAction(event ->
61 {
62 saveItem.setDisable(readOnlyItem.isSelected());
63 saveAsItem.setDisable(readOnlyItem.isSelected());
64 });
65 /*
66 Or use binding:
67 saveItem.disableProperty().bind(readOnlyItem.selectedProperty());
68 saveAsItem.disableProperty().bind(readOnlyItem.selectedProperty());
69 */
70

71 ToggleGroup group = new ToggleGroup();
72 RadioMenuItem insertItem = new RadioMenuItem("Insert");
73 insertItem.setToggleGroup(group);
74 insertItem.setSelected(true);
75 RadioMenuItem overtypeItem = new RadioMenuItem("Overtype");
76 overtypeItem.setToggleGroup(group);
77

78 Menu editMenu = new Menu("Edit");
79

Chapter 13 JavaFX64

80 // demonstrate icons
81

82 MenuItem cutItem = new MenuItem("Cut",
83 new ImageView("menu/cut.gif"));
84 MenuItem copyItem = new MenuItem("Copy",
85 new ImageView("menu/copy.gif"));
86 MenuItem pasteItem = new MenuItem("Paste",
87 new ImageView("menu/paste.gif"));
88

89 // demonstrate context menu
90

91 ContextMenu contextMenu = new ContextMenu(cutItem, copyItem, pasteItem);
92 textArea.setContextMenu(contextMenu);
93

94 editMenu.getItems().addAll(cutItem, copyItem, pasteItem);
95 // Bug or restriction--must add to context menu first
96 // http://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8194270
97

98 // demonstrate nested menus
99

100 Menu optionsMenu = new Menu("Options",
101 new ImageView("menu/options.gif"), readOnlyItem,
102 insertItem, overtypeItem);
103

104 editMenu.getItems().add(optionsMenu);
105

106 // demonstrate mnemonics
107

108 MenuItem aboutProgramItem = new MenuItem("_About this program");
109 MenuItem aboutCoreJavaItem = new MenuItem("About _Core Java");
110 Menu helpMenu = new Menu("_Help", null,
111 aboutProgramItem, aboutCoreJavaItem);
112

113 // add menu bar
114

115 MenuBar bar = new MenuBar(fileMenu, editMenu, helpMenu);
116 VBox root = new VBox(bar, textArea);
117 for (Menu menu : bar.getMenus()) defaultAction(menu, event ->
118 {
119 MenuItem item = (MenuItem) event.getSource();
120 textArea.appendText(item.getText() + " selected\n");
121 });
122

123 stage.setScene(new Scene(root));
124 stage.setTitle("MenuTest");
125 stage.show();
126 }
127 }

6513.5 User Interface Controls

javafx.scene.control.MenuItem

• MenuItem(String text)
• MenuItem(String text, Node graphic)

constructs a menu item with the given text and graphic.

• public void setOnAction(EventHandler<ActionEvent> value)

sets the handler that is called when this item is selected.

• Menu getParentMenu()

returns the menu in which this item is contained.

• void setAccelerator(KeyCombination value)

sets the accelerator for this menu item.

javafx.scene.input.KeyCombination

• static KeyCombination keyCombination(String name)

yields a key combination for the given description. Use modifiers (Shift, Ctrl,
Alt, Meta, Shortcut) followed by +, then the key name, as produced by the
KeyCode.getName method; for example, "Ctrl+Shift+F11".

javafx.scene.control.Menu

• Menu(String text)
• Menu(String text, Node graphic)
• Menu(String text, Node graphic, MenuItem... items)

constructs a menu with the given text, graphic, and items.

• ObservableList<MenuItem> getItems()

returns the mutable list of items in this menu.

javafx.scene.control.MenuBar

• MenuBar(Menu... menus)

constructs a menu bar with the given menus.

• ObservableList<Menu> getMenus()

returns the mutable list of menus in this menu bar.

Chapter 13 JavaFX66

javafx.scene.control.CheckMenuItem

• CheckMenuItem(String text)
• CheckMenuItem(String text, Node graphic)

constructs a check menu item with the given text and graphic.

• boolean isSelected()

returns true if this item is selected.

javafx.scene.control.RadioMenuItem

• RadioMenuItem(String text)
• RadioMenuItem(String text, Node graphic)

constructs a radio menu item with the given text and graphic.

• boolean isSelected()

returns true if this item is selected.

• void setToggleGroup(ToggleGroup value)

sets the toggle group for this item.

javafx.scene.control.ContextMenu

• ContextMenu(MenuItem... items)

constructs a context menu with the given items.

javafx.scene.control.Control

• void setContextMenu(ContextMenu value)

sets the context menu for this control.

javafx.scene.Node

• void setOnContextMenuRequested(EventHandler<? super ContextMenuEvent> value)

sets the handler for right-clicking on this node.

13.5.4 Simple Dialogs

JavaFX has a set of ready-made simple dialogs for displaying messages and
for obtaining a single input.

6713.5 User Interface Controls

To show a message, construct an Alert object by supplying the alert type
and text. Then call the showAndWait method.

Alert alert = new Alert(Alert.AlertType.INFORMATION,
 "Everything is fine.");
alert.showAndWait();

The dialog is displayed until the user dismisses it (by clicking the OK button,
closing the window, or hitting the Escape key). By changing the type to the
CONFIRMATION, WARNING, or ERROR type, the header text and image change—see
Figure 13.24.

Figure 13.24 Alert dialogs

The CONFIRMATION alert type shows two buttons. To see whether the user confirms
or cancels, you need to capture the return value of the showAndWait method. It
has type Optional<ButtonType>. The ButtonType enumeration lists the button types
that are allowed in an alert dialog. The Optional class, which we will discuss
in Chapter 1 of Volume II, denotes a value that may be present or absent. A
confirmation dialog always returns ButtonType.OK or ButtonType.CANCEL, wrapped in
an Optional. Since there is no possibility of an empty optional, you can call the
get method to find out whether the user has clicked OK:

if (alert.showAndWait().get() == ButtonType.OK)
{
 // the user has confirmed
 . . .
}

Chapter 13 JavaFX68

You can add any of the supported button types into an alert—see Figure 13.25.
List the button types in the constructor:

Alert alert = new Alert(Alert.AlertType.NONE,
 "Now what?",
 ButtonType.NEXT, ButtonType.PREVIOUS, ButtonType.FINISH);

The showAndWait method returns the selected button type, wrapped in an Optional,
which is never empty.

NOTE: If a dialog box has more than one button and no Cancel button, it cannot
be closed. The user must click on one of the buttons in order to proceed.

Figure 13.25 An alert dialog with multiple buttons

The alert dialog in Figure 13.25 has alert type NONE. Since the header text and
graphic are null for this type, no header is shown.

You can supply your own header text and graphic, as we do in the example
shown in Figure 13.26:

alert.setHeaderText("Exception");
alert.setGraphic(new ImageView("dialogs/bomb.png"));

Figure 13.26 Expandable content

6913.5 User Interface Controls

This dialog also shows an expandable content node that is revealed by clicking
on “Show Details”—in our case, a text area containing an exception stack
trace. Here is how you set such a node:

TextArea stackTrace = new TextArea();
alert.getDialogPane().setExpandableContent(stackTrace);

If you want to accept text input from the user, use a TextInputDialog, shown in
Figure 13.27.

Figure 13.27 A text input dialog

The showAndWait method returns an Optional<String>, which is empty if the user
clicked the Cancel button or dismissed the dialog. Here is one way of
processing it:

TextInputDialog dialog = new TextInputDialog();
dialog.setHeaderText("What is your name?");
dialog.showAndWait().ifPresentOrElse(
 result -> { do something with result },
 () -> { deal with cancellation }
);

The ChoiceDialog class is similar. You provide a default choice and an array or
list of choices. If the default is not null, it is selected when the dialog is shown
(see Figure 13.28). The showAndWait method returns an Optional that contains the
selected item, or is empty if the dialog was canceled.

ChoiceDialog<String> dialog = new ChoiceDialog<>("System", Font.getFamilies());
dialog.setHeaderText("Pick a font.");
Optional<String> choice = dialog.showAndWait();

The type parameter of the generic ChoiceDialog<T> class is the type of the choices.
You can provide choices of any type, provided that their toString method yields
meaningful strings for the combo box.

Chapter 13 JavaFX70

Figure 13.28 A choice dialog

CAUTION:Unlike the ComboBox<T> control, the ChoiceDialog<T> control does not allow
you to set a string converter.

Finally, there is a FileChooser that allows users to pick one or more files. The
dialog is native to the system and does not look like the other JavaFX dialogs.
You can specify the default directory as well as filters for file extensions.

FileChooser dialog = new FileChooser();
dialog.setInitialDirectory(new File("images"));
dialog.getExtensionFilters().addAll(
 new FileChooser.ExtensionFilter("GIF images", "*.gif"),
 new FileChooser.ExtensionFilter("JPEG images", "*.jpg"));
File result = dialog.showSaveDialog(stage);

When showing the dialog, provide the Stage object, as shown. If you pass null,
then input to the stage is not blocked.

The showSaveDialog method produces a dialog that lets you pick an existing file
or type in a new name. The showOpenDialog method only lets you pick existing
files. There is also a showOpenMultipleDialog method that returns a List of all
selected files. If the dialog is canceled, all three methods return null.

To pick a directory, use a DirectoryChooser instead:

DirectoryChooser dialog = new DirectoryChooser();
File result = dialog.showDialog(stage);

7113.5 User Interface Controls

Listing 13.16 lets you experiment with all the dialogs that were introduced
in this section.

Listing 13.16 dialogs/DialogDemo.java

 1 package dialogs;
 2

 3 import java.io.*;
 4

 5 import javafx.application.*;
 6 import javafx.geometry.*;
 7 import javafx.scene.*;
 8 import javafx.scene.control.*;
 9 import javafx.scene.image.*;
10 import javafx.scene.layout.*;
11 import javafx.scene.text.*;
12 import javafx.stage.*;
13

14 /**
15 @version 1.0 2017-12-29
16 @author Cay Horstmann
17 */
18 public class DialogDemo extends Application
19 {
20 public void start(Stage stage)
21 {
22 TextArea textArea = new TextArea();
23

24 Button information = new Button("Information");
25 information.setOnAction(event ->
26 {
27 Alert alert = new Alert(Alert.AlertType.INFORMATION,
28 "Everything is fine.");
29 alert.showAndWait();
30 });
31

32 Button warning = new Button("Warning");
33 warning.setOnAction(event ->
34 {
35 Alert alert = new Alert(Alert.AlertType.WARNING,
36 "We have a problem.");
37 alert.showAndWait();
38 });
39

40 Button error = new Button("Error");

Chapter 13 JavaFX72

41 error.setOnAction(event ->
42 {
43 Alert alert = new Alert(Alert.AlertType.ERROR,
44 "This looks really bad.");
45 alert.showAndWait();
46 });
47

48 Button confirmation = new Button("Confirmation");
49 confirmation.setOnAction(event ->
50 {
51 Alert alert = new Alert(Alert.AlertType.CONFIRMATION,
52 "Are you sure?");
53 if (alert.showAndWait().get() == ButtonType.OK)
54 textArea.appendText("Confirmed\n");
55 else
56 textArea.appendText("Canceled\n");
57 });
58

59 Button multipleButtons = new Button("Multiple Buttons");
60 multipleButtons.setOnAction(event ->
61 {
62 Alert alert = new Alert(Alert.AlertType.NONE,
63 "Now what?",
64 ButtonType.NEXT, ButtonType.PREVIOUS, ButtonType.FINISH);
65 alert.setTitle("Multiple Buttons");
66 textArea.appendText(alert.showAndWait() + "\n");
67 });
68

69 Button expandableContent = new Button("Expandable Content");
70 expandableContent.setOnAction(event ->
71 {
72 Throwable t = new NullPointerException("Ugh--a null");
73 Alert alert = new Alert(Alert.AlertType.ERROR,
74 t.getMessage());
75 alert.setHeaderText("Exception");
76 alert.setGraphic(new ImageView("dialogs/bomb.png"));
77

78 TextArea stackTrace = new TextArea();
79 StringWriter out = new StringWriter();
80 t.printStackTrace(new PrintWriter(out));
81 stackTrace.setText(out.toString());
82 alert.getDialogPane().setExpandableContent(stackTrace);
83

84 textArea.appendText(alert.showAndWait() + "\n");
85 });
86

87 Button textInput = new Button("Text input");

(Continues)

7313.5 User Interface Controls

Listing 13.16 (Continued)

88 textInput.setOnAction(event ->
89 {
90 TextInputDialog dialog = new TextInputDialog();
91 dialog.setHeaderText("What is your name?");
92 dialog.showAndWait().ifPresentOrElse(
93 result -> textArea.appendText("Name: " + result + "\n"),
94 () -> textArea.appendText("Canceled\n"));
95 });
96

97 Button choiceDialog = new Button("Choice Dialog");
98 choiceDialog.setOnAction(event ->
99 {
100 ChoiceDialog<String> dialog = new ChoiceDialog<>("System",
101 Font.getFamilies());
102 dialog.setHeaderText("Pick a font.");
103 dialog.showAndWait().ifPresentOrElse(
104 result -> textArea.appendText("Selected: " + result + "\n"),
105 () -> textArea.appendText("Canceled\n"));
106 });
107

108 Button fileChooser = new Button("File Chooser");
109 fileChooser.setOnAction(event ->
110 {
111 FileChooser dialog = new FileChooser();
112 dialog.setInitialDirectory(new File("menu"));
113 dialog.setInitialFileName("untitled.gif");
114 dialog.getExtensionFilters().addAll(
115 new FileChooser.ExtensionFilter("GIF images", "*.gif"),
116 new FileChooser.ExtensionFilter("JPEG images", "*.jpg", "*.jpeg"));
117 File result = dialog.showSaveDialog(stage);
118 if (result == null)
119 textArea.appendText("Canceled\n");
120 else
121 textArea.appendText("Selected: " + result + "\n");
122 });
123

124 Button directoryChooser = new Button("Directory Chooser");
125 directoryChooser.setOnAction(event ->
126 {
127 DirectoryChooser dialog = new DirectoryChooser();
128 File result = dialog.showDialog(stage);
129 if (result == null)
130 textArea.appendText("Canceled\n");
131 else
132 textArea.appendText("Selected: " + result + "\n");
133 });
134

135 final double rem = new Text("").getLayoutBounds().getHeight();

Chapter 13 JavaFX74

136 VBox buttons = new VBox(0.8 * rem,
137 information, warning, error, confirmation,
138 multipleButtons, expandableContent, textInput, choiceDialog,
139 fileChooser, directoryChooser);
140 buttons.setPadding(new Insets(0.8 * rem));
141

142 HBox root = new HBox(textArea, buttons);
143

144 stage.setScene(new Scene(root));
145 stage.setTitle("DialogDemo");
146 stage.show();
147 }
148 }

javafx.scene.control.Alert

• Alert(Alert.AlertType alertType)

constructs an alert dialog of the given type. The Alert.AlertType enumeration has
values INFORMATION, WARNING, ERROR, CONFIRMATION, and NONE.

• Alert(Alert.AlertType alertType, String contentText, ButtonType... buttons)

constructs an alert dialog of the given type with the given message and buttons.
The ButtonType enumeration has values OK, CANCEL, YES, NO, NEXT, PREVIOUS, FINISH, APPLY,
and CLOSE. Both CANCEL and CLOSE cancel the dialog.

javafx.scene.control.Dialog<T>

• Optional<T> showAndWait()

shows the dialog and waits for user input. Returns an object of type T repres-
enting the user input, wrapped in an Optional, or an empty Optional if the dialog
was dismissed.

• void setHeaderText(String value)

sets the text that is displayed in the header of this dialog.

• void setGraphic(Node value)

sets the graphic that is displayed in this dialog.

• DialogPane getDialogPane()

gets the pane containing all controls of this dialog.

javafx.scene.control.DialogPane

• void setExpandableContent(Node content)

sets a node that can be expanded and hidden.

7513.5 User Interface Controls

javafx.scene.control.TextInputDialog

• TextInputDialog()

constructs a dialog for entering a string.

javafx.scene.control.ChoiceDialog

• ChoiceDialog(T defaultChoice, T... choices)
• ChoiceDialog(T defaultChoice, Collection<T> choices)

constructs a dialog for picking an item of type T. If defaultChoice is not null, it is
selected.

javafx.stage.FileChooser

• FileChooser()

constructs a file chooser.

• File showOpenDialog(Window ownerWindow)
• List<File> showOpenMultipleDialog(Window ownerWindow)

returns the chosen file or null if the dialog was dismissed. The ownerWindow is
blocked from receiving input while the dialog is displayed.

• File showSaveDialog(Window ownerWindow)

shows a dialog for selecting an existing file or typing a new file and returns
the chosen file or null if the dialog was dismissed. The ownerWindow is blocked
from receiving input while the dialog is displayed.

• void setInitialDirectory(File value)

sets the initial directory for this file chooser.

FileChooser.ExtensionFilter

• ExtensionFilter(String description, String... extensions)
• ExtensionFilter(String description, List<String> extensions)

constructs an extension filter that accepts files with any of the given extensions.
The extension strings have the format *.extension.

Chapter 13 JavaFX76

javafx.stage.DirectoryChooser

• DirectoryChooser()

constructs a directory chooser.

• File showDialog(Window ownerWindow)

shows a dialog for selecting an existing directory or creating a new one, and
returns the chosen directory or null if the dialog was dismissed. The ownerWindow
is blocked from receiving input while the dialog is displayed.

• void setInitialDirectory(File value)

sets the initial directory for this file chooser.

13.5.5 Fancy Controls

Of course, JavaFX has tab panes, trees, and tables, just like Swing does, as
well as a few user interface controls that Swing never got, such as a date
picker and an accordion. In this section, I want to dispel any remaining
Swing nostalgia by showing you three fancy controls that are far beyond
anything Swing had to offer.

Figure 13.29 shows one of many charts that you can make with JavaFX, out
of the box, without having to install any third-party libraries.

Figure 13.29 A JavaFX pie chart

7713.5 User Interface Controls

And it’s easy as pie:

PieChart chart = new PieChart();
chart.getData().addAll(
 new PieChart.Data("Asia", 4298723000.0),
 new PieChart.Data("North America", 355361000.0),
 new PieChart.Data("South America", 616644000.0),
 new PieChart.Data("Europe", 742452000.0),
 new PieChart.Data("Africa", 1110635000.0),
 new PieChart.Data("Oceania", 38304000.0));
chart.setTitle("Population of the Continents");

Altogether, there are half a dozen chart types that you can use and customize.
See https://docs.oracle.com/javase/8/javafx/user-interface-tutorial/charts.htm for more
information.

In Swing, you could show HTML in a JEditorPane, but the rendering was poor
for most real-world HTML. That’s understandable—implementing a browser
is hard work. In fact, it is so hard that most browsers are built on top of the
open source WebKit engine. JavaFX does the same. A WebView displays an
embedded native WebKit window (see Figure 13.30).

Figure 13.30 Browsing the Web (Photo source: Cay Horstmann)

Chapter 13 JavaFX78

Here is the code to show a web page:

String location = "http://horstmann.com";
WebView browser = new WebView();
WebEngine engine = browser.getEngine();
engine.load(location);

The browser is live—you can click on links in the usual way. JavaScript works
as well. However, if you want to display status line or popup messages from
JavaScript, you need to install notification handlers and implement your own
status line and popups.

NOTE: WebView does not support any plugins, so you cannot use it to show Flash
animations or PDF documents. It also doesn’t show applets.

Prior to JavaFX, media playback was pitiful in Java. A Java Media Framework
was available as an optional download, but it did not get much love from the
developers. Of course, implementing audio and video playback is even
harder than writing a browser. Therefore, JavaFX leverages an existing
toolkit: the open source GStreamer framework.

To play a video, construct a Media object from a URL string, construct a
MediaPlayer to play it, and use a MediaView to show the player:

Path path = Paths.get("moonlanding.mp4");
Media media = new Media(path.toUri().toString());
MediaPlayer player = new MediaPlayer(media);
player.setAutoPlay(true);
MediaView video = new MediaView(player);
video.setOnError(System.out::println);

As you can see in Figure 13.31, the video is played—but, unfortunately, there
are no video controls. You can add your own (see https://docs.oracle.com/javase
/8/javafx/media-tutorial/playercontrol.htm), but it would have been nice to supply
a default set of controls.

NOTE: Ever so often, GStreamer can’t handle a particular video file. The error
handler in the code sample displays GStreamer messages so that you can
diagnose playback problems.

Listing 13.17 shows the complete code for all examples in this section.

7913.5 User Interface Controls

Figure 13.31 Playing a video (Image source: NASA)

Listing 13.17 fancy/FancyControls.java

 1 package fancy;
 2

 3 import java.nio.file.*;
 4 import javafx.application.*;
 5 import javafx.geometry.*;
 6 import javafx.scene.*;
 7 import javafx.scene.chart.*;
 8 import javafx.scene.layout.*;
 9 import javafx.scene.media.*;
10 import javafx.scene.web.*;
11 import javafx.stage.*;
12

13 /**
14 @version 1.0 2017-12-29
15 @author Cay Horstmann
16 */

Chapter 13 JavaFX80

17 public class FancyControls extends Application
18 {
19 public void start(Stage stage)
20 {
21 PieChart chart = new PieChart();
22 chart.getData().addAll(
23 new PieChart.Data("Asia", 4298723000.0),
24 new PieChart.Data("North America", 355361000.0),
25 new PieChart.Data("South America", 616644000.0),
26 new PieChart.Data("Europe", 742452000.0),
27 new PieChart.Data("Africa", 1110635000.0),
28 new PieChart.Data("Oceania", 38304000.0));
29 chart.setTitle("Population of the Continents");
30

31 String location = "http://horstmann.com";
32 WebView browser = new WebView();
33 WebEngine engine = browser.getEngine();
34 engine.load(location);
35

36 Path path = Paths.get("fancy/moonlanding.mp4");
37 Media media = new Media(path.toUri().toString());
38 MediaPlayer player = new MediaPlayer(media);
39 player.setAutoPlay(true);
40 MediaView video = new MediaView(player);
41 video.setOnError(ex -> System.out.println(ex));
42

43 stage.setWidth(500);
44 stage.setHeight(500);
45 stage.setScene(new Scene(browser));
46 stage.show();
47

48 Stage stage2 = new Stage();
49 stage2.setWidth(500);
50 stage2.setHeight(500);
51 stage2.setX(stage.getX() + stage.getWidth());
52 stage2.setY(stage.getY());
53 stage2.setScene(new Scene(chart));
54 stage2.show();
55

56 HBox box = new HBox(video);
57 box.setAlignment(Pos.CENTER);
58 Stage stage3 = new Stage();
59 stage3.setWidth(500);
60 stage3.setHeight(500);
61 stage3.setX(stage.getX());
62 stage3.setY(stage.getY() + stage.getHeight());
63 stage3.setScene(new Scene(box));
64 stage3.show();
65 }
66 }

8113.5 User Interface Controls

13.6 Properties and Bindings

A property is an attribute of a class that you can read or write. Commonly,
the property is backed by a field, and the property getter and setter simply
read and write that field. But the getter and setter can also take other actions,
such as reading values from a database or sending out change notifications.

In JavaFX, properties are particularly important because it is easy to “bind”
them so that one property is updated when another property changes. In the
following sections, we will discuss properties and bindings in detail.

13.6.1 JavaFX Properties

In many programming languages, there is convenient syntax for invoking
property getters and setters. Using the property on the right-hand side of an
assignment calls the getter, and using it on the left-hand side calls the setter.

value = obj.property; // in many languages (but not Java), this calls the property getter
obj.property = value; // and this calls the property setter

Sadly, Java does not have such syntax. But it has supported properties by
convention since Java 1.1. The JavaBeans specification states that a property
should be inferred from a getter/setter pair. For example, a class with methods
String getText() and void setText(String newValue) is deemed to have a text property.
The Introspector and BeanInfo classes in the java.beans package let you enumerate
all properties of a class.

The JavaBeans specification also defines bound properties, where objects emit
property change events when setters are invoked. JavaFX does not make use
of this part of the specification. Instead, a JavaFX property has a third method,
besides the getter and setter, that returns an object implementing the Property
interface. For example, a JavaFX text property has three methods

String getText()
void setText(String value)
Property<String> textProperty()

NOTE: The Node class has over 80 JavaFX properties, and subclasses such as
Rectangle or Button have well over a hundred. The Java API documentation lists
them separately, before the constructors and methods.

You can attach a listener to the property object. That’s different from old-
fashioned JavaBeans. In JavaFX, the property object, not the bean, sends out
notifications. There is a good reason for this change. Implementing bound

Chapter 13 JavaFX82

JavaBeans properties required boilerplate code to add, remove, and fire listen-
ers; in JavaFX it’s much simpler because there are library classes that do much
of that work.

Let’s see how we can implement a property text in a class Greeting. Here is the
simplest way to do that:

public class Greeting
{
 private StringProperty text = new SimpleStringProperty("");

 public final StringProperty textProperty() { return text; }
 public final void setText(String newValue) { text.set(newValue); }
 public final String getText() { return text.get(); }
}

The StringProperty class wraps a string. It has methods for getting and setting
the wrapped value and for managing listeners.

As you can see, implementing a JavaFX property requires some boilerplate
code, and there is unfortunately no way in Java to generate the code automat-
ically. But at least you won’t have to write the code for managing listeners.

It is not a requirement to declare property getters and setters as final, but the
JavaFX designers recommend it.

NOTE:With this pattern, a property object is needed for each property, whether
anyone listens to it or not. If you implement a class with many properties, and
you expect that many instances of that class will be constructed, you should
instantiate the property objects on demand. Use a regular field for holding the
property value, and switch to a property object only when someone calls the
xxxProperty() method.

In the preceding example, we defined a StringProperty. For a primitive-type
property, use one of IntegerProperty, LongProperty, DoubleProperty, FloatProperty, or
BooleanProperty. There are also ListProperty, MapProperty, and SetProperty classes. For
everything else, use an ObjectProperty<T>. All these are abstract classes with
concrete subclasses SimpleIntegerProperty, SimpleObjectProperty<T>, and so on.

NOTE: If all you care about is managing listeners and bindings, your property
methods can return objects of type ObjectProperty<T>, or even the Property<T> inter-
face. The more specialized classes are useful to make computations with the
properties, as explained in the next section.

8313.6 Properties and Bindings

There are two kinds of listeners that can be attached to a property. A
ChangeListener is notified when the property value has changed, and an
InvalidationListener is called when the property value may have changed. The
distinction matters for a property with lazy evaluation. As you will see in
the next section, some properties are computed from others, and the com-
putation is only done when necessary. The ChangeListener callback tells you
the old and new values, which means it has to compute the new value. The
InvalidationListener doesn’t compute the new value, but that means you might
get a callback when the value hasn’t actually changed. In most situations, the
difference between the two is immaterial.

Here is how to add an invalidation listener that is called whenever the text
property of a greeting changes:

Greeting greeting = new Greeting();
greeting.setText("Hello");
greeting.textProperty().addListener(event ->
 {
 System.out.println("greeting is now " + greeting.getText());
 });
greeting.setText("Goodbye"); // the listener is now invoked

In contrast, here is how you attach a change listener:

greeting.textProperty().addListener((property, oldValue, newValue) ->
 {
 System.out.println("greeting is now " + newValue);
 });

CAUTION: It is a bit tricky to use the ChangeListener interface for numeric
properties. One would like to call

slider.valueProperty().addListener((property, oldValue, newValue) ->
 message.setFont(Font.font(newValue)));

But that does not work. DoubleProperty implements Property<Number> and not
Property<Double>. Therefore, the type for oldValue and newValue is Number and not
Double, so you have to unbox manually:

slider.valueProperty().addListener((property, oldValue, newValue) ->
 message.setFont(Font.font(newValue.doubleValue())));

13.6.2 Bindings

The raison d’être for JavaFX properties is the notion of binding: automatically
updating one property when another one changes. Consider, for example,

Chapter 13 JavaFX84

the application in Figure 13.32. When the user edits the shipping address
at the top, the billing address at the bottom updates, too.

Figure 13.32 The bound text property updates automatically.

This is achieved by binding one property to the other:

billing.textProperty().bind(shipping.textProperty());

Under the hood, a change listener is added to the text property of shipping
that sets the text property of billing.

You can also call

billing.textProperty().bindBidirectional(shipping.textProperty());

Now, when either of these properties changes, the other is updated.

To undo a binding, call unbind or unbindBidirectional.

The binding mechanism solves a common problem in user interface program-
ming. For example, consider a date field and a calendar picker. When the
user picks a date from the calendar, the date field should automatically update,
as should be the date property of the model.

Of course, in many situations, one property depends on another, but the re-
lationship is more complex. Consider the program shown in Figure 13.33.
We always want the circle centered in the scene. That is, its centerX property
should be one half of the width property of the scene.

8513.6 Properties and Bindings

Figure 13.33 The center of this circle is bound to half the width and height of the scene.

To achieve this, we need to produce a computed property. The Bindings
class has static methods for this purpose. For example, Bindings.divide(
scene.widthProperty(), 2) is a property whose value is one half of the scene width.
When the scene width changes, so does that property. All that remains is to
bind that computed property to the circle’s centerX property:

circle.centerXProperty().bind(Bindings.divide(scene.widthProperty(), 2));

NOTE: Alternatively, you can call scene.widthProperty().divide(2). With more
complex expressions, the static Bindings methods seems a bit easier to read,
particularly if you use

import static javafx.beans.binding.Bindings.*;

and write divide(scene.widthProperty(), 2).

Here is a more realistic example. We want to disable the Smaller and Larger
buttons when the gauge is too small or large (Figure 13.34).

smaller.disableProperty().bind(Bindings.lessThanOrEqual(gauge.widthProperty(), 0));
larger.disableProperty().bind(Bindings.greaterThanOrEqual(gauge.widthProperty(), 100));

When the width is ≤ 0, the Smaller button is disabled. When the width is
≥ 100, the Larger button is disabled.

Table 13.3 lists all operators that the Bindings class provides. One or both of
the arguments implement the Observable interface or one of its subinterfaces.
The Observable interface provides methods for adding and removing an
InvalidationListener. The ObservableValue interface adds ChangeListener management

Chapter 13 JavaFX86

Figure 13.34 When the gauge reaches either end, a button is disabled.

and a getValue method. Its subinterfaces provide methods to get the value in
the appropriate type. For example, the get method of ObservableStringValue returns
a String and the get method of ObservableIntegerValue returns an int. The return
types of the methods of the Bindings are subinterfaces of the Binding interface,
itself a subinterface of the Observable interface. A Binding knows about all
properties on which it depends.

In practice, you don’t need to worry about all of these interfaces. You combine
properties and you get something that you can bind to another property.

Table 13.3 Operators Supplied by the Bindings Class

ArgumentsMethod Name

An ObservableNumberValue (as first or second
argument) and an int, long, float, double, or
another ObservableNumberValue.

add, subtract, multiply, divide, max,
min

An ObservableNumberValue.negate

An ObservableNumberValue and an int, long, float,
double, or ObservableNumberValue; or an
ObservableStringValue and a String or
ObservableStringValue.

greaterThan, greaterThanOrEqual,
lessThan, lessThanOrEqual

An ObservableNumberValue and an int, long, float,
double, or ObservableNumberValue; or an
ObservableStringValue and a String or
ObservableStringValue; or an ObservableObjectValue and
a Object or ObservableObjectValue.

equal, notEqual

An ObservableStringValue and a String or
ObservableStringValue.

equalIgnoreCase, notEqualIgnoreCase

An Observable(List|Map|Set|StringValue).isEmpty, isNotEmpty

(Continues)

8713.6 Properties and Bindings

Table 13.3 (Continued)

ArgumentsMethod Name

An ObservableObjectValue.isNull, isNotNull

An ObservableStringValue.length

An Observable(List|Map|Set).size

Two ObservableBooleanValue.and, or

An ObservableBooleanValue.not

An ObservableValue that is converted to a string
binding.

convert

A sequence of objects whose toString values are
concatenated. If any of the objects is an
ObservableValue that changes, the concatenation
changes too.

concat

An optional locale, a MessageFormat string, and a
sequence of objects that are formatted. If any
of the objects is an ObservableValue that changes,
the formatted string changes too.

format

An ObservableList and an index, or an ObservableMap
and a key.

valueAt
(double|float|integer|long)ValueAt
stringValueAt

A Callable and a list of dependencies.create(Boolean|Double|Float|Integer|
Long|Object|String)Binding

An Object or ObservableValue and a sequence of
public property names, yielding the property
obj.p1.p2.….pn.

select
select(Boolean|Double|Float|
Integer|Long|String)

Yields a builder for a conditional operator. The
binding when(b).then(v1).otherwise(v2) yields v1 or
v2, depending on whether the
ObservableBooleanValue b is true or not. Here, v1 or
v2 can be regular or observable values. The
conditional value is recomputed whenever an
observable value changes.

when

Building up a computed property with the methods of the Bindings class can
get quite baroque. There is another approach for producing computed bindings
that you may find easier. Simply put the expression that you want to have

Chapter 13 JavaFX88

computed into a lambda, and supply a list of dependent properties. When
any of the properties changes, the lambda is recomputed. For example,

larger.disableProperty().bind(
 createBooleanBinding(
 () -> gauge.getWidth() >= 100, // this expression is computed. . .
 gauge.widthProperty())); // . . . when this property changes

NOTE: In the JavaFX Script language, the compiler analyzed binding expressions
and automatically figured out the dependent properties. You just declared
larger.disable bind gauge.width >= 100, and the compiler attached a listener to the
gauge.width property. Of course, in Java, the programmer needs to supply this
information.

Listings 13.18 to 13.20 show the complete programs for the three examples
in this section.

Listing 13.18 binding/BindingDemo1.java

 1 package binding;
 2

 3 import javafx.application.*;
 4 import javafx.scene.*;
 5 import javafx.scene.control.*;
 6 import javafx.scene.layout.*;
 7 import javafx.stage.*;
 8

 9 /**
10 @version 1.0 2017-12-29
11 @author Cay Horstmann
12 */
13 public class BindingDemo1 extends Application
14 {
15 public void start(Stage stage)
16 {
17 TextArea shipping = new TextArea();
18 TextArea billing = new TextArea();
19 billing.textProperty().bindBidirectional(shipping.textProperty());
20 VBox root = new VBox(
21 new Label("Shipping"), shipping,
22 new Label("Billing"), billing);
23 Scene scene = new Scene(root);
24 stage.setScene(scene);
25 stage.show();
26 }
27 }

8913.6 Properties and Bindings

Listing 13.19 binding/BindingDemo2.java

 1 package binding;
 2

 3 import javafx.application.*;
 4 import javafx.beans.binding.*;
 5 import javafx.scene.*;
 6 import javafx.scene.layout.*;
 7 import javafx.scene.paint.*;
 8 import javafx.scene.shape.*;
 9 import javafx.stage.*;
10

11 /**
12 @version 1.0 2017-12-29
13 @author Cay Horstmann
14 */
15 public class BindingDemo2 extends Application
16 {
17 public void start(Stage stage)
18 {
19 Circle circle = new Circle(100, 100, 100);
20 circle.setFill(Color.RED);
21 Pane pane = new Pane(circle);
22 Scene scene = new Scene(pane);
23 circle.centerXProperty().bind(
24 Bindings.divide(scene.widthProperty(), 2));
25 circle.centerYProperty().bind(
26 Bindings.divide(scene.heightProperty(), 2));
27 stage.setScene(scene);
28 stage.show();
29 }
30 }

Listing 13.20 binding/BindingDemo3.java

 1 package binding;
 2

 3 import static javafx.beans.binding.Bindings.*;
 4

 5 import javafx.application.*;
 6 import javafx.scene.*;
 7 import javafx.scene.control.*;
 8 import javafx.scene.layout.*;
 9 import javafx.scene.paint.*;
10 import javafx.scene.shape.*;
11 import javafx.stage.*;
12

Chapter 13 JavaFX90

13 /**
14 @version 1.0 2017-12-29
15 @author Cay Horstmann
16 */
17 public class BindingDemo3 extends Application
18 {
19 public void start(Stage stage)
20 {
21 Button smaller = new Button("Smaller");
22 Button larger = new Button("Larger");
23 Rectangle gauge = new Rectangle(0, 5, 50, 15);
24 Rectangle outline = new Rectangle(0, 5, 100, 15);
25 outline.setFill(null);
26 outline.setStroke(Color.BLACK);
27 Pane pane = new Pane(gauge, outline);
28

29 smaller.setOnAction(
30 event -> gauge.setWidth(gauge.getWidth() - 10));
31 larger.setOnAction(
32 event -> gauge.setWidth(gauge.getWidth() + 10));
33

34 // using Bindings operator
35

36 smaller.disableProperty().bind(
37 lessThanOrEqual(gauge.widthProperty(), 0));
38

39 // creating a binding from a lambda
40

41 larger.disableProperty().bind(
42 createBooleanBinding(
43 () -> gauge.getWidth() >= 100, // this lambda is computed . . .
44 gauge.widthProperty())); // . . . when this property changes
45

46 Scene scene = new Scene(new HBox(10, smaller, pane, larger));
47 stage.setScene(scene);
48 stage.show();
49 }
50 }

13.7 Long-Running Tasks in User Interface Callbacks

One of the reasons to use threads is to make your programs more responsive.
This is particularly important in an application with a user interface. When
your program needs to do something time consuming, you cannot do the
work in the user-interface thread, or the user interface will be frozen. Instead,
fire up another worker thread.

9113.7 Long-Running Tasks in User Interface Callbacks

For example, if you want to read a file when the user clicks a button, don’t
do this:

Button open = new Button("Open");
open.setOnAction(event ->
 { // BAD--long-running action is executed on UI thread
 Scanner in = new Scanner(file);
 while (in.hasNextLine())
 {
 String line = in.nextLine();
 . . .
 }
 });

Instead, do the work in a separate thread.

open.setOnAction(event ->
 { // GOOD--long-running action in separate thread
 Runnable task = () ->
 {
 Scanner in = new Scanner(file);
 while (in.hasNextLine())
 {
 String line = in.nextLine();
 . . .
 }
 };
 executor.execute(task);
 });

However, you cannot directly update the user interface from the worker thread
that executes the long-running task. User interfaces such as JavaFX, Swing,
or Android are not threadsafe. You cannot manipulate user interface elements
from multiple threads, or they risk becoming corrupted. In fact, JavaFX and
Android check for this, and throw an exception if you try to access the user
interface from a thread other than the UI thread.

Therefore, you need to schedule any UI updates to happen on the UI thread.
Each user interface library provides some mechanism to schedule a Runnable
for execution on the UI thread. For example, in JavaFX, you call

Platform.runLater(() -> content.appendText(line + "\n"));

It is tedious to implement user feedback in a worker thread, so user interface
libraries provide some kind of helper class for managing the details, such as
SwingWorker in Swing and AsyncTask in Android. You specify actions for the long-
running task (which is run on a separate thread), as well as progress updates
and the final disposition (which are run on the UI thread).

Chapter 13 JavaFX92

In JavaFX, you use the Task<V> class for long-running tasks. Conveniently, the
class extends FutureTask<V>, so you don’t have to learn yet another custom
construct.

The Task class provides methods to update certain task properties in the
worker thread. You bind the properties to user interface elements, which are
then updated in the UI thread. The following properties are available:

String message
double progress
double workDone
double totalWork
String title
V value

Here we bind the message property to a status label:

status.textProperty().bind(task.messageProperty());

In the worker thread, call the updateMessage method, not setMessage. That method
coalesces property changes. That is, if several property changes come in rapid
succession, only the latest change results in a corresponding property change
on the user interface thread.

task = new Task<>()
 {
 public Integer call()
 {
 while (. . .)
 {
 . . .
 lines++;
 updateMessage(lines + " lines read");
 }
 }
 };

To cancel a Task, call the cancel method. This will interrupt the thread executing
the task. In the task, periodically call isCanceled to check if the task was canceled.

task = new Task<>()
 {
 public Integer call()
 {
 while (!isCanceled() && !done)
 {
 . . .
 }
 }
 };

9313.7 Long-Running Tasks in User Interface Callbacks

Install event handlers to be notified when the task is scheduled, starts running,
and when it terminates with success, due to an exception, or due to
cancellation. All handlers are executed on the UI thread.

task.isScheduled(event -> cancel.setDisable(false));
task.setOnRunning(event -> status.setText("Running"));
task.setOnSucceeded(event -> status.setText("Read " + task.getValue() + " lines"));
task.setOnFailed(event -> status.setText("Failed due to " + task.getException()));
task.setOnCancelled(event -> status.setText("Canceled"));

The program in Listing 13.21 has commands for opening a text file and for
canceling the file loading process. You should try the program with a long
file, such as the full text of The Count of Monte Cristo, supplied in the gutenberg
directory of the book’s companion code. The file is loaded in a separate
thread. While the file is being read, the Open button is disabled and the
Cancel button is enabled (see Figure 13.35). After each line is read, a line
counter in the status bar is updated. After the reading process is complete,
the Open button is reenabled, the Cancel button is disabled, and the status
line text is set to a “Done” message. We added a delay of 10 milliseconds
between lines so that you can clearly observe the status updates. You would
not do this in your own programs.

Figure 13.35 Reading lines from a web page in a worker thread

Pay close attention to what happens on the worker thread and the UI thread:

• The call method is executed on the worker thread.
• The lambda passed to Platform.runLater is executed on the UI thread.
• The handlers for the “on scheduled,” “on running,” “on failed,” “on

cancelled,” and “on succeeded” events are executed on the UI thread.

Chapter 13 JavaFX94

• The call to updateMessage causes a property change on the UI thread that
triggers the setter of the bound property.

Listing 13.21 uitask/TaskDemo.java

 1 package uitask;
 2

 3 import java.io.*;
 4 import java.nio.charset.*;
 5 import java.util.*;
 6 import java.util.concurrent.*;
 7

 8 import javafx.application.*;
 9 import javafx.concurrent.*;
10 import javafx.geometry.*;
11 import javafx.scene.*;
12 import javafx.scene.control.*;
13 import javafx.scene.layout.*;
14 import javafx.stage.*;
15

16 public class TaskDemo extends Application
17 {
18 private TextArea content = new TextArea("");
19 private Label status = new Label();
20 private ExecutorService executor = Executors.newCachedThreadPool();
21 private Task<Integer> task;
22 private Button open = new Button("Open");
23 private Button cancel = new Button("Cancel");
24

25 public void start(Stage stage)
26 {
27 open.setOnAction(event -> read(stage));
28 cancel.setOnAction(event ->
29 {
30 if (task != null) task.cancel();
31 });
32 cancel.setDisable(true);
33 stage.setOnCloseRequest(event ->
34 {
35 if (task != null) task.cancel();
36 executor.shutdown();
37 Platform.exit();
38 });
39

40 HBox box = new HBox(10, open, cancel);
41 VBox pane = new VBox(10, content, box, status);
42 pane.setPadding(new Insets(10));
43 stage.setScene(new Scene(pane));

(Continues)

9513.7 Long-Running Tasks in User Interface Callbacks

Listing 13.21 (Continued)

44 stage.setTitle("TaskDemo");
45 stage.show();
46 }
47

48 private void read(Stage stage)
49 {
50 if (task != null) return;
51 FileChooser chooser = new FileChooser();
52 chooser.setInitialDirectory(new File(".."));
53 File file = chooser.showOpenDialog(stage);
54 if (file == null) return;
55 content.setText("");
56 task = new Task<>()
57 {
58 public Integer call()
59 {
60 int lines = 0;
61 try (Scanner in = new Scanner(file, StandardCharsets.UTF_8))
62 {
63 while (!isCancelled() && in.hasNextLine())
64 {
65 Thread.sleep(10); // simulate work
66 String line = in.nextLine();
67 Platform.runLater(() ->
68 content.appendText(line + "\n"));
69 lines++;
70 updateMessage(lines + " lines read");
71 }
72 }
73 catch (InterruptedException e)
74 {
75 // task was canceled in sleep
76 }
77 catch (IOException e)
78 {
79 throw new UncheckedIOException(null, e);
80 }
81 return lines;
82 }
83 };
84 executor.execute(task);
85 task.setOnScheduled(event ->
86 {
87 cancel.setDisable(false);
88 open.setDisable(true);
89 });

Chapter 13 JavaFX96

90 task.setOnRunning(event ->
91 {
92 status.setText("Running");
93 status.textProperty().bind(task.messageProperty());
94 });
95 task.setOnFailed(event ->
96 {
97 cancel.setDisable(true);
98 status.textProperty().unbind();
99 status.setText("Failed due to " + task.getException());
100 task = null;
101 open.setDisable(false);
102 });
103 task.setOnCancelled(event ->
104 {
105 cancel.setDisable(true);
106 status.textProperty().unbind();
107 status.setText("Canceled");
108 task = null;
109 open.setDisable(false);
110 });
111 task.setOnSucceeded(event ->
112 {
113 cancel.setDisable(true);
114 status.textProperty().unbind();
115 status.setText("Done reading " + task.getValue() + " lines");
116 task = null;
117 open.setDisable(false);
118 });
119 }
120 }

javafx.application.Platform

• static void runLater(Runnable runnable)

calls runnable.run() on the UI thread.

javafx.concurrent.Task<V>

• protected abstract V call()

override this method to carry out the work of the task.

• boolean cancel()

cancels this task.

(Continues)

9713.7 Long-Running Tasks in User Interface Callbacks

javafx.concurrent.Task<V> (Continued)

• V getValue()

yields the value set by the updateValue method, after successful completion, the
value returned by the call method.

• Throwable getException()

yields the exception that terminated the call method, or null if none was thrown.

• void setOnCancelled(EventHandler<WorkerStateEvent> value)
• void setOnFailed(EventHandler<WorkerStateEvent> value)
• void setOnRunning(EventHandler<WorkerStateEvent> value)
• void setOnScheduled(EventHandler<WorkerStateEvent> value)
• void setOnSucceeded(EventHandler<WorkerStateEvent> value)

sets the event handler for the given worker state event.

• protected void updateMessage(String message)
• protected void updateProgress(double workDone, double max)
• protected void updateProgress(long workDone, long max)
• protected void updateTitle(String title)
• protected void updateValue(V value)

updates the given property. The updateProgress method sets the workDone an totalWork
properties to the arguments and the progress property to the ratio of the argu-
ments. Property updates are coalesced and later executed on the the UI thread.

That brings us to the end of this fast-paced introduction to JavaFX. JavaFX
has a few rough edges, mostly due to a hurried transformation from the
original scripting language. But it is certainly no harder to use than Swing,
and it has many more useful and attractive controls than Swing ever had.

Chapter 13 JavaFX98

