
26
ATM Case Study, Part 2:

Implementing an OO Design in C#

O b j e c t i v e s
In this chapter you’ll:
■ Incorporate inheritance into the design of the ATM.
■ Incorporate polymorphism into the design of the ATM.
■ Fully implement in C# the UML-based object-oriented

design of the ATM software.
■ Study a detailed code walkthrough of the ATM software

system that explains the implementation issues.

csfp6_26_ATM2.fm Page 1 Thursday, July 7, 2016 10:13 AM

26_2 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

O
u

tl
in

e

26.1 Introduction
In Chapter 25, we developed an object-oriented design for our ATM system. In this chap-
ter, we take a deeper look at the details of programming with classes. We now begin im-
plementing our object-oriented design by converting class diagrams to C# code. In the
final case study section (Section 26.3), we modify the code to incorporate the object-ori-
ented concepts of inheritance and polymorphism. We present the full C# code implemen-
tation in Section 26.4.

26.2 Starting to Program the Classes of the ATM System
Visibility
We now apply access modifiers to the members of our classes. In Chapter 4, we introduced
access modifiers public and private. Access modifiers determine the visibility, or acces-
sibility, of an object’s attributes and operations to other objects. Before we can begin im-
plementing our design, we must consider which attributes and methods of our classes
should be public and which should be private.

In Chapter 4, we observed that attributes normally should be private and that
methods invoked by clients of a class should be public. Methods that are called only by
other methods of the class as “utility functions,” however, should be private. The UML
employs visibility markers for modeling the visibility of attributes and operations. Public
visibility is indicated by placing a plus sign (+) before an operation or an attribute; a minus
sign (–) indicates private visibility. Figure 26.1 shows our updated class diagram with vis-
ibility markers included. [Note: We do not include any operation parameters in Fig. 26.1.
This is perfectly normal. Adding visibility markers does not affect the parameters already
modeled in the class diagrams of Figs. 25.18–25.21.]

Navigability
Before we begin implementing our design in C#, we introduce an additional UML notation.
The class diagram in Fig. 26.2 further refines the relationships among classes in the ATM
system by adding navigability arrows to the association lines. Navigability arrows (repre-
sented as arrows with stick arrowheads in the class diagram) indicate in which direction an
association can be traversed and are based on the collaborations modeled in communication
and sequence diagrams (see Section 25.7). When implementing a system designed using the

26.1 Introduction
26.2 Starting to Program the Classes of the

ATM System
26.3 Incorporating Inheritance and

Polymorphism into the ATM System
26.4 ATM Case Study Implementation

26.4.1 Class ATM
26.4.2 Class Screen
26.4.3 Class Keypad

26.4.4 Class CashDispenser
26.4.5 Class DepositSlot
26.4.6 Class Account
26.4.7 Class BankDatabase
26.4.8 Class Transaction
26.4.9 Class BalanceInquiry

26.4.10 Class Withdrawal
26.4.11 Class Deposit
26.4.12 Class ATMCaseStudy

26.5 Wrap-Up

csfp6_26_ATM2.fm Page 2 Thursday, July 7, 2016 10:13 AM

26.2 Starting to Program the Classes of the ATM System 26_3

UML, programmers use navigability arrows to help determine which objects need references
to other objects. For example, the navigability arrow pointing from class ATM to class Bank-
Database indicates that we can navigate from the former to the latter, thereby enabling the
ATM to invoke the BankDatabase’s operations. However, since Fig. 26.2 does not contain a
navigability arrow pointing from class BankDatabase to class ATM, the BankDatabase cannot
access the ATM’s operations. Associations in a class diagram that have navigability arrows at
both ends or do not have navigability arrows at all indicate bidirectional navigability—nav-
igation can proceed in either direction across the association.

The class diagram of Fig. 26.2 omits classes BalanceInquiry and Deposit to keep the
diagram simple. The navigability of the associations in which these classes participate
closely parallels the navigability of class Withdrawal’s associations. Recall that Balance-
Inquiry has an association with class Screen. We can navigate from class BalanceInquiry
to class Screen along this association, but we cannot navigate from class Screen to class
BalanceInquiry. Thus, if we were to model class BalanceInquiry in Fig. 26.2, we would
place a navigability arrow at class Screen’s end of this association. Also recall that class

f

Fig. 26.1 | Class diagram with visibility markers.

ATM

– userAuthenticated : bool = false

BalanceInquiry

– accountNumber : int

CashDispenser

– billCount : int = 500

DepositSlot

Screen

Keypad

Withdrawal

– accountNumber : int
– amount : decimal

BankDatabase

Deposit

– accountNumber : int
– amount : decimal

+ AuthenticateUser() : bool
+ GetAvailableBalance() : decimal
+ GetTotalBalance() : decimal
+ Credit()
+ Debit()

+ Execute()

+ Execute()
+ DisplayMessage()

+ DispenseCash()
+ IsSufficientCashAvailable() : bool

+ Getinput() : int+ Execute()

+ IsDepositEnvelopeReceived() : bool

Account

– accountNumber : int
– pin : tnt
+ «property» AvailableBalance :
 Decimal {readOnly}
+ «property» TotalBalance :
 Decimal {readOnly}

+ ValidatePIN() : bool
+ Credit()
+ Debit()

csfp6_26_ATM2.fm Page 3 Thursday, July 7, 2016 10:13 AM

26_4 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

Deposit associates with classes Screen, Keypad and DepositSlot. We can navigate from
class Deposit to each of these classes, but not vice versa. We therefore would place navi-
gability arrows at the Screen, Keypad and DepositSlot ends of these associations. [Note:
We model these additional classes and associations in our final class diagram in
Section 26.3, after we have simplified the structure of our system by incorporating the
object-oriented concept of inheritance.]

Implementing the ATM System from Its UML Design
We’re now ready to begin implementing the ATM system. We first convert the classes in
the diagrams of Fig. 26.1 and 26.2 into C# code. This code will represent the “skeleton”
of the system. In Section 26.3, we modify the code to incorporate the object-oriented con-
cept of inheritance. In Section 26.4, we present the complete working C# code that im-
plements our object-oriented design.

As an example, we begin to develop the code for class Withdrawal from our design of
class Withdrawal in Fig. 26.1. We use this figure to determine the attributes and opera-
tions of the class. We use the UML model in Fig. 26.2 to determine the associations
among classes. We follow these four guidelines for each class:

1. Use the name located in the first compartment of a class in a class diagram to de-
clare the class as a public class with an empty parameterless constructor—we in-
clude this constructor simply as a placeholder to remind us that most classes will
need one or more constructors. In Section 26.4.10, when we complete a working

Fig. 26.2 | Class diagram with navigability arrows.

Accesses/modifies an
account balance through

Executes

1

1

1

1 1

1

1

1

1

1 1 1 1

1

0..*

0..11
0..1

0..1 0..10..1

1
Accesses/modifies an account balance

Authenticates user against

Keypad

Withdrawal

DepositSlot

ATM

CashDispenser

Screen

Account

BankDatabase

csfp6_26_ATM2.fm Page 4 Thursday, July 7, 2016 10:13 AM

26.2 Starting to Program the Classes of the ATM System 26_5

version of this class, we add any necessary arguments and code to the body of the
constructor. Class Withdrawal initially yields the code in Fig. 26.3.

2. Use the attributes located in the class’s second compartment to declare the in-
stance variables. The private attributes accountNumber and amount of class
Withdrawal yield the code in Fig. 26.4.

3. Use the associations described in the class diagram to declare references to other
objects. According to Fig. 26.2, Withdrawal can access one object of class
Screen, one object of class Keypad, one object of class CashDispenser and one
object of class BankDatabase. Class Withdrawal must maintain references to
these objects to send messages to them, so lines 10–13 of Fig. 26.5 declare the
appropriate references as private instance variables. In the implementation of
class Withdrawal in Section 26.4.10, a constructor initializes these instance vari-
ables with references to the actual objects.

4. Use the operations located in the third compartment of Fig. 26.1 to declare the
shells of the methods. If we have not yet specified a return type for an operation,
we declare the method with return type void. Refer to the class diagrams of
Figs. 25.18–25.21 to declare any necessary parameters. Adding the public oper-

1 // Fig. 26.3: Withdrawal.cs
2 // Class Withdrawal represents an ATM withdrawal transaction
3 public class Withdrawal
4 {
5 // parameterless constructor
6 public Withdrawal()
7 {
8 // constructor body code
9 }

10 }

Fig. 26.3 | Initial C# code for class Withdrawal based on Figs. 26.1 and 26.2.

1 // Fig. 26.4: Withdrawal.cs
2 // Class Withdrawal represents an ATM withdrawal transaction
3 public class Withdrawal
4 {
5 // attributes
6 private int accountNumber; // account to withdraw funds from
7 private decimal amount; // amount to withdraw from account
8
9 // parameterless constructor

10 public Withdrawal()
11 {
12 // constructor body code
13 }
14 }

Fig. 26.4 | Incorporating private variables for class Withdrawal based on Figs. 26.1 and 26.2.

csfp6_26_ATM2.fm Page 5 Thursday, July 7, 2016 10:13 AM

26_6 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

ation Execute (which has an empty parameter list) in class Withdrawal yields the
code in lines 23–26 of Fig. 26.6. [Note: We code the bodies of the methods when
we implement the complete ATM system.]

Software Engineering Observation 26.1
Many UML modeling tools can convert UML-based designs into C# code, considerably
speeding up the implementation process.

1 // Fig. 26.5: Withdrawal.cs
2 // Class Withdrawal represents an ATM withdrawal transaction
3 public class Withdrawal
4 {
5 // attributes
6 private int accountNumber; // account to withdraw funds from
7 private decimal amount; // amount to withdraw
8
9 // references to associated objects

10 private Screen screen; // ATM’s screen
11 private Keypad keypad; // ATM’s keypad
12 private CashDispenser cashDispenser; // ATM’s cash dispenser
13 private BankDatabase bankDatabase; // account-information database
14
15 // parameterless constructor
16 public Withdrawal()
17 {
18 // constructor body code
19 }
20 }

Fig. 26.5 | Incorporating private reference handles for the associations of class Withdrawal
based on Figs. 26.1 and 26.2.

1 // Fig. 26.6: Withdrawal.cs
2 // Class Withdrawal represents an ATM withdrawal transaction
3 public class Withdrawal
4 {
5 // attributes
6 private int accountNumber; // account to withdraw funds from
7 private decimal amount; // amount to withdraw
8
9 // references to associated objects

10 private Screen screen; // ATM’s screen
11 private Keypad keypad; // ATM’s keypad
12 private CashDispenser cashDispenser; // ATM’s cash dispenser
13 private BankDatabase bankDatabase; // account-information database
14
15 // parameterless constructor
16 public Withdrawal()
17 {

Fig. 26.6 | C# code incorporating method Execute in class Withdrawal based on Figs. 26.1
and 26.2. (Part 1 of 2.)

csfp6_26_ATM2.fm Page 6 Thursday, July 7, 2016 10:13 AM

26.3 Incorporating Inheritance and Polymorphism into the ATM System 26_7

This concludes our discussion of the basics of generating class files from UML dia-
grams. In the next section, we demonstrate how to modify the code in Fig. 26.6 to incor-
porate the object-oriented concepts of inheritance and polymorphism, which we presented
in Chapters 11 and 12, respectively.

Self-Review Exercises
26.1 State whether the following statement is true or false, and if false, explain why: If an attribute
of a class is marked with a minus sign (-) in a class diagram, the attribute is not directly accessible
outside of the class.

26.2 In Fig. 26.2, the association between the ATM and the Screen indicates:
a) that we can navigate from the Screen to the ATM.
b) that we can navigate from the ATM to the Screen.
c) Both a and b; the association is bidirectional.
d) None of the above.

26.3 Write C# code to begin implementing the design for class Account.

26.3 Incorporating Inheritance and Polymorphism into
the ATM System
We now revisit our ATM system design to see how it might benefit from inheritance and
polymorphism. To apply inheritance, we first look for commonality among classes in the sys-
tem. We create an inheritance hierarchy to model similar classes in an elegant and efficient
manner that enables us to process objects of these classes polymorphically. We then modify
our class diagram to incorporate the new inheritance relationships. Finally, we demonstrate
how the inheritance aspects of our updated design are translated into C# code.

In Section 25.3, we encountered the problem of representing a financial transaction
in the system. Rather than create one class to represent all transaction types, we created
three distinct transaction classes—BalanceInquiry, Withdrawal and Deposit—to repre-
sent the transactions that the ATM system can perform. The class diagram of Fig. 26.7
shows the attributes and operations of these classes. They have one private attribute
(accountNumber) and one public operation (Execute) in common. Each class requires
attribute accountNumber to specify the account to which the transaction applies. Each
class contains operation Execute, which the ATM invokes to perform the transaction.
Clearly, BalanceInquiry, Withdrawal and Deposit represent types of transactions.

18 // constructor body code
19 }
20
21 // operations
22 // perform transaction
23 public void Execute()
24 {
25 // Execute method body code
26 }
27 }

Fig. 26.6 | C# code incorporating method Execute in class Withdrawal based on Figs. 26.1
and 26.2. (Part 2 of 2.)

csfp6_26_ATM2.fm Page 7 Thursday, July 7, 2016 10:13 AM

26_8 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

Figure 26.7 reveals commonality among the transaction classes, so using inheritance to
factor out the common features seems appropriate for designing these classes. We place the
common functionality in base class Transaction and derive classes BalanceInquiry,
Withdrawal and Deposit from Transaction (Fig. 26.8).

The UML specifies a relationship called a generalization to model inheritance.
Figure 26.8 is the class diagram that models the inheritance relationship between base class
Transaction and its three derived classes. The arrows with triangular hollow arrowheads
indicate that classes BalanceInquiry, Withdrawal and Deposit are derived from class
Transaction by inheritance. Class Transaction is said to be a generalization of its derived
classes. The derived classes are said to be specializations of class Transaction.

As Fig. 26.7 shows, classes BalanceInquiry, Withdrawal and Deposit share private int
attribute accountNumber. We’d like to factor out this common attribute and place it in the
base class Transaction. However, recall that a base class’s private attributes are not accessible
in derived classes. The derived classes of Transaction require access to attribute account-
Number so that they can specify which Account to process in the BankDatabase. A derived

Fig. 26.7 | Attributes and operations of classes BalanceInquiry, Withdrawal and
Deposit.

Fig. 26.8 | Class diagram modeling the generalization (i.e., inheritance) relationship between
the base class Transaction and its derived classes BalanceInquiry, Withdrawal and Deposit.

BalanceInquiry

– accountNumber : int

Withdrawal

– accountNumber : int
– amount : decimal

Deposit

– accountNumber : int
– amount : decimal

+ Execute()

+ Execute() + Execute()

Transaction

+ «property» AccountNumber : int {readOnly}

+ Execute()

BalanceInquiry

+ Execute()

Withdrawal

+ Execute()

– amount : decimal

Deposit

+ Execute()

– amount : decimal

csfp6_26_ATM2.fm Page 8 Thursday, July 7, 2016 10:13 AM

26.3 Incorporating Inheritance and Polymorphism into the ATM System 26_9

class can access the public and protected members of its base class. However, the derived
classes in this case do not need to modify attribute accountNumber—they need only to access
its value. For this reason, we have chosen to replace private attribute accountNumber in our
model with the public read-only property AccountNumber. Since this is a read-only property,
it provides only a get accessor to access the account number. Each derived class inherits this
property, enabling the derived class to access its account number as needed to execute a trans-
action. We no longer list accountNumber in the second compartment of each derived class,
because the three derived classes inherit property AccountNumber from Transaction.

According to Fig. 26.7, classes BalanceInquiry, Withdrawal and Deposit also share
operation Execute, so base class Transaction should contain public operation Execute.
However, it does not make sense to implement Execute in class Transaction, because the
functionality that this operation provides depends on the specific type of the actual trans-
action. We therefore declare Execute as an abstract operation in base class Transaction—
it will become an abstract method in the C# implementation. This makes Transaction
an abstract class and forces any class derived from Transaction that must be a concrete
class (i.e., BalanceInquiry, Withdrawal and Deposit) to implement the operation Exe-
cute to make the derived class concrete. The UML requires that we place abstract class
names and abstract operations in italics. Thus, in Fig. 26.8, Transaction and Execute
appear in italics for the Transaction class; Execute is not italicized in derived classes
BalanceInquiry, Withdrawal and Deposit. Each derived class overrides base class Trans-
action’s Execute operation with an appropriate concrete implementation. Fig. 26.8
includes operation Execute in the third compartment of classes BalanceInquiry, With-
drawal and Deposit, because each class has a different concrete implementation of the
overridden operation.

A derived class can inherit interface and implementation from a base class. Compared
to a hierarchy designed for implementation inheritance, one designed for interface inher-
itance tends to have its functionality lower in the hierarchy—a base class signifies one or
more operations that should be defined by each class in the hierarchy, but the individual
derived classes provide their own implementations of the operation(s). The inheritance
hierarchy designed for the ATM system takes advantage of this type of inheritance, which
provides the ATM with an elegant way to execute all transactions “in the general” (i.e., poly-
morphically). Each class derived from Transaction inherits some implementation details
(e.g., property AccountNumber), but the primary benefit of incorporating inheritance into
our system is that the derived classes share a common interface (e.g., abstract operation
Execute). The ATM can aim a Transaction reference at any transaction, and when the ATM
invokes the operation Execute through this reference, the version of Execute specific to
that transaction runs (polymorphically) automatically (due to polymorphism). For
example, suppose a user chooses to perform a balance inquiry. The ATM aims a Transac-
tion reference at a new object of class BalanceInquiry, which the C# compiler allows
because a BalanceInquiry is a Transaction. When the ATM uses this reference to invoke
Execute, BalanceInquiry’s version of Execute is called (polymorphically).

This polymorphic approach also makes the system easily extensible. Should we wish
to create a new transaction type (e.g., funds transfer or bill payment), we would simply
create an additional Transaction derived class that overrides the Execute operation with
a version appropriate for the new transaction type. We would need to make only minimal
changes to the system code to allow users to choose the new transaction type from the

csfp6_26_ATM2.fm Page 9 Thursday, July 7, 2016 10:13 AM

26_10 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

main menu and for the ATM to instantiate and execute objects of the new derived class. The
ATM could execute transactions of the new type using the current code, because it executes
all transactions identically (through polymorphism).

An abstract class like Transaction is one for which the programmer never intends to
(and, in fact, cannot) instantiate objects. An abstract class simply declares common attri-
butes and behaviors for its derived classes in an inheritance hierarchy. Class Transaction
defines the concept of what it means to be a transaction that has an account number and
can be executed. You may wonder why we bother to include abstract operation Execute
in class Transaction if Execute lacks a concrete implementation. Conceptually, we
include this operation because it is the defining behavior of all transactions—executing.
Technically, we must include operation Execute in base class Transaction so that the ATM
(or any other class) can invoke each derived class’s overridden version of this operation
polymorphically via a Transaction reference.

Derived classes BalanceInquiry, Withdrawal and Deposit inherit property Account-
Number from base class Transaction, but classes Withdrawal and Deposit contain the
additional attribute amount that distinguishes them from class BalanceInquiry. Classes
Withdrawal and Deposit require this additional attribute to store the amount of money
that the user wishes to withdraw or deposit. Class BalanceInquiry has no need for such
an attribute and requires only an account number to execute. Even though two of the three
Transaction derived classes share the attribute amount, we do not place it in base class
Transaction—we place only features common to all the derived classes in the base class,
so derived classes do not inherit unnecessary attributes (and operations).

Figure 26.9 presents an updated class diagram of our model that incorporates inheri-
tance and introduces abstract base class Transaction. We model an association between
class ATM and class Transaction to show that the ATM, at any given moment, either is exe-
cuting a transaction or is not (i.e., zero or one objects of type Transaction exist in the
system at a time). Because a Withdrawal is a type of Transaction, we no longer draw an
association line directly between class ATM and class Withdrawal—derived class With-
drawal inherits base class Transaction’s association with class ATM. Derived classes Bal-
anceInquiry and Deposit also inherit this association, which replaces the previously
omitted associations between classes BalanceInquiry and Deposit, and class ATM. Note
again the use of triangular hollow arrowheads to indicate the specializations (i.e., derived
classes) of class Transaction, as indicated in Fig. 26.8.

We also add an association between Transaction and BankDatabase (Fig. 26.9). All
Transactions require a reference to the BankDatabase so that they can access and modify
account information. Each Transaction derived class inherits this reference, so we no
longer model the association between Withdrawal and BankDatabase. The association
between class Transaction and the BankDatabase replaces the previously omitted associ-
ations between classes BalanceInquiry and Deposit, and the BankDatabase.

We include an association between class Transaction and the Screen because all
Transactions display output to the user via the Screen. Each derived class inherits this
association. Therefore, we no longer include the association previously modeled between
Withdrawal and the Screen. Class Withdrawal still participates in associations with the
CashDispenser and the Keypad, however—these associations apply to derived class With-
drawal but not to derived classes BalanceInquiry and Deposit, so we do not move these
associations to base class Transaction.

csfp6_26_ATM2.fm Page 10 Thursday, July 7, 2016 10:13 AM

26.3 Incorporating Inheritance and Polymorphism into the ATM System 26_11

Our class diagram incorporating inheritance (Fig. 26.9) also models classes Deposit and
BalanceInquiry. We show associations between Deposit and both the DepositSlot and
the Keypad. Class BalanceInquiry takes part in only those associations inherited from class
Transaction—a BalanceInquiry interacts only with the BankDatabase and the Screen.

The modified class diagram in Fig. 26.10 includes abstract base class Transaction.
This abbreviated diagram does not show inheritance relationships (these appear in
Fig. 26.9), but instead shows the attributes and operations after we have employed inher-
itance in our system. Abstract class name Transaction and abstract operation name Exe-
cute in class Transaction appear in italics. To save space, we do not include those
attributes shown by associations in Fig. 26.9—we do, however, include them in the C#
implementation. We also omit all operation parameters—incorporating inheritance does
not affect the parameters already modeled in Figs. 25.18–25.21.

Fig. 26.9 | Class diagram of the ATM system (incorporating inheritance). Abstract class
name Transaction appears in italics.

Software Engineering Observation 26.2
A complete class diagram shows all the associations among classes, and all the attributes
and operations for each class. When the number of class attributes, operations and
associations is substantial (as in Figs. 26.9 and 26.10), a good practice that promotes
readability is to divide this information between two class diagrams—one focusing on
associations and the other on attributes and operations.

Accesses/modifies an
account balance through

Executes

1

1

1

1 1

1

1

1

1

1 1 1 1

11

1

0..1

0..11
0..1

0..1 0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Transaction

BalanceInquiry

Withdrawal
DepositSlot

ATM

CashDispenser

Screen

Deposit

Account

BankDatabase

csfp6_26_ATM2.fm Page 11 Thursday, July 7, 2016 10:13 AM

26_12 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

Implementing the ATM System Design Incorporating Inheritance
In the previous section, we began implementing the ATM system design in C#. We now
incorporate inheritance, using class Withdrawal as an example.

1. If a class A is a generalization of class B, then class B is derived from (and is a spe-
cialization of) class A. For example, abstract base class Transaction is a general-
ization of class Withdrawal. Thus, class Withdrawal is derived from (and is a
specialization of) class Transaction. Figure 26.11contains the shell of class
Withdrawal, in which the class definition indicates the inheritance relationship
between Withdrawal and Transaction (line 3).

2. If class A is an abstract class and class B is derived from class A, then class B must
implement the abstract operations of class A if class B is to be a concrete class. For
example, class Transaction contains abstract operation Execute, so class

Fig. 26.10 | Class diagram after incorporating inheritance into the system.

– accountNumber : int
– pin : int
+ «property» AvailableBalance :
 decimal {readOnly}
+ «property» TotalBalance :
 decimal {readOnly}

+ ValidatePIN() : bool
+ Credit()
+ Debit()

ATM

– userAuthenticated : bool = false

BalanceInquiry

CashDispenser

– billCount : int = 500

DepositSlot

Screen

Keypad
Withdrawal

– amount : decimal

BankDatabase

Deposit

– amount : decimal

+ AuthenticateUser() : bool
+ GetAvailableBalance() : decimal
+ GetTotalBalance() : decimal
+ Credit()
+ Debit()

Account

+ Execute()

Transaction

+ «property» AccountNumber :
 int {readOnly}

+ Execute()

+ Execute()

+ DisplayMessage()

+ DispenseCash()
+ IsSufficientCashAvailable() : bool

+ Getinput() : int

+ Execute()

+ IsEnvelopeReceived() : bool

csfp6_26_ATM2.fm Page 12 Thursday, July 7, 2016 10:13 AM

26.3 Incorporating Inheritance and Polymorphism into the ATM System 26_13

Withdrawal must implement this operation if we want to instantiate Withdrawal
objects. Figure 26.12 contains the portions of the C# code for class Withdrawal
that can be inferred from Figs. 26.9 and 26.10. Class Withdrawal inherits prop-
erty AccountNumber from base class Transaction, so Withdrawal does not de-
clare this property. Class Withdrawal also inherits references to the Screen and
the BankDatabase from class Transaction, so we do not include these references.
Figure 26.10 specifies attribute amount and operation Execute for class With-
drawal. Line 6 of Fig. 26.12 declares an instance variable for attribute amount.
Lines 17–20 declare the shell of a method for operation Execute. Recall that de-
rived class Withdrawal must provide a concrete implementation of the abstract
method Execute from base class Transaction. The keypad and cash-Dispenser
references (lines 7–8) are instance variables whose need is apparent from class
Withdrawal’s associations in Fig. 26.9—in this class’s C# implementation
(Section 26.4.10), a constructor initializes these references to actual objects.

We discuss the polymorphic processing of Transactions in Section 26.4.1 of the
ATM implementation. Class ATM performs the actual polymorphic call to method Exe-
cute at line 99 of Fig. 26.26.

1 // Fig. 26.11: Withdrawal.cs
2 // Class Withdrawal represents an ATM withdrawal transaction.
3 public class Withdrawal : Transaction
4 {
5 // code for members of class Withdrawal
6 }

Fig. 26.11 | C# code for shell of class Withdrawal.

1 // Fig. 26.12: Withdrawal.cs
2 // Class Withdrawal represents an ATM withdrawal transaction.
3 public class Withdrawal : Transaction
4 {
5 // attributes
6 private decimal amount; // amount to withdraw
7 private Keypad keypad; // reference to keypad
8 private CashDispenser cashDispenser; // reference to cash dispenser
9

10 // parameterless constructor
11 public Withdrawal()
12 {
13 // constructor body code
14 }
15
16 // method that overrides Execute
17 public override void Execute()
18 {
19 // Execute method body code
20 }
21 }

Fig. 26.12 | C# code for class Withdrawal based on Figs. 26.9 and 26.10.

csfp6_26_ATM2.fm Page 13 Thursday, July 7, 2016 10:13 AM

26_14 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

Self-Review Exercises
26.4 The UML uses an arrow with a to indicate a generalization relationship.

a) solid filled arrowhead
b) triangular hollow arrowhead
c) diamond-shaped hollow arrowhead
d) stick arrowhead

26.5 State whether the following statement is true or false, and if false, explain why: The UML
requires that we underline abstract class names and abstract operation names.

26.6 Write C# code to begin implementing the design for class Transaction specified in
Figures 26.9 and 26.10. Be sure to include private references based on class Transaction’s associ-
ations. Also, be sure to include properties with public get accessors for any of the private instance
variables that the derived classes must access to perform their tasks.

26.4 ATM Case Study Implementation
This section contains the ATM system’s complete working implementation. We consider
the 11 classes in the order in which we identified them in Section 25.3 (with the exception
of Transaction, which was introduced in Section 26.3 as the base class of classes Balance-
Inquiry, Withdrawal and Deposit):

• ATM

• Screen

• Keypad

• CashDispenser

• DepositSlot

• Account

• BankDatabase

• Transaction

• BalanceInquiry

• Withdrawal

• Deposit

We apply the guidelines discussed in Sections 26.2–26.3 to code these classes based on
how we modeled them in the UML class diagrams of Figs. 26.9–26.10. To develop the
bodies of class methods, we refer to the activity diagrams presented in Section 25.5 and
the communication and sequence diagrams presented in Section 25.6. Our ATM design
does not specify all the program logic and may not specify all the attributes and operations
required to complete the ATM implementation. This is a normal part of the object-ori-
ented design process. As we implement the system, we complete the program logic and add
attributes and behaviors as necessary to construct the ATM system specified by the re-
quirements document in Section 25.2.

We conclude the discussion by presenting a test harness (ATMCaseStudy in
Section 26.4.12) that creates an object of class ATM and starts it by calling its Run method.
Recall that we are developing a first version of the ATM system that runs on a personal

csfp6_26_ATM2.fm Page 14 Thursday, July 7, 2016 10:13 AM

26.4 ATM Case Study Implementation 26_15

computer and uses the keyboard and monitor to approximate the ATM’s keypad and
screen. Also, we simulate the actions of the ATM’s cash dispenser and deposit slot. We
attempt to implement the system so that real hardware versions of these devices could be
integrated without significant code changes. [Note: For the purpose of this simulation, we
have provided two predefined accounts in class BankDatabase. The first account has the
account number 12345 and the PIN 54321. The second account has the account number
98765 and the PIN 56789. You should use these accounts when testing the ATM.]

26.4.1 Class ATM
Class ATM (Fig. 26.13) represents the ATM as a whole. Lines 5–11 implement the class’s
attributes. We determine all but one of these attributes from the UML class diagrams of
Figs. 26.9–26.10. Line 5 declares the bool attribute userAuthenticated from Fig. 26.10.
Line 6 declares an attribute not found in our UML design—int attribute currentAc-
countNumber, which keeps track of the account number of the current authenticated user.
Lines 7–11 declare reference-type instance variables corresponding to the ATM class’s asso-
ciations modeled in the class diagram of Fig. 26.9. These attributes allow the ATM to ac-
cess its parts (i.e., its Screen, Keypad, CashDispenser and DepositSlot) and interact with
the bank’s account information database (i.e., a BankDatabase object).

Lines 14–20 declare an enumeration that corresponds to the four options in the ATM’s
main menu (i.e., balance inquiry, withdrawal, deposit and exit). Lines 23–32 declare class
ATM’s constructor, which initializes the class’s attributes. When an ATM object is first created,
no user is authenticated, so line 25 initializes userAuthenticated to false. Line 26 initial-
izes currentAccountNumber to 0 because there is no current user yet. Lines 27–30 instan-
tiate new objects to represent the parts of the ATM. Recall that class ATM has composition
relationships with classes Screen, Keypad, CashDispenser and DepositSlot, so class ATM is
responsible for their creation. Line 31 creates a new BankDatabase. As you’ll soon see, the
BankDatabase creates two Account objects that can be used to test the ATM. [Note: If this
were a real ATM system, the ATM class would receive a reference to an existing database
object created by the bank. However, in this implementation, we are only simulating the
bank’s database, so class ATM creates the BankDatabase object with which it interacts.]

1 // ATM.cs
2 // Represents an automated teller machine.
3 public class ATM
4 {
5 private bool userAuthenticated; // true if user is authenticated
6 private int currentAccountNumber; // user's account number
7 private Screen screen; // reference to ATM's screen
8 private Keypad keypad; // reference to ATM's keypad
9 private CashDispenser cashDispenser; // ref to ATM's cash dispenser

10 private DepositSlot depositSlot; // reference to ATM's deposit slot
11 private BankDatabase bankDatabase; // ref to account info database
12
13 // enumeration that represents main menu options
14 private enum MenuOption
15 {

Fig. 26.13 | Class ATM represents the ATM. (Part 1 of 4.)

csfp6_26_ATM2.fm Page 15 Thursday, July 7, 2016 10:13 AM

26_16 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

16 BALANCE_INQUIRY = 1,
17 WITHDRAWAL = 2,
18 DEPOSIT = 3,
19 EXIT_ATM = 4
20 }
21
22 // parameterless constructor initializes instance variables
23 public ATM()
24 {
25 userAuthenticated = false; // user is not authenticated to start
26 currentAccountNumber = 0; // no current account number to start
27 screen = new Screen(); // create screen
28 keypad = new Keypad(); // create keypad
29 cashDispenser = new CashDispenser(); // create cash dispenser
30 depositSlot = new DepositSlot(); // create deposit slot
31 bankDatabase = new BankDatabase(); // create account info database
32 }
33
34 // start ATM
35 public void Run()
36 {
37 // welcome and authenticate users; perform transactions
38 while (true) // infinite loop
39 {
40 // loop while user is not yet authenticated
41 while (!userAuthenticated)
42 {
43 screen.DisplayMessageLine("\nWelcome!");
44 AuthenticateUser(); // authenticate user
45 }
46
47 PerformTransactions(); // for authenticated user
48 userAuthenticated = false; // reset before next ATM session
49 currentAccountNumber = 0; // reset before next ATM session
50 screen.DisplayMessageLine("\nThank you! Goodbye!");
51 }
52 }
53
54 // attempt to authenticate user against database
55 private void AuthenticateUser()
56 {
57 // prompt for account number and input it from user
58 screen.DisplayMessage("\nPlease enter your account number: ");
59 int accountNumber = keypad.GetInput();
60
61 // prompt for PIN and input it from user
62 screen.DisplayMessage("\nEnter your PIN: ");
63 int pin = keypad.GetInput();
64
65 // set userAuthenticated to boolean value returned by database
66 userAuthenticated =
67 bankDatabase.AuthenticateUser(accountNumber, pin);
68

Fig. 26.13 | Class ATM represents the ATM. (Part 2 of 4.)

csfp6_26_ATM2.fm Page 16 Thursday, July 7, 2016 10:13 AM

26.4 ATM Case Study Implementation 26_17

69 // check whether authentication succeeded
70 if (userAuthenticated)
71 currentAccountNumber = accountNumber; // save user's account #
72 else
73 screen.DisplayMessageLine(
74 "Invalid account number or PIN. Please try again.");
75 }
76
77 // display the main menu and perform transactions
78 private void PerformTransactions()
79 {
80 Transaction currentTransaction; // transaction being processed
81 bool userExited = false; // user has not chosen to exit
82
83 // loop while user has not chosen exit option
84 while (!userExited)
85 {
86 // show main menu and get user selection
87 int mainMenuSelection = DisplayMainMenu();
88
89 // decide how to proceed based on user's menu selection
90 switch ((MenuOption) mainMenuSelection)
91 {
92 // user chooses to perform one of three transaction types
93 case MenuOption.BALANCE_INQUIRY:
94 case MenuOption.WITHDRAWAL:
95 case MenuOption.DEPOSIT:
96 // initialize as new object of chosen type
97 currentTransaction =
98 CreateTransaction(mainMenuSelection);
99 currentTransaction.Execute(); // execute transaction
100 break;
101 case MenuOption.EXIT_ATM: // user chose to terminate session
102 screen.DisplayMessageLine("\nExiting the system...");
103 userExited = true; // this ATM session should end
104 break;
105 default: // user did not enter an integer from 1-4
106 screen.DisplayMessageLine(
107 "\nYou did not enter a valid selection. Try again.");
108 break;
109 }
110 }
111 }
112
113 // display the main menu and return an input selection
114 private int DisplayMainMenu()
115 {
116 screen.DisplayMessageLine("\nMain menu:");
117 screen.DisplayMessageLine("1 - View my balance");
118 screen.DisplayMessageLine("2 - Withdraw cash");
119 screen.DisplayMessageLine("3 - Deposit funds");
120 screen.DisplayMessageLine("4 - Exit\n");
121 screen.DisplayMessage("Enter a choice: ");

Fig. 26.13 | Class ATM represents the ATM. (Part 3 of 4.)

csfp6_26_ATM2.fm Page 17 Thursday, July 7, 2016 10:13 AM

26_18 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

Implementing the Operation
The class diagram of Fig. 26.10 does not list any operations for class ATM. We now imple-
ment one operation (i.e., public method) in class ATM that allows an external client of the
class (i.e., class ATMCaseStudy; Section 26.4.12) to tell the ATM to run. ATM method Run
(Fig. 26.13, lines 35–52) uses an infinite loop (lines 38–51) to repeatedly welcome a user,
attempt to authenticate the user and, if authentication succeeds, allow the user to perform
transactions. After an authenticated user performs the desired transactions and exits, the
ATM resets itself, displays a goodbye message and restarts the process for the next user.
We use an infinite loop here to simulate the fact that an ATM appears to run continuously
until the bank turns it off (an action beyond the user’s control). An ATM user can exit the
system, but cannot turn off the ATM completely.

Inside method Run’s infinite loop, lines 41–45 cause the ATM to repeatedly welcome
and attempt to authenticate the user as long as the user has not been authenticated (i.e.,
the condition !userAuthenticated is true). Line 43 invokes method Display-

MessageLine of the ATM’s screen to display a welcome message. Like Screen method
DisplayMessage designed in the case study, method DisplayMessageLine (declared in
lines 14–17 of Fig. 26.14) displays a message to the user, but this method also outputs a
newline after displaying the message. We add this method during implementation to give
class Screen’s clients more control over the placement of displayed messages. Line 44

122 return keypad.GetInput(); // return user's selection
123 }
124
125 // return object of specified Transaction derived class
126 private Transaction CreateTransaction(int type)
127 {
128 Transaction temp = null; // null Transaction reference
129
130 // determine which type of Transaction to create
131 switch ((MenuOption) type)
132 {
133 // create new BalanceInquiry transaction
134 case MenuOption.BALANCE_INQUIRY:
135 temp = new BalanceInquiry(currentAccountNumber,
136 screen, bankDatabase);
137 break;
138 case MenuOption.WITHDRAWAL: // create new Withdrawal transaction
139 temp = new Withdrawal(currentAccountNumber, screen,
140 bankDatabase, keypad, cashDispenser);
141 break;
142 case MenuOption.DEPOSIT: // create new Deposit transaction
143 temp = new Deposit(currentAccountNumber, screen,
144 bankDatabase, keypad, depositSlot);
145 break;
146 }
147
148 return temp;
149 }
150 }

Fig. 26.13 | Class ATM represents the ATM. (Part 4 of 4.)

csfp6_26_ATM2.fm Page 18 Thursday, July 7, 2016 10:13 AM

26.4 ATM Case Study Implementation 26_19

(Fig. 26.13) invokes class ATM’s private utility method AuthenticateUser (declared in
lines 55–75) to attempt to authenticate the user.

Authenticating the User
We refer to the requirements document to determine the steps necessary to authenticate
the user before allowing transactions to occur. Line 58 of method AuthenticateUser in-
vokes method DisplayMessage of the ATM’s screen to prompt the user to enter an account
number. Line 59 invokes method GetInput of the ATM’s keypad to obtain the user’s input,
then stores this integer in local variable accountNumber. Method AuthenticateUser next
prompts the user to enter a PIN (line 62), and stores the PIN in local variable pin (line
63). Next, lines 66–67 attempt to authenticate the user by passing the accountNumber and
pin entered by the user to the bankDatabase’s AuthenticateUser method. Class ATM sets
its userAuthenticated attribute to the bool value returned by this method—userAu-

thenticated becomes true if authentication succeeds (i.e., the accountNumber and pin
match those of an existing Account in bankDatabase) and remains false otherwise. If us-
erAuthenticated is true, line 71 saves the account number entered by the user (i.e., ac-
countNumber) in the ATM attribute currentAccountNumber. The other methods of class
ATM use this variable whenever an ATM session requires access to the user’s account num-
ber. If userAuthenticated is false, lines 73–74 call the screen’s DisplayMessageLine
method to indicate that an invalid account number and/or PIN was entered, so the user
must try again. We set currentAccountNumber only after authenticating the user’s account
number and the associated PIN—if the database cannot authenticate the user, currentAc-
countNumber remains 0.

After method Run attempts to authenticate the user (line 44), if userAuthenticated
is still false (line 41), the while loop body (lines 41–45) executes again. If userAuthen-
ticated is now true, the loop terminates, and control continues with line 47, which calls
class ATM’s private utility method PerformTransactions.

Performing Transactions
Method PerformTransactions (lines 78–111) carries out an ATM session for an authen-
ticated user. Line 80 declares local variable Transaction, to which we assign a Balance-
Inquiry, Withdrawal or Deposit object representing the ATM transaction currently
being processed. We use a Transaction variable here to allow us to take advantage of poly-
morphism. Also, we name this variable after the role name included in the class diagram
of Fig. 25.7—currentTransaction. Line 81 declares another local variable—a bool
called userExited that keeps track of whether the user has chosen to exit. This variable
controls a while loop (lines 84–110) that allows the user to execute an unlimited number
of transactions before choosing to exit. Within this loop, line 87 displays the main menu
and obtains the user’s menu selection by calling ATM utility method DisplayMainMenu (de-
clared in lines 114–123). This method displays the main menu by invoking methods of
the ATM’s screen and returns a menu selection obtained from the user through the ATM’s
keypad. Line 87 stores the user’s selection, returned by DisplayMainMenu, in local variable
mainMenuSelection.

After obtaining a main menu selection, method PerformTransactions uses a switch
statement (lines 90–109) to respond to the selection appropriately. If mainMenuSelection
is equal to the underlying value of any of the three enum members representing transaction
types (i.e., if the user chose to perform a transaction), lines 97–98 call utility method

csfp6_26_ATM2.fm Page 19 Thursday, July 7, 2016 10:13 AM

26_20 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

CreateTransaction (declared in lines 126–149) to return a newly instantiated object of
the type that corresponds to the selected transaction. Variable currentTransaction is
assigned the reference returned by method CreateTransaction, then line 99 invokes
method Execute of this transaction to execute it. We discuss Transaction method Exe-
cute and the three Transaction derived classes shortly. We assign to the Transaction
variable currentTransaction an object of one of the three Transaction derived classes so
that we can execute transactions. For example, if the user chooses to perform a balance
inquiry, (MenuOption) mainMenuSelection (line 90) matches the case label Menu-
Option.BALANCE_INQUIRY, and CreateTransaction returns a BalanceInquiry object
(lines 97–98). Thus, currentTransaction refers to a BalanceInquiry and invoking cur-
rentTransaction.Execute() (line 99) results in BalanceInquiry’s version of Execute
being called polymorphically.

Creating Transactions
Method CreateTransaction (lines 126–149) uses a switch statement (lines 131–146) to
instantiate a new Transaction derived class object of the type indicated by the parameter
type. Recall that method PerformTransactions passes mainMenuSelection to method
CreateTransaction only when mainMenuSelection contains a value corresponding to
one of the three transaction types. So parameter type (line 126) receives one of the values
MenuOption.BALANCE_INQUIRY, MenuOption.WITHDRAWAL or MenuOption.DEPOSIT. Each
case in the switch statement instantiates a new object by calling the appropriate Trans-
action derived class constructor. Each constructor has a unique parameter list, based on
the specific data required to initialize the derived class object. A BalanceInquiry (lines
135–136) requires only the account number of the current user and references to the ATM’s
screen and the bankDatabase. In addition to these parameters, a Withdrawal (lines 139–
140) requires references to the ATM’s keypad and cashDispenser, and a Deposit (lines
143–144) requires references to the ATM’s keypad and depositSlot. We discuss the trans-
action classes in detail in Sections 26.4.8–26.4.11.

After executing a transaction (line 99 in method PerformTransactions), userExited
remains false, and the while loop in lines 84–110 repeats, returning the user to the main
menu. However, if a user does not perform a transaction and instead selects the main
menu option to exit, line 103 sets userExited to true, causing the condition in line 84 of
the while loop (!userExited) to become false. This while is the final statement of
method PerformTransactions, so control returns to line 47 of the calling method Run. If
the user enters an invalid main menu selection (i.e., not an integer in the range 1–4), lines
106–107 display an appropriate error message, userExited remains false (as set in line
81) and the user returns to the main menu to try again.

When method PerformTransactions returns control to method Run, the user has
chosen to exit the system, so lines 48–49 reset the ATM’s attributes userAuthenticated and
currentAccountNumber to false and 0, respectively, to prepare for the next ATM user.
Line 50 displays a goodbye message to the current user before the ATM welcomes the next
user.

26.4.2 Class Screen
Class Screen (Fig. 26.14) represents the screen of the ATM and encapsulates all aspects of
displaying output to the user. Class Screen simulates a real ATM’s screen with the com-

csfp6_26_ATM2.fm Page 20 Thursday, July 7, 2016 10:13 AM

26.4 ATM Case Study Implementation 26_21

puter monitor and outputs text messages using standard console output methods
Console.Write and Console.WriteLine. In the design portion of this case study, we en-
dowed class Screen with one operation—DisplayMessage. For greater flexibility in dis-
playing messages to the Screen, we now declare three Screen methods—DisplayMessage,
DisplayMessageLine and DisplayDollarAmount.

Method DisplayMessage (lines 8–11) takes a string as an argument and prints it to
the screen using Console.Write. The cursor stays on the same line, making this method
appropriate for displaying prompts to the user. Method DisplayMessageLine (lines 14–
17) does the same using Console.WriteLine, which outputs a newline to move the cursor
to the next line. Finally, method DisplayDollarAmount (lines 20–23) outputs a properly
formatted dollar amount (e.g., $1,234.56). Line 22 uses method Console.Write to
output a decimal value formatted as currency with a dollar sign, two decimal places and
commas to increase the readability of large dollar amounts.

26.4.3 Class Keypad
Class Keypad (Fig. 26.15) represents the keypad of the ATM and is responsible for receiv-
ing all user input. Recall that we are simulating this hardware, so we use the computer’s
keyboard to approximate the keypad. We use method Console.ReadLine to obtain key-
board input from the user. A computer keyboard contains many keys not found on the
ATM’s keypad. We assume that the user presses only the keys on the computer keyboard
that also appear on the keypad—the keys numbered 0–9 and the Enter key.

1 // Screen.cs
2 // Represents the screen of the ATM
3 using System;
4
5 public class Screen
6 {
7 // displays a message without a terminating carriage return
8 public void DisplayMessage(string message)
9 {

10 Console.Write(message);
11 }
12
13 // display a message with a terminating carriage return
14 public void DisplayMessageLine(string message)
15 {
16 Console.WriteLine(message);
17 }
18
19 // display a dollar amount
20 public void DisplayDollarAmount(decimal amount)
21 {
22 Console.Write("{0:C}", amount);
23 }
24 }

Fig. 26.14 | Class Screen represents the screen of the ATM.

csfp6_26_ATM2.fm Page 21 Thursday, July 7, 2016 10:13 AM

26_22 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

Method GetInput (lines 8–11) invokes converts the input returned by Con-
sole.ReadLine (line 10) to an int value. [Note: Method ToInt32 can throw a FormatEx-
ception if the user enters non-integer input. Because the real ATM’s keypad permits only
integer input, we simply assume that no exceptions will occur. See Chapter 13 for infor-
mation on catching and processing exceptions.] Recall that ReadLine obtains all the input
used by the ATM. Class Keypad’s GetInput method simply returns the integer input by
the user. If a client of class Keypad requires input that satisfies some particular criteria (i.e.,
a number corresponding to a valid menu option), the client must perform the appropriate
error checking.

26.4.4 Class CashDispenser
Class CashDispenser (Fig. 26.16) represents the cash dispenser of the ATM. Line 6 de-
clares constant INITIAL_COUNT, which indicates the number of $20 bills in the cash dis-
penser when the ATM starts (i.e., 500). Line 7 implements attribute billCount (modeled
in Fig. 26.10), which keeps track of the number of bills remaining in the CashDispenser
at any time. The constructor (lines 10–13) sets billCount to the initial count. [Note: We
assume that the process of adding more bills to the CashDispenser and updating the bill-
Count occur outside the ATM system.] Class CashDispenser has two public methods—
DispenseCash (lines 16–21) and IsSufficientCashAvailable (lines 24–31). The class
trusts that a client (i.e., Withdrawal) calls method DispenseCash only after establishing
that sufficient cash is available by calling method IsSufficientCashAvailable. Thus,
DispenseCash simulates dispensing the requested amount of cash without checking
whether sufficient cash is available.

1 // Keypad.cs
2 // Represents the keypad of the ATM.
3 using System;
4
5 public class Keypad
6 {
7 // return an integer value entered by user
8 public int GetInput()
9 {

10 return int.Parse(Console.ReadLine());
11 }
12 }

Fig. 26.15 | Class Keypad represents the ATM’s keypad.

1 // CashDispenser.cs
2 // Represents the cash dispenser of the ATM
3 public class CashDispenser
4 {
5 // the default initial number of bills in the cash dispenser
6 private const int INITIAL_COUNT = 500;
7 private int billCount; // number of $20 bills remaining

Fig. 26.16 | Class CashDispenser represents the ATM’s cash dispenser. (Part 1 of 2.)

csfp6_26_ATM2.fm Page 22 Thursday, July 7, 2016 10:13 AM

26.4 ATM Case Study Implementation 26_23

Method IsSufficientCashAvailable (lines 24–31) has a parameter amount that
specifies the amount of cash in question. Line 27 calculates the number of $20 bills
required to dispense the specified amount. The ATM allows the user to choose only with-
drawal amounts that are multiples of $20, so we convert amount to an integer value and
divide it by 20 to obtain the number of billsRequired. Line 30 returns true if the Cash-
Dispenser’s billCount is greater than or equal to billsRequired (i.e., enough bills are
available) and false otherwise (i.e., not enough bills). For example, if a user wishes to
withdraw $80 (i.e., billsRequired is 4), but only three bills remain (i.e., billCount is 3),
the method returns false.

Method DispenseCash (lines 16–21) simulates cash dispensing. If our system were
hooked up to a real hardware cash dispenser, this method would interact with the hard-
ware device to physically dispense the cash. Our simulated version of the method simply
decreases the billCount of bills remaining by the number required to dispense the speci-
fied amount (line 20). It is the responsibility of the client of the class (i.e., Withdrawal) to
inform the user that cash has been dispensed—CashDispenser does not interact directly
with Screen.

26.4.5 Class DepositSlot
Class DepositSlot (Fig. 26.17) represents the deposit slot of the ATM. This class simu-
lates the functionality of a real hardware deposit slot. DepositSlot has no attributes and
only one method—IsDepositEnvelopeReceived (lines 7–10)—which indicates whether
a deposit envelope was received.

8
9 // parameterless constructor initializes billCount to INITIAL_COUNT

10 public CashDispenser()
11 {
12 billCount = INITIAL_COUNT; // set billCount to INITIAL_COUNT
13 }
14
15 // simulates dispensing the specified amount of cash
16 public void DispenseCash(decimal amount)
17 {
18 // number of $20 bills required
19 int billsRequired = ((int) amount) / 20;
20 billCount -= billsRequired;
21 }
22
23 // indicates whether cash dispenser can dispense desired amount
24 public bool IsSufficientCashAvailable(decimal amount)
25 {
26 // number of $20 bills required
27 int billsRequired = ((int) amount) / 20;
28
29 // return whether there are enough bills available
30 return (billCount >= billsRequired);
31 }
32 }

Fig. 26.16 | Class CashDispenser represents the ATM’s cash dispenser. (Part 2 of 2.)

csfp6_26_ATM2.fm Page 23 Thursday, July 7, 2016 10:13 AM

26_24 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

Recall from the requirements document that the ATM allows the user up to two min-
utes to insert an envelope. The current version of method IsDepositEnvelopeReceived
simply returns true immediately (line 9), because this is only a software simulation, so we
assume that the user inserts an envelope within the required time frame. If an actual hard-
ware deposit slot were connected to our system, method IsDepositEnvelopeReceived
would be implemented to wait for a maximum of two minutes to receive a signal from the
hardware deposit slot indicating that the user has indeed inserted a deposit envelope. If
IsDepositEnvelopeReceived were to receive such a signal within two minutes, the
method would return true. If two minutes were to elapse and the method still had not
received a signal, then the method would return false.

26.4.6 Class Account
Class Account (Fig. 26.18) represents a bank account. Each Account has four attributes
(modeled in Fig. 26.10)—accountNumber, pin, availableBalance and totalBalance.
Lines 5–8 implement these attributes as private instance variables. For each of the instance
variables accountNumber, availableBalance and totalBalance, we provide a property
with the same name as the attribute, but starting with a capital letter. For example, property
AccountNumber corresponds to the accountNumber attribute modeled in Fig. 26.10. Clients
of this class do not need to modify the accountNumber instance variable, so AccountNumber
is declared as a read-only property (i.e., it provides only a get accessor).

1 // DepositSlot.cs
2 // Represents the deposit slot of the ATM
3 public class DepositSlot
4 {
5 // indicates whether envelope was received (always returns true,
6 // because this is only a software simulation of a real deposit slot)
7 public bool IsDepositEnvelopeReceived()
8 {
9 return true; // deposit envelope was received

10 }
11 }

Fig. 26.17 | Class DepositSlot represents the ATM’s deposit slot.

1 // Account.cs
2 // Class Account represents a bank account.
3 public class Account
4 {
5 private int accountNumber; // account number
6 private int pin; // PIN for authentication
7 private decimal availableBalance; // available withdrawal amount
8 private decimal totalBalance; // funds available + pending deposit
9

10 // four-parameter constructor initializes attributes
11 public Account(int theAccountNumber, int thePIN,
12 decimal theAvailableBalance, decimal theTotalBalance)
13 {

Fig. 26.18 | Class Account represents a bank account. (Part 1 of 2.)

csfp6_26_ATM2.fm Page 24 Thursday, July 7, 2016 10:13 AM

26.4 ATM Case Study Implementation 26_25

14 accountNumber = theAccountNumber;
15 pin = thePIN;
16 availableBalance = theAvailableBalance;
17 totalBalance = theTotalBalance;
18 }
19
20 // read-only property that gets the account number
21 public int AccountNumber
22 {
23 get
24 {
25 return accountNumber;
26 }
27 }
28
29 // read-only property that gets the available balance
30 public decimal AvailableBalance
31 {
32 get
33 {
34 return availableBalance;
35 }
36 }
37
38 // read-only property that gets the total balance
39 public decimal TotalBalance
40 {
41 get
42 {
43 return totalBalance;
44 }
45 }
46
47 // determines whether a user-specified PIN matches PIN in Account
48 public bool ValidatePIN(int userPIN)
49 {
50 return (userPIN == pin);
51 }
52
53 // credits the account (funds have not yet cleared)
54 public void Credit(decimal amount)
55 {
56 totalBalance += amount; // add to total balance
57 }
58
59 // debits the account
60 public void Debit(decimal amount)
61 {
62 availableBalance -= amount; // subtract from available balance
63 totalBalance -= amount; // subtract from total balance
64 }
65 }

Fig. 26.18 | Class Account represents a bank account. (Part 2 of 2.)

csfp6_26_ATM2.fm Page 25 Thursday, July 7, 2016 10:13 AM

26_26 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

Class Account has a constructor (lines 11–18) that takes an account number, the PIN
established for the account, the initial available balance and the initial total balance as
arguments. Lines 14–17 assign these values to the class’s attributes (i.e., instance variables).
Account objects would normally be created externally to the ATM system. However, in
this simulation, the Account objects are created in the BankDatabase class (Fig. 26.19).

public Read-Only Properties of Class Account
Read-only property AccountNumber (lines 21–27) provides access to an Account’s
accountNumber instance variable. We include this property in our implementation so that
a client of the class (e.g., BankDatabase) can identify a particular Account. For example,
BankDatabase contains many Account objects, and it can access this property on each of
its Account objects to locate the one with a specific account number.

Read-only properties AvailableBalance (lines 30–36) and TotalBalance (lines 39–
45) allow clients to retrieve the values of private decimal instance variables available-
Balance and totalBalance, respectively. Property AvailableBalance represents the
amount of funds available for withdrawal. Property TotalBalance represents the amount
of funds available, plus the amount of deposited funds pending confirmation of cash in
deposit envelopes or clearance of checks in deposit envelopes.

public Methods of Class Account
Method ValidatePIN (lines 48–51) determines whether a user-specified PIN (i.e., param-
eter userPIN) matches the PIN associated with the account (i.e., attribute pin). Recall that
we modeled this method’s parameter userPIN in the UML class diagram of Fig. 26.9. If
the two PINs match, the method returns true; otherwise, it returns false.

Method Credit (lines 54–57) adds an amount of money (i.e., parameter amount) to
an Account as part of a deposit transaction. This method adds the amount only to instance
variable totalBalance (line 56). The money credited to an account during a deposit does
not become available immediately, so we modify only the total balance. We assume that
the bank updates the available balance appropriately at a later time, when the amount of
cash in the deposit envelope has be verified and the checks in the deposit envelope have
cleared. Our implementation of class Account includes only methods required for carrying
out ATM transactions. Therefore, we omit the methods that some other bank system
would invoke to add to instance variable availableBalance to confirm a deposit or to
subtract from attribute totalBalance to reject a deposit.

Method Debit (lines 60–64) subtracts an amount of money (i.e., parameter amount)
from an Account as part of a withdrawal transaction. This method subtracts the amount
from both instance variable availableBalance (line 62) and instance variable totalBal-
ance (line 63), because a withdrawal affects both balances.

26.4.7 Class BankDatabase
Class BankDatabase (Fig. 26.19) models the bank database with which the ATM interacts
to access and modify a user’s account information. We determine one reference-type attri-
bute for class BankDatabase based on its composition relationship with class Account. Re-
call from Fig. 26.9 that a BankDatabase is composed of zero or more objects of class
Account. Line 5 declares attribute accounts—an array that will store Account objects—to
implement this composition relationship. Class BankDatabase has a parameterless con-

csfp6_26_ATM2.fm Page 26 Thursday, July 7, 2016 10:13 AM

26.4 ATM Case Study Implementation 26_27

structor (lines 8–15) that initializes accounts with new Account objects (lines 13–14). The
Account constructor (Fig. 26.25, lines 11–18) has four parameters—the account number,
the PIN assigned to the account, the initial available balance and the initial total balance.

1 // BankDatabase.cs
2 // Represents the bank account information database
3 public class BankDatabase
4 {
5 private Account[] accounts; // array of the bank's Accounts
6
7 // parameterless constructor initializes accounts
8 public BankDatabase()
9 {

10 // create two Account objects for testing and
11 // place them in the accounts array
12 accounts = new Account[2]; // create accounts array
13 accounts[0] = new Account(12345, 54321, 1000.00M, 1200.00M);
14 accounts[1] = new Account(98765, 56789, 200.00M, 200.00M);
15 }
16
17 // retrieve Account object containing specified account number
18 private Account GetAccount(int accountNumber)
19 {
20 // loop through accounts searching for matching account number
21 foreach (Account currentAccount in accounts)
22 {
23 if (currentAccount.AccountNumber == accountNumber)
24 return currentAccount;
25 }
26
27 // account not found
28 return null;
29 }
30
31 // determine whether user-specified account number and PIN match
32 // those of an account in the database
33 public bool AuthenticateUser(int userAccountNumber, int userPIN)
34 {
35 // attempt to retrieve the account with the account number
36 Account userAccount = GetAccount(userAccountNumber);
37
38 // if account exists, return result of Account function ValidatePIN
39 if (userAccount != null)
40 return userAccount.ValidatePIN(userPIN); // true if match
41 else
42 return false; // account number not found, so return false
43 }
44
45 // return available balance of Account with specified account number
46 public decimal GetAvailableBalance(int userAccountNumber)
47 {

Fig. 26.19 | Class BankDatabase represents the bank’s account information database. (Part 1
of 2.)

csfp6_26_ATM2.fm Page 27 Thursday, July 7, 2016 10:13 AM

26_28 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

Recall that class BankDatabase serves as an intermediary between class ATM and the
actual Account objects that contain users’ account information. Thus, methods of class
BankDatabase invoke the corresponding methods and properties of the Account object
belonging to the current ATM user.

private Utility Method GetAccount
We include private utility method GetAccount (lines 18–29) to allow the BankDatabase
to obtain a reference to a particular Account within the accounts array. To locate the us-
er’s Account, the BankDatabase compares the value returned by property AccountNumber
for each element of accounts to a specified account number until it finds a match. Lines
21–25 traverse the accounts array. If currentAccount’s account number equals the value
of parameter accountNumber, the method returns currentAccount. If no account has the
given account number, then line 28 returns null.

public Methods
Method AuthenticateUser (lines 33–43) proves or disproves the identity of an ATM user.
This method takes a user-specified account number and a user-specified PIN as arguments
and indicates whether they match the account number and PIN of an Account in the data-
base. Line 36 calls method GetAccount, which returns either an Account with userAccount-
Number as its account number or null to indicate that userAccountNumber is invalid. If
GetAccount returns an Account object, line 40 returns the bool value returned by that ob-

48 Account userAccount = GetAccount(userAccountNumber);
49 return userAccount.AvailableBalance;
50 }
51
52 // return total balance of Account with specified account number
53 public decimal GetTotalBalance(int userAccountNumber)
54 {
55 Account userAccount = GetAccount(userAccountNumber);
56 return userAccount.TotalBalance;
57 }
58
59 // credit the Account with specified account number
60 public void Credit(int userAccountNumber, decimal amount)
61 {
62 Account userAccount = GetAccount(userAccountNumber);
63 userAccount.Credit(amount);
64 }
65
66 // debit the Account with specified account number
67 public void Debit(int userAccountNumber, decimal amount)
68 {
69 Account userAccount = GetAccount(userAccountNumber);
70 userAccount.Debit(amount);
71 }
72 }

Fig. 26.19 | Class BankDatabase represents the bank’s account information database. (Part 2
of 2.)

csfp6_26_ATM2.fm Page 28 Thursday, July 7, 2016 10:13 AM

26.4 ATM Case Study Implementation 26_29

ject’s ValidatePIN method. BankDatabase’s AuthenticateUser method does not perform
the PIN comparison itself—rather, it forwards userPIN to the Account object’s Vali-
datePIN method to do so. The value returned by Account method ValidatePIN (line 40)
indicates whether the user-specified PIN matches the PIN of the user’s Account, so method
AuthenticateUser simply returns this value (line 40) to the client of the class (i.e., ATM).

The BankDatabase trusts the ATM to invoke method AuthenticateUser and receive a
return value of true before allowing the user to perform transactions. BankDatabase also
trusts that each Transaction object created by the ATM contains the valid account number
of the current authenticated user and that this account number is passed to the remaining
BankDatabase methods as argument userAccountNumber. Methods GetAvailableBal-
ance (lines 46–50), GetTotalBalance (lines 53–57), Credit (lines 60–64) and Debit
(lines 67–71) therefore simply retrieve the user’s Account object with utility method
GetAccount, then invoke the appropriate Account method on that object. We know that
the calls to GetAccount within these methods will never return null, because userAc-
countNumber must refer to an existing Account. GetAvailableBalance and GetTotalBal-
ance return the values returned by the corresponding Account properties. Also, methods
Credit and Debit simply redirect parameter amount to the Account methods they invoke.

26.4.8 Class Transaction
Class Transaction (Fig. 26.20) is an abstract base class that represents the notion of an
ATM transaction. It contains the common features of derived classes BalanceInquiry,
Withdrawal and Deposit. This class expands on the “skeleton” code first developed in
Section 26.2. Line 3 declares this class to be abstract. Lines 5–7 declare the class’s pri-
vate instance variables. Recall from the class diagram of Fig. 26.10 that class Transaction
contains the property AccountNumber that indicates the account involved in the Transac-
tion. Line 5 implements the instance variable accountNumber to maintain the Account-
Number property’s data. We derive attributes screen (implemented as instance variable
userScreen in line 6) and bankDatabase (implemented as instance variable database in
line 7) from class Transaction’s associations, modeled in Fig. 26.9. All transactions re-
quire access to the ATM’s screen and the bank’s database.

Class Transaction has a constructor (lines 10–16) that takes the current user’s
account number and references to the ATM’s screen and the bank’s database as arguments.
Because Transaction is an abstract class (line 3), this constructor is never called directly
to instantiate Transaction objects. Instead, this constructor is invoked by the constructors
of the Transaction derived classes via constructor initializers.

Class Transaction has three public read-only properties—AccountNumber (lines 19–
25), UserScreen (lines 28–34) and Database (lines 37–43). Derived classes of Transac-
tion inherit these properties and use them to gain access to class Transaction’s private
instance variables. We chose the names of the UserScreen and Database properties for
clarity—we wanted to avoid property names that are the same as the class names Screen
and BankDatabase, which can be confusing.

Class Transaction also declares abstract method Execute (line 46). It does not
make sense to provide an implementation for this method in class Transaction, because
a generic transaction cannot be executed. Thus, we declare this method to be abstract,
forcing each Transaction concrete derived class to provide its own implementation that
executes the particular type of transaction.

csfp6_26_ATM2.fm Page 29 Thursday, July 7, 2016 10:13 AM

26_30 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

26.4.9 Class BalanceInquiry
Class BalanceInquiry (Fig. 26.21) inherits from Transaction and represents an ATM
balance inquiry transaction (line 3). BalanceInquiry does not have any attributes of its
own, but it inherits Transaction attributes accountNumber, screen and bankDatabase,

1 // Transaction.cs5
2 // Abstract base class Transaction represents an ATM transaction.
3 public abstract class Transaction
4 {
5 private int accountNumber; // account involved in the transaction
6 private Screen userScreen; // reference to ATM's screen
7 private BankDatabase database; // reference to account info database
8
9 // three-parameter constructor invoked by derived classes

10 public Transaction(int userAccount, Screen theScreen,
11 BankDatabase theDatabase)
12 {
13 accountNumber = userAccount;
14 userScreen = theScreen;
15 database = theDatabase;
16 }
17
18 // read-only property that gets the account number
19 public int AccountNumber
20 {
21 get
22 {
23 return accountNumber;
24 }
25 }
26
27 // read-only property that gets the screen reference
28 public Screen UserScreen
29 {
30 get
31 {
32 return userScreen;
33 }
34 }
35
36 // read-only property that gets the bank database reference
37 public BankDatabase Database
38 {
39 get
40 {
41 return database;
42 }
43 }
44
45 // perform the transaction (overridden by each derived class)
46 public abstract void Execute(); // no implementation here
47 }

Fig. 26.20 | abstract base class Transaction represents an ATM transaction.

csfp6_26_ATM2.fm Page 30 Thursday, July 7, 2016 10:13 AM

26.4 ATM Case Study Implementation 26_31

which are accessible through Transaction’s public read-only properties. The BalanceIn-
quiry constructor (lines 6–8) takes arguments corresponding to these attributes and for-
wards them to Transaction’s constructor by invoking the constructor initializer with
keyword base (line 8). The body of the constructor is empty.

Class BalanceInquiry overrides Transaction’s abstract method Execute to provide
a concrete implementation (lines 11–27) that performs the steps involved in a balance
inquiry. Lines 14–15 obtain the specified Account’s available balance by invoking the
GetAvailableBalance method of the inherited property Database. Line 15 uses the inher-
ited property AccountNumber to get the account number of the current user. Line 18 retrieves
the specified Account’s total balance. Lines 21–26 display the balance information on the
ATM’s screen using the inherited property UserScreen. Recall that DisplayDollarAmount
takes a decimal argument and outputs it to the screen formatted as a dollar amount with a
dollar sign. For example, if a user’s available balance is 1000.50M, line 23 outputs $1,000.50.
Line 26 inserts a blank line of output to separate the balance information from subsequent
output (i.e., the main menu repeated by class ATM after executing the BalanceInquiry).

26.4.10 Class Withdrawal
Class Withdrawal (Fig. 26.22) extends Transaction and represents an ATM withdrawal
transaction. This class expands on the “skeleton” code for this class developed in

1 // BalanceInquiry.cs
2 // Represents a balance inquiry ATM transaction
3 public class BalanceInquiry : Transaction
4 {
5 // five-parameter constructor initializes base class variables
6 public BalanceInquiry(int userAccountNumber,
7 Screen atmScreen, BankDatabase atmBankDatabase)
8 : base(userAccountNumber, atmScreen, atmBankDatabase) {}
9

10 // performs transaction; overrides Transaction's abstract method
11 public override void Execute()
12 {
13 // get the available balance for the current user's Account
14 decimal availableBalance =
15 Database.GetAvailableBalance(AccountNumber);
16
17 // get the total balance for the current user's Account
18 decimal totalBalance = Database.GetTotalBalance(AccountNumber);
19
20 // display the balance information on the screen
21 UserScreen.DisplayMessageLine("\nBalance Information:");
22 UserScreen.DisplayMessage(" - Available balance: ");
23 UserScreen.DisplayDollarAmount(availableBalance);
24 UserScreen.DisplayMessage("\n - Total balance: ");
25 UserScreen.DisplayDollarAmount(totalBalance);
26 UserScreen.DisplayMessageLine("");
27 }
28 }

Fig. 26.21 | Class BalanceInquiry represents a balance inquiry ATM transaction.

csfp6_26_ATM2.fm Page 31 Thursday, July 7, 2016 10:13 AM

26_32 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

Fig. 26.11. Recall from the class diagram of Fig. 26.9 that class Withdrawal has one attri-
bute, amount, which line 5 declares as a decimal instance variable. Figure 26.9 models as-
sociations between class Withdrawal and classes Keypad and CashDispenser, for which
lines 6–7 implement reference attributes keypad and cashDispenser, respectively. Line 10
declares a constant corresponding to the cancel menu option.

1 // Withdrawal.cs
2 // Class Withdrawal represents an ATM withdrawal transaction.
3 public class Withdrawal : Transaction
4 {
5 private decimal amount; // amount to withdraw
6 private Keypad keypad; // reference to Keypad
7 private CashDispenser cashDispenser; // reference to cash dispenser
8
9 // constant that corresponds to menu option to cancel

10 private const int CANCELED = 6;
11
12 // five-parameter constructor
13 public Withdrawal(int userAccountNumber, Screen atmScreen,
14 BankDatabase atmBankDatabase, Keypad atmKeypad,
15 CashDispenser atmCashDispenser)
16 : base(userAccountNumber, atmScreen, atmBankDatabase)
17 {
18 // initialize references to keypad and cash dispenser
19 keypad = atmKeypad;
20 cashDispenser = atmCashDispenser;
21 }
22
23 // perform transaction, overrides Transaction's abstract method
24 public override void Execute()
25 {
26 bool cashDispensed = false; // cash was not dispensed yet
27
28 // transaction was not canceled yet
29 bool transactionCanceled = false;
30
31 // loop until cash is dispensed or the user cancels
32 do
33 {
34 // obtain the chosen withdrawal amount from the user
35 int selection = DisplayMenuOfAmounts();
36
37 // check whether user chose a withdrawal amount or canceled
38 if (selection != CANCELED)
39 {
40 // set amount to the selected dollar amount
41 amount = selection;
42
43 // get available balance of account involved
44 decimal availableBalance =
45 Database.GetAvailableBalance(AccountNumber);
46

Fig. 26.22 | Class Withdrawal represents an ATM withdrawal transaction. (Part 1 of 3.)

csfp6_26_ATM2.fm Page 32 Thursday, July 7, 2016 10:13 AM

26.4 ATM Case Study Implementation 26_33

47 // check whether the user has enough money in the account
48 if (amount <= availableBalance)
49 {
50 // check whether the cash dispenser has enough money
51 if (cashDispenser.IsSufficientCashAvailable(amount))
52 {
53 // debit the account to reflect the withdrawal
54 Database.Debit(AccountNumber, amount);
55
56 cashDispenser.DispenseCash(amount); // dispense cash
57 cashDispensed = true; // cash was dispensed
58
59 // instruct user to take cash
60 UserScreen.DisplayMessageLine(
61 "\nPlease take your cash from the cash dispenser.");
62 }
63 else // cash dispenser does not have enough cash
64 UserScreen.DisplayMessageLine(
65 "\nInsufficient cash available in the ATM." +
66 "\n\nPlease choose a smaller amount.");
67 }
68 else // not enough money available in user's account
69 UserScreen.DisplayMessageLine(
70 "\nInsufficient cash available in your account." +
71 "\n\nPlease choose a smaller amount.");
72 }
73 else
74 {
75 UserScreen.DisplayMessageLine("\nCanceling transaction...");
76 transactionCanceled = true; // user canceled the transaction
77 }
78 } while ((!cashDispensed) && (!transactionCanceled));
79 }
80
81 // display a menu of withdrawal amounts and the option to cancel;
82 // return the chosen amount or 6 if the user chooses to cancel
83 private int DisplayMenuOfAmounts()
84 {
85 int userChoice = 0; // variable to store return value
86
87 // array of amounts to correspond to menu numbers
88 int[] amounts = { 0, 20, 40, 60, 100, 200 };
89
90 // loop while no valid choice has been made
91 while (userChoice == 0)
92 {
93 // display the menu
94 UserScreen.DisplayMessageLine("\nWithdrawal options:");
95 UserScreen.DisplayMessageLine("1 - $20");
96 UserScreen.DisplayMessageLine("2 - $40");
97 UserScreen.DisplayMessageLine("3 - $60");
98 UserScreen.DisplayMessageLine("4 - $100");
99 UserScreen.DisplayMessageLine("5 - $200");

Fig. 26.22 | Class Withdrawal represents an ATM withdrawal transaction. (Part 2 of 3.)

csfp6_26_ATM2.fm Page 33 Thursday, July 7, 2016 10:13 AM

26_34 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

Class Withdrawal’s constructor (lines 13–21) has five parameters. It uses the con-
structor initializer to pass parameters userAccountNumber, atmScreen and atmBankData-
base to base class Transaction’s constructor to set the attributes that Withdrawal inherits
from Transaction. The constructor also takes references atmKeypad and atmCash-
Dispenser as parameters and assigns them to reference-type attributes keypad and cash-
Dispenser, respectively.

Overriding abstract Method Execute
Class Withdrawal overrides Transaction’s abstract method Execute with a concrete im-
plementation (lines 24–79) that performs the steps involved in a withdrawal. Line 26 de-
clares and initializes a local bool variable cashDispensed. This variable indicates whether
cash has been dispensed (i.e., whether the transaction has completed successfully) and is
initially false. Line 29 declares and initializes to false a bool variable transactionCan-
celed to indicate that the transaction has not yet been canceled by the user.

Lines 32–78 contain a do…while statement that executes its body until cash is dis-
pensed (i.e., until cashDispensed becomes true) or until the user chooses to cancel (i.e.,
until transactionCanceled becomes true). We use this loop to continuously return the
user to the start of the transaction if an error occurs (i.e., the requested withdrawal amount
is greater than the user’s available balance or greater than the amount of cash in the cash

100 UserScreen.DisplayMessageLine("6 - Cancel transaction");
101 UserScreen.DisplayMessage(
102 "\nChoose a withdrawal option (1-6): ");
103
104 // get user input through keypad
105 int input = keypad.GetInput();
106
107 // determine how to proceed based on the input value
108 switch (input)
109 {
110 // if the user chose a withdrawal amount (i.e., option
111 // 1, 2, 3, 4, or 5), return the corresponding amount
112 // from the amounts array
113 case 1: case 2: case 3: case 4: case 5:
114 userChoice = amounts[input]; // save user's choice
115 break;
116 case CANCELED: // the user chose to cancel
117 userChoice = CANCELED; // save user's choice
118 break;
119 default:
120 UserScreen.DisplayMessageLine(
121 "\nInvalid selection. Try again.");
122 break;
123 }
124 }
125
126 return userChoice;
127 }
128 }

Fig. 26.22 | Class Withdrawal represents an ATM withdrawal transaction. (Part 3 of 3.)

csfp6_26_ATM2.fm Page 34 Thursday, July 7, 2016 10:13 AM

26.4 ATM Case Study Implementation 26_35

dispenser). Line 35 displays a menu of withdrawal amounts and obtains a user selection
by calling private utility method DisplayMenuOfAmounts (declared in lines 83–127).
This method displays the menu of amounts and returns either an int withdrawal amount
or an int constant CANCELED to indicate that the user has chosen to cancel the transaction.

Displaying Options With private Utility Method DisplayMenuOfAmounts
Method DisplayMenuOfAmounts (lines 83–127) first declares local variable userChoice (ini-
tially 0) to store the value that the method will return (line 85). Line 88 declares an integer
array of withdrawal amounts that correspond to the amounts displayed in the withdrawal
menu. We ignore the first element in the array (index 0), because the menu has no option 0.
The while statement at lines 91–124 repeats until userChoice takes on a value other than
0. We will see shortly that this occurs when the user makes a valid selection from the menu.
Lines 94–102 display the withdrawal menu on the screen and prompt the user to enter a
choice. Line 105 obtains integer input through the keypad. The switch statement at lines
108–123 determines how to proceed based on the user’s input. If the user selects 1, 2, 3, 4
or 5, line 114 sets userChoice to the value of the element in the amounts array at index in-
put. For example, if the user enters 3 to withdraw $60, line 114 sets userChoice to the value
of amounts[3]—i.e., 60. Variable userChoice no longer equals 0, so the while at lines 91–
124 terminates, and line 126 returns userChoice. If the user selects the cancel menu option,
line 117 executes, setting userChoice to CANCELED and causing the method to return this val-
ue. If the user does not enter a valid menu selection, lines 120–121 display an error message,
and the user is returned to the withdrawal menu.

The if statement at line 38 in method Execute determines whether the user has
selected a withdrawal amount or chosen to cancel. If the user cancels, line 75 displays an
appropriate message to the user before control is returned to the calling method—ATM

method PerformTransactions. If the user has chosen a withdrawal amount, line 41
assigns local variable selection to instance variable amount. Lines 44–45 retrieve the
available balance of the current user’s Account and store it in a local decimal variable
availableBalance. Next, the if statement at line 48 determines whether the selected
amount is less than or equal to the user’s available balance. If it is not, lines 69–71 display
an error message. Control then continues to the end of the do…while statement, and the
loop repeats because both cashDispensed and transactionCanceled are still false. If the
user’s balance is high enough, the if statement at line 51 determines whether the cash dis-
penser has enough money to satisfy the withdrawal request by invoking the cash-
Dispenser’s IsSufficientCashAvailable method. If this method returns false, lines
64–66 display an error message, and the do…while statement repeats. If sufficient cash is
available, the requirements for the withdrawal are satisfied, and line 54 debits the user’s
account in the database by amount. Lines 56–57 then instruct the cash dispenser to dis-
pense the cash to the user and set cashDispensed to true. Finally, lines 60–61 display a
message to the user to take the dispensed cash. Because cashDispensed is now true, con-
trol continues after the do…while statement. No additional statements appear below the
loop, so the method returns control to class ATM.

26.4.11 Class Deposit
Class Deposit (Fig. 26.23) inherits from Transaction and represents an ATM deposit
transaction. Recall from the class diagram of Fig. 26.10 that class Deposit has one attribute,

csfp6_26_ATM2.fm Page 35 Thursday, July 7, 2016 10:13 AM

26_36 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

amount, which line 5 declares as a decimal instance variable. Lines 6–7 create reference at-
tributes keypad and depositSlot that implement the associations between class Deposit
and classes Keypad and DepositSlot, modeled in Fig. 26.9. Line 10 declares a constant CAN-
CELED that corresponds to the value a user enters to cancel a deposit transaction.

1 // Deposit.cs
2 // Represents a deposit ATM transaction.
3 public class Deposit : Transaction
4 {
5 private decimal amount; // amount to deposit
6 private Keypad keypad; // reference to the Keypad
7 private DepositSlot depositSlot; // reference to the deposit slot
8
9 // constant representing cancel option

10 private const int CANCELED = 0;
11
12 // five-parameter constructor initializes class's instance variables
13 public Deposit(int userAccountNumber, Screen atmScreen,
14 BankDatabase atmBankDatabase, Keypad atmKeypad,
15 DepositSlot atmDepositSlot)
16 : base(userAccountNumber, atmScreen, atmBankDatabase)
17 {
18 // initialize references to keypad and deposit slot
19 keypad = atmKeypad;
20 depositSlot = atmDepositSlot;
21 } -parameter constructor
22
23 // perform transaction; overrides Transaction's abstract method
24 public override void Execute()
25 {
26 amount = PromptForDepositAmount(); // get deposit amount from user
27
28 // check whether user entered a deposit amount or canceled
29 if (amount != CANCELED)
30 {
31 // request deposit envelope containing specified amount
32 UserScreen.DisplayMessage(
33 "\nPlease insert a deposit envelope containing ");
34 UserScreen.DisplayDollarAmount(amount);
35 UserScreen.DisplayMessageLine(" in the deposit slot.");
36
37 // retrieve deposit envelope
38 bool envelopeReceived = depositSlot.IsDepositEnvelopeReceived();
39
40 // check whether deposit envelope was received
41 if (envelopeReceived)
42 {
43 UserScreen.DisplayMessageLine(
44 "\nYour envelope has been received.\n" +
45 "The money just deposited will not be available " +
46 "until we \nverify the amount of any " +
47 "enclosed cash, and any enclosed checks clear.");

Fig. 26.23 | Class Deposit represents an ATM deposit transaction. (Part 1 of 2.)

csfp6_26_ATM2.fm Page 36 Thursday, July 7, 2016 10:13 AM

26.4 ATM Case Study Implementation 26_37

Class Deposit contains a constructor (lines 13–21) that passes three parameters to
base class Transaction’s constructor using a constructor initializer. The constructor also
has parameters atmKeypad and atmDepositSlot, which it assigns to the corresponding ref-
erence instance variables (lines 19–20).

Overriding abstract Method Execute
Method Execute (lines 24–59) overrides abstract method Execute in base class Trans-
action with a concrete implementation that performs the steps required in a deposit trans-
action. Line 26 prompts the user to enter a deposit amount by invoking private utility
method PromptForDepositAmount (declared in lines 62–74) and sets attribute amount to
the value returned. Method PromptForDepositAmount asks the user to enter a deposit
amount as an integer number of cents (because the ATM’s keypad does not contain a dec-
imal point; this is consistent with many real ATMs) and returns the decimal value repre-
senting the dollar amount to be deposited.

Getting Deposit Amount with private Utility Method PromptForDepositAmount
Lines 65–66 in method PromptForDepositAmount display a message asking the user to in-
put a deposit amount as a number of cents or “0” to cancel the transaction. Line 67 re-
ceives the user’s input from the keypad. The if statement at lines 70–73 determines
whether the user has entered a deposit amount or chosen to cancel. If the user chooses to

48
49 // credit account to reflect the deposit
50 Database.Credit(AccountNumber, amount);
51 }
52 else
53 UserScreen.DisplayMessageLine(
54 "\nYou did not insert an envelope, so the ATM has " +
55 "canceled your transaction.");
56 }
57 else
58 UserScreen.DisplayMessageLine("\nCanceling transaction...");
59 }
60
61 // prompt user to enter a deposit amount to credit
62 private decimal PromptForDepositAmount()
63 {
64 // display the prompt and receive input
65 UserScreen.DisplayMessage(
66 "\nPlease input a deposit amount in CENTS (or 0 to cancel): ");
67 int input = keypad.GetInput();
68
69 // check whether the user canceled or entered a valid amount
70 if (input == CANCELED)
71 return CANCELED;
72 else
73 return input / 100.00M;
74 }
75 }

Fig. 26.23 | Class Deposit represents an ATM deposit transaction. (Part 2 of 2.)

csfp6_26_ATM2.fm Page 37 Thursday, July 7, 2016 10:13 AM

26_38 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

cancel, line 71 returns constant CANCELED. Otherwise, line 73 returns the deposit amount
after converting the int number of cents to a dollar-and-cents amount by dividing by the
decimal literal 100.00M. For example, if the user enters 125 as the number of cents, line
73 returns 125 divided by 100.00M, or 1.25—125 cents is $1.25.

The if statement at lines 29–58 in method Execute determines whether the user has
chosen to cancel the transaction instead of entering a deposit amount. If the user cancels,
line 58 displays an appropriate message, and the method returns. If the user enters a
deposit amount, lines 32–35 instruct the user to insert a deposit envelope with the correct
amount. Recall that Screen method DisplayDollarAmount outputs a decimal value for-
matted as a dollar amount (including the dollar sign).

Line 38 sets a local bool variable to the value returned by depositSlot’s IsDepo-
sitEnvelopeReceived method, indicating whether a deposit envelope has been received.
Recall that we coded method IsDepositEnvelopeReceived (lines 7–10 of Fig. 26.17) to
always return true, because we are simulating the functionality of the deposit slot and
assume that the user always inserts an envelope in a timely fashion (i.e., within the two-
minute time limit). However, we code method Execute of class Deposit to test for the
possibility that the user does not insert an envelope—good software engineering demands
that programs account for all possible return values. Thus, class Deposit is prepared for
future versions of IsDepositEnvelopeReceived that could return false. Lines 43–50 exe-
cute if the deposit slot receives an envelope. Lines 43–47 display an appropriate message
to the user. Line 50 credits the user’s account in the database with the deposit amount.
Lines 53–55 execute if the deposit slot does not receive a deposit envelope. In this case, we
display a message stating that the ATM has canceled the transaction. The method then
returns without crediting the user’s account.

26.4.12 Class ATMCaseStudy
Class ATMCaseStudy (Fig. 26.24) simply allows us to start, or “turn on,” the ATM and test
the implementation of our ATM system model. Class ATMCaseStudy’s Main method (lines
6–10) simply instantiates a new ATM object named theATM (line 8) and invokes its Run
method (line 9) to start the ATM.

1 // ATMCaseStudy.cs
2 // App for testing the ATM case study.
3 public class ATMCaseStudy
4 {
5 // Main method is the app's entry point
6 public static void Main(string[] args)
7 {
8 ATM theATM = new ATM();
9 theATM.Run();

10 }
11 }

Fig. 26.24 | Class ATMCaseStudy starts the ATM.

csfp6_26_ATM2.fm Page 38 Thursday, July 7, 2016 10:13 AM

26.5 Wrap-Up 26_39

26.5 Wrap-Up
In this chapter, you used inheritance to tune the design of the ATM software system, and
you fully implemented the ATM in C#. Congratulations on completing the entire ATM
case study! We hope you found this experience to be valuable and that it reinforced many
of the object-oriented programming concepts that you’ve learned.

Answers to Self-Review Exercises
26.1 True. The minus sign (–) indicates private visibility.

26.2 b.

26.3 The design for class Account yields the code in Fig. 26.25. We used public auto-imple-
mented properties AvailableBalance and TotalBalance to store the data that methods Credit and
Debit, will manipulate.

1 // Fig. 26.25: Account.cs
2 // Class Account represents a bank account.
3 public class Account
4 {
5 private int accountNumber; // account number
6 private int pin; // PIN for authentication
7
8 // automatic read-only property AvailableBalance
9 public decimal AvailableBalance { get; private set; }

10
11 // automatic read-only property TotalBalance
12 public decimal TotalBalance { get; private set; }
13
14 // parameterless constructor
15 public Account()
16 {
17 // constructor body code
18 }
19
20 // validates user PIN
21 public bool ValidatePIN()
22 {
23 // ValidatePIN method body code
24 }
25
26 // credits the account
27 public void Credit()
28 {
29 // Credit method body code
30 }
31
32 // debits the account
33 public void Debit()
34 {

Fig. 26.25 | C# code for class Account based on Figs. 26.1 and 26.2. (Part 1 of 2.)

csfp6_26_ATM2.fm Page 39 Thursday, July 7, 2016 10:13 AM

26_40 Chapter 26 ATM Case Study, Part 2: Implementing an OO Design in C#

26.4 b.

26.5 False. The UML requires that we italicize abstract class names and operation names.

26.6 The design for class Transaction yields the code in Fig. 26.26. In the implementation, a
constructor initializes private instance variables userScreen and database to actual objects, and
read-only properties UserScreen and Database access these instance variables. These properties al-
low classes derived from Transaction to access the ATM’s screen and interact with the bank’s da-
tabase. We chose the names of the UserScreen and Database properties for clarity—we wanted to
avoid property names that are the same as the class names Screen and BankDatabase, which can be
confusing.

35 // Debit method body code
36 }
37 }

1 // Fig. 26.26: Transaction.cs
2 // Abstract base class Transaction represents an ATM transaction.
3 public abstract class Transaction
4 {
5 private int accountNumber; // indicates account involved
6 private Screen userScreen; // ATM's screen
7 private BankDatabase database; // account info database
8
9 // parameterless constructor

10 public Transaction()
11 {
12 // constructor body code
13 }
14
15 // read-only property that gets the account number
16 public int AccountNumber
17 {
18 get
19 {
20 return accountNumber;
21 }
22 }
23
24 // read-only property that gets the screen reference
25 public Screen UserScreen
26 {
27 get
28 {
29 return userScreen;
30 }
31 }
32

Fig. 26.26 | C# code for class Transaction based on Figures 26.9 and 26.10. (Part 1 of 2.)

Fig. 26.25 | C# code for class Account based on Figs. 26.1 and 26.2. (Part 2 of 2.)

csfp6_26_ATM2.fm Page 40 Thursday, July 7, 2016 10:13 AM

 Answers to Self-Review Exercises 26_41

33 // read-only property that gets the bank database reference
34 public BankDatabase Database
35 {
36 get
37 {
38 return database;
39 }
40 }
41
42 // perform the transaction (overridden by each derived class)
43 public abstract void Execute();
44 }

Fig. 26.26 | C# code for class Transaction based on Figures 26.9 and 26.10. (Part 2 of 2.)

csfp6_26_ATM2.fm Page 41 Thursday, July 7, 2016 10:13 AM

