
F
Unicode®

O b j e c t i v e s
In this chapter you’ll:
■ The mission of the Unicode Consortium.
■ The design basis of Unicode.
■ The three Unicode encoding forms: UTF-8, UTF-16 and

UTF-32.
■ Characters and glyphs.
■ The advantages and disadvantages of using Unicode.

csfp6_F_Unicode.fm Page 1 Saturday, July 16, 2016 1:33 PM

F_2 Appendix F Unicode®

O
u

tl
in

e

F.1 Introduction
The use of inconsistent character encodings (i.e., numeric values associated with characters)
in the developing of global software products causes serious problems, because computers
process information as numbers. For instance, the character “a” is converted to a numeric
value so that a computer can manipulate that piece of data. Many countries and corporations
have developed their own encoding systems that are incompatible with the encoding systems
of other countries and corporations. For example, the Microsoft Windows operating system
assigns the value 0xC0 to the character “A with a grave accent”; the Apple Macintosh oper-
ating system assigns that same value to an upside-down question mark. This results in the
misrepresentation and possible corruption of data when it is not processed as intended.

In the absence of a widely implemented universal character-encoding standard, global
software developers had to localize their products extensively before distribution. Local-
ization includes the language translation and cultural adaptation of content. The process
of localization usually includes significant modifications to the source code (such as the
conversion of numeric values and the underlying assumptions made by programmers),
which results in increased costs and delays releasing the software. For example, some
English-speaking programmers might design global software products assuming that a
single character can be represented by one byte. However, when those products are local-
ized for Asian markets, the programmer’s assumptions are no longer valid; thus, the
majority, if not the entirety, of the code needs to be rewritten. Localization is necessary
with each release of a version. By the time a software product is localized for a particular
market, a newer version, which needs to be localized as well, may be ready for distribution.
As a result, it is cumbersome and costly to produce and distribute global software products
in a market where there is no universal character-encoding standard.

In response to this situation, the Unicode Standard, an encoding standard that facil-
itates the production and distribution of software, was created. The Unicode Standard
outlines a specification to produce consistent encoding of the world’s characters and sym-
bols. Software products that handle text encoded in the Unicode Standard need to be
localized, but the localization process is simpler and more efficient, because the numeric
values need not be converted and the assumptions made by programmers about the char-
acter encoding are universal. The Unicode Standard is maintained by a nonprofit organi-
zation called the Unicode Consortium, whose members include Apple, IBM, Microsoft,
Oracle, Sybase and many others.

When the Consortium envisioned and developed the Unicode Standard, they wanted
an encoding system that was universal, efficient, uniform and unambiguous. A universal
encoding system encompasses all commonly used characters. An efficient encoding system
allows text files to be parsed easily. A uniform encoding system assigns fixed values to all
characters. An unambiguous encoding system represents a given character in a consistent
manner. These four terms are referred to as the Unicode Standard design basis.

F.1 Introduction
F.2 Unicode Transformation Formats
F.3 Characters and Glyphs

F.4 Advantages/Disadvantages of
Unicode

F.5 Using Unicode
F.6 Character Ranges

csfp6_F_Unicode.fm Page 2 Saturday, July 16, 2016 1:33 PM

F.2 Unicode Transformation Formats F_3

F.2 Unicode Transformation Formats
Although Unicode incorporates the limited ASCII character set (i.e., a collection of char-
acters), it encompasses a more comprehensive character set. In ASCII each character is rep-
resented by a byte containing 0s and 1s. One byte is capable of storing the binary numbers
from 0 to 255. Each character is assigned a number between 0 and 255; thus, ASCII-based
systems can support only 256 characters, a tiny fraction of world’s characters. Unicode ex-
tends the ASCII character set by encoding the vast majority of the world’s characters. The
Unicode Standard encodes all of those characters in a uniform numerical space from 0 to
10FFFF hexadecimal. An implementation will express these numbers in one of several
transformation formats, choosing the one that best fits the particular application at hand.

Three such formats are in use, called UTF-8, UTF-16 and UTF-32, depending on
the size of the units—in bits—being used. UTF-8, a variable-width encoding form,
requires one to four bytes to express each Unicode character. UTF-8 data consists of 8-bit
bytes (sequences of one, two, three or four bytes depending on the character being
encoded) and is well suited for ASCII-based systems, where there is a predominance of
one-byte characters (ASCII represents characters as one byte). Currently, UTF-8 is widely
implemented in UNIX systems and in databases.

The variable-width UTF-16 encoding form expresses Unicode characters in units of
16 bits (i.e., as two adjacent bytes, or a short integer in many machines). Most characters
of Unicode are expressed in a single 16-bit unit. However, characters with values above
FFFF hexadecimal are expressed with an ordered pair of 16-bit units called surrogates.
Surrogates are 16-bit integers in the range D800 through DFFF, which are used solely for
the purpose of “escaping” into higher-numbered characters. Approximately one million
characters can be expressed in this manner. Although a surrogate pair requires 32 bits to
represent characters, it is space efficient to use these 16-bit units. Surrogates are rare char-
acters in current implementations. Many string-handling implementations are written in
terms of UTF-16. [Note: Details and sample code for UTF-16 handling are available on
the Unicode Consortium website at www.unicode.org.]

Implementations that require significant use of rare characters or entire scripts
encoded above FFFF hexadecimal should use UTF-32, a 32-bit, fixed-width encoding
form that usually requires twice as much memory as UTF-16 encoded characters. The
major advantage of the fixed-width UTF-32 encoding form is that it expresses all charac-
ters uniformly, so it is easy to handle in arrays.

There are few guidelines that state when to use a particular encoding form. The best
encoding form to use depends on computer systems and business protocols, not on the
data itself. Typically, the UTF-8 encoding form should be used where computer systems
and business protocols require data to be handled in 8-bit units, particularly in legacy sys-
tems being upgraded, because it often simplifies changes to existing programs. For this
reason, UTF-8 has become the encoding form of choice on the Internet. Likewise, UTF-
16 is the encoding form of choice on Microsoft Windows applications. UTF-32 is likely
to become more widely used in the future, as more characters are encoded with values
above FFFF hexadecimal. Also, UTF-32 requires less sophisticated handling than UTF-
16 in the presence of surrogate pairs. Figure F.1 shows the different ways in which the
three encoding forms handle character encoding.

csfp6_F_Unicode.fm Page 3 Saturday, July 16, 2016 1:33 PM

F_4 Appendix F Unicode®

F.3 Characters and Glyphs
The Unicode Standard consists of characters, written components (i.e., alphabetic letters,
numerals, punctuation marks, accent marks, and so on) that can be represented by numer-
ic values. Examples of characters include: U+0041 Latin capital letter A. In the first char-
acter representation, U+yyyy is a code value, in which U+ refers to Unicode code values, as
opposed to other hexadecimal values. The yyyy represents a four-digit hexadecimal number
of an encoded character. Code values are bit combinations that represent encoded charac-
ters. Characters are represented with glyphs, various shapes, fonts and sizes for displaying
characters. There are no code values for glyphs in the Unicode Standard. Examples of
glyphs are shown in Fig. F.2.

The Unicode Standard encompasses the alphabets, ideographs, syllabaries, punctua-
tion marks, diacritics, mathematical operators and so on that comprise the written lan-
guages and scripts of the world. A diacritic is a special mark added to a character to
distinguish it from another letter or to indicate an accent (e.g., in Spanish, the tilde “~”
above the character “n”). Currently, Unicode provides code values for 94,140 character
representations, with more than 880,000 code values reserved for future expansion.

F.4 Advantages/Disadvantages of Unicode
The Unicode Standard has several significant advantages that promote its use. One is its
impact on the performance of the international economy. Unicode standardizes the char-
acters for the world’s writing systems to a uniform model that promotes transferring and
sharing data. Programs developed using such a schema maintain their accuracy, because
each character has a single definition (i.e., a is always U+0061, % is always U+0025). This
enables corporations to manage all characters in an identical manner, thus avoiding any
confusion caused by different character-code architectures. Moreover, managing data in a
consistent manner eliminates data corruption, because data can be sorted, searched and
manipulated via a consistent process.

Another advantage of the Unicode Standard is portability (i.e., the ability to execute
software on disparate computers or with disparate operating systems). Most operating sys-

Character UTF-8 UTF-16 UTF-32

Latin Capital Letter A 0x41 0x0041 0x00000041

Greek Capital Letter Alpha 0xCD 0x91 0x0391 0x00000391

CJK Unified Ideograph-4e95 0xE4 0xBA 0x95 0x4E95 0x00004E95

Old Italic Letter A 0xF0 0x80 0x83 0x80 0xDC00 0xDF00 0x00010300

Fig. F.1 | Correlation between the three encoding forms.

Fig. F.2 | Various glyphs of the character A.

csfp6_F_Unicode.fm Page 4 Saturday, July 16, 2016 1:33 PM

F.5 Using Unicode F_5

tems, databases, programming languages and web browsers currently support, or are plan-
ning to support, Unicode. Additionally, Unicode includes more characters than any other
character set in common use (although it does not yet include all of the world’s characters).

A disadvantage of the Unicode Standard is the amount of memory required by UTF-
16 and UTF-32. ASCII character sets are 8 bits in length, so they require less storage than
the default 16-bit Unicode character set. However, the double-byte character set (DBCS)
and the multibyte character set (MBCS) that encode Asian characters (ideographs)
require two to four bytes, respectively. In such instances, the UTF-16 or the UTF-32
encoding forms may be used with little hindrance to memory and performance.

F.5 Using Unicode
Visual Studio uses Unicode UTF-16 encoding to represent all characters. Figure F.3 uses
C# to display the text “Welcome to Unicode!” in eight different languages: English,
French, German, Japanese, Portuguese, Russian, Spanish and Traditional Chinese.

The first welcome message (lines 19–23) contains the hexadecimal codes for the
English text. The Code Charts page on the Unicode Consortium website contains a doc-
ument that lists the code values for the Basic Latin block (or category), which includes the
English alphabet. The hexadecimal codes in lines 19–21 equate to “Welcome.” When
using Unicode characters in C#, the format \uyyyy is used, where yyyy represents the hexa-
decimal Unicode encoding. For example, the letter “W” (in “Welcome”) is denoted by
\u0057. Line 9 contains the hexadecimal for the space character (\u0020). The hexadec-

1 // Fig. F.3: UnicodeForm.cs
2 // Unicode enconding demonstration.
3 using System;
4 using System.Windows.Forms;
5
6 namespace UnicodeDemo
7 {
8 public partial class UnicodeForm : Form
9 {

10 public UnicodeForm()
11 {
12 InitializeComponent();
13 }
14
15 // assign Unicode strings to each Label
16 private void UnicodeForm_Load(object sender, EventArgs e)
17 {
18 // English
19 char[] english = { '\u0057', '\u0065', '\u006C',
20 '\u0063', '\u006F', '\u006D', '\u0065', '\u0020',
21 '\u0074', '\u006F', '\u0020' };
22 englishLabel.Text = new string(english) +
23 "Unicode" + '\u0021';
24

Fig. F.3 | Unicode enconding demonstration. (Part 1 of 3.)

csfp6_F_Unicode.fm Page 5 Saturday, July 16, 2016 1:33 PM

F_6 Appendix F Unicode®

25 // French
26 char[] french = { '\u0042', '\u0069', '\u0065',
27 '\u006E', '\u0076', '\u0065', '\u006E', '\u0075',
28 '\u0065', '\u0020', '\u0061', '\u0075', '\u0020' };
29 frenchLabel.Text = new string(french) +
30 "Unicode" + '\u0021';
31
32 // German
33 char[] german = { '\u0057', '\u0069', '\u006C',
34 '\u006B', '\u006F', '\u006D', '\u006D', '\u0065',
35 '\u006E', '\u0020', '\u007A', '\u0075', '\u0020' };
36 germanLabel.Text = new string(german) +
37 "Unicode" + '\u0021';
38
39 // Japanese
40 char[] japanese = { '\u3078', '\u3087', '\u3045',
41 '\u3053', '\u305D', '\u0021' };
42 japaneseLabel.Text = "Unicode" + new string(japanese);
43
44 // Portuguese
45 char[] portuguese = { '\u0053', '\u0065', '\u006A',
46 '\u0061', '\u0020', '\u0062', '\u0065', '\u006D',
47 '\u0020', '\u0076', '\u0069', '\u006E', '\u0064',
48 '\u006F', '\u0020', '\u0061', '\u0020' };
49 portugueseLabel.Text = new string(portuguese) +
50 "Unicode" + '\u0021';
51
52 // Russian
53 char[] russian = { '\u0414', '\u043E', '\u0431',
54 '\u0440', '\u043E', '\u0020', '\u043F', '\u043E',
55 '\u0436', '\u0430', '\u043B', '\u043E', '\u0432',
56 '\u0430', '\u0442', '\u044A', '\u0020', '\u0432', '\u0020' };
57 russianLabel.Text = new string(russian) +
58 "Unicode" + '\u0021';
59
60 // Spanish
61 char[] spanish = { '\u0042', '\u0069', '\u0065',
62 '\u006E', '\u0076', '\u0065', '\u006E', '\u0069',
63 '\u0064', '\u006F', '\u0020', '\u0061', '\u0020' };
64 spanishLabel.Text = new string(spanish) +
65 "Unicode" + '\u0021';
66
67 // Simplified Chinese
68 char[] chinese = { '\u6B22', '\u8FCE', '\u4F7F',
69 '\u7528', '\u0020' };
70 chineseLabel.Text = new string(chinese) +
71 "Unicode" + '\u0021';
72 } // end method UnicodeForm_Load
73 } // end class UnicodeForm
74 } // end namespace UnicodeDemo

Fig. F.3 | Unicode enconding demonstration. (Part 2 of 3.)

csfp6_F_Unicode.fm Page 6 Saturday, July 16, 2016 1:33 PM

F.6 Character Ranges F_7

imal value for the word “to” is on line 21, and the word “Unicode” is on line 23. “Uni-
code” is not encoded because it is a registered trademark and has no equivalent translation
in most languages. Line 23 also contains the \u0021 notation for the exclamation mark (!).

The remaining welcome messages (lines 26–71) contain the hexadecimal codes for the
other seven languages. The code values used for the French, German, Portuguese and
Spanish text are located in the Basic Latin block, the code values used for the Traditional
Chinese text are located in the CJK Unified Ideographs block, the code values used for the
Russian text are located in the Cyrillic block and the code values used for the Japanese text
are located in the Hiragana block.

[Note: To render the Asian characters in an application, you need to install the proper
language files on your Windows computer. To do this, open the Regional Options dialog
from the Control Panel (Start > Settings > Control Panel). At the bottom of the General tab
is a list of languages. Check the Japanese and the Traditional Chinese checkboxes and press
Apply. Follow the directions of the install wizard to install the languages. For more infor-
mation, visit www.unicode.org/help/display_problems.html.]

F.6 Character Ranges
The Unicode Standard assigns code values, which range from 0000 (Basic Latin) to E007F
(Tags), to the written characters of the world. Currently, there are code values for 94,140
characters. To simplify the search for a character and its associated code value, the Unicode
Standard generally groups code values by script and function (i.e., Latin characters are
grouped in a block, mathematical operators are grouped in another block, and so on). As
a rule, a script is a single writing system that is used for multiple languages (e.g., the Latin
script is used for English, French, Spanish, and so on). The Code Charts page on the Uni-
code Consortium website lists all the defined blocks and their respective code values.
Figure F.4 lists some blocks (scripts) from the website and their range of code values.

Script Range of code values

Arabic U+0600–U+06FF
Basic Latin U+0000–U+007F

Fig. F.4 | Some character ranges. (Part 1 of 2.)

Fig. F.3 | Unicode enconding demonstration. (Part 3 of 3.)

csfp6_F_Unicode.fm Page 7 Saturday, July 16, 2016 1:33 PM

F_8 Appendix F Unicode®

Bengali (India) U+0980–U+09FF

Cherokee (Native America) U+13A0–U+13FF

CJK Unified Ideographs (East Asia) U+4E00–U+9FAF

Cyrillic (Russia and Eastern Europe) U+0400–U+04FF
Ethiopic U+1200–U+137F
Greek U+0370–U+03FF

Hangul Jamo (Korea) U+1100–U+11FF
Hebrew U+0590–U+05FF

Hiragana (Japan) U+3040–U+309F

Khmer (Cambodia) U+1780–U+17FF

Lao (Laos) U+0E80–U+0EFF
Mongolian U+1800–U+18AF
Myanmar U+1000–U+109F

Ogham (Ireland) U+1680–U+169F

Runic (Germany and Scandinavia) U+16A0–U+16FF

Sinhala (Sri Lanka) U+0D80–U+0DFF

Telugu (India) U+0C00–U+0C7F
Thai U+0E00–U+0E7F

Script Range of code values

Fig. F.4 | Some character ranges. (Part 2 of 2.)

csfp6_F_Unicode.fm Page 8 Saturday, July 16, 2016 1:33 PM

