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APPENDIX F

OFDM Symbol Formation with 
an N-Point Inverse Discrete 
Fourier Transform (IDFT)

Each OFDM symbol starts life as a baseband sampled data complex sequence of 
length N. The sequence is formed as a sum of scaled sampled data sines and cosines, 
with periods harmonically related to the sequence length N. All the sinusoids in 
the composite sequence contain precisely N samples and have an integer num-
ber of cycles in the interval of length N. The frequencies of the sinusoids can be 
0, {1, {2, {3, c , { 1N>22 − 1, and N>2 cycles per interval. Since the frequen-
cies of the separate sequences contain an integer number of cycles that are harmon-
ics of the fundamental, their inner products are zero, and hence they are mutually 
orthogonal. It is theoretically possible to form a collection of phase-locked analog 
sinusoidal oscillators and then sample the separate oscillators to obtain the orthog-
onal sequences. We can also obtain the orthogonal sequences from a precomputed 
table of sines and cosines accessed by a simple addressing process. Such a table is 
already embedded in an algorithm called the inverse fast Fourier transform (IFFT), 
which implements the inverse discrete Fourier transform (IDFT). It is fortuitous 
that the sinusoids that are the components of the complex baseband signal vector in 
the initial OFDM signal coincide with the basis vectors of the IDFT. We can use the 
IFFT to directly and efficiently form the sum of the weighted complex sinusoids at 
the modulator and then use the fast Fourier transform (FFT) to retrieve the weight-
ing terms, which are the amplitudes of the separate sinusoids at the demodulator.

In this appendix, we review and describe the inverse and forward discrete Fou-
rier transforms of finite-length sequences and their relationship to continuous and 
sampled signals as well as continuous and sampled spectra. We emphasize the con-
nections between basis functions and basis sequences of the continuous and sampled 
data representations of sinusoids. Understanding these relationships can provide 
valuable insight into the OFDM process. This broad view is useful as we track signal 
transformations in the modulation and demodulation process, as the signal and its 
transform are converted from its sampled form at one location to its continuous 
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form at another. It is also useful in understanding signal anomalies due to signal 
conditioning errors such as carrier-frequency offset and sampling-rate errors in the 
signal collection process at an OFDM receiver.

Consider one of the OFDM component sinusoids, with k cycles per interval of 
length N:

	 sk(n) = ck ej 2πN  nk where n = 0, 1, c, N − 1 1 ck ej 2πN  10 : N−12k	 (F.1)

This is a sampled data-gated sinusoid, starting at index 0 and stopping at index 
N – 1. We also show the MATLAB indexing scheme using the colon notation 0:N – 1  
to represent the indexing from 0 through N – 1. For the specific case of ak = 1.0,  
bk = 0.0, k = 4, and N = 64, we see the real part of the sampled waveform in 
Figure  F.1a and the imaginary part in Figure F.1b. A property of every bounded 
finite-length sampled-data sequence is that it has a continuous periodic Fourier 
transform. Figure F.1c shows the continuous sampled-data transform computed for 
a dense set of digital frequencies θ, with units of radians/sample.

The discrete Fourier transform (DFT) of an N-length sampled-data sequence 
is simply the equally spaced samples of the sampled-data transform with sample 
spacing 2π>N:

	 s1k2 = s1θ2 θ=k 
2π
N = aN−1

n=0  s1n2e−jnθ θ=k 
2π
N = aN−1

n=0  s1n2e−j 2πN  nk	 (F.2)

The 64 DFT samples of the input sequence are shown as the circular markers over-
laid on the sampled data Fourier transform of Figure F.1c. Notice that all but one of 
the circular marker samples fall on the zero crossings of the continuous spectrum, 
and the one nonzero-valued sample lies at the peak of the waveshape centered at 
index 4.

The envelope of the gated sinusoid is a rectangle of amplitude 1 extending over 
N samples. If the envelope were a continuous unit-amplitude rectangle time function 
spanning the Tp seconds and centered at time 0, its spectrum would be

	 H1f2 = Tp 
sin 12πf Tp>22
12πf Tp>22 = Tp 

sin 1πf Tp2
1πf Tp2 	 (F.3a)

We recognize this as the sinc 1x2  defined as sin1πx2 > 1πx2  function with periodic 
spectral zeros at multiples of 1>Tp and with the mainlobe peak located at f = 0.

The envelope of the sampled data rectangle, or gating sequence, is 

	 H1θ2 =
sin 1Nθ>22
sin 1θ>22 	 (F.3b)

We recognize this as the Dirichlet kernel, the periodic extension of the  sinc 1x2  
function. This function has spectral zeros at multiples of 2π>N and has periodic 
mainlobe peaks of amplitude N located at multiples of 2π. For small angles, the 
Dirichlet kernel can be approximated by 

	 For small θ, H1θ2 =
sin 1Nθ>22

1θ>22 = N 
sin 1Nθ>22
1Nθ>22 	 (F.3c)
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which is essentially the same expression as the sinc 1x2  function. For large N and 
small θ, the regions near the mainlobe of the sinc and Dirichlet functions are essen-
tially identical. The mainlobe of the Dirichlet kernel is preserved when the sam-
ples are converted to a continuous analog waveshape by a DAC, or zero-order hold, 
and the following analog smoothing filter. Thus, the analog representation of the 
gated sinusoid has a sinc-shaped spectrum, while the sampled data representation 
of the same gated sinusoid has a Dirichlet-shaped spectrum. It is the spectral side-
lobes of the sinc function adjacent to OFDM gated signals that require us to insert 
spectral guard bands between adjacent frequency bands to suppress adjacent band 
interference.

(a) Real Part of Sampled Complex Sinusoid Sequence 1.0 exp(j 2π (0:63) 4/64)

(b) Imaginary Part Sampled Complex Sinusoid Sequence 1.0 exp(j 2π (0:63) 4/64)
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(c) Sampled Data Fourier Transform sin((θ–4(2π/64))/2)/sin((θ–4(2π/64))64/2) of Sequence 1.0 exp(j 2π (0:63) 4/64)
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Figure F.1  (a) Real part of sampled complex sinusoid containing 64 samples with 
4 cycles per 64 sample interval. (b) Imaginary part of same sequence. (c) Primary 
zone sampled data Fourier transform of 64-point complex input sequence with 
markers showing 64 samples of sampled Fourier transform formed by 64-point 
DFT of the same complex input series.
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