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In Appendix A, Equations (A.26) and (A.27) defined the Fourier and inverse 
 Fourier transforms, respectively. Although the Fourier transform is useful for a 
steady-state frequency analysis of a system, it is not particularly useful for transient 
analysis; and for some functions, the Fourier integral does not in fact exist, whereas 
the Laplace transform, discussed in this appendix, does. Hence, to allow a more 
in-depth analysis of linear systems, we often choose to use the Laplace transform. In 
terms of Laplace- and Fourier-defining equations, it is straightforward to show that 
the Laplace transform is an extension of the Fourier transform. If the system under 
analysis is a discrete time system rather than a continuous time system, then we can 
use the notationally simpler z-transform, which can be directly derived from the 
Laplace transform. Another reason for using the Laplace transform (for continuous 
time analysis) and z-transform (for discrete time analysis) is that operations that are 
“awkward” in the time domain, such as convolution, can be performed more easily 
in the s-domain or z-domain.

Hence, in this appendix, the s-domain, z-domain, and discrete frequency trans-
form are reviewed, and thereafter the ubiquitous digital filter is introduced with 
varied reference to the Laplace and z-transforms.

E.1 THE LAPLACE TRANSFORM

Recall the Fourier transform in Equation (A.26) of Appendix A, 

 X1f2 = 3∞

−∞
x1 t2e−2πf t dt or X1ω2 = 3∞

−∞
x1 t2e−jωt dt (E.1)

where ω = 2πf.
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s-Domain, z-Domain, and Digital Filtering  App. E2

If we define a new function v1 t2  that is x1 t2  multiplied by the real exponen-
tial time function e−σt, where σ is a real number, then v1 t2 = x1 t2e−σt. Hence, the 
Fourier transform of the function v1 t2  is

V1ω2 = 3∞

−∞
v1 t2e−jωt dt = 3∞

−∞
x1 t2e−σte−jωt dt = 3∞

−∞
x1 t2e−1σ+ jω2t dt (E.2)

Therefore, we can rewrite Equation (E.1) as

 X1σ + jω2 = 3∞

−∞
x1 t2e−1σ+ jω2t dt (E.3)

Letting s be the complex frequency s = σ + jω, we can now define the Laplace 
transform of a time domain signal x1 t2  as

 X1s2 = 3∞

−∞
x1 t2e−st dt (E.4)

where s is the Laplace variable. If we rewrite the inverse Fourier transform in Equa-
tion (A.27) in terms of angular frequency ω = 2πf, then dω>df =  2π and

 x1 t2 = 3∞

−∞
X1ω2ejωt 

dω
2π

 (E.5)

Since s = σ + jω, it follows that ds>dω = j, and we can therefore specify the inverse 
Laplace transform as

 x1 t2 =
1

j2π3
σ+ j∞

σ− j∞
X1s2est ds (E.6)

Equations (E.4) and (E.6) are referred to as a Laplace transform pair 3x1 t2 4 X1s24  
or, more precisely, the two-sided or bilateral Laplace transform pair. If we (reason-
ably) assume that the signal x1 t2  does not exist before t = 0 (i.e., it is causal), then 
the transform can thus be termed one sided or unilateral and written as

 X1s2 = 3∞

0
x1 t2e−st dt (E.7)

The inverse unilateral Laplace transform is the same as Equation (E.6). Hence, it 
is also appropriate to refer to Equations (E.6) and (E.7) as the one-sided Laplace 
transform pair, or unilateral Laplace transform pair.

E.1.1 Standard Laplace Transforms

Table E.1 shows some standard one-sided Laplace transforms. Note that the (two-
sided) Laplace transform of Equation (E.4) is identical to the Fourier transform of 
Equation (A.26) if we set s = jω, where ω = 2πf. In order to develop the Laplace 
transform, x1 t2  was multiplied by a “convergence factor” e−σt, where σ is any real 
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E.1  The Laplace Transform 3

number. Hence, when actually evaluating the integration, the Laplace transform may 
exist for many functions that do not have a corresponding Fourier transform. One of 
the key advantages of the Laplace transform is the capability of transforming func-
tions that are not absolutely integrable.

E.1.2 Laplace Transform Properties

If we know the Laplace transform pair y1 t2 4 Y1s2 , then it can be shown that for 
a delayed version of the signal denoted as y1 t − t02 ,

 y1 t − t02 4 e−st0Y1s2  (E.8)

This is the simple time-shift property of Laplace transforms. Table (E.2) shows other 
properties of Laplace transforms. All of these properties can be verified by direct 
evaluation of the Laplace transform property of interest. Note that the relationship 
of s = jω between the Laplace and Fourier transform means that there is a simple 
equivalence between like transforms of Table E.1 with those in Table A.1, as well as 
like operations in Table E.2 with those in Table A.2.

Table E.1 Laplace Transforms

Waveform Type Time Function Laplace Transform

Impulse δ1 t2 1

Unit step function u1 t2 1
s

Ramp function tu1 t2 1

s2

Exponential eatu1 t2 1
s − a

teatu1 t2
1

1s − a22

Sine wave sin 1ωt2u1 t2
ω

1s2 + ω22

Cosine wave cos 1ωt2u1 t2 s

s2 + ω2

Damped sine wave eat sin 1ωt2u1 t2
ω

1s − a22 + ω2

Damped cosine wave eat cos 1ωt2u1 t2
1s − a2

1s − a22 + ω2
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E.1.3 Using the Laplace Transform

Laplace transforms are useful where (time) differential equations have to be solved 
or convolution operations have to be performed. For example, to find the current 
i1 t2  in the simple RC circuit in Figure E.1, note that the voltage across the capacitor 
(integrating component) and resistor is the input voltage

 vin1 t2 = i1 t2R +
q

C
= i1 t2R +

1
C3

t

0
i1 t2  dt (E.9)

If the input voltage is a unit-step power source, vin1 t2 = u1 t2 , and q is the charge 
across the capacitor (in Coulombs), taking Laplace transforms of Equation (E.9), 
using Tables E.1 and E.2, we obtain

Vin1s2 = RI1s2 +
I1s2
sC

and 1 I1s2 =
Vin1s2

R + 1> 1sC2 =
1>R

s + 1> 1RC2  (E.10)

(Note that for the unit step, Vin1s2 = 1>s.2  Next, transforming back to the time 
domain (based again on the Laplace transform tables) gives

 i1 t2 =
1
R

 e−t>1RC2 (E.11)

Table E.2 Laplace Operations

Property Time Function Laplace Transform

General or arbitrary function x1 t2 X1s2
General or arbitrary function y1 t2 Y1s2
Linearity ax1 t2 + by1 t2 aX1s2 + bY1s2

Time shift 1τ > 02 x1 t − τ2 e−sτ X1s2

Time scaling x1at2 1
a

 X a s
a
b

Modulation e−at x1 t2 X1s − a2

Differentiation
dx1 t2

dt
sX1s2 − x102

Integration 1 t
−∞ x1τ2dτ

X1s2
s

Convolution x1 t2* y1 t2 X1s2Y1s2
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E.1.4 Transfer Function

Using the Laplace transform, we can specify the (s-variable) transfer function of a 
linear system. From Equation (E.10), if the resistance R = 0, then the impedance of 
the capacitor can be calculated as

 Zc =
Vin1s2
I1s2 =

1
sC

 (E.12)

The input and output Laplace voltages can be specified as

 Vin1s2 = I1s2R +
I1s2
sC
 Vout1s2 =

I1s2
sC

 (E.13)

and, therefore, the (Laplace) transfer function can be specified as

 H1s2 =
Vout1s2
Vin1s2 =

I1s2
sC

I1s2R +
I1s2
sC

=
1

sRC + 1
 (E.14)
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Figure E.1 (a) Resistor capacitor circuit. (b) Laplace transform repre-
sentation. (c) Magnitude response.
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E.1.5 RC Circuit Low-Pass Filtering

Let the input to the RC circuit be a complex sinusoid vin1 t2 = ejωt. From Appendix A, 
we note that we can equate this to the Fourier transform by setting s = jω, where 
ω = 2πf. Thus, the frequency response can be realized from the transfer function

Vout1 f2
Vin1f2 =

1
jωRC + 1

=
1

j2πfRC + 1
=

1212πfRC22 + 1
 e−j3arctan12πfRC24 (E.15)

For small values of f, then  H1 f2  ≈ 1; and for large values of f, then 
 H1 f2  ≈ 0. When f = f0 = 1> 12πRC2 , then  H1 f2  ≈ 1>12. Noting that  
20 log1011>122 = −3 dB, then f0 is the 3 dB frequency when the output power is 
half of the input power. Therefore, Equation (E.15) specifies a low-pass filter that is 
the same as was presented in Equation (1.63). Low frequencies are passed, and high 
frequencies are attenuated; this is shown in the magnitude frequency response of 
Figure E.1c.

E.1.6 Poles and Zeros

Linear systems and hence (linear) analog filters can be represented by time-domain 
differential equations. For example, consider the second-order example

 y1 t2 = A 
d2x1 t2

dt2 + B 
dx1 t2

dt
+ Cx1 t2 + D 

d2y1 t2
dt2 + E 

dy1 t2
dt

 (E.16)

The various orders of differentiation and/or integration are implemented in the real 
world by using capacitive and inductive components in combination with feedback 
amplifiers of given orders [2]. Taking the Laplace transform of Equation (E.16) 
yields the more mathematically (and notationally) convenient Laplace equation

 Y1s2 = As2X1s2 + BsX1s2 + CX1s2 + Ds2Y1s2 + EsY1s2  (E.17)

and the transfer function

 H1s2 =
Y1s2
X1s2 =

As2 + Bs + C

−Ds2 − Es + 1
=

A1s − a02 1s − a12
−D1s − b02 1s − b12  (E.18)

The roots 5a0, a16 of the numerator s-polynomial are termed the zeros, and the roots 
5b0, b16 of the denominator s-polynomial are termed the poles. Note that if A, B, 
and C are real values, then the zeros 5a0, a16 will be complex conjugates.

E.1.7 Linear System Stability

Consider briefly the single-pole equation corresponding to an arbitrary linear 
system:

 H1s2 =
1

s − σ
 (E.19)
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E.1  The Laplace Transform 7

The impulse response of this circuit can be found (by using Table E.1) to be the 
inverse of the transfer function in Equation (E.19); and if σ = ρ + jζ, then the 
impulse response is

 h1 t2 = eσt = eρtejζt (E.20)

Noting that Re3σ4 = ρ, then the impulse response is diverging for increasing 
t (time) if ρ > 0. However, for ρ < 0, the impulse response is converging for increas-
ing t. The term ej ζt is a complex (oscillating) sinusoid (as discussed in Section A.2.1). 
In slightly different language, we could state that a system is stable if all s-domain 
poles have a real component less than zero.

Thus, if the poles were plotted on the complex s-plane, then all poles must be 
on the left-hand side of the complex plane. Figure E.2 illustrates the complex s-plane 
regions of stability and provides an example of a stable third-order transfer function, 
where the poles are in the left-hand side of the plane (i.e., the poles have a negative 
real component). Note that the zeros may be in either the left- or right-hand side of 
the s-plane and have no bearing on stability.

For a circuit with more than one pole, one can think of the transfer function as 
a cascade of single-pole circuits, as follows:

  H1s2 =
1s − a02 1s − a12 1s − a22
1s − b02 1s − b12 1s − b22

  = 1s − a02 1s − a12 1s − a22 c 1
s − b0

d c 1
s − b1

d c 1
s − b2

d  (E.21)

For stability, all poles must lie on the left-hand side of the complex plane. Note that 
for real circuits with real Laplace coefficients [i.e., in Equation (E.16) A, B, C, D, 
and E would be all real valued], the poles and zeros will either be real or occur as 
complex conjugate pairs, as illustrated in Figure E.2.
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Figure E.2 Plotting the poles and zeros of an s-domain transfer function.
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For our previous example of an RC circuit, the transfer function in Equation 
(E.14) is unconditionally stable since 2πRC is always a positive value—which is of 
course the expected result. Instability will only be seen in linear systems that have 
feedback (recursion), such as filters implemented with inverting or noninverting 
operational amplifier circuits.

E.2 THE Z-TRANSFORM

The z-transform is essentially the discrete equivalent of the Laplace transform. 
It allows for conventional mathematical analysis (transient and steady state) and 
manipulation of signals and systems. Probably the most frequent modern use of the 
z-transform is for specifying discrete systems and analyzing their stability.

The z-transform allows the convolution of an input signal and a discrete linear 
system to be calculated in a mathematically tractable form. Also, the “poles” and 
“zeros” of a system can be observed, leading to information regarding the dynamic 
behavior and stability of a discrete system. It is important to note that the poles 
and zeros of the z-transform are different from the poles and zeros of the Laplace 
transform.

E.2.1 Calculating the z-Transform

We can derive the z-transform from the Laplace transform of Equation (E.4) by 
considering a signal x1 t2  that is sampled every T seconds, thus yielding a discrete 
time signal of samples x102 , x1T2 , x12T2 , c = 5x1kT26. The sampled data rep-
resent a set of weighted and translated delta functions whose Laplace transform (by 
the time-shifting property) can be written as

 X1s2 = a
∞

k=0
x1kT2e−skT (E.22)

If we employ the parameter z = esT and replace discrete time kT with a sample 
number k, we get

 X1z2 = a
∞

k=0
x1k2z−k (E.23)

As an example, the z-transform of a simple unit step function u1k2  is

U1z2 = a
∞

k=0
u1k2z−k = 1 + z−1 + z−2 + z−3 + c =

1

1 − z−1 (E.24)

Note the geometric series form and the assumption that  z  < 1 (the region of con-
vergence). As in the case of the Laplace transform, the z-transform can be tabulated 
in tables such as Table E.3 and operations of the z-transform can be tabulated in 
tables such as Table E.4.
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E.2  The z-Transform 9

E.2.2 The Inverse z-Transform

We can transform back from the z-domain to the time domain by using the inverse 
z-transform [2], as follows:

 x1k2 = z−15X1z26 =
1

j2π CC

X1z2zk−1 dz (E.25)

Table E.3 z-Transforms of Some Simple Functions

Waveform Type Time Function z-Transform

Impulse δ1k2 1

Delayed impulse δ1k − m2 z−m

Unit step function u1k2 z
z − 1

Ramp function ku1k2
z

1z − 122

Exponential eaku1k2
z

z − ea

Sine wave sin 1ωk2u1k2
z sin 1ω2

z2 − 2z cos 1ω2 + 1

Cosine wave cos 1ωk2u1k2 z3z − cos 1ω24
z2 − 2z cos 1ω2 + 1

Table E.4 z-Transform Operations

Property Time Function z-Transform

General or arbitrary function x1 t2 X1z2
General or arbitrary function y1 t2 Y1z2
Linearity ax1 t2 + by1 t2 aX1z2 + bY1z2
Time shift x1k − m2 z−mX1z2
Modulation e−jωkx1k2 X1ejωz2
Exponential scaling akx1k2 X1z>a2

Ramp scaling kx1k2 −z
d

dz
 X1z2

Convolution x1k2* h1k2 X1z2H1z2
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Here, the complex integration A  is over any simple contour in the region of 
 convergence of X1z2  that circles the point z = 0. The evaluation of the inverse 
z- transform would appear to be somewhat more complicated than for the  
z- transform. Typical operations required include partial fraction evaluation, poly-
nomial division, the residue theorem, and difference equation synthesis. Hence, 
most z-transformations and inverse z-transformations are calculated using tables 
of standard integrals and properties, and explicit evaluation of Equation (E.25) can 
usually be avoided. In modern DSP analysis, software packages such as MATLAB, 
Signal Processing Toolbox [1] are used to manipulate discrete signals and systems, 
and the z-transform is largely used simply as a convenient analytical notation for 
the specification and stability of discrete signals and systems.

E.3 DIGITAL FILTERING

Using appropriate analog and digital components, a digital filter can be set up to 
perform a desired frequency discrimination or phase-modifying function.  Figure E.3 
shows the components required for a digital filter that produces the filtered sequence 
y1k2  for the input sequence x1k2  [2]. A general digital filter output y1k2  is pro-
duced from a weighted sum of past inputs x1k2  and past outputs y1k − n2 , with 
n > 0. A signal flow graph (composed of only adders, multipliers, and sample delays) 
for a four-feedforward weight and three-weight feedback digital filter, is shown in 
Figure E.4. Note that a single sample time delay is indicated by the symbol ∆. Often, 
one sees such time-domain signal flow graphs drawn with a mixture of time-domain 
and z-domain notation, using z−1 to represent a delay; although it is a common prac-
tice, it is not precise.

Analog Analog

ADC
Reconst-
ruction
filter

Anti-
alias
filter

DSP
Processor

H(z)
DAC

Digital

time, t
00

00

x(t)

sample, k

x(k)

sample, k

y(k)

time, t

y(t)fs

fs
…

…

Figure E.3 Digital filter equations are implemented on the DSP processor, which 
processes the time-sampled data signal to produce a time-sampled output data 
signal.
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E.3  Digital Filtering 11

The output of this filter is given as

  y1k2 = a0 x1k2 + a1x1k − 12 + a2 x1k − 22 + a3 x1k − 32 +

  + b1 y1k − 12 + b2 y1k − 22 + b3 y1k − 32

  = a
3

n=0
an x1k − n2 + a

3

m=1
bm y1k − m2  (E.26)

Taking the z-transform of Equation (E.26) gives

  Y1z2 = a0X1z2 + a1X1z2z−1 + a2X1z2z−2 + a3X1z2z−3

  +  b1Y1z2z−1 + b2Y1z2z−2 + b3Y1z2z−3  (E.27)

E.3.1 Digital Filter Transfer Function

The transfer function of the digital filter in Figure E.4 is produced by rearranging 
Equation (E.27) to yield

  H1z2 =
Y1z2
X1z2 =

a0 + a1z
−1 + a2z

−2 + a3z
−3

1 − b1z
−1 − b2z

−2 − b3z
−3

  =
a011 − α1z

−1211 − α2z
−1211 − α3z

−12
11 − β1z

−1211 − β2z
−1211 − β3z

−12

  =
a01z − α121z − α221z − α32
1z − β121z − β221z − β32 =

A1z2
B1z2  (E.28)

where the α values are the z-domain zeros of the filter, and the β values are the 
z-domain poles of the filter, found by finding the roots of the numerator polynomial 

+

+

+ +

++

+
Feedback weights (recursive)

a0 a1

x(k)

y(k)

x(k – 1) x(k – 2) x(k – 3)

y(k – 3) y(k – 2) y(k – 1)

a2 a3

b3 b2 b1

Feedforward weights (non-recursive)

Unit sample delay

Multiplier

Adder

Figure E.4 A generic digital filter.
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A1z2 = 0 and the denominator polynomial B1z2 = 0, respectively. For a digital 
filter similar to the signal flow graph in Figure E.4 but with N feedforward weights 
and M − 1 feedback weights, the numerator and denominator polynomials will be of 
order N and M, respectively, in the transfer function analogous to Equation (E.28).

E.3.2 Single-Pole Filter Stability

Due to the presence of numerical feedback in the signal flow graph, the digital filter 
may be (numerically) unstable. For example, consider the single-feedback weight 
filter of Figure E.5:

 y1k2 = x1k2 + by1k − 12  (E.29)

The impulse response of this filter [i.e., applying a discrete unit impulse δ1k2 , fol-
lowing the principles of convolution described in Section A.5] is

 h1k2 = bk (E.30)

If  b  < 1, then the filter impulse response is converging (stable); and if  b  > 1, 
the filter impulse response is diverging (unstable). Figure E.5 illustrates a converg-
ing impulse response where  b  < 1, and, more precisely, −1 < b < 1. Taking the 
z-transform of Equation (E.29) yields

 H1z2 =
Y1z2
X1z2 =

1

1 − bz−1 =
z

z − b
 (E.31)

From Equation (E.31), we show the z-domain signal flow graph in Figure E.5b which 
corresponds to the time domain signal flow graph of Figure E.5a. The delay elements 
in Figure E.5b (represented by ∆ in Figure E.5a) are now represented by z−1, and the 
inputs and outputs are specified as the z-transforms X1z2  and Y1z2 . Note, however, 
that the general topology of the two signal flow graphs is the same. (This perhaps 
indicates why digital filter signal flow graphs are often drawn— imprecisely—with 
a mixed time-domain and z-domain notation.) We can state the stability criteria of 

+ +

k

δ(t)

Unit impulse

1

b

x(k) y(k)

y(k) = x(k) + by(k – 1)

(a)

k

h(k)

Impulse response

1 b  < 1

(b)

b

X(z) Y(z)

Y(z)
X(z)

=
1

1 – bz–1

z–1

Figure E.5  (a) A single feedback weight filter time-domain signal flow graph and 
(b) the z-domain signal flow graph equivalent.
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 b  < 1 as follows: For stability, the magnitude of the poles (or roots of the denomi-
nator polynomial) of the digital filter transfer function must be less than one.

E.3.3 General Digital Filter Stability

From the factorized transfer function in Equation (E.28), we can redraw the (time 
domain) signal flow graph of Figure E.4 and the z-domain signal flow graph of 
 Figure  E.6. This signal flow graph essentially corresponds to rewriting Equation 
(E.28) in the form

H1z2 = a011 − α1z
−12 # 11 − α2z

−12 # 11 − α3z
−12  (E.32)

 # c 1

1 − β1z
−1 d # c 1

1 − β2z
−1 d # c 1

1 − β3z
−1 d

This explicitly shows the first-order sections for each zero and pole of the filter. In 
order for the filter to be stable, all of the pole values 5β1, β2, β36 in the cascade must 
have magnitude of less than 1. If any one first-order section is unstable (or diverging), 
then so is the entire cascade. As was noted for the Laplace transform, the z-domain 
poles (and zeros) may be complex, which is the reason that magnitude rather than 
amplitude is the stability criterion. (Note that the signal flow graph implementation 
of Figure E.6 is only for analysis purposes, and a digital filter would never be practi-
cally implemented in this factored form because some of the multiplier values may 
be complex, and thus computational requirements would be unnecessarily increased 
for the implementation of a real coefficient filter.)

E.3.4 z-Plane Pole-Zero Diagram and the Unit Circle

If the complex poles and zeros of a filter or linear system are plotted on the real 
and imaginary axes, the resulting plane can be referred to as the z-plane. We can 
verify the stability of a system by observing that all poles lie within the unit circle. 
Figure E.7 shows the z-plane for a filter with transfer function

+ + +

+ + +

1 – α1 z–1

1

1 – α2 z–1 1 – α3 z–1

–α2–α1

a0

–α3

β1 β2 β3

x(k) y(k)

1
1 – β1 z–1

1
1 – β2 z–1

1
1 – β3 z–1

Figure E.6 Digital filter as a cascade of feedforward and feedback first-order sections.
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  H1z2 =
1 − 2z−1 + 3z−2

1 −
2
3

 z−1 +
1
3

 z−2

  =
11 − 11 + j122z−1211 − 11 − j122z−12

11 − 11>3 + j12>32z−1211 − 11>3 − j12>32z−12  

  =
11 − α1z

−1211 − α2z
−12

11 − β1z
−1211 − β2z

−12  (E.33)

with zeros at z = 1 + j12 and z = 1 − j12 and poles at z = 1>3 + j12>3 and 
z = 1>3 − j12>3. This filter is clearly stable, as all poles lie within the unit circle.

E.3.5 Discrete Fourier Transform of Digital Filter Impulse Response

The frequency response of a digital filter is calculated from the discrete Fourier 
transform (DFT) of the filter impulse response. Recall from the Fourier transform 
equation, Equation (A.26), that

 X1f2 = 3∞

−∞
x1 t2e−j2πft dt (E.34)

This equation can be used to evaluate the Fourier transform of the impulse response 
of a filter. It can be simplified by realizing that we are now using a sampled version 
of a signal x1 t2  with samples every Ts = 1>fs seconds:

X1f2 = 3∞

−∞
x1kTs2  e−j2πfkTs d1kTs2 = a

∞

k=−∞
x1kTs2e−j2πfkTs = a

∞

k=−∞
x1kTs2e−1j2πfk2>fs

 (E.35)

Imaginary

z-plane

1

0 1–1

–1

Real

α1

α2

β1

β2

Poles
Zeroes

Figure E.7 Poles and zeros 
plotted on the z-plane.
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E.4  Finite Impulse Response Filter Design 15

Of course, the digital filter impulse response is causal, and the first sample of the 
impulse response is at k = 0, and the last sample is at k = N − 1, giving a total of 
N samples in the transform. Hence, for this finite number of samples, rewriting Equa-
tion (E.35) with respect to the sample number k rather than explicit time kTs gives

 X1f2 = a
N−1

k=0
x1k2e−1j2πfk2>fs (E.36)

Note that Equation (E.36) is actually calculated for a continuous frequency vari-
able f. In reality, we need only evaluate this equation at certain discrete frequencies, 
which are the zero frequency (dc) and harmonics of the “fundamental” frequency, 
for a total of N discrete frequencies 0, f0, 2f0, up to fs, where f0 = 1/NTs:

 X anfs

N
b = a

N−1

k=0
x1k2e−1j2πkfsn2>Nfs for n = 0 to N − 1 (E.37)

Simplifying to use only the time index k and the frequency index n gives the discrete 
Fourier transform (DFT)

 X 1n2 = a
N−1

k=0
x1k2e−1j2πkn2>N for n = 0 to N − 1 (E.38)

Given that the discrete signal x1k2  was sampled at the rate of fs samples/s, then the 
signal has image (or alias) components above fs>2. Hence, when evaluating Equa-
tion (E.38), it is only necessary to evaluate up to fs>2. Note that Equation (E.38) is 
the same as the z-transform of Equation (E.23) if we set z = e1j2πn2>N for a sequence 
of length N samples.

E.4 FINITE IMPULSE RESPONSE FILTER DESIGN

By far the most common type of digital filter is the finite impulse response (FIR) 
filter, which, as the name suggests, has an impulse response of finite duration. This 
filter has no feedback weights (recall Figure E.4), and therefore we can conclude 
that it is unconditionally stable. The output of the FIR filter in Figure E.8 is

 y1k2 = a0x1k2 + a1x1k − 12 + a2x1k − 22 + a3x1k − 32 + g + aN−1x1k − N + 12

 = a
N−1

n=0
anx1k − n2  (E.39)

and the transfer function therefore contains only zeros and no poles:

 H1z2 = a0 + a1z
−1 + a2z

−2 + a3z
−3 + g + aN−1z

−N+1

 = a011 − α1z
−1211 − α2z

−1211 − α3z
−12c11 − αNz−12  (E.40)

The FIR filter is essentially a moving average calculation, whereby the output is 
a weighted average of the last N input samples. Hence, this type of filter is often 
termed a moving average filter. Other names include tapped delay line and transver-
sal filter.
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s-Domain, z-Domain, and Digital Filtering  App. E16

E.4.1 FIR Filter Design

Using modern DSP analysis software, such as MATLAB, Signal Processing 
 Toolbox [1], FIR digital filters are designed based on a magnitude frequency plot with 
specified tolerances and user requirements, as illustrated in Figure E.9 for a low-pass 
filter. Classical filter design techniques, such as Parks-McLellan, Remez Exchange, 
Kaiser window, and so on [4], are then used to realize a suitable frequency response 
that satisfies the user requirements with a minimum number of weights. Unless oth-
erwise specified in the design process, most FIR filters are designed to have linear 
phase or a constant group delay (corresponding to a symmetrical impulse response).

Figure E.10 shows the impulse response and frequency response of a digital 
filter design with parameters of cut-off frequency 1000 Hz, stopband attenuation of 
20 dB, passband ripple of 3 dB, and transition band of 500 Hz; the sampling  frequency 
fs is 10,000 Hz. If a filter with a more stringent frequency response is required (such 
as more stopband attenuation), then it is likely that the filter design procedure will 
produce an FIR with more filter weights [4].

+ + +

x(k)

y(k)

a0 a1 a2 aN –1

x(k – 1) x(k – 2) x(k – N + 1)

Figure E.8 Finite impulse response digital filter.

frequency

0

–3

Gain (dB)

fs /2

Low pass
ideal filter

Transition
band

Passband
ripple

Stopband
attenuation

Figure E.9 Generic low-pass filter magnitude response. The more 
stringent the filter requirements of stopband attenuation, transition band-
width, and (to a lesser extent) passband ripple, the more weights that are 
required.
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E.4  Finite Impulse Response Filter Design 17

E.4.2 The FIR Differentiator

Consider the simple digital filtering differentiator shown in Figure E.11. We can intu-
itively reason that this filter is a high-pass filter by observing the output for both low- 
and high-frequency input sinusoids. The output sequence of this filter is given by

 y1k2 = 3x1k2 − x1k − 12 4  (E.41)

Taking the z-transform of Equation (E.41) gives

 Y1z2 = 3X1z2 − X1z2z−14  (E.42)

Therefore, the transfer function is given by

 
Y1z2
X1z2 = 11 − z−12  (E.43)

Figure E.12 illustrates why this filter acts to produce a high-pass function. Essen-
tially, the output of the filter is the difference between the last two samples. If the 

Low pass FIR filter impulse response

time, k

w0 = w14 = –0.01813…
w1 = w13 = –0.08489…
w2 = w12 = –0.03210…
w3 = w11 = –0.00156…
w4 = w10 = 0.07258…
w5 = w9 = 0.15493…
w6 = w8 = 0.22140…
w7 = 0.25669…
(Truncated to 5 decimal
places)
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Figure E.10 The impulse response h1n2 = wn and the frequency response H1 f2  
of a low-pass filter with 15 weights and a sampling rate of 10,000 Hz, designed 
from specified cut-off frequency designed at around 1000 Hz.
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difference between successive samples was small (as for a low frequency), then the 
output is small. If the difference is large (as for a high frequency), then the output is 
large. If a dc signal was input, then the output amplitude would be zero (i.e., infinite 
attenuation). The frequency response can also be calculated from the Fourier trans-
form of the impulse response.

If the filter weights are changed to 51>T, −1>T6 from 51, −16 where the sam-
pling frequency is fs = 1>T, then, for low-frequency inputs, y1k2  is approximately 
the differential of the input:

y1k2 ≈
x1k2 − x1k − 12

T
≈

dx1 t2
dt
 and 

Y1z2
X1z2 =

1
T
11 − z−12  (E.44)

High attenuation

Low attenuation

x(k) = sin2πk fL << fs/2
fL
fs

x(k) = sin2πk fH < fs/2
fH
fs

y(k) = x(k) – x(k – 1)

y(k) = x(k) – x(k – 1)

Figure E.12 Digital filter differentiator acting as a high-pass filter.

+ +

1

x(k)

y(k)

–1

Figure E.11 Differentiator/high-pass filter.
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E.5  Infinite Impulse Response Filter Design 19

E.5 INFINITE IMPULSE RESPONSE FILTER DESIGN

Infinite impulse response (IIR) filters are usually designed from analog prototypes 
using a mapping from the s-plane to the z-domain. As their name suggests, the 
impulse response (assuming infinite precision arithmetic) can be infinite in dura-
tion. IIR filters have both feedforward and feedback weights, as was shown in Figure 
E.4. IIR filters can have a very long impulse response for just a few weights, due to 
the recursive nature of the signal flow graph. Hence, it may be possible to design an 
IIR filter with fewer weights than an FIR filter, for the same functional magnitude 
response. In general, an IIR digital filter does not have linear phase.

E.5.1 Backward Difference Operator

Equation (E.44) represents a means of relating the (continuous time) Laplace trans-
form variable s to the (discrete time) z-transform variable z. Given that the Laplace 
domain representation of time differentiation 1d>dt2  is the variable s, for example,

 y1 t2 =
dx1 t2

dt
 1 Y1s2 = sX1s2  (E.45)

then, given, for instance, a general low-pass Butterworth characteristic

 H1s2 =
1

s2 + 22s + 1
 (E.46)

we could produce a discrete approximation to this analog circuit by substituting the 
approximation

 s ≈
1
T
11 − z−12  (E.47)

into Equation (E.46) to produce a z-domain equation

  H1z2 = H1s2 2
s= 1

T11−z−12
=

1
1

T 2 11 − z−122 + 12 
1
T
11 − z−12 + 1

  =
T 2

11 − 2z−1 + z−22 + 12T11 − z−12 + T 2  (E.48)

  =
T 2

z−2 − 112T + 22z−1 + 11 + 12T + T 22

At low frequencies, where the approximation of Equation (E.47) is “good,” then it 
may be that this transform produces a “reasonable” digital filter equivalent of the 
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s-Domain, z-Domain, and Digital Filtering  App. E20

analog low-pass Butterworth. [Equation (E.47) is sometimes called the “backward dif-
ference operator.”] Unfortunately, this mapping is very poor at high frequencies and, 
consequently, it cannot be used to produce high-pass filters. Hence, it is rarely used.

E.5.2 IIR Filter Design Using the Bilinear Transform

The bilinear transform is obtained by replacing s with the approximation

 s ≈
2
T

11 − z−12
11 + z−12  (E.49)

This substitution provides a mapping that preserves the stability of the analog pro-
totype and produces filters that are greatly improved over the backward difference 
operator of Equation (E.47) [2]. MATLAB, Signal Processing Toolbox [1] uses the 
bilinear transform to produce digital filters from standard analog prototypes, such as 
Butterworth, elliptic, and Chebychev. Note that the bilinear transform always yields 
a filter that has both poles and zeros, and it therefore represents an infinite impulse 
response (IIR) design.

time

x(t)

1
2
3

sample, k Discrete
integration

Analog
integration

x(k)

x(k)

y(k – 1)

y(k)+

+

∆t

time

z-domain integrator representationTime domain discrete integrator SFG

sample, k

y(k)

X(z) Y(z)

y(t)

Σ 1
1 – z–1

x(k) y(k)

x(t) y(t)
x(t)dt∫

Σx(k)∆t

Figure E.13 Single-pole filter acting as an integrator. Note that a feedback weight 
of just less than 1 is often included in the feedback loop to introduce some “forget-
ting” into the integrator.
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E.5.3 The IIR Integrator

A digital integrator is essentially a one-weight IIR filter:

 y1k2 = x1k2 + y1k − 12 = a
k

i=0
 x1 i2  (E.50)

In the z-domain, the transfer function of a discrete integrator is obtained from

 Y1z2 = X1z2 + z−1Y1z2  (E.51)

yielding

 
Y1z2
X1z2 =

1

1 − z−1 (E.52)

Figure E.13 shows the implementation of the simple digital integrator and a graph-
ical representation of the relationship with continuous time integration (i.e., area 
under the graph).

If a weight value of less than one (say 0.99) is included in the feedback loop, 
then the integrator is often called a leaky integrator. When viewed in the frequency 
domain, a (leaky) integrator has the characteristics of a simple low-pass filter.
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