
CHAPTER 17

Encryption
and

Decryption

Channe
decode

Channe
encodFormat

From other
sources

To other
destinations

Channel
symbols

Message
symbols

Message
symbols

Information
sink

Digital
input

mi

Information
source

Bandpass
modulate

Synch-
ronization

Bit
stream

Digital
baseband
waveform

Digital
bandpass
waveform

ui si(t)

z(T) r(t)

X
M
T

C
h
a
n
n
e
l

Format Detect
Demod-

ulate
& Sample

OFDM
Vector

MIMO
Vector

OFDM
Vector

MIMO
Vector

Symbols

Source
encode Encrypt

l
e

Multi-
plex

hc(t)
Channel
impulse

response

Freq-
uency
spread

Source
decode Decrypt

l Demulti-
plex

Freq-
uency

despread

Multiple
access

Multiple
access

R
C
V

ui

OFDM or
SC-OFDM
Modulate

Digital
output

mi

Optional

Essential

Broadband
wireless

Channel
symbols

Pulse
modulate

gi(t)

MIMO
Spatial

Multiplex

MIMO
Spatial

Demultiplex

OFDM or
SC-OFDM

Demodulate

Symbols

Symbols Symbols

2

17.1 MODELS, GOALS, AND EARLY CIPHER SYSTEMS

17.1.1 A Model of the Encryption and Decryption Process

The desire to communicate privately is a human trait that dates back to earliest
times. Hence the history of secret communications is rich with unique inventions
and colorful anecdotes [1]. The study of ways to disguise messages so as to avert
unauthorized interception is called cryptography. The terms encipher and encrypt
refer to the message transformation performed at the transmitter, and the terms
decipher and decrypt refer to the inverse transformation performed at the receiver.
The two primary reasons for using cryptosystems in communications are (1) pri-
vacy, to prevent unauthorized persons from extracting information from the chan-
nel (eavesdropping); and (2) authentication, to prevent unauthorized persons from
injecting information into the channel (spoofing). Sometimes, as in the case of elec-
tronic funds transfer or contract negotiations, it is important to provide the elec-
tronic equivalent of a written signature in order to avoid or settle any dispute
between the sender and receiver as to what message, if any, was sent.

Figure 17.1 illustrates a model of a cryptographic channel. A message, or
plaintext, M, is encrypted by the use of an invertible transformation, EK, that pro-
duces a ciphertext, C = EK(M). The ciphertext is transmitted over an insecure or
public channel. When an authorized receiver obtains C, he decrypts it with the in-
verse transformation, DK = EK

−1, to obtain the original plaintext message, as follows:

(17.1)DK 1C2 � E�1
K 3EK 1M2 4 � M

17.1 Models, Goals, and Early Cipher Systems 3

The parameter K refers to a set of symbols or characters called a key, which
dictates a specific encryption transformation, EK, from a family of cryptographic
transformations. Originally, the security of cryptosystems depended on the secrecy
of the entire encryption process, but eventually systems were developed for which
the general nature of the encryption transformation or algorithm could be publicly
revealed, since the security of the system depended on the specific key. The key is
supplied along with the plaintext message for encryption, and along with the
ciphertext message for decryption. There is a close analogy here with a general-
purpose computer and a computer program. The computer, like the cryptosystem,
is capable of a large variety of transformations, from which the computer program,
like the specific key, selects one. In most cryptosystems, anyone with access to the
key can both encrypt and decrypt messages. The key is transmitted to the commu-
nity of authorized users over a secure channel (as an example, a courier may be
used to hand-carry the sensitive key information); the key usually remains un-
changed for a considerable number of transmissions. The goal of the cryptanalyst
(eavesdropper or adversary) is to produce an estimate of the plaintext, M̂, by analyz-
ing the ciphertext obtained from the public channel, without benefit of the key.

Encryption schemes fall into two generic categories: block encryption, and
data-stream or simply stream encryption. With block encryption, the plaintext is
segmented into blocks of fixed size; each block is encrypted independently from
the others. For a given key, a particular plaintext block will therefore be carried
into the same ciphertext block each time it appears (similar to block encoding).
With data-stream encryption, similar to convolutional coding, there is no fixed
block size. Each plaintext bit, mi, is encrypted with the ith element, ki, of a se-
quence of symbols (key stream) generated with the key. The encryption is periodic
if the key stream repeats itself after p characters for some fixed p; otherwise, it is
nonperiodic.

In general, the properties desired in an encryption scheme are quite different
from those desired in a channel coding scheme. For example, with encryption,
plaintext data should never appear directly in the ciphertext, but with channel cod-
ing, codes are often in systematic form comprising unaltered message bits plus par-

Cryptanalyst

Ciphertext

C = EK (M)
M = DK (C)

= EK
–1(C)

Plaintext PlaintextPublic channel

Secure channel

Key

M

K K

Encipher Decipher

M

Figure 17.1 Model of a cryptographic channel.

Encryption and Decryption Chap. 174

Models, Goals, and Early Cipher Systems

ity bits (see Section 6.4.5). Consider another example of the differences between
encryption and channel coding. With block encryption, a single bit error at the
input of the decryptor might change the value of many of the output bits in the
block. This effect, known as error propagation, is often a desirable cryptographic
property since it makes it difficult for unauthorized users to succeed in spoofing a
system. However, in the case of channel coding, we would like the system to cor-
rect as many errors as possible, so that the output is relatively unaffected by input
errors.

17.1.2 System Goals

The major requirements for a cryptosystem can be stated as follows:

1. To provide an easy and inexpensive means of encryption and decryption to all
authorized users in possession of the appropriate key

2. To ensure that the cryptanalyst’s task of producing an estimate of the plain-
text without benefit of the key is made difficult and expensive

Successful cryptosystems are classified as being either unconditionally secure
or computationally secure. A system is said to be unconditionally secure when the
amount of information available to the cryptanalyst is insufficient to determine the
encryption and decryption transformations, no matter how much computing power
the cryptanalyst has available. One such system, called a one-time pad, involves en-
crypting a message with a random key that is used one time only. The key is never
reused; hence the cryptanalyst is denied information that might be useful against
subsequent transmissions with the same key. Although such a system is uncondi-
tionally secure (see Section 17.2.1), it has limited use in a conventional communica-
tion system, since a new key would have to be distributed for each new message—a
great logistical burden. The distribution of keys to the authorized users is a major
problem in the operation of any cryptosystem, even when a key is used for an ex-
tended period of time. Although some systems can be proven to be unconditionally
secure, currently there is no known way to demonstrate security for an arbitrary
cryptosystem. Hence the specifications for most cryptosystems rely on the less for-
mal designation of computational security for x number of years, which means that
under circumstances favorable to the cryptanalyst (i.e., using state-of-the-art com-
puters) the system security could be broken in a period of x years, but could not be
broken in less than x years.

17.1.3 Classic Threats

The weakest classification of cryptanalytic threat on a system is called a ciphertext-
only attack. In this attack the cryptanalyst might have some knowledge of the gen-
eral system and the language used in the message, but the only significant data
available to him is the encrypted transmission intercepted from the public channel.

A more serious threat to a system is called a known plaintext attack; it in-
volves knowledge of the plaintext and knowledge of its ciphertext counterpart. The

17.1 5

rigid structure of most business forms and programming languages often provides
an opponent with much a priori knowledge of the details of the plaintext message.
Armed with such knowledge and with a ciphertext message, the cryptanalyst can
mount a known plaintext attack. In the diplomatic arena, if an encrypted message
directs a foreign minister to make a particular public statement, and if he does so
without paraphrasing the message, the cryptanalyst may be privy to both the ci-
phertext and its exact plaintext translation. While a known plaintext attack is not
always possible, its occurrence is frequent enough that a system is not considered
secure unless it is designed to be secure against the plaintext attack [2].

When the cryptanalyst is in the position of selecting the plaintext, the threat is
termed a chosen plaintext attack. Such an attack was used by the United States to
learn more about the Japanese cryptosystem during World War II. On May 20,
1942, Admiral Yamamoto, Commander-in-Chief of the Imperial Japanese Navy, is-
sued an order spelling out the detailed tactics to be used in the assault of Midway
island. This order was intercepted by the Allied listening posts. By this time, the
Americans had learned enough of the Japanese code to decrypt most of the mes-
sage. Still in doubt, however, were some important parts, such as the place of the
assault. They suspected that the characters “AF” meant Midway island, but to be
sure, Joseph Rochefort, head of the Combat Intelligence Unit, decided to use a
chosen plaintext attack to trick the Japanese into providing concrete proof. He had
the Midway garrison broadcast a distinctive plaintext message in which Midway
reported that its fresh-water distillation plant had broken down. The American
cryptanalysts needed to wait only two days before they intercepted a Japanese
ciphertext message stating that AF was short of fresh water [1].

17.1.4 Classic Ciphers

One of the earliest examples of a monoalphabetic cipher was the Caesar Cipher,
used by Julius Caesar during the Gallic wars. Each plaintext letter is replaced with
a new letter obtained by an alphabetic shift. Figure 17.2a illustrates such an encryp-
tion transformation, consisting of three end-around shifts of the alphabet. When
using this Caesar’s alphabet, the message, “now is the time” is encrypted as follows:

Plaintext: N O W I S T H E T I M E
Ciphertext: Q R Z L V W K H W L P H

The decryption key is simply the number of alphabetic shifts; the code is changed
by choosing a new key. Another classic cipher system, illustrated in Figure 17.2b, is
called the Polybius square. Letters I and J are first combined and treated as a single
character since the final choice can easily be decided from the context of the mes-
sage. The resulting 25 character alphabet is arranged in a 5 × 5 array. Encryption
of any character is accomplished by choosing the appropriate row-column (or
column-row) number pair. An example of encryption with the use of the Polybius
square follows:

Encryption and Decryption Chap. 176

Models, Goals, and Early Cipher Systems

Plaintext: N O W I S T H E T I M E
Ciphertext: 33 43 25 42 34 44 32 51 44 42 23 51

The code is changed by a rearrangement of the letters in the 5 × 5 array.
The Trithemius progressive key, shown in Figure 17.3, is an example of a

polyalphabetic cipher. The row labeled shift 0 is identical to the usual arrangement
of the alphabet. The letters in the next row are shifted one character to the left with
an end-around shift for the leftmost position. Each successive row follows the same
pattern of shifting the alphabet one character to the left as compared to the prior
row. This continues until the alphabet has been depicted in all possible arrange-
ments of end-around shifts. One method of using such an alphabet is to select the
first cipher character from the shift 1 row, the second cipher character from the
shift 2 row, and so on. An example of such encryption is

Plaintext: N O W I S T H E T I M E
Ciphertext: O Q Z M X Z O M C S X Q

There are several interesting ways that the Trithemius progressive key can be used.
One way, called the Vigenere key method, employs a keyword. The key dictates the
row choices for encryption and decryption of each successive character in the mes-
sage. For example, suppose that the word “TYPE” is selected as the key; then an
example of the Vigenere encryption method is

Key: T Y P E T Y P E T Y P E
Plaintext: N O W I S T H E T I M E
Ciphertext: G M L M L R W I M G B I

Plaintext:
Chiphertext:

A
D

B
E

C
F

D
G

E
H

F
I

G
J

H
K

I
L

J
M

K
N

L
O

M
P

N
Q

O
R

P
S

Q
T

R
U

S
V

T
W

U
X

V
Y

W
Z

X
A

Y
B

Z
C

1
2
3
4
5

1

A
F
L
Q
V

2

B
G
M
R
W

3

C
H
N
S
X

4

D
IJ
O
T
Y

5

E
K
P
U
Z

(a)

(b)

Figure 17.2 (a) Caesar’s alphabet with a shift of 3. (b) Polybius square.

17.1 7

where the first letter, T, of the key indicates that the row choice for encrypting the
first plaintext character is the row starting with T (shift 19). The next row choice
starts with Y (shift 24), and so on. A variation of this key method, called the
Vigenere auto (plain) key method, starts with a single letter or word used as a prim-
ing key. The priming key dictates the starting row or rows for encrypting the first or
first few plaintext characters, as in the preceding example. Next, the plaintext char-
acters themselves are used as the key for choosing the rows for encryption. An ex-
ample using the letter “F” as the priming key is

Key: F N O W I S T H E T I M
Plaintext: N O W I S T H E T I M E
Ciphertext: S B K E A L A L X B U Q

Plaintext:

Shift: 0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

a

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

b

B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A

c

C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B

d

D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C

e

E
F
G
H
I
J
K
L
M
N
O
P
Q
R
T
S
U
V
W
X
Y
Z
A
B
C
D

f

F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E

g

G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F

h

H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G

i

I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H

j

J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I

k

K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J

l

L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K

m

M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L

n

N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M

o

O
P
O
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N

p

P
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

q

Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

r

R
S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q

s

S
T
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R

t

R
U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S

u

U
V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T

v

V
W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U

w

W
X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V

x

X
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W

y

Y
Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X

z

Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y

Figure 17.3 Trithemius progressive key.

Encryption and Decryption Chap. 178

With the auto key method, it should be clear that feedback has been introduced to
the encryption process. With this feedback, the choice of the ciphertext is dictated
by the contents of the message.

A final variation of the Vigenere method, called the Vigenere auto (cipher)
key method, is similar to the plain key method in that a priming key and feedback
are used. The difference is that after encryption with the priming key, each succes-
sive key character in the sequence is obtained from the prior ciphertext character in-
stead of from the plaintext character. An example should make this clear; as
before, the letter “F” is used as the priming key:

Key: F S G C K C V C G Z H T
Plaintext: N O W I S T H E T I M E
Ciphertext: S G C K C V C G Z H T X

Although each key character can be found from its preceding ciphertext character,
it is functionally dependent on all the preceding characters in the message plus the
priming key. This has the effect of diffusing the statistical properties of the plain-
text across the ciphertext, making statistical analysis very difficult for a crypt-
analyst. One weakness of the cipher key example depicted here is that the cipher-
text contains key characters which will be exposed on the public channel “for all to
see.” Variations of this method can be employed to prevent such overt exposure
[3]. By today’s standards Vigenere’s encryption schemes are not very secure; his
basic contribution was the discovery that nonrepeating key sequences could be
generated by using the messages themselves or functions of the messages.

17.2 THE SECRECY OF A CIPHER SYSTEM

17.2.1 Perfect Secrecy

Consider a cipher system with a finite message space {M} = M0, M1, . . . , MN − 1 and
a finite ciphertext space {C} = C0, C1, . . . , CU − 1. For any Mi, the a priori probability
that Mi is transmitted is P(Mi). Given that Cj is received, the a posteriori probabil-
ity that Mi was transmitted is P(Mi |Cj). A cipher system is said to have perfect se-
crecy if for every message Mi and every ciphertext Cj, the a posteriori probability is
equal to the a priori probability:

(17.2)

Thus, for a system with perfect secrecy, a cryptanalyst who intercepts Cj obtains
no further information to enable him or her to determine which message was trans-
mitted. A necessary and sufficient condition for perfect secrecy is that for every Mi

and Cj,

(17.3)

The schematic in Figure 17.4 illustrates an example of perfect secrecy. In this
example, {M} = M0, M1, M2, M3, {C} = C0, C1, C2, C3, {K} = K0, K1, K2, K3, N = U = 4,

P 1Cj � Mi2 � P 1Cj 2

P 1Mi � Cj 2 � P 1Mi2

The Secrecy of a Cipher System17.2 9

and P(Mi) = P(Cj) = . The transformation from message to ciphertext is ob-
tained by

(17.4)

where TKj
indicates a transformation under the key, Kj, and x modulo-y is defined

as the remainder of dividing x by y. Thus s = 0, 1, 2, 3. A cryptanalyst intercepting
one of the ciphertext messages Cs = C0, C1, C2, or C3 would have no way of deter-
mining which of the four keys was used, and therefore whether the correct message
is M0, M1, M2, or M3. A cipher system in which the number of messages, the num-
ber of keys, and the number of ciphertext transformations are all equal is said to
have perfect secrecy if and only if the following two conditions are met:

1. There is only one key transforming each message to each ciphertext.
2. All keys are equally likely.

 s � 1i � j 2 modulo-N

 Cs � TKj
1Mi2

1
4

Ciphertext
messages

Plaintext
messages

Key

0

1

2

3

3

0

1

2

2

3

0

1

1

2

3

0

M0 C0P(M0) = 1
4

P(M1) = 1
4

P(M2) = 1
4

P(M3) = 1
4

M1 C1

M2 C2

M3 C3

Figure 17.4 Example of perfect secrecy.

Encryption and Decryption Chap. 1710

If these conditions are not met, there would be some message Mi such that for
a given Cj, there is no key that can decipher Cj into Mi, implying that P(Mi |Cj) = 0
for some i and j. The cryptanalyst could then eliminate certain plaintext messages
from consideration, thereby simplifying the task. Perfect secrecy is a very desirable
objective since it means that the cipher system is unconditionally secure. It should
be apparent, however, that for systems which transmit a large number of messages,
the amount of key that must be distributed for perfect secrecy can result in formi-
dable management problems, making such systems impractical. Since in a system
with perfect secrecy, the number of different keys is at least as great as the number
of possible messages, if we allow messages of unlimited length, perfect secrecy re-
quires an infinite amount of key.

Example 17.1 Breaking a Cipher System When the Key Space Is Smaller
Than the Message Space

Consider that the 29-character ciphertext

was produced by a Caesar cipher (see Section 17.1.4) such that each letter has been
shifted by K positions, where 1 ≤ K ≤ 25. Show how a cryptanalyst can break this code.

Solution

Because the number of possible keys (there are 25) is smaller than the number of pos-
sible 29-character meaningful messages (there are a myriad), perfect secrecy cannot
be achieved. In the original polyalphabetic cipher of Figure 17.3, a plaintext character
is replaced by a letter of increasingly higher rank as the row number (K) increases.
Hence, in analyzing the ciphertext, we reverse the process by creating rows such that
each ciphertext letter is replaced by letters of decreasing rank. The cipher is easily
broken by trying all the keys, from 1 to 25, as shown in Figure 17.5, yielding only one
key (K = 10) that produces the meaningful message: WHERE ARE THE HEROES
OF YESTERYEAR (The spaces have been added.)

Example 17.2 Perfect Secrecy

We can modify the key space of Example 17.1 to create a cipher having perfect se-
crecy. In this new cipher system each character in the message is encrypted using a
randomly selected key value. The key, K, is now given by the sequence k1, k2, . . . , k29,
where each ki is a random integer in the range (1, 25) dictating the shift used for the
ith character; thus there are a total of (25)29 different key sequences. Then the 29-
character ciphertext in Example 17.1 could correspond to any meaningful 29-character
message. For example, the ciphertext could correspond to the plaintext (the spaces
have been added)

derived by the key 2, 4, 8, 16, 6, 18, 20, Most of the 29-character possibilities can
be ruled out because they are not meaningful messages (this much is known without
the ciphertext). Perfect secrecy is achieved because interception of the ciphertext in
this system reveals no additional information about the plaintext message.

ENGLISH AND FRENCH ARE SPOKEN HERE

G R O B O K B O D R O R O B Y O C Y P I O C D O B I O K B

The Secrecy of a Cipher System17.2 11

17.2.2 Entropy and Equivocation

As discussed in Chapter 9, the amount of information in a message is related to the
probability of occurrence of the message. Messages with probability of either 0 or 1
contain no information, since we can be very confident concerning our prediction
of their occurrence. The more uncertainty there is in predicting the occurrence of a
message, the greater is the information content. Hence when each of the messages
in a set is equally likely, we can have no confidence in our ability to predict the oc-
currence of a particular message, and the uncertainty or information content of the
message is maximum.

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 I T
25

G

F
E
D
C
B
A
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J

H

R

Q
P
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U

S

O

N
M
L
K
J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T
S
R
Q D Q
P

B

A
Z
Y
X
W
V
U
T
S
R
Q
P
0
N
M
L
K
J
I
H
G
F
E

C

O

N
M
L
K
J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T
S
R

P

K

J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M D Q F
L

B

A
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G
F
E

C

O

N
M
L
K
J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T
S
R

P

D

C
B
A
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G

E

R

Q
P
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T Q T
S

O

N
M
L
K
J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T
S
R

P

R

Q
P
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U

S

O

N
M
L
K
J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T
S
R
Q D A Q
P

B

A
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G
F
E

C

Y

X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G
F
E
D
C
B

Z

O

N
M
L
K
J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T
S
R

P

C

B
A
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G
F
E A R K
D

Y

X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G
F
E
D
C
B

Z

P

O
N
M
L
K
J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T
S

Q

I

H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L

J

O

N
M
L
K
J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T
S
R
Q E F
P

C

B
A
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G
F

D

D

C
B
A
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G

E

O

N
M
L
K
J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T
S
R
Q D K Q
P

B

A
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G
F
E

C

I

H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L

J

O

N
M
L
K
J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T
S
R

P

K

J
I
H
G
F
E
D
C
B
A
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M D
L

B

A
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G
F
E

C

Key Text

Figure 17.5 Example of breaking a cipher system when the key space is
smaller than the message space.

Encryption and Decryption Chap. 1712

Entropy, H(X), is defined as the average amount of information per message.
It can be considered a measure of how much choice is involved in the selection of a
message X. It is expressed by the following summation over all possible messages:

(17.5)

When the logarithm is taken to the base 2, as shown, H(X) is the expected
number of bits in an optimally encoded message X. This is not quite the measure
that a cryptanalyst desires. He will have intercepted some ciphertext and will want
to know how confidently he can predict a message (or key) given that this particu-
lar ciphertext was sent. Equivocation, defined as the conditional entropy of X given
Y, is a more useful measure for the cryptanalyst in attempting to break the cipher
and is given by

(17.6)

Equivocation can be thought of as the uncertainty that message X was sent, having
received Y. The cryptanalyst would like H(X �Y) to approach zero as the amount of
intercepted ciphertext, Y, increases.

Example 17.3 Entropy and Equivocation

Consider a sample message set consisting of eight equally likely messages {X} = X1, X2,
. . . , X8.

(a) Find the entropy associated with a message from the set {X}.
(b) Given another equally likely message set {Y} = Y1, Y2. Consider that the occur-

rence of each message Y narrows the possible choices of X in the following way:

Find the equivocation of message X conditioned on message Y.

Solution

(a) P(X) =
H(X) = 8[() log2 8] = 3 bits/message

(b) P(Y) = . For each Y, P(X�Y) = for four of the X’s and P(X �Y) = 0 for the re-
maining four X’s. Using Equation (17.6), we obtain

We see that knowledge of Y has reduced the uncertainty of X from 3 bits/message
to 2 bits/message.

H 1X � Y 2� 2 3 112 24114 log2 4 2 4 � 2 bits>message

1
4

1
2

1
8

1
8

 If Y2 is present: only X5, X6, X7, or X8 is possible

 If Y1 is present: only X1, X2, X3, or X4 is possible

 � a
Y

 P1Y2 a
X

 P 1X �Y 2 log2
1

P 1X �Y2

 H1X �Y2 � �a
X, Y

 P 1X, Y 2 log2 P 1X �Y 2

H 1X 2 � �a
X

 P 1X 2 log2 P 1X 2 � a
X

 P 1X 2 log2
1

P1X 2

The Secrecy of a Cipher System17.2 13

17.2.3 Rate of a Language and Redundancy

The true rate of a language is defined as the average number of information bits
contained in each character and is expressed for messages of length N by

(17.7)

where H(X) is the message entropy, or the number of bits in the optimally encoded
message. For large N, estimates of r for written English range between 1.0 and 1.5
bits/character [4]. The absolute rate or maximum entropy of a language is defined
as the maximum number of information bits contained in each character assuming
that all possible sequences of characters are equally likely. The absolute rate is
given by

(17.8)

where L is the number of characters in the language. For the English alphabet
r� = log 26 2 = 4.7 bits/character. The true rate of English is, of course, much less
than its absolute rate since, like most languages, English is highly redundant and
structured.

The redundancy of a language is defined in terms of its true rate and absolute
rate as

(17.9)

For the English language with r� = 4.7 bits/character and r = 1.5 bits/character,
D = 3.2, and the ratio D/r� = 0.68 is a measure of the redundancy in the language.

17.2.4 Unicity Distance and Ideal Secrecy

We stated earlier that perfect secrecy requires an infinite amount of key if we allow
messages of unlimited length. With a finite key size, the equivocation of the key
H(K�C) generally approaches zero, implying that the key can be uniquely deter-
mined and the cipher system can be broken. The unicity distance is defined as the
smallest amount of ciphertext, N, such that the key equivocation H(K �C) is close
to zero. Therefore, the unicity distance is the amount of ciphertext needed to
uniquely determine the key and thus break the cipher system. Shannon [5] de-
scribed an ideal secrecy system as one in which H(K�C) does not approach zero as
the amount of ciphertext approaches infinity; that is, no matter how much cipher-
text is intercepted, the key cannot be determined. The term “ideal secrecy”
describes a system that does not achieve perfect secrecy but is nonetheless
unbreakable (unconditionally secure) because it does not reveal enough informa-
tion to determine the key.

Most cipher systems are too complex to determine the probabilities required to
derive the unicity distance. However, it is sometimes possible to approximate unicity
distance, as shown by Shannon [5] and Hellman [6]. Following Hellman, assume that
each plaintext and ciphertext message comes from a finite alphabet of L symbols.

D � r¿ � r

r¿ � log2 L

r �
H 1X 2

N

Encryption and Decryption Chap. 1714

Thus there are 2r�N possible messages of length, N, where r� is the absolute rate of the
language. We can consider the total message space partitioned into two classes,
meaningful messages, M1, and meaningless messages M2. We then have

(17.10)

(17.11)

where r is the true rate of the language, and where the a priori probabilities of the
message classes are

(17.12)

(17.13)

Let us assume that there are 2H(K) possible keys (size of the key alphabet),
where H(K) is the entropy of the key (number of bits in the key). Assume that all
keys are equally likely; that is,

(17.14)

The derivation of the unicity distance is based on a random cipher model, which
states that for each key K and ciphertext C, the decryption operation DK(C) yields
an independent random variable distributed over all the possible 2r�N messages
(both meaningful and meaningless). Therefore, for a given K and C, the DK(C) op-
eration can produce any one of the plaintext messages with equal probability.

Given an encryption described by Ci = EKi
(Mi), a false solution F arises when-

ever encryption under another key Kj could also produce Ci either from the mes-
sage Mi or from some other message Mj; that is,

(17.15)

A cryptanalyst intercepting Ci would not be able to pick the correct key and hence
could not break the cipher system. We are not concerned with the decryption oper-
ations that produce meaningless messages because these are easily rejected.

For every correct solution to a particular ciphertext there are 2H(K) − 1 incor-
rect keys, each of which has the same probability P(F) of yielding a false solution.
Because each meaningful plaintext message is assumed equally likely, the probabil-
ity of a false solution, is the same as the probability of getting a meaningful mes-
sage, namely,

(17.16)

where D = r� − r is the redundancy of the language. The expected number of false
solutions F̄ is then

(17.17)

 � 2H 1K2�DN

 F � 32H 1K2 � 1 4P 1F2 � 32H 1K2 � 1 4 2�DN

P 1F2 �
2rN

2r¿N � 21r�r¿2N � 2�DN

Ci � EKi
1Mi2 � EKj

1Mi2 � EKj
1Mj 2

P 1K2 �
1

2H 1K2 � 2�H 1K2

 P 1M2 2 � 0 M2 meaningless

 P 1M1 2 � 1
2rN � 2�rN M1 meaningful

 number of meaningless messages � 2r ¿N � 2rN

 number of meaningful messages � 2rN

The Secrecy of a Cipher System17.2 15

Because of the rapid decrease of F̄ with increasing N,

(17.18)

is defined as the point where the number of false solutions is sufficiently small so
that the cipher can be broken. The resulting unicity distance is therefore

(17.19)

We can see from Equation (17.17) that if H(K) is much larger than DN, there
will be a large number of meaningful decryptions, and thus a small likelihood
of a cryptanalyst distinguishing which meaningful message is the correct message.
In a loose sense, DN represents the number of equations available for solving for
the key, and H(K) the number of unknowns. When the number of equations is
smaller than the number of unknown key bits, a unique solution is not possible and
the system is said to be unbreakable. When the number of equations is larger than
the number of unknowns, a unique solution is possible and the system can no
longer be characterized as unbreakable (although it may still be computationally
secure).

It is the predominance of meaningless decryptions that enables cryptograms
to be broken. Equation (17.19) indicates the value of using data compression
techniques prior to encryption. Data compression removes redundancy, thereby in-
creasing the unicity distance. Perfect data compression would result in D = 0 and
N = � for any key size.

Example 17.4 Unicity Distance

Calculate the unicity distance for a written English encryption system, where the key
is given by the sequence k1, k2, . . . , k29, where each ki is a random integer in the range
(1, 25) dictating the shift number (Figure 17.3) for the ith character. Assume that each
of the possible key sequences is equally likely.

Solution

There are (25)29 possible key sequences, each of which is equally likely. Therefore,
using Equations (17.5), (17.8), and (17.19) we have

In Example 17.2, perfect secrecy was illustrated using the same type of key se-
quence described here, with a 29-character message. In this example we see that if the
available ciphertext is 43 characters long (which implies that some portion of the key
sequence must be used twice), a unique solution may be possible. However, there is

N �
H 1K2

D
�

135
3.2

 � 43 characters

 Redundancy: D � r¿ � r � 3.2 bits>character

 Assumed true rate for English: r � 1.5 bits>character

 Absolute rate for English: r¿ � log2 26 � 4.7 bits>character

 Key entropy: H 1K2 � log2 125 2 29 � 135 bits

N �
H1K2

D

log2 F � H1K2 � DN � 0

Encryption and Decryption Chap. 1716

no indication as to the computational difficulty in finding the solution. Even though
we have estimated the theoretical amount of ciphertext required to break the cipher,
it might be computationally infeasible to accomplish this.

17.3 PRACTICAL SECURITY

For ciphertext sequences greater than the unicity distance, any system can be
solved, in principle, merely by trying each possible key until the unique solution is
obtained. This is completely impractical, however, except when the key is ex-
tremely small. For example, for a key configured as a permutation of the alphabet,
there are 26! � 4 × 1026 possibilities (considered small in the cryptographic con-
text). In an exhaustive search, one might expect to reach the right key at about
halfway through the search. If we assume that each trial requires a computation
time of 1 �s, the total search time exceeds 1012 years. Hence techniques other than
a brute-force search (e.g., statistical analysis) must be employed if a cryptanalyst is
to have any hope of success.

17.3.1 Confusion and Diffusion

A statistical analysis using the frequency of occurrence of individual characters and
character combinations can be used to solve many cipher systems. Shannon [5] sug-
gested two encryption concepts for frustrating the statistical endeavors of the crypt-
analyst. He termed these encryption transformations confusion and diffusion.
Confusion involves substitutions that render the final relationship between the key
and ciphertext as complex as possible. This makes it difficult to utilize a statistical
analysis to narrow the search to a particular subset of the key variable space. Confu-
sion ensures that the majority of the key is needed to decrypt even very short se-
quences of ciphertext. Diffusion involves transformations that smooth out the
statistical differences between characters and between character combinations. An
example of diffusion with a 26-letter alphabet is to transform a message sequence M
= M0, M1, . . . into a new message sequence Y = Y0, Y1, . . . according to the relationship

(17.20)

where each character in the sequence is regarded as an integer modulo-26, s is
some chosen integer, and n = 0, 1, 2, The new message, Y, will have the same
redundancy as the original message, M, but the letter frequencies of Y will be more
uniform than in M. The effect is that the cryptanalyst needs to intercept a longer
sequence of ciphertext before any statistical analysis can be useful.

17.3.2 Substitution

Substitution encryption techniques, such as the Caesar cipher and the Trithemius
progressive key cipher, are widely used in puzzles. Such simple substitution ciphers
offer little encryption protection. For a substitution technique to fulfill Shannon’s

Yn � a
s �1

i�0

 Mn� i modulo-26

Practical Security17.3 17

concept of confusion, a more complex relationship is required. Figure 17.6 shows
one example of providing greater substitution complexity through the use of a non-
linear transformation. In general, n input bits are first represented as one of 2n dif-
ferent characters (binary-to-octal transformation in the example of Figure 17.6).
The set of 2 characters is then permuted so that each character is transposed ton

one of the others in the set. The character is then converted back to an n-bit
output.

It can be easily shown that there are (2n)! different substitution or connection
patterns possible. The cryptanalyst’s task becomes computationally unfeasible as n
gets large, say n = 128; then 2n = 1038, and (2n)! is an astronomical number. We rec-
ognize that for n = 128, this substitution box (S-box) transformation is complex
(confusion). However, although we can identify the S-box with n = 128 as ideal, its
implementation is not feasible because it would require a unit with 2n = 1038 wiring
connections.

To verify that the S-box example in Figure 17.6 performs a nonlinear transfor-
mation, we need only use the superposition theorem stated below as a test. Let

(17.21)
 C ¿ � T 1a � b 2

 C � Ta � Tb

Input

Binary to octal Octal to binary

0

0

1Input Output

1

1

n = 3 2n = 8 2n = 8 n = 3

1

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

000 001 010 011 100 101 110 111

Output 011 111 000 110 010 100 101 001

Figure 17.6 Substitution box.

Encryption and Decryption Chap. 1718

where a and b are input terms, C and C� are output terms, and T is the transforma-
tion. Then

Suppose that a = 001 and b = 010; then, using T as described in Figure 17.6, we
obtain

where the symbol � represents modulo-2 addition. Since C ≠ C �, the S-box is
nonlinear.

17.3.3 Permutation

In permutation (transposition), the positions of the plaintext letters in the message
are simply rearranged, rather than being substituted with other letters of the alpha-
bet as in the classic ciphers. For example, the word THINK might appear, after
permutation, as the ciphertext HKTNI. Figure 17.7 represents an example of bi-
nary data permutation (a linear operation). Here we see that the input data are
simply rearranged or permuted (P-box). The technique has one major disadvan-
tage when used alone; it is vulnerable to trick messages. A trick message is

 C ¿ � T 1001 � 010 2 � T 1011 2 � 110

 C � T 1001 2 � T 1010 2 � 111 � 000 � 111

 If T is nonlinear: C � C ¿

 If T is linear: C � C¿ for all inputs

Practical Security

Input Output

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0
Figure 17.7 Permutation box.

17.3 19

illustrated in Figure 17.7. A single 1 at the input and all the rest 0 quickly reveals
one of the internal connections. If the cryptanalyst can subject the system to a
plaintext attack, he will transmit a sequence of such trick messages, moving the sin-
gle 1 one position for each transmission. In this way, each of the connections from
input to output is revealed. This is an example of why a system’s security should
not depend on its architecture.

17.3.4 Product Cipher System

For transformation involving reasonable numbers of n-message symbols, both of
the foregoing cipher systems (the S-box and the P-box) are by themselves wanting.
Shannon [5] suggested using a product cipher or a combination of S-box and P-box
transformations, which together could yield a cipher system more powerful than ei-
ther one alone. This approach of alternately applying substitution and permutation
transformations has been used by IBM in the LUCIFER system [7, 8] and has be-
come the basis for the national Data Encryption Standard (DES) [9]. Figure 17.8 il-
lustrates such a combination of P-boxes and S-boxes. Decryption is accomplished
by running the data backward, using the inverse of each S-box. The system as pic-
tured in Figure 17.8 is difficult to implement since each S-box is different, a ran-
domly generated key is not usable, and the system does not lend itself to repeated
use of the same circuitry. To avoid these difficulties, the LUCIFER system [8] used
two different types of S-boxes, S1 and S0, which could be publicly revealed. Figure
17.9 illustrates such a system. The input data are transformed by the sequence of
S-boxes and P-boxes under the dictates of a key. The 25-bit key in this example
designates, with a binary one or zero, the choice (S1 or S0) of each of the 25 S-boxes

1

0

0

0

0

0

0

0Input Output

0

0

0

0

0

P S

S

S

S

S

P S

S

S

S

S

P S

S

S

S

S

P S

S

S

S

S

P

0

0

0

1

0

1

0

0

0

1

1

1

0

1

0

1

1

Figure 17.8 Product cipher system.

Encryption and Decryption Chap. 1720

in the block. The details of the encryption devices can be revealed since security of
the system is provided by the key.

The iterated structure of the product cipher system in Figure 17.9 is typical of
most present-day block ciphers. The messages are partitioned into successive
blocks of n bits, each of which is encrypted with the same key. The n-bit block rep-
resents one of 2n different characters, allowing for (2n)! different substitution pat-
terns. Consequently, for a reasonable implementation, the substitution part of the
encryption scheme is performed in parallel on small segments of the block. An ex-
ample of this is seen in the next section.

17.3.5 The Data Encryption Standard

In 1977, the National Bureau of Standards adopted a modified Lucifer system as
the national Data Encryption Standard (DES) [9]. From a system input-output
point of view, DES can be regarded as a block encryption system with an alphabet
size of 2 symbols, as shown in Figure 17.10. An input block of 64 bits, regarded as64

a plaintext symbol in this alphabet, is replaced with a new ciphertext symbol. Fig-
ure 17.11 illustrates the system functions in block diagram form. The encryption al-
gorithm starts with an initial permutation (IP) of the 64 plaintext bits, described in
the IP-table (Table 17.1). The IP-table is read from left to right and from top to
bottom, so that bits x1, x2, . . . , x64 are permuted to x58, x50, . . . , x7. After this initial
permutation, the heart of the encryption algorithm consists of 16 iterations using

Practical Security

Input Output

S0 S0 S0 S0 S0

S0 S0 S0 S0 S0

S0 S0 S0 S0 S0

S0 S0 S0 S0 S0

S0 S0 S0 S0 S0

S1 S1 S1 S1 S1

S1 S1 S1 S1 S1

S1 S1 S1 S1 S1

S1 S1 S1 S1 S1

S1 S1 S1 S1 S1

P P P

Shaded boxes correspond to the symbols of the binary key below.

Example of binary key

1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 1 0

P P

Figure 17.9 Individual keying capability.

17.3 21

the standard building block (SBB) shown in Figure 17.12. The standard building
block uses 48 bits of key to transform the 64 input data bits into 64 output data bits,
designated as 32 left-half bits and 32 right-half bits. The output of each building
block becomes the input to the next building block. The input right-half 32 bits
(Ri − 1) are copied unchanged to become the output left-half 32 bits (Li). The Ri − 1

bits are also extended and transformed into 48 bits with the E-table (Table 17.2),
and then modulo-2 summed with the 48 bits of the key. As in the case of the
IP-table, the E-table is read from left to right and from top to bottom. The table ex-
pands bits

into
(17.22)

Notice that the bits listed in the first and last columns of the E-table are those bit
positions that are used twice to provide the 32 bit-to-48 bit expansion.

Next, (Ri − 1)E is modulo-2 summed with the ith key selection, explained later,
and the result is segmented into eight 6-bit blocks

That is,
(17.23)

Each of the eight 6-bit blocks, Bj, is then used as an input to an S-box function
which returns a 4-bit block, Sj(Bj). Thus the input 48 bits are transformed by the
S-box to 32 bits. The S-box mapping function, Sj, is defined in Table 17.3. The
transformation of Bj = b1, b2, b3, b4, b5, b6 is accomplished as follows. The integer
corresponding to bits, b1, b6 selects a row in the table, and the integer correspond-
ing to bits b2 b3 b4 b5 selects a column in the table. For example, if b1 = 110001, then
S1 returns the value in row 3, column 8, which is the integer 5 and is represented by
the bit sequence 0101. The resulting 32-bit block out of the S-box is then permuted
using the P-table (Table 17.4). As in the case of the other tables, the P-table is read
from left to right and from top to bottom, so that bits x1, x2, . . . , x32 are permuted
to x16, x7, . . . , x25. The 32-bit output of the P-table is modulo-2 summed with the
input left-half 32 bits (Li − 1), forming the output right-half 32 bits (Ri).

The algorithm of the standard building block can be represented by

1Ri�1 2E � Ki � B1, B 2, p , B8

B1, B2 , p , B8

1Ri�1 2E � x32, x1, x2, p , x32, x1

Ri�1 � x1, x2, p , x32

DES

Key

56 Bits

Plaintext Ciphertext
64

Bits
64

Bits

Figure 17.10 Data encryption
standard (DES) viewed as a block
encryption system.

Encryption and Decryption Chap. 1722

Practical Security

+

+

+

Standard
building

block

Encryption

f(R0, K1)

f(R1, K2)

f(R15, K16)

K1

K1

K2

K16

K2

K16

Key schedule

Permuted
choice 2

Permuted
choice 2

Permuted
choice 2

Initial permutation

L1 R1

C1 D1

L2 R2

L15 R15

R16 L16

32-bit L0 32-bit R0

28-bit C0 28-bit D0

Left shift Left shift

C2 D2

C16 D16

Left shifts Left shifts

Left shifts Left shifts

56-bit key

64-bit plaintext

Final permutation

64-bit ciphertext

Permuted choice 1

64-bit key

…

…

Figure 17.11 Data encryption standard.

17.3 23

(17.24)

(17.25)

where f(Ri − 1, Ki) denotes the functional relationship comprising the E-table, S-box,
and P-table we have described. After 16 iterations of the SBB, the data are trans-
posed according to the final inverse permutation (IP− 1) described in the IP− 1-table
(Table 17.5), where the output bits are read from left to right and from top to bot-
tom, as before.

To decrypt, the same algorithm is used, but the key sequence that is used in
the standard building block is taken in the reverse order. Note that the value of
f(Ri − 1, Ki) which can also be expressed in terms of the output of the ith block as
f(Li, Ki), makes the decryption process possible.

17.3.5.1 Key Selection

Key selection also proceeds in 16 iterations, as seen in the key schedule por-
tion of Figure 17.11. The input key consists of a 64-bit block with 8 parity bits in po-
sitions 8, 16, . . . , 64. The permuted choice 1 (PC-1) discards the parity bits and
permutes the remaining 56 bits as shown in Table 17.6. The output of PC-1 is split
into two halves, C and D, of 28 bits each. Key selection proceeds in 16 iterations in

 Ri � L i�1 � f 1Ri�1, Ki2
 Li � R i�1

+ +E
48

bits

S
48

bits

48 bits

32 bits

Input Output

Ki

Li

Ri

Li –1

Ri –1
32

bits
32

bits

P

32 bits

32 bits32 bits

Figure 17.12 Standard building block (SBB).

TABLE 17.1 Initial Permutation (IP)

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

Encryption and Decryption Chap. 1724

Practical Security

TABLE 17.2 E-Table Bit Selection

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

TABLE 17.3 S-Box Selection Functions

Column

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

S12 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

S22 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

S32 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

S42 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

S52 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

S62 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3 4 3 2 12 9 5 15 0 11 14 1 7 6 0 8 13

0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

S72 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

S82 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

17.3 25

order to provide a different set of 48 key bits to each SBB encryption iteration. The
C and D blocks are successively shifted according to

(17.26)

where LS is a left circular shift by the number of positions shown in Table 17.7.i

The sequence Ci, Di is then transposed according to the permuted choice 2 (PC-2)
shown in Table 17.8. The result is the key sequence Ki, which is used in the ith iter-
ation of the encryption algorithm.

The DES can be implemented as a block encryption system (see Figure
17.11), which is sometimes referred to as a codebook method. A major disadvan-
tage of this method is that a given block of input plaintext will always result in the
same output ciphertext (under the same key). Another encryption mode, called the
cipher feedback mode, encrypts single bits rather than characters, resulting in a
stream encryption system [3]. With the cipher feedback scheme (described later),
the encryption of a segment of plaintext not only depends on the key and the cur-
rent data, but also on some of the earlier data.

Since the late 1970s, two points of contention have been widely publicized
about the DES [10]. The first concerns the key variable length. Some researchers
felt that 56 bits are not adequate to preclude an exhaustive search. The second con-
cerns the details of the internal structure of the S-boxes, which were never released
by IBM. The National Security Agency (NSA), which had been involved in the
testing of the DES algorithm, had requested that the information not be publicly
discussed, because it was sensitive. The critics feared that NSA had been involved
in design selections that would allow NSA to “tap into” any DES-encrypted mes-
sages [10]. DES is no longer a viable choice for strong encryption. The 56-bit key

Ci � LS i 1Ci�1 2 and Di � LS i 1Di�1 2

TABLE 17.4 P-Table Permutation

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14

32 27 3 9
19 13 30 6
22 11 4 25

TABLE 17.5 Final Permutation (IP− 1)

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Encryption and Decryption Chap. 1726

can be found in a matter of days with relatively inexpensive computer tools [11].
(Some alternative algorithms are discussed in Section 17.6.)

17.4 STREAM ENCRYPTION

Earlier, we defined a one-time pad as an encryption system with a random key,
used one time only, that exhibits unconditional security. One can conceptualize a
stream encryption implementation of a one-time pad using a truly random key
stream (the key sequence never repeats). Thus, perfect secrecy can be achieved for
an infinite number of messages, since each message would be encrypted with a dif-
ferent portion of the random key stream. The development of stream encryption
schemes represents an attempt to emulate the one-time pad. Great emphasis was
placed on generating key streams that appeared to be random, yet could easily be
implemented for decryption, because they could be generated by algorithms. Such
stream encryption techniques use pseudorandom (PN) sequences, which derive
their name from the fact that they appear random to the casual observer; binary

Stream Encryption

TABLE 17.6 Key Permutation PC-1

57 49 41 33 25 17 9
1 58 50 42 34 26 18

10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22

14 6 61 53 45 37 29
21 13 5 28 20 12 4

TABLE 17.7 Key Schedule of Left Shifts

Iteration, i Number of left shifts

1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1
10 2
11 2
12 2
13 2
14 2
15 2
16 1

17.4 27

pseudorandom sequences have statistical properties similar to the random flipping
of a fair coin. However, the sequences, of course, are deterministic (see Section
12.2). These techniques are popular because the encryption and decryption algo-
rithms are readily implemented with feedback shift registers. At first glance it may
appear that a PN key stream can provide the same security as the one-time pad,
since the period of the sequence generated by a maximum-length linear shift regis-
ter is 2n − 1 bits, where n is the number of stages in the register. If the PN sequence
were implemented with a 50-stage register and a 1-MHz clock rate, the sequence
would repeat every 250 − 1 microseconds, or every 35 years. In this era of large-scale
integrated (LSI) circuits, it is just as easy to provide an implementation with 100
stages, in which case the sequence would repeat every 4 × 1016 years. Therefore,
one might suppose that since the PN sequence does not repeat itself for such a long
time, it would appear truly random and yield perfect secrecy. There is one impor-
tant difference between the PN sequence and a truly random sequence used by a
one-time pad. The PN sequence is generated by an algorithm; thus, knowing the al-
gorithm, one knows the entire sequence. In Section 17.4.2 we will see that an en-
cryption scheme that uses a linear feedback shift register in this way is very
vulnerable to a known plaintext attack.

17.4.1 Example of Key Generation Using a Linear
Feedback Shift Register

Stream encryption techniques generally employ shift registers for generating their
PN key sequence. A shift register can be converted into a pseudorandom sequence
generator by including a feedback loop that computes a new term for the first stage
based on the previous n terms. The register is said to be linear if the numerical op-
eration in the feedback path is linear. The PN generator example from Section 12.2
is repeated in Figure 17.13. For this example, it is convenient to number the stages
as shown in Figure 17.13, where n = 4 and the outputs from stages 1 and 2 are
modulo-2 added (linear operation) and fed back to stage 4. If the initial state of
stages (x4, x3, x2, x1) is 1 0 0 0, the succession of states triggered by clock pulses
would be 1 0 0 0, 0 1 0 0, 0 0 1 0, 1 0 0 1, 1 1 0 0, and so on. The output sequence
is made up of the bits shifted out from the rightmost stage of the register, that is,
1 1 1 1 0 1 0 1 1 0 0 1 0 0 0, where the rightmost bit in this sequence is the earliest
output and the leftmost bit is the most recent output. Given any linear feedback
shift register of degree n, the output sequence is ultimately periodic.

TABLE 17.8 Key Permutation PC-2

14 17 11 24 1 5
3 28 15 6 21 10

23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Encryption and Decryption Chap. 1728

17.4.2 Vulnerabilities of Linear Feedback Shift Registers

An encryption scheme that uses a linear feedback shift register (LFSR) to generate
the key stream is very vulnerable to attack. A cryptanalyst needs only 2n bits of
plaintext and its corresponding ciphertext to determine the feedback taps, the ini-
tial state of the register, and the entire sequence of the code. In general, 2n is very
small compared with the period 2n − 1. Let us illustrate this vulnerability with the
LFSR example illustrated in Figure 17.13. Imagine that a cryptanalyst who knows
nothing about the internal connections of the LFSR manages to obtain 2n = 8 bits
of ciphertext and its plaintext equivalent:

where the rightmost bit is the earliest received and the leftmost bit is the most re-
cent that was received.

The cryptanalyst adds the two sequences together, modulo-2, to obtain the
segment of the key stream, 0 1 0 1 1 0 0 1, illustrated in Figure 17.14. The key
stream sequence shows the contents of the LFSR stages at various times. The right-
most border surrounding four of the key bits shows the contents of the shift register
at time t1. As we successively slide the “moving” border one digit to the left, we see
the shift register contents at times t2, t3, t4, From the linear structure of the four-
stage shift register, we can write

(17.27)

where x5 is the digit fed back to the input and gi (= 1 or 0) defines the ith feedback
connection. For this example, we can thus write the following four equations with
four unknowns, by examining the contents of the shift register at the four times
shown in Figure 17.14:

(17.28)

The solution of Equations (17.28) is g1 = 1, g2 = 1, g3 = 0, g4 = 0, corresponding to the
LFSR shown in Figure 17.13. The cryptanalyst has thus learned the connections of

 g 411 2 � g 310 2 � g 211 2 � g 111 2 � 0

 g 410 2 � g 311 2 � g 211 2 � g 110 2 � 1

 g 411 2 � g 311 2 � g 210 2 � g 110 2 � 0

 g 411 2 � g 310 2 � g 210 2 � g111 2 � 1

g 4x4 � g 3x3 � g 2x2 � g 1x1 � x5

Plaintext: 0 1 0 1 0 1 0 1
Ciphertext: 0 0 0 0 1 1 0 0

Stream Encryption

+

Output

Modulo-2
adder

Feedback

X4 X3 X2 X1

Figure 17.13 Linear feedback
shift register example.

17.4 29

the LFSR, together with the starting state of the register at time t1. He can there-
fore know the sequence for all time [3]. To generalize this example for any n-stage
LFSR, we rewrite Equation (17.27) as follows:

(17.29)

We can write Equation (17.29) as the matrix equation

(17.30)

where

x � Dxn�1

xn�2

o
x2n

T g � Dg 1

g 2

o
g n

T

x � Xg

xn�1 � a
n

i�1

 g i xi

+

+

x4 x3 x2 x1

Feedback

Key stream:

t1

t2

t3

t4

Plaintext

2n bits

2n bits

g4 g3 g2 g1

Keystreamn = 4 stages

0 1 0 1 1 0 0 1

01010101

Ciphertext

00001100

Figure 17.14 Example of vulnerability of a linear feedback shift register.

Encryption and Decryption Chap. 1730

and

It can be shown [3] that the columns of X are linearly independent; thus X is non-
singular (its determinant is nonzero) and has an inverse. Hence,

(17.31)

The matrix inversion requires at most on the order of n3 operations and is thus eas-
ily accomplished by computer for any reasonable value of n. For example, if n =
100, n3 = 106, and a computer with a 1-�s operation cycle would require 1 s for the
inversion. The weakness of a LFSR is caused by the linearity of Equation (17.31).
The use of nonlinear feedback in the shift register makes the cryptanalyst’s task
much more difficult, if not computationally intractable.

17.4.3 Synchronous and Self-Synchronous
Stream Encryption Systems

We can categorize stream encryption systems as either synchronous of self-
synchronous. In the former, the key stream is generated independently of the mes-
sage, so that a lost character during transmission necessitates a resynchronization
of the transmission and receiver key generators. A synchronous stream cipher is
shown in Figure 17.15. The starting state of the key generator is initialized with a
known input, I0. The ciphertext is obtained by the modulo addition of the ith key
character, ki, with the ith message character, m i. Such synchronous ciphers are gen-
erally designed to utilize confusion (see Section 17.3.1) but not diffusion. That is,
the encryption of a character is not diffused over some block length of message.
For this reason, synchronous stream ciphers do not exhibit error propagation.

In a self-synchronous stream cipher, each key character is derived from a
fixed number, n, of the preceding ciphertext characters, giving rise to the
name cipher feedback. In such a system, if a ciphertext character is lost during

g � X�1 x

X � Dx1 x2
p xn

x2 x3
p xn�1

o o o
xn xn�1

p x2n�1

T

Stream Encryption

+ +

Key
generator

Encryption

I0

mi ci

ki

Key
generator

Decryption

I0

ci mi

ki

Figure 17.15 Synchronous stream cipher.

17.4 31

transmission, the error propagates forward for n characters, but the system resyn-
chronizes itself after n correct ciphertext characters are received.

In Section 17.1.4 we looked at an example of cipher feedback in the Vigenere
auto key cipher. We saw that the advantages of such a system are that (1) a nonre-
peating key is generated, and (2) the statistics of the plaintext message are diffused
throughout the ciphertext. However, the fact that the key was exposed in the ci-
phertext was a basic weakness. This problem can be eliminated by passing the ci-
phertext characters through a nonlinear block cipher to obtain the key characters.
Figure 17.16 illustrates a shift register key generator operating in the cipher feed-
back mode. Each output ciphertext character, ci (formed by the modulo addition of
the message character, mi, and the key character, ki), is fed back to the input of the
shift register. As before, initialization is provided by a known input, I0. At each it-
eration, the output of the shift register is used as input to a (nonlinear) block en-
cryption algorithm EB. The low-order output character from EB becomes the next
key character, ki + 1, to be used with the next message character, mi + 1. Since, after
the first few iterations, the input to the algorithm depends only on the ciphertext,
the system is self-synchronizing.

17.5 PUBLIC KEY CRYPTOSYSTEMS

The concept of public key cryptosystems was introduced in 1976 by Diffie and
Hellman [12]. In conventional cryptosystems the encryption algorithm can be re-
vealed since the security of the system depends on a safeguarded key. The same
key is used for both encryption and decryption. Public key cryptosystems utilize
two different keys, one for encryption and the other for decryption. In public key
cryptosystems, not only the encryption algorithm but also the encryption key can
be publicly revealed without compromising the security of the system. In fact, a
public directory, much like a telephone directory, is envisioned, which contains the

+ +

Encryption

mi ci mi

ki

EB

I0
I0Shift register

…

…

Decryption

ci

ki

EB

Shift register

…

Figure 17.16 Cipher feedback mode.

Encryption and Decryption Chap. 1732

encryption keys of all the subscribers. Only the decryption keys are kept secret.
Figure 17.17 illustrates such a system. The important features of a public key cryp-
tosystem are as follows:

1. The encryption algorithm EK and the decryption algorithm DK are invertible
transformations on the plaintext M, or the ciphertext C, defined by the key K.
That is, for each K and M, if C = EK(M), then M = DK(C) = DK[EK(M)].

2. For each K, EK and DK are easy to compute.
3. For each K, the computation of DK from EK is computationally intractable.

Such a system would enable secure communication between subscribers who
have never met or communicated before. For example, as seen in Figure 17.17, sub-
scriber A can send a message, M, to subscriber B by looking up B’s encryption key
in the directory and applying the encryption algorithm, EB, to obtain the ciphertext
C = EB(M), which he transmits on the public channel. Subscriber B is the only party
who can decrypt C by applying his decryption algorithm, DB, to obtain M = DB(C).

17.5.1 Signature Authentication Using a Public
Key Cryptosystem

Figure 17.18 illustrates the use of a public key cryptosystem for signature authenti-
cation. Subscriber A “signs” his message by first applying his decryption algorithm,
DA, to the message, yielding S = DA(M) = E− 1

A(M). Next, he uses the encryption al-
gorithm, EB, of subscriber B to encrypt S, yielding C = EB(S) = EB[E− 1

A(M)], which
he transmits on a public channel. When subscriber B receives C, he first decrypts it
using his private decryption algorithm, DB, yielding DB(C) = E− 1

A(M). Then he ap-
plies the encryption algorithm of subscriber A to produce EA[E− 1

A(M)] = M.

Public Key Cryptosystems

Directory

A – EA
B – EB
C – EC

… …

Crypto
machine

Subscriber A

Crypto
machine

Subscriber B

EB DB

C = EB (M)
M M

Figure 17.17 Public key cryp-
tosystem.

17.5 33

If the result is an intelligible message, it must have been initiated by sub-
scriber A, since no one else could have known A’s secret decryption key to form
S = DA(M). Notice that S is both message dependent and signer dependent, which
means that while B can be sure that the received message indeed came from A, at
the same time A can be sure that no one can attribute any false messages to him.

17.5.2 A Trapdoor One-Way Function

Public key cryptosystems are based on the concept of trapdoor one-way functions.
Let us first define a one-way function as an easily computed function whose in-
verse is computationally infeasible to find. For example, consider the function
y = x5 + 12x3 + 107x + 123. It should be apparent that given x, y is easy to compute,
but given y, x is relatively difficult to compute. A trapdoor one-way function is a
one-way function whose inverse is easily computed if certain features, used to
design the function, are known. Like a trapdoor, such functions are easy to go
through in one direction. Without special information the reverse process takes an
impossibly long time. We will apply the concept of a trapdoor in Section 17.5.5,
when we discuss the Merkle–Hellman scheme.

Crypto
machine

A

Crypto
machine

A

DA EB

S = EA (M)–1 –1C = EB(EA (M))

–1C = EB(EA (M))

M Public channel

Directory

Crypto
machine

B

Crypto
machine

Signature
storage

B

DB

EA

S = EA (M)–1

M

Directory

Figure 17.18 Signature authentication using a public key cryptosystem.

Encryption and Decryption Chap. 1734

17.5.3 The Rivest–Shamir–Adelman Scheme

In the Rivest–Shamir–Adelman (RSA) scheme, messages are first represented as
integers in the range (0, n − 1). Each user chooses his own value of n and another
pair of positive integers e and d, in a manner to be described below. The user places
his encryption key, the number pair (n, e), in the public directory. The decryption
key consists of the number pair (n, d), of which d is kept secret. Encryption of a
message M and decryption of a ciphertext C are defined as follows:

(17.32)

They are each easy to compute and the results of each operation are integers in the
range (0, n − 1). In the RSA scheme, n is obtained by selecting two large prime
numbers p and q and multiplying them together:

(17.33)

Although n is made public, p and q are kept hidden, due to the great difficulty in
factoring n. Then

(17.34)

called Euler’s totient function, is formed. The parameter �(n) has the interesting
property [12] that for any integer X in the range (0, n − 1) and any integer k,

(17.35)

Therefore, while all other arithmetic is done modulo-n, arithmetic in the exponent
is done modulo-�(n). A large integer, d, is randomly chosen so that it is relatively
prime to �(n), which means that �(n) and d must have no common divisors other
than 1, expressed as

(17.36)

where gcd means “greatest common divisor.” Any prime number greater than the
larger of (p, q) will suffice. Then the integer e, where 0 < e < �(n), is found from the
relationship

(17.37)

which, from Equation (17.35), is tantamount to choosing e and d to satisfy

(17.38)

Therefore,

(17.39)

and decryption works correctly. Given an encryption key (n, e), one way that a
cryptanalyst might attempt to break the cipher is to factor n into p and q, compute
�(n) = (p − 1)(q − 1), and compute d from Equation (17.37). This is all straightfor-
ward except for the factoring of n.

E 3D 1X 2 4 � D 3E 1X 2 4 � X

X � X ed modulo-n

ed modulo-�1n 2 � 1

gcd 3�1n 2 , d 4 � 1

X � X k � 1n2�1 modulo-n

�1n 2 � 1p � 1 2 1q � 1 2

n � pq

Encryption: C � E 1M2 � 1M2 e modulo-n

Decryption: M � D 1C2 � 1C2d modulo-n

Public Key Cryptosystems17.5 35

The RSA scheme is based on the fact that it is easy to generate two large
prime numbers, p and q, and multiply them together, but it is very much more diffi-
cult to factor the result. The product can therefore be made public as part of the
encryption key, without compromising the factors that would reveal the decryption
key corresponding to the encryption key. By making each of the factors roughly
100 digits long, the multiplication can be done in a fraction of a second, but the ex-
haustive factoring of the result should take billions of years [2].

17.5.3.1 Use of the RSA Scheme

Using the example in Reference [13], let p = 47, q = 59. Therefore, n = pq =
2773 and �(n) = (p − 1)(q − 1) = 2668. The parameter d is chosen to be relatively
prime to �(n). For example, choose d = 157. Next, the value of e is computed as fol-
lows (the details are shown in the next section):

Therefore, e = 17. Consider the plaintext example

By replacing each letter with a two-digit number in the range (01, 26) correspond-
ing to its position in the alphabet, and encoding a blank as 00, the plaintext mes-
sage can be written as

Each message needs to be expressed as an integer in the range (0, n −1); therefore,
for this example, encryption can be performed on blocks of four digits at a time
since this is the maximum number of digits that will always yield a number less than
n − 1 = 2772. The first four digits (0920) of the plaintext are encrypted as follows:

Continuing this process for the remaining plaintext digits, we get

The plaintext is returned by applying the decryption key, as follows:

17.5.3.2 How to Compute e

A variation of Euclid’s algorithm [14] for computing the gcd of �(n) and d is
used to compute e. First, compute a series x0, x1, x2, . . . , where x0 = �(n), x1 = d, and
xi + 1 = xi − 1 modulo-xi, until an xk = 0 is found. Then the gcd (x0, x1) = xk − 1. For each
xi compute numbers ai and bi such that xi = ai x0 + bix 1. If xk − 1 = 1, then bk − 1 is the
multiplicative inverse of x1 modulo-x0. If bk − 1 is a negative number, the solution is
bk − 1 + �(n).

M � 1C2 157 modulo-2773

C � 0948 2342 1084 1444 2663 2390 0778 0774 0219 1655

C � 1M2 e modulo-n � 1920 2 17 modulo-2773 � 948

0920 1900 0112 1200 0718 0505 1100 2015 0013 0500

ITS ALL GREEK TO ME

ed modulo �1n 2 � 1

157e modulo 2688 � 1

Encryption and Decryption Chap. 1736

Example 17.5 Computation of e from d and �(n)

For the previous example, with p = 47, q = 59, n = 2773, �(n) = 2688, and d chosen to
be 157, use the Euclid algorithm to verify that e = 17.

Solution

i xi ai bi yi

0 2668 1 0
1 157 0 1 16
2 156 1 −16 1
3 1 −1 17

where

Hence

17.5.4 The Knapsack Problem

The classic knapsack problem is illustrated in Figure 17.19. The knapsack is filled
with a subset of the items shown with weights indicated in grams. Given the weight
of the filled knapsack (the scale is calibrated to deduct the weight of the empty
knapsack), determine which items are contained in the knapsack. For this simple
example, the solution can easily be found by trial and error. However, if there are
100 possible items in the set instead of 10, the problem may become computation-
ally infeasible.

Let us express the knapsack problem in terms of a knapsack vector and a data
vector. The knapsack vector is an n-tuple of distinct integers (analogous to the set
of possible knapsack items)

The data vector is an n-tuple of binary symbols

The knapsack, S, is the sum of a subset of the components of the knapsack vector:

(17.40)

The knapsack problem can be stated as follows: Given S and knowing a, determine x.

 � ax

 S � a
n

i�1

 ai xi where xi � 0, 1

x � x1, x2, p , xn

a � a1, a2, p , an

e � b3 � 17

 b i�1 � b i�1 � yi bi

 a i�1 � a i�1 � yi a i

 xi�1 � xi�1 � yi xi

 yi � j xi�1

xi
k

Public Key Cryptosystems17.5 37

Example 17.6 Knapsack Example

Given a = 1, 2, 4, 8, 16, 32 and S = ax = 26, find x.

Solution

In this example x is seen to be the binary representation of S. The decimal-to-binary
conversion should appear more familiar with a expressed as 20, 21, 22, 23, 24, 25. The
data vector x is easily found since a in this example is super-increasing, which means
that each component of the n-tuple a is larger than the sum of the preceding compo-
nents. That is,

(17.41)

When a is super-increasing, the solution of x is found by starting with xn = 1 if S ≥ an

(otherwise xn = 0) and continuing according to the relationship

ai 7 a
i�1

j�1

 aj i � 2, 3, p , n

1.156 kg

Kilograms

0
7 1

5 3

6 2

90

13214 56 82 284

455 197 28 341

Figure 17.19 Knapsack problem.

Encryption and Decryption Chap. 1738

(17.42)

where i = n − 1, n − 2, . . . , 1. From Equation (17.42) it is easy to compute x =
0 1 0 1 1 0.

Example 17.7 Knapsack Example

Given a = 171, 197, 459, 1191, 2410, 4517 and S = ax = 3798, find x.

Solution

As in Example 17.6, a is super-increasing; therefore, we can compute x using Equation
(17.42), which again yields

17.5.5 A Public Key Cryptosystem Based on a Trapdoor Knapsack

This scheme, also known as the Merkle–Hellman scheme [15], is based on the for-
mation of a knapsack vector that is not super-increasing and is therefore not easy
to solve. However, an essential part of this knapsack is a trapdoor that enables the
authorized user to solve it.

First, we form a super-increasing n-tuple a�. Then we select a prime number
M such that

(17.43)

We also select a random number W, where 1 < W < M, and we form W−1 to satisfy
the following relationship:

(17.44)

the vector a� and the numbers M, W, and W−1 are all kept hidden. Next, we form
a with the elements from a�, as follows:

(17.45)

The formation of a using Equation (17.45) constitutes forming a knapsack vector
with a trapdoor. When a data vector x is to be transmitted, we multiply x by a,
yielding the number S, which is sent on the public channel. Using Equation (17.45),
S can be written as follows:

(17.46)

The authorized user receives S and, using Equation (17.44), converts it to S�:

 S ¿ � W�1S modulo-M � W�1a
n

i�1

 1Wa ¿i modulo-M2x i modulo-M

S � ax � a
n

i�1

 ai xi � a
n

i�1

 1Wa ¿i modulo-M 2 xi

ai � Wa ¿j modulo-M

WW�1 modulo-M � 1

M 7 a
n

i�1

 a ¿i

x � 0 1 0 1 1 0

xi � • 1 if S � a xj aj � ai

n

j� i�1

0 otherwise

Public Key Cryptosystems17.5 39

(17.47)

Since the authorized user knows the secretly held super-increasing vector a′, he or
she can use S′ to find x.

17.5.5.1 Use of the Merkle–Hellman Scheme

Suppose that user A wants to construct public and private encryption func-
tions. He first considers the super-increasing vector a� = (171, 197, 459, 1191, 2410,
4517)

He then chooses a prime number M larger than 8945, a random number W, where
1 ≤ W < M, and calculates W−1 to satisfy WW− 1 = 1 modulo-M.

He then forms the trapdoor knapsack vector as follows:

User A makes public the vector a, which is clearly not super-increasing. Suppose
that user B wants to send a message to user A.

If x = 0 1 0 1 1 0 is the message to be transmitted, user B forms

User A, who receives S, converts it to S�:

Using S� = 3798 and the super-increasing vector a�, user A easily solves for x.
The Merkle–Hellman scheme is now considered broken [16], leaving the

RSA scheme (as well as others discussed later) as the algorithms that are useful for
implementing public key cryptosystems.

 � 3798

 � 1388 # 14,165 modulo-9109

 S ¿ � a ¿x � W�1S modulo-M

S � ax � 14,165 and transmits it to user A

 a � 2343, 6215, 3892, 2895, 5055, 2123

 ai � a ¿i 2251 modulo-9109

Choose M � 9109
choose W � 2251
then W�1 � 1388

s kept hidden

a
6

i�1

 a ¿i � 8945

 � a
n

i�1
 a ¿i xi

 � a
n

i�1
 a ¿i xi modulo-M

 � a
n

i�1
 1W�1 Wa ¿i modulo-M2 xi modulo-M

Encryption and Decryption Chap. 1740

17.6 PRETTY GOOD PRIVACY

Pretty Good Privacy (PGP) is a security program that was created by Phil Zimmer-
man [17] and published in 1991 as free-of-charge shareware. It has since become
the “de facto” standard for electronic mail (e-mail) and file encryption. PGP,
widely used as version 2.6, remained essentially unchanged until PGP version 5.0
(which is compatible with version 2.6) became available. Table 17.9 illustrates the
algorithms used in versions 2.6, 5.0, and later.

As listed in Table 17.9, PGP uses a variety of encryption algorithms, including
both private-key- and public-key-based systems. A private-key algorithm (with a
new session key generated at each session) is used for encryption of the message.
The private-key algorithms offered by PGP are International Data Encryption Al-
gorithm (IDEA), Triple-DES (Data Encryption Standard), and CAST (named
after the inventors Carlisle Adams and Stafford Tavares [19]). A public-key algo-
rithm is used for the encryption of each session key. The public-key algorithms
offered by PGP are the RSA algorithm, described in Section 17.5.3, and the
Diffie-Hellman algorithm.

Public-key algorithms are also used for the creation of digital signatures. PGP
version 5.0 uses the Digital Signature Algorithm (DSA) specified in the NIST Digi-
tal Signature Standard (DSS). PGP version 2.6 uses the RSA algorithm for its digi-
tal signatures. If the available channel is insecure for key exchange, it is safest to
use a public-key algorithm. If a secure channel is available, then private-key en-
cryption is preferred, since it typically offers improved speed over public-key
systems.

The technique for message encryption employed by PGP version 2.6 is illus-
trated in Figure 17.20. The plaintext is compressed with the ZIP algorithm prior to
encryption. PGP uses the ZIP routine written by Jean-Loup Gailly, Mark Alder, and
Richard B. Wales [18]. If the compressed text is shorter than the uncompressed text,
the compressed text will be encrypted; otherwise the uncompressed text is encrypted.

Pretty Good Privacy

TABLE 17.9 PGP 2.6 versus PGP 5.0 and Later

PGP Version 2.6 PGP Version 5.0 and Later
Function Algorithm Used [17] Algorithm Used [18]

Encryption of message using IDEA Triple-DES, CAST, or IDEA
private-key algorithm with
private-session key

Encryption of private-session RSA RSA or Diffie-Hellman
key with public-key algorithm (the Elgamal variation)

Digital Signature RSA RSA and NIST1 Digital Signature
Standard (DSS)2

Hash Function used for MD5 SHA-1
creating message digest
for Digital Signatures

1 National Institute of Standards and Technology, a division of the U.S. Department of Commerce.
2 Digital Signature Standard selected by NIST.

17.6 41

If
co

m
p

re
ss

ib
le

,
p

la
in

te
xt

 f
ile

co
m

p
re

ss
ed

u
si

n
g

 Z
IP

If
 f

ile
 o

ri
g

in
al

ly
co

m
p

re
ss

ed
th

en
 f

ile
 is

u
n

co
m

p
re

ss
ed

u
si

n
g

 Z
IP

P
la

in
te

xt
en

cr
yp

te
d

u
si

n
g

 ID
E

A
al

g
o

ri
th

m

C
ip

h
er

te
xt

d
ec

ry
p

te
d

u
si

n
g

 ID
E

A
al

g
o

ri
th

m

E
n

cr
yp

te
d

se
ss

io
n

 k
ey

d
ec

ry
p

te
d

 u
si

n
g

re
ci

p
ie

n
t'

s
p

ri
va

te
 R

S
A

 k
ey

Insecure channel

R
S

A
E

n
cr

yp
te

d
se

ss
io

n
ke

y

R
S

A
 A

lg
o

ri
th

m
(s

es
si

o
n

 k
ey

 is
en

cr
yp

te
d

 u
si

n
g

re
ci

p
ie

n
t'

s
p

u
b

lic
 k

ey
)

R
ec

ip
ie

n
t'

s
p

u
b

lic
 R

S
A

 k
ey

R
ec

ip
ie

n
t'

s
p

ri
va

te
 R

S
A

 k
ey

12
8-

b
it

 s
es

si
o

n
 k

ey
cr

ea
te

d
 b

y
p

se
u

d
o

-
ra

n
d

o
m

 n
u

m
b

er
g

en
er

at
o

r

P
la

in
te

xt

O
ri

g
in

al
p

la
in

te
xt

fi
le

re
co

ve
re

d

F
ig

u
re

 1
7.

20
T

he
 P

G
P

 te
ch

ni
qu

e.

Encryption and Decryption Chap. 1742

Small files (approximately 30 characters for ASCII files) will not benefit
from compression. Additionally, PGP recognizes files previously compressed by
popular compression routines, such as PKZIP, and will not attempt to compress
them. Data compression removes redundant character strings in a file and produces
a more uniform distribution of characters. Compression provides a shorter file to en-
crypt and decrypt (which reduces the time needed to encrypt, decrypt, and transmit a
file), but compression is also advantageous because it can hinder some cryptanalytic
attacks that exploit redundancy. If compression is performed on a file, it should occur
prior to encryption (never afterwards). Why is that a good rule to follow? Because a
good encryption algorithm yields ciphertext with a nearly statistically uniform distri-
bution of characters; therefore, if a data compression algorithm came after such
encryption, it should result in no compression at all. If any ciphertext can be
compressed, then the encryption algorithm that formed that ciphertext was a poor
algorithm. A compression algorithm should be unable to find redundant patterns in
text that was encrypted by a good encryption algorithm.

As shown in Figure 17.20, PGP Version 2.6 begins file encryption by creating
a 128-bit session key using a pseudo-random number generator. The compressed
plaintext file is then encrypted with the IDEA private-key algorithm using this ran-
dom session key. The random session key is then encrypted by the RSA public-key
algorithm using the recipient’s public key. The RSA-encrypted session key and the
IDEA-encrypted file are sent to the recipient. When the recipient needs to read
the file, the encrypted session key is first decrypted with RSA using the recipient’s
private key. The ciphertext file is then decrypted with IDEA using the decrypted
session key. After uncompression, the recipient can read the plaintext file.

17.6.1 Triple-DES, CAST, and IDEA

As listed in Table 17.9, PGP offers three block ciphers for message encryption,
Triple-DES, CAST, and IDEA. All three ciphers operate on 64-bit blocks of plain-
text and ciphertext. Triple-DES has a key size of 168-bits, while CAST and IDEA
use key lengths of 128 bits.

17.6.1.1 Description of Triple-DES

The Data Encryption Standard (DES) described in Section 17.3.5 has been
used since the late 1970s, but some have worried about its security because of its
relatively small key size (56 bits). With Triple-DES, the message to be encrypted is
run through the DES algorithm 3 times (the second DES operation is run in de-
crypt mode); each operation is performed with a different 56-bit key. As illustrated
in Figure 17.21, this gives the effect of a 168-bit key length.

17.6.1.2 Description of CAST

CAST is a family of block ciphers developed by Adams and Tavares [19].
PGP version 5.0 uses a version of CAST known as CAST5, or CAST-128. This ver-
sion has a block size of 64-bits and a key length of 128-bits. The CAST algorithm
uses six S-boxes with an 8-bit input and a 32-bit output. By comparison, DES uses

Pretty Good Privacy17.6 43

eight S-boxes with a 6-bit input and a 4-bit output. The S-boxes in Cast-128 were
designed to provide highly nonlinear transformations, making this algorithm par-
ticularly resistant to cryptanalysis [11].

17.6.1.3 Description of IDEA

The International Data Encryption Algorithm (IDEA) is a block cipher de-
signed by Xuejia Lai and James Massey [19]. It is a 64-bit iterative block cipher (in-
volving eight iterations or rounds) with a 128-bit key. The security of IDEA relies
on the use of three types of arithmetic operations on 16-bit words. The operations
are addition modulo 216, multiplication modulo 216 + 1, and bit-wise exclusive-OR
(XOR). The 128-bit key is used for the iterated encryption and decryption in a re-
ordered fashion. As shown in Table 17.10, the original key K0 is divided into eight
16-bit subkeys Zx

(R), where x is the subkey number of the round R. Six of these sub-
keys are used in round 1, and the remaining two are used in round 2. K0 is then ro-
tated 25 bits to the left yielding K1, which is in turn divided into eight subkeys; the
first 4 of these subkeys are used in round 2, and the last four in round 3. The
process continues, as shown in Table 17.10, yielding a total of 52 subkeys.

The subkey schedule for each round is listed in Table 17.11 for both encryp-
tion and decryption rounds. Decryption is carried out in the same manner as en-
cryption. The decryption subkeys are calculated from the encryption subkeys, as
shown in Table 17.11, where it is seen that the decryption subkeys are either the
additive or multiplicative inverses of the encryption subkeys.

The message is divided into 64-bit data blocks. These blocks are then divided
into four 16-bit subblocks: M1, M2, M3, and M4. A sequence of such four subblocks
becomes the input to the first round of IDEA algorithm. This data is manipulated
for a total of eight rounds. Each round uses a different set of six subkeys as speci-
fied in Table 17.11. After a round, the second and third 16-bit data subblocks are

DES

K1 (56 bits)

Encrypt

Decrypt

K2 (56 bits) K3 (56 bits)

DES CiphertextPlaintext DES–1

DESDES–1 DES–1

Figure 17.21 Encryption/decryption with triple-DES.

Encryption and Decryption Chap. 1744

swapped. After the completion of the eighth round, the four subblocks are manipu-
lated in a final output transformation. For the representation of Zx

(R) shown in Ta-
bles 17.10 and 17.11, the round number is shown without parentheses for ease of
notation.

Each round consists of the steps shown in Table 17.12. The final values from
steps 11–14 form the output of the round. The two inner 16-bit data subblocks (ex-
cept for the last round) are swapped, and then these four subblocks are the input to
the next round. This technique continues for a total of 8 rounds. After round 8, the
final output transformation is as follows:

1. M1 × Z1
out (first subkey of output transformation)

2. M2 + Z2
out

3. M3 + Z3
out

4. M4 × Z4
out

Pretty Good Privacy

TABLE 17.10 IDEA formation of Subkeys

128-bit key Bit string from which
(divided into eight 16-bit subkeys) keys are derived

Z1
1 Z2

1 Z3
1 Z4

1 Z5
1 Z6

1 Z1
2 Z2

2 K0 = Original 128-bit key
Z3

2 Z4
2 Z5

2 Z6
2 Z1

3 Z2
3 Z3

3 Z4
3 K1 = 25-bit rotation of K0

Z5
3 Z6

3 Z1
4 Z2

4 Z3
4 Z4

4 Z5
4 Z6

4 K2 = 25-bit rotation of K1

Z1
5 Z2

5 Z3
5 Z4

5 Z5
5 Z6

5 Z1
6 Z2

6 K3 = 25-bit rotation of K2

Z3
6 Z4

6 Z5
6 Z6

6 Z1
7 Z2

7 Z3
7 Z4

7 K4 = 25-bit rotation of K3

Z5
7 Z6

7 Z1
8 Z2

8 Z3
8 Z4

8 Z5
8 Z6

8 K5 = 25-bit rotation of K4

Z1
out Z2

out Z3
out Z4

out First 64 bits of K6 where K6 = 25-bit rotation of K5

TABLE 17.11 IDEA Subkey Schedule

Round Set of Encryption Subkeys Set of Decryption Subkeys

1 Z1
1 Z2

1 Z3
1 Z4

1 Z5
1 Z6

1 (Z1
out)− 1 − Z2

out − Z3
out (Z4

out) − 1 Z5
8 Z6

8

2 Z1
2 Z2

2 Z3
2 Z4

2 Z5
2 Z6

2 (Z1
8)− 1 − Z2

8 − Z3
8 (Z4

8)− 1 Z5
7 Z6

7

3 Z1
3 Z2

3 Z3
3 Z4

3 Z5
3 Z6

3 (Z1
7)− 1 − Z2

7 − Z3
7 (Z4

7)− 1 Z5
6 Z6

6

4 Z1
4 Z2

4 Z3
4 Z4

4 Z5
4 Z6

4 (Z1
6)− 1 − Z2

6 −Z3
6 (Z4

6)− 1 Z5
5 Z6

5

5 Z1
5 Z2

5 Z3
5 Z4

5 Z5
5Z6

5 (Z1
5)− 1 − Z2

5 − Z3
5 (Z4

5)− 1 Z5
4 Z6

4

6 Z1
6 Z2

6 Z3
6 Z4

6 Z5
6 Z6

6 (Z1
4)− 1 − Z2

4 − Z3
4 (Z4

4)− 1 Z5
3 Z6

3

7 Z1
7 Z2

7 Z3
7 Z4

7 Z5
7 Z6

7 (Z1
3)− 1 Z2

3 − Z3
3 (Z4

3)− 1 Z5
2 Z6

2

8 Z1
8 Z2

8 Z3
8 Z4

8 Z5
8 Z6

8 (Z1
2)− 1 − Z2

2 − Z3
2 (Z4

2)− 1 Z5
1 Z6

1

Output Z1
out Z2

out Z3
out Z4

out (Z1
1)− 1 − Z2

1 − Z3
1 (Z4

1)− 1

Transformation

Example 17.8 The First Round of the IDEA Cipher

Consider that the message is the word “HI,” which we first transform to hexadecimal
(hex) notation. We start with the ASCII code table in Figure 2.3, where bit 1 is the
least significant bit (LSB). We then add an eighth zero-value most significant bit
(MSB), which might ordinarily be used for parity, and we transform four bits at a time
reading from MSB to LSB. Thus, the letter H in the message transforms to 0048 and

17.6 45

the letter I transforms to 0049. For this example, we choose a 128-bit key, K0, ex-
pressed with eight groups or subkeys of 4-hex digits each, as follows: K0 = 0008 0007
0006 0005 0004 0003 0002 0001, where the rightmost subkey is the least significant.
Using this key and the IDEA cipher, find the output of round 1.

Solution

The message is first divided into 64-bit data blocks. Each of these blocks is then di-
vided into subblocks, Mi, where i = 1, . . . 4, each subblock containing 16-bits or 4-hex
digits. In this example the message “HI” is only 16-bits in length, hence (using hex no-
tation) M1 = 4849 and M2 = M3 = M4 = 0000. Addition is performed modulo 216, and
multiplication is performed modulo 216 + 1. For the first round, the specified 128-bit
key is divided into eight 16-bit subkeys starting with the least significant group of hex
digits, as follows: Z1

(1) = 0001, Z2
(1) = 0002, Z3

(1) = 0003, Z4
(1) = 0004, Z5

(1) = 0005, Z6
(1)

= 0006, Z1
(2) = 0007, and Z2

(2) = 0008.
The steps outlined in Table 17.11 yield:

1. M1 × Z1 = 4849 × 0001 = 4849.
2. M2 + Z2 = 0000 + 0002 = 0002.
3. M3 + Z3 = 0000 + 0003 = 0003.
4. M4 × Z4 = 0000 × 0004 = 0000.
5. The result from step (1) is XOR’ed with the result from step (3) yielding 4849

XOR 0003 = 484A, as follows:

0100 1000 0100 1001 (4849 hex converted to binary)
XOR 0000 0000 0000 0011 (0003 hex converted to binary)

0100 1000 0100 1010

Converting back to hex yields: 484A (where A is the hex notation for 1010 binary)

6. Results from steps (2) and (4) are XOR’ed: 0002 XOR 0000 = 0002.
7. Results from step (5) and Z5 are multiplied: 484A × 0005 = 6971.
8. Results from steps (6) and (7) are added: 0002 + 6971 = 6973.

TABLE 17.12 IDEA Operational Steps in Each Round

1. M1 × Z1
(R)

2. M2 + Z2
(R)

3. M3 + Z3
(R)

4. M4 × Z4
(R)

5. XOR3 the results from steps 1 and 3.
6. XOR the results from steps 2 and 4.
7. Results from step 5 and Z5

(R) are multiplied.
8. Results from step 6 and 7 are added.
9. Results from step 8 and Z6

(R) are multiplied.
10. Results from steps 7 and 9 are added.
11. XOR the results from steps 1 and 9.
12. XOR the results from steps 3 and 9.
13. XOR the results from steps 2 and 10.
14. XOR the results from steps 4 and 10.

3 The exclusive-OR (XOR) operation is defined as: 0 XOR 0 = 0, 0 XOR 1 = 1, 1 XOR 0 = 1, and
1 XOR 1 = 0.

Encryption and Decryption Chap. 1746

9. Results from step (8) and Z6 are multiplied: 6973 × 0006 = 78B0.
10. Results from steps (7) and (9) are added: 6971 + 78B0 = E221.
11. Results from steps (1) and (9) are XOR’ed: 4849 XOR 78B0 = 30F9.
12. Results from steps (3) and (9) are XOR’ed: 0003 XOR 78B0 = 78B3.
13. Results from steps (2) and (10) are XOR’ed: 0002 XOR E221 = E223.
14. Results from steps (4) and (10) are XOR’ed: 0000 XOR E221 = E221.

The output of round 1 (the result from steps 11–14) is: 30F9 78B3 E223 E221.
Prior to the start of round 2, the two inner words of the round 1 output are swapped.
Then, seven additional rounds and a final output transformation are performed.

17.6.2 Diffie-Hellman (Elgamal Variation) and RSA

For encryption of the session key, PGP offers a choice of two public-key encryption al-
gorithms, RSA and the Diffie-Hellman (Elgamal variation) protocol. PGP allows for
key sizes of 1024 to 4096 bits for RSA or Diffie-Hellman algorithms. The key size of
1024 bits is considered safe for exchanging most information. The security of the RSA
algorithm (see Section 17.5.3) is based on the difficulty of factoring large integers.

The Diffie-Hellman protocol was developed by Whitfield Diffie, Martin E.
Hellman, and Ralph C. Merkle in 1976 [19, 20] for public-key exchange over an in-
secure channel. It is based on the difficulty of the discrete logarithm problem for fi-
nite fields [21]. It assumes that it is computationally infeasible to compute gab

knowing only ga and gb. U.S. Patent 4,200,770, which expired in 1997, covers the
Diffie-Hellman protocol and variations such as Elgamal. The Elgamal variation,
which was developed by Taher Elgamal, extends the Diffie-Hellman protocol for
message encryption. PGP employs the Elgamal variation of Diffie-Hellman for the
encryption of the session-key.

17.6.2.1 Description of Diffie-Hellman, Elgamal Variant:

The protocol has two-system parameter n and g that are both public. Parame-
ter n is a large prime number, and parameter g is an integer less than n that has the
following property: for every number p between 1 and n − 1 inclusive, there is a
power k of g such that gk = p mod n. The Elgamal encryption scheme [19, 21] that
allows user B to send a message to user A is described below:

• User A randomly chooses a large integer, a (this is user A’s private key).
• User A’s public key is computed as: y = ga mod n.
• User B wishes to send a message M to user A. User B first generates a ran-

dom number k that is less than n.
• User B computes the following:

• User B sends the ciphertext (y1, y2) to user A.

 y2 � M 	 1yk mod n 2 1recall that y is users A's public key 2 .
 y1 � g k mod n

Pretty Good Privacy17.6 47

• Upon receiving ciphertext (y1, y2), user A computes the plaintext message M
as follows:

Example 17.9 Diffie-Hellman (Elgamal variation) for Message Encryption

Consider that the public-system parameters are n = 11 and g = 7. Suppose that user A
chooses the private key to be a = 2. Show how user A’s public key is computed. Also,
show how user B would encrypt a message M = 13 to be sent to user A, and how user
A subsequently decrypts the ciphertext to yield the message.

Solution

User A’s public key (y = ga mod n) is computed as: y = 72 mod 11 = 5. User B wishes to
send message M = 13 to user A. For this example, let user B randomly choose a value
of k (less than n = 11) to be k = 1. User B computes the ciphertext pair

User A receives the ciphertext (7, 65), and computes message M as follows:

17.6.3 PGP Message Encryption

The private-key algorithms that PGP uses for message encryption were presented in
Section 17.6.1. The public-key algorithms that PGP uses to encrypt the private-
session key were presented in Section 17.6.2. The next example combines the two
types of algorithms to illustrate the PGP encryption technique shown in Figure 17.20.

Example 17.10 PGP Use of RSA and IDEA for Encryption

For the encryption of the session key, use the RSA public-key algorithm with the pa-
rameters taken from Section 17.5.3.1, where n = pq = 2773, the encryption key is
e = 17, and the decryption key is d = 157. The encryption key is the recipient’s public key,
and the decryption key is the recipient’s private key. From Example 17.8, use the session
key K0 = 0008 0007 0006 0005 0004 0003 0002 0001, and the ciphertext of 30F9 78B3 E223
E221 representing the message “HI,” where all the digits are shown in hexadecimal nota-
tion. (Note that the ciphertext was created by using only one round of the IDEA algo-
rithm. In the actual implementation, 8 rounds plus an output transformation are
performed.) Encrypt the session key, and show the PGP transmission that would be made.

Solution

Following the description in Section 17.5.3.1, the session key will be encrypted using
the RSA algorithm with the recipient’s public key of 17. For ease of calculation with a
simple calculator, let us first transform the session key into groups made up of base-10
digits. In keeping with the requirements of the RSA algorithm, the value ascribed to
any group may not exceed n − 1 = 2772. Therefore, let us express the 128-bit key in
terms of 4-digit groups, where we choose the most significant group (leftmost) to rep-
resent 7 bits, and the balance of the 11 groups to represent 11 bits each. The transfor-

M �
y2

ya
1 mod n

 �
65

72 mod 11
�

65
5

� 13

 y2 � M 	 1yk mod n 2 � 13 	 151 mod 11 2 � 13 	 5 � 65

 y1 � g k mod n � 71 mod 11 � 7

M �
y2

ya
1 mod n

Encryption and Decryption Chap. 1748

mation from base-16 to base-10 digits can best be viewed as a two-step process,
(1) conversion to binary and (2) conversion to base 10. The result is K0 = 0000 0032
0000 1792 0048 0001 0512 0064 0001 1024 0064 0001. Recall from Equation 17.32 that
C = (M)e modulo-n where M will be one of the 4-digit groups of K0. The leftmost four
groups are encrypted as:

C12 = (0000)17 mod 2773 = 0.
C11 = (0032)17 mod 2773 = 2227.
C10 = (0000)17 mod 2773 = 0.
C9 = (1792)17 mod 2773 = 2704.

An efficient way to compute modular exponentiation is to use the Square-and-
Multiply algorithm. This algorithm [21] reduces the number of modular multiplica-
tions needed to be performed from e − 1 to at most 2�, where � is the number of bits in
the binary representation. Let us demonstrate the use of the Square-and-Multiply al-
gorithm by encrypting one of the session-key decimal groups (the eleventh group from
the right, M11 = 0032), where n = 2773 and e = 17. In using this algorithm, we first con-
vert e to its binary representation (17 decimal = 10001 binary).

The calculations are illustrated in Table 17.13. Modulo-n math is used, where n =
2773 in this example. The second column contains the binary code, with the most signif-
icant bit (MSB) in row 1. Each bit value in this column acts to control a result in column
3. The starting value, placed in column 3 row 0, is always 1. Then, the result for any row
in column 3 depends on the value of the bit in the corresponding row in column 2; if that
entry contains a “1,” then the previous row-result is squared and multiplied by the plain-
text (32 for this example). If a row in the second column contains a “0,” then the result of
that row in column 3 equals only the square of the previous row’s result. The final value
is the encrypted ciphertext (C = 2227). Repeating this method for each of the twelve dec-
imal groups that comprise K0 results in the ciphertext of the session key to be: C = 0000
2227 0000 2704 0753 0001 1278 0272 0001 1405 0272 0001. This RSA-encrypted session
key (represented here in decimal) together with the IDEA-encrypted message of 30F9
78B3 E223 E221 (represented here in hex) can now be transmitted over an insecure
channel.

Pretty Good Privacy

TABLE 17.13 The Square-and-Multiply Algorithm with Plaintext = 32

Binary representation of e Modulo multiplication
Row Number (MSB first) (modulo 2773)

0 1
1 1 12 × 32 = 32

2 0 322 = 1024

3 0 10242 = 382

4 0 3822 = 1728

5 1 17282 × 32 = 2227

17.6.4 PGP Authentication and Signature

The public key algorithms can be used to authenticate or “sign” a message. As il-
lustrated in Figure 17.18, a sender can encrypt a document with his private key
(which no one else has access to) prior to encrypting it with the recipient’s public

17.6 49

E
q

u
al

?
If

 y
es

, t
h

is
ve

ri
fi

es
 t

h
at

 t
h

e
se

n
d

er
 is

 t
h

e
o

w
n

er
 o

f
th

e
p

u
b

lic
 k

ey
 u

se
d

an
d

 t
h

at
 t

h
e

m
es

sa
g

e
ar

ri
ve

d
u

n
co

rr
u

p
te

d

C
re

at
e

m
es

sa
g

e
d

ig
es

t
fr

o
m

p
la

in
te

xt
 u

si
n

g
M

D
5

D
ec

ry
p

t
m

es
sa

g
e

d
ig

es
t

w
it

h
se

n
d

er
's

 p
u

b
lic

R
S

A
 k

ey

M
es

sa
g

e
d

ig
es

t
is

en
cr

yp
te

d
 w

it
h

se
n

d
er

's
 p

ri
va

te
R

S
A

 k
ey

T
h

e
d

ig
it

al
si

g
n

at
u

re

M
D

5
al

g
o

ri
th

m
cr

ea
te

s
12

8-
b

it
m

es
sa

g
e

d
ig

es
t

o
f

p
la

in
te

xt
 m

es
sa

g
e

P
la

in
te

xt

S
en

d
er

R
ec

ip
ie

n
t

Channel

F
ig

u
re

 1
7.

22
P

G
P

 s
ig

na
tu

re
 te

ch
ni

qu
e.

Encryption and Decryption Chap. 1750

key. The recipient must first use his private key to decrypt the message, followed
by a second decryption using the sender’s public key. This technique encrypts the
message for secrecy and also provides authentication of the sender.

Because of the slowness of public-key algorithms, PGP allows for a different
method of authenticating a sender. Instead of the time-consuming process of en-
crypting the entire plaintext message, the PGP approach encrypts a fixed-length
message digest created with a one-way hash function. The encryption of the mes-
sage digest is performed using a public-key algorithm. This method is known as a
digital signature and is shown in Figure 17.22. A digital signature is used to provide
authentication of both the sender and the message. Authentication of the message
provides a verification that the message was not altered in some way. Using this
technique, if a message has been altered in any way (i.e. by a forger), its message
digest will be different.

PGP version 2.6 uses the MD5 (Message Digest 5) algorithm to create a 128-
bit message digest (or hash value) of the plaintext. This hash value is then en-
crypted with the sender’s private key and sent with the plaintext. When the
recipient receives the message, he will first decrypt the message digest with the
sender’s public key. The recipient will then apply the hash function to the plaintext
and compare the two message digests. If they match, the signature is valid. In Fig-
ure 17.22, the message is sent without encryption (as plaintext), but it may be en-
crypted by the method illustrated in Figure 17.20.

17.6.4.1 MD5 and SHA-1

MD5 and SHA-1 are hash functions. A hash function H(x) takes an input and
returns a fixed-size string h, called the hash value (also known as a message digest).
A cryptographic hash function has the following properties:

1. The output length is fixed.
2. The hash value is relatively simple to compute.
3. The function is one way—in other words, it is hard to invert. If given a hash

value h, it is computationally infeasible to find the function’s input x.
4. The function is collision free. A collision-free hash function is a function for

which it is infeasible that two different messages will create the same hash
value.

The MD5 algorithm used in PGP version 2.6 creates a 128-bit message digest.
The MD5 algorithm processes the text in 512-bit blocks through four rounds of data
manipulation. Each round uses a different nonlinear function that consists of the log-
ical operators AND, OR, NOT or XOR. Each function is performed 16 times in a
round. Bit shifts and scalar additions are also performed in each round [19]. Hans
Dobbertin [18] has determined that collisions may exist in MD5. Because of this po-
tential weakness, the PGP specification recommends using the Digital Signature
Standard (DSS). DSS uses the SHA-1 (Secure Hash Algorithm-1) algorithm. The
SHA-1 algorithm takes a message of less than 264 bits in length and produces a 160-bit

Pretty Good Privacy17.6 51

message digest. SHA-1 is similar to MD5 in that it uses a different nonlinear function
in each of its 4 rounds. In SHA-1, each function is performed 20 times per round.
SHA-1 also uses various scalar additions and bit shifting. The algorithm is slightly
slower than MD5 but the larger message digest (160-bit versus 128 bit) makes it more
secure against brute-force attacks [19]. A brute-force attack consists of trying many
input combinations in an attempt to match the message digest under attack.

17.6.4.2 Digital Signature Standard and RSA

For digital signatures, PGP version 2.6 uses the RSA algorithm for encryption
of the hash value produced by the MD5 function; however, versions 5.0 and later
adhere to the NIST Digital Signature Standard (DSS) [22]. The NIST DSS requires
the use of the SHA-1 hash function. The hash value is then encrypted using the
Digital Standard Algorithm (DSA). Like the Diffie-Hellman protocol, DSA is
based on the discrete logarithm problem. (Reference [22] contains a detailed de-
scription of DSA.)

17.7 CONCLUSION

In this chapter we have presented the basic model and goals of the cryptographic
process. We looked at some early cipher systems and reviewed the mathematical
theory of secret communications established by Shannon. We defined a system that can
exhibit perfect secrecy and established that such systems can be implemented but that
they are not practical for use where high-volume communications are required. We
also considered practical security systems that employ Shannon’s techniques (known
as confusion and diffusion) to frustrate the statistical endeavors of a cryptanalyst.

The outgrowth of Shannon’s work was utilized by IBM in the LUCIFER sys-
tem, which later grew into the National Bureau of Standards’ Data Encryption
Standard (DES). We outlined the DES algorithm in detail. We also considered the
use of linear feedback shift registers (LFSR) for stream encryption systems, and
demonstrated the intrinsic vulnerability of an LFSR used as a key generator.

We also looked at the area of public-key cryptosystems and examined two
schemes, the Rivest–Shamir–Adelman (RSA) scheme, based on the product of two
large prime numbers, and the Merkle-Hellman scheme, based on the classical
knapsack problem. Finally, we looked at the novel scheme of Pretty Good Privacy
(PGP), developed by Phil Zimmerman and published in 1991. PGP utilizes the
benefits of both private and public-key systems and has proven to be an important
file-encryption method for sending data via electronic mail.

REFERENCES

1. Kahn, D., The Codebreakers, Macmillan Publishing Company, New York, 1967.
2. Diffie, W., and Hellman, M.E., “Privacy and Authentication: An Introduction to Cryp-

tography,” Proc. IEEE, vol. 67, no. 3, Mar. 1979, pp. 397–427.

Encryption and Decryption Chap. 1752

3. Beker,H., and Piper, F., Cipher Systems, John Wiley & Sons, Inc., New York, 1982.
4. Denning, D.E.R., Cryptography and Data Security, Addison-Wesley Publishing Com-

pany, Reading, Mass., 1982.
5. Shannon, C.E., “Communication Theory of Secrecy Systems,” Bell Syst. Tech. J., vol.

28, Oct. 1949, pp. 656–715.
6. Hellman, M. E., “An Extension of the Shannon Theory Approach to Cryptography,”

IEEE Trans. Inf. Theory, vol. IT23, May 1978, pp. 289–294.
7. Smith, J. L., “The Design of Lucifer, a Cryptographic Device for Data Communica-

tions,” IBM Research Rep. RC-3326, 1971.
8. Feistel, H. “Cryptography and Computer Privacy,” Sci. Am., vol. 228, no. 5, May 1973,

pp. 15–23.
9. National Bureau of Standards, “Data Encryption Standard,” Federal Information Pro-

cessing Standard (FIPS), Publication no. 46, Jan. 1977.
10. United States Senate Select Committee on Intelligence, “Unclassified Summary: In-

volvement of NSA in the Development of the Data Encryption Standard,” IEEE Com-
mun. Soc. Mag., vol. 16, no. 6, Nov. 1978, pp. 53–55.

11. Stallings, W., Cryptography and Network Security, Second Edition, Prentice Hall, Upper
Saddle River, NJ. 1998.

12. Diffie, W., and Hellman, M. E., “New Directions in Cryptography,” IEEE Trans. Inf.
Theory, vol. IT22, Nov. 1976, pp. 644–654.

13. Rivest, R.L., Shamir, A., and Adelman, L., “On Digital Signatures and Public Key
Cryptosystems,” Commun. ACM, vol. 21, Feb. 1978, pp. 120–126.

14. Knuth, D. E., The Art of Computer Programming, Vol. 2, Seminumerical Algorithms,
2nd ed., Addison-Wesley Publishing Company, Reading, Mass., 1981.

15. Merkel, R. C., and Hellman, M. E., “Hiding Information and Signatures in Trap-Door
Knapsacks,” IEEE Trans. Inf. Theory, vol. IT24, Sept. 1978, pp. 525–530.

16. Shamir, A., “A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman
Cryptosystem,” IEEE 23rd Ann. Symp. Found. Comput. Sci., 1982, pp. 145–153.

17. Zimmerman, P. The Official PGP User’s Guide, MIT Press, Cambridge, 1995.
18. PGP Freeware User’s Guide, Version 6.5, Network Associates, Inc., 1999.
19. Schneier, B., Applied Cryptography, John Wiley & Sons, New York, 1996.
20. Hellman, M. E., Martin, Bailey, Diffie, W., and Merkle, R. C., United States Patent

4,200,700: Cryptographic Apparatus and Method, United States Patent and Trademark
Office, Washington, DC, 1980.

21. Stinson, Douglas, Cryptography Theory and Practice. CRC Press, Boca Raton, FL,
1995.

22. Digital Signature Standard (Federal Information Processing Standards Publication
186–1), Government Printing Office, Springfield, VA, Dec. 15, 1998.

PROBLEMS

17.1. Let X be an integer variable represented with 64 bits. The probability is that X is in
the range (0, 216 − 1), the probability is that X is in the range (216, 232 − 1), and the
probability is that X is in the range (232, 264 − 1). Within each range the values are
equally likely. Compute the entropy of X.

1
4

1
4

1
2

Problems 53

17.2. A set of equally likely weather messages are: sunny (S), cloudy (C), light rain (L),
and heavy rain (H). Given the added information concerning the time of day (morn-
ing or afternoon), the probabilities change as follows:

(a) Find the entropy of the weather message.
(b) Find the entropy of the message conditioned on the time of day.

17.3. The Hawaiian alphabet has only 12 letters—the vowels, a, e, i, o, u, and the conso-
nants, h, k, l, m, n, p, w. Assume that each vowel occurs with probability 0.116 and
that each consonant occurs with probability 0.06. Also assume that the average num-
ber of information bits per letter is the same as that for the English language. Calcu-
late the unicity distance for an encrypted Hawaiian message if the key sequence
consists of a random permutation of the 12-letter alphabet.

17.4. Estimate the unicity distance for an English language encryption system that uses a
key sequence made up of 10 random alphabetic characters:
(a) Where each key character can be any one of the 26 letters of the alphabet (dupli-

cates are allowed).
(b) Where the key characters may not have any duplicates.

17.5. Repeat Problem 17.4 for the case where the key sequence is made up of ten integers
randomly chosen from the set of numbers 0 to 999.

17.6. (a) Find the unicity distance for a DES system which encrypts 64-bit blocks (eight al-
phabetic characters) using a 56-bit key.

(b) What is the effect on the unicity distance in part (a) if the key is increased to
128 bits?

17.7. In Figures 17.8 and 17.9, P-boxes and S-boxes alternate. Is this arrangement any
more secure than if all the P-boxes were first grouped together, followed by all the
S-boxes similarly grouped together? Justify your answer.

17.8. What is the output of the first iteration of the DES algorithm when the plaintext and
the key are each made up of zero sequences?

17.9. Consider the 10-bit plaintext sequence 0 1 0 1 1 0 1 0 0 1 and its corresponding ci-
phertext sequence 0 1 1 1 0 1 1 0 1 0, where the rightmost bit is the earliest bit. De-
scribe the five-stage linear feedback shift register (LFSR) that produced the key
sequence and show the initial state of the register. Is the output sequence of maximal
length?

17.10. Following the RSA algorithm and parameters in Example 17.5, compute the encryp-
tion key, e, when the decryption key is chosen to be 151.

17.11. Given e and d that satisfy ed modulo-�(n) = 1, and a message that is encoded as an
integer number, M, in the range (0, n − 1) such that the gcd (M, n) = 1. Prove that
(Me modulo-n)d modulo-n = M.

17.12. Use the RSA scheme to encrypt the message M = 3. Use the prime numbers p = 5
and q = 7. Choose the decryption key, d, to be 11, and calculate the value of the en-
cryption key, e.

17.13. Consider the following for the RSA scheme.
(a) If the prime numbers are p = 7 and q = 11, list five allowable values for the de-

cryption key, d.

Morning: P 1S 2 � 1
8, P 1C 2 � 1

8 , P 1L 2 � 3
8 , P 1H 2 � 3

8

Afternoon: P 1S 2 � 3
8 , P 1C 2 � 3

8 , P 1L 2 � 1
8 , P 1H 2 � 1

8

Encryption and Decryption Chap. 1754

(b) If the prime numbers are p = 13, q = 31, and the decryption key is d = 37, find
the encryption key, e, and describe how you would use it to encrypt the word
“DIGITAL.”

17.14. Use the Merkle–Hellman public key scheme with the super-increasing vector, a� = 1,
3, 5, 10, 20. Use the following additional parameters: a large prime number M = 51
and a random number W = 37.
(a) Find the nonsuper-increasing vector, a, to be made public, and encrypt the data

vector 1 1 0 1 1.
(b) Show the steps by which an authorized receiver decrypts the ciphertext.

17.15. Using the Diffie-Hellman (Elgamal variation) protocol, encrypt the message M = 7.
The system parameters are n = 17 and g = 3. The recipient s private key is a = 4. De-
termine the recipient’s public key. For message encryption with the randomly se-
lected k, use k = 2. Verify the accuracy of the ciphertext by performing decryption
using the recipient’s private key.

17.16. Find the hexadecimal (hex) value of the message “no” after one round of the IDEA
algorithm. The session key in hex notation is = 0002 0003 0002 0003 0002 0003 0002
0003, where the rightmost 4-digit group represents the subkey Z1. For the message
“no,” let each ASCII character be represented by a 16-bit data subblock, where
“n” = 006E and “o” = 006F.

17.17. In the PGP Example 17.10, the IDEA session key is encrypted using the RSA algo-
rithm. The resulting encrypted session key (in base-10 notation) was: 0000 2227 0000
2704 0753 0001 1278 0272 0001 1405 0272 0001, where the least significant (right-
most) group is group 1. Using the decryption key, decrypt group 11 of this session
key using the Square-and-Multiply technique.

QUESTIONS

17.1. What are the two major requirements for a useful cryptosystem? (See Section
17.1.2.)

17.2. Shannon suggested two encryption concepts that he termed confusion and diffusion.
Explain what these terms mean. (See Section 17.3.1.)

17.3. If high-level security is desired, explain why a linear feedback shift register (LFSR)
would not be used. (See Section 17.4.2.)

17.4. Explain the major difference between conventional cryptosystems and public key
cryptosystems. (See Section 17.5.)

17.5. Describe the steps used for message encryption employed by the Data Encryption
Standard (DES). How different is the operation when using Triple-DES? (See Sec-
tions 17.3.5 and 17.6.1.1)

17.6. Describe the steps used for message encryption employed by version 2.6 of the
Pretty Good Privacy (PGP) technique. (See Section 17.6.1.3.)

Questions 55

’

