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APPENDIX B

Fundamentals of Statistical 
Decision Theory

The basic elements of a statistical decision problem are (1) a set of hypotheses that 
characterize the possible true states of nature, (2) a test in which data are obtained 
from which we wish to infer the truth, (3) a decision rule that operates on the data 
to decide in an optimal fashion which hypothesis best describes the true state of 
nature, and (4) a criterion of optimality. These fundamental steps are treated in the 
material that follows. The optimality criterion we will choose for the decision rule is 
to minimize the probability of making an erroneous decision, although other criteria 
are possible [1].

The subject of statistical decision theory and hypothesis testing builds on the 
mathematical discipline of probability theory and random variables. It is assumed 
that the reader has a familiarity with these subjects; if not, Reference [2] is a sug-
gested resource.

B.1 BAYES’  THEOREM

The mathematical foundations of hypothesis testing rest on Bayes’ theorem, which 
is derived from the definition of the relationship between the conditional and joint 
probability of the random variables A and B:

 P1A � B2P1B2 = P1B � A2P1A2 = P1A, B2  (B.1)

A statement of the theorem is

 P1A � B2 =
P1B � A2P1A2

P1B2  (B.2)

Bayes’ theorem allows us to infer the conditional probability P1A � B2  from the 
conditional probability P1B � A2 .
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Fundamentals of Statistical Decision Theory  App. B2

B.1.1 Discrete Form of Bayes’ Theorem

Bayes’ theorem can be expressed in discrete form as

 P1si � zj2 =
P1zj � si2P1si2

P1zj2  
i = 1,c , M
j = 1,c  (B.3a)

where

 P1zj2 = a
M

i=1
P1zj � si2P1si2  (B.3b)

In a communications application, si is the ith signal class, from a set of M classes, 
and zj is the jth sample of a received signal. Equation (B.3) can be thought of as 
the description of an experiment involving a received sample and some statistical 
knowledge of the signal classes to which the received sample may belong. The prob-
ability of occurrence of the ith signal class, P1si2 , before the experiment, is called 
the a priori probability. As a result of examining a particular received sample, zj, we 
can find a statistical measure of the likelihood that zj belongs to class si from the 
conditional probability density function (pdf) P1zj � si2 . After the experiment, we can 
compute the a posteriori probability, P1si � zj2 , which can be thought of as a “refine-
ment” of our prior knowledge. Thus we enter into the experiment with some a priori 
knowledge concerning the probability of the state of nature, and after examining a 
sample signal, we are provided with an “after-the-fact” a posteriori probability. The 
parameter P1zj2  is the probability of the received sample, zj, over the entire space 
of signal classes. The term P1zj2  can be thought of as a scaling factor, since its value 
is the same for each signal class.

Example B.1 Use of Bayes’ Theorem (Discrete Form)

Given two boxes of parts, box 1 contains 1000 parts, of which 10% are defective, and 
box 2 contains 2000 parts, of which 5% are defective. If a box is randomly chosen and 
then a part is randomly chosen from it, tested, and found to be good, what is the proba-
bility that the part came from box 1?

Solution

 P1box 1 � GP2 =
P1GP � box 12P1box 12

P1GP2
where GP means “good part.” Using Equation (B.3b), we can write

  P1GP2 = P1GP � box 12P1box 12 + P1GP � box 22P1box 22
  = 10.902 10.52 + 10.952 10.52
  = 0.450 + 0.475 = 0.925

  P1box 1 � GP2 =
0.450
0.925

= 0.486

Before the experiment, the a priori probability of having chosen either box 1 or 
box 2 was equally likely. After obtaining a good part, the Bayesian computation can 
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B.1  Bayes’  Theorem 3

be regarded as a way of “fine tuning” our thinking that P1box 12 = 0.5 to yield the 
a  posteriori probability of 0.486. Bayes’ theorem is simply a formalization of common 
sense. Having selected a good part from one of the two boxes, isn’t it intuitively reason-
able that there is a greater probability that the part came from the box with the larger 
concentration of good parts and a lower probability that it came from the box with the 
smaller concentration of good parts? Bayes’ theorem has refined the a priori statistic 
into an a posteriori statistic for the probability of box selection.

Example B.2 Decision Theory Applied to a Betting Game

A box has three coins: a fair coin, a two-headed coin, and a two-tailed coin. You are 
asked to pick one coin at random, look at one side only, and guess head or tail for the 
other side. What is the optimum decision strategy for this game?

Solution

We can view this problem as a signal detection problem. A signal is transmitted, but 
because of the channel noise, the received signal is somewhat obscured. Not being able 
to look at the other side of the coin is tantamount to receiving a noise-perturbed signal. 
Let Hi represent the hypotheses 1 i = F, H, T2 , where F, H, and T stand for fair, head, 
and tail, respectively:

  HF : H, T 1fair coin2
  HH : H, H 1two@headed coin2
  HT : T, T 1two@tailed coin2
Let zj represent the received sample 1 j = H, T2 , where zH is a head and zT is 
a tail. Let the a priori probabilities of the hypotheses be equally likely, so that 
P1HF2 = P1HH2 = P1HT2 = 1

3 . Using Bayes’ theorem,

 P1Hi � zj2 =
P1zj � Hi2P1Hi2

a
i

P1zj � Hi2P1Hi2

we need to compute the probability for each hypothesis, given each signal class. Thus, 
we need to examine the results of six computations before we can establish an optimum 
decision strategy. In each case, the value of P1zj � Hi2  can be obtained from the condi-
tional probabilities drawn in Figure B.1. Consider that we choose a coin and view a head 
1zH2 . We compute the following three a posteriori probabilities:

  P1HF � zH2 =
11

2211
32

11
2211

32 + 11211
32 + 0

=
1
3

  P1HH � zH2 =
11211

32
11

2211
32 + 11211

32 + 0
=

2
3

  P1HH � zH2 = 0

If the received sample is a tail (zT), we similarly compute

  P1HF � zT2 = 1
3

  P1HH � zT2 = 0

  P1HT � ZT2 = 2
3
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Fundamentals of Statistical Decision Theory  App. B4

The optimum decision strategy then is as follows: If a head, zH, is received, choose 
hypothesis HH (that the other side is also a head). If a tail, zT, is received, choose 
hypothesis HT (that the other side is also a tail).

B.1.2 Mixed Form of Bayes’ Theorem

For most communication engineering applications of interest, the possible values 
of the received samples are continuous in range because of the additive Gaussian 
noise in the channel. Therefore, the most useful form of Bayes’ theorem contains a 
 continuous- instead of discrete-valued pdf. We shall rewrite Equations (B.3a) and 
(B.3b) to emphasize this change:

  P1si � z2 =
p1z � si2P1si2

p1z2  i = 1,c , M (B.4a)

  p1z2 = a
M

i=1
 p1z � si2P1si2  (B.4b)

Here, p1z � si2  is the conditional pdf of the received continuous-valued sample, z, 
conditioned on the signal class, si.
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Figure B.1 Conditional probability 
P(zj  |Hi). (a) Conditioned on the fair-coin 
hypothesis. (b) Conditioned on the two-
headed-coin hypothesis. (c) Conditioned 
on the two-tailed-coin hypothesis.
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Example B.3 A Pictorial View of Bayes’ Theorem

Consider two signal classes, s1 and s2, characterized by the triangular-shaped condi-
tional pdfs, p1z � s12  and p1z � s22 , illustrated in Figure B.2. A signal is received; it might 
have any value on the z-axis. If the pdfs did not overlap, we could classify the signal 
with certainty. For the example shown in Figure B.2, we need a rule to help us classify 
received signals, since some signals will fall in the region where the two pdfs overlap. 
Consider a received signal, za. Assume that the two signal classes, s1 and s2, are equally 
likely, and calculate the two alternative a posteriori probabilities. Suggest a decision 
rule that the receiver should use for deciding to which signal class za belongs. Repeat 
this for signal zb.

Solution

From Figure B.2 we can see that p1za � s12 = 0.5 and p1za � s22 = 0.3. Thus,

  P1s1 � za2 =
p1za � s12P1s12

p1za � s12P1s12 + p1za � s22P1s22

  =
10.5210.52

10.5210.52 + 10.3210.52 =
5
8

and

 P1s2 � za2 =
10.3210.52

10.5210.52 + 10.3210.52 =
3
8

One rule is to decide that the received signal belongs to the class with the maximum  
a posteriori probability (class s1). An equivalent rule, for the case of equal a priori prob-
abilities, is to examine the value of the pdf conditioned on each signal class (referred to 
as the likelihood of the signal class) and choose the class with the maximum. Examine 
Figure B.2 and notice that this maximum likelihood rule parallels our intuition. The 
likelihood that signal za belongs to each class corresponds to an encircled point on 
each pdf. The maximum likelihood rule is to choose the signal class that yields the larg-
est conditional probability of all the alternatives. We repeat the computations for the 
received signal zb, as follows:

p(z s2)

za zb (Received samples)

p(z s1)

z

1.0
0.9

Pr
ob

ab
ili

ty 0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Assume: P(s1) = P(s2) = 1
2

Figure B.2 Pictorial view of Bayes’ theorem.

Z02_Sklar_Appendix-B_p001-012.indd   5 02/11/20   4:55 PM



Fundamentals of Statistical Decision Theory  App. B6

  P1s1 � zb2 =
10.7210.52

10.7210.52 + 10.1210.52 =
7
8

  P1s2 � zb2 =
10.1210.52

10.7210.52 + 10.1210.52 =
1
8

As before, the maximum likelihood rule dictates that we choose signal class s1. Notice 
that in the case of received sample zb, we can have greater confidence in the correct-
ness of our choice than in the case of signal za. This is because the ratio of p1zb � s12  to 
p1zb � s22  is considerably larger than the ratio of p1za � s12  to p1za � s22 .

B.2 DECISION THEORY

B.2.1 Components of the Decision Theory Problem

Having reviewed hypothesis testing based on Bayesian statistics, let us examine 
more carefully the components of the decision theory problem in the context of a 
communication system, as shown in Figure B.3. The signal source at the transmit-
ter consists of a set 5si1 t26, i = 1,c , M, of waveforms (or hypotheses). A  sig-
nal waveform r1 t2 = si1 t2 + n1 t2  is received, where n1 t2  is an additive white 
Gaussian noise (AWGN) process introduced in the channel. At the receiver, the 
waveform is reduced to a single number z1 t = T2 , which may appear anywhere on 

Signal
source

Finite set of hypotheses (signals)

M hypotheses M signals

Observation space
(receiver)

Decision rule
decide (Hi z)

Hi decision

H1 : s1
H2 : s2

HM : sM i = 1, … , M

Gaussian
noise process

n(t)

si(t)

z(T) = ai(T) + n0(T)

r(t)
Σ

… …

Figure B.3 Components of the decision theory problem in the context 
of a communication system.
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the z-axis. Because the noise is a Gaussian process and the receiver is assumed to 
be linear, the output, z1 t2 , is also a Gaussian process [1], and the number z1T2  is a 
 continuous-valued random variable:

 z1T2 = ai1T2 + n01T2  (B.5)

The sample z1T2  is made up of a signal component, ai1T2 , and a noise component, 
n01T2 . The time T is the symbol duration. At each kT, where k is an integer, the 
receiver uses a decision rule for deciding which signal class has been received. For 
ease of notation, Equation (B.5) is sometimes written simply as z = ai + n0, where the 
functional dependence on T is implicit.

B.2.2 The Likelihood Ratio Test and the Maximum a Posteriori Criterion

A reasonable starting point for establishing the receiver decision rule for the case of 
two signal classes is

 P1s1 � z2 ≷
H1

H2

P1s2 � z2  (B.6)

Equation (B.6) states that we should choose hypothesis H1 if the a posteriori prob-
ability P1s1 � z2  is greater than the a posteriori probability P1s2 � z2 . Otherwise, we 
should choose hypothesis H2.

We can replace the a posteriori probabilities of Equation (B.6) with their 
equivalent expressions from Bayes’ theorem [Equation (B.4)], yielding

 p1z � s12P1s12 ≷
H1

H2

P1z � s22P1s22  (B.7)

We now have a decision rule in terms of pdfs (likelihoods). If we rearrange Equation 
(B.7) and put it in the form

 
p1z � s12
p1z � s22

≷
H1

H2

P1s22
P1s12  (B.8)

then the left-hand ratio is known as the likelihood ratio, and the entire equation is 
often referred to as the likelihood ratio test. Equation (B.8) corresponds to making 
a decision based on a comparison of a measurement of a received signal to a thresh-
old. Since the test is based on choosing the signal class with maximum a posteriori 
probability, the decision criterion is called the maximum a posteriori (MAP) crite-
rion. It is also called the minimum error criterion since, on the average, this criterion 
yields the minimum number of incorrect decisions. It should be emphasized that this 
criterion is optimum only when all of the error types are equally harmful or costly. 
When some of the error types are more costly than others, a criterion that incorpo-
rates relative cost of the errors should be employed [1].
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B.2.3 The Maximum Likelihood Criterion

Very often there is no knowledge available about the a priori probabilities of the 
hypotheses or signal classes. Even when such information is available, its accuracy 
is sometimes mistrusted. In those instances, decisions are usually made by assuming 
the most conservative a priori probabilities possible; that is, the values of the a priori 
probabilities are selected so that the classes are equally likely. When this is done, the 
MAP criterion is known as the maximum likelihood criterion, and Equation (B.8) 
can be written as

 
p1z � s12
p1z � s22

≷
H1

H2

1 (B.9)

Notice that the maximum likelihood criterion of Equation (B.9) is the same as the 
maximum likelihood rule described in Example B.3.

B.3 SIGNAL DETECTION EXAMPLE

B.3.1 The Maximum Likelihood Binary Decision

The pictorial view of the decision process in Example B.3 dealt with triangular-shaped 
probability density functions as a convenient example. Figure B.4 illustrates the con-
ditional pdfs for the binary noise-perturbed output signals, z1T2 = a1 + n0 and 
z1T2 = a2 + n0, from a typical receiver. The signals a1 and a2 are mutually indepen-
dent and are equally likely. The noise n0 is assumed to be an independent Gaussian 
random variable with zero mean, variance σ2

0, and pdf given by

 p1n02 =
1

σ022π
 exp c−1

2
an2

0

σ2
0
b d  (B.10)

p(z s2)

a2 0 a1

p(z s1)

z(T)

Pr
ob

ab
ili
ty

Figure B.4 Conditional pdfs for a typical binary receiver.

Z02_Sklar_Appendix-B_p001-012.indd   8 02/11/20   4:55 PM
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We can therefore write the likelihood ratio, described in Equation (B.8), as

  Λ1z2 =
p1z � s12
p1z � s22

  =

1
σ012π

 exp c−1
2

 az − a1

σ0
b

2

d

1
σ012π

 exp c−1
2

 az − a2

σ0
b

2

d
≷
H1

H2

P1s22
P1s12

  =
exp a−

z2

2σ2
0
b  exp a−

a1
2

aσ2
0
b  exp a2za1

2σ2
0
b

exp a−
z2

2σ2
0
b  exp a−

a2
2

2σ2
0
b  exp a2za2

2σ2
0
b

≷
H1

H2

P1s22
P1s12  (B.11)

  = exp c z1a1 − a22
σ2

0
−

a2
1 − a2

2

2σ2
0

d ≷
H1

H2

P1s22
P1s12

where a1 is the receiver output signal component when s11 t2  is sent and a2 is the out-
put signal component when s21 t2  is sent. The inequality relationship described by 
Equation (B.11) is preserved for any monotonically increasing (or decreasing) trans-
formation. Therefore, to simplify Equation (B.11), we take the natural logarithm of 
both sides and end up with the log-likelihood ratio:

 L1z2 =
z1a1 − a22

σ2
0

−
a2

1 − a2
2

2σ2
0

 ≷  
H1

H2

 ln 
P1s22
P1s12  (B.12)

When the classes are equally likely,

 ln 
P1s22
P1s12 = 0

so that

 z ≷
H1

H2

a2
1 − a2

2

21a1 − a22

 z ≷
H1

H2

a1 + a2

2
= γ0 (B.13)

For antipodal signals, s11 t2 = −s21 t2  and a1 = −a2; thus, we can write

 z ≷
H1

H2

0 (B.14)
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Therefore, the maximum likelihood rule for the case of equally likely antipodal sig-
nals compares the received sample to a zero threshold, which is tantamount to decid-
ing s11 t2  if the sample is positive and s21 t2  if the signal is negative.

B.3.2 Probability of Bit Error

For the binary example in Section B.3.1, we want to compute the bit-error probabil-
ity, PB, using the decision rule in Equation (B.13). The probability of an error is cal-
culated by summing the probabilities of the various ways that an error can be made:

 PB = P1H2 � s12P1s12 + P1H1 � s22P1s22  (B.15)

That is, given that class s11 t2  was transmitted, an error results if hypothesis H2 is 
chosen; or, given that class s21 t2  was transmitted, an error results if hypothesis H1 
is chosen. For the special case of symmetric probability density functions, and for 
P1s12 = P1s22 = 0.5, we can write

 PB = P1H2 � S12 = P1H1 � S22  (B.16)

The probability of an error, PB, is equal to the probability that an incorrect hypoth-
esis, H1, will be decided when s21 t2  is sent or that H2 will be decided when s11 t2  is 
sent. Thus PB is numerically equal to the area under the “tail” of either pdf, p1z � s12  
or p1z � s22 , falling on the incorrect side of the threshold. We can therefore compute 
PB by integrating p1z � s12  between the limits −∞  and γ0 or by integrating p1z � s22  
between the limits γ0 and ∞ , as follows:

  PB = 3∞

γ0=1a1+a22>2
 p1z � s22  dz

  = 3∞

1a1+a22>2
 

1

σ022π
 exp c−1

2
az − a2

σ0
b

2

d  dz (B.17)

Let

 u =
z − a2

σ0

Then σ0 du = dz, and

 PB = 3u= ∞

u=1a1−a22>2σ0

 
122π

 exp a−
u2

2
b  du = Q aa1 − a2

2σ0
b  (B.18)

where Q1x2 , called the complementary error function or co-error function,* is tab-
ulated in Table B.1.

* Note that the co-error function is defined in several ways; however, all definitions are essentially 
equivalent.
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Another form of the co-error function that is frequently used is

 erfc1x2 =
22π
3∞

x
exp1−u22  du (B.19)

Table B.1 Complementary Error Function Q1x2 = 1∞
x 11>22π2exp1−u2>22du

 x

Q1x2
 0.00  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2168 0.2148
0.8 0.2169 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0094 0.0003
3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
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The two co-error functions, Q1x2  and erfc 1x2 , are related as follows:

  erfc 1x2 = 2Q1x222  (B.20)

  Q1x2 =
1
2

 erfc a x22
b  (B.21)
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