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APPENDIX A

A Review 
of Fourier Techniques

A.1  SIGNALS, SPECTRA, AND LINEAR SYSTEMS

Electrical communication signals consist of time-varying voltage or current wave-
forms, typically described in the time domain. It is also convenient to describe such 
signals in the frequency domain. A signal’s frequency-domain description is called its 
spectrum. Spectral concepts are important in communication analysis and design; they 
can describe a signal by its average power or energy content at various frequencies, 
and they illustrate how much of the electromagnetic spectrum (bandwidth) the signal 
occupies. Broadcast stations are required by the Federal Communications Commis-
sion (FCC) to operate at their assigned frequency with very tight tolerances on the 
occupied bandwidth; for example, amplitude-modulated (AM) radio channels are 
spaced 10 kHz apart, and television channels are spaced 6 MHz apart. Our interest in 
spectra and Fourier techniques has to do with the real-world constraints of ensuring 
that our communication signals are confined to specified spectral boundaries.

Frequency spectral characteristics can be ascribed to both signal waveforms 
and to circuits. When we say that a particular spectrum describes a signal, we mean 
that one way of characterizing the signal waveform is to specify its amplitude and 
phase as a function of frequency. However, when we talk about the spectral attributes 
of a circuit, we are referring to the output versus input frequency-domain transfer 
function of the circuit; in other words, we are characterizing the circuit by how much 
of a specific input signal spectrum is allowed to pass through it.

A.2  FOURIER TECHNIQUES FOR LINEAR SYSTEM ANALYSIS

Fourier techniques are often used for analyzing linear circuits or systems in the follow-
ing ways: (1) by predicting the system response, (2) by determining the system dynamic 
specification (transfer function), and (3) by evaluating or interpreting test  results. 
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A Review of Fourier Techniques    App. A2

Item 1, predicting system response, is illustrated schematically in Figure A.1. Let the 
input be an arbitrary periodic waveform with period equal to T0 seconds. Fourier tech-
niques allow us to describe such an input as a sum of sinusoidal waveforms, as shown 
in the figure. The lowest-frequency sinusoid, or the fundamental frequency of the input 
periodic, has frequency 1/T0 hertz; the balance of the sinusoids have frequencies that 
are integral harmonics (2/T0, 3/T0, …) of this fundamental frequency. An important 
attribute of a linear system is that superposition applies, which means that the response 
to the sum of excitations is the sum of the responses to the individually applied exci-
tations. In fact, this is used as a definition of linearity. Specifically, if

	  y11 t2 = system response to x11 t2
	  y21 t2 = system response to x21 t2
and

	 ay11 t2 + by21 t2 = system response to ax11 t2 + bx21 t2
for all a, b, x11 t2 , and x21 t2 , then the system is linear. A consequence of this defini-
tion is that the output response of a linear system with sinusoidal input waveforms 
must be made up of sinusoidal waveforms having the same frequencies as the input 
waveforms; such a system is typically specified by an output versus input frequency 
transfer function (magnitude and phase versus frequency) as shown in Figure A.2. 
Figure A.2a illustrates a typical example of signal magnitude versus frequency; simi-
larly, Figure A.2b illustrates a typical example of signal phase versus frequency.
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Figure A.1  Predicting system response.
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A.2    Fourier Techniques for Linear System Analysis 3

The system transfer function serves as a performance specification; it describes 
the system response to each of the component sinusoids. Therefore, with the system 
transfer function in hand, one can predict each of the resulting output components. 
Using the principle of superposition, the final step of the analysis is to sum the indi-
vidual output responses, thus forming the resulting overall response to the input 
periodic. (See Figure A.1.) In a similar manner, one can determine a system’s trans-
fer function, or evaluate a system’s test results from knowledge of the input and 
output waveforms.

The development of Fourier methods had a major impact on the analysis of 
linear systems; it provided the translation between transient phenomena and sinu-
soidal techniques, and it simplified the analysis of linear systems under the excitation 
of any arbitrary input waveform. Just as logarithms allow the operation of multi-
plication to be treated as addition, so Fourier techniques allow the replacement of 
complex waveforms with sinusoidal components and sinusoidal methods.

A.2.1  Fourier Series Transform

Signals that are periodic with finite energy within each period can be represented by 
the Fourier series. The following equation describes such an arbitrary periodic wave-
form x1λ2  in terms of an infinite number of increasing harmonic sine and cosine 
components:

x1λ2 = 1
2 a0 + a1 cos λ + a2 cos 2π + a3 cos 3λ	 (A.1)

+ g + b1 sin λ + b2 sin 2λ + b3 sin 3λ + g
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Figure A.2  System transfer  
function. (a) Magnitude response. 
(b) Phase response.
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The terms cos λ and sin λ are called the fundamental terms; the terms cos nλ and 
sin nλ, for n > 1, are called harmonic terms, where n is an integer. The terms an and bn 
represent the coefficients of the fundamental and harmonics, and 12 a0 is the constant, 
or dc, term.

The function x1λ2  must have a period of 2π, or a submultiple thereof, and it 
must be single valued. The Fourier series can be thought of as a “recipe” for synthe-
sizing any arbitrary periodic waveform using sinusoidal components. To be useful, 
the series must converge; that is, the sum of the series, as more and more of the 
higher harmonics are added, must approach a limit.

The process of synthesizing an arbitrary periodic waveform, from the coef-
ficient values describing the mix of harmonics, is termed synthesis. The inverse 
process of calculating the coefficient values is termed analysis. Calculation of 
the coefficients is facilitated by the fact that the average of the sine and cosine 
cross-products is zero, as well as the average of any sinusoid. The following equa-
tions illustrate the basic averaging properties of the sine, cosine, and their products 
and cross-products:

	

3π

−π
 sin  mλ dλ = 0

3π

−π
 cos  mλ dλ = 0

3π

−π
 sin  mλ cos nλ dλ = 0

v  where m and n are any integers	 (A.2)

	
3π

−π
 sin  mλ sin nλ dλ = 0

3π

−π
 cos mλ cos nλ dλ = 0

t  for m ≠ n	 (A.3)

	
3π

−π
1sin mλ22 dλ = π

3π

−π
1cos mλ22dλ = π

t  for m = n	 (A.4)

Consider how one could go about finding the value of the coefficient, an or bn, in 
Equation (A.1). To find the coefficient a3, for example, we can multiply both sides of 
Equation (A.1) by cos 3λ dλ and integrate, as follows:

	  3π

−π
x1λ2  cos 3λ dλ = 3π

−π
a31cos 3λ22dλ = a3π

	  a3 =
1
π3

π

−π
x1λ2  cos 3λ dλ
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We can generalize the preceding analysis to get

	  an =
1
π3

π

−π
x1λ2  cos nλ dλ	 (A.5)

	  bn =
1
π3

π

−π
x1λ2  sin nλ dλ 	 (A.6)

a0 is found by solving Equation (A.5) with n = 0. This results in

	 1
2 a0 =

1
2π3

π

−π
x1λ2  dλ	 (A.7)

which represents the zero-frequency term, or the average value of the periodic wave-
form. The synthesis process of Equation (A.1) can be expressed in more compact 
form as follows:

	 x1λ2 = 1
2 a0 + a

∞

n=1
1an cos nλ + bn sin nλ2 	 (A.8)

There are several ways to express the transform pair (analysis and synthesis) of 
the Fourier series. The most common form makes use of the following identities to 
express the sine and cosine in exponential form:

	  cos λ =
ejλ + e−jλ

2
	 (A.9)

	  sin λ =
ejλ + e−jλ

2j
	 (A.10)

A periodic function with period T0 seconds has frequency components of f0, 2f0, 
3f0, …, where f0 = 1/T0 is called the fundamental frequency. We also refer to the fre-
quency components as ω0, 2ω0, 3ω0…, where ω0 = 2π/T0 is called the fundamental 
radian frequency. The terms f and ω are each used to denote frequency. When f is 
used, frequency in hertz is intended; when ω is used, frequency in radians/second is 
intended. Let us replace the nλ terms of Equations (A.5) to (A.8) with 2πnf0t = 2πnt/
T0 as the general argument of the sinusoidal components, where n is an integer. For 
n = 1, nf0 represents the fundamental frequency; for n > 1, nf0 represents harmonics 
of the fundamental frequency. Using Equations (A.8) to (A.10), we can express x1 t2  
in exponential form as follows:

	 x1 t2 =
a0

2
+

1
2

 a
∞

n=1
31an − jbn2ej 2πnf0 t + 1an + jbn2e−j 2πnf0 t4 	 (A.11)

Let cn denote the complex coefficients, or spectral components of x1 t2 , related to 
an and bn by

	 cn = d 1
21an − jbn2 for n > 0
a0

2
for n = 0

1
21an + jbn2 for n < 0

	 (A.12)
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Then we can simplify Equation (A.11), writing

	 x1 t2 = a
∞

n=−∞
cnej 2πnf0 t	 (A.13)

where the coefficients of the exponential harmonics are

	 cn =
1
T0
3T0>2

−T0>2
x1 t2e−j2πnf0 tdt	 (A.14)

To verify Equation (A.14), we multiply both sides of Equation (A.13) by  
e−j2πmf0 t dt/T0, integrate over the interval (−T0/2, T0/2), and use the relationship

	
1
T0
3T0>2

−T0>2
ej1n−m22πf0 t dt = δnm = e1 for n = m

0 for n ≠ m
	 (A.15)

where δnm is known as the Kronecker delta. By multiplying and integrating in this 
way we obtain, for all integers m,

	
1
T0
3T0>2

−T0>2
x1 t2e−j2πmf0 t dt = a

∞

n=−∞
cn δnm = cm	 (A.16)

In general, the coefficient cn is a complex number; it can be expressed in the form

	  cn =  cn ejθn 	 (A.17)

	  c−n =  cn e−jθn	 (A.18)

where

	   cn  = 1
2 2a2

n + b2
n 	 (A.19)

	  θn = tan−1 −
bn

an
	 (A.20)

	  b0 = 0 and c0 =
a0

2
The value of  cn   defines the magnitude of the nth harmonic component of the peri-
odic waveform so that a plot of  cn   versus frequency, called the magnitude spectrum, 
yields the magnitude of each of the n discrete harmonics in the signal. Similarly, a 
plot of θn versus frequency, called the phase spectrum, yields the phase of each har-
monic component in the signal.

The Fourier coefficients of a real-valued periodic time function exhibit the 
relationship

	 c−n = c*n	 (A.21)

where c*n is the complex conjugate of cn. We therefore have

	  c−n  =  cn  	 (A.22)
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A.2    Fourier Techniques for Linear System Analysis 7

and the magnitude spectrum is an even function of frequency. Similarly, the phase 
spectrum θn is an odd function of frequency, because from Equation (A.20),

	 θ−n = −θn	 (A.23)

The Fourier series is particularly useful in characterizing arbitrary periodic wave-
forms, with finite energy in each period, as presented above. The Fourier series can 
also be used to characterize nonperiodic signals having finite energy over a finite 
interval. However, a more convenient frequency-domain representation for such sig-
nals uses the Fourier integral transform. (See Section A.2.3.)

A.2.2  Spectrum of a Pulse Train

A signal of great interest in digital communications is an ideal periodic sequence of 
rectangular pulses, called a pulse train, illustrated in Figure A.3. For the pulse train 
xp1 t2 , with pulse amplitude A, pulse width T, and period T0, the reader can verify, 
using Equations (A.14) and (A.10), the following expression for the Fourier series 
coefficients:

	 cn =
AT
T0

 
sin 1πnT>T02

πnT>T0
=

AT
T0

 sinc 
nT
T0

	 (A.24)

In this expression,

	 sinc y =
sin πy

πy

The sinc function, as shown in Figure A.4, has a maximum value of unity at y = 0 and 
approaches zero as y approaches infinity, oscillating through positive and negative 
values. It goes through zero at y = ±1, ±2, … . The pulse train magnitude spectrum, 
 cn   as a function of n/T0, is plotted in Figure A.5a, and the phase spectrum, θn, is 
plotted in Figure A.5b. The positive and negative frequencies of the two-sided spec-
trum represent a useful way of expressing the spectrum mathematically; of course, 
only the positive frequencies can be reproduced in a laboratory.

–T/2
t

A

T/2

T0

……

xp(t)

Figure A.3  Pulse train.

Z02_Sklar_Appendix-A_p001-025.indd   7 02/11/20   4:56 PM



A Review of Fourier Techniques    App. A8

Synthesis is performed by substituting the coefficients of Equation (A.24) into 
Equation (A.13). The resulting series yields the original ideal pulse train, xp1 t2 , syn-
thesized from its component parts:

	 xp1 t2 =
AT
T0

 a
∞

n=−∞
sinc 

nT
T0

 ej 2πnf0 t	 (A.25)

The ideal periodic pulse train contains frequency components at all integer multiples 
of the fundamental. In communication systems, the significant portion of a baseband 
signal’s power or energy is often assumed to be contained within the frequencies 
from zero to the first null of the magnitude spectrum (see Figure A.5a). Therefore, 
1/T is often used as a measure of signal bandwidth, in hertz, for a pulse train with 
pulse width T. Note that bandwidth is inversely proportional to pulse width; the nar-
rower are the pulses, the wider is the bandwidth associated with these pulses. Also, 
notice that the spacing between spectral lines Δf = 1/T0 is inversely proportional to 
the pulse period; as the period increases, the lines move closer together.

A.2.3  Fourier Integral Transform

In communication systems, we often encounter nonperiodic signals having finite 
energy in a finite interval and having zero energy outside this interval. Such signals 
can be conveniently characterized using the Fourier integral transform, or simply the 
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Figure A.4  Sinc function.
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A.2    Fourier Techniques for Linear System Analysis 9

Fourier transform. We can describe the nonperiodic signal as a periodic one, in the 
limiting sense. For example, consider the pulse train shown in Figure A.3. As T0 S ∞ 
and the pulse train approaches a single pulse, x1 t2 , the number of spectral lines 
approaches infinity, and the spectral plot approaches a smooth frequency spectrum 
X1 f2 . For this limiting case, we can define the Fourier integral transform pair

	 X1f2 = 3∞

−∞
x1 t2e−j 2πft dt	 (A.26)

and

	 X1 t2 = 3∞

−∞
X1f2ej 2πft dt	 (A.27)

where f is frequency measured in hertz. This pair can be used to describe the time–
frequency relationship for nonperiodic signals.

Henceforth, the Fourier integral transform operation will be designated by 
the notation ℱ5 #6, and the inverse Fourier integral transform will be designated  

–3/T –2/T –1/T 0

(a)

(b)

1/T 2/T 3/T
n /T0

n /T0

1/T0

AT/T0

cn

θn

π

–π

Figure A.5  Spectrum of a pulse train. (a) Magnitude spectrum. (b) Phase spectrum.
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A Review of Fourier Techniques    App. A10

by ℱ−15 #6. The relationship between the time and frequency domains will be indi-
cated by using the double arrow as follows:

	 x1 t2 4 X1 f2
This notation indicates that X1 f2  is the Fourier transform of x1 t2  and that x1 t2  is 
the inverse Fourier transform of X1 f2 . In the typical communications context, x1 t2  
is a real-valued function, and X1 f2  is a complex function, having real and imaginary 
components; in polar form, the spectrum, X1 f2 , can be specified by a magnitude 
characteristic and a phase characteristic:

	 X1 f2 =  X1 f2 ej θ1f2 	 (A.28)

The properties of X1 f2 , the spectrum of a nonperiodic waveform, are similar to 
those of the spectrum for a periodic waveform, presented in Equations (A.17) to 
(A.23); that is, when x1 t2  is real valued,

	  X1−f2 = X *1 f2 	 (A.29)

	  =  X1 f2 e−j θ1f2	 (A.30)

where X* is the complex conjugate of X. The magnitude spectrum  X1 f2   is an even 
function of f, and the phase spectrum is an odd function of f. In many cases, X1 f2  is 
either purely real or purely imaginary, and only one plot suffices to describe it.

A.3  FOURIER TRANSFORM PROPERTIES

There are many excellent references dealing with the details of Fourier transforms 
and their properties [1–4]. In this appendix, we will emphasize the properties that are 
fundamental to communication systems. Some of the key features affecting signal 
transmission in communication systems are time delay, phase shift, multiplication by 
other signals, frequency translation, waveform convolution, and spectral convolu-
tion. We shall focus on the Fourier properties (shifting and convolution) needed to 
describe these key communication features.

A.3.1 Time Shifting Property

If x1 t2 4 X1 f2 , then

	 ℱ5x1 t − t026 = 3∞

−∞
x1 t − t02e−j 2πft dt	 (A.31)

Let µ = t − t0; then

	  ℱ5x1 t − t026 = 3∞

−∞
x1µ2e−j 2πf1µ+ t02dµ

	  = X1 f2e−j 2πft0
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As a signal is delayed in time, the magnitude of its frequency spectrum remains 
unchanged, but its phase spectrum experiences a phase shift. A time shift of t0 in the 
time domain is equivalent to multiplication by e−j 2πft0 (a phase shift of −2πft0) in the 
frequency domain.

A.3.2  Frequency Shifting Property

If x1 t2 4 X1 f2 , then

	  ℱ5x1 t2ej 2πf0 t6 = 3∞

−∞
x1 t2ej 2πf0 t e−j 2πf0t dt	 (A.32)

	  = 3∞

−∞
x1 t2e−j 2π1f−f02t dt

	  = X1 f − f02
This is the basic frequency translating property that describes the shifted spectrum 
resulting from multiplying a signal by ej 2πf0 t. Equation (A.32) can be used in con-
junction with Equation (A.9) to yield the Fourier transform of a waveform multi-
plied by a cosine wave, as follows:

	 x1 t2  cos 2π f0t = 1
2 3x1 t2ej 2πf0 t + x1 t2e−j 2πf0 t4 	 (A.33)

	 x1 t2  cos 2πf0 t 4 1
2 3X1 f − f02 + X1 f − f02 4

This property is also called the mixing or modulation theorem. Multiplication of an 
arbitrary signal by a sinusoid of frequency f0 translates the original signal spectrum 
by f0 and also by −f0.

A.4  USEFUL FUNCTIONS

A.4.1  Unit Impulse Function

A useful function in communication theory is the unit impulse function, or Dirac 
delta function, δ1 t2 . The impulse function can be developed from any of several 
fundamental functions (e.g., a rectangular pulse or a triangular pulse). In each devel-
opment, the impulse function is defined in the limiting sense (where the pulse ampli-
tude approaches infinity, the pulse width approaches zero, but the area under the 
pulse is constrained to be unity) [5]. The unit impulse function has the following 
important properties:

	 3∞

−∞
δ1 t2dt = 1	 (A.34)

	 δ1 t2 = 0 for t ≠ 0	 (A.35)
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	 δ1 t2  is unbounded at t = 0	 (A.36)

	 ℱ5δ1 t26 = ℱ−15δ1 f26 = 1	 (A.37)

	 3∞

−∞
x1 t2δ1 t − t02dt = x1 t02 	 (A.38)

Equation (A.38) is known as the sifting or sampling property; the unit impulse mul-
tiplier selects a sample of the function x1 t2  evaluated at t = t0.

In some problems, it is useful to use the following equivalent integrals for an 
impulse function, defined in the time domain or the frequency domain [3]:

	  δ1 t2 = 3∞

−∞
ej 2πft df 	 (A.39)

	  δ1f2 = 3∞

−∞
e−j 2πft dt	 (A.40)

A.4.2  Spectrum of a Sinusoid

For the purpose of representing a sinusoidal waveform by a Fourier transform, the 
waveform may be assumed to exist only in the interval (−T0/2 < t < T0/2). Under these 
conditions the function has a Fourier transform as long as T0 is finite. In the limit, T0 
is made very large but finite. The spectrum of the waveform x1 t2 = A cos 2πf0 t can 
be found by using Equations (A.9) and (A.26):

	  X1f2 = 3∞

−∞
 
A
2
1ej 2πf0 t + e−j 2πf0 t2e−j 2πft dt

	  =
A
2

 3∞

−∞
e−j 2π1f−f02t + e−j 2π1f+f02t dt

As described in Equation (A.40), the foregoing integral expression (spectrum of 
x(t)) can be equated to unit impulse functions located at frequencies ±f0 as follows:

	 X1f2 =
A
2
3δ1f − f02 + δ1f + f024 	 (A.41)

Similarly, the spectrum of a sine waveform y1 t2 = A sin 2πf0 t can be shown to be 
equal to

	 Y1f2 =
A
2j
3δ1f − f02 − δ1f + f024 	 (A.42)

The cosine waveform spectrum is shown in Figure A.6, and the sine waveform spec-
trum is shown in Figure A.7. Each of the impulse functions shown on these spectral 
plots is depicted as a spike with a weight of A/2 or −A/2.
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A.5  CONVOLUTION

In the late nineteenth century, Oliver Heaviside used convolution to calculate elec-
trical circuit output current when the input voltage waveform was more complicated 
than a simple battery source. The use of the methods of Heaviside predates the use 
of the analytical methods developed by Fourier and Laplace (even though publica-
tions by Fourier and Laplace came earlier).

The response of a circuit to an impulse voltage v1 t2 = δ1 t2  is called the 
impulse response and is denoted by h1 t2 , as shown in Figure A.8; it is simply the 
output voltage that would result if the input were a delta function. Heaviside 
approximated an arbitrary voltage waveform, like the one shown in Figure A.9a, by 
a set of equally spaced pulses. Such pulses of finite height and nonzero duration are 
shown in Figure A.9b. In the limit as the pulse width Δτ approaches zero, each pulse 
approaches an impulse function with weight equal to the area under that pulse. In 
the following discussion we shall refer to these equally spaced pulses as impulses 
even though they are impulses only in the limit.

Care needs to be taken with the notation of time, since we are interested in 
the times at which impulses are applied and also the times at which their output 

– f0 0

A/2 A/2

f0
f

X(f )

Figure A.6  Spectrum for x1 t2 = A cos 2πf0t.

Figure A.7  Spectrum for y1 t2 = A sin 2πf0t.

– f0

A/2

–A/2

f0
f

jY (f )
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responses are observed. We need to identify these two different time sequences; we 
shall use the following notation:

	 1.	 Time of the input application will be termed τ, so that the input voltage 
impulses are designated v1τ12 , v1τ22 , c, v1τN2 .

	 2.	 Time of the output response will be termed t, so that the output currents are 
designated i1 t12 , i1 t22 , c, i1 tN2 .

Heaviside found the response or current produced by each input impulse 
independently; then he added the individual responses to get the total current. 

Linear
network tuptuOtupnI

0

v(t) = δ(t)
h(t)

tt

Figure A.8  Impulse response of a linear system.

Time
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v(τ1)

τ1 τ2 τi Time

Vo
lta

ge

(b)

Figure A.9  (a) Input  
voltage waveform.  
(b) Approximate input  
voltage waveform.
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The  weight of the impulse produced by the rectangular voltage at time τ1 is the 
product v1τ12  Δτ. The series of impulses can approximate the arbitrary input volt-
age as closely as desired by allowing Δτ to approach zero. Note again that the instant 
at which an impulse is applied is called τi, and the instance at which the system 
response is determined is called ti, where τ is the input time variable, t is the output 
time variable, and i = 1, c, N.

Figure A.10 illustrates the output response i1 t2 = A1h1 t − τ12  to an impulse 
with height v1τ12 . Since the input impulse at τ1 is not a unit impulse, we weight it 
with its strength or area, A1 = v1τ12  Δτ. At some time t1, where t1 > τ1, the output 
response to the impulse v1τ12  is expressed as

	 i1 t12 = A1h1 t1 − τ12 for t1 > τ1

as shown in Figure A.10. When there are several input impulses, the total output 
response for a linear system is simply the sum of the individual responses. Figure A.11 
illustrates the response of the network to two input impulses. For N impulses, the 
output current measured at time t1 can be expressed as

	 i1 t12 = A1h1 t1 − τ12 + A2h1 t1 − τ22 + g + AN1 t1 − τN2

where the impulses are applied at τ1, τ2, c, τN and where t1 > τN.
Any impulses applied at times greater than t1 are disregarded, for they con-

tribute nothing to i1 t12 . This corresponds to the causality requirement for physically 
realizable systems, which states that the system response must be zero prior to the 
application of the excitation. By generalizing, we get the output current at any time 
t, namely,

	 i1 t2 = A1h1 t − τ12 + A2h1 t − τ22 + g + ANh1 t − τN2

τ1 t1

Input impulse (at time τ1) = v(τ1)

In
pu

t a
nd

 o
up

ut
 w

av
ef

or
m

s
Output response i(t) = A1h(t – τ1)

Output response (at time t1) = i(t1)
= A1h(t1 – τ1)

Time

A1

Figure A.10  Output response to an impulse at time τ1.
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or

	 i1 t2 = a
N

j=1
v1τj2Δτh1 t − τj2 	 (A.43)

since the height of the impulse at τj is equal to v1τj2 . As Δτ approaches zero, the sum 
of the input impulses approaches the actual applied voltage v1τ2 ; we can replace Δτ 
with dτ, and the summation becomes the convolution integral:

	 i1 t2 = 3∞

−∞
v1τ2h1 t − τ2dτ	 (A.44a)

or

	 i1 t2 = 3∞

−∞
v1 t − τ2h1τ2dτ	 (A.44b)

In shorthand notation, this is expressed as

	 i1 t2 = v1 t2* h1 t2 	 (A.45)

In summary, i1 t2  is the sum of the individual impulse responses as a function of out-
put time t. Each impulse response is due to an impulse applied at some input time 
|tau| and is weighted by the strength of that impulse.

A.5.1  Graphical Illustration of Convolution

Consider that an input square pulse v1 t2  is applied to a linear network whose 
impulse response is labeled h1 t2 , as shown in Figure A.12a. The output response is 
characterized by the convolution integral expressed in Equation (A.44).

τ1 t1
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ef
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s

i(t) = A1h(t – τ1) + A2h(t – τ2)

i(t1) = A1h(t1 – τ1) + A2h(t1 – τ2)

Time

A1

τ2

A2

Figure A.11  Output response to two impulses.
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Figure A.12  Graphical example of convolution.
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The independent variable in the convolution integral is τ. The functions v1τ2  
and h1−τ2  are shown in Figure A.12b. Note that h1−τ2  is obtained by folding h1τ2  
about τ = 0. The term h1 t − τ2  represents the function h1−τ2  shifted by t seconds 
along the positive τ axis. Figure A.12c shows the function h1 t1−τ2 . The value of the 
convolution integral at t = t1 is given by Equation (A.44) evaluated at t = t1. This 
is simply the area under the product curve of v1τ2  and h1 t1−τ2 , shown shaded in 
Figure A.12d. Similarly, the convolution integral evaluated at t = t2 is equal to the 
shaded area in Figure A.12e. Figure A.12f is a plot of the output response as a result 
of the square pulse input to the circuit with impulse response shown in Figure A.12a. 
Each evaluation of the convolution integral, at some time ti, yields one point, i1 ti2 , 
on the plot of Figure A.12f.

A.5.2 Time Convolution Property

If x11 t2 4 X11 f2 , and x21 t2 4 X21 f2 , then

	 x11 t2* x21 t2 = 3∞

−∞
x11τ2  x21 t − τ2  dτ

	 ℱ5x11 t2* x21 t26 = 3∞

−∞
3∞

−∞
x11τ2  x21 t − τ2dτe−j 2πft dt

For linear systems, we may exchange the order of integration as follows:

	 ℱ5x11 t2* x21 t26 = 3∞

−∞
x21τ2  dτ3∞

−∞
x21 t − τ2e−j 2πft dt	 (A.46)

By the Fourier time shifting property, the second integral expression of the right-
hand side is equal to X21 f2  e−j 2πfτ:

	  ℱ5x11 t2* x21 t26 = X21f23∞

−∞
x11τ2e−j 2πfτdτ	 (A.47)

	  = x11 f2X21 f2
Therefore, the operation of convolution in the time domain can be replaced by mul-
tiplication in the frequency domain.

A.5.3  Frequency Convolution Property

Because of the symmetry of the Fourier transform pair in Equations (A.26) and 
(A.27), it can be shown that multiplication in the time domain transforms to convo-
lution in the frequency domain:

	 x11 t2x21 t2 4 X11 f2* x21 f2 	 (A.48)
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The properties that transform multiplication in one domain to convolution in the 
other domain are particularly useful since one operation is often easier to perform 
than the other. For example, we discussed earlier that Heaviside used convolution 
to solve for the output current of a linear system when the input was excited by an 
arbitrary voltage waveform. Such methods involve the (sometimes tedious) convo-
lution of an input waveform with the impulse response of a system. Since convolu-
tion in the time domain is transformed into multiplication in the frequency domain, 
as shown in Equation (A.47), for a linear system we can simply multiply the input 
waveform spectrum by the system transfer function. The output waveform is then 
found by taking the inverse Fourier transform of the product:

	 i1 t2 = ℱ−15V1 f2H1 f26	 (A.49)

Solutions of the form shown in Equation (A.49) are often much easier to perform 
than those described by Equation (A.45). However, under certain circumstances, 
the operation of convolution is so simple that it can be performed graphically, by 
inspection. For example, suppose that we wished to multiply an arbitrary waveform 
by some fixed frequency cosine wave, such as a carrier wave, in the case of modula-
tion. By applying Equation (A.48), we can convolve the spectrum of the arbitrary 
waveform with the spectrum of the cosine wave. This is easily accomplished, as is 
shown in the next section.

A.5.4  Convolution of a Function with a Unit Impulse

By the property shown in Equation (A.47), it should be clear that if

	 x1 t2 4 X1 f2
and since

	 δ1 t2 4 1

then

	 x1 t2* δ1 t2 4 X1 f2 	 (A.50)

It should also be evident that

	 x1 t2* δ1 t2 = x1 t2 	 (A.51)

and

	 X1 f2* δ1 f2 = X1 f2 	 (A.52)

We therefore conclude that convolution of a function with a unit impulse function 
reproduces the original function. A simple extension of Equation (A.52) yields

	 X1 f2* δ1 f − f02 = X1 f − f02 	 (A.53)
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Figure A.13 illustrates the ease of convolving the spectrum of an arbitrary wave-
form with the spectrum of a cosine wave. Figure A.13a shows an arbitrary base-
band spectrum X1 f2 . Figure A.13b shows a spectrum, Y1 f2 = δ1 f − f02  +
δ1 f + f02 = ℱ32 cos 2πf0 t4 . The output, Z1 f2 = X1 f2* Y1 f2 , in Figure A.13c is 
obtained by convolving the waveform spectrum with the impulse functions of Y1 f2  
according to Equation (A.53), where the impulses act as sampling functions. Hence, 
for this simple example, convolution can be performed graphically by sweeping the 
sampling impulses past the waveform spectrum. Multiplication by the impulse func-
tions at each step in the sweep yields replications of the waveform spectrum. The 
result, shown in Figure A.13c, is a shifted version of the original spectrum X1 f2  to 
the locations of the impulse functions in Figure A.13b.

A.5.5  Demodulation Application of Convolution

In Section A.5.4 we examined a waveform multiplied by 2 cos 2πf0 t. We illustrated 
the frequency-domain view of convolving the waveform spectrum with a cosine-
wave spectrum. In this section, we will look at the reverse process: A waveform that 
has been multiplied by 2 cos 2πf0 t is to be demodulated; rather, the waveform is to 
be restored to its baseband frequency range.

Figure A.14a represents the spectrum, Z1 f2 , of the waveform that has been 
upshifted in frequency. We can demodulate this upshifted waveform and recover the 
baseband waveform by multiplying it by 2 cos 2πf0 t. Instead, we shall illustrate the 
detection process in the frequency domain by convolving Z1 f2  with the spectrum of 
the carrier, Y1 f2 = δ1 f − f02 + δ1 f + f02 , shown in Figure A.14b.

– f0 0

1

(b)

f0
f

Y(f )

– f0 0

1

(c)

f0
f

Z(f ) = X(f ) * Y(f )

0

1

(a)

f

X(f )

Figure A.13  Convolving a signal spectrum with a cosine-wave spectrum.
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A simple extension of Equations (A.52) and (A.53) yields

	 X1 f − f02* δ1 f − f12 = X1 f − f0 − f12 	 (A.54)

Therefore, the result of demodulation, X1 f2 = Z1 f2* Y1 f2 , is obtained by apply-
ing Equation (A.54). The resulting signal spectrum appears at baseband (detected) 
and also at frequencies ±2f0, as shown in Figure A.14c. As in the previous section, 
the convolution can be performed graphically. The resulting Figure A.14c contains 
the following terms:

	 3Z1 f − f02 + Z1 f + f024*3δ1 f − f02 + δ1 f + f024
	    = Z1 f − f02* δ1 f − f02 + Z1 f − f02* δ1 f + f02
	    + Z1 f + f02* δ1 f − f02 + Z1 f + f02* δ1 f + f02
	    = 2Z1 f2 + Z1 f − 2f02 + Z1 f + 2f02 	 (A.55)

Notice that the resulting terms consist of the baseband spectrum plus terms asso-
ciated with higher-frequency components. The result is typical of the detection 
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Figure A.14  Demodulation application.
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process; the higher-frequency terms are filtered and discarded, leaving the demodu-
lated baseband spectrum.

A.6 TABLES OF FOURIER TRANSFORMS AND OPERATIONS

Commonly used Fourier transforms are listed in Table A.1 and Fourier operations 
in Table A.2.

Table A.1  Fourier Transforms

x1 t2 X1f2
  1.  δ1 t2 1
  2.  1 δ1f2
  3.  cos 2πf0 t

1
2

 3δ1f − f02 + δ1f + f02

  4.  sin  2πf0 t
1
2j

 3δ1f − f02 − δ1f + f024

  5.  δ1 t − t02 exp 1−j 2πft02
  6.  exp 1 j 2πf0 t2 δ1f − f02
  7.  exp 1−a  t 2 , a > 0

2a

a2 + 12πf22

  8.  exp c−π a t
T
b

2

d T exp 3−π1fT224

  9.  u1 t2 = e 1 for t > 0
0 for t < 0

1
2

 δ1f2 +
1

j2πf

10.  exp 1−at2  u1 t2 , a > 0
1

a + j2πf

11.  t exp 1−at2  u1 t2 , a > 0
1

1a + j2πf22

12.  rect a t
T
b T sinc fT

13.  cos 2πf0 t c rect a t
T
b d T

2
3sinc1f − f02T + sinc1f + f02T4

14.  W sinc Wt rect a f

W
b

15. 
c 1 −

 t 
T

for  t  … T

0 for  t  > T
T sinc2 fT

16.  a
∞

m=−∞
δ1 t − mT02 1

T0
 a

∞

n=−∞
δaf −

n
T0

b

Note: rect 1f/2W2 = 1 for −W < f < W, 0 for  f  > W, and sinc x = 1sin πx2 >πx.
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Table A.2  Fourier Operations

Operation x1 t2 X1f2

1.  Scaling x1at2 1
 a 

 X a f

a
b

2.  Time shifting x1 t − t02 X1f2  exp 1−j2πft02
3.  Frequency shifting x1 t2  exp 1 j2πf0t2 X1f − f02
4.  Time differentiation

dnx
dtn 1 j2πf2nX1f2

5.  Frequency differentiation 1−j2πt2n1x1 t22 dnX
df n

6.  Time integration 3 t

−∞
x1τ2dτ

1
j2πf

 X 1f2 +
1
2

 X102δ1f2

7.  Time convolution x11 t2* x21 t2 X11f2X21f2
8.  Frequency convolution x11 t2x21 t2 X11f2* X21f2

A.7  SAMPLED DATA FOURIER TRANSFORM

In Section A.2, we examined the relationship between continuous aperiodic time sig-
nals and their Fourier transforms. When this relationship is extended to include con-
tinuous periodic time signals, the Fourier transform morphs into the Fourier series 
developed in Section A.2.1. What we neglected to highlight there is that the induced 
periodicity of a finite-extent time function can be described as the consequence of 
uniform sampling (and scaling by T0) of the Fourier transform of the single period 
of the time series (refer to Figures A.4 and A.5).

Succinctly, the Fourier series connects uniform sampling of the spectrum to 
the periodic extension of the finite-extent time series. In a similar manner, the dual 
relationship also exists: The uniform sampling of the bandwidth-limited time signal 
induces the periodic extension of the spectrum. The spectrum of a sampled data 
signal is periodic and continuous. This relationship is called the sampled data Fourier 
transform. The same processing engines that perform the sampled data signal pro-
cessing of the time signals in modern communication systems can also be used to 
form the samples of their Fourier transform. Sampling the periodic spectrum induces 
periodicity of the sampled data time series. The relationship between a finite-extent 
periodic sampled time series and a finite-extent periodic sampled spectrum is called 
the discrete Fourier transform (DFT).

The relationships between the four possible Fourier transform pairs are shown 
in Table A.3, and Figure A.15 illustrates the attributes listed in the table. An equiva-
lent description of the DFT can be related to material in Appendix E, which presents 
the Z-transform. Without deriving the result, we can say that the DFT can be deter-
mined by sampling the Z-transform of finite sequences on the unit circle, as shown 
in Section E.3.5 and explicitly in Section E.3.6. Algorithms that efficiently perform 
this operation are called fast Fourier transforms (FFTs).
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Table A.3  Attributes of Four Fourier Transform Pairs

Transform Time Signal Spectrum

Fourier transform Continuous, aperiodic Continuous, aperiodic
Sampled data Fourier transform Sampled, aperiodic Continuous, periodic
Fourier series Continuous, periodic Sampled, aperiodic
Discrete Fourier transform Sampled, periodic Sampled, periodic

Continuous, aperiodic time
sequence and its continuous,

aperiodic spectrum

(a) Fourier transform

Sampled

Sampled

Periodic
Extension

Periodic
Extension

Sampled
Periodic
Extension

Sampled
Periodic
Extension

RL

IM

IM

IM

IM

IM

IM IM

IM t

t

t

t

h(t)

RL h(t)

RL h(t)

RL h(t)

RL H(f)

f

f

f

f

RL H(f)

RL H(f)

RL H(f)

(b) Sampled data Fourier transform

(c) Fourier series

(d) Discrete Fourier transform

Continuous, periodic time
sequence and its continuous,

sampled spectrum

Sampled, aperiodic time
sequence and its continuous,

periodic spectrum

Sampled, periodic time
sequence and its sampled,

periodic spectrum

Figure A.15  Time sequence and their spectra for continuous, sampled, 
aperiodic, and periodic conditions.
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