
 IN THIS CHAPTER

 ▶ Python on Linux

 ▶ The Basics of Python

 ▶ Functions

 ▶ Object Orientation

 ▶ The Standard Library and the
Python Package Index

 ▶ References

 BONUS CHAPTER 45

 Using Python

 As PHP has come to dominate the world of web script-
ing, Python is increasingly dominating the domain of
command-line scripting. Python’s precise and clean syntax
makes it one of the easiest languages to learn, and it allows
programmers to code more quickly and spend less time
maintaining their code. Although PHP is fundamentally
similar to Java and Perl, Python is closer to C and Modula-
3, and so it might look unfamiliar at first.

 Most of the other languages have a group of developers at
their cores, but Python has Guido van Rossum—creator,
father, and benevolent dictator for life (BDFL) . Although
Guido spends less time working on Python now, he still
essentially has the right to veto changes to the language,
which has enabled it to remain consistent over the many
years of its development. The end result is that, in Guido’s
own words, “Even if you are in fact clueless about language
design, you can tell that Python is a very simple language.”

 This chapter constitutes a “quick-start” tutorial to Python
designed to give you all the information you need to put
together basic scripts and to point you toward resources
that can take you further.

 Two supported versions of Python are out in the wild right
now. Python version 2.x is the backward-compatible status
quo, the version that anyone who has already used Python
for more than a few years has learned and the version most
likely to have been used in most already written code you
discover and read. Python 3.x is the newest branch with
lots of shiny newness.

 Python 3.x is not backward compatible, and most programs
written in or for 2.x need some work to run on 3.x.

47_9780134268118_ch45.indd 2347_9780134268118_ch45.indd 23 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 45 Using PythonWeb:24

 Python: Do you want to run your program on many machines, perhaps including some
that have only the older version installed? Does the newer version have all the function-
ality you want and need, including software libraries, because not all of them have been
rewritten for 3.x (like Twisted and Django)? If porting is a nontrivial task, you might want
to stick with 2.x for now.

 Both versions will be supported for some time, but if you expect you will be using what
you write for longer than a couple months, you probably want to try to do so in 3.x as
it has matured and is the version that is being promoted by all, even though 2.x is still
supported. The official Python website helps you make an informed decision; it contains
clear discussion of the advantages and disadvantages of each version at http://wiki.
python.org/moin/Python2orPython3 .

 This chapter has information about the 2.x version of Python, and we try to note places
where significant differences exist in 3.x. If you are learning Python for the first time,
start with a look at the 3.x series because it is the future and is very likely to already have
everything you need.

 NOTE

 This chapter is a very elementary introduction to Python. For that reason, nearly every-
thing we cover is identical in both 2.x and 3.x. We mention the differences earlier and in
a couple of notes that follow so that readers wanting to learn more will not be surprised
later. Unless noted otherwise, you should find what we say in this chapter applies as well
to either version.

 Python on Linux
 Most versions of Linux and UNIX, including Mac OS X, come with Python preinstalled.
This is partially for convenience because it is such a popular scripting language—and
it saves having to install it later if the user wants to run a script—and partially because
many vital or useful programs included in Linux distributions are written in Python. For
example, the Ubuntu Software Center is a Python program.

 The Python binary is installed into /usr/bin/python (or /usr/bin/python3); if you run
that, you enter the Python interactive interpreter where you can type commands and
have them executed immediately. Although PHP also has an interactive mode (use php - a
to activate it), it is neither as powerful nor as flexible as Python’s.

 As with Perl, PHP, and other scripting languages, you can also execute Python scripts by
adding a shebang line (#!) to the start of your scripts that point to /usr/bin/python and
then setting the file to be executable.

 The third way to run Python scripts is through mod_python , which is an Apache module
that embeds the Python interpreter into the http server, allowing you to use Python to
write web applications. You can install this from the Ubuntu repositories.

47_9780134268118_ch45.indd 2447_9780134268118_ch45.indd 24 10/28/15 5:09 PM10/28/15 5:09 PM

The Basics of Python Web:25
4

5

 We use the interactive Python interpreter for this chapter because it provides immediate
feedback on commands as you type them, so it is essential that you become comfortable
using it. To get started, open a terminal and run the command python . You should see
something like this, perhaps with different version numbers and dates:

 matthew@seymour:~$ python

 Python 2.7.1+ (r271:86832, Apr 11 2011, 18:13:53)

 [GCC 4.5.2] on linux2

 Type "help", "copyright", "credits" or "license" for more information.

 >>>

 The >>> is where you type your input, and you can set and get a variable like this:

 >>> python = 'great'

 >>> python'great'

 >>>

 On line one, the variable python is set to the text great, and on line two that value is read
back from the variable simply by typing the name of the variable you want to read. Line
three shows Python printing the variable; on line four you are back at the prompt to type
more commands. Python remembers all the variables you use while in the interactive
interpreter, which means you can set a variable to be the value of another variable.

 When you are done, press Ctrl+D to exit. At this point, all your variables and commands
are forgotten by the interpreter, which is why complex Python programs are always saved
in scripts.

 The Basics of Python
 Python is a language wholly unlike most others, and yet it is so logical that most people
can pick it up quickly. You have already seen how easily you can assign strings, but in
Python nearly everything is that easy—as long as you remember the syntax.

 Numbers

 The way Python handles numbers is more precise than some other languages. It has all
the normal operators—such as + for addition, - for subtraction, / for division, and * for
multiplication—but it adds % for modulus (division remainder), ** for raise to the power,
and // for floor division. It is also specific about which type of number is being used, as
this example shows:

 >>> a = 5

 >>> b = 10

 >>> a * b

 50

 >>> a / b

 0

 >>> b = 10.0

 >>> a / b

47_9780134268118_ch45.indd 2547_9780134268118_ch45.indd 25 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 45 Using PythonWeb:26

 0.5

 >>> a // b

 0.0

 The first division returns 0 because both a and b are integers (whole numbers), so Python
calculates the division as an integer, giving 0 . By converting b to 10.0 , Python considers
it to be a floating-point number, and so the division is now calculated as a floating-point
value, giving 0.5 . Even with b being a floating point, using // —floor division—rounds
it down.

 Using ** , you can easily see how Python works with integers:

 >>> 2 ** 30

 1073741824

 >>> 2 ** 31

 2147483648L

 The first statement raises 2 to the power of 30 (that is, 2 times 2 times 2 times 2...), and
the second raises 2 to the power of 31 . Notice how the second number has a capital L on
the end of it—this is Python telling you that it is a long integer. The difference between
long integers and normal integers is slight but important: Normal integers can be calcu-
lated using simple instructions on the CPU, whereas long integers—because they can be as
big as you need them to be—need to be calculated in software and therefore are slower.

 When specifying big numbers, you need not put the L at the end—Python figures it out
for you. Furthermore, if a number starts off as a normal number and then exceeds its
boundaries, Python automatically converts it to a long integer. The same is not true the
other way around: If you have a long integer and then divide it by another number so
that it could be stored as a normal integer, it remains a long integer:

 >>> num = 999999999999999999999999999999999L

 >>> num = num / 1000000000000000000000000000000

 >>> num

 999L

 You can convert between number types using typecasting, like this:

 >>> num = 10

 >>> int(num)

 10

 >>> float(num)

 10.0

 >>> long(num)

 10L

 >>> floatnum = 10.0

 >>> int(floatnum)

 10

 >>> float(floatnum)

47_9780134268118_ch45.indd 2647_9780134268118_ch45.indd 26 10/28/15 5:09 PM10/28/15 5:09 PM

The Basics of Python Web:27
4

5

 10.0

 >>> long(floatnum)

 10L

 You need not worry whether you are using integers or long integers; Python handles it all
for you, so you can concentrate on getting the code right. In the 3.x series, the Python
integer type automatically provides extra precision for large numbers, whereas in 2.x,
you use a separate long integer type for numbers larger than the normal integer type is
designed to handle.

 More on Strings

 Python stores strings as an immutable sequence of characters—a jargon-filled way of
saying that “it is a collection of characters that, once set, cannot be changed without
creating a new string.” Sequences are important in Python. There are three primary types,
of which strings are one, and they share some properties. Mutability makes a lot of sense
when you learn about lists in the next section.

 As you saw in the previous example, you can assign a value to strings in Python with just
an equal sign, like this:

 >>> mystring = 'hello';

 >>> myotherstring = "goodbye";

 >>> mystring'hello'

 >>> myotherstring;'goodbye'

 >>> test = "Are you really Jayne Cobb?"

 >>> test

 "Are you really Jayne Cobb?"

 The first example encapsulates the string in single quotation marks, and the second and
third in double quotation marks. However, printing the first and second strings shows
them both in single quotation marks because Python does not distinguish between the
two. The third example is the exception; it uses double quotation marks because the string
itself contains a single quotation mark. Here, Python prints the string with double quota-
tion marks because it knows it contains the single quotation mark.

 Because the characters in a string are stored in sequence, you can index into them by
specifying the character you are interested in. Like most other languages, these indexes are
zero based, which means you need to ask for character 0 to get the first letter in a string.
For example:

 >>> string = "This is a test string"

 >>> string

 'This is a test string'

 >>> string[0]

 'T'

 >>> string [0], string[3], string [20]

 ('T', 's', 'g')

47_9780134268118_ch45.indd 2747_9780134268118_ch45.indd 27 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 45 Using PythonWeb:28

 The last line shows how, with commas, you can ask for several indexes at the same time.
You could print the entire first word using this:

 >>> string[0], string[1], string[2], string[3]

 ('T', 'h', 'I', 's')

 However, for that purpose, you can use a different concept: slicing. A slice of a sequence
draws a selection of indexes. For example, you can pull out the first word like this:

 >>> string[0:4]

 'This'

 The syntax there means “take everything from position 0 (including 0) and end at posi-
tion 4 (excluding it).” So, [0:4] copies the items at indexes 0 , 1 , 2 , and 3 . You can omit
either side of the indexes, and it will copy either from the start or to the end:

 >>> string [:4]

 'This'

 >>> string [5:]

 'is a test string'

 >>> string [11:]

 'est string'

 You can also omit both numbers, and it gives you the entire sequence:

 >>> string [:]'This is a test string'

 Later you learn precisely why you would want to do that, but for now there are a number
of other string intrinsics that will make your life easier. For example, you can use the +
and * operators to concatenate (join) and repeat strings, like this:

 >>> mystring = "Python"

 >>> mystring * 4

 'PythonPythonPythonPython'

 >>> mystring = mystring + " rocks! "

 >>> mystring * 2

 'Python rocks! Python rocks! '

 In addition to working with operators, Python strings come with a selection of built-in
methods. You can change the case of the letters with capitalize() (uppercases the first
letter and lowercases the rest), lower() (lowercases them all), title() (uppercases the
first letter in each word), and upper() (uppercases them all). You can also check whether
strings match certain cases with islower() , istitle() , and isupper() ; that also extends
to isalnum() (returns true if the string is letters and numbers only) and isdigit() (returns
true if the string is all numbers).

47_9780134268118_ch45.indd 2847_9780134268118_ch45.indd 28 10/28/15 5:09 PM10/28/15 5:09 PM

The Basics of Python Web:29
4

5

 This example demonstrates some of these in action:

 >>> string

 'This is a test string'

 >>> string.upper()

 'THIS IS A TEST STRING'

 >>> string.lower()

 'this is a test string'

 >>> string.isalnum()

 False

 >>> string = string.title()

 >>> string

 'This Is A Test String'

 Why did isalnum() return false —our string contains only alphanumeric characters,
doesn’t it? Well, no. There are spaces in there, which is what is causing the problem. More
important, we were calling upper() and lower() and they were not changing the contents
of the string—they just returned the new value. So, to change our string from This is a
test string to This Is A Test String , we have to assign it back to the string variable.

 Another really useful and kind of cool thing you can do with strings is triple quoting. This
lets you easily create strings that include both double and single quoted strings, as well as
strings that span more than one line, without having to escape a bunch of special charac-
ters. Here’s an example:

 >>>foo = """

 ..."foo"

 ...'bar'

 ...baz

 ...blippy

 ..."""

 >>>foo

 '\n"foo"\n\'bar\'\nbaz\nblippy\n'

 >>>

 Although this is intended as an introductory guide, the capability to use negative indexes
with strings and slices is a pretty neat feature that deserves a mention. Here’s an example:

 >>>bar="news.google.com"

 >>>bar[-1]

 'm'

 >>>bar[-4:]

 '.com'

 >>>bar[-10:-4]

 'google'

 >>>

47_9780134268118_ch45.indd 2947_9780134268118_ch45.indd 29 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 45 Using PythonWeb:30

 One difference between 2.x and 3.x is the introduction of new string types and method
calls. That doesn’t affect what we share here, but is something to pay attention to as you
work with Python.

 Lists

 Python’s built-in list data type is a sequence, like strings. However, they are mutable,
which means you can change them. Lists are like arrays in that they hold a selection of
elements in a given order. You can cycle through them, index into them, and slice them:

 >>> mylist = ["python", "perl", "php"]

 >>> mylist

 ['python', 'perl', 'php']

 >>> mylist + ["java"]

 ["python", 'perl', 'php', 'java']

 >>> mylist * 2

 ['python', 'perl', 'php', 'python', 'perl', 'php']

 >>> mylist[1]

 'perl'

 >>> mylist[1] = "c++"

 >>> mylist[1]

 'c++'

 >>> mylist[1:3]

 ['c++', 'php']

 The brackets notation is important: You cannot use parentheses, ((and)) or braces ({ and
 }) for lists. Using + for lists is different from using + for numbers. Python detects that you
are working with a list and appends one list to another. This is known as operator overload-
ing , and it is one of the reasons Python is so flexible.

 Lists can be nested , which means you can put a list inside a list. However, this is where
mutability starts to matter, and so this might sound complicated. If you recall, the defini-
tion of an immutable string sequence is that it is a collection of characters that, once set,
cannot be changed without creating a new string. Lists are mutable, as opposed to immu-
table, which means you can change your list without creating a new list.

 This becomes important because Python, by default, copies only a reference to a variable
rather than the full variable. For example:

 >>> list1 = [1, 2, 3]

 >>> list2 = [4, list1, 6]

 >>> list1

 [1, 2, 3]

 >>> list2

 [4, [1, 2, 3], 6]

 Here we have a nested list. list2 contains 4 , then list1 , then 6 . When you print the
value of list2 , you can see it also contains list1 . Now, let’s proceed on from that:

47_9780134268118_ch45.indd 3047_9780134268118_ch45.indd 30 10/28/15 5:09 PM10/28/15 5:09 PM

The Basics of Python Web:31
4

5

 >>> list1[1] = "Flake"

 >>> list2

 [4, [1, 'Flake', 3], 6]

 In line one, we set the second element in list1 (remember, sequences are zero based!) to
be Flake rather than 2 ; then we print the contents of list2 . As you can see, when list1
changed, list2 was updated, too. The reason for this is that list2 stores a reference to
 list1 as opposed to a copy of list1 ; they share the same value.

 We can show that this works both ways by indexing twice into list2 , like this:

 >>> list2[1][1] = "Caramello"

 >>> list1

 [1, 'Caramello', 3]

 The first line says, “Get the second element in list2 (list1) and the second element of
that list, and set it to be ‘Caramello’.” Then list1 ’s value is printed, and you can see it
has changed. This is the essence of mutability: We are changing our list without creating a
new list. However, editing a string creates a new string, leaving the old one unaltered. For
example:

 >>> mystring = "hello"

 >>> list3 = [1, mystring, 3]

 >>> list3

 [1, 'hello', 3]

 >>> mystring = "world"

 >>> list3

 [1, 'hello', 3]

 Of course, this raises the question of how you copy without references when references are
the default. The answer, for lists, is that you use the [:] slice, which are covered earlier in
this chapter. This slices from the first element to the last, inclusive, essentially copying it
without references. Here is how that looks:

 >>> list4 = ["a", "b", "c"]

 >>> list5 = list4[:]

 >>> list4 = list4 + ["d"]

 >>> list5

 ['a', 'b', 'c']

 >>> list4

 ['a', 'b', 'c', 'd']

 Lists have their own collections of built-in methods, such as sort() , append() , and pop() .
The latter two add and remove single elements from the end of the list, with pop() also
returning the removed element. For example:

 >>> list5 = ["nick", "paul", "Julian", "graham"]

 >>> list5.sort()

47_9780134268118_ch45.indd 3147_9780134268118_ch45.indd 31 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 45 Using PythonWeb:32

 >>> list5

 ['graham', 'julian', 'nick', 'paul'']

 >>> list5.pop()'paul'

 >>> list5

 ['graham', 'julian', 'nick']

 >>> list5.append("Rebecca")

 In addition, one interesting method of strings returns a list: split() . This takes a charac-
ter to split by and then gives you a list in which each element is a chunk from the string.
For example:

 >>> string = "This is a test string";

 >>> string.split(" ")

 ['This', 'is', 'a', 'test', 'string']

 Lists are used extensively in Python, although this is slowly changing as the language
matures. The way lists are compared and sorted has changed in 3.x, so be sure to check
the latest documentation when you attempt to perform these tasks.

 Dictionaries

 Unlike lists, dictionaries are collections with no fixed order. Instead, they have a key (the
name of the element) and a value (the content of the element), and Python places them
wherever it needs to for maximum performance. When defining dictionaries, you need
to use braces ({ }) and colons (:). You start with an opening brace and then give each
element a key and a value, separated by a colon, like this:

 >>> mydict = { "perl" : "a language", "php" : "another language" }

 >>> mydict

 {'php': 'another language', 'perl': 'a language'}

 This example has two elements, with keys perl and php . However, when the dictionary is
printed, we find that php comes before perl —Python hasn’t respected the order in which
we entered them. We can index into a dictionary using the normal code:

 >>> mydict["perl"]'a language'

 However, because a dictionary has no fixed sequence, we cannot take a slice or index by
position.

 Like lists, dictionaries are mutable and can also be nested; however, unlike lists, you
cannot merge two dictionaries by using + . This is because dictionary elements are located
using the key. Therefore, having two elements with the same key would cause a clash.
Instead, you should use the update() method, which merges two arrays by overwriting
clashing keys.

 You can also use the keys() method to return a list of all the keys in a dictionary.

47_9780134268118_ch45.indd 3247_9780134268118_ch45.indd 32 10/28/15 5:09 PM10/28/15 5:09 PM

The Basics of Python Web:33
4

5

 There are subtle differences in how dictionaries are used in 3.x, such as the need to make
list calls to produce all values at once so they may be printed. Again, be sure to check the
latest documentation as you move ahead, because there are several of these changes in
functionality with some tools now behaving differently or even disappearing and other
new dictionary tools being added. Some of those features have been backported; for
example, Python 2.7 received support for ordered dictionaries, backported from Python
3.1 (see http://docs.python.org/dev/whatsnew/2.7.html#pep-0372).

 Conditionals and Looping

 So far, we have just been looking at data types, which should show you how powerful
Python’s data types are. However, you cannot write complex programs without condi-
tional statements and loops.

 Python has most of the standard conditional checks, such as > (greater than), <= (less than
or equal to), and == (equal), but it also adds some new ones, such as in . For example, we
can use in to check whether a string or a list contains a given character/element:

 >>> mystring = "J Random Hacker"

 >>> "r" in mystring

 True

 >>> "Hacker" in mystring

 True

 >>> "hacker" in mystring

 False

 The last example demonstrates how it is case sensitive. We can use the operator for lists,
too:

 >>> mylist = ["soldier", "sailor", "tinker", "spy"]

 >>> "tailor" in mylist

 False

 Other comparisons on these complex data types are done item by item:

 >>> list1 = ["alpha", "beta", "gamma"]

 >>> list2 = ["alpha", "beta", "delta"]

 >>> list1 > list2

 True

 list1 ’s first element (alpha) is compared against list2 ’s first element (alpha) and, because
they are equal, the next element is checked. That is equal also, so the third element is
checked, which is different. The g in gamma comes after the d in delta in the alphabet, so
 gamma is considered greater than delta and list1 is considered greater than list2 .

 Loops come in two types, and both are equally flexible. For example, the for loop can
iterate through letters in a string or elements in a list:

47_9780134268118_ch45.indd 3347_9780134268118_ch45.indd 33 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 45 Using PythonWeb:34

 >>> string = "Hello, Python!"

 >>> for s in string: print s,

 ...

 H e l l o , P y t h o n !

 The for loop takes each letter in a string and assigns it to s . This then is printed to the
screen using the print command, but note the comma at the end; this tells Python not to
insert a line break after each letter. The ellipsis (...) is there because Python allows you to
enter more code in the loop; you need to press Enter again here to have the loop execute.

 You can use the same construct for lists:

 >>> mylist = ["andi", "rasmus", "zeev"]

 >>> for p in mylist: print p

 ...

 andi

 rasmus

 zeev

 Without the comma after the print statement, each item is printed on its own line.

 The other loop type is the while loop, and it looks similar:

 >> while 1: print "This will loop forever!"

 ...

 This will loop forever!

 This will loop forever!

 This will loop forever!

 This will loop forever!

 This will loop forever!

 (etc)

 Traceback (most recent call last):

 File "<stdin>", line 1, in ?

 KeyboardInterrupt

 >>>

 That is an infinite loop (it carries on printing that text forever), so you need to press
Ctrl+C to interrupt it and regain control.

 If you want to use multiline loops, you need to get ready to use your Tab key: Python
handles loop blocks by recording the level of indent used. Some people find this odious;
others admire it for forcing clean coding on users. Most of us, though, just get on with
programming.

 For example:

 >>> i = 0

 >>> while i < 3:

 ... j = 0

47_9780134268118_ch45.indd 3447_9780134268118_ch45.indd 34 10/28/15 5:09 PM10/28/15 5:09 PM

Functions Web:35
4

5

 ... while j < 3:

 ... print "Pos: " + str(i) + "," + str(j) + ")"

 ... j += 1

 ... i += 1

 ...

 Pos: (0,0)

 Pos: (0,1)

 Pos: (0,2)

 Pos: (1,0)

 Pos: (1,1)

 Pos: (1,2)

 Pos: (2,0)

 Pos: (2,1)

 Pos: (2,2)

 You can control loops using the break and continue keywords. break exits the loop
and continues processing immediately afterward, and continue jumps to the next loop
iteration.

 Again, we find many subtle changes in 3.x. Most conditionals and looping work the same,
but because we mention it in this section, we should note that print is no longer a state-
ment in 3.x and is now a function call. That provides a nice segue to our discussion of
functions.

 Functions
 Other languages—such as PHP—read and process an entire file before executing it, which
means you can call a function before it is defined because the compiler reads the defini-
tion of the function before it tries to call it. Python is different: If the function definition
has not been reached by the time you try to call it, you get an error. The reason behind
this behavior is that Python actually creates an object for your function, and that in turns
means two things. First, you can define the same function several times in a script and
have the script pick the right one at runtime. Second, you can assign the function to
another name just by using = .

 Function definition starts with def , then the function name, then parentheses and a list of
parameters, and then a colon. The contents of a function need to be indented at least one
level beyond the definition. So, using function assignment and dynamic declaration, you
can write a script that prints the right greeting in a roundabout manner:

 >>> def hello_english(Name):

 ... print "Hello, " + Name + "!"

 ...

 >>> def hello_hungarian(Name):

 ... print "Szia, " + Name + "!"

 ...

 >>> hello = hello_hungarian

47_9780134268118_ch45.indd 3547_9780134268118_ch45.indd 35 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 45 Using PythonWeb:36

 >>> hello("Paul")

 Szia, Paul!

 >>> hello = hello_english

 >>> hello("Paul")

 Notice that function definitions include no type information. Functions are typeless, as
mentioned previously. The upside of this is that you can write one function to do several
things:

 >>> def concat(First, Second):

 ... return First + Second

 ...

 >>> concat(["python"], ["perl"])

 ['python', 'perl']

 >>> concat("Hello, ", "world!")'Hello, world!'

 That demonstrates how the return statement sends a value back to the caller, but also
how a function can do one thing with lists and another thing with strings. The magic
here is being accomplished by the objects. We write a function that tells two objects to
add themselves together, and the objects intrinsically know how to do that. If they do
not—if, perhaps, the user passes in a string and an integer—Python catches the error for
us. However, it is this hands-off, “let the objects sort themselves out” attitude that makes
functions so flexible. Our concat() function could conceivably concatenate strings, lists,
or zonks —a data type someone created herself that allows adding. The point is that we
do not limit what our function can do. Tacky as it might sound, the only limit is your
imagination.

 Object Orientation
 After having read this far, you should not be surprised to hear that Python’s object orien-
tation is flexible and likely to surprise you if you have been using C-like languages for
several years.

 The best way to learn Python object-oriented programming (OOP) is to just do it. So, here is a
basic script that defines a class, creates an object of that class, and calls a function:

 class Dog(object):

 def bark(self):

 print "Woof!"

 fluffy = Dog()

 fluffy.bark()

 Defining a class starts, predictably, with the class keyword followed by the name of the
class you are defining and a colon. The contents of that class need to be indented one
level so that Python knows where it stops. Note that the object inside parentheses is there
for object inheritance, which is discussed later. For now, the least you need to know is

47_9780134268118_ch45.indd 3647_9780134268118_ch45.indd 36 10/28/15 5:09 PM10/28/15 5:09 PM

Object Orientation Web:37
4

5

that if your new class is not based on an existing class, you should put object inside
parentheses as shown in the previous code.

 Functions inside classes work in much the same way as normal functions do (although
they are usually called methods); the main difference is that they should all take at least
one parameter, usually called self . This parameter is filled with the name of the object
the function was called on, and you need to use it explicitly.

 Creating an instance of a class is done by assignment. You do not need any new keyword,
as in some other languages—providing the parentheses makes the creation known. Calling
a function of that object is done using a period, the name of the class to call, with any
parameters being passed inside parentheses.

 Class and Object Variables

 Each object has its own set of functions and variables, and you can manipulate those vari-
ables independently of objects of the same type. In addition, some class variables are set
to a default value for all classes and can be manipulated globally.

 This script demonstrates two objects of the dog class being created, each with its own
name:

 class Dog(object):

 name = "Lassie"

 def bark(self):

 print self.name + " says 'Woof!'"

 def set_name(self, name):

 self.name = name

 fluffy = Dog()

 fluffy.bark()

 poppy = Dog()

 poppy.set_name("Poppy")

 poppy.bark()

 That outputs the following:

 Lassie says 'Woof!'

 Poppy says 'Woof!'

 There, each dog starts with the name Lassie , but it gets customized. Keep in mind that
Python assigns by reference by default, meaning each object has a reference to the class’s
name variable, and as we assign that with the set_name() method, that reference is lost.
This means that any references we do not change can be manipulated globally. Thus, if
we change a class’s variable, it also changes in all instances of that class that have not set
their own value for that variable. For example:

 class Dog(object):

47_9780134268118_ch45.indd 3747_9780134268118_ch45.indd 37 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 45 Using PythonWeb:38

 name = "Lassie"

 color = "brown"

 fluffy = Dog()

 poppy = Dog()

 print fluffy.color

 Dog.color = "black"

 print poppy.color

 fluffy.color = "yellow"

 print fluffy.color

 print poppy.color

 So, the default color of dogs is brown —both the fluffy and poppy Dog objects start off as
 brown . Then, using Dog.color , we set the default color to be black , and because neither of
the two objects has set its own color value, they are updated to be black . The third-to-last
line uses poppy.color to set a custom color value for the poppy object— poppy becomes
 yellow , whereas fluffy and the dog class in general remain black .

 Constructors and Destructors

 To help you automate the creation and deletion of objects, you can easily override two
default methods: __init__ and __del__ . These are the methods called by Python when a
class is being instantiated and freed, known as the constructor and destructor , respectively.

 Having a custom constructor is great for when you need to accept a set of parameters for
each object being created. For example, you might want each dog to have its own name
on creation, and you could implement that with this code:

 class Dog(object):

 def __init__(self, name):

 self.name = name

 fluffy = Dog("Fluffy")

 print fluffy.name

 If you do not provide a name parameter when creating the Dog object, Python reports an
error and stops. You can, of course, ask for as many constructor parameters as you want,
although it is usually better to ask only for the ones you need and have other functions to
fill in the rest.

 On the other side of things is the destructor method, which enables you to have more
control over what happens when an object is destroyed. Using the two, we can show the
life cycle of an object by printing messages when it is created and deleted:

 class dog(object):

 def __init__(self, name):

 self.name = name

 print self.name + " is alive!"

 def __del__(self):

47_9780134268118_ch45.indd 3847_9780134268118_ch45.indd 38 10/28/15 5:09 PM10/28/15 5:09 PM

Object Orientation Web:39
4

5

 print self.name + " is no more!"

 fluffy = Dog("Fluffy")

 The destructor is there to give you the chance to free up resources allocated to the
object, or perhaps log something to a file. Note that although it is possible to override
the __ del __ method, it is a very dangerous idea because it is not guaranteed that
__ del __ methods are called for objects that still exist when the interpreter exits. The
official Python documentation explains this well at http://docs.python.org/reference/
datamodel.html#object.__del__ .

 Class Inheritance

 Python allows you to reuse your code by inheriting one class from one or more others. For
example, lions, tigers, and bears are all mammals and so share a number of similar proper-
ties. In that scenario, you do not want to have to copy and paste functions between them;
it is smarter (and easier) to have a mammal class that defines all the shared functionality
and then inherit each animal from that.

 Consider the following code:

 class Car(object):

 color = "black"

 speed = 0

 def accelerate_to(self, speed):

 self.speed = speed

 def set_color(self, color):

 self.color = color

 mycar = Car()

 print mycar.color

 That creates a Car class with a default color and provides a set_color() function so that
people can change their own colors. Now, what do you drive to work? Is it a car? Sure
it is, but chances are it is a Ford, or a Dodge, or a Jeep, or some other make; you do not
get cars without a make. On the other hand, you do not want to have to define a class
 Ford and give it the methods accelerate_to() , set_color() , and however many other
methods a basic car has and then do the same thing for Ferrari, Nissan, and so on.

 The solution is to use inheritance: Define a car class that contains all the shared func-
tions and variables of all the makes and then inherit from that. In Python, you do this by
putting the name of the class from which to inherit inside parentheses in the class decla-
ration, like this:

 class Car(object):

 color = "black"

 speed = 0

 def accelerate_to(self, speed):

 self.speed = speed

 def set_color(self, color):

47_9780134268118_ch45.indd 3947_9780134268118_ch45.indd 39 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 45 Using PythonWeb:40

 self.color = color

 class Ford(Car): pass

 class Nissan(Car): pass

 mycar = Ford()

 print mycar.color

 The pass directive is an empty statement; it means our class contains nothing new.
However, because the Ford and Nissan classes inherit from the car class, they get color ,
 speed , accelerate_to() , and set_color() provided by their parent class. Note that we do
not need objects after the class names for Ford and Nissan because they are inherited from
an existing class: car .

 By default, Python gives you all the methods the parent class has, but you can override
that by providing new implementations for the classes that need them. For example:

 class Modelt(car):

 def set_color(self, color):

 print "Sorry, Model Ts only come in black!"

 myford Ford()

 Ford.set_color("green")

 mycar = Modelt()

 mycar.set_color("green")

 The first car is created as a Ford , so set_color() works fine because it uses the method
from the car class. However, the second car is created as a Model T , which has its own
 set_color() method, so the call fails.

 This provides an interesting scenario: What do you do if you have overridden a method
and yet want to call the parent’s method also? If, for example, changing the color of a
 Model T were allowed but just cost extra, we would want to print a message saying “You
owe $50 more,” but then change the color. To do this, we need to use the class object from
which our current class is inherited (Car in this case). Here’s an example:

 class Modelt(Car):

 def set_color(self, color):

 print "You owe $50 more"

 Car.set_color(self, color)

 mycar = Modelt()

 mycar.set_color("green")

 print mycar.color

 That prints the message and then changes the color of the car.

47_9780134268118_ch45.indd 4047_9780134268118_ch45.indd 40 10/28/15 5:09 PM10/28/15 5:09 PM

References Web:41
4

5

 The Standard Library and the Python Package Index
 A default Python install includes many modules (blocks of code) that enable you to inter-
act with the operating system, open and manipulate files, parse command-line options,
perform data hashing and encryption, and much more. This is one of the reasons most
commonly cited when people are asked why they like Python so much: It comes stocked
to the gills with functionality you can take advantage of immediately. In fact, the number
of modules included in the Standard Library is so high that entire books have been
written about them.

 For unofficial scripts and add-ons for Python, the recommended starting place is called the
 Python Package Index (PyPI) at http://pypi.python.org/pypi . There you can find well more
than 10,000 public scripts and code examples for everything from mathematics to games.

 References
 ▶ www.python.org —The Python website is packed with information and updated

regularly. This should be your first stop, if only to read the latest Python news.

 ▶ www.jython.org —Python also has an excellent Java-based interpreter to allow it to
run on other platforms. If you prefer Microsoft .NET, try www.ironpython.com .

 ▶ http://www.montypython.com/ —Guido van Rossum borrowed the name for
his language from Monty Python’s Flying Circus , and as a result, many Python code
examples use oblique Monty Python references (spam and eggs are quite common, for
example). A visit to the official Monty Python site to hone your Python knowledge is
highly recommended.

 ▶ www.zope.org —The home page of the Zope content management system (CMS) . It
is one of the most popular CMSes around and, more important, written entirely in
Python.

 ▶ If you want a book, we recommend starting with Learning Python, by Mark Lutz
(O’Reilly), ISBN: 0-596-15806-8, and for advanced work, move to Programming
Python , also by Mark Lutz (O’Reilly), ISBN: 0-596-15810-6.

47_9780134268118_ch45.indd 4147_9780134268118_ch45.indd 41 10/28/15 5:09 PM10/28/15 5:09 PM

47_9780134268118_ch45.indd 4247_9780134268118_ch45.indd 42 10/28/15 5:09 PM10/28/15 5:09 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

