
The Standard Array
A Useful Tool for Understanding

and Analyzing Linear Block Codes

by

Bernard Sklar

Introduction
The standard array can be thought of as an organizational tool, a filing cabinet that
contains all of the possible 2n binary n-tuples (called vectors)—nothing missing,
and nothing replicated. The entire space of n-tuples is called the vector space, Vn.
At first glance, the benefits of this tool seem limited to small block codes, because
for code lengths beyond n = 20 there are millions of n-tuples in Vn. However, even
for large codes, the standard array allows visualization of important performance
issues, such as bounds on error-correction capability, as well as possible tradeoffs
between error correction and detection.

The Standard Array
For an (n, k) linear block code, all possible 2n received vectors are arranged in an
array, called the standard array, such that the first row contains the set of all the 2k

codewords, {U}, starting with the all-zeros codeword (the all-zeros sequence must
be a member of the codeword set [1]). The term codeword is exclusively used to
indicate a valid codeword entry in the first row of the array. The term vector is
used to indicate any ordered sequence (for example, any n-tuple in Vn). The first
column of the standard array contains all the correctable error patterns.

The term error pattern refers to a binary n-tuple, e, that when added to a
transmitted codeword, U, results in the reception of an n-tuple or vector, r = U + e,
which can be called a corrupted codeword. In the standard array, each row, called a
coset, consists of a correctable error pattern in the leftmost position, called a coset
leader, followed by corrupted codewords (corrupted by that error pattern). The
structure of the standard array for an (n, k) code is shown below:

2 The Standard Array: A Useful Tool for Understanding and Analyzing Linear Block Codes

(1)

⋅⋅⋅ ⋅⋅⋅
⋅⋅⋅ ⋅⋅⋅
⋅⋅⋅ ⋅⋅⋅

1 2 i 2

2 2 2 22 i 2

3 3 3 32 i 2

j j2

 U U U U
 + + + e e e eU U U
 + + + e e e eU U U

 + e eU
M M M

k

k

k

⋅⋅⋅ ⋅⋅⋅

⋅⋅⋅ ⋅⋅⋅

j ji 2

2 i2 2 2 22

+ + e eU U

 + + + e e e eU U U
M M M

k

n-k n-k n-k n-kk

Codeword U1, the all-zeros codeword, plays two roles. It is one of the codewords.
Also, U1 can be thought of as the error pattern e1—the pattern that represents no
error, such that r = U. The array contains all 2n n-tuples in the space (each n-tuple
appears only once). Each coset or row contains 2k n-tuples. Therefore, there are
2n/2k = 2n-k cosets (or rows).

The decoding algorithm calls for replacing a corrupted codeword, U + e, with the
valid codeword U, which is located at the top of the column where U + e is located.
Suppose that a codeword Ui is transmitted over a noisy channel. If the error pattern
caused by the channel is a coset leader, the received vector will be decoded
correctly into the transmitted codeword Ui. If the error pattern is not a coset leader,
an erroneous decoding will result. There are several bounds on the error-correcting
capability of linear codes; any workable code system must meet all of these
bounds. One such bound, called the Hamming bound [2], is described below.

Number of parity bits:

2 1log
1 2
n n nn - k + + + + t

      
      
       

≥ ⋅⋅⋅ (2)

or

Number of cosets:

12 1 2
n-k n n n + + + + t

      
      
       

≥ ⋅⋅⋅ (3)

where the binomial factor
n
j

 
 
  represents the number of ways in which j bits out of

n may be in error. Note that the sum of the terms within the square brackets yields

The Standard Array: A Useful Tool for Understanding and Analyzing Linear Block Codes 3

the minimum number of rows needed in the standard array to correct all
combinations of errors through t-bit errors. The inequality gives a lower bound on
n - k, the number of parity bits (or the number of 2n-k cosets) as a function of the
t-bit error-correction capability of the code. Similarly, the inequality can be
described as giving an upper bound on the t-bit error-correction capability as a
function of the number of n - k parity bits (or 2n-k cosets). For any (n, k) linear
block code to provide a t-bit error-correcting capability, it is a necessary condition
that the Hamming bound be met.

To demonstrate how the standard array provides a visualization of this bound,
let’s use the (127, 106) BCH code as an example. The array contains all
2n = 2127 ≈ 1.7 × 1038 n-tuples in the space. The topmost row of the array contains
the 2k = 2106 ≈ 8.1 × 1031 codewords; hence, this is the number of columns in the
array. The leftmost column contains the 2n-k = 221 = 2,097,152 coset leaders (or
correctable error patterns); hence, this is the number of rows in the array. Although
the number of n-tuples and codewords is enormous, the concern is not with any
individual entry; the primary interest is in the number of cosets. There are
2,097,152 cosets, and hence there are at most 2,097,151 error patterns that can be
corrected by this code. Next, it is shown how this number of cosets dictates an
upper bound on the t-bit error-correcting capability of the code.

Since each codeword contains 127 bits, there are 127 ways to make single errors.
We next compute how many ways there are to make double errors, namely
127

2
 
    = 8,001. We move on to triple errors because thus far only a small portion
of the total 2,097,151 correctable error-patterns have been used. There are
127

3
 
    = 333,375 ways to make triple errors. Table 1 lists these computations,
indicating that the all-zeros error pattern requires the presence of the first coset.
Also shown for single through quadruple error types are the number of cosets
required for each error type and the cumulative number of cosets necessary through
that error type. This table shows that a (127, 106) code can correct all single,
double, and triple error patterns—and the unused rows are indicative of the fact
that more error correction is possible. It might be tempting to try fitting all possible
4-bit error patterns into the array. However, Table 1 shows that that this is not
possible, because the number of remaining cosets in the array is much smaller than
the cumulative number of cosets required, as indicated by the last line of the table.
Therefore, for this (127, 106) example, the code has a Hamming bound that
guarantees the correction of up to and including all 3-bit errors.

4 The Standard Array: A Useful Tool for Understanding and Analyzing Linear Block Codes

Table 1
Error-Correction Bound for the (127, 106) Code

Number of
Bit Errors

Number of
Cosets

Required

Cumulative
Number of Cosets

Required

0 1 1
1 127 128
2 8,001 8,129
3 333,375 341,504
4 10,334,625 10,676,129

Perfect Codes
The previously considered (127, 106) code with demonstrated single, double and
triple error-correcting capability exemplifies what is true of many codes. That is,
often there is residual error-correcting capability beyond the value t. A t-error
correcting code is called a perfect code if its standard array has all the error
patterns of t and fewer errors and no others as coset leaders (no residual error-
correcting capability). Hamming codes are perfect codes that can correct single
errors only; the structure of the standard array can be used to confirm this.
Hamming codes are characterized by (n, k) dimensions as follows:

(n, k) = (2m - 1, 2m - 1 - m)

where m = 3, 4, Thus the number of cosets is 2n-k = 2m since n - k = m. Because
n = 2m-1, there are 2m-1 ways of making single errors. Thus, the number of cosets,
2m, equals exactly 1 (for the no-error case) plus the number of ways that one error
in n bits can be made. Hence, all Hamming codes are indeed perfect codes that can
correct single errors only.

A somewhat similar situation occurs for the triple-error correcting (23, 12) Golay
code, which is a perfect code. Observe that for this code, the number of cosets in
the standard array is 2n-k = 211 = 2048. Following the format of Table 1, we develop
Table 2 for the (23, 12) Golay code, as shown below:

The Standard Array: A Useful Tool for Understanding and Analyzing Linear Block Codes 5

Table 2
Error-Correction Bound for the (23, 11) Golay Code

Number of
Bit Errors

Number of
Cosets

Required

Cumulative
Number of

Cosets Required

0 1 1
1 23 24
2 253 277
3 1,771 2,048

Table 2 demonstrates that the (23, 11) Golay code is indeed a perfect code since it
has no residual error-correcting capability beyond t = 3.

An (n, k) Example
The standard array provides insight into the tradeoffs that are possible between
error correction and detection. Consider a new (n, k) code example, and the factors
that dictate what values of (n, k) should be chosen.

1. To perform a nontrivial tradeoff between error correction and error
detection, it is desired that the code have an error-correcting capability of
at least t = 2.

2. The Hamming distance between two codewords is the number of bit
positions in which the two codewords differ. The smallest Hamming
distance among all codewords comprising a code is called the minimum
distance, dmin, of the code. For error-correcting capability of t = 2, we use
the following fundamental relationship [1] for finding the minimum
distance:

dmin = 2t + 1 = 5

3. For a nontrivial code system, it is desired that the number of data bits be
at least k = 2. Thus, there will be 2k = 4 codewords. The code can now be
designated as an (n, 2) code.

6 The Standard Array: A Useful Tool for Understanding and Analyzing Linear Block Codes

4. We look for the minimum value of n that will allow correcting all possible
single and double errors. In this example, each of the 2n n-tuples in the
array will be tabulated. The minimum value of n is desired because
whenever n is incremented by just a single integer, the number of n-tuples
in the standard array doubles. Of course, it is desired that the list be of
manageable size. For “real world” codes, we want the minimum n for
different reasons—bandwidth efficiency and simplicity. If the Hamming
bound is used in choosing n, then n = 7 could be selected. However, the
dimensions of such a (7, 2) code will not meet our stated requirements of
t = 2-bit error-correction capability and dmin = 5. To see this, it is
necessary to introduce another upper bound on the t-bit error correction
capability (or dmin). This bound, called the Plotkin bound [2], is described
below:

1
min 1

k-

k
n 2 d - 2

×≤ (4)

In general, a linear (n, k) code must meet all upper bounds involving error-
correction capability (or minimum distance). For high-rate codes, if the Hamming
bound is met, the Plotkin bound will also be met; this was the case for the earlier
(127, 106) code example. For low-rate codes, it is the other way around [2]. Since
this example entails a low-rate code, it is important to test error-correction
capability via the Plotkin bound. Because dmin = 5, it should be clear from Equation
(4) that n must be 8, and therefore, the minimum dimensions of the code are (8, 2)
in order to meet the requirements for this example.

Designing the (8, 2) Code
A natural question to ask is, “For a linear code, how does one select codewords out
of the space of 28 8-tuples?” There is no single solution, but there are constraints in
how choices are made. Here are the elements that help point to a solution.

1. The number of codewords is 2k = 22 = 4.

2. The property of closure must apply. This property dictates that the sum of
any two codewords in the space must yield a valid codeword in the space.

3. The all-zeros vector must be one of the codewords. This property is the
result of the closure property, since any codeword that is added
(modulo-2) to itself yields an all-zeros vector.

The Standard Array: A Useful Tool for Understanding and Analyzing Linear Block Codes 7

4. Each codeword is 8 bits long.

5. Since dmin = 5, the weight of each codeword (except for the all-zeros
codeword) must also be at least 5 (by virtue of the closure property). The
weight of a vector is defined as the number of nonzero components in the
vector.

6. Assume that the code is systematic, so the rightmost 2 bits of each
codeword are the corresponding message bits.

Following is a candidate assignment of codewords to messages that meets all of the
above conditions.

Messages Codewords
0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 1 (5)
1 0 0 0 1 1 1 1 1 0
1 1 1 1 0 0 1 1 1 1

The design of the codeword set can begin in a very arbitrary way; it is only
necessary to adhere to the properties of weight and systematic form of the code.
The selection of the first few codewords is often simple. However, as the process
continues the selection routine becomes harder, and the choices become more
constrained because of the need to adhere to the closure property.

Encoding, Decoding, and Error Correction
The generation of a codeword Ui in an (n, k) code involves forming the product of
a k-bit message vector mi and a k × n generator matrix G [1]. For the code system
in Equation (5), G can be written as shown in Equation (6):

0 0 1 1 1 1 1 0 =
1 1 1 1 0 0 0 1

 
 
 

G (6)

Forming the product mG for all the messages in Equation (5) will yield all the
codewords shown in that equation.

8 The Standard Array: A Useful Tool for Understanding and Analyzing Linear Block Codes

Decoding starts with the computation of a syndrome, which can be thought of as
learning the “symptom” of an error. For an (n, k) code, an (n - k)-bit syndrome, s, is
the product of an n-bit received vector, r, and the transpose of an (n - k) × n parity-
check matrix, H, [1] where H is constructed so that the rows of G are orthogonal to
the rows of H; that is, GHT = 0. For this (8, 2) example, s is a 6-bit vector, and H is
a 6 x 8 matrix, where HT is written as shown in Equation (7):

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

HT = 0 0 0 1 0 0 (7)

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 1 1 1

1 1 1 1 0 0

The syndrome for each error pattern can be calculated as shown in Equation (8):

si = ei HT i = 1, …, 2n-k
(8)

Figure 1 shows a tabulation of all 2n-k = 64 syndromes as well as the standard array
for the (8, 2) code. Each row (except the first) of the standard array represents a set
of corrupted codewords with something in common, hence the name coset. What
do the entries in any one coset have in common? They have the same syndrome.
After computing the syndrome, the correction of a corrupted codeword proceeds by
locating the error pattern that corresponds to that syndrome. Finally, the error
pattern is subtracted (modulo-2 added) from the corrupted codeword, yielding the
corrected output.

The Standard Array: A Useful Tool for Understanding and Analyzing Linear Block Codes 9

Figure 1
The syndromes and the standard array for the (8, 2) code.

10 The Standard Array: A Useful Tool for Understanding and Analyzing Linear Block Codes

Since each coset has the same syndrome, Equation (8) can be written in terms of a
received vector, r, as follows:

si = ri HT (9)

The vectors Ui, ei, ri, and si can each be described as having the following general
form:

xi = { x1, x2, …, xj, … }

For the codeword Ui in this example, the index i = 1, …, 2k indicates that there are
4 distinct codewords, and the index j = 1, … , n indicates that there are 8 bits per
codeword. For the received vector ri, the index i = 1, …, 2n indicates that there are
256 distinct vectors, and the index j = 1, … , n indicates that there are 8 digits per
vector. For the error pattern ei, the index i = 1, …, 2n-k indicates that there are 64
distinct correctable error patterns, and the index j = 1, … , n indicates that there are
8 digits per error pattern. For the syndrome si, the index i = 1, …, 2n-k indicates that
there are 64 distinct syndromes, and the index j = 1, … , n-k indicates that there are
6 digits per syndrome. For simplicity, the index i is dropped, and the vectors Ui, ei,
ri, and si will be denoted as U, e, r, and s, respectively, where in each case some ith
vector is implied.

Error Detection Versus Error Correction Tradeoffs
Using the codeword set in Equation (5), the standard array is constructed (refer to
Figure 1). Error-detection and error-correction capabilities can be traded, provided
that the following distance relationship prevails [1]:

dmin ≥ α + β + 1 (10)

where α represents the number of bit errors to be corrected, β represents the
number of bit errors to be detected, and β ≥ α. The tradeoff choices available for
the (8, 2) code example are as follows:

Detection (β) Correction (α)

2 2
3 1
4 0

The Standard Array: A Useful Tool for Understanding and Analyzing Linear Block Codes 11

This table shows that the (8, 2) code can be implemented to perform only error
correction, which means that it first detects as many as β = 2 errors, and then
corrects them. If some error correction is sacrificed so that the code will only
correct single errors, then the detection capability is increased so that all β = 3
errors can be detected. And finally, if error correction is completely sacrificed, the
decoder can be implemented so that all β = 4 errors can be detected. In the case of
error detection only, the circuitry is very simple. The syndrome is computed and an
error is detected whenever a nonzero syndrome occurs.

The decoder circuit for correcting single errors can be implemented with logic
gates [3], as shown in Figure 2. The exclusive-OR (EX-OR) gate performs the
same operation as modulo-2 arithmetic and hence uses the same symbol. The AND
gates are shown as half-circles. A small circle at the termination of any line
entering an AND gate indicates the logic-COMPLEMENT of the binary state. In
this figure, entering the decoder at two places simultaneously is a received vector,
r. In the upper part of the figure, the 8 digits of the received vector are loaded into
a shift register whose stages are connected to 6 EX-OR gates, each of which yield a
syndrome bit sj, where j = 1, … ,6. The circuit wiring between the received vector,
r, and the EX-OR gates is dictated by Equation (9), as follows:

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

s = [r1 r2 r3 r4 r5 r6 r7 r8] 0 0 0 1 0 0 (11)

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 1 1 1

1 1 1 1 0 0

Therefore each of the sj digits comprising syndrome s can be described from
Equation (11) as related to the rj digits of the received vector in the following way:

s1 = r1 + r8 s2 = r2 + r8 s3 = r3 + r7 + r8

s4 = r4 + r7 + r8 s5 = r5 + r7 s6 = r6 + r7

12 The Standard Array: A Useful Tool for Understanding and Analyzing Linear Block Codes

Figure 2
Decoding circuit for an (8, 2) code.

If the decoder is implemented to correct only single errors, that is α = 1 and β = 3,
then this is tantamount to drawing a line under coset 9 in Figure 1, and error
correction takes place only when one of the 8 syndromes associated with a single
error appears. It is easy to verify that the AND gates in Figure 2 convert any
syndrome, numbered 1 through 9, to the corresponding error pattern ei. The error
pattern is then subtracted (modulo-2 added) from the “potentially” corrupted
received vector, yielding a corrected output, U. Additional gates are needed to test
for the case when the syndrome is nonzero but the outputs of the AND gates are all
zero—such an event happens for any of the syndromes numbered 10 through 64.
This outcome is then used to indicate an error detection. Note that Figure 2, for
tutorial reasons, has been drawn to emphasize the algebraic decoding steps—
calculation of syndrome, error pattern, and finally corrected output. In the “real

The Standard Array: A Useful Tool for Understanding and Analyzing Linear Block Codes 13

world,” an (n, k) code is usually configured in systematic form, which means that
the rightmost codeword digits are the k data bits, and the balance of the codeword
consists of the n - k parity bits. The decoder does not need to deliver the entire
codeword; its output can consist of the data bits only. Hence, the Figure 2 circuitry
becomes simplified by eliminating the gates that are shown with shading.

Notice that the process of decoding a corrupted codeword by first detecting and
then correcting an error can be compared to a familiar medical analogy. A patient
(a potentially corrupted codeword) enters a medical facility (a decoder). The
examining physician performs diagnostic testing (multiplies by HT) in order to
find a symptom (a syndrome). Imagine that the physician finds characteristic spots
on the patient’s x-rays. An experienced physician would immediately recognize the
correspondence between the symptom and the disease (error pattern), say
tuberculosis. A novice physician might have to refer to a medical handbook to
associate the symptom with the disease (that is, syndrome versus error pattern as
listed in Figure 1, or as formed by AND gates in Figure 2). The final step provides
the proper medication to the patient, thereby removing the disease (in other words,
adds the error pattern modulo-2 to the corrupted codeword, thereby correcting the
flawed codeword). In the context of binary codes, an unusual type of medicine is
being practiced here. The patient is cured by reapplying the original disease.

If the decoder is implemented to perform error correction only, then α = 2 and
β = 2. For this case, detection and correction of all single and double errors can be
envisioned as drawing a line under coset 37 in the standard array of Figure 1. Even
though the (8, 2) code is capable of correcting some combination of triple errors
corresponding to the coset leaders 38 through 64, a decoder is most often
implemented as a bounded distance decoder, which means that it corrects all
combinations of errors up to and including t errors, but no combinations of errors
greater than t. The decoder can again be realized with logic gates, using an
implementation that is similar to the circuit in Figure 2.

Even though a small code was used to describe these tradeoffs, the example can be
expanded (without entering details into the standard array) for any size code. The
circuitry in Figure 2 performs decoding in a parallel manner, which means that all
of the digits of the codeword are decoded simultaneously. Such decoders are useful
only for relatively small codes. When the code is large, this parallel
implementation becomes very complex, and one generally chooses a simpler
sequential approach (which will require more processing time than the parallel
circuitry) [3].

14 The Standard Array: A Useful Tool for Understanding and Analyzing Linear Block Codes

The Standard Array Provides Insight
In the context of Figure 1, the (8, 2) code satisfies the Hamming bound. That is,
from the standard array it is recognizable that the (8, 2) code can correct all
combinations of single and double errors. Consider the following question:
“Suppose that transmission takes place over a channel that always introduces errors
in the form of a burst of 3-bit errors, so that there is no interest in correcting single
or double errors; wouldn’t it be possible to set up the coset leaders to correspond to

only triple errors?” It is simple to see that in a sequence of 8 bits there are
8
3

 
 
  = 56

ways to make triple errors. If we only want to correct all these 56 combinations of
triple errors, there is sufficient room (sufficient number of cosets) in the standard
array, since there are 64 rows. Won’t that work? No, it won’t. For any code, the
overriding parameter for determining error-correcting capability is dmin. For the
(8, 2) code, dmin = 5 dictates that only 2-bit error correction is possible.

How can the standard array provide some insight as to why this scheme won’t
work? For a group of x-bit error patterns to enable x-bit error correction, the entire
group of weight-x vectors must be coset leaders; that is, they must occupy only the
leftmost column. In Figure 1, all weight-1 and weight-2 vectors appear in the
leftmost column of the standard array, and nowhere else. Even if we forced all
weight-3 vectors into row numbers 2 through 57, we would find that some of these
vectors would have to reappear elsewhere in the array (which violates a basic
property of the standard array). In Figure 1, a shaded box is drawn around each of
the 56 vectors having a weight of 3. Look at the coset leaders representing 3-bit
error patterns, in rows 38, 41–43, 46–49, and 52 of the standard array. Now look at
the entries of the same row numbers in the rightmost column, where shaded boxes
indicate other weight-3 vectors. Do you see the ambiguity that exists for each of
the rows listed above, and why it is not possible to correct all 3-bit error patterns
with this (8, 2) code? Suppose the decoder receives the weight-3 vector
1 1 0 0 1 0 0 0, located at row 38 in the rightmost column. This flawed codeword
could have arisen in one of two ways. One way would be that codeword
1 1 0 0 1 1 1 1 was sent and the 3-bit error pattern 0 0 0 0 0 1 1 1 perturbed it. The
other possibility would be that codeword 0 0 0 0 0 0 0 0 was sent and the 3-bit
error pattern 1 1 0 0 1 0 0 0 perturbed it.

The Standard Array: A Useful Tool for Understanding and Analyzing Linear Block Codes 15

Conclusion
In this article, basic principles of block codes were reviewed, emphasizing the
structure of the standard array. We used examples involving bounds, perfect codes,
and implementation tradeoffs in order to gain some insight into the algebraic
structure of linear block codes. Also, we showed how the standard array offers
intuition as to why some desired error-correcting properties for a particular code
might not be possible.

References
[1] Sklar, B., Digital Communications: Fundamentals and Applications, Second

Edition (Upper Saddle River, NJ: Prentice-Hall, 2001).

[2] Peterson, W.W., and Weldon, E.J., Error Correcting Codes (Cambridge,
MA: MIT Press, 1972).

[3] Lin, S., and Costello, D.J. Jr., Error Control Coding: Fundamentals and
Applications (Englewood Cliffs, NJ: Prentice-Hall, 1983).

About the Author
Bernard Sklar is the author of Digital Communications: Fundamentals and
Applications, Second Edition (Prentice-Hall, 2001, ISBN 0-13-084788-7).

