
Ordering Information: Python How to Program

• View the complete Table of Contents:

• Read the Preface:

• Download the Code Examples:

To view all the Deitel products and services available, visit the Deitel Kiosk on
InformIT at www.informIT.com/deitel.

To follow the Deitel publishing program, sign-up now for the DEITEL™ BUZZ ON-
LINE e-mail newsletter at www.deitel.com/newsletter/subscribeinformIT.html.
To learn more about our Python programming courses or any other Deitel in-
structor-led corporate training courses that can be delivered at your location, visit
www.deitel.com/training or contact our Director of Corporate Training Pro-
grams at (978) 461-5880 or e-mail: christi.kelsey@deitel.com..

Note from the Authors: This article is an excerpt from Chapter 24, Sections 24.6
and 24.7 of Python How to Program, 1/e. This article introduces pygame, a mul-
timedia package for Python. We use pygame and Tkinter to create a working
CD-Player with a graphical interface. The simplicity of the program demonstrates
the power and expressiveness of Python and its many open-source packages.
Readers should be familiar with object-oriented programming and this article is
intended for advanced programmers. The code examples included in this article
show readers examples using the Deitel™ signature LIVE-CODE™ Approach,
which presents all concepts in the context of complete working programs fol-
lowed by the screen shots of the actual inputs and outputs.

informITheaderpage.fm Page 39 Friday, May 17, 2002 8:49 AM

http://www.informit.com/deitel
http://www.informit.com/content/index.asp?product_id={EC7AB4B5-873F-426D-8F08-D6CCAA0C1C1F}
http://www.deitel.com/books/pythonHTP1/pythonHTP1_toc.pdf
http://www.deitel.com/books/pythonHTP1/pythonHTP1_preface.pdf
http://www.deitel.com/books/downloads.html#python
http://www.deitel.com/newsletter/subscribeinformIT.html
http://www.deitel.com/training/offerings.html#python
http://www.deitel.com/training
mailto:christi.kelsey@deitel.com

948 Multimedia Chapter 24

24.6 Introduction to pygame
In this article, we present pygame, a set of Python modules written by Pete Shinners that
are designed to create multimedia programs and games. The pygame modules use the Sim-
ple DirectMedia Layer (SDL), which is a cross-platform library that provides a uniform
API to access multimedia hardware. Module pygame allows programmers to access this
library through Python. For more information about pygame, including extensive docu-
mentation, visit www.pygame.org.

24.7 Python CD Player
This article demonstrates how to create a simple CD-ROM player using pygame’s cdrom
module (Fig. 24.4). Module cdrom contains class CD and methods to initialize a CD-ROM
subsystem. Class CD represents the user’s CD-ROM drive. Methods of class CD allow users
to access an audio compact disc (CD) in a computer’s CD-ROM drive. The program in Fig-
ure 24.4 also uses Tkinter and Pmw to create the CD-player interface. Tkinter and
Pmw are introduced in Chapters 10 and 11 of our textbook Python How to Program.

1 # Fig. 24.4: fig24_04.py
2 # Simple CD player using Tkinter and pygame.
3
4 import sys
5 import string
6 import pygame, pygame.cdrom
7 from Tkinter import *
8 from tkMessageBox import *
9 import Pmw

10
11 class CDPlayer(Frame):
12 """A GUI CDPlayer class using Tkinter and pygame"""
13
14 def __init__(self):
15 """Initialize pygame.cdrom and get CDROM if one exists"""
16
17 pygame.cdrom.init()
18
19 if pygame.cdrom.get_count() > 0:
20 self.CD = pygame.cdrom.CD(0)
21 else:
22 sys.exit("There are no available CDROM drives.")
23
24 self.createGUI()
25 self.updateTime()
26
27 def destroy(self):
28 """Stop CD, uninitialize pygame.cdrom and destroy GUI"""
29
30 if self.CD.get_init():
31 self.CD.stop()
32
33 pygame.cdrom.quit()

Fig. 24.4Fig. 24.4Fig. 24.4Fig. 24.4 Python CD player. (Part 1 of 5.)

pythonhtp1_24_article.fm Page 948 Friday, May 17, 2002 8:34 AM

Chapter 24 Multimedia 949

34 Frame.destroy(self)
35
36 def createGUI(self):
37 """Create CDPlayer widgets"""
38
39 Frame.__init__(self)
40 self.pack(expand = YES, fill = BOTH)
41 self.master.title("CD Player")
42
43 # display current track playing
44 self.trackLabel = IntVar()
45 self.trackLabel.set(1)
46 self.trackDisplay = Label(self, font = "Courier 14",
47 textvariable = self.trackLabel, bg = "black",
48 fg = "green")
49 self.trackDisplay.grid(sticky = W+E+N+S)
50
51 # display current time of track playing
52 self.timeLabel = StringVar()
53 self.timeLabel.set("00:00/00:00")
54 self.timeDisplay = Label(self, font = "Courier 14",
55 textvariable = self.timeLabel, bg = "black",
56 fg = "green")
57 self.timeDisplay.grid(row = 0, column = 1, columnspan = 3,
58 sticky = W+E+N+S)
59
60 # play/pause CD
61 self.playLabel = StringVar()
62 self.playLabel.set("Play")
63 self.play = Button(self, textvariable = self.playLabel,
64 command = self.playCD, width = 10)
65 self.play.grid(row = 1, column = 0, columnspan = 2,
66 sticky = W+E+N+S)
67
68 # stop CD
69 self.stop = Button(self, text = "Stop", width = 10,
70 command = self.stopCD)
71 self.stop.grid(row = 1, column = 2, columnspan = 2,
72 sticky = W+E+N+S)
73
74 # skip to previous track
75 self.previous = Button(self, text = "|<<", width = 5,
76 command = self.previousTrack)
77 self.previous.grid(row = 2, column = 0, sticky = W+E+N+S)
78
79 # skip to next track
80 self.next = Button(self, text = ">>|", width = 5,
81 command = self.nextTrack)
82 self.next.grid(row = 2, column = 1, sticky = W+E+N+S)
83
84 # eject CD
85 self.eject = Button(self, text = "Eject", width = 10,
86 command = self.ejectCD)
87 self.eject.grid(row = 2, column = 2, columnspan = 2,

Fig. 24.4Fig. 24.4Fig. 24.4Fig. 24.4 Python CD player. (Part 2 of 5.)

pythonhtp1_24_article.fm Page 949 Friday, May 17, 2002 8:34 AM

950 Multimedia Chapter 24

88 sticky = W+E+N+S)
89
90 def playCD(self):
91 """Play/Pause CD if disc is loaded"""
92
93 # if disc has been ejected, reinitialize drive
94 if not self.CD.get_init():
95 self.CD.init()
96 self.currentTrack = 1
97
98 # if no disc in drive, uninitialize and return
99 if self.CD.get_empty():
100 self.CD.quit()
101 return
102
103 # if disc is loaded, obtain disc information
104 else:
105 self.totalTracks = self.CD.get_numtracks()
106
107 # if CD is not playing, play CD
108 if not self.CD.get_busy() and not self.CD.get_paused():
109 self.CD.play(self.currentTrack - 1)
110 self.playLabel.set("| |")
111
112 # if CD is playing, pause disc
113 elif not self.CD.get_paused():
114 self.CD.pause()
115 self.playLabel.set("Play")
116
117 # if CD is paused, resume play
118 else:
119 self.CD.resume()
120 self.playLabel.set("| |")
121
122 def stopCD(self):
123 """Stop CD if disc is loaded"""
124
125 if self.CD.get_init():
126 self.CD.stop()
127 self.playLabel.set("Play")
128
129 def playTrack(self, track):
130 """Play track if disc is loaded"""
131
132 if self.CD.get_init():
133 self.currentTrack = track
134 self.trackLabel.set(self.currentTrack)
135
136 # start beginning of track
137 if self.CD.get_busy():
138 self.CD.play(self.currentTrack - 1)
139 elif self.CD.get_paused():
140 self.CD.play(self.currentTrack - 1)
141 self.playCD() # re-pause CD

Fig. 24.4Fig. 24.4Fig. 24.4Fig. 24.4 Python CD player. (Part 3 of 5.)

pythonhtp1_24_article.fm Page 950 Friday, May 17, 2002 8:34 AM

Chapter 24 Multimedia 951

142
143 def nextTrack(self):
144 """Play next track on CD if disc is loaded"""
145
146 if self.CD.get_init() and \
147 self.currentTrack < self.totalTracks:
148 self.playTrack(self.currentTrack + 1)
149
150 def previousTrack(self):
151 """Play previous track on CD if disc is loaded"""
152
153 if self.CD.get_init() and self.currentTrack > 1:
154 self.playTrack(self.currentTrack - 1)
155
156 def ejectCD(self):
157 """Eject CD from drive"""
158
159 response = askyesno("Eject pushed", "Eject CD?")
160
161 if response:
162 self.CD.init() # CD must be initialized to eject
163 self.CD.eject()
164 self.CD.quit()
165 self.trackLabel.set(1)
166 self.timeLabel.set("00:00/00:00")
167 self.playLabel.set("Play")
168
169 def updateTime(self):
170 """Update time display if disc is loaded"""
171
172 if self.CD.get_init():
173 seconds = int(self.CD.get_current()[1])
174 endSeconds = int(self.CD.get_track_length(
175 self.currentTrack - 1))
176
177 # if reached end of current track, play next track
178 if seconds >= (endSeconds - 1):
179 self.nextTrack()
180 else:
181 minutes = seconds / 60
182 endMinutes = endSeconds / 60
183 seconds = seconds - (minutes * 60)
184 endSeconds = endSeconds - (endMinutes * 60)
185
186 # display time in format mm:ss/mm:ss
187 trackTime = string.zfill(str(minutes), 2) + \
188 ":" + string.zfill(str(seconds), 2)
189 endTime = string.zfill(str(endMinutes), 2) + \
190 ":" + string.zfill(str(endSeconds), 2)
191
192 if self.CD.get_paused():
193
194 # alternate pause symbol and time in display
195 if not self.timeLabel.get() == " || ":

Fig. 24.4Fig. 24.4Fig. 24.4Fig. 24.4 Python CD player. (Part 4 of 5.)

pythonhtp1_24_article.fm Page 951 Friday, May 17, 2002 8:34 AM

952 Multimedia Chapter 24

Line 207 creates an object of class CDPlayer (lines 11–204)and invokes its main-
loop method to start the application. The CDPlayer constructor (lines 14–25) initializes
module cdrom (line 17) so the program can access methods for controlling and querying
the computer’s CD-ROM drive. The if/else structure (lines 19–22) determines the
number of available CD-ROM drives by invoking cdrom’s get_count function. If at
least one drive is present, line 20 creates a pygame.cdrom.CD object called CD. The
value passed to the constructor is the identification (ID) number of the CD-ROM drive. If
more than one CD-ROM drive is installed on a computer system, the program uses the pri-
mary CD-ROM drive. The constructor receives 0 as an argument, because the primary CD-
ROM’s drive identification number is always 0. The program exits (line 22) if no CD-ROM
drive exists.

After the program identifies that a CD-ROM drive exists, the program constructs a
GUI for the CD player. Line 24 invokes method createGUI (lines 36–88) to create the
CD-player interface. Method createGUI adds the components to the display (each com-
ponent’s action is discussed later in this section). Both the Label created to display the
track number (trackDisplay) and the Label that displays the current track time
(timeDisplay) have textvariables—trackLabel and timeLabel—that
update the CD-player display. Notice also that Button play has a textvariable—
playLabel—which changes its display when the user pauses or plays a CD.

Once the GUI has been created, the constructor calls method updateTime (dis-
cussed momentarily). The program then enters the mainloop, in which the user can play,
stop, pause, fast forward and backtrack through a CD by manipulating the CD player’s
GUI.

The other methods provide the functionality of a basic CD player. The Play button has
callback method playCD (lines 90–120), which plays or pauses the CD. Line 94 deter-

196 self.timeLabel.set(" || ")
197 else:
198 self.timeLabel.set(trackTime + "/" + endTime)
199
200 else:
201 self.timeLabel.set(trackTime + "/" + endTime)
202
203 # call updateTime method again after 1000ms (1 second)
204 self.after(1000, self.updateTime)
205
206 def main():
207 CDPlayer().mainloop()
208
209 if __name__ == "__main__":
210 main()

Fig. 24.4Fig. 24.4Fig. 24.4Fig. 24.4 Python CD player. (Part 5 of 5.)

pythonhtp1_24_article.fm Page 952 Friday, May 17, 2002 8:34 AM

Chapter 24 Multimedia 953

mines whether the CD-ROM is initialized by invoking CD method get_init. If the CD-
ROM is not initialized, playCD initializes it and sets currentTrack to 1—the first
audio track. Line 99 determines whether the CD-ROM drive is empty by invoking CD
method get_empty. If the drive is empty, line 100 uninitializes the object with CD method
quit and returns. Otherwise, line 105 obtains the total number of audio tracks on the disc
from CD method get_numtracks and stores that value in object attribute total-
Tracks.

Method playCD tests for three cases—the CD is not playing, the CD is not paused
and or the CD is paused. Line 108 determines whether the CD is not playing and not paused
using methods get_busy and get_paused, respectively. If both of these conditions are
true, line 109 calls method play. The method call specifies which track to play. Because
the track numbers for a CD object begin with 0 and currentTrack is initialized to 1,
the value passed to method play is 1 less than currentTrack (line 109). Line 110 sets
the Play button’s text to contain the symbol for the pause button,| |, so the user can control
the CD-ROM application properly.

Line 113 determines whether the CD is paused by invoking get_paused. If the CD
is playing and not paused (e.g., the user has not pressed the pause button), CD method
pause (line 114) pauses the CD. Line 114 sets the Play button’s text to contain the word
Play. Otherwise, the CD is paused, and the program calls CD method resume (line 119)
to continue playing the track. As in line 110, the program sets the label on the button to the
symbols for the Paused button.

The Stop button’s associated callback is stopCD (lines 122–127). When a user
presses Stop, line 125 determines whether the CD object is initialized. If it is, CD method
stop is invoked to stop the CD, and the text on the Play button is set to “Play”. If a CD
object is not initialized, calling Stop generates an error. If the CD object is initialized but
not playing, calling Stop does nothing. This application plays the audio tracks sequen-
tially, but the user can press the |<< or the >>| button to move backward or forward, respec-
tively, through the audio tracks on the CD. The >>| button is associated with callback
nextTrack, which skips to the next track on the CD (lines 143–148). If CD is initialized
and the current track is not the last one, method playTrack is invoked, with the next track
number specified (currentTrack + 1). Similarly, the |<< button is associated with call-
back previousTrack, which skips to the previous track on a CD (lines 150–154). If CD
is initialized and the current track is not the first one, method playTrack is invoked, with
the previous track number specified (currentTrack – 1).

 Method playTrack (lines 129–141) plays a CD track. If the CD is initialized, line
133 sets currentTrack to the indicated number. Line 134 sets trackLabel to the
new track number. If the CD is playing another song, line 138 plays the indicated track
instead. If the CD is paused, however, lines 140–141 switch to the specified song and then
leave the disc paused.

Callback ejectCD (lines 156–167) is bound to the Eject button. When a user clicks
Eject, line 159 displays a tkMessageBox window with a message that asks the user
whether the CD should be ejected. This is a safeguard against accidentally ejecting the CD.
If the user chooses to eject the CD, CD is initialized because, trying to eject an uninitialized
CD object is an error. Once the CD object has been initialized, the disc is ejected with CD
method eject and CD is uninitialized (lines 162–164). Lines 165–167 set the CD-player
interface to its initial appearance.

pythonhtp1_24_article.fm Page 953 Friday, May 17, 2002 8:34 AM

954 Multimedia Chapter 24

The CD player updates its display using method updateTime (lines 169–204), orig-
inally called in line 25. Line 172 determines whether CD is initialized. If it is not, execution
skips to line 204.

Often, audio CDs list the duration of each track. This program displays the time that a
song has been playing to the user. If the CD is initialized, CD method get_current
returns the number of seconds that the track has played and assigns that number to variable
seconds (line 173). Method get_current returns a two-element tuple of the current
track number and the number of seconds that the song has been playing. Lines 174–175
obtain the track length from CD method get_track_length, specifying the current
track (currentTrack – 1). This value is assigned to variable endSeconds. Lines
178–179 ensure that the tracks play consecutively until the entire disk has been played.
Lines 181–184 use seconds and endSeconds to determine the current time and end
time in minutes and seconds.

Lines 187–188 create a string for the current track time (trackTime). The string is
in the form mm:ss, in which mm is minutes and ss is seconds. Note that string function
zfill pads the string with zeros. This ensures that both minutes and seconds are displayed
with two digits.

Line 192 determines whether the CD is paused. If the CD is not paused, time-
Display is updated to display the current time (line 201). Otherwise, timeDisplay is
updated to either the current time or to the symbol that represents pause (lines 195–198).
This causes the display to flash between the track time and the pause symbol when paused.

Method updateTime invokes component method after. Method after registers
a callback that executes after a specified number of milliseconds. Line 204 ensures that
method updateTime is called approximately every 1000 milliseconds (one second).

When the user is finished with the CD player, the program destroys the window and
invokes the CDPlayer’s destroy method to terminate the CD player (lines 27–34).
Line 30 determines whether CD is initialized. If CD is initialized, CD method stop is
invoked to stop the CD. If the program does not call method stop, the CD would continue
to play after the user destroys the window. Lines 33–34 uninitialize the pygame cdrom
module and destroy the frame by calling Frame method destroy.

Good Programming Practice 24.1
For Tkinter programs, a destroy method acts as a destructor. 24.1

pythonhtp1_24_article.fm Page 954 Friday, May 17, 2002 8:34 AM

	24
	Multimedia
	Objectives
	• To introduce multimedia-applications programming using Python.
	• To learn to create three-dimensional objects using module PyOpenGL.
	• To manipulate three-dimensional objects using Python and Alice.
	• To learn to create multimedia applications using Python and pygame.
	One picture is worth ten thousand words.
	Chinese proverb
	Treat nature in terms of the cylinder, the sphere, the cone, all in perspective.
	Paul Cezanne
	Nothing ever becomes real till it is experienced—even a proverb is no proverb to you till your li...
	John Keats
	A picture shows me at a glance what it takes dozens of pages of a book to expound.
	Ivan Sergeyevich

	24.6 Introduction to pygame
	In this article, we present pygame, a set of Python modules written by Pete Shinners that are des...

	24.7 Python CD Player
	This article demonstrates how to create a simple CD-ROM player using pygame’s cdrom module (Fig. ...
	2 # Simple CD player using Tkinter and pygame.
	3
	4 import sys
	5 import string
	6 import pygame, pygame.cdrom
	7 from Tkinter import *
	8 from tkMessageBox import *
	9 import Pmw
	10
	11 class CDPlayer(Frame):
	12 """A GUI CDPlayer class using Tkinter and pygame"""
	13
	14 def __init__(self):
	15 """Initialize pygame.cdrom and get CDROM if one exists"""
	16
	17 pygame.cdrom.init()
	18
	19 if pygame.cdrom.get_count() > 0:
	20 self.CD = pygame.cdrom.CD(0)
	21 else:
	22 sys.exit("There are no available CDROM drives.")
	23
	24 self.createGUI()
	25 self.updateTime()
	26
	27 def destroy(self):
	28 """Stop CD, uninitialize pygame.cdrom and destroy GUI"""
	29
	30 if self.CD.get_init():
	31 self.CD.stop()
	32
	33 pygame.cdrom.quit()
	34 Frame.destroy(self)
	35
	36 def createGUI(self):
	37 """Create CDPlayer widgets"""
	38
	39 Frame.__init__(self)
	40 self.pack(expand = YES, fill = BOTH)
	41 self.master.title("CD Player")
	42
	43 # display current track playing
	44 self.trackLabel = IntVar()
	45 self.trackLabel.set(1)
	46 self.trackDisplay = Label(self, font = "Courier 14",
	47 textvariable = self.trackLabel, bg = "black",
	48 fg = "green")
	49 self.trackDisplay.grid(sticky = W+E+N+S)
	50
	51 # display current time of track playing
	52 self.timeLabel = StringVar()
	53 self.timeLabel.set("00:00/00:00")
	54 self.timeDisplay = Label(self, font = "Courier 14",
	55 textvariable = self.timeLabel, bg = "black",
	56 fg = "green")
	57 self.timeDisplay.grid(row = 0, column = 1, columnspan = 3,
	58 sticky = W+E+N+S)
	59
	60 # play/pause CD
	61 self.playLabel = StringVar()
	62 self.playLabel.set("Play")
	63 self.play = Button(self, textvariable = self.playLabel,
	64 command = self.playCD, width = 10)
	65 self.play.grid(row = 1, column = 0, columnspan = 2,
	66 sticky = W+E+N+S)
	67
	68 # stop CD
	69 self.stop = Button(self, text = "Stop", width = 10,
	70 command = self.stopCD)
	71 self.stop.grid(row = 1, column = 2, columnspan = 2,
	72 sticky = W+E+N+S)
	73
	74 # skip to previous track
	75 self.previous = Button(self, text = "|<<", width = 5,
	76 command = self.previousTrack)
	77 self.previous.grid(row = 2, column = 0, sticky = W+E+N+S)
	78
	79 # skip to next track
	80 self.next = Button(self, text = ">>|", width = 5,
	81 command = self.nextTrack)
	82 self.next.grid(row = 2, column = 1, sticky = W+E+N+S)
	83
	84 # eject CD
	85 self.eject = Button(self, text = "Eject", width = 10,
	86 command = self.ejectCD)
	87 self.eject.grid(row = 2, column = 2, columnspan = 2,
	88 sticky = W+E+N+S)
	89
	90 def playCD(self):
	91 """Play/Pause CD if disc is loaded"""
	92
	93 # if disc has been ejected, reinitialize drive
	94 if not self.CD.get_init():
	95 self.CD.init()
	96 self.currentTrack = 1
	97
	98 # if no disc in drive, uninitialize and return
	99 if self.CD.get_empty():
	100 self.CD.quit()
	101 return
	102
	103 # if disc is loaded, obtain disc information
	104 else:
	105 self.totalTracks = self.CD.get_numtracks()
	106
	107 # if CD is not playing, play CD
	108 if not self.CD.get_busy() and not self.CD.get_paused():
	109 self.CD.play(self.currentTrack - 1)
	110 self.playLabel.set("| |")
	111
	112 # if CD is playing, pause disc
	113 elif not self.CD.get_paused():
	114 self.CD.pause()
	115 self.playLabel.set("Play")
	116
	117 # if CD is paused, resume play
	118 else:
	119 self.CD.resume()
	120 self.playLabel.set("| |")
	121
	122 def stopCD(self):
	123 """Stop CD if disc is loaded"""
	124
	125 if self.CD.get_init():
	126 self.CD.stop()
	127 self.playLabel.set("Play")
	128
	129 def playTrack(self, track):
	130 """Play track if disc is loaded"""
	131
	132 if self.CD.get_init():
	133 self.currentTrack = track
	134 self.trackLabel.set(self.currentTrack)
	135
	136 # start beginning of track
	137 if self.CD.get_busy():
	138 self.CD.play(self.currentTrack - 1)
	139 elif self.CD.get_paused():
	140 self.CD.play(self.currentTrack - 1)
	141 self.playCD() # re-pause CD
	142
	143 def nextTrack(self):
	144 """Play next track on CD if disc is loaded"""
	145
	146 if self.CD.get_init() and \
	147 self.currentTrack < self.totalTracks:
	148 self.playTrack(self.currentTrack + 1)
	149
	150 def previousTrack(self):
	151 """Play previous track on CD if disc is loaded"""
	152
	153 if self.CD.get_init() and self.currentTrack > 1:
	154 self.playTrack(self.currentTrack - 1)
	155
	156 def ejectCD(self):
	157 """Eject CD from drive"""
	158
	159 response = askyesno("Eject pushed", "Eject CD?")
	160
	161 if response:
	162 self.CD.init() # CD must be initialized to eject
	163 self.CD.eject()
	164 self.CD.quit()
	165 self.trackLabel.set(1)
	166 self.timeLabel.set("00:00/00:00")
	167 self.playLabel.set("Play")
	168
	169 def updateTime(self):
	170 """Update time display if disc is loaded"""
	171
	172 if self.CD.get_init():
	173 seconds = int(self.CD.get_current()[1])
	174 endSeconds = int(self.CD.get_track_length(
	175 self.currentTrack - 1))
	176
	177 # if reached end of current track, play next track
	178 if seconds >= (endSeconds - 1):
	179 self.nextTrack()
	180 else:
	181 minutes = seconds / 60
	182 endMinutes = endSeconds / 60
	183 seconds = seconds - (minutes * 60)
	184 endSeconds = endSeconds - (endMinutes * 60)
	185
	186 # display time in format mm:ss/mm:ss
	187 trackTime = string.zfill(str(minutes), 2) + \
	188 ":" + string.zfill(str(seconds), 2)
	189 endTime = string.zfill(str(endMinutes), 2) + \
	190 ":" + string.zfill(str(endSeconds), 2)
	191
	192 if self.CD.get_paused():
	193
	194 # alternate pause symbol and time in display
	195 if not self.timeLabel.get() == " || ":
	196 self.timeLabel.set(" || ")
	197 else:
	198 self.timeLabel.set(trackTime + "/" + endTime)
	199
	200 else:
	201 self.timeLabel.set(trackTime + "/" + endTime)
	202
	203 # call updateTime method again after 1000ms (1 second)
	204 self.after(1000, self.updateTime)
	205
	206 def main():
	207 CDPlayer().mainloop()
	208
	209 if __name__ == "__main__":
	Fig. 24.4 Python CD player. (Part 1 of 5.)

	Line 207 creates an object of class CDPlayer (lines 11–204)and invokes its mainloop method to sta...
	After the program identifies that a CD-ROM drive exists, the program constructs a GUI for the CD ...
	Once the GUI has been created, the constructor calls method updateTime (discussed momentarily). T...
	The other methods provide the functionality of a basic CD player. The Play button has callback me...
	Method playCD tests for three cases—the CD is not playing, the CD is not paused and or the CD is ...
	Line 113 determines whether the CD is paused by invoking get_paused. If the CD is playing and not...
	The Stop button’s associated callback is stopCD (lines 122–127). When a user presses Stop, line 1...
	Method playTrack (lines 129–141) plays a CD track. If the CD is initialized, line 133 sets curren...
	Callback ejectCD (lines 156–167) is bound to the Eject button. When a user clicks Eject, line 159...
	The CD player updates its display using method updateTime (lines 169–204), originally called in l...
	Often, audio CDs list the duration of each track. This program displays the time that a song has ...
	Lines 187–188 create a string for the current track time (trackTime). The string is in the form m...
	Line 192 determines whether the CD is paused. If the CD is not paused, time�Display is updated to...
	Method updateTime invokes component method after. Method after registers a callback that executes...
	When the user is finished with the CD player, the program destroys the window and invokes the CDP...
	Good Programming Practice 24.1
	For Tkinter programs, a destroy method acts as a destructor.

