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4.12 Introduction to Hashes
The second multivalued (nonscalar) data type that is fundamental to the Perl language is
the hash, or associative array. A hash is an unordered collection of key-value pairs. Rather
than accessing a hash element with a subscript like an array, elements in a hash are accessed
using a string known as a key. Each key must be unique. Hashes are sometimes known as
associative arrays, because they define associations between keys and their values.

Common Programming Error 4.12
The keys in a hash must be unique. Using the same key more than once in a hash causes the
original value for that key to be replaced with a new value; this situation could be a logic
error, or it could be a normal update operation. 4.12

The special symbol for a hash is %. Hashes are implementations of a data structure
known as a hash table. Because each value has an associated key, hashes take up more
space than arrays. However, the internal structure of a hash provides fast lookup capabili-
ties through which a value can often be located in one operation.

Performance Tip 4.4
Hashes are particularly useful in situations where extremely fast retrieval of values is re-
quired. 4.4

Performance Tip 4.5
Hashes require more memory than arrays. Often, there is a delicate balance between the time
it takes to locate values and the amount of memory required to maintain the data. These is-
sues are normally categorized as space-time trade-offs. 4.5

4.13 Creating and Manipulating a Hash
Like arrays, hashes can be created in two ways: either by assigning a list to the hash variable
or by assigning values to single elements. Figure 4.15 shows the creation of a hash and the
accessing of its elements; watch for the => operator, which we have not covered yet.

1 #!/usr/bin/perl
2 # Fig. 4.15: fig04_15.pl
3 # Creating and accessing hash elements
4
5 # create a hash and output its values
6 %hash = ( width => '300', 
7           height => '150' );
8 print "\$hash{ 'width' } = $hash{ 'width' }\n";
9 print "\$hash{ 'height' } = $hash{ 'height' }\n\n";

10
11 # assigning to a new hash element
12 $hash{ 'color' } = 'blue';
13 print "\$hash{ 'width' } = $hash{ 'width' }\n";
14 print "\$hash{ 'height' } = $hash{ 'height' }\n";
15 print "\$hash{ 'color' } = $hash{ 'color' }\n\n";
16
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Lines 6–7 define a hash by assigning a list to a hash variable (%hash). As with arrays,
a hash variable can have any valid identifier as a name, including the name hash, used
here. Here, we introduce the “corresponds to” operator, =>. This operator is similar to the
comma operator, except that it interprets its left-side operand as a string, so no quotes need
to be placed around the string. The first value in this list (width) is the key of the first ele-
ment to be created in the hash, and the second value in the list ('300') is the value that
corresponds to that key. The list elements are grouped this way into key-value pairs. So, the
value height is the key for the second element in the hash, and the element’s corre-
sponding value is '150'. Lines 8–9 display the individual hash elements. Note that you
can access a key’s corresponding value by preceding the hash name with a $ and enclosing
the key in curly braces ({}). This expression “looks up” the value that corresponds to the
key and returns that value.

Line 12

$hash{ 'color' } = 'blue';

adds a new element to the existing hash. Assigning a value to a new key in a hash automat-
ically creates a new element in that hash. Individual hash elements are accessed in a similar
manner to arrays, except that the subscript is now the key surrounded by curly braces, as
shown in line 12. The technique of adding new elements to a hash can be used to create a
new hash as well. Note that if a particular key already exists in the hash, assigning a value
to that key replaces the old value with the new one. Lines 13–15 display the updated con-
tents of %hash.

Lines 18–19

print "%hash\n";      # no interpolation, as with arrays
print %hash, "\n";    # difficult to read, no spaces

attempt to output %hash using techniques we demonstrated for arrays earlier in this chap-
ter. Unlike arrays, hashes are not interpolated when enclosed in double quotes. So, line 18
simply displays the string %hash. Outputting the hash with print (line 19) concatenates
all the key-value pairs and outputs them as one long string. Note that the key-value pairs do
not appear in a way that indicates the order in which they were added to the hash. 

17 # display a hash with print
18 print "%hash\n";      # no interpolation, unlike with arrays
19 print %hash, "\n";    # difficult to read, no spaces

$hash{ 'width' } = 300
$hash{ 'height' } = 150

$hash{ 'width' } = 300
$hash{ 'height' } = 150
$hash{ 'color' } = blue

%hash
height150width300colorblue
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Just as arrays have array slices, hashes have hash slices (Fig. 4.16). Providing multiple
keys in curly braces ({}) returns a list of the corresponding values for those keys. The
resulting list is manipulated as an array of values rather than a key-value pairs, so the @
symbol is used for hash slices as well as array slices. 

Common Programming Error 4.13
Using parentheses, (), rather than braces, {}, when creating a hash slice is a syntax error. 4.13

Lines 5–14 create hash %romanNumerals, where the keys are English words repre-
senting the numbers from 1–10 and the values are the Roman numerals representing these
numbers. Note that the keys are not placed in quotes because they appear to the left of the
“corresponds to” operator. Lines 16–17 display the results of a hash slice containing the
values for the keys 'three', 'five' and 'eight'.

1 #!/usr/bin/perl
2 # Fig. 4.16: fig04_16.pl
3 # Demonstrating hash slices.
4
5 %romanNumerals = ( one   => 'I',
6                    two   => 'II',
7                    three => 'III',
8                    four  => 'IV',
9                    five  => 'V',

10                    six   => 'VI',
11                    seven => 'VII',
12                    eight => 'VIII',
13                    nine  => 'IX',
14                    ten   => 'X' );
15
16 print "The Roman numerals for three, five and eight are: ",
17       "@romanNumerals{ 'three', 'five', 'eight' }\n";

The Roman numerals for three, five and eight are: III V VIII

Fig. 4.16Fig. 4.16Fig. 4.16Fig. 4.16 Demonstrating hash slices.


