
Ordering Information:
Python How to Program
The Complete Python Training Course

• View the complete Table of Contents

• Read the Preface

• Download the Code Examples

To view all the Deitel products and services available, visit the Deitel Kiosk on
InformIT at www.informIT.com/deitel.

To follow the Deitel publishing program, sign-up now for the DEITEL™ BUZZ ON-
LINE e-mail newsletter at www.deitel.com/newsletter/subscribeinformIT.html.

To learn more about our Python programming courses or any other Deitel in-
structor-led corporate training courses that can be delivered at your location, visit
www.deitel.com/training, contact our Director of Corporate Training Programs
at (978) 461-5880 or e-mail: christi.kelsey@deitel.com.

Note from the Authors: This article is an excerpt from Chapter 18, Section 18.2 of
Python How to Program. In this article, we discuss the mechanics of process cre-
ation and management in Python. Process management is a task common to pro-
grams such as shells and simple Web servers. We introduce functions os.fork
and os.wait. We also introduce the concept of asynchronously executing pro-
cesses and the unpredictability of their relative execution speeds. Readers
should be familiar with basic Python programming, modules and exception han-
dling. The code examples included in this article show readers programming ex-
amples using the DEITEL™ signature LIVE-CODE™ Approach, which presents all
concepts in the context of complete working programs followed by the screen
shots of the actual inputs and outputs.

informITheaderpage.fm Page 39 Tuesday, July 2, 2002 11:57 AM

http://www.informit.com/deitel
http://www.informit.com/isapi/product_id~{F56702E9-6C18-44EF-B80C-274DD87A1233}/content/index.asp
http://www.informit.com/content/index.asp?product_id={EC7AB4B5-873F-426D-8F08-D6CCAA0C1C1F}
http://www.informit.com/content/index.asp?product_id={14E4C51D-889B-490E-B966-C464360A55D6}
http://www.deitel.com/books/downloads.html#python
http://www.deitel.com/newsletter/subscribeinformIT.html
http://www.deitel.com/training/offerings.html#python
http://www.deitel.com/training
http://www.deitel.com/books/pythonHTP1/pythonHTP1_toc.pdf
http://www.deitel.com/books/pythonHTP1/pythonHTP1_preface.pdf
mailto:christi.kelsey@deitel.com

614 Process Management Chapter 18

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/02

18.2 os.fork Function
Creating new processes is useful in applications that can perform multiple tasks in parallel.
For example, the Apache Web server (prior to version 2.0) used multiple processes to han-
dle multiple client requests simultaneously. Each of these processes was an identical copy
of the main Apache process. In this case, making identical copies of the main Apache pro-
cess was useful, because each of these processes performed the same task (i.e., the serving
of Web pages to clients).

One way to create a new process is to use function os.fork, which is available only
on POSIX-compliant systems (e.g., most versions of UNIX and Linux). Module os on the
Windows version of Python does not define function os.fork, because Windows does
not support the creation of new processes by using fork. Instead, Windows applications
programmers typically use multithreaded programming techniques to accomplish concur-
rency tasks.

Common Programming Error 18.1
Attempting to execute a Python program that invokes os.fork on a Windows machine
causes an AttributeError exception because the os module for Windows does not de-
fine function fork. 18.1

Portability Tip 18.1
 Function os.fork is unavailable for Windows versions of Python. 18.1

Figure 18.1 describes how function os.fork creates a new process. Each time a pro-
gram executes, the operating system creates a new process to run the program’s instructions
(Step 1). A process also may cause the operating system to create a new process by calling
os.fork. The parent process is the process that invokes os.fork. Any process that the
parent process forks (creates) is a child process. Each process has a unique process id
number, or pid, that identifies the process. When a process invokes function fork, the
operating system creates a new child process that is essentially identical to the parent (orig-
inal) process (Step 2). The child process inherits copies of many values, such as global vari-
ables and environment variables, from the parent process. The only difference between the
two processes is the return value of fork: The child process receives a return value of
0, and the parent process receives the child’s pid as the return value. After the call to func-
tion fork, the two processes execute the same program concurrently, starting with the line
of code that follows the invocation of fork. The parent and child processes execute con-
currently and independently of one another (i.e., they execute “asynchronously”).
Figure 18.2 illustrates an example of function os.fork.

pythonhtp1_fork_article.fm Page 614 Tuesday, July 2, 2002 12:03 PM

Chapter 18 Process Management 615

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/02

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 os.fork creates a new process.

1 # Fig. 18.2: fig18_02.py
2 # Using fork to create child processes.
3
4 import os
5 import sys
6
7 processName = "parent" # only the parent is running now
8
9 print "Program executing\n\tpid: %d, processName: %s" \

10 % (os.getpid(), processName)
11
12 # attempt to fork child process
13 try:
14 forkPID = os.fork() # create child process
15 except OSError:
16 sys.exit("Unable to create new process.")
17
18 if forkPID != 0: # am I parent process?
19 print "Parent executing\n" + \
20 "\tpid: %d, forkPID: %d, processName: %s" \
21 % (os.getpid(), forkPID, processName)
22
23 elif forkPID == 0: # am I child process?
24 processName = "child"
25 print "Child executing\n" + \
26 "\tpid: %d, forkPID: %d, processName: %s" \
27 % (os.getpid(), forkPID, processName)
28
29 print "Process finishing\n\tpid: %d, processName: %s" \
30 % (os.getpid(), processName)

Fig. 18.2Fig. 18.2Fig. 18.2Fig. 18.2 os.fork used to create child processes. (Part 1 of 2.)

Parent process

forkPID = os.fork()

Parent process
(forkPID is Child’s pid)

Child process
(forkPID is 0)

Parent process calls
os.fork and assigns
return value to forkPID.

2Parent (original)
process executes.

1

Parent and child
processes execute same
program simultaneously.

3

pythonhtp1_fork_article.fm Page 615 Tuesday, July 2, 2002 12:03 PM

616 Process Management Chapter 18

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/02

Line 7 initializes variable processName to "parent" to indicate that the current
process is the parent process. Lines 9–10 print the pid and processName of the parent
process. A process can access its pid by calling function os.getpid. Line 14 then calls
function os.fork to create a duplicate of the current process. If the operating system is
unable to create a new process, function os.fork raises an OSError exception, and line
16 exits the program; otherwise, the operating system creates a new process. Both copies
of the process—parent and child—continue execution from the point at which the child
process was created (line 14), but each process executes in a separate memory space.

If a program must perform different tasks in the parent and child processes, that pro-
gram can use if statements to test the value that fork returns in each process. The pro-
cesses then can perform the appropriate tasks based on the results of those if statements.
Recall that fork returns 0 in the newly created child process; whereas in the parent pro-

Program executing
 pid: 5428, processName: parent
Parent executing
 pid: 5428, forkPID: 5429, processName: parent
Process finishing
 pid: 5428, processName: parent
Child executing
 pid: 5429, forkPID: 0, processName: child
Process finishing
 pid: 5429, processName: child

Program executing
 pid: 5430, processName: parent
Child executing
 pid: 5431, forkPID: 0, processName: child
Process finishing
 pid: 5431, processName: child
Parent executing
 pid: 5430, forkPID: 5431, processName: parent
Process finishing
 pid: 5430, processName: parent

Program executing
 pid: 5888, processName: parent
Child executing
Parent executing
 pid: 5888, forkPID: 5889, processName: parent
Process finishing
 pid: 5888, processName: parent
 pid: 5889, forkPID: 0, processName: child
Process finishing
 pid: 5889, processName: child

Fig. 18.2Fig. 18.2Fig. 18.2Fig. 18.2 os.fork used to create child processes. (Part 2 of 2.)

pythonhtp1_fork_article.fm Page 616 Tuesday, July 2, 2002 12:03 PM

Chapter 18 Process Management 617

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/02

cess, fork returns the child’s pid, which must be a positive integer. In the example of
Fig. 18.2, the parent process performs different tasks than those that the child process per-
forms. If the executing process is the parent, the return value from fork is the child’s pid,
and the condition on line 18 evaluates to true. The process then executes the parent-specific
code on lines 19–21. If the executing process is the child, forkPID is 0 and the condition
on line 18 evaluates to false. This prevents the child process from executing the parent-spe-
cific code. Instead, the condition on line 23 evaluates to true and the child-specific code in
lines 24–27 executes.

The child process changes its copy of variable processName to the value "child"
(line 24). If a program modifies the variable’s value in one process, the value of the variable
in the other process does not change, because each process contains a separate variable
called processName.

Each process outputs its pid, the value of variable forkPID and the value of variable
processName. Notice in the sample outputs that the child’s pid matches the value of
forkPID in the parent process. The parent process can use the child’s pid to manage the
child process, by calling other functions available in module os.

Figure 18.2 is followed by three sample executions of the program. Notice that the first
two sample outputs differ. After the child process is created by calling os.fork (line 14),
both processes—parent and child—proceed independently as asynchronous concurrent
processes. Asynchronous means that they operate independently of one another without
synchronization. Concurrent means that they can proceed in parallel (i.e., they execute at
the same time). Thus, we cannot predict the relative speeds of the child process and parent
process. For this reason, the output of Fig. 18.2 will differ on each execution. Sometimes,
the parent process will execute line 19 before the child process executes line 25, and some-
times the child process will execute first. Notice in the last sample output, the parent pro-
cess executes line 29 while the child process is executing line 25! This underscores the
concurrency of the processes.

Another reason the output differs in the sample outputs is because each time a new pro-
cess is run, the operating system assigns it a unique pid. Thus, the pid of each process—
parent and child—changes with each execution of the program.

In some cases, the parent process must wait for a child process to finish before the
parent can proceed. For example, a child process might perform a calculation whose result
the parent requires before the parent can continue executing. Function os.wait (available
only on POSIX-compatible systems) waits for any one of the parent’s child processes to
complete before allowing the parent process to continue its execution. This function returns
a two-element tuple that contains the pid of the finished child and the child’s exit status—
an integer that indicates the state in which the child process exited. An exit status of 0 indi-
cates that the child process completed successfully; a positive integer indicates that the
child process terminated with some error. Function os.wait raises an OSError excep-
tion if there are no children. Figure 18.3 demonstrates function os.wait.

1 # Fig. 18.3: fig18_03.py
2 # Demonstrates the wait function.
3

Fig. 18.3Fig. 18.3Fig. 18.3Fig. 18.3 os.wait used to wait for a child process. (Part 1 of 3.)

pythonhtp1_fork_article.fm Page 617 Tuesday, July 2, 2002 12:03 PM

618 Process Management Chapter 18

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/02

4 import os
5 import sys
6 import time
7 import random
8
9 # generate random sleep times for child processes

10 sleepTime1 = random.randrange(1, 6)
11 sleepTime2 = random.randrange(1, 6)
12
13 # parent ready to fork first child process
14 try:
15 forkPID1 = os.fork() # create first child process
16 except OSError:
17 sys.exit("Unable to create first child. ")
18
19 if forkPID1 != 0: # am I parent process?
20
21 # parent ready to fork second child process
22 try:
23 forkPID2 = os.fork() # create second child process
24 except OSError:
25 sys.exit("Unable to create second child.")
26
27 if forkPID2 != 0: # am I parent process?
28 print "Parent waiting for child processes...\n" + \
29 "\tpid: %d, forkPID1: %d, forkPID2: %d" \
30 % (os.getpid(), forkPID1, forkPID2)
31
32 # wait for any child process
33 try:
34 child1 = os.wait()[0] # wait returns one child’s pid
35 except OSError:
36 sys.exit("No more child processes.")
37
38 print "Parent: Child %d finished first, one child left." \
39 % child1
40
41 # wait for another child process
42 try:
43 child2 = os.wait()[0] # wait returns other child’s pid
44 except OSError:
45 sys.exit("No more child processes.")
46
47 print "Parent: Child %d finished second, no children left." \
48 % child2
49
50 elif forkPID2 == 0: # am I second child process?
51 print """Child2 sleeping for %d seconds...
52 \tpid: %d, forkPID1: %d, forkPID2: %d""" \
53 % (sleepTime2, os.getpid(), forkPID1, forkPID2)
54 time.sleep(sleepTime2) # sleep to simulate some work
55
56 elif forkPID1 == 0: # am I first child process?
57 print """Child1 sleeping for %d seconds...

Fig. 18.3Fig. 18.3Fig. 18.3Fig. 18.3 os.wait used to wait for a child process. (Part 2 of 3.)

pythonhtp1_fork_article.fm Page 618 Tuesday, July 2, 2002 12:03 PM

Chapter 18 Process Management 619

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/02

The program creates two child processes, and the parent waits for both child processes
to complete execution before the parent process terminates. Each child invokes function
time.sleep to sleep for a random number of seconds (calculated on lines 10–11). The
calls to function sleep make it seem that the child processes perform some work.

Line 15 creates the first child process, and line 23 creates the second child process. The
outer if statement (line 19) evaluates forkPID1, the return value from the first call to
fork (line 15). If the parent process is executing, the code in lines 21–48 executes. The
parent forks a new child (line 23), assigns the return value to forkPID2 and checks the
value of this variable to determine if this is still the parent running (line 27).

After creating the second child, the parent prints a message to indicate that the parent
will wait for its children (lines 28–30). The parent then calls function os.wait (line 34).
The parent process waits, or blocks, until either one of its child processes has finished. Note
that this is not necessarily the first child that the parent created. Due to the nature of con-
current, asynchronous processes, the second child process may complete execution first.

58 \tpid: %d, forkPID1: %d""" \
59 % (sleepTime1, os.getpid(), forkPID1)
60 time.sleep(sleepTime1) # sleep to simulate some work

Child2 sleeping for 4 seconds...
 pid: 9578, forkPID1: 9577, forkPID2: 0
Child1 sleeping for 5 seconds...
 pid: 9577, forkPID1: 0
Parent waiting for child processes...
 pid: 9576, forkPID1: 9577, forkPID2: 9578
Parent: Child 9578 finished first, one child left.
Parent: Child 9577 finished second, no children left.

Parent waiting for child processes...
 pid: 9579, forkPID1: 9580, forkPID2: 9581
Child1 sleeping for 1 seconds...
 pid: 9580, forkPID1: 0
Child2 sleeping for 5 seconds...
 pid: 9581, forkPID1: 9580, forkPID2: 0
Parent: Child 9580 finished first, one child left.
Parent: Child 9581 finished second, no children left.

Parent waiting for child processes...
Child1 sleeping for 4 seconds...
 pid: 9583, forkPID1: 0
Child2 sleeping for 3 seconds...
 pid: 9584, forkPID1: 9583, forkPID2: 0
 pid: 9582, forkPID1: 9583, forkPID2: 9584
Parent: Child 9584 finished first, one child left.
Parent: Child 9583 finished second, no children left.

Fig. 18.3Fig. 18.3Fig. 18.3Fig. 18.3 os.wait used to wait for a child process. (Part 3 of 3.)

pythonhtp1_fork_article.fm Page 619 Tuesday, July 2, 2002 12:03 PM

620 Process Management Chapter 18

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/02

Function os.wait often is useful when a parent must use the results of the child process’s
task before the parent can continue its own task (e.g., a parent process that sends an e-mail
that contains text output provided by a child process).

The first child process (lines 57–60) prints its pid and the value of forkPID1. It then
calls function time.sleep (line 60), with an argument that specifies the length of time
in seconds for which the process should remain asleep. We pass a random value
(sleepTime1) to simulate performing some work. Although programmers cannot rely on
function time.sleep to provide synchronization, when you run the program, notice that
the parent does waits the correct number of seconds before terminating. After the first child
process wakes up, it completes execution and terminates successfully. The second child
process performs similar tasks (lines 51–54). This second process prints a message and
sleeps for a random amount of time before terminating.

Function os.wait causes the parent to wait for any one of its child processes to com-
plete execution. Function os.wait then returns a tuple containing the pid and exit status
of the child process that completed, and the parent process resumes execution. When one
child process terminates, the parent wakes up and prints a message to the screen that shows
the pid of the child process that completed (lines 38–39). Recall that processes execute con-
currently and asynchronously, so we cannot predict which child process will complete
first.1 Each call to os.wait causes the parent to wait for only one of its children. Line 43
calls function os.wait a second time, which causes the parent to block again until the
remaining child process completes. When the remaining child terminates, the parent prints
a message to the screen, which displays the pid of that child (lines 47–48).

Notice that the order in which the processes execute differs with each execution, as
shown in the three sample outputs for Fig. 18.3. In the first output, the second child process
(with pid 9578) completes execution first. This reminds us once again that all of the pro-
cesses execute concurrently and asynchronously.

1. If a parent must wait for a particular child process to finish, the parent can call function
os.waitpid and specify the child process’s pid. See the Python documentation for more detail.

pythonhtp1_fork_article.fm Page 620 Tuesday, July 2, 2002 12:03 PM

	18
	Process Management
	Objectives
	• To understand the notion of processes.
	• To understand how to create and manage processes.
	• To learn how to execute shell commands in Python.
	• To understand how to control the input and output of processes.
	• To learn to send and intercept signals.
	A person with one watch knows what time it is; a person with two watches is never sure.
	Proverb
	Conversation is but carving! Give no more to every guest, Then he’s able to digest.
	Jonathan Swift

	18.2�� os.fork Function
	Creating new processes is useful in applications that can perform multiple tasks in parallel. For...
	One way to create a new process is to use function os.fork, which is available only on POSIX-comp...
	Common Programming Error 18.1
	Attempting to execute a Python program that invokes os.fork on a Windows machine causes an Attrib...

	Portability Tip 18.1
	Function os.fork is unavailable for Windows versions of Python.

	Figure�18.1 describes how function os.fork creates a new process. Each time a program executes, t...
	Fig. 18.1 os.fork creates a new process.
	2 # Using fork to create child processes.
	3
	4 import os
	5 import sys
	6
	7 processName = "parent" # only the parent is running now
	8
	9 print "Program executing\n\tpid: %d, processName: %s" \
	10 % (os.getpid(), processName)
	11
	12 # attempt to fork child process
	13 try:
	14 forkPID = os.fork() # create child process
	15 except OSError:
	16 sys.exit("Unable to create new process.")
	17
	18 if forkPID != 0: # am I parent process?
	19 print "Parent executing\n" + \
	20 "\tpid: %d, forkPID: %d, processName: %s" \
	21 % (os.getpid(), forkPID, processName)
	22
	23 elif forkPID == 0: # am I child process?
	24 processName = "child"
	25 print "Child executing\n" + \
	26 "\tpid: %d, forkPID: %d, processName: %s" \
	27 % (os.getpid(), forkPID, processName)
	28
	29 print "Process finishing\n\tpid: %d, processName: %s" \
	Program executing
	pid: 5428, processName: parent
	Parent executing
	pid: 5428, forkPID: 5429, processName: parent
	Process finishing
	pid: 5428, processName: parent
	Child executing
	pid: 5429, forkPID: 0, processName: child
	Process finishing
	pid: 5429, processName: child
	Program executing
	pid: 5430, processName: parent
	Child executing
	pid: 5431, forkPID: 0, processName: child
	Process finishing
	pid: 5431, processName: child
	Parent executing
	pid: 5430, forkPID: 5431, processName: parent
	Process finishing
	pid: 5430, processName: parent
	Program executing
	pid: 5888, processName: parent
	Child executing
	Parent executing
	pid: 5888, forkPID: 5889, processName: parent
	Process finishing
	pid: 5888, processName: parent
	pid: 5889, forkPID: 0, processName: child
	Process finishing
	pid: 5889, processName: child
	Fig. 18.2 os.fork used to create child processes. (Part 1 of 2.)

	Line 7 initializes variable processName to "parent" to indicate that the current process is the p...
	If a program must perform different tasks in the parent and child processes, that program can use...
	The child process changes its copy of variable processName to the value "child" (line 24). If a p...
	Each process outputs its pid, the value of variable forkPID and the value of variable processName...
	Figure�18.2 is followed by three sample executions of the program. Notice that the first two samp...
	Another reason the output differs in the sample outputs is because each time a new process is run...
	In some cases, the parent process must wait for a child process to finish before the parent can p...
	2 # Demonstrates the wait function.
	3
	4 import os
	5 import sys
	6 import time
	7 import random
	8
	9 # generate random sleep times for child processes
	10 sleepTime1 = random.randrange(1, 6)
	11 sleepTime2 = random.randrange(1, 6)
	12
	13 # parent ready to fork first child process
	14 try:
	15 forkPID1 = os.fork() # create first child process
	16 except OSError:
	17 sys.exit("Unable to create first child. ")
	18
	19 if forkPID1 != 0: # am I parent process?
	20
	21 # parent ready to fork second child process
	22 try:
	23 forkPID2 = os.fork() # create second child process
	24 except OSError:
	25 sys.exit("Unable to create second child.")
	26
	27 if forkPID2 != 0: # am I parent process?
	28 print "Parent waiting for child processes...\n" + \
	29 "\tpid: %d, forkPID1: %d, forkPID2: %d" \
	30 % (os.getpid(), forkPID1, forkPID2)
	31
	32 # wait for any child process
	33 try:
	34 child1 = os.wait()[0] # wait returns one child’s pid
	35 except OSError:
	36 sys.exit("No more child processes.")
	37
	38 print "Parent: Child %d finished first, one child left." \
	39 % child1
	40
	41 # wait for another child process
	42 try:
	43 child2 = os.wait()[0] # wait returns other child’s pid
	44 except OSError:
	45 sys.exit("No more child processes.")
	46
	47 print "Parent: Child %d finished second, no children left." \
	48 % child2
	49
	50 elif forkPID2 == 0: # am I second child process?
	51 print """Child2 sleeping for %d seconds...
	52 \tpid: %d, forkPID1: %d, forkPID2: %d""" \
	53 % (sleepTime2, os.getpid(), forkPID1, forkPID2)
	54 time.sleep(sleepTime2) # sleep to simulate some work
	55
	56 elif forkPID1 == 0: # am I first child process?
	57 print """Child1 sleeping for %d seconds...
	58 \tpid: %d, forkPID1: %d""" \
	59 % (sleepTime1, os.getpid(), forkPID1)
	Child2 sleeping for 4 seconds...
	pid: 9578, forkPID1: 9577, forkPID2: 0
	Child1 sleeping for 5 seconds...
	pid: 9577, forkPID1: 0
	Parent waiting for child processes...
	pid: 9576, forkPID1: 9577, forkPID2: 9578
	Parent: Child 9578 finished first, one child left.
	Parent: Child 9577 finished second, no children left.
	Parent waiting for child processes...
	pid: 9579, forkPID1: 9580, forkPID2: 9581
	Child1 sleeping for 1 seconds...
	pid: 9580, forkPID1: 0
	Child2 sleeping for 5 seconds...
	pid: 9581, forkPID1: 9580, forkPID2: 0
	Parent: Child 9580 finished first, one child left.
	Parent: Child 9581 finished second, no children left.
	Parent waiting for child processes...
	Child1 sleeping for 4 seconds...
	pid: 9583, forkPID1: 0
	Child2 sleeping for 3 seconds...
	pid: 9584, forkPID1: 9583, forkPID2: 0
	pid: 9582, forkPID1: 9583, forkPID2: 9584
	Parent: Child 9584 finished first, one child left.
	Parent: Child 9583 finished second, no children left.
	Fig. 18.3 os.wait used to wait for a child process. (Part 1 of 3.)

	The program creates two child processes, and the parent waits for both child processes to complet...
	Line 15 creates the first child process, and line 23 creates the second child process. The outer ...
	After creating the second child, the parent prints a message to indicate that the parent will wai...
	The first child process (lines 57–60) prints its pid and the value of forkPID1. It then calls fun...
	Function os.wait causes the parent to wait for any one of its child processes to complete executi...
	Notice that the order in which the processes execute differs with each execution, as shown in the...

