

ACI Advanced Monitoring
and Troubleshooting

Sadiq Memon (CCIE No. 47508)

Joseph Ristaino (CCIE No. 41799)

Carlo Schmidt (CCIE No. 41842)

Cisco Press
221 River St.

Hoboken, NJ 07030 USA

ii    ACI Advanced Monitoring and Troubleshooting

ACI Advanced Monitoring and Troubleshooting
Sadiq Memon, Joseph Ristaino, Carlo Schmidt

Copyright© 2021 Cisco Systems, Inc.

Published by: Cisco Press

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval
system, without written permission from the publisher, except for the inclusion of brief quotations in a
review.

Library of Congress Control Number: 2020941959

ISBN-13: 1-58714-528-6

ISBN-10: 978-158714-528-5

ScoutAutomatedPrintCode

Warning and Disclaimer
This book is designed to provide information about in-depth monitoring and troubleshooting techniques
related to Cisco’s Application Centric Infrastructure (ACI) to guide readers in learning to design, deploy,
and maintain the ACI fabric. This book can also help in preparing and attaining advanced certification
such as CCIE Data Center. This book was written based on ACI Release 3.2(-) as that release was the
preferred long-lived release over the course of developing the content. Therefore, the vast majority of
features and examples covered in the book reference ACI Release 3.2(-), and they can still be applied to
later releases. However, newer features are identified where applicable, along with the supported version
in order to provide more in-depth information. Every effort has been made to make this book as complete
and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc. shall
have neither liability for nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book or from the use of the discs or programs that may
accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco
Systems, Inc.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.
The documents and related graphics contained herein could include technical inaccuracies or typographi-
cal errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at
any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screenshots and icons reprinted with permission from the Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

iii

Trademark Acknowledgments
All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Feedback Information
At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book
is crafted with care and precision, undergoing rigorous development that involves the unique expertise of
members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we could
improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through
email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Editor-in-Chief: Mark Taub

Alliances Manager, Cisco Press: Ron Fligge

Product Line Manager: Brett Bartow

Executive Editor: James Manly

Managing Editor: Sandra Schroeder

Development Editor: Christopher A. Cleveland

Senior Project Editor: Lori Lyons

Copy Editor: Kitty Wilson

Technical Editors: Mioljub Jovanovic, Joe LeBlanc

Editorial Assistant: Cindy Teeters

Cover Designer: Chuti Prasertsith

Production Manager: Aswini Kumar, codeMantra

Composition: codeMantra

Indexer: Cheryl Ann Lenser

Proofreader: Gill Editorial Services

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks,
go to this URL: www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does

not imply a partnership relationship between Cisco and any other company. (1110R)

Americas Headquarters
Cisco Systems, Inc.
San Jose, CA

Asia Pacific Headquarters
Cisco Systems (USA) Pte. Ltd.
Singapore

Europe Headquarters
Cisco Systems International BV Amsterdam,
The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
mailto:feedback@ciscopress.com
http://www.cisco.com/go/offices
http://www.cisco.com/go/trademarks
http://www.cisco.com/go/trademarks
http://www.cisco.com/go/offices

iv    ACI Advanced Monitoring and Troubleshooting

About the Authors
Sadiq Memon, CCIE No. 47508, is a Lead Solutions Integration Architect (Automotive)
with Cisco Customer Experience (CX). He has over 30 years of diversified experience in
information technology with specialization and expertise in data center and enterprise
networking. Sadiq joined Cisco in 2007, and as a Cisco veteran of over 13 years, he has
worked with various large enterprise customers, including automotive, financials, manu-
facturing, and government in designing, implementing, and supporting end-to-end archi-
tectures and solutions. Sadiq was part of the Cisco Advanced Services Tiger Team during
the early ACI incubation period. He has published a series of short videos covering ACI
configuration on YouTube and has presented ACI/Cloud-related topics at Cisco Live!
Sadiq was the technical editor for the Cisco Press book Deploying ACI and possesses
multiple IT industry certifications from leading companies such as Cisco (CCIE, CCNA),
VMware (VCP-DCV), Microsoft, and Citrix. Sadiq holds a bachelor’s degree in
computer systems engineering from NED University of Engineering & Technology,
Karachi, Pakistan.

Joseph Ristaino, CCIE No. 41799, is a Technical Leader with the ACI Escalation Team in
RTP, North Carolina. He joined Cisco in 2011 after graduating from Wentworth Institute
of Technology with a bachelor’s degree in computer networking. Joseph started with
Cisco on the Server Virtualization TAC team, specializing in UCS and virtualization tech-
nologies. He has in-depth knowledge of compute/networking technologies and has been
supporting customers for over eight years as they implement and manage data center
deployments around the globe. Joseph now works closely with the ACI Technical Support
teams to provide assistance on critical customer issues that go unsolved and has been
working on ACI since its inception in 2014. Joseph lives with his wife in Durham, North
Carolina.

Carlo Schmidt, CCIE No. 41842, is a Data Center Solutions Architect. He works with
global enterprises, designing their next-generation data centers. Carlo started at Cisco in
2011, on the Data Center Switching TAC team. In that role, he focused on Nexus plat-
forms and technologies such as FCoE, fabric path, and OTV. In 2016, he migrated to the
ACI TAC team, where he specialized in customer problem resolution as well as improving
product usability. In 2019 Carlo decided to take his knowledge and lessons learned from
his eight years in Cisco TAC to a presales role as a Solutions Architect. Carlo is based out
of Research Triangle Park, North Carolina.

v

About the Technical Reviewers
Mioljub Jovanovic, CCIE No. 17631, is certified in Routing & Switching and in Data
Center. He is a Principal Engineer at Cisco Systems, working for Customer Experience
organization, with more than 20 years of professional experience with Cisco networking
products in solutions. Among other responsibilities, Mio’s role included training and sup-
port for initial ACI global deployments. Between 2015 and 2019, he presented ACI train-
ing and troubleshooting sessions at multiple Cisco Live conferences and other technical
seminars.

As a Data Center Technical Leader in the CX DC EMEAR group, Mio coached and men-
tored Cisco support engineers on ACI, HyperFlex, CNAE, Tetration, FlexPod, vBlock and
solutions involving Cisco UCS and Nexus and MDS platforms. Prior to his TL role in the
DC Solutions team, Mio worked as Network Management senior TAC engineer, special-
izing in SNMP and network services platforms. Mio’s passions are Service Assurance,
Day-2 Operations, Model-Driven Telemetry, Linux, Angular, and Python.

Joe LeBlanc, CCIE No. 41523, is a Technical Leader in the Intent-Based Networking
Group at Cisco Systems. He has been supporting ACI customer escalations in the engi-
neering group since FCS of the solution in 2014. Prior to that role, Joe worked in the
Technical Assistance Center on the Server Virtualization team, supporting UCS and
Nexus 1000v products.

vi    ACI Advanced Monitoring and Troubleshooting

Dedications
Sadiq H Memon:

This book is dedicated to my parents, Abdul Majeed Memon and Saeeda Memon, for
their day and night gracious prayers. My beloved wife, Nazish Memon, and my kids,
Nibras Memon, Ali Memon, and Ahmed Memon, for their utmost support and encour-
agement throughout the extended period of writing this book. My management at Cisco
for their continuous support in excelling my career. And last but not least, the trust and
support from all my auto customers, especially from Tony Cataldo (Manager Network
Engineering from a renowned U.S.-based auto company). Without all their support,
I don’t think I would have been able to propose and author this book successfully.

Joseph Ristaino:

This book is dedicated to my wife, Katie, for her endless support, and to all the friends
I’ve made at Cisco. Because of them, this book has become a reality.

Carlo Schmidt:

I dedicate this book to all the amazing mentors, managers, and coworkers who have
supported me during my time at Cisco. Without their encouragement, and their count-
less after-work hours teaching me how to become a better engineer, I would have never
had the ability to co-author this book with Sadiq and Joey. I also dedicate this book to
my wife, Ally, who supported me through many late nights of researching, writing, and
reviewing.

vii

Acknowledgments
We would like to specially thank the technical editors Mioljub Jovanovic and Joe
LeBlanc for providing their expert-level technical knowledge in editing the book. Being
well-known for their subject matter expertise in Cisco and outside with ACI technology,
both of the technical editors paid close attention in reviewing the material and were very
blunt in identifying our mistakes and shortcomings; they helped make the content accu-
rate and valuable for readers.

We would also like to acknowledge and appreciate Cisco Data Center Business Unit
(DCBU) for the guidance and knowledge sharing. As the owner and developer of ACI,
Cisco DCBU has empowered us to learn and excel this technology since the day of its
inception, and this helped us successfully finish up this book. Cisco DCBU included us
as part of Cisco Tiger Team in learning and developing the initial content of ACI before it
was even publicly announced.

Big applause goes out to the production team for this book. James Manly and
Christopher Cleveland have been incredibly professional and a pleasure to work with.
This book could not have been completed successfully without their constant push and
support.

Last but not least, we would like to acknowledge the services and support of our beloved
friend and coworker Andy Gossett, whose in-depth technical expertise has not only
helped in writing this book but has in general been a great help to Cisco teams and the
extended customer base.

viii    ACI Advanced Monitoring and Troubleshooting

Contents at a Glance

	 Foreword by Yusuf Bhaiji  xxviii

	 Foreword by Ronak Desai  xxix

	 Introduction  xxx

Part I	 Introduction to ACI

Chapter 1	 Fundamental Functions and Components of Cisco ACI  1

Chapter 2	 Introduction to the ACI Policy Model  31

Chapter 3	 ACI Command-Line Interfaces  67

Chapter 4	 ACI Fabric Design Options  85

Chapter 5	 End Host and Network Connectivity  185

Chapter 6	 VMM Integration  249

Chapter 7	 L4/L7 Service Integration  299

Chapter 8	 Automation and Orchestration  343

Part II	 Monitoring and Management Best Practices

Chapter 9	 Monitoring ACI Fabric  405

Chapter 10	 Network Management and Monitoring Configuration  509

Part III	 Advanced Forwarding and Troubleshooting Techniques

Chapter 11	 ACI Topology  589

Chapter 12	 Bits and Bytes of ACI Forwarding  611

Chapter 13	 Troubleshooting Techniques  717

Chapter 14	 The ACI Visibility & Troubleshooting Tool  771

Chapter 15	 Troubleshooting Use Cases  791

Appendix A	 Answers to Chapter Review Questions  861

	 Index  873

ix

Contents
	 Foreword by Yusuf Bhaiji  xxviii
	 Foreword by Ronak Desai  xxix

Introduction   xxx

Part I 	 Introduction to ACI

Chapter 1	 Fundamental Functions and Components of Cisco ACI  1

ACI Building Blocks  8

Hardware Specifications  8

Nexus 9000 Platform  9

APIC Controller  12

ACI Key Concepts  14

Control Plane  15

Data Plane  17

VXLAN  17

Tenant  18

VRF  19

Application Profile  20

Endpoint Group  21

Contracts  22

Bridge Domain  24

External Routed or Bridged Network  25

Summary  26

Review Key Topics  26

Review Questions  27

Chapter 2	 Introduction to the ACI Policy Model  31

Key Characteristics of the Policy Model  32

Management Information Tree (MIT)  33

Benefits of a Policy Model  37

Logical Constructs  37

Tenant Objects  38

VRF Objects  39

Application Profile Objects  40

Endpoint Group Objects  41

x    ACI Advanced Monitoring and Troubleshooting

Bridge Domain and Subnet Objects  43

Bridge Domain Options  45

Contract Objects  46

Labels, Filters, and Aliases  48

Contract Inheritance  49

Contract Preferred Groups  49

vzAny  50

Outside Network Objects  51

Physical Construct  52

Access Policies  52

Switch Policies  53

Interface Policies  54

Global Policies  55

VLAN Pools  55

Domains  56

Attachable Access Entity Profile  56

Managed Object Relationships and Policy Resolution  57

Tags  58

Default Policies  58

How a Policy Model Helps in Diagnosis  60

Summary  63

Review Key Topics  63

Review Questions  64

Chapter 3	 ACI Command-Line Interfaces  67

APIC CLIs  68

NX-OS–Style CLI  68

Bash CLI  74

ACI Fabric Switch CLIs  78

iBash CLI  78

VSH CLI  81

VSH_LC CLI  83

Summary  84

Reference  84

xi

Chapter 4	 ACI Fabric Design Options  85

Physical Design  85

Single- Versus Multiple-Fabric Design  87

Dark Fiber  90

Dense Wavelength-Division Multiplexing (DWDM)  92

Ethernet over MPLS (EoMPLS) Pseudowire  92

Multi-Pod  97

ACI Multi-Pod Use Cases  100

ACI Multi-Pod Scalability  103

Inter-Pod Connectivity Deployment Considerations  104

APIC Cluster Deployment Considerations  113

Multi-Site  116

Cisco ACI Multi-Site Orchestrator  120

Cisco ACI Multi-Site Deployment Considerations  122

Migration Scenarios  124

Deployment Best Practices  128

General Best Practices for Cisco ACI Multi-Site Design  129

Remote Leaf  131

Hardware and Software Support  134

Recommended QOS Configuration for a Remote Leaf Solution  134

Discovery of a Remote Leaf  136

Remote Leaf Control Plane and Data Plane  138

Remote Leaf Design Considerations  141

ACI Multi-Pod and Remote Leaf Integration  143

Logical Design  149

Design 1: Container-as-a-Service Using the OpenShift Platform and
Calico CNI  149

Business Case  149

Design Solution  150

Design 2: Vendor-Based ERP/SAP Hana Design with ACI  165

Business Case  165

Design Solution  165

Design 3: vBrick Digital Media Engine Design with ACI  175

Business Case  176

Design Solution  176

xii    ACI Advanced Monitoring and Troubleshooting

Summary  180

Review Key Topics  181

Review Questions  181

Chapter 5	 End Host and Network Connectivity  185

End Host Connectivity  185

VLAN Pool  186

Domain  186

Attachable Access Entity Profiles (AAEPs)  186

Switch Policies  187

Switch Policy Groups  187

Switch Profiles  187

Interface Policies  188

Interface Policy Groups  188

Interface Profiles  189

Virtual Port Channel (VPC)  191

Configuring VPC  192

Defining the VPC Domain  193

Creating an Interface Policy  195

Creating a Switch Profile  196

Port Channel  197

Configuring a Port Channel  198

Access Port  201

Configuring an Access Port  202

Best Practices in Configuring Access Policies  206

Policy Best Practices  206

Domain Best Practices  206

AAEP Best Practices  207

Compute and Storage Connectivity  207

FEX Connectivity  207

Cisco Blade Chassis Servers UCS B-Series  208

Standalone Rack-Mount Servers  209

Connecting Storage in ACI  209

L4/L7 Service Device Connectivity  210

Connecting Firewalls  211

Connecting Load Balancers  212

xiii

Network Connectivity  213

Connecting an External Bridge Network  213

Extending EPGs Outside the ACI Fabric  213

Extending an ACI Bridge Domain Outside the Fabric  216

Connecting an External Routed Network  218

External Layer 3–Supported Routing Protocols  220

Configuring MP-BGP Spine Route Reflectors  221

Configuring External Routed Networks  222

GOLF  227

Network Connectivity Between Pods and Sites  228

IPN Connectivity Considerations for Remote Leafs  237

Diagnosing Connectivity Problems  242

Summary  245

Review Questions  245

Chapter 6	 VMM Integration  249

Virtual Machine Manager (VMM)  249

VMM Domain Policy Model  250

VMM Domain Components  250

VMM Domains  250

VMM Domain VLAN Pool Association  252

Attachable Access Entity Profile Association  252

VMM Domain EPG Association  253

EPG Policy Resolution and Deployment Immediacy  255

VMware Integration  257

Prerequisites for VMM Integration with AVS or VDS  257

Guidelines and Limitations for VMM Integration with AVS or VDS  257

ACI VMM Integration Workflow  258

Publishing EPGs to a VMM Domain  258

Connecting Virtual Machines to the Endpoint Group Port Groups
on vCenter  259

Verifying VMM Integration with the AVS or VDS  259

Verifying the Virtual Switch Status  259

Verifying the vNIC Status  260

Microsoft SCVMM Integration  260

Mapping ACI and SCVMM Constructs  261

xiv    ACI Advanced Monitoring and Troubleshooting

Mapping Multiple SCVMMs to an APIC   262

Verifying That the OpFlex Certificate Is Deployed for a Connection from
the SCVMM to the APIC  262

Verifying VMM Deployment from the APIC to the SCVMM  263

OpenStack Integration  263

Extending OpFlex to the Compute Node  264

ACI with OpenStack Physical Architecture  264

OpFlex Software Architecture  265

OpenStack Logical Topology  265

Mapping OpenStack and ACI Constructs  266

Prerequisites for OpenStack and Cisco ACI  267

Guidelines and Limitations for OpenStack and Cisco ACI  268

Verifying the OpenStack Configuration  270

Configuration Examples for OpenStack and Cisco ACI  271

Kubernetes Integration  272

Planning for Kubernetes Integration  272

Prerequisites for Integrating Kubernetes with Cisco ACI  273

Provisioning Cisco ACI to Work with Kubernetes  274

Preparing the Kubernetes Nodes  277

Installing Kubernetes and Cisco ACI Containers  279

Verifying the Kubernetes Integration  280

OpenShift Integration  281

Planning for OpenShift Integration  282

Prerequisites for Integrating OpenShift with Cisco ACI  283

Provisioning Cisco ACI to Work with OpenShift  284

Preparing the OpenShift Nodes  287

Installing OpenShift and Cisco ACI Containers  290

Updating the OpenShift Router to Use the ACI Fabric  291

Verifying the OpenShift Integration  291

VMM Integration with ACI at Multiple Locations  292

Multi-Site  292

Multiple Virtual Machine Managers Across Sites  292

Single Virtual Machine Manager Across Sites  295

Remote Leaf  295

Summary  298

xv

Chapter 7	 L4/L7 Service Integration  299

Service Insertion  299

The Service Graph  300

Managed Mode Versus Un-Managed Mode  301

L4–L7 Integration Use Cases  302

How Contracts Work in ACI  303

The Shadow EPG  306

Configuring the Service Graph  307

Step 1: Create an L4–L7 Device  307

Step 2: Create a Service Graph Template  308

Step 3: Deploy the Service Graph from the Template  308

Step 4: Configure the L4–L7 Parameters (Managed Mode Only)  310

Verifying the Service Graph Configuration  310

Service Graph Design and Deployment Options  312

Firewall as Default Gateway for Client and Server (Routed Mode)  312

Firewall Not the Default Gateway for Clients (Routed Mode)  312

Route Peering with a Firewall (Routed Mode)  314

Service Graph with Firewall (Transparent Mode)  316

Service Graph with ADC (One-Arm Mode with S-NAT)  316

Service Graph with ADC (Two-Arm Mode)  316

Service Graph with Two Service Nodes (Firewall with NAT and
ADC in Two-Arm Mode)  317

Service Graph with Two Service Nodes (Firewall with No NAT and

ADC in Two-Arm Mode)  319

Service Graph with Two Service Nodes (Firewall with No NAT and
ADC in One-Arm Mode)  319

Service Graph with an Intrusion Prevention System (IPS)  319

Policy-Based Redirect (PBR)  322

PBR Design Considerations  323

PBR Design Scenarios  324

PBR Service Graph with an ADC (One-Arm Mode and
No S-NAT)  324

PBR Service Graph with a Firewall (Two-Arm Mode and Routed)  324

Configuring the PBR Service Graph  325

xvi    ACI Advanced Monitoring and Troubleshooting

Service Node Health Check  326

L4–L7 PBR Tracking  326

L4–L7 PBR Threshold  326

L4–L7 PBR Health Groups  327

Common Issues in the PBR Service Graph  328

Unnecessary Layer 2 Traffic Redirection Toward the Service
Node  328

Inability to Ping the Consumer Connector  329

Routing on a Service Node  330

L4/L7 Service Integration in Multi-Pod and Multi-Site  332

Multi-Pod  332

Anycast Services in Multi-Pod  334

Multi-Site  338

Review Questions  342

Chapter 8	 Automation and Orchestration  343

The Difference Between Automation and Orchestration  343

Benefits of Automation and Orchestration  344

Example 1  345

Example 2  347

REST API  349

Automating Tasks Using the Native REST API: JSON and XML  351

API Inspector  351

Object (Save As)  353

Visore (Object Store Browser)  355

MOQuery  357

Automation Use Cases  364

Automating Tasks Using Ansible  372

Ansible Support in ACI  375

Installing Ansible and Ensuring a Secure Connection  378

APIC Authentication in Ansible  382

Automation Use Cases  384

Use Case 1  384

Use Case 2  388

xvii

Orchestration Through UCS Director  392

Management Through Cisco UCS Director  392

Automation and Orchestration with Cisco UCS Director  393

Automation Use Cases  395

Summary  402

Review Questions  402

Part II	 Monitoring and Management Best Practices

Chapter 9	 Monitoring ACI Fabric  405

Importance of Monitoring  405

Faults and Health Scores  407

Faults  407

Health Scores  411

Health Score Used in Proactive Monitoring  413

Health Score Used in Reactive Monitoring  414

Health Score with Interface Errors  414

ACI Internal Monitoring Tools  415

SNMP  415

Interface Failures Example  418

Syslog  420

Example: Leaf Membership Failure  423

Example: Spine/IPN Failure  423

NetFlow  426

Example: Network Visibility on a Border Leaf  428

ACI External Monitoring Tools  430

Network Insights  430

Network Insights for Resources (NIR)  431

Network Insights Advisor (NIA)  432

Example: Application Intermittent Disconnect Issue (Standalone
Compute)  433

Example: Application Connectivity Issue (Virtual Compute)  435

Network Assurance Engine  437

NAE Installation  439

NAE Configuration and Initial Setup  440

Example: Subnet Reachability Issue  450

xviii    ACI Advanced Monitoring and Troubleshooting

Tetration  453

Software Agents  455

Hardware Agents  455

Tetration Installation and Configuration  455

Tetration System Monitoring  461

Configuring Email Alerts  463

Enabling Syslog  464

Tetration Scopes  465

Tetration Applications  465

Tetration Code Upgrades  467

Tetration Patch Upgrade  467

Tetration Cluster Reboot  469

Tetration Cluster Shutdown  469

Example: Workload Security with Tetration  470

Monitoring Through the REST API  473

Monitoring an APIC  475

Monitoring CPU and Memory  475

Monitoring Disk Utilization  477

Monitoring Interfaces  478

Monitoring the APIC Cluster State  481

Monitoring Leafs and Spines  482

Monitoring CPU Utilization  482

Monitoring Memory Utilization  485

Monitoring Power Supply Unit (PSU) Status  486

Monitoring Fan Status  488

Monitoring Module Status  489

Monitoring Leaf/Spine Membership Status in a Fabric  491

Monitoring Interface Status  496

Monitoring Applications  499

Monitoring Application Traffic Status  499

Monitoring External Network Connectivity  502

Monitoring the PBR Service Graph  504

Summary  505

Review Questions  506

xix

Chapter 10	 Network Management and Monitoring Configuration  509

Out-of-Band Management  509

Creating Static Management Addresses  510

Creating the Management Contract  510

Choosing the Node Management EPG  513

Creating an External Management Entity EPG  513

Verifying the OOB Management Configuration  515

In-Band Management  517

Creating a Management Contract  517

Creating Leaf Interface Access Policies for APIC INB Management  518

Creating Access Policies for the Border Leaf(s) Connected to
L3Out  520

Creating INB Management External Routed Networks (L3Out)  522

Creating External Management EPGs  524

Creating an INB BD with a Subnet  527

Configuring the Node Management EPG  529

Creating Static Management Addresses  530

Verifying the INB Management Configuration  530

AAA  533

Configuring Cisco Secure ACS  533

Configuring Cisco ISE  542

Configuring AAA in ACI  547

Recovering with the Local Fallback User  550

Verifying the AAA Configuration  550

Syslog  551

Verifying the Syslog Configuration and Functionality  555

SNMP  556

Verifying the SNMP Configuration and Functionality  562

SPAN  566

Access SPAN  567

Fabric SPAN  571

Tenant SPAN  572

Ensuring Visibility and Troubleshooting SPAN  575

Verifying the SPAN Configuration and Functionality  576

xx    ACI Advanced Monitoring and Troubleshooting

NetFlow  577

NetFlow with Access Policies  580

NetFlow with Tenant Policies  582

Verifying the NetFlow Configuration and Functionality  585

Summary  587

Part III	 Advanced Forwarding and Troubleshooting Techniques

Chapter 11	 ACI Topology  589

Physical Topology  589

APIC Initial Setup  593

Fabric Access Policies  595

Switch Profiles, Switch Policies, and Interface Profiles  595

Interface Policies and Policy Groups  596

Pools, Domains, and AAEPs  597

VMM Domain Configuration  601

VMM Topology  601

Hardware and Software Specifications  603

Logical Layout of EPGs, BDs, VRF Instances, and Contracts  605

L3Out Logical Layout  606

Summary  608

Review Key Topics  608

References  609

Chapter 12	 Bits and Bytes of ACI Forwarding  611

Limitations of Traditional Networks and the Evolution of Overlay
Networks  611

High-Level VXLAN Overview  613

IS-IS, TEP Addressing, and the ACI Underlay  615

IS-IS and TEP Addressing  615

FTags and the MDT  618

Endpoint Learning in ACI  626

Endpoint Learning in a Layer 2–Only Bridge Domain  627

Council of Oracle Protocol (COOP)  632

Updating the Managed Object (MO) Tree  634

Endpoint Learning in a Layer 3–Enabled Bridge Domain  635

Fabric Glean  640

xxi

Remote Endpoint Learning  641

Endpoint Mobility  645

Anycast Gateway  647

Virtual Port Channels in ACI  649

Routing in ACI  651

Static or Dynamic Routes  651

Learning External Routes in the ACI Fabric  656

Transit Routing  659

Policy Enforcement  661

Shared Services  664

L3Out Flags  668

Quality of Service (QoS) in ACI  669

Externally Set DSCP and CoS Markings  671

EPG QoS  671

Custom QoS Policy  671

Contract QoS  671

CoS Preservation in ACI  672

iTraceroute Class  672

QoS and Multi-Pod  672

DSCP Class-to-CoS Translation Policy  674

Multi-Pod  674

Multi-Site  680

Remote Leaf  684

Forwarding Scenarios  686

ARP Flooding  686

Layer 2 Known Unicast  688

ARP Optimization  690

Layer 2 Unknown Unicast Proxy  690

L3 Policy Enforcement When Going to L3Out  693

L3 Policy Enforcement for External Traffic Coming into the Fabric  695

Route Leaking/Shared Services  695

Consumer to Provider  695

Provider to Consumer  698

xxii    ACI Advanced Monitoring and Troubleshooting

Multi-Pod Forwarding Examples  698

ARP Flooding  700

Layer 3 Proxy Flow  700

Multi-Site Forwarding Examples  703

ARP Flooding  703

Layer 3 Proxy Flow  705

Remote Leaf  707

ARP Flooding  707

Layer 3 Proxy Flow  710

Summary  713

Review Key Topics  713

References  714

Review Questions  714

Chapter 13	 Troubleshooting Techniques  717

General Troubleshooting  717

Faults, Events, and Audits  718

moquery  722

iCurl  724

Visore  726

Infrastructure Troubleshooting  727

APIC Cluster Troubleshooting  727

Fabric Node Troubleshooting  734

How to Verify Physical- and Platform-Related Issues  737

Counters  737

CPU Packet Captures  743

ASIC  744

ASIC Interface  744

Application  745

SPAN  748

Troubleshooting Endpoint Connectivity  751

Endpoint Tracker and Log Files  752

Enhanced Endpoint Tracker (EPT) App  756

Rogue Endpoint Detection  758

xxiii

Troubleshooting Contract-Related Issues  759

Verifying Policy Deny Drops  764

Embedded Logic Analyzer Module (ELAM)  765

Summary  769

Review Key Topics  769

Review Questions  769

Chapter 14	 The ACI Visibility & Troubleshooting Tool  771

Visibility & Troubleshooting Tool Overview  771

Faults Tab  772

Drop/Stats Tab  773

Ingress/Egress Buffer Drop Packets  774

Ingress Error Drop Packets Periodic  774

Storm Control   774

Ingress Forward Drop Packets   775

Ingress Load Balancer Drop Packets   776

Contract Drops Tab  777

Contracts  777

Contract Considerations  778

Events and Audits Tab  779

Traceroute Tab  780

Atomic Counter Tab  782

Latency Tab  785

SPAN Tab  786

Network Insights Resources (NIR) Overview  787

Summary  790

Chapter 15	 Troubleshooting Use Cases  791

Troubleshooting Fabric Discovery: Leaf Discovery  792

Solution  794

Troubleshooting APIC Controllers and Clusters: Clustering  795

Solution  798

Troubleshooting Management Access: Out-of-Band EPG  799

Solution  801

Troubleshooting Contracts: Traffic Not Traversing a Firewall as
Expected  801

Solution  803

xxiv    ACI Advanced Monitoring and Troubleshooting

Troubleshooting Contracts: Contract Directionality  804

Solution  807

Troubleshooting End Host Connectivity: Layer 2 Traffic Flow Through
ACI  807

Solution  810

Troubleshooting External Layer 2 Connectivity: Broken Layer 2 Traffic Flow
Through ACI  812

Solution 1  813

Solution 2  813

Troubleshooting External Layer 3 Connectivity: Broken Layer 3 Traffic Flow
Through ACI  814

Solution  816

Troubleshooting External Layer 3 Connectivity: Unexpected Layer 3
Traffic Flow Through ACI  816

Solution  820

Troubleshooting Leaf and Spine Connectivity: Leaf Issue  821

Solution  822

Troubleshooting VMM Domains: VMM Controller Offline  826

Solution 1  829

Solution 2  829

Troubleshooting VMM Domains: VM Connectivity Issue After Deploying
the VMM Domain  829

Solution 1  830

Solution 2  831

Solution 3  831

Troubleshooting L4–L7: Deploying an L4–L7 Device  832

Solution  834

Troubleshooting L4–L7: Control Protocols Stop Working After Service
Graph Deployment  834

Solution  836

Troubleshooting Multi-Pod: BUM Traffic Not Reaching Remote Pods  837

Solution 1  839

Solution 2  839

Troubleshooting Multi-Pod: Remote L3Out Not Reachable  839

Solution  841

Troubleshooting Multi-Site: Using Consistency Checker to Verify State at
Each Site  841

Solution  842

xxv

Troubleshooting Programmability Issues: JSON Script Generates Error  844

Solution  844

Troubleshooting Multicast Issues: PIM Sparse Mode Any-Source Multicast
(ASM)  846

Solution  847

Summary  860

Appendix A	 Answers to Chapter Review Questions  861

	 Index   873

xxvi    ACI Advanced Monitoring and Troubleshooting

xxvii

Command Syntax Conventions
The conventions used to present command syntax in this book are the same conventions
used in the IOS Command Reference. The Command Reference describes these conven-
tions as follows:

■■ Boldface indicates commands and keywords that are entered literally as shown. In
actual configuration examples and output (not general command syntax), boldface
indicates commands that are manually input by the user (such as a show command).

■■ Italic indicates arguments for which you supply actual values.

■■ Vertical bars (|) separate alternative, mutually exclusive elements.

■■ Square brackets ([]) indicate an optional element.

■■ Braces ({ }) indicate a required choice.

■■ Braces within brackets ([{ }]) indicate a required choice within an optional element.

xxviii    ACI Advanced Monitoring and Troubleshooting

Foreword by Yusuf Bhaiji
ACI Advanced Monitoring and Troubleshooting is an excellent self-study material
for the latest blueprint of CCIE Data Center certification exam (v3.0). Whether you are
studying to attain CCIE certification or are just seeking to gain a better understanding
of Cisco ACI technology in designing, implementing, maintaining, and troubleshooting,
you will benefit from the information presented in this book.

The authors have used a unique approach in explaining concepts and the architecture of
the ACI technology carefully crafted into an easy-to-follow guide. The book provides
readers a comprehensive and all-inclusive view of the entire range of Cisco ACI solutions
in a single binder.

As an early-stage exam-preparation guide, this book presents a detailed and comprehen-
sive introduction to the technologies used to build scalable software-defined networks
and also covers the topics defined in the CCIE exam blueprint.

Cisco Press books are designed to help educate, develop, and excel the community of IT
professionals in not only traditional networking technologies but also in today’s state-of-
the-art software-defined networking techniques.

Most networking professionals use a variety of learning methods to keep them up to the
mark with the latest technologies. Cisco Press titles are a prime source of content for
some individuals and can also serve as an excellent supplement to other forms of learn-
ing. Training classes, whether delivered in a classroom or online, are a great way to quickly
acquire knowledge on newer technologies. Hands-on practice is essential for anyone seek-
ing to build or acquire new skills.

The author (Sadiq Hussain Memon) and his co-authors have a very distinct style and have
proven their skills by writing on a difficult subject using real-world examples and use
cases. A must-read and an essential part of your exam preparation toolkit and a valuable
addition to your personal library.

Yusuf Bhaiji
Director of Certifications
Cisco Systems

xxix

Foreword by Ronak Desai
When Cisco built the Application Centric Infrastructure (ACI), it expanded the influ-
ence of Data Center operators by providing them with an agile and accessible framework
on which they could build and operate their networks. My own journey with Cisco
Data Center began soon after I joined the company in 2002, when it acquired Andiamo,
where I was a lead engineer. After joining Cisco, I worked on building the MDS 9000
and Nexus 7000 series, which evolved into the first line of products for Cisco’s then-
new Data Center business unit. After successfully delivering MDS and Nexus I was asked
to be founding employee on the ACI team and have been driving engineering there since
day one.

In the past eight years, I have seen the ACI products mature and become part of the
critical infrastructure for hospitals, emergency systems, banks, mobile networks, and
large-scale enterprises. “ACI Anywhere” is recognized as the best SDN solution for
private and public cloud.

So, I am honored to be the one to introduce you to this book, which will help you take
the best advantage of this powerful networking platform.

Throughout my years at Cisco, I have pleasure to work with Sadiq Memon, Joey Ristaino,
and Carlo Schmidt countless occasions. As invaluable members of the Data Center
Networking Group, and their collective experience with the ACI solution, makes them
incredible resources to anyone who wants to learn about the ins and outs of the
infrastructure.

This book is accessible to network professionals just beginning with ACI, as well as to
ACI veterans looking for insight and advanced tips. Readers seeking a deeper analysis can
opt to dive into later chapters where the authors collaborate with technical engineers to
effectively communicate key technical concepts. Here, readers can build upon their
foundational knowledge with more hands-on application-based learning.

Readers will also find valuable the advice based on personal experiences and challenges
our authors faced in the data center field. These vignettes provide readers with in-depth
examinations into real-world cases with step-by-step instructions and troubleshooting
advice. Even readers familiar with the ACI fabric will find that they can extend their
knowledge with these critical insights into ACI monitoring and troubleshooting.

By the end of this book, engaged readers will be proficient with ACI technology and have
an in-depth understanding of troubleshooting and monitoring best practices for the ACI
fabric, giving them the competitive edge to grow their business.

Ronak Desai
VP of Engineering for the Data Center Networking Business Unit
Cisco Systems

xxx    ACI Advanced Monitoring and Troubleshooting

Introduction
Application Centric Infrastructure (ACI) is a software-defined network offering from
Cisco that addresses the challenges of application agility needs in data centers. ACI was
announced on November 6, 2013, and it has been widely deployed on large number of
customer data centers globally since then. The demand to monitor and troubleshoot this
unique and modern form of network infrastructure has increased exponentially from
every corner of the world. This book was written with the goal of helping guide data
center professionals understand the crucial topics of ACI with real-world examples from
field experiences. The Cisco Data Center Business Unit and industry leaders were con-
sulted for technical accuracy of the content of this book.

Who Should Read This Book?
This book is intended for data center architects, engineers, software developers, network
and virtualization administrators, and, most importantly, operations team members striv-
ing to better understand and manage this new form of software-defined networking.

The content of the book will help you confidently deploy, support, monitor, and trouble-
shoot ACI fabric and its components. It also introduces some of the newer concepts in
this technology by relating them to traditional networking terminology and experiences.
The readers should be at the intermediate to expert level. This book assumes common
knowledge of Cisco NX-OS and network switching and routing concepts. A typical read-
er should at least possess a Cisco CCNA certification and be responsible for day-to-day
operations of networks and applications. Because of its in-depth and advanced subject
matter, this book can also be used as a reference guide for CCIE Data Center certification.

This book is also a good preparatory reference for those taking the Cisco DCACIA
(300-630) exam toward the Cisco Certified Specialist—ACI Advanced Implementation
certification. Where applicable, portions of some chapters are marked with a Key Topic
icon to highlight concepts you should know for the exam. Chapters 1, 2, 4, 5, 7, 8, 9, 12,
and 13 also provide some review questions to help you prepare for this exam. This book
can also help you prepare for the CCIE Data Center (v3.0) exam.

How This Book Is Organized
This book is divided into three major sections:

Part I, “Introduction to ACI”: This section includes the following chapters:

■■ Chapter 1, “Fundamental Functions and Components of ACI”: This chapter
provides a high-level overview of the core functions and components of Cisco
Application Infrastructure (ACI). This chapter also covers key concepts of control
and data plane protocols used in ACI fabric, such as IS-IS, MP-BGP EVPN, COOP,
and VXLAN, along with logical constructs in configuring application-hosting infra-
structure, such as tenants, VRF instances, application profiles, endpoint groups,
bridge domains, external routed or bridge networks, and contracts.

xxxi

■■ Chapter 2, “Introduction to the ACI Policy Model”: Cisco ACI is a policy-based
object model, and it is important to understand how this model works. This chapter
outlines the physical and logical constructs of ACI and their relationships in develop-
ing the overall application framework through software-defined policies.

■■ Chapter 3, “ACI Command-Line Interfaces”: Traditionally, network engineers have
been comfortable in using command-line interfaces (CLIs) on network devices. This
chapter describes the different CLIs that can be used to monitor and troubleshoot
both APICs and ACI fabric switches.

■■ Chapter 4, “ACI Fabric Design Options”: To monitor and troubleshoot the ACI fab-
ric and its components, it is important to understand ACI fabric design. This chapter
explains in detail various design options, starting from physical designs such as
stretching ACI fabric using transit leafs, multi-pod, multi-site, and remote leafs. The
chapter also demonstrates logical designs, covering Kubernetes using Calico CNI,
ERP SAP HANA, and vBrick Digital Media Engine.

■■ Chapter 5, “End Host and Network Connectivity”: This chapter describes com-
pute, storage, and service device (load balancer and firewall) connectivity to ACI leaf
switches using either Access ports, port channel, or virtual port channel. The chapter
also covers switch and router connectivity between external networks and the ACI
fabric. Finally, it also covers connectivity between ACI pods, sites, and remote leafs.

■■ Chapter 6, “VMM Integration”: Virtual Machine Manager (VMM) provides vis-
ibility into the virtualization layer. This chapter explains the integration of various
hypervisors and container platforms into ACI to extend the networking stack up to
the end-host level.

■■ Chapter 7, “L4/L7 Service Integration”: Layer 4 to Layer 7 services such as load-
balancing and firewall services are essential components between application tiers
for efficient and secure service delivery. Cisco ACI offers seamless integration of
L4/L7 services, and these services can be stitched using service chaining or through
policy-based routing and service graphs.

■■ Chapter 8, “Automation and Orchestration”: ACI technology enables automation
and orchestration for speedy deployment of ACI. This chapter explains the differ-
ence between automation and orchestration and how the REST API works in ACI. It
provides examples of automation scripts using JSON and XML. It explains Ansible,
which is widely used as a data center automation tool, and provides examples for
ACI- and non-ACI-based infrastructure. This chapter also provides details about UCS
Director and examples for orchestrating various components of application-hosting
infrastructure.

Part II, “Monitoring and Management Best Practices”: This section includes the follow-
ing chapters:

■■ Chapter 9, “Monitoring ACI Fabric”: Proper monitoring solutions can enable busi-
nesses to run their operations smoothly by minimizing service downtime and provid-
ing immediate ROI on software-defined application hosting infrastructure, such as

xxxii    ACI Advanced Monitoring and Troubleshooting

Cisco ACI. This chapter outlines the key concepts of ACI monitoring, such as using
faults and health scores, built-in and external tools, and the REST API to monitor
ACI.

■■ Chapter 10, “Network Management and Monitoring Configuration”: This chapter
covers the configuration of ACI management, such as in-band and out-of-band man-
agement and AAA, along with monitoring protocols such as syslog, SNMP, SPAN,
and NetFlow. Network management and monitoring configurations are provided,
along with verification steps.

Part III, “Advanced Forwarding and Troubleshooting Techniques”: This section includes
the following chapters:

■■ Chapter 11, “ACI Topology”: To help lay a foundation for the following chapters,
this chapter describes the lab infrastructure used for the rest of the Part III chapters.

■■ Chapter 12, “Bits and Bytes of ACI Forwarding”: The book covers many aspects
of ACI, but to truly understand how the fabric works, you have to deep dive into the
bits and bytes of forwarding. This chapter builds a strong foundation for VXLAN
forwarding and the additional bits used in the iVXLAN header to enable policy
enforcement and other ACI features. This chapter provides a variety of forwarding
examples that demonstrate the packet life cycle through the ACI fabric.

■■ Chapter 13, “Troubleshooting Techniques”: This chapter highlights a variety of
troubleshooting techniques that can be used to manage ACI fabric. The chapter
begins by explaining system logs, such as fault, event, and audit logs, and then it
dives deeper into specific components in the fabric to help build additional confi-
dence for troubleshooting critical events.

■■ Chapter 14, “The ACI Visibility & Troubleshooting Tool”: The Visibility &
Troubleshooting tool has been part of the APIC for many ACI releases. This chapter
provides an overview of how the tool works and examples of how it can ease the
troubleshooting process.

■■ Chapter 15, “Troubleshooting Use Cases”: This book demonstrates many ways to
manage, monitor, and troubleshoot the ACI fabric. This chapter provides focused
troubleshooting scenarios, illustrating problems and resolutions based on real-world
issues seen in customer deployments. Each scenario outlines the problem faced, as
well as how to troubleshoot the type of problem to isolate the issue using ACI tools.

xxxiii

Figure Credits

Figure Selection Title Attribution/Credit Line

Figure 8-6 Creating Tenant t01 Using Postman Screenshot © 2020 Postman, Inc.

Figure 9-8 Fabric Node Unreachable System
Message

Screenshot © 2005-2020 Splunk Inc.

Figure 9-11 Viewing NetFlow Information from
the Border Leaf 201 CLI

Screenshot © 2020 Zoho Corp.

Figure 9-12 Viewing NetFlow Information in
NetFlow Analyzer - 1

Screenshot © 2020 Zoho Corp.

Figure 9-13 Viewing Top Conversation Screenshot © 2020 Zoho Corp.

Figure 9-14 Viewing NetFlow Information in
NetFlow Analyzer - 2

Screenshot © 2020 Zoho Corp.

Figure 9-39 Tetration Software Agent in
Windows

Screenshot © Microsoft 2020

Figure 9-40 Attaching a Datastore ISO File to a
CD/DVD Drive

Screenshot © Microsoft 2020

Figure 9-41 Mapping Alert Types to
Publisher Types

Screenshot © Microsoft 2020

Figure 9-42 Email Alerts Screenshot © Microsoft 2020

Figure 9-43 Configuring Syslog in Tetration Screenshot © Microsoft 2020

Figure 9-44 Enabling Alert Types Screenshot © Microsoft 2020

Figure 15-46 JSON Syntax Error Screenshot © 2020 Postman, Inc.

FIG15-47 JSON Syntax, Including the
attributes Tag

Screenshot of JSON Syntax,
Including the attributes Tag © 2020
Postman, Inc.

This page intentionally left blank

Cisco ACI virtual machine (VM) networking supports hypervisors from multiple vendors.
It allows for multivendor hypervisors along with programmable and automated access to
high-performance scalable virtualized data center infrastructure. In this chapter, you will
learn about Virtual Machine Manager (VMM) and its integration into Cisco Application
Centric Infrastructure (ACI) from the following virtualization-supported products and
vendors:

■■ VMware

■■ Microsoft

■■ OpenStack

■■ Kubernetes

■■ OpenShift

You will also learn about VMM integration with ACI at multiple locations.

Virtual Machine Manager (VMM)
VMM integration enables the ACI fabric to extend network policies and policy
group definitions into the virtualization switching layer on end hosts. This integration
automates critical network plumbing steps that typically create delays in the deploy-
ment of overall virtual and compute resources in legacy network environments. VMM
integration into ACI also provides value in getting visibility up to the virtualization layer
of the application, which is a perpetually conflicting factor between network and server
virtualization teams.

VMM Integration

Chapter 6

250    Chapter 6: VMM Integration

VMM Domain Policy Model

VMM domain profiles (vmmDomP) specify connectivity policies that enable virtual
machine controllers to connect to the ACI fabric. Figure 6-1 shows the general hierarchy
of VMM configuration.

Policy Universe
(polUni)

Switch Profile
Endpoint

Group

Tenant
(fvTenant)

(fvAEPg)

VMM Provider Profile
(vmmProvP)

VMM Domain Profile
(vmmDomP)

VMM Controller Profile

User Account Profile

Fabric
(fabricInst, infraInfra)

VLAN Pool

VLAN Range

Attachable
Entity Profile

Switch Selector

Interface Profile

Interface Selector

Interface Policy Group

Figure 6-1  VMM Policy Model

VMM Domain Components

VMM domains enable an administrator to configure connectivity policies for virtual
machine controllers in ACI. The essential components of an ACI VMM domain policy
include the following:

■■ VMM domain

■■ VLAN pool association

■■ Attachable access entity profile association

■■ VMM domain endpoint group (EPG) association

VMM Domains

VMM domains make it possible to group VM controllers with similar networking
policy requirements. For example, VM controllers can share VLAN pools and applica-
tion EPGs. The Cisco Application Policy Infrastructure Controller (APIC) communicates

Virtual Machine Manager (VMM)    251

with the VM controller to publish network configurations such as port groups, which are
then applied to the virtual workloads. The VMM domain profile includes the following
essential components:

■■ Credential: Associates a valid VM controller user credential with an APIC VMM
domain.

■■ Controller: Specifies how to connect to a VM controller that is part of a policy
enforcement domain. For example, the controller specifies the connection to a
VMware vCenter instance that is part of a VMM domain.

Note  A single VMM domain can contain multiple instances of VM controllers, but they
must be from the same vendor (for example, VMware, Microsoft).

An APIC VMM domain profile is a policy that defines a VMM domain. The VMM
domain policy is created on an APIC and pushed into the leaf switches. Figure 6-2 illus-
trates VM controllers of the same vendor as part of the same VMM domain.

VMM Domain 1 VMM Domain 2

 VMware
vCenter

Microsoft
SCVMM

Figure 6-2  VMM Domain Integration

VMM domains provide the following:

■■ A common layer in the ACI fabric that enables scalable fault-tolerant support for
multiple VM controller platforms.

■■ VMM support for multiple tenants within the ACI fabric.

252    Chapter 6: VMM Integration

VMM domains contain VM controllers such as VMware vCenter or Microsoft System
Center Virtual Machine Manager (SCVMM) and the credentials required for the ACI API
to interact with the VM controllers. A VMM domain enables VM mobility within the
domain but not across domains. A single VMM domain can contain multiple instances of
VM controllers, but they must be from the same vendor. For example, a VMM domain
can contain many VMware vCenter instances managing multiple controllers, each run-
ning multiple VMs; however, it cannot contain Microsoft SCVMM instances. A VMM
domain inventories controller elements (such as pNICs, vNICs, and VM names) and
pushes policies into the controllers, creating port groups or VM networks and other nec-
essary elements. The ACI VMM domain listens for controller events such as VM mobility
events and responds accordingly.

VMM Domain VLAN Pool Association

A VLAN pool specifies a single VLAN ID or a range of VLAN IDs for VLAN encapsula-
tion. It is a shared resource that can be consumed by multiple domains, such as physical,
VMM, or external domains.

In ACI, you can create a VLAN pool with allocation type static or dynamic. With static
allocation, the fabric administrator configures a VLAN; with dynamic allocation, the
APIC assigns the VLAN to the domain dynamically. In ACI, only one VLAN or VXLAN
pool can be assigned to a VMM domain.

A fabric administrator can assign a VLAN ID statically to an EPG. However, in this case,
the VLAN ID must be included in the VLAN pool with the static allocation type, or
the APIC will generate a fault. By default, the assignment of VLAN IDs to EPGs that
are associated with the VMM domain is done dynamically by the APIC. The APIC
provisions VMM domain VLAN IDs on leaf switch ports based on EPG events, either
statically binding or based on VM events from controllers such as VMware vCenter or
Microsoft SCVMM.

Attachable Access Entity Profile Association

An attachable access entity profile (AAEP) associates a VMM domain with the physi-
cal network infrastructure where the vSphere hosts are connected. The AAEP defines
which VLANs will be permitted on a host-facing interface. When a domain is mapped
to an endpoint group, the AAEP validates that the VLAN can be deployed on certain
interfaces. An AAEP is a network interface template that enables the deployment of VM
controller policies on a large set of leaf switch ports. An AAEP specifies which switches
and ports are available and how they are configured. The AAEP can be created on-the-fly
during the creation of the VMM domain itself.

Virtual Machine Manager (VMM)    253

VMM Domain EPG Association

Endpoint groups regulate connectivity and visibility among the endpoints within the
scope of the VMM domain policy. VMM domain EPGs behave as follows:

■■ The APIC pushes these EPGs as port groups into the VM controller.

■■ An EPG can span multiple VMM domains, and a VMM domain can contain
multiple EPGs.

The ACI fabric associates EPGs to VMM domains, either automatically through an
orchestration component such as VMware vRealize suite (vRA/vRO) or Microsoft Azure,
or when an APIC administrator creates such configurations. An EPG can span multiple
VMM domains, and a VMM domain can contain multiple EPGs.

In Figure 6-3, endpoints (EPs) of the same color are part of the same EPG. For example,
all the gray EPs are in the same EPG, even though they are in different VMM domains.

VMM Domain 1
VLAN Based EPGs

VMM Domain 2
VLAN Based EPGs

EP
Green

EP
Orange

EP
Green

EP
Yellow

EP
Grey

EP
Grey

EP
Orange

EP
Grey

EP
Green

EP
Yellow

EP
Blue

EP
Grey

Figure 6-3  VMM Domain EPG Association

Note  Refer to the latest Verified Scalability Guide for Cisco ACI at the Cisco website
for virtual network and VMM domain EPG capacity information.

254    Chapter 6: VMM Integration

Figure 6-4 illustrates multiple VMM domains connecting to the same leaf switch if they
do not have overlapping VLAN pools on the same port. Similarly, the same VLAN pools
can be used across different domains if they do not use the same port of a leaf switch.

VMM Domain 1
VLAN Based EPGs

VLAN 10 VLAN 20

VMM Domain 2
VLAN Based EPGs

EP EPEP EP

Figure 6-4  VMM Domain EPG VLAN Consumption

EPGs can use multiple VMM domains in the following ways:

■■ An EPG within a VMM domain is identified by an encapsulation identifier that is
either automatically managed by the APIC or statically selected by the administrator.
An example for a VLAN is a virtual network ID (VNID).

■■ An EPG can be mapped to multiple physical (for bare-metal servers) or virtual
domains. It can use different VLAN or VNID encapsulations in each domain.

Note  By default, an APIC dynamically manages the allocation of a VLAN for an EPG in
a VMM integration. VMware vSphere Distributed Switch (VDS) administrators have the
option of configuring a specific VLAN for an EPG. In that case, the VLAN is chosen from
a static allocation block within the pool associated with the VMM domain.

Applications can be deployed across VMM domains, as illustrated in Figure 6-5. While
live migration of VMs within a VMM domain is supported, live migration of VMs across
VMM domains is not supported.

Virtual Machine Manager (VMM)    255

EPG: WEB

EPG: APP

EPG: DB

VMM Domain 1 VMM Domain 2 VMM Domain 3 VMM Domain 4 Physical Domain

VLAN VLAN VLANVXLAN VXLAN
vCenter vCenter + vShield vCenter + AVS SCVMM

Hypervisor HypervisorHypervisorHypervisorHypervisorHypervisorHypervisorHypervisorHypervisorHypervisor

Figure 6-5  Multiple VMM Domains and Scaling of EPGs in the ACI Fabric

EPG Policy Resolution and Deployment Immediacy

Whenever an EPG associates to a VMM domain, the administrator can choose the policy
resolution and deployment preferences to specify when it should be pushed and pro-
grammed into leaf switches. This approach provides efficient use of hardware resources
because resources are consumed only when demanded. You should be aware of picking
one option over the other, depending on the use case and scalability limits of your ACI
infrastructure, as explained in the following sections.

Resolution Immediacy

The Resolution Immediacy option defines when policies are downloaded to the leaf soft-
ware based on the following options:

■■ Pre-provision: This option specifies that a policy (such as VRF, VLAN, VXLAN
binding, contracts, or filters) is downloaded to the associated leaf switch software
even before a VM controller is attached to the distributed virtual switch (DVS), such
as a VMware (VDS), defined by an APIC through the VMM domain.

■■ This option helps when management traffic between hypervisors and VM con-
trollers such as VMware vCenter is also using the APIC-defined virtual switch.

■■ When you deploy a VMM policy such as VLAN or VXLAN on an ACI leaf
switch, an APIC must collect CDP/LLDP information from hypervisors through

256    Chapter 6: VMM Integration

the VM controller and ACI leaf switch to which the host is connected. However,
if the 	VM controller is supposed to use the same VMM policy to communicate
with its hypervisors or even an APIC, the CDP/LLDP information for hypervisors
can never be collected because the required policy is not deployed yet.

■■ With the Pre-provision immediacy option, policy is downloaded to the ACI
leaf switch software, regardless of CDP/LLDP neighborship and even without a
hypervisor host connected to the VMM domain-defined DVS.

■■ Immediate: This option specifies that a policy (such as VRF, VLAN, VXLAN
binding, contracts, or filters) is downloaded to the associated leaf switch software
upon ESXi host attachment to a DVS. LLDP or OpFlex permissions are used to
resolve the VM controller to leaf switch attachments.

■■ The policy is downloaded to a leaf when you add a host to the VMM domain-
defined DVS. CDP/LLDP neighborship from host to leaf is required.

■■ On Demand: This option specifies that a policy (such as VRF, VLAN, VXLAN
binding, contracts, or filters) is pushed to the leaf node only when a host running
hypervisor is attached to a DVS and a VM is placed in the port group (EPG).

■■ The policy is downloaded to a leaf when a host is added to the VMM domain-
defined DVS and a virtual machine is placed in the port group (EPG). CDP/LLDP
neighborship from host to leaf is required.

With both the Immediate and On Demand options for resolution immediacy, if the
hypervisor running on the host and leaf lose LLDP/CDP neighborship, the policies are
removed from the leaf switch software.

Deployment Immediacy

After the policies are downloaded to the leaf software through the Resolution Immediacy
option, you can use Deployment Immediacy to specify when the policy is pushed to the
hardware policy content-addressable memory (CAM). Two options are available:

■■ Immediate: This option specifies that the policy is programmed into the hardware
policy CAM as soon as the policy is downloaded in the leaf software. You should be
aware of your ACI infrastructure scalability limits when choosing this option.

■■ On Demand: This option specifies that the policy is programmed in the hardware
policy CAM only when the first packet is received through the data path. This
process helps optimize the hardware resources.

Note  When you use On Demand deployment immediacy with MAC-pinned VPCs, the
EPG contracts are not pushed to the leaf ternary content-addressable memory (TCAM)
until the first endpoint is learned in the EPG on each leaf. This can cause uneven TCAM
utilization across VPC peers. (Normally, the contract would be pushed to both peers.)

VMware Integration    257

VMware Integration
When integrating your VMware infrastructure into Cisco ACI, you have two options for
deploying virtual networking:

■■ VMware vSphere Distributed Switch (VDS)

■■ Cisco Application Virtual Switch (AVS)

These two options provide similar basic virtual networking functionality; however, the
AVS option provides additional capabilities, such as VXLAN and microsegmentation
support.

Prerequisites for VMM Integration with AVS or VDS

The prerequisites for VMM integration with AVS or VDS are as follows:

■■ You need to decide whether to use VLAN or VXLAN encapsulation or multicast
groups.

■■ A virtual machine manager must be already deployed, such as vCenter.

■■ The VMM must be accessible by the APIC through either the out-of-band or
in-band management network.

■■ For Cisco AVS deployment, a vSphere Installation Bundle (VIB) must be installed on
all hypervisor hosts to be added to the AVS.

■■ For a VXLAN deployment, you need to know whether intermediate devices have
Internet Group Management Protocol (IGMP) snooping on or off by default.

Guidelines and Limitations for VMM Integration with AVS or VDS

The guidelines and limitations for VMM integration with AVS or VDS are as follows:

■■ When utilizing VLANs for VMM integration, whether with Cisco AVS or VMware
VDS, the range of VLANs to be used for port groups must be manually allowed on
any intermediate devices.

■■ For VMM integration with VLANs and the Resolution Immediacy setting On
Demand or Immediate, there can be a maximum of one hop between a host and the
compute node.

■■ For VMM integration with VXLAN, only the infrastructure VLAN needs to be
allowed on all intermediate devices.

■■ For VMM integration with VXLAN, if the Infra bridge domain subnet is set as a
querier, the intermediate devices must have IGMP snooping enabled for traffic to
pass properly.

258    Chapter 6: VMM Integration

■■ To log in to the APIC GUI, choose Tenants > Infra > Networking > Bridge
Domains > default > Subnets > 10.0.0.30/27.

■■ For VMM integration with VXLAN and UCS-B, IGMP snooping is enabled on
the UCS-B by default. Therefore, you need to ensure that the querier IP address is
enabled for the Infra bridge domain. The other option is to disable IGMP snooping
on the UCS and disable the querier IP address on the Infra bridge domain.

ACI VMM Integration Workflow

Figure 6-6 illustrates the ACI VMM integration workflow steps.

APIC
Admin

VMware
Admin vCenter

APIC

Application Profile

EPG
App

EPG
Db

EPG
Web

Web
Port Group

App
Port Group

Db
Port Group

Virtual Distributed Switch

Hypervisor Hypervisor

1

3

46

Create VMM Domain
Cisco APIC & VMware
vCenter Initial Handshake

Attach Hypervisor
to vDS

Learn Location of ESX
Hosts Through LLDP

Automatically Map
EPGs to Port Groups

9
Push Policy

5
Create App Policy &
Associate VMM Domain

7
Create Port
Groups 8

Assign Port Groups,
Initiate VMs

2 Create vDS

Figure 6-6  ACI VMM Integration Workflow

Publishing EPGs to a VMM Domain

This section details how to publish an existing EPG to a VMM domain. For an EPG to be
pushed to a VMM domain, you must create a domain binding within the tenant EPG by
following these steps:

Step 1.	 From the menu bar, choose Tenants > All Tenants.

Step 2.	 From the Work pane, choose the Tenant_Name.

Step 3.	 From the Navigation pane, choose Tenant_Name > Application Profiles >
Application_Profile_Name > Application EPGs > Application_EPG_Name >
Domains (VMs and bare-metal servers).

Step 4.	 From the Work pane, choose Actions > Add VM Domain Association.

Step 5.	 In the Add VM Domain Association dialog box, choose the VMM domain
profile that you created previously. For Deployment and Resolution

VMware Integration    259

Immediacy, Cisco recommends keeping the default option, On Demand. This
provides the best resource usage in the fabric by deploying policies to leaf
nodes only when endpoints assigned to this EPG are connected. There is no
communication delay or traffic loss when you keep the default selections.

Step 6.	 Click Submit. The EPG is now available as a port group to your VMM.

Connecting Virtual Machines to the Endpoint Group Port
Groups on vCenter

To connect virtual machines to the endpoint group port groups on vCenter, do the
following:

Step 1.	 Connect to vCenter by using the VMware VI Client.

Step 2.	 From the Host and Clusters view, right-click on your virtual machine and
choose Edit Settings.

Step 3.	 Click on the network adapter and from the Network Connection drop-down
box, choose the port group that corresponds to your EPG. It should appear
in the format of TENANT | APPLICATION_PROFILE | EPG | VMM_
DOMAIN_PROFILE.

If you do not see your Cisco ACI EPG in the Network Connection list, it means one of
the following:

■■ The VM is running on a host that is not attached to the distributed switch managed
by the APIC.

■■ There may be a communication between your APIC and vCenter either through the
OOB or the INB management network.

Verifying VMM Integration with the AVS or VDS

The following sections describe how to verify that the Cisco AVS has been installed on
the VMware ESXi hypervisor.

Verifying the Virtual Switch Status

To verify the virtual switch status, follow these steps:

Step 1.	 Log in to the VMware vSphere client.

Step 2.	 Choose Networking.

Step 3.	 Open the folder for the data center and click the virtual switch.

Step 4.	 Click the Hosts tab. The VDS Status and Status fields display the virtual
switch status. Ensure that the VDS status is Up, which indicates that OpFlex
communication has been established.

260    Chapter 6: VMM Integration

Verifying the vNIC Status

To verify the vNIC status, follow these steps:

Step 1.	 In the VMware vSphere client, click the Home tab.

Step 2.	 Choose Hosts and Clusters.

Step 3.	 Click the host.

Step 4.	 In the Configuration tab, select the Hardware panel and choose Networking.

Step 5.	 In the View field, click the vSphere Distributed Switch button.

Step 6.	 Click Manage Virtual Adapters. The vmk1 displays as a virtual adapter with
an IP address.

Step 7.	 Click the newly created vmk interface to display the vmknic status.

Note  Allow approximately 20 seconds for the vmk to receive an IP address through
DHCP.

Microsoft SCVMM Integration
Figure 6-7 shows a representative topology for a Microsoft SCVMM integration with
Cisco ACI. Hyper-V clustering connectivity between SCVMM virtual machines and the
APIC can run over the management network.

Hyper-V
Host

APIC Hyper-V
Agent

APIC Hyper-V
Agent

APIC Hyper-V
Agent

APIC Hyper-V
Agent

Control & Data Control & Data

REST

VM VM VM VM VM VM VM VM

APIC
Admin

VMM
Admin

SCVMM ACI Plugin

PowerShell

SCVMM

Hyper-V
Host

Hyper-V
Host

Hyper-V
Host

Microsoft CISCO Microsoft CISCO Microsoft CISCO Microsoft CISCO

Figure 6-7  Microsoft SCVMM Topology with ACI

Microsoft SCVMM Integration    261

Figure 6-8 illustrates the workflow for integrating Microsoft SCVMM with Cisco ACI.
The following sections describe the steps in this workflow.

APIC
Admin APIC

Windows Server
2012 R2 / 2016

Hypervisor Hypervisor

1

2

4

Create
Virtual Switch

Learn Location of HyperV
Hosts Through OpFlex

9 Push Policy

5 Create Application
Policy

OpFlex Agent OpFlex Agent

Web App DbWeb App Db

Windows Server
2012 R2 / 2016

Azure Pack

APIC
Plugin SCVMM Plugin

HyperV Virtual Switch
Web VM Network App VM Network Db VM Network

6

Create VMM Domain
Cisco APIC & Microsoft
SCVMM initial Handshake

Microsoft
System Center
Virtual Machine Manager

Microsoft Azure

Automatically Map
EPGs to Port Groups

SCVMM
Admin

Create
VM Networks

Attach Hypervisor
to Virtual Switch

3

8 Assign VM Networks, Start VMs

7

Application Profile

EPG
App

EPG
Db

EPG
Web

Figure 6-8  Workflow for Integrating ACI and Microsoft SCVMM

Mapping ACI and SCVMM Constructs

Figure 6-9 shows the mapping of Cisco ACI and the SCVMM constructs (SCVMM con-
troller, cloud, and logical switches).

SCVMM Cloud = Cloud 1

VMM Controller = SCVMM 1,
Cloud Name = Cloud 1

VMM Controller = SCVMM 1,
Cloud Name = Cloud 3

VMM Controller = SCVMM 1,
Cloud Name = Cloud 2

VMM Domain = Dom 1

SCVMM Cloud = Cloud 3SCVMM Cloud = Cloud 2

Logical Switch = Dom 1 Logical Switch = Dom 2 Logical Switch = Dom 1

VMM Domain – Dom 2

SCVMM 1 SCVMM 2

APIC

Figure 6-9  Mapping ACI and SCVMM Constructs

262    Chapter 6: VMM Integration

One VMM domain cannot map to the same SCVMM more than once. An APIC can be
associated with up to five SCVMM controllers. For additional information on other limi-
tations, see the Verified Scalability Guide for Cisco ACI on the Cisco website.

Mapping Multiple SCVMMs to an APIC

When multiple SCVMMs are associated with an APIC, the OpFlex certificate from the
first SCVMM controller must be copied to the secondary controller and other control-
lers, as applicable. You use the certlm.msc command on the local SCVMM controller to
import the certificate to the following location:

Certificates - Local Computer > Personal > Certificates

The same OpFlex certificate is deployed on the Hyper-V servers that are managed by this
SCVMM controller. You use the mmc command to install the certificate on the Hyper-V
servers.

Verifying That the OpFlex Certificate Is Deployed for a
Connection from the SCVMM to the APIC

You can verify that the OpFlex certificate is deployed for a connection from the
SCVMM to the APIC by viewing the Cisco_APIC_SCVMM_Service log file, which is
located in the C:\Program Files (x86)\ApicVMMService\Logs\ directory. In this file,
ensure that the correct certificate is used and also check to make sure there was a suc-
cessful login to the APIC (see Example 6-1).

Example 6-1  Viewing the Cisco_APIC_SCVMM_Service Log File

4/15/2017 2:10:09 PM-1044-13||UpdateCredentials|| AdminSettingsController:
UpdateCredentials.

4/15/2017 2:10:09 PM-1044-13||UpdateCredentials|| new: EndpointAddress:
Called_from_SCVMMM_PS,

 Username ApicAddresses 10.10.10.1;10.10.10.2;10.10.10.3 CertName: OpflexAgent

4/15/2017 2:10:09 PM-1044-13||UpdateCredentials|| ########

4/15/2017 2:10:09 PM-1044-13||UpdateCredentials|| oldreg_apicAddresses is

4/15/2017 2:10:09 PM-1044-13||UpdateCredentials|| Verifying APIC address 10.10.10.1

4/15/2017 2:10:09 PM-1044-13||GetInfoFromApic|| Querying URL https://192.168.10.10/
api/node/class/infraWiNode.xml

4/15/2017 2:10:09 PM-1044-13||GetInfoFromApic|| HostAddr 10.10.10.1

4/15/2017 2:10:09 PM-1044-13||PopulateCertsAndCookies|| URL:/api/node/class/
infraWiNode.xml

4/15/2017 2:10:09 PM-1044-13||PopulateCertsAndCookies|| Searching Cached Store
Name: My

4/15/2017 2:10:09 PM-1044-13||PopulateCertsAndCookies|| Using Certificate
CN=OpflexAgent, C=USA, S=MI, O=CX, E=aci@lab.local in Cached Store Name:My

OpenStack Integration    263

4/15/2017 2:10:09 PM-1044-13||PopulateCertsAndCookies|| Using the following CertDN:

 uni/userext/user-admin/usercert-OpFlexAgent

4/15/2017 2:10:09 PM-1044-13||GetInfoFromApic|| IFC returned OK to deployment query

4/15/2017 2:10:09 PM-1044-13||GetInfoFromApic|| Successfully deserialize deployment
query response

4/15/2017 2:10:09 PM-1044-13||UpdateCredentials|| ApicClient.Login(addr 10.10.10.1)
Success.

Verifying VMM Deployment from the APIC to the SCVMM

You can verify that the OpFlex certificate is deployed on the Hyper-V server by viewing
log files in the C:\Program Files (x86)\ApicHyperAgent\Logs directory. In this file, ensure
that the correct certificate is used and ensure that the connection with the Hyper-V
servers on the fabric leafs is established. In addition, ensure that a VTEP virtual network
adapter is added to the virtual switch and an IP address is assigned to the VTEP adapter.

In the SCVMM, check for the following:

■■ Under Fabric > Logical Switches, verify that apicVswitch_VMMdomainName is
deployed from the APIC to the SCVMM.

■■ Under Fabric > Logical Networks, verify that apicLogicalNetwork_
VMMdomainName is deployed from the APIC to the SCVMM.

■■ Under Fabric > Port Profiles, verify that apicUplinkPortProfile_VMMdomainName
is deployed. If it is not deployed, right-click the host under Servers and choose
Properties. Go to Virtual Switches and ensure that the physical adapters are attached
to the virtual switches.

Note  In the APIC GUI, the Hyper-V servers and the virtual machines do not appear in
the Microsoft SCVMM inventory until you ensure that these points for the SCVMM are
satisfied.

OpenStack Integration
OpenStack defines a flexible software architecture for creating cloud-computing environ-
ments. The reference software-based implementation of OpenStack allows for multiple
Layer 2 transports, including VLAN, GRE, and VXLAN. The Neutron project within
OpenStack can also provide software-based Layer 3 forwarding. When OpenStack is
used with ACI, the ACI fabric provides an integrated Layer 2/3 VXLAN-based overlay
networking capability that can offload network encapsulation processing from the com-
pute nodes to the top-of-rack or ACI leaf switches. This architecture provides the flexibil-
ity of software overlay networking in conjunction with the performance and operational
benefits of hardware-based networking.

264    Chapter 6: VMM Integration

Extending OpFlex to the Compute Node

OpFlex is an open and extensible policy protocol designed to transfer declarative net-
working policies such as those used in Cisco ACI to other devices. By using OpFlex, you
can extend the policy model native to ACI all the way down into the virtual switches
running on OpenStack Nova compute hosts. This OpFlex extension to the compute host
allows ACI to use Open vSwitch (OVS) to support common OpenStack features such as
source Network Address Translation (SNAT) and floating IP addresses in a distributed
manner.

The ACI OpenStack drivers support two distinct modes of deployment. The first
approach is based on the Neutron API and Modular Layer 2 (ML2), which are designed
to provide common constructs such as network, router, and security groups that are
familiar to Neutron users. The second approach is native to the group-based policy
abstractions for OpenStack, which are closely aligned with the declarative policy model
used in Cisco ACI.

ACI with OpenStack Physical Architecture

A typical architecture for an ACI fabric with an OpenStack deployment consists of
a Nexus 9000 spine/leaf topology, an APIC cluster, and a group of servers to run the
various control and compute components of OpenStack. An ACI external routed network
connection as a Layer 3 connection outside the fabric can be used to provide connectiv-
ity outside the OpenStack cloud. Figure 6-10 illustrates OpenStack infrastructure connec-
tivity with ACI.

OpenStack Controllers
Neutron Servers

OpenStack Compute

External
Network

Figure 6-10  OpenStack Physical Topology with ACI

OpenStack Integration    265

OpFlex Software Architecture

The ML2 framework in OpenStack enables the integration of networking services based
on type drivers and mechanism drivers. Common networking type drivers include local,
flat, VLAN, and VXLAN. OpFlex is added as a new network type through ML2, with
an actual packet encapsulation of either VXLAN or VLAN on the host defined in the
OpFlex configuration. A mechanism driver is enabled to communicate networking
requirements from the Neutron servers to the Cisco APIC cluster. The APIC mechanism
driver translates Neutron networking elements such as a network (segment), subnet, rout-
er, or external network into APIC constructs in the ACI policy model.

The OpFlex software stack also currently utilizes OVS and local software agents on
each OpenStack compute host that communicates with the Neutron servers and OVS.
An OpFlex proxy from the ACI leaf switch exchanges policy information with the agent
OVS instance in each compute host, effectively extending the ACI switch fabric and
policy model into the virtual switch. Figure 6-11 illustrates the OpenStack architecture
with OpFlex in ACI.

Project 1 Project 2 Project 3

OpenStack Nova
Compute Host

Open
vSwitch Agent-OVS

Tenant Data:
VLAN or VXLAN

OpFlex Proxy

VM-5
VM-3

VM-4

VM-1

VM-2

OpFlex ML-2
APIC Driver

OpenStack
Neutron Server(s)

Figure 6-11  OpenStack Architecture with OpFlex in ACI

OpenStack Logical Topology

The logical topology diagram in Figure 6-12 illustrates the connections to OpenStack
network segments from Neutron/controller servers and compute hosts, including the
distributed Neutron services.

266    Chapter 6: VMM Integration

OpFlex ML-2
APIC Driver

OpenStack
Neutron Server(s)

Local
Layer-3

Compute 2

Management / API Network

Metadata
Proxy

DHCP

NAT

Local
Layer-3

Compute 1

Metadata
Proxy

DHCP

NAT

Tenant
Network

Inter-host and
External Layer-3

External

Network

Figure 6-12  OpenStack Logical Topology in ACI

Note  The management/API network for OpenStack can be connected to servers using an
additional virtual NIC/subinterface on a common uplink with tenant networking to the ACI
fabric, or by way of a separate physical interface.

Mapping OpenStack and ACI Constructs

Cisco ACI uses a policy model to enable network connectivity between endpoints
attached to the fabric. OpenStack Neutron uses more traditional Layer 2 and Layer 3 net-
working concepts to define networking configuration. The OpFlex ML2 driver translates
the Neutron networking requirements into the necessary ACI policy model constructs to
achieve the desired connectivity. The OpenStack Group-Based Policy (GBP) networking
model is quite similar to the Cisco ACI policy model. With the Cisco ACI unified plug-in
for OpenStack, you can use both ML2 and GBP models on a single plug-in instance.

Note  Only ML2 or GBP can be used for any given OpenStack project. A single project
should not mix ML2 and GBP configurations.

Table 6-1 illustrates the OpenStack Neutron constructs and the corresponding APIC
policy objects that are configured when they are created. In the case of GBP deploy-
ment, the policies have a direct mapping to the ACI policy model. Table 6-2 shows the
OpenStack GBP objects and their corresponding ACI objects.

OpenStack Integration    267

Table 6-1  OpenStack Neutron Objects and Corresponding APIC Objects

Neutron Object APIC Object

(Neutron Instance) VMM Domain

Project Tenant + Application Network Profile

Network EPG + Bridge Domain

Subnet Subnet

Security Group + Rule N/A (Iptables rules maintained per host)

Router Contract

Network:external L3Out/Outside EPG

Table 6-2  OpenStack GBP Objects and Corresponding APIC Objects

GBP Object APIC Object

Policy Target Endpoint

Policy Group Endpoint Group (fvAEPg)

Policy Classifier Filter (vzFilter)

Policy Action --

Policy Rule Subject (vzSubj)

Policy Ruleset Contract (vzBrCP)

L2 Policy Bridge Domain (fvBD)

L3 Policy Context (fvCtx)

Prerequisites for OpenStack and Cisco ACI

Keep in mind the following prerequisites for OpenStack and Cisco ACI:

■■ Target audience: It is important to have working knowledge of Linux, the intended
OpenStack distribution, the ACI policy model, and GUI-based APIC configuration.

■■ ACI Fabric: ACI fabric needs to be installed and initialized with a minimum APIC
version 1.1(4e) and NX-OS version 11.1(4e). For basic guidelines on initializing a new
ACI fabric, see the relevant documentation. For communication between multiple
leaf pairs, the fabric must have a BGP route reflector enabled to use an OpenStack
external network.

■■ Compute: You need to have a controller and servers connected to the fabric, prefer-
ably using NIC bonding and a VPC. In most cases the controller does not need to be
connected to the fabric.

268    Chapter 6: VMM Integration

■■ L3Out: For external connectivity, one or more Layer 3 Outs (L3Outs) need to be
configured on the ACI.

■■ VLAN mode: For VLAN mode, a non-overlapping VLAN pool of sufficient size
should be allocated ahead of time.

Guidelines and Limitations for OpenStack and Cisco ACI

The following sections describes the guidelines and limitations for OpenStack and
Cisco ACI.

Scalability Guidelines

There is a one-to-one correlation between the OpenStack tenant and the ACI tenant, and
for each OpenStack tenant, the plug-in automatically creates ACI tenants named accord-
ing to the following convention:

convention_apic_system_id_openstack_tenant_name

You should consider the scalability parameters for supporting the number of required
tenants.

It is important to calculate the fabric scale limits for endpoint groups, bridge domains,
tenants, and contracts before deployment. Doing so limits the number of tenant/project
networks and routers that can be created in OpenStack. There are per-leaf and per-fabric
limits. Make sure to check the scalability parameters for the deployed release before
deployment. In the case of GBP deployment, it can take twice as many endpoint groups
and bridge domains as with ML2 mode. Table 6-3 and Table 6-4 list the APIC resources
that are needed for each OpenStack resource in GBP and ML2 configurations.

Table 6-3  OpenStack GBP and ACI Resources

GBP Resource APIC Resources Consumed

L3 policy One context

L2 policy One bridge domain

One endpoint group

Two contracts

Policy group One endpoint group

Ruleset One contract

Classifier Two filters (forward and reverse)

Note: Five overhead classifiers are created

OpenStack Integration    269

Table 6-4  OpenStack ML2 and ACI Resources

ML2 Resource APIC Resources Consumed

Network One bridge domain

One endpoint group

Router One contract

Security groups N/A (no filters are used)

Availability Guidelines

For redundancy, you can use bonded interfaces (VPCs) by connecting two interfaces to
two leaf switches and creating a VPC in ACI. You should deploy redundant OpenStack
controller nodes to avoid a single point of failure. The external network should also be
designed to avoid a single point of failure and service interruption.

NAT/External Network Operations

The OpFlex driver software can support external network connectivity and Network
Address Translation (NAT) functions in a distributed manner using the local OVS instance
on each OpenStack compute node. This distributed approach increases the availability
of the overall solution and offloads the central processing of NAT from the Neutron
server Layer 3 agent that is used in the reference implementation. You can also provide
direct external connectivity without NAT or with a mix of NAT and non-NAT external
connectivity.

Subnets Required for NAT

Unlike with the standard Neutron approach, three distinct IP subnets are required to take
full advantage of external network functionality with the OpFlex driver:

■■ Link subnet: This subnet represents the actual physical connection to the external
next-hop router outside of the fabric to be assigned to a routed interface, subinter-
face, or SVI.

■■ Source NAT subnet: This subnet is used for Port Address Translation (PAT), allowing
multiple virtual machines to share an outside-routable IP address. A single IP address
is assigned to each compute host, and Layer 4 port number manipulation is used to
maintain unique session traffic.

■■ Floating IP subnet: With OpenStack, the term floating IP is used when a virtual
machine instance is allowed to claim a distinct static NAT address to support
inbound connections to the virtual machine from outside the cloud. The floating
IP subnet is the subnet assigned within OpenStack to the Neutron external network
entity.

270    Chapter 6: VMM Integration

Optimized DHCP and Metadata Proxy Operations

The OpFlex driver software stack provides optimized traffic flow and distributed
processing to provide DHCP and metadata proxy services for virtual machine instances.
These services are designed to keep processing and packet traffic local to the compute
host as much as possible. The distributed elements communicate with centralized func-
tions to ensure system consistency. You should enable optimized DHCP and metadata
services when deploying the OpFlex plug-in for OpenStack.

Physical Interfaces

OpFlex uses the untagged fabric interface for an uplink trunk in VLAN mode. This
means the fabric interface cannot be used for PXE because PXE usually requires an
untagged interface. If you require PXE in a VLAN mode deployment, you must use a
separate interface for PXE. This interface can be connected through ACI or an external
switch. This issue is not present in VXLAN mode since tunnels are created using the
tagged interface for an infrastructure VLAN.

Layer 4 to Layer 7 Services

Service insertion in OpenStack is done through a physical domain or device package.
You should check customer requirements and the plug-in mode (GBP or ML2) to plan
how service insertion/chaining will be done. The OpenStack Neutron project also defines
Layer 4 to Layer 7 extension APIs, such as LBaaS, FWaaS, and VPNaaS. The availability
of these extensions depends on the device vendor. Check the vendor for the availability
of these extensions.

Blade Servers

When deploying on blade servers, you must make sure there is no intermediate switch
between the fabric and the physical server interfaces. Check the OpenStack ACI plug-in
release notes to make sure a particular configuration is supported. At this writing, there is
limited support for B-Series blade servers, and the support is limited to VLAN mode only.

Verifying the OpenStack Configuration

Follow these steps to verify the OpenStack configuration:

Step 1.	 Verify that a VMM domain was created for the OpenStack system ID defined
during installation. The nodes connected to the fabric that are running the
OpFlex agent should be visible under Hypervisors. The virtual machines
running on the hypervisor should be visible when you select that hypervisor.
All networks created for this tenant should also be visible under the DVS sub-
menu, and selecting the network should show you all endpoints connected to
that network.

Step 2.	 Look at the health score and faults for the entity to verify correct operation.
If the hypervisors are not visible or appear as being disconnected, check the
OpFlex connectivity.

OpenStack Integration    271

Step 3.	 Verify that there is a tenant created for the OpenStack tenant/project. All
the networks created in OpenStack should show up as endpoint groups and
corresponding bridge domains. Choose the Operational tab for the endpoint
group to see all of the endpoints for that endpoint group.

Step 4.	 Check the Health Score tab and Faults tab to make sure there are no issues.

Configuration Examples for OpenStack and Cisco ACI

The following sections provide configuration examples for OpenStack and Cisco ACI.

Optimized Metadata and DHCP

In the configuration file, optimized DHCP is enabled by default in the OpFlex OpenStack
plug-in. To disable optimized DHCP, add the following line:

enable_optimized_dhcp = False

In the configuration file, the optimized metadata service is disabled by default. To enable
the optimized metadata, add the following line:

enable_optimized_metadata = True

External Network/NAT Configuration

You can define external network connectivity by adding an apic_external_network
section to the configuration file, as in this example:

[apic_external_network:DC-Out]

preexisting=True

external_epg=DC-Out-EPG

host_pool_cidr=10.10.10.1/24

In this example, host_pool_cidr defines the SNAT subnet. You define the floating IP sub-
net by creating an external network in Neutron or an external policy in GBP. The name of
the external network or policy should use the same name as apic_external_network that
is defined in the file (in this case, DC-Out).

It is possible to disable NAT by adding enable_nat = False in the apic_external_network
section. You can have multiple external networks using different Layer 3 Outs on ACI,
and you can have a mix of NAT and non-NAT external networks.

In GBP deployment, network subnets for policy groups are carved out of the default_ip_
pool setting defined in the plug-in configuration file, as in this example:

[group_policy_implicit_policy]

default_ip_pool = 192.168.10.0/16

This pool is used to allocate networks for created policy groups. You must make sure
that the pool is large enough for the intended number of groups.

272    Chapter 6: VMM Integration

Kubernetes Integration
Kubernetes is a portable, extensible open-source platform that automates the deploy-
ment, scaling, and management of container-based workloads and services in a network.
Beginning with Cisco APIC Release 3.0(1), you can integrate Kubernetes on bare-metal
servers into Cisco ACI.

To integrate Kubernetes with Cisco ACI, you need to execute a series of tasks. Some of
them you perform in the network to set up the Cisco APIC; others you perform on the
Kubernetes server. Once you have integrated Kubernetes, you can use the Cisco APIC to
view Kubernetes in the Cisco ACI.

Note  The following sections show the workflow for integrating Kubernetes and provide
specific instructions for setting up the Cisco APIC. However, it is assumed that you are
familiar with Kubernetes and containers and can install Kubernetes. Specific instructions
for installing Kubernetes are beyond the scope of this book.

The following are the basic tasks involved in integrating Kubernetes into the Cisco ACI
fabric:

Step 1.	 Prepare for the integration and set up the subnets and VLANs in the network.

Step 2.	 Fulfill the prerequisites.

Step 3.	 To provision the Cisco APIC to integrate with Kubernetes, download the pro-
visioning tool, which includes a sample configuration file, and update the con-
figuration file with information you previously gathered about your network.
Then run the provisioning tool with the information about your network.

Step 4.	 Set up networking for the node to support Kubernetes installation. This
includes configuring an uplink interface, subinterfaces, and static routes.

Step 5.	 Install Kubernetes and Cisco ACI containers.

Step 6.	 Use the Cisco APIC GUI to verify that Kubernetes has been integrated into
Cisco ACI.

The following sections provide details on these steps.

Planning for Kubernetes Integration

Various network resources are required to provide capabilities to a Kubernetes cluster,
including several subnets and routers. You need the following subnets:

■■ Node subnet: This subnet is used for Kubernetes control traffic. It is where the
Kubernetes API services are hosted. Make the node subnet a private subnet and
make sure that it has access to the Cisco APIC management address.

■■ Pod subnet: This is the subnet from which the IP addresses of Kubernetes pods are
allocated. Make the pod subnet a private subnet.

Kubernetes Integration    273

Note  This subnet specifies the starting address for the IP pool that is used to allocate
IP addresses to pods and your Cisco ACI bridge domain IP address. For example, if you
define it as 192.168.255.254/16, this is a valid configuration from a Cisco ACI perspective.
However, your containers will not get an IP address because there are no free IP addresses
after 192.168.255.254 in this subnet. We suggest always using the first IP address in the
pod subnet, which in this example would be 192.168.0.1/16.

■■ Node service subnet: This subnet is used for internal routing of load-balanced
service traffic. Make the node service subnet a private subnet.

Note  Much as with the pod subnet, you should configure the service subnet with the
first IP address of the allocated subnet.

■■ External service subnets: These subnets are pools from which load-balanced
services are allocated as externally accessible service IP addresses.

Note  The externally accessible service IP addresses could be globally routable. You
should configure the next-hop router to send traffic destined for these IP addresses to the
fabric. There are two such pools: One is used for dynamically allocated IP addresses, and
the other is available for services to request a specific fixed external IP address.

You need the following VLANs for local fabric use:

■■ Node VLAN: This VLAN is used by the physical domain for Kubernetes nodes.

■■ Service VLAN: This VLAN is used for delivery of load-balanced service traffic.

■■ Infrastructure VLAN: This is the infrastructure VLAN used by the Cisco ACI fabric.

Prerequisites for Integrating Kubernetes with Cisco ACI

Ensure that the following prerequisites are in place before you try to integrate Kubernetes
with the Cisco ACI fabric:

■■ A working Cisco ACI installation

■■ An attachable entity profile (AEP) set up with interfaces that are desired for the
Kubernetes deployment

■■ An L3Out connection, along with a Layer 3 external network to provide external
access

■■ Virtual routing and forwarding (VRF)

274    Chapter 6: VMM Integration

Note  The VRF and L3Out connection in Cisco ACI that are used to provide outside
connectivity to Kubernetes external services can be in any tenant. The most common
usage is to put the VRF and L3Out in the common tenant or in a tenant that is dedicated to
the Kubernetes cluster. You can also have separate VRFs—one for the Kubernetes bridge
domains and one for the L3Out—and you can configure route leaking between them.

■■ Any required route reflector configuration for the Cisco ACI fabric

■■ A next-hop router that is connected to the Layer 3 external network and that is capa-
ble of appropriate external access and configured with the required routes

In addition, the Kubernetes cluster must be up through the fabric-connected interface on
all the hosts. The default route should be pointing to the ACI node subnet bridge domain.
This is not mandatory, but it simplifies the routing configuration on the hosts and is the
recommend configuration. If you choose not to use this design, all Kubernetes-related
traffic must go through the fabric.

Provisioning Cisco ACI to Work with Kubernetes

You can use the acc_provision tool to provision the fabric for the Kubernetes VMM
domain and generate a .yaml file that Kubernetes uses to deploy the required Cisco ACI
container components. The procedure to accomplish this is as follows:

Step 1.	 Download the provisioning tool from

https://software.cisco.com/download/type.html?mdfid=285968390&i=rm
and then follow these steps:

a.	 Click APIC OpenStack and Container Plugins.

b.	 Choose the package that you want to download.

c.	 Click Download.

Step 2.	 Generate a sample configuration file that you can edit by entering the
following command:

terminal$ acc-provision--sample

This command generates the aci-containers-config.yaml configuration file,
which looks as follows:

#

Configuration for ACI Fabric

#

aci_config:

 system_id: mykube �# Every opflex cluster must have a
distinct ID

https://software.cisco.com/download/type.html?mdfid=285968390&i=rm

Kubernetes Integration    275

 apic_hosts: �# List of APIC hosts to connect for
APIC API

 - 10.1.1.101

 vmm_domain: # Kubernetes VMM domain configuration

 encap_type: vxlan # Encap mode: vxlan or vlan

 mcast_range: �# Every opflex VMM must use a distinct
range

 start: 225.20.1.1

 end: 225.20.255.255

 # The following resources must already exist on the APIC,

 # they are used, but not created by the provisioning tool.

 aep: kube-cluster �# The AEP for ports/VPCs used by this
cluster

 vrf: �# This VRF used to create all
Kubernetes EPs

 name: mykube-vrf

 tenant: common �# This can be system-id or common

 l3out:

 name: mykube_l3out # Used to provision external IPs

 external_networks:

 - mykube_extepg # Used for external contracts

#

Networks used by Kubernetes

#

net_config:

 node_subnet: 10.1.0.1/16 # Subnet to use for nodes

 pod_subnet: 10.2.0.1/16 # Subnet to use for Kubernetes Pods

 extern_dynamic: 10.3.0.1/24 �# Subnet to use for dynamic external IPs

 extern_static: 10.4.0.1/24 # Subnet to use for static external IPs

 node_svc_subnet: 10.5.0.1/24 �# Subnet to use for service graph ←This
is not the same as the

 Kubernetes service-cluster-ip-range: Use different
subnets.

 kubeapi_vlan: 4001 �# The VLAN used by the physdom for
nodes

 service_vlan: 4003 �# The VLAN used by LoadBalancer
services

 infra_vlan: 4093 # The VLAN used by ACI infra

#

Configuration for container registry

Update if a custom container registry has been setup

#

registry:

 image_prefix: noiro �# e.g: registry.example.com/
noiro

 # image_pull_secret: secret_name # (if needed)

http://registry.example.com/noiro
http://registry.example.com/noiro

276    Chapter 6: VMM Integration

Note  Do not modify the Cisco ACI bridge domain configuration that is pushed by the
acc-provisioning tool. Setting the bridge domain to flood results in a broken environment.

Step 3.	 Edit the sample configuration file, providing information from your network,
and save the file.

Step 4.	 Provision the Cisco ACI fabric by using the following command:

acc-provision -c aci-containers-config.yaml -o
aci-containers.yaml -f kubernetes-<version> -a -u
[apic username] -p [apic password]

This command generates the file aci-containers.yaml, which you use after
installing Kubernetes. It also creates the files user-[system id].key and user-
[system id].crt, which contain the certificate used to access the Cisco APIC.
Save these files in case you change the configuration later and want to avoid
disrupting a running cluster because of a key change.

Note  The file aci-containers.yaml is security sensitive. It contains keys necessary for
connecting to the Cisco APIC administration API.

Note  Currently, the provisioning tool supports only the installation of a single
Kubernetes cluster on a single or multi-pod Cisco ACI fabric. However, you can run the
tool as often as needed to install multiple Kubernetes clusters. A single Cisco ACI installa-
tion can support more than one Kubernetes cluster.

Step 5.	 (Optional) Configure advanced optional parameters to adjust to custom
parameters other than the ACI default values or base provisioning assump-
tions. For example, if your VMM’s multicast address for the fabric is different
from 225.1.2.3, you can configure it by using the following:

aci_config:

 vmm_domain:

 mcast_fabric: 225.1.2.3

If you are using VLAN encapsulation, you can specify the VLAN pool for it,
as follows:

aci_config:

 vmm_domain:

 encap_type: vlan

Kubernetes Integration    277

 vlan_range:

 start: 10

 end: 25

If you want to use an existing user, key, certificate, add the following:

aci_config:

 sync_login:

 username: <name>

 certfile: <pem-file>

 keyfile: <pem-file>

If you are provisioning in a system nested inside virtual machines, enter
the name of an existing preconfigured VMM domain in Cisco ACI into the
aci_config section under the vmm_domain of the configuration file:

nested_inside:

 type: vmware

 name: myvmware

Preparing the Kubernetes Nodes

When you are done provisioning Cisco ACI to work with Kubernetes, you can start pre-
paring the networking construct for the Kubernetes nodes by following this procedure:

Step 1.	 Configure your uplink interface with or without NIC bonding, depending on
how your AAEP is configured. Set the MTU on this interface to 1600.

Step 2.	 Create a subinterface on your uplink interface on your infrastructure VLAN.
Configure this subinterface to obtain an IP address by using DHCP. Set the
MTU on this interface to 1600.

Step 3.	 Configure a static route for the multicast subnet 224.0.0.0/4 through the
uplink interface used for VXLAN traffic.

Step 4.	 Create a subinterface (for example, kubeapi_vlan) on the uplink interface on
your node VLAN in the configuration file. Configure an IP address on this
interface in your node subnet. Then set this interface and the corresponding
node subnet router as the default route for the node.

Note  Many Kubernetes installer tools look specifically for the default route to choose
interfaces for API server traffic and other traffic. It’s possible to install with the default
route on another interface. To accomplish this, you set up a number of static routes into
this interface and override your installer configuration. However, we recommend setting up
the default route through the node uplink.

278    Chapter 6: VMM Integration

Step 5.	 Create the /etc/dhcp/dhclient-eth0.4093.conf file with the following content,
inserting the MAC address of the Ethernet interface for each server on the
first line of the file:

Note  If you have a single interface, you could name the file dhclient.conf without the
added interface name, as in dhclient-eth0.4093.conf.

send dhcp-client-identifier 01:<mac-address of infra VLAN
interface>;

request subnet-mask, domain-name, domain-name-servers,
host-name;

send host-name <server-host-name>;

option rfc3442-classless-static-routes code 121 = array of
unsigned integer 8;

option ms-classless-static-routes code 249 = array of
unsigned integer 8;

option wpad code 252 = string;

also request rfc3442-classless-static-routes;

also request ms-classless-static-routes;

also request static-routes;

also request wpad;

also request ntp-servers;

	 The network interface on the infrastructure VLAN requests a DHCP address
from the APIC infrastructure network for OpFlex communication. Make sure
the server has a dhclient configuration for this interface to receive all the cor-
rect DHCP options with the lease.

Note  The infrastructure VLAN interface in your environment may be a basic Linux-level
subinterface, such as eth0.4093.

Step 6.	 If you have a separate management interface for the node being configured,
configure any static routes that you need to access your management network
on the management interface.

Step 7.	 Ensure that OVS is not running on the node.

Here is an example of the interface configuration (in /etc/network/interfaces):

Management network interface (not connected to ACI)

auto ens160

iface ens160 inet static

 address 192.168.66.17

 netmask 255.255.255.0

 up route add -net 10.0.0.0/8 gw 192.168.66.1

 dns-nameservers 192.168.66.1

Kubernetes Integration    279

Interface connected to ACI

auto ens192

iface ens192 inet manual

 mtu 1600

ACI Infra VLAN

auto ens192.3095

iface ens192.3095 inet dhcp

 mtu 1600

 up route add -net 224.0.0.0/4 dev ens192.3095

 vlan-raw-device ens192

Node Vlan

auto ens192.4001

iface ens192.4001 inet static

 address 12.1.0.101

 netmask 255.255.0.0

 mtu 1600

 gateway 12.1.0.1

 vlan-raw-device ens192

Installing Kubernetes and Cisco ACI Containers

After you provision Cisco ACI to work with Kubernetes and prepare the Kubernetes nodes,
you can install Kubernetes and ACI containers. You can use any installation method you
choose, as long as it is appropriate to your environment. This procedure provides guidance
and high-level instruction for installation; for details, consult Kubernetes documentation.

When installing Kubernetes, ensure that the API server is bound to the IP addresses on
the node subnet and not to management or other IP addresses. Issues with node routing
table configuration and API server advertisement addresses are the most common prob-
lems during installation. If you have problems, therefore, check these issues first.

Install Kubernetes so that it is configured to use a Container Network Interface (CNI)
plug-in, but do not install a specific CNI plug-in configuration through your installer.
Instead, deploy the CNI plug-in. To install the CNI plug-in, use the following command:

kubectl apply -f aci-containers.yaml

Note  You can use this command wherever you have kubectl set up—generally from a
Kubernetes master node. The command installs the following:

■■ ACI container host agent and OpFlex agent in a daemon set called aci-containers-host

■■ Open vSwitch in a daemon set called aci-containers-openvswitch

■■ ACI containers controller in a deployment called aci-containers-controller

■■ Other required configurations, including service accounts, roles, and security context

280    Chapter 6: VMM Integration

Verifying the Kubernetes Integration

After you have performed the steps described in the preceding sections, you can verify
the integration in the Cisco APIC GUI. The integration creates a tenant, three EPGs, and
a VMM domain. The procedure to do this is as follows:

Step 1.	 Log in to the Cisco APIC.

Step 2.	 Go to Tenants > tenant_name, where tenant_name is the name you specified
in the configuration file that you edited and used in installing Kubernetes and
the ACI containers.

Step 3.	 In the tenant navigation pane, expand the following: tenant_name >
Application Profiles > application_profile_name > Application EPGs. You
should see three folders inside the Application EPGs folder:

■■ kube-default: The default EPG for containers that are otherwise not
mapped to any specific EPG.

■■ kube-nodes: The EPG for the Kubernetes nodes.

■■ kube-system: The EPG for the kube-system Kubernetes namespace. This
typically contains the kube-dns pods, which provide DNS services for a
Kubernetes cluster.

Step 4.	 In the tenant navigation pane, expand the Networking and Bridge Domains
folders. You should see two bridge domains:

■■ node-bd: The bridge domain used by the node EPG

■■ pod-bd: The bridge domain used by all pods

Step 5.	 If you deploy Kubernetes with a load balancer, go to Tenants > common,
expand L4-L7 Services, and perform the following steps:

■■ Open the L4-L7 Service Graph Templates folder; you should see a template
for Kubernetes.

■■ Open the L4-L7 Devices folder; you should see a device for Kubernetes.

■■ Open the Deployed Graph Instances folder; you should see an instance for
Kubernetes.

Step 6.	 Go to VM Networking > Inventory, and in the Inventory navigation pane,
expand the Kubernetes folder. You should see a VMM domain, with the name
you provided in the configuration file, and in that domain you should see
folders called Nodes and Namespaces.

OpenShift Integration    281

OpenShift Integration
OpenShift is a container application platform that is built on top of Docker and
Kubernetes that makes it easy for developers to create applications and provides a plat-
form for operators that simplifies deployment of containers for both development and
production workloads. Beginning with Cisco APIC Release 3.1(1), OpenShift can be inte-
grated with Cisco ACI by leveraging the ACI CNI plug-in.

To integrate Red Hat OpenShift with Cisco ACI, you must perform a series of tasks.
Some tasks are performed by the ACI fabric administrator directly on the APIC, and oth-
ers are performed by the OpenShift cluster administrator. After you have integrated the
Cisco ACI CNI plug-in for Red Hat OpenShift, you can use the APIC to view OpenShift
endpoints and constructs within the fabric.

Note  This section describes the workflow for integrating OpenShift with ACI. However,
it is assumed that you are familiar with OpenShift and containers and have knowledge of
installation. Specific instructions for installing OpenShift are beyond the scope of this
book.

The following is a high-level look at the tasks required to integrate OpenShift with the
Cisco ACI fabric:

Step 1.	 To prepare for the integration, identify the subnets and VLANs that you will
use in your network.

Step 2.	 Perform the required Day 0 fabric configurations.

Step 3.	 Configure the Cisco APIC for the OpenShift cluster. Many of the required
fabric configurations are performed directly with a provisioning tool (acc-
provision). The tool is embedded in the plug-in files from www.cisco.com.
Once downloaded and installed, modify the configuration file with the
information from the planning phase and run the tool.

Step 4.	 Set up networking for the node to support OpenShift installation. This
includes configuring an uplink interface, subinterfaces, and static routes.

Step 5.	 Install OpenShift and Cisco ACI containers.

Step 6.	 Update the OpenShift router to use the ACI fabric.

Step 7.	 Use the Cisco APIC GUI to verify that OpenShift has been integrated into the
Cisco ACI.

The following sections provide details on these steps.

http://www.cisco.com

282    Chapter 6: VMM Integration

Planning for OpenShift Integration

The OpenShift cluster requires various network resources, all of which are provided by
the ACI fabric integrated overlay. The OpenShift cluster requires the following subnets:

■■ Node subnet: This is the subnet used for OpenShift control traffic. This is where the
OpenShift API services are hosted. The acc-provisioning tool configures a private
subnet. Ensure that it has access to the Cisco APIC management address.

■■ Pod subnet: This is the subnet from which the IP addresses of OpenShift pods are
allocated. The acc-provisioning tool configures a private subnet.

Note  This subnet specifies the starting address for the IP pool that is used to allocate IP
addresses to pods as well as your ACI bridge domain IP address. For example, if you define
it as 192.168.255.254/16, which is a valid configuration from an ACI perspective, your
containers do not get IP addresses as there are no free IP addresses after 192.168.255.254
in this subnet. We suggest always using the first IP address in the pod subnet, which in this
example is 192.168.0.1/16.

■■ Node service subnet: This is the subnet used for internal routing of load-balanced
service traffic. The acc-provisioning tool configures a private subnet.

Note  Much as with the pod subnet, you should configure the node service subnet with
the first IP address in the subnet.

■■ External service subnets: These are pools from which load-balanced services are
allocated as externally accessible service IP addresses.

The externally accessible service IP addresses could be globally routable. Configure the
next-hop router to send traffic destined for IP addresses to the fabric. There are two such
pools: One is used for dynamically allocated IPs, and the other is available for services to
request a specific fixed external IP address.

All of the aforementioned subnets must be specified on the acc-provisioning configura-
tion file. The node pod subnets are provisioned on corresponding ACI bridge domains
that are created by the provisioning tool. The endpoints on these subnets are learned as
fabric endpoints and can be used to communicate directly with any other fabric endpoint
without NAT, provided that contracts allow communication. The node service subnet
and the external service subnet are not seen as fabric endpoints but are instead used to
manage the cluster IP address and the load balancer IP address, respectively, and are pro-
grammed on Open vSwitch via OpFlex. As mentioned earlier, the external service subnet
must be routable outside the fabric.

OpenShift nodes need to be connected on an EPG using VLAN encapsulation. Pods can
connect to one or multiple EPGs and can use either VLAN or VXLAN encapsulation. In
addition, PBR-based load balancing requires the use of a VLAN encapsulation to reach

OpenShift Integration    283

the OpFlex service endpoint IP address of each OpenShift node. The following VLAN
IDs are therefore required:

■■ Node VLAN ID: The VLAN ID used for the EPG mapped to a physical domain for
OpenShift nodes

■■ Service VLAN ID: The VLAN ID used for delivery of load-balanced external
service traffic

■■ The fabric infrastructure VLAN ID: The infrastructure VLAN used to extend
OpFlex to the OVS on the OpenShift nodes

Prerequisites for Integrating OpenShift with Cisco ACI

Ensure that the following prerequisites are in place before you try to integrate OpenShift
with the Cisco ACI fabric:

■■ A working Cisco ACI fabric running a release that is supported for the desired
OpenShift integration

■■ An attachable entity profile (AEP) set up with the interfaces desired for the
OpenShift deployment (When running in nested mode, this is the AEP for the VMM
domain on which OpenShift will be nested.)

■■ An L3Out connection, along with a Layer 3 external network to provide external
access

■■ VRF

Note  The VRF and L3Out connection in Cisco ACI that are used to provide outside con-
nectivity to OpenShift external services can be in any tenant. The most common usage
is to put the VRF and L3Out in the common tenant or in a tenant that is dedicated to
the OpenShift cluster. You can also have separate VRFs—one for the OpenShift bridge
domains and one for the L3Out—and you can configure route leaking between them.

■■ Any required route reflector configuration for the Cisco ACI fabric

In addition, ensure that the subnet used for external services is routed by the next-hop
router that is connected to the selected ACI L3Out interface. This subnet is not
announced by default, so either static routes or appropriate configuration must be
considered.

In addition, the OpenShift cluster must be up through the fabric-connected interface on
all the hosts. The default route on the OpenShift nodes should be pointing to the ACI
node subnet bridge domain. This is not mandatory, but it simplifies the routing configura-
tion on the hosts and is the recommend configuration. If you do not follow this design,
ensure that the OpenShift node routing is correctly used so that all OpenShift cluster
traffic is routed through the ACI fabric.

284    Chapter 6: VMM Integration

Provisioning Cisco ACI to Work with OpenShift

You can use the acc_provision tool to provision the fabric for the OpenShift VMM
domain and generate a .yaml file that OpenShift uses to deploy the required Cisco ACI
container components. This tool requires a configuration file as input and performs two
actions as output:

■■ It configures relevant parameters on the ACI fabric.

■■ It generates a YAML file that OpenShift administrators can use to install the ACI
CNI plug-in and containers on the cluster.

Note  We recommended that when using ESXi nested for OpenShift hosts, you provision
one OpenShift host for each OpenShift cluster for each ESXi server. Doing so ensures that,
in the event of an ESXi host failure, a single OpenShift node is affected for each OpenShift
cluster.

The procedure to provision Cisco ACI to work with OpenShift is as follows:

Step 1.	 Download the provisioning tool from https://software.cisco.com/download/
type.html?mdfid=285968390&i=rm and then follow these steps:

a.	 Click APIC OpenStack and Container Plugins.

b.	 Choose the package that you want to download.

c.	 Click Download.

Step 2.	 Generate a sample configuration file that you can edit by entering the follow-
ing command:

terminal$ acc-provision--sample

Note  Take note of the values if you are provisioning OpenStack to work with OpenShift.

This command generates the aci-containers-config.yaml configuration file,
which looks as follows:

#

Configuration for ACI Fabric

#

aci_config:

 system_id: mykube �# Every opflex cluster must have a
distinct ID

 apic_hosts: # List of APIC hosts to connect for
APIC API - 10.1.1.101

 vmm_domain: # Kubernetes VMM domain configuration

https://software.cisco.com/download/type.html?mdfid=285968390&i=rm
https://software.cisco.com/download/type.html?mdfid=285968390&i=rm

OpenShift Integration    285

 encap_type: vxlan # Encap mode: vxlan or vlan

 mcast_range: �# Every opflex VMM must use a distinct
range

 start: 225.20.1.1

 end: 225.20.255.255

 # The following resources must already exist on the APIC,

 # they are used, but not created by the provisioning tool.

 aep: kube-cluster �# The AEP for ports/VPCs used by this
cluster

 vrf: �# This VRF used to create all
kubernetes EPs

 name: mykube-vrf

 tenant: common # This can be system-id or common

 l3out:

 name: mykube_l3out # Used to provision external IPs

 external_networks:

 - mykube_extepg # Used for external contracts

#

Networks used by Kubernetes

#

net_config:

 node_subnet: 10.1.0.1/16 # Subnet to use for nodes

 pod_subnet: 10.2.0.1/16 # Subnet to use for Kubernetes Pods

 extern_dynamic: 10.3.0.1/24 �# Subnet to use for dynamic external
IPs

 node_svc_subnet: 10.5.0.1/24 �# Subnet to use for service graph<-
This is not the same as openshift_
portal_net: Use different subnets.

 kubeapi_vlan: 4001 �# The VLAN used by the physdom for
nodes

 service_vlan: 4003 �# The VLAN used by LoadBalancer
services

 infra_vlan: 4093 # The VLAN used by ACI infra

#

Configuration for container registry

Update if a custom container registry has been setup

#

registry:

 image_prefix: noiro �# e.g: registry.example.com/
noiro

 # image_pull_secret: secret_name # (if needed)

Note  The APIC administrator must not modify the Cisco ACI bridge domain configura-
tion that is pushed by the acc-provisioning tool.

http://registry.example.com/noiro
http://registry.example.com/noiro

286    Chapter 6: VMM Integration

Note  Make sure to remove the following line from the net_config section:

extern_static: 10.4.0.1/24 # Subnet to use for static external IPs

This subnet is not used for OpenShift.

Step 3.	 Edit the sample configuration file with the relevant values for each of
the subnets, VLANs, and so on, as appropriate to your planning, and then
save the file.

Step 4.	 Provision the Cisco ACI fabric by using the following command:

acc-provision -f openshift-<version> -c aci-containers-
config.yaml -o aci-containers.yaml \

-a -u [apic username] -p [apic password]

This command generates the file aci-containers.yaml, which you use after
installing OpenShift. It also creates the files user-[system id].key and user-
[system id].crt, which contain the certificate that is used to access the Cisco
APIC. Save these files in case you change the configuration later and want to
avoid disrupting a running cluster because of a key change.

Note  The file aci-containers.yaml is security sensitive. It contains keys necessary for
connecting to the Cisco APIC administration API.

Note  Currently, the provisioning tool supports only the installation of a single OpenShift
cluster on a single or multi-pod ACI fabric. However, you can run the tool as often as need-
ed to install multiple OpenShift clusters. A single ACI installation can support more than
one OpenShift cluster.

Step 5.	 (Optional) Configure advanced optional parameters to adjust to custom
parameters other than the ACI default values or base provisioning assump-
tions. For example, if your VMM’s multicast address for the fabric is different
from 225.1.2.3, you can configure it by adding the following:

aci_config:

 vmm_domain:

 mcast_fabric: 225.1.2.3

If you are using VLAN encapsulation, you can specify the VLAN pool for it,
as follows:

aci_config:

 vmm_domain:

 encap_type: vlan

OpenShift Integration    287

 vlan_range:

 start: 10

 end: 25

If you want to use an existing user, key, certificate, add the following:

aci_config:

 sync_login:

 username: <name>

 certfile: <pem-file>

 keyfile: <pem-file>

If you are provisioning in a system nested inside virtual machines, enter
the name of an existing preconfigured VMM domain in Cisco ACI into the
aci_config section under the vmm_domain of the configuration file:

nested_inside:

 type: vmware

 name: myvmware

Preparing the OpenShift Nodes

After you provision Cisco ACI, you prepare networking for the OpenShift nodes by
following this procedure:

Step 1.	 Configure your uplink interface with or without NIC bonding, depending on
how your AAEP is configured. Set the MTU on this interface to 1600.

Step 2.	 Create a subinterface on your uplink interface on your infrastructure VLAN.
Configure this subinterface to obtain an IP address by using DHCP. Set the
MTU on this interface to 1600.

Step 3.	 Configure a static route for the multicast subnet 224.0.0.0/4 through the
uplink interface that is used for VXLAN traffic.

Step 4.	 Create a subinterface (for example, kubeapi_vlan) on the uplink interface on
your node VLAN in the configuration file. Configure an IP address on this
interface in your node subnet. Then set this interface and the corresponding
node subnet router as the default route for the node.

Note  Many OpenShift installer tools look specifically for the default route to choose
interfaces for API server traffic and other traffic. It’s possible to install with the default
route on another interface. To do this, you set up static routes into this interface and over-
ride your installer configuration. However, we recommend setting up the default route
through the node uplink.

288    Chapter 6: VMM Integration

Step 5.	 Create the /etc/dhcp/dhclient-eth0.4093.conf file with the following content,
inserting the MAC address of the Ethernet interface for each server on the
first line of the file:

send dhcp-client-identifier 01:<mac-address of infra VLAN
interface>;

request subnet-mask, domain-name, domain-name-servers,
host-name;

send host-name <server-host-name>;

option rfc3442-classless-static-routes code 121 = array of
unsigned integer 8;

option ms-classless-static-routes code 249 = array of
unsigned integer 8;

option wpad code 252 = string;

also request rfc3442-classless-static-routes;

also request ms-classless-static-routes;

also request static-routes;

also request wpad;

also request ntp-servers;

Note  If you have a single interface, you could name the file just dhclient.conf and not
include the interface name, as in dhclient-eth0.4093.conf.

The network interface on the infrastructure VLAN requests a DHCP address
from the Cisco APIC infrastructure network for OpFlex communication. The
server must have a dhclient configuration for this interface to receive all the
correct DHCP options with the lease.

Note  The infrastructure VLAN interface in your environment may be a basic Linux-level
subinterface, such as eth0.4093.

Step 6.	 If you have a separate management interface for the node being configured,
configure any static routes required to access your management network on
the management interface.

Step 7.	 Ensure that OVS is not running on the node.

Here is an example of the interface configuration (in /etc/network/interfaces):

Management network interface (not connected to ACI)

/etc/sysconfig/network-scripts/ifcfg-eth0

NAME=eth0

DEVICE=eth0

ONBOOT=yes

BOOTPROTO=none

TYPE=Ethernet

OpenShift Integration    289

IPADDR=192.168.66.17

NETMASK=255.255.255.0

PEERDNS=no

DNS1=192.168.66.1

/etc/sysconfig/network-scripts/route-eth0

ADDRESS0=10.0.0.0

NETMASK0=255.0.0.0

GATEWAY0=192.168.66.1

Interface connected to ACI

/etc/sysconfig/network-scripts/ifcfg-eth1

NAME=eth1

DEVICE=eth1

ONBOOT=yes

BOOTPROTO=none

TYPE=Ethernet

IMTU=1600

ACI Infra VLAN

/etc/sysconfig/network-scripts/ifcfg-4093

VLAN=yes

TYPE=Vlan

PHYSDEV=eth1

VLAN_ID=4093

REORDER_HDR=yes

BOOTPROTO=dhcp

DEFROUTE=no

IPV6INIT=yes

IPV6_AUTOCONF=yes

IPV6_DEFROUTE=yes

IPV6_FAILURE_FATAL=no

IPV6_ADDR_GEN_MODE=stable-privacy

NAME=4093

DEVICE=eth1.4093

ONBOOT=yes

MTU=1600

/etc/sysconfig/network-scripts/route-4093

ADDRESS0=224.0.0.0

NETMASK0=240.0.0.0

METRIC0=1000

Node Vlan

/etc/sysconfig/network-scripts/ifcfg-node-vlan-4001

VLAN=yes

TYPE=Vlan

PHYSDEV=eth1

290    Chapter 6: VMM Integration

VLAN_ID=4001

REORDER_HDR=yes

BOOTPROTO=none

IPADDR=12.1.0.101

PREFIX=24

GATEWAY=12.1.0.1

DNS1=192.168.66.1

DEFROUTE=yes

IPV6INIT=no

NAME=node-vlan-4001

DEVICE=eth1.4001

ONBOOT=yes

MTU=1600

Installing OpenShift and Cisco ACI Containers

After you provision Cisco ACI and prepare the OpenShift nodes, you can install OpenShift
and ACI containers. You can use any installation method appropriate to your environment.
We recommend using this procedure to install the OpenShift and Cisco ACI containers.

When installing OpenShift, ensure that the API server is bound to the IP addresses on the
node subnet and not to management or other IP addresses. Issues with node routing table
configuration, API server advertisement addresses, and proxies are the most common
problems during installation. If you have problems, therefore, check these issues first.

The procedure for installing OpenShift and Cisco ACI containers is as follows:

Step 1.	 Install OpenShift by using the following command:

git clone https://github.com/noironetworks/openshift-ansible/
tree/release-3.9

git checkout release–3.9

Follow the installation procedure provided at https://docs.openshift.com/
container-platform/3.9/install_config/install/advanced_install.html. Also
consider the configuration overrides listed at https://github.com/
noironetworks/openshift-ansible/tree/release-3.9/roles/aci.

Step 2.	 Install the CNI plug-in by using the following command:

oc apply -f aci-containers.yaml

Note  You can use this command wherever you have oc set up—generally from an
OpenShift master node. The command installs the following:

■■ ACI containers host agent and OpFlex agent in a daemon set called aci-containers-host

■■ Open vSwitch in a daemon set called aci-containers-openvswitch

■■ ACI containers controller in a deployment called aci-containers-controller

■■ Other required configurations, including service accounts, roles, and security context

https://docs.openshift.com/container-platform/3.9/install_config/install/advanced_install.html
https://docs.openshift.com/container-platform/3.9/install_config/install/advanced_install.html
https://github.com/noironetworks/openshift-ansible/tree/release-3.9/roles/aci
https://github.com/noironetworks/openshift-ansible/tree/release-3.9/roles/aci

OpenShift Integration    291

Updating the OpenShift Router to Use the ACI Fabric

To update the OpenShift router to use the ACI fabric, follow these steps:

Step 1.	 Remove the old router by entering the commands such as the following:

oc delete svc router

oc delete dc router

Step 2.	 Create the container networking router by entering a command such as the
following:

oc adm router --service-account=router --host-network=false

Step 3.	 Expose the router service externally by entering a command such as the
following:

oc patch svc router -p '{"spec":{"type": "LoadBalancer"}}'

Verifying the OpenShift Integration

After you have performed the steps described in the preceding sections, you can verify
the integration in the Cisco APIC GUI. The integration creates a tenant, three EPGs, and
a VMM domain. The procedure to do this is as follows:

Step 1.	 Log in to the Cisco APIC.

Step 2.	 Go to Tenants > tenant_name, where tenant_name is the name you specified
in the configuration file that you edited and used in installing OpenShift and
the ACI containers.

Step 3.	 In the tenant navigation pane, expand the following: tenant_name >
Application Profiles > application_profile_name > Application EPGs. You
should see three folders inside the Application EPGs folder:

■■ kube-default: The default EPG for containers that are otherwise not
mapped to any specific EPG.

■■ kube-nodes: The EPG for the OpenShift nodes.

■■ kube-system: The EPG for the kube-system OpenShift namespace. This
typically contains the kube-dns pods, which provide DNS services for a
OpenShift cluster.

Step 4.	 In the tenant navigation pane, expand the Networking and Bridge Domains
folders, and you should see two bridge domains:

■■ node-bd: The bridge domain used by the node EPG

■■ pod-bd: The bridge domain used by all pods

292    Chapter 6: VMM Integration

Step 5.	 If you deploy OpenShift with a load balancer, go to Tenants > common,
expand L4-L7 Services, and perform the following steps:

a.	 Open the L4-L7 Service Graph Templates folder; you should see a template
for OpenShift.

b.	 Open the L4-L7 Devices folder; you should see a device for OpenShift.

c.	 Open the Deployed Graph Instances folder; you should see an instance for
OpenShift.

Step 6.	 Go to VM Networking > Inventory, and in the Inventory navigation pane,
expand the OpenShift folder. You should see a VMM domain, with the name
you provided in the configuration file, and in that domain you should see
folders called Nodes and Namespaces.

VMM Integration with ACI at Multiple Locations
In a single ACI fabric with a single APIC cluster located at a single site or stretched
between multiple sites using transit leaf, multi-pod, or remote leaf design options, indi-
vidual VMM integration can be leveraged using the same policy model in any of the
locations where the ACI fabric is stretched. This is because a single control and data plane
has been stretched between multiple data center locations. In a dual ACI fabric or multi-
site environments, separate APIC clusters are deployed in each location and, therefore, a
separate VMM domain is created for each site.

Multi-Site

In order to integrate VMM domains into a Cisco ACI multi-site architecture, as men-
tioned earlier, you need to create separate VMM domains at each site because the sites
have separate APIC clusters. Those VMM domains can then be exposed to the ACI
multi-site policy manager in order to be associated to the EPGs defined at each site.

Two deployment models are possible:

■■ Multiple VMMs can be used across separate sites, each paired with the local APIC
cluster.

■■ A single VMM can be used to manage hypervisors deployed across sites and paired
with the different local APIC clusters.

The next two sections provide more information about these models.

Multiple Virtual Machine Managers Across Sites

In a multi-site deployment, multiple VMMs are commonly deployed in separate sites to
manage the local clusters of hypervisors. Figure 6-13 shows this scenario.

VMM Integration with ACI at Multiple Locations    293

-
E

V
P

N

A
C

I
M

U
LT

I-
S

IT
E

IP
 N

et
w

or
k

H
yp

er
vi

so
r

H
yp

er
vi

so
r

H
yp

er
vi

so
r

H
yp

er
vi

so
r

V
M

M
 1

V
M

M
 2

V
M

M
 D

om
ai

n
in

 D
C

1

D
at

ac
en

te
r

1
D

at
ac

en
te

r
2

V
M

M
 D

om
ai

n
in

 D
C

2

M
an

ag
ed

 b
y

V
M

M
D

om
ai

n
in

 D
C

1
M

an
ag

ed
 b

y
V

M
M

D
om

ai
n

in
 D

C
2

Fi
g

u
re

 6
-1

3
 

M
ul

ti
pl

e
V

M
M

 D
om

ai
ns

 A
cr

os
s

M
ul

ti
pl

e
Si

te
s

294    Chapter 6: VMM Integration

The VMM at each site manages the local hosts and peers with the local APIC domain to
create a local VMM domain. This model is supported by all the VMM options supported
by Cisco ACI: VMware vCenter Server, Microsoft SCVMM, and OpenStack controller.

The configuration of the VMM domains is performed at the local APIC level. The cre-
ated VMM domains can then be imported into the Cisco ACI multi-site policy manager
and associated with the EPG specified in the centrally created templates. If, for example,
EPG 1 is created at the multi-site level, it can then be associated with VMM domain
DC 1 and with VMM domain DC 2 before the policy is pushed to Sites 1 and 2 for local
implementation.

The creation of separate VMM domains across sites usually restricts the mobility of
virtual machines across sites to cold migration scenarios. However, in specific designs
using VMware vSphere 6.0 and later, you can perform hot migration between clusters of
hypervisors managed by separate vCenter servers. Figure 6-14 and the list that follows
demonstrate and describe the steps required to create such a configuration.

Note  At this writing, vCenter Server Release 6.0 or later is the only VMM option that
allows live migration across separate Cisco ACI fabrics. With other VMMs (such as vCen-
ter releases earlier than 6.0, SCVMM, and OpenStack deployments), if you want to per-
form live migration, you must deploy the VMMs in a single Cisco ACI fabric (single pod
or multi-pod). Please check Cisco.com for the latest updates.

Datacenter 1 Datacenter 2

vCenter 1

VMM Domain in DC1 VMM Domain in DC2

vCenter 2

EPG Web

VMM DC1 VMM DC2

1

2

3

2

1

VDS 1 VDS 2

VMM Domain DC1 and DC2

Live Migration with VMware 6.0 or later
Port Group Web Port Group Web

6

5

6

IP Network
4

ESXi ESXiESXi ESXi

ACI
MULTI-SITE

Figure 6-14  Live Migrations Across VMM Domains with vCenter 6.0 and Later

http://Cisco.com

VMM Integration with ACI at Multiple Locations    295

Step 1.	 Create a VMM domain in each fabric by peering the local vCenter server and
the APIC. This peering results in the creation of local vSphere distributed
switches (VDS 1 at Site 1 and VDS 2 at Site 2) in the ESXi clusters.

Step 2.	 Expose the created VMM domains to the Cisco ACI multi-site policy
manager.

Step 3.	 Define a new Web EPG in a template associated with both Sites 1 and 2. The
EPG is mapped to a corresponding Web bridge domain, which must be con-
figured as stretched with flooding across sites enabled. At each site, the EPG
then is associated with the previously created local VMM domain.

Step 4.	 Push the template policy Sites 1 and 2.

Step 5.	 Create the EPGs in each fabric, and because they are associated with VMM
domains, each APIC communicates with the local vCenter server, which push-
es an associated Web port group to each VDS.

Step 6.	 Connect the Web virtual machines to the newly created Web port groups. At
this point, live migration can be performed across sites.

Single Virtual Machine Manager Across Sites

Figure 6-15 depicts the scenario in which a single VMM domain is used across sites.

In this scenario, a VMM is deployed in Site 1 but manages a cluster of hypervisors
deployed within the same fabric and also in separate fabrics. Note that this configuration
still leads to the creation of different VMM domains in each fabric, and different VDSs
are pushed to the ESXi hosts that are locally deployed. This scenario essentially raises
the same issues as discussed in the previous section about the support for cold and hot
migration of virtual machines across fabrics.

Remote Leaf

ACI fabric allows for integration with multiple VMM domains. With this integration,
the APIC pushes the ACI policy configuration—such as networking, telemetry monitor-
ing, and troubleshooting—to switches based on the locations of virtual instances. The
APIC can push the ACI policy in the same way as a local leaf. A single VMM domain can
be created for compute resources connected to both the ACI main DC pod and remote
leaf switches. VMM/APIC integration is also used to push a VDS to hosts managed by
the VMM and to dynamically create port groups as a result of the creation of EPGs
and their association to the VMM domain. This allows you to enable mobility (“live” or
“cold”) for virtual endpoints across different compute hypervisors.

Note  It is worth noting that mobility for virtual endpoints can also be supported if a
VMM domain is not created (that is, if VMs are treated as physical resources).

296    Chapter 6: VMM Integration

-
E

V
P

N

A
C

I
M

U
LT

I-
S

IT
E

IP
 N

et
w

or
k

H
yp

er
vi

so
r

H
yp

er
vi

so
r

H
yp

er
vi

so
r

H
yp

er
vi

so
r

V
M

M
 1

V
M

M
 D

om
ai

n
in

 D
C

1

D
at

ac
en

te
r

1
D

at
ac

en
te

r
2

V
M

M
 D

om
ai

n
in

 D
C

1

M
an

ag
ed

 b
y

V
M

M
D

om
ai

n
in

 D
C

1
M

an
ag

ed
 b

y
V

M
M

D
om

ai
n

in
 D

C
2

Fi
g

u
re

 6
-1

5
 

Si
ng

le
 V

M
M

 D
om

ai
n

M
an

ag
in

g
V

M
s

A
cr

os
s

M
ul

ti
pl

e
Si

te
s

VMM Integration with ACI at Multiple Locations    297

Virtual instances in the same EPG or Layer 2 domain (VLAN) can be behind the local
leaf as well as the remote leaf. When a virtual instance moves from the remote leaf to
the local leaf or vice versa, the APIC detects the leaf switches where virtual instances are
moved and pushes the associated policies to new leafs. All VMM and container domain
integration supported for local leafs is supported for remotes leaf as well.

Figure 6-16 shows the process of vMotion with the ACI fabric.

`

IP Network

Remote LocationACI Main DC

Port Group Web Port Group Web

12

3

10.10.10.10010.10.10.100

BD: Web
10.10.10.1

EPG:
Web

BD: Web
10.10.10.1

EPG:
Web

ESXi ESXi

vMotion

Figure 6-16  vMotion Between Remote Leaf to ACI Fabric in the Main Data Center

The following events happen during a vMotion event:

Step 1.	 The VM has IP address 10.10.10.100 and is part of the Web EPG and the Web
bridge domain with subnet 10.10.10.1/24. When the VM comes up, the ACI
fabric programs the encapsulation VLAN (vlan-100) and the switch virtual
interface (SVI), which is the default gateway of the VM on the leaf switches
where the VM is connected. The APIC pushes the contract and other associ-
ated policies based on the location of the VM.

Step 2.	 When the VM moves from a remote leaf to a local leaf, the ACI detects the
location of the VM through the VMM integration.

Step 3.	 Depending on the EPG-specific configuration, the APIC may need to push
the ACI policy on the leaf for successful VM mobility, or a policy may
already exist on the destination leaf.

298    Chapter 6: VMM Integration

Summary
Integrating the virtual compute platform into ACI extends the policy model down and
provides deep visibility into the virtualization layer. As discussed in this chapter, due to
the open architecture of Cisco ACI, any hypervisor or container-based platform vendor—
such as VMware, Microsoft, OpenStack, Kubernetes, or OpenShift—can be integrated
into ACI.

In a single ACI fabric located at a single site or stretched between multiple sites using
transit leaf, multi-pod, or remote leaf, individual VMM integration can be leveraged
using the same policy model in any of the locations where the ACI fabric is stretched
because a single control and data plane has been stretched between multiple data cen-
ter locations. In a dual ACI fabric or multi-site environment, separate APIC clusters are
deployed in each location; therefore, a separate VMM domain is created for each site.

Note  There are no Key Topics or Review Questions for this chapter.

Index

A
AAA (authentication, authorization,

accounting) policies, 36
configuring, 533–551

Cisco ISE configuration,
542–547

Cisco Secure ACS
configuration, 533–542

steps in, 547–549
verifying configuration,

550–551
AAEP (attachable access entity

profile), 56–57, 186–187
access policies, 597–600
best practices, 207
VMM association, 252

abbreviations in iBash CLI, 79
Access Control List and Quality of

Service (ACLQOS), 604
access control lists (ACLs), 46
access policies, 36, 52, 595–601

AAEPs, 597–600
best practices, 206–207
border leafs, 520–522

domains, 597–600
interface policies, 596–597
interface profiles, 595–596
NetFlow configuration with,

580–582
overview, 600–601
switch policies, 595–596
switch profiles, 595–596
VLAN pools, 597–600

access ports, 201–206
configuring, 202–203
interface policies, 204–205
policy groups, 596
switch profiles, 205–206

access SPAN, configuring, 567–570
accessing

Bash shell, 74
iBash CLI, 78
NX-OS–style CLI, 68
VSH shell, 82
VSH_LC shell, 83

ACI (Application Centric
Infrastructure)

Clos topology, 612

874  ACI (Application Centric Infrastructure)

configuration management, 7
control plane protocols, 15–17
data plane protocols, 17–18
design philosophies, 6
explained, 3–4, 8
goals and objectives, 6
hardware specifications, 8–14

APIC (ACI controllers), 12–14
Nexus 9000 Series, 9–12

key concepts, 14–15
security, 6–7
three-tier network infrastructure

versus, 4–6
version compatibility for NAE

(Network Assurance Engine), 440
ACI fabric design

logical design, 149–180
container-as-a-service (CaaS),

149–165
vBrick Digital Media Engine

(DME), 175–180
vendor-based ERP (enterprise

resource planning), 165–175
physical design, 85–148

multi-pod, 97–116
multi-site, 116–130
remote leaf, 131–142
remote leaf and multi-pod

integration, 143–148
single-fabric versus multiple-

fabric, 87–97
ACI fabric switch CLIs (command-line

interfaces), 78–84
iBash CLI, 78–81
VSH shell, 81–82
VSH_LC shell, 83–84

ACI policy model, 31–63
benefits of, 37
characteristics of, 32–33
logical constructs, 37–38

application profile objects, 40
bridge domain objects, 43–46
contract objects, 46–50
EPG objects, 41–43
outside network policies, 51–52
subnet objects, 43–44
tenant objects, 38–39
VRF objects, 39–40
vzAny managed objects, 50–51

MIT (management information tree),
33–37

physical constructs, 52
access policies, 52
default policies, 58–60
global policies, 55–57
interface policies, 54–55
managed object relationships,

57–58
policy resolution, 57–58
switch policies, 53
tags, 58

troubleshooting with, 60–63
for VMM domains, 250

ACLQOS (Access Control List and
Quality of Service), 604

ACLs (access control lists), 46
ADC

PBR service graph with, 324
service graph with, 316–317

ADM (Application Dependency
Mapping), 466

administration domains (ADs), 90

attachable access entity profile (AAEP)  875

ADs (administration domains), 90
advertising subnets, 651–656
aliases, 48–49

in iBash CLI, 81
Ansible, 372–392

ACI support, 375–378
APIC authentication, 382–384
explained, 372–375
installing, 378–381
use cases, 384–392

Anycast Gateway, 3
anycast services

gateways, 647–649
in multi-pod design, 334–338

API Inspector, 351–353
APIC (ACI controllers), 12–14

authentication in Ansible, 382–384
bond interfaces, viewing, 730
CLIs (command-line interfaces),

68–78
Bash shell, 74–78
NX-OS–style, 68–74

cluster deployment, 113–116
cluster troubleshooting, 795–798
initial setup, 593–595, 728
LLDP frames, viewing, 730–731
mapping multiple SCVMMs to, 262
monitoring, 475–482
purpose of, 14–15
in three-site stretch fabric, 97
troubleshooting clusters, 727–734
in two-site stretch fabric, 97
wiring errors, 732–733

Application Centric Infrastructure.
See ACI (Application Centric
Infrastructure)

Application Dependency Mapping
(ADM), 466

application deployment workflow
policy-based model, 3
traditional, 1–3

application profiles, 20–21, 40,
384–388

application-centric design, 6
logical topology for, 606

applications
connectivity

standalone compute application
connectivity example,
433–435

virtual compute application
connectivity example, 435

monitoring, 499–505
external network connectivity,

502–504
PBR service graph, 504–505
traffic status, 499–502

in Tetration, 465–467
ARP flooding, 686

in multi-pod design, 700
in multi-site design, 703–705
in remote leaf design, 707–710

ARP optimization, 690
ARP replies in Layer 2 known unicast,

688
ASIC interface, 744–745
assurance groups, 444–447
Atomic Counter tab (Visibility &

Troubleshooting tool), 782–784
attachable access entity profile

(AAEP), 56–57, 186–187
access policies, 597–600
best practices, 207

876  audit log entries

audit log entries
Events and Audits tab (Visibility &

Troubleshooting tool), 779–780
filtering

with iCurl, 725
with MOQuery, 723–724

in syslog, 420–426
troubleshooting with, 720
viewing, 70

authentication of APICs in Ansible,
382–384

auto-completing commands in
NX-OS–style CLI (command-line
interface), 70

automation
with Ansible, 372–392

ACI support, 375–378
APIC authentication, 382–384
explained, 372–375
installing, 378–381
use cases, 384–392

benefits of, 344–345
configuration examples, 345–349
orchestration versus, 343–344
with REST API tools, 351

API Inspector, 351–353
MOQuery, 357–364
Object (Save As) method,

353–355
use cases, 364–372
Visore, 355–358

with UCS Director, 392–401
explained, 392–393
tasks and workflows, 393–395
use cases, 395–401

availability zones (AZs), 90
AVS (Cisco Application Virtual

Switch)
guidelines and limitations, 257–258
prerequisites, 257
verifying, 259–260

AZs (availability zones), 90

B
bash -c command, 75
bash command, 74
Bash shell, 74–78

accessing, 74
executing from NX-OS CLI, 75–76
navigating file system, 76–77
scripts in, 77
viewing Linux routing table, 75
viewing previous commands, 78

BD_EXT_VLANs, 628
BD_VLANs, 628
BDs (bridge domains), 24–25, 43–46

creating, 384–388
endpoint learning

in Layer 2–only bridge
domain, 627–635

in Layer 3–enabled bridge
domain, 635–640

extending outside ACI fabric,
216–218

logical topology, 605–606
with subnets, 527–529

best practices
for access policies, 206–207
for multi-site design, 129–130

configuring  877

BGP (Border Gateway Protocol),
220–221

configuring, 15
for container-as-a-service (CaaS),

154–155
route reflectors, configuring,

221–222
blade chassis servers

connectivity, 208
in OpenStack integration, 270

bond interfaces, viewing, 730
Border Gateway Protocol. See BGP

(Border Gateway Protocol)
border leafs, 15, 25, 26, 51–52, 219

access policies, 520–522
network visibility, 428–430

bridge domains. See BDs (bridge
domains)

buffer drops, 737
ingress/egress packets, 774
viewing, 742

C
CaaS (container-as-a-service),

149–165
Calico CNI for container-as-a-service

(CaaS), 149–165
channels, 92
Cisco ISE (Identity Service Engine),

configuring, 542–547
Cisco Secure ACS (Access Control

System), configuring, 533–542
classnames in MOQuery, 722
CLIs (command-line interfaces)

ACI fabric switch CLIs, 78–84

iBash CLI, 78–81
VSH shell, 81–82
VSH_LC shell, 83–84

APIC CLIs, 68–78
Bash shell, 74–78
NX-OS–style, 68–74

Clos topology, 612
cloud computing, 3
cluster minority state, 114
CNI (Container Network Interface),

149–165
command syntax in iBash CLI, 79
command-line interfaces. See CLIs

(command-line interfaces)
Common tenant, 35
compute connectivity, 207–209
concrete objects, 32
configuration management, 7
configuration mode, entering, 72
configurations, restoring, 72–73
configuring

AAA (authentication, authorization,
accounting) policies, 533–551
Cisco ISE configuration,

542–547
Cisco Secure ACS

configuration, 533–542
steps in, 547–549
verifying configuration,

550–551
access policies, best practices,

206–207
access ports, 202–203
BGP, 15
BGP route reflectors, 221–222

878  configuring

Cisco ISE (Identity Service Engine),
542–547

Cisco Secure ACS (Access Control
System), 533–542

external routed networks, 222–226
INB (in-band) management, 517–533

BDs (bridge domains) with
subnets, 527–529

border leaf access policies,
520–522

external management EPG,
524–527

external routed networks,
522–526

leaf interface access policies,
518–520

management contracts,
517–518

node management EPG, 529
static management addresses,

530
verifying configuration,

530–533
IPNs (inter-pod networks), 234–237,

388–392
NAE (Network Assurance Engine),

440–450
NetFlow, 577–586

with access policies, 580–582
steps in, 577–579
with tenant policies, 582–585
verifying configuration,

585–586
OOB (out-of-band) management,

509–517
external management entity

EPG, 513–515

management contracts,
510–513

node management EPG,
513–514

static management addresses,
510

verifying configuration,
515–517

PBR service graph, 325–326
port channels, 198
route peering, 345–347
service graph, 307–311
SNMP (Simple Network

Management Protocol), 556–566
steps in, 556–562
verifying configuration,

562–566
SPAN (Switched Port Analyzer),

566–577
access SPAN, 567–570
fabric SPAN, 571–573
tenant SPAN, 572–574
verifying configuration,

576–577
in Visibility & Troubleshooting

tool, 575–576
syslog, 551–556

steps in, 551–555
verifying configuration,

555–556
Tetration, 455–461

email alerts, 463
VMM (Virtual Machine Manager)

domains, 601–602
VPC, 192–193, 347–349
vSwitch policies, 602

control plane protocols  879

connectivity
applications

external network connectivity,
502–504

standalone compute application
connectivity example,
433–435

virtual compute application
connectivity example, 435

compute, 207–209
end hosts, 185–207

AAEP (attachable access entity
profile), 186–187

access policy best practices,
206–207

access ports, 201–206
domains, 186
interface policies, 188–191
port channels, 197–201
switch policies, 187–188
troubleshooting, 751–759,

807–812
VLAN pools, 186
VPC (Virtual Port Channel),

191–197
external Layer 2, troubleshooting,

812–813
external Layer 3, troubleshooting,

814–821
L4/L7 service devices, 210–213

firewalls, 211–212
load balancers, 212–213

leaf nodes, troubleshooting, 821–826
networks, 213–241

external bridged networks,
213–218

external routed networks,
218–227

for multi-pod/multi-site design,
228–241

storage, 209–210
troubleshooting, 242–245

Container Network Interface (CNI),
149–165

container-as-a-service (CaaS),
149–165

containers, installing
for Kubernetes, 279
for OpenShift, 290

contexts, 19
Contract Drops tab (Visibility &

Troubleshooting tool), 777
contracts, 22–24, 46–50

Contract Drops tab (Visibility &
Troubleshooting tool), 777

Contracts tab (Visibility &
Troubleshooting tool), 777–779

creating, 384–388, 510–513,
517–518

directionality, 804–807
inheritance, 49
labels, filters, aliases, 48–49
logical topology, 605–606
policy enforcement with, 303–306
preferred groups, 49–50
QoS values, 671
troubleshooting, 759–765, 801–807

Contracts tab (Visibility &
Troubleshooting tool), 777–779

control plane protocols, 15–17
inter-site, 117
remote leaf, 138–140

880  control plane TEP (CP-TEP)

control plane TEP (CP-TEP), 675
COOP (Council of Oracle Protocol),

15, 95, 632–634
CoS (class of service)

preservation, 672–674
values, 670

counters, 737–743, 782–784
CP-TEP (control plane TEP), 675
CPU packet captures, 743–748
CPU utilization, monitoring

on APICs, 475–477
on leafs/spines, 482–485

CRC errors
health scores with, 414–415
viewing, 741, 742–743

current working path, viewing, 73
custom QoS policies, 671

D
dark fiber, 90
data plane protocols, 17–18

inter-site, 118
remote leaf, 138–140

data plane TEP, 675
declarative model, 7
default gateways

firewalls as, 312–313
firewalls as not, 312–314

default policies, 58–60
DELETE method, 349, 473
deleting default policies, 58
demilitarized zones (DMZs), 211
dense wavelength-division

multiplexing (DWDM), 92

Deployment Immediacy option
(EPGs), 256

design. See ACI fabric design
df command, 76
DHCP Relay support in IPNs (inter-

pod networks), 107–109
diagnosing. See troubleshooting
Digital Media Engine (DME),

175–180
discovery

leaf discovery troubleshooting use
case, 792–795

in remote leaf design, 136–139
disk utilization, monitoring on APICs,

477–478
DME (Digital Media Engine),

175–180
DMZs (demilitarized zones), 211
domains

access policies, 597–600
best practices, 206
defined, 186
types of, 56, 186–187
VMM (Virtual Machine Manager),

56, 187, 250–252
AAEP association, 252
components, 250
configuring, 601–602
EPG association, 253–256
policy model, 250
publishing EPGs to with

VMware, 258–259
troubleshooting, 826–832
VLAN pool association, 252

VPC, defining, 193–194

EoMPLS (Ethernet over MPLS) pseudowire  881

Dot1q support in IPNs (inter-pod
networks), 109

downloading software agents
(Tetration), 456

drops
Contract Drops tab (Visibility &

Troubleshooting tool), 777
Drop/Stats tab (Visibility &

Troubleshooting tool), 773–777
in NIR, 788
storm control, 774–775
types of, 737–738

Drop/Stats tab (Visibility &
Troubleshooting tool), 773–777

du command, 76
DWDM (dense wavelength-division

multiplexing), 92
dynamic routing, 651–656
dynamic tunnels, 679

E
EIGRP (Enhanced Interior Gateway

Routing Protocol), 220
ELAM (Embedded Logic Analyzer

Module), 765–768
ELTMC (Ethernet Lif Table Manager

Client), 604
email alerts, configuring in Tetration,

463
enabling syslog, 464
end host connectivity, 185–207

AAEP (attachable access entity
profile), 186–187

access policy best practices,
206–207

access ports, 201–206

domains, 186
interface policies, 188–191
port channels, 197–201
switch policies, 187–188
troubleshooting, 242–245, 751–759

with Endpoint Tracker,
752–755

with EPMC log files, 752–755
with EPT (Enhanced Endpoint

Tracker) app, 756–757
Layer 2 traffic flow, 807–812
with Rogue Endpoint

Detection, 758–759
VLAN pools, 186
VPC (Virtual Port Channel), 191–197

endpoint learning, 626–645
fabric glean process, 640–641
in Layer 2–only bridge domain,

627–635
in Layer 3–enabled bridge domain,

635–640
remote learning, 641–645

Endpoint Manager Client (EPMC),
604

log files, 752–755
Endpoint Manager (EPM), 603
endpoint mobility, 645–647
Endpoint Tracker, 752–755
Enhanced Endpoint Tracker (EPT)

app, 756–757
Enhanced Interior Gateway Routing

Protocol (EIGRP), 220
enterprise resource planning (ERP),

vendor-based, 165–175
EoMPLS (Ethernet over MPLS)

pseudowire, 92–97

882  EPGs (endpoint groups)

EPGs (endpoint groups)
application profiles, 20–21
connecting VMs to port groups, 259
contracts, 22–24, 46–50
creating, 384–388
explained, 21–23
extending outside ACI fabric,

 213–216
external management entity EPGs,

creating, 513–515
external management EPGs, creating,

524–527
L3Out flags, 668–669
logical topology, 605–606
MOs (managed objects), 41–43
node management EPGs

choosing, 513–514
configuring, 529

out-of-band, 799–801
policy enforcement, 661–663
publishing to VMM domain with

VMware, 258–259
QoS values, 671
shadow EPGs, 306–307
shared services, 664–668, 695–698
VMM association, 253–256
vzAny managed objects, 50–51

EPM (Endpoint Manager), 603
EPMC (Endpoint Manager Client),

604
log files, 752–755

EPT (Enhanced Endpoint Tracker)
app, 756–757

ERP (enterprise resource planning),
vendor-based, 165–175

error drops, 737, 774
E-TEP (external TEP), 675
Ethernet Lif Table Manager, 603
Ethernet Lif Table Manager Client

(ELTMC), 604
Ethernet networks, limitations of,

611–612
Ethernet over MPLS (EoMPLS)

pseudowire, 92–97
events

Events and Audits tab (Visibility &
Troubleshooting tool), 779–780

in syslog, 420–426
troubleshooting with, 720–722

Events and Audits tab (Visibility &
Troubleshooting tool), 779–780

examples
0.0.0.0/0 learned dynamically from

peer via OSPF, 656
abbreviations and command syntax

in iBash CLI, 79
accessing APIC NX-OS CLI by using

SSH, 68
accessing Bash shell, 74
accessing iBash CLI, 78
accessing VSH shell, 82
accessing VSH_LC shell, 83
actrlRule contract configuration on

ACI leaf, 762
actrlRule contract object on APIC,

760
actrlRule stats information for

PCTags 49154 and 16387, 762
adding more specific prefix to

external EPG for development,
821

examples  883

aliases in iBash CLI, 81
all PTEP address in fabric, 643
Ansible playbook to configure

signature-based authentication in
ACI, 382–383

Ansible playbook using signature-
based authentication in ACI,
383–384

API messages for leaf node
registration and OOB address,
364

ARP request/reply validation through
iStack, 747

auto-completing commands, 70
BGP RT and route map/prefix to leak

routes, 668
border leaf 201 back to active state,

825
Calico manifest files for BGP peering

with ACI leafs, 157
checking Ansible and Python

software version, 379
checking audit log entries between

two times, 724, 725
checking audit log entries for specific

date and time, 723
checking BGP process in VRF

instance to determine RD and
export/import list, 657

checking contract programming on
leaf 101 between EPG web and
EPG app, 662

checking COOP state for endpoint
by using MAC address, 633–634

checking COOP state on spine for IP
endpoint, 639

checking details of tunnel39
interface, 856

checking external network
connectivity from ACI leafs via
route peering using OSPF, 61–62

checking interface unicast packets
received by using REST API, 498

checking interface unicast packets
transmitted by using REST API,
499

checking multicast status on all
routers in network topology,
857–859

checking PIM status on BD dme-bd,
856

checking routing table of APIC shard
leader, 828–829

checking Secure SSH connection to
Ansible managed nodes, 379

checking shard leader IP connectivity
to vCenter using ping, 828

checking spine 201 for GIPo route
with external interfaces, 838

checking spine BGP neighborships in
overlay-1 VRF instance, 657

checking the details of tunnel9
interface, 854

class ID assigned to route with
zoning rules, 665–666

configuration example for traditional
NX-OS IP access list to count
packets, 782

configuring Phantom RP, 107
configuring PIM and Auto-RP

settings on data center core
router (NX-OS), 179

configuring PIM and RP settings
on WAN core router (IOS XR),
179–180

confirming nonresponsive subnet,
450

884  examples

connecting to APIC with SSH, 515,
530

contract and filter verification for
PCTag 15 on leaf 101, 820

contract and filter verification for
PCTag 16389 on leaf 101, 821

contract deployment on leaf 101 for
traffic destined to JumpBox EPG,
805

contract deployment on leaf 101 for
traffic sourced from JumpBox
EPG, 805

CoPP filter verification on leaf CLI,
747–748

copying SSH key to Ansible
managed node, 380–381

current working path, 73
data plane policer drops, 776
displaying VTEP address and PTEP

address of nodes advertising
them, 643–644

DME IP address is learned on leaf
1001, 848

DPP policy, 776
endpoint aging is enabled per IP, 639
endpoint and tunnel verification on

border leaf 201, 825–826
endpoint MO on APIC, 634–635
endpoint with PCTag for policy

enforcement, 663
ensuring APIC 1 can ping all APICs

in cluster, 734
entering configuration mode, 72
executing Ansible playbook, 381
executing Bash commands from

NX-OS CLI, 75–76
executing commands and redirecting

to file, 82, 83
fabric command, 71–72

fabric node out-of-service output
through the REST API, 493

FCS errors ingressing on leaf, 774
finding BD class and filtering on

name with ARP flooding enabled
using MOQuery, 362–364

finding classes with MOQuery,
359–360

finding DN with MOQuery, 360
finding EPG class and filtering on

name with MOQuery, 360–362
FTag 11 for leaf 101, 625
FTag programming on spine 201,

620–621
FTags on leaf switch, 621–622
generating SSH key on Ansible

control node, 380
GIPo mroute for BD in IS-IS, 624
host A MAC address not learned on

leaf 103, 812
identifying IP address moves with

EPMC log files, 755
identifying MAC moves between

non-VPC pair using EPMC log
files, 754

identifying MAC moves with VPC
pair with EPMC log files, 753

initiating SSH sessions, 73
interface information for eth-1/5

viewed from iBash, 740–741
inventory INI file, 375
inventory YAML file, 375
IP prefix verification within

ACLQOS for given VRF instance
on leaf 101, 818

IP routing table for overlay-1 VRF
instance and IS-IS neighborships
on Leaf 101, 735–736

examples  885

IP routing table for overlay-1 VRF
instance and IS-IS neighborships
on Spine 201, 736

iPing failing to the destination, 824
IPN1 variable file (ipn1-var.yml), 391
IPN2 variable file (ipn2-var.yml), 391
IPv4 next hop reachable through

spines, 618
IPv4 routing table built through

IS-IS, 617
IS-IS neighbors for leaf 101, 617
JSON format in ACI, 353
JSON script to configure leaf node

registration and OOB address,
367–368

JSON script to configure leaf node
registration and OOB address
using variables, 368–369

L3Out VLAN deployed on leaf 101,
653

Layer 2 endpoint verification on leafs
101 and 102, 808–809

Layer 3 interface for L3Out, 653
leaked route from border leafs 101

and 102, 667
listing command options, 79
listing show commands, 69–70
monitoring aggregate amount of

traffic flow to specific application
tier, 500–502

monitoring CPU utilization on leafs
and spines, 483–485

monitoring external network
connectivity by using REST API,
503–504

monitoring fan status, 488–489
monitoring leaf and spine fabric

membership by using REST API,
492–493

monitoring memory utilization on
leafs and spines, 485–486

monitoring PBR status by using
REST API, 504–505

monitoring power supply unit status,
487–488

monitoring status of leaf and spine
interfaces, 497–498

monitoring supervisor module, line
card, and fabric module status,
489–491

MOQuery command-line help,
358–359

mroute validation on IPN 1, 838
multicast receiver IP reachability to

multicast source and RP, 849–850
multicast routing table on leaf 1001,

856
multicast routing table on RP,

851–852
multicast RP and PIM status along

with multicast routing table on
ACI border leaf 202, 853–854

multicast RP and PIM status along
with multicast routing table on
data center core router, 852–853

multicast RP and PIM status along
with multicast routing table on
leaf 1001, 855

multicast RP and PIM status on RP,
850–851

multiple IP addresses learned against
a single MAC address, 638

naming schemes, 772
navigating file system, 76–77
no BGP neighbors exist on leaf 302,

840
OSPF neighbor verification on leaf

201, 823

886  examples

PI VLAN configured for EPG
VLAN2, 629

ping text to TEP address of leaf 103
fails, 735

ping to APIC 2 from APIC 1 fails,
796

platform counters for eth-1/5 on Leaf
101, 738–739

playbook YAML file, 374
pulling fabric node status by using

REST API, 494–496
remote endpoint learned for host B

on leaf 101, 815
remote learned IP endpoint, 642
REST API call to monitor APIC

cluster state, 481–482
REST query to check faults, 409–411
restoring configurations, 72–73
retrieving information about APIC

CPU and memory usage,
475–477

retrieving information about APIC
disk utilization, 477–478

retrieving information about APIC
interface status, 479–481

route map to redistribute external
routes into OSPF, 655

route on compute leaf is now
readable via border leafs in pod
1, 841

route peering configuration using
OSPF in NX-OS, 346

routes marked as private to VRF
assigned the default VRF instance
tag, 655

routing table for route to host B on
leaf 101, 815

routing table of leaf 103 with
pervasive route pointing to spine
proxy, 803

RP address reachability from leaf
1001 sourcing from DME IP
subnet gateway, 849

sample Ansible playbook to create
tenant in ACI, 376

sample Ansible playbook using
aci_rest module to assign OOB
address in ACI, 377–378

sample configuration of data center
core routers filtering CaaS subnets
via eBGP, 162

sample configuration of data center
core routers peering with ACI
border leaf using OSPF, 161

scripts in Bash shell, 77
setting page size and number to

collect objects, 726
show cli list command, 82, 84
show faults subcommands, 409
show switch command, 74
SPAN session on leaf 102 showing

different IP address than leaf 101,
750–751

SPAN session verification on leaf
101, 749–750

storm control drop stats per class,
775

storm control drops on leaf interface,
775

system ID of leaf 101, 616–617
tcpdump on kpm_inb showing no

LACP packets being received, 835
TEP address of leaf 101, 616
tunnel interface, 643
use case 1 Ansible inventory file, 388

examples  887

use case 1 Ansible playbook,
384–387

use case 2 Ansible inventory file, 391
use case 2 Ansible playbook,

388–390
use case 2 IPN router baseline

configuration file (NX-OS),
391–392

verifying AAA configuration, 551
verifying active bond interface on

APIC 1, 792
verifying INB configuration,

531–532
verifying interface status through

SNMP IFMIB value, 565
verifying JSON script to configure

leaf node registration and OOB
address, 370–372

verifying LLDP and Infra VLAN
deployment on leaf 101, 796–797

verifying LLDP frames from
connected leaf on APIC 1,
793–794

verifying MAC address is learned on
eth1/6 in PI VLAN, 629–630

verifying NetFlow configuration,
585–586

verifying OOB as preferred
management method for APIC,
533

verifying OOB configuration,
515–517

verifying route maps for
redistribution on VRF instance
for OSPF, 654

verifying Secure SSH connection to
Ansible managed node, 381

verifying SNMP configuration on
APIC, 562

verifying SNMP configuration on
leaf/spine, 563–564

verifying SNMP read query
functionality through tcpdump
utility on a leaf, 566

verifying SNMP trap functionality
through tcpdump utility on a leaf,
564–565

verifying SPAN configuration,
576–577

verifying syslog configuration on
APIC, 555

verifying syslog functionality
through tcpdump utility on a leaf,
556

verifying TACACS+ server
reachability through nginx logs,
551

viewing APIC bond interfaces from
CLI, 730

viewing audit log entries, 70
viewing BGP route state on leaf 103

for VRF instance, 658–659
viewing buffer drops via platform

counters, 742
viewing Cisco_APIC_SCVMM_

Service log file, 262–263
viewing CRC errors globally with

MOQuery, 742–743
viewing CRC errors via iBash, 741
viewing CRC errors via platform

counters, 741
viewing ELTMC hardware

programming and mapping from
EPG to BD, 628

viewing endpoint information
triggered by VPC sync from leaf
101 to leaf 102, 631

888  examples

viewing fabric node status with
acidiag fnvread, 734–735

viewing interface rate via iBash, 742
viewing IP endpoint from EPMC

software on line card of a leaf,
637

viewing Linux routing table, 75
viewing LLDP frames sent from

APIC, 730–731
viewing LLDP objects on leaf for

all interfaces with wiring issues,
731–732

viewing MAC endpoint from EPMC
software on line card of a leaf,
630

viewing multi-site unicast and date
plane TEP address on spine, 680

viewing multi-site VRF instance and
sclass translations on spine, 682

viewing packets on tahoe0 by using
tcpdump2, 745

viewing packets on tahoe0 using
knet_parser, 746

viewing packets that met a policy
permit rule, 765

viewing packets that matched a
policy deny rule, 764

viewing PI VLAN and BD mapped to
EPG VLAN 2, 629

viewing previous commands, 78
viewing redistribution route

map from BGP to OSPF and
corresponding prefix list, 660

viewing routing table on leaf 103 for
VRF instance, 658

viewing total policy TCAM entries
on cloud-scale platform, 763

viewing VLAN name (EPG) mapping
to encap VLAN, 628

viewing VMM domain configuration
and checking shard leader,
827–828

VLAN and anycast gateway
deployment on leaf 1006, 823

VLAN and endpoint verification for
EPG WebServers on leaf 103, 811

VLAN deployment on leafs 101 and
102, 808

VLAN verification on leaf 101, 833
VNID rewrite information for leaked

routes, 666
VPC configuration in NX-OS, 347
watch command, 80
wiring issue raised on eth1/3 of leaf

101, 797
zoning rule between globally unique

PCTag and locally significant
PCTag, 665

excluded EPGs, 50
executing commands

Bash command from NX-OS CLI,
75–76

in NX-OS–style CLI (command-line
interface), 71–72

and redirecting to file, 82, 83
extending

BDs (bridge domains) outside ACI
fabric, 216–218

EPGs (endpoint groups) outside ACI
fabric, 213–216

OpFlex to compute node, 264
external bridged domains, 56, 187

extending outside ACI fabric,
216–218

fan status, monitoring on leafs/spines  889

external bridged networks, 25–26
network connectivity to, 213–218

external IPv4 proxy, 675
external IPv6 proxy, 675
external Layer 2 connectivity,

troubleshooting, 812–813
external Layer 3 connectivity,

troubleshooting, 814–821
external Layer 3 routing protocols,

220–221
external MAC proxy, 675
external management entity EPGs,

creating, 513–515
external management EPGs, creating,

524–527
external monitoring tools, 430–473

Network Assurance Engine, 437–453
building blocks, 437–438
configuring, 440–450
installing, 439–440
subnet reachability example,

450–453
use cases, 438–439

Network Insights suite, 430–435
standalone compute application

connectivity example,
433–435

tools in, 431–433
virtual compute application

connectivity example, 435
Tetration, 453–473

applications, 465–467
cluster reboots, 469
cluster shutdowns, 469–470
code upgrades, 467–468
email alerts, 463
enabling syslog, 464

hardware agents, 455
installing and configuring,

455–461
patch upgrades, 467–469
scopes, 465
software agents, 455
TAN (Tetration Alerts

Notification) agent, 461–463
workload security example,

470–473
external network connectivity,

monitoring, 502–504
external orchestrators, 466–467
external routed domains, 56, 187
external routed networks, 25–26

configuring, 222–226
for INB (in-band) management,

522–526
learning routes, 656–659
network connectivity to, 218–227
policy enforcement, 695

external TEP (E-TEP), 675

F
fabric command, 71–72
Fabric Extender (FEX) connectivity,

207–208
fabric glean process, 640–641
fabric nodes

troubleshooting, 734–737
viewing status, 734–735

fabric policies, 36. See also access
policies

fabric SPAN, configuring, 571–573
fan status, monitoring on leafs/spines,

488–489

890  faults

faults
Faults tab (Visibility &

Troubleshooting tool), 772–773
monitoring with, 407–411
in syslog, 420–426
troubleshooting with, 718–719

Faults tab (Visibility &
Troubleshooting tool), 772–773

FD_VLANs, 628
FEX (Fabric Extender) connectivity,

207–208
Fibre Channel domains, 56, 187
file system, navigating, 76–77
filtering audit log entries

with iCurl, 725
with MOQuery, 723–724

filters, 48–49, 384–388, 510–513
firewalls

connectivity, 211–212
as default gateways, 312–313
in multi-pod design, 332–333
not default gateways, 312–314
PBR service graph with, 324–325
route peering with, 314–315
service graph with, 316
troubleshooting, 801–804

forward drops, 737, 775–776, 788
forwarding. See packet forwarding
FTags, 618–625

G
GET BULK command, 417
GET command, 417
GET method, 349, 473
GET NEXT command, 417

GIPo (Group IP outer), mapping to
FTags, 623

glean process, 640–641
global policies, 55–57
GOLF connections, 227

H
HAL (Hardware Abstraction Layer),

604
hardware agents (Tetration), 455

installing, 456–459
hardware specifications, 8–14,

603–605
APIC (ACI controllers), 12–14
for NAE (Network Assurance

Engine), 439
Nexus 9000 Series, 9–12
for remote leaf design, 134

health scores, monitoring with,
411–415

history command, 78
host files, 374–375
hybrid clouds, 165
hybrid mode (service graph), 302

I
iBash CLI (command-line interface),

78–81
abbreviations and command syntax,

79
accessing, 78
aliases, 81
listing command options, 79
watch command, 80

iCurl, 724–726

inter-site data plane  891

idempotent, 349, 473–474
imperative model, 7
importing policies, 127–128
INB (in-band) management,

configuring, 517–533
BDs (bridge domains) with subnets,

527–529
border leaf access policies, 520–522
external management EPG, 524–527
external routed networks, 522–526
leaf interface access policies,

518–520
management contracts, 517–518
node management EPG, 529
static management addresses, 530
verifying configuration, 530–533

included EPGs, 49
INFORM command, 417
Infra tenant, 36
ingress error drop packets, 774
ingress forward drop packets,

775–776
ingress load balancer drop packets,

776–777
ingress/egress buffer drop packets,

774
inheritance of contracts, 49
initiating SSH sessions, 73
inner headers, defined, 615
inside networks, 211
installing

Ansible, 378–381
containers

for Kubernetes, 279
for OpenShift, 290

NAE (Network Assurance Engine),
439–440

Tetration, 455–461
hardware agents, 456–459
software agents, 459–461
TAN agent, 461–463

interface errors. See CRC errors
interface policies, 54–55, 188–191

for access ports, 204–205
for leaf access, 518–520
policy groups, 596–597
for port channels, 199–200
for VPC, 195–196

interface policy groups, 188
interface profiles, 189–191
interface rate, viewing, 742
interface selectors, 189
interface status, monitoring on leafs/

spines, 496–499
interfaces, monitoring on APICs,

478–481
internal monitoring tools, 415–430

NetFlow, 426–430
SNMP, 415–420

commands, 417
interface failures example,

418–420
MIB and TRAPs support in

ACI, 417–418
syslog, 420–426

critical messages, 422–423
IPN failure example, 423–426
leaf membership failure

example, 423–424
message structure, 420–421
severity levels, 421–422

inter-site control plane, 117
inter-site data plane, 118

892  inter-VRF traffic in remote leaf design

inter-VRF traffic in remote leaf
design, 142

intrusion prevention system (IPS),
service graph with, 319

inventory files, 374–375
IPNs (inter-pod networks), 98,

104–113
configuring, 234–237, 388–392
connectivity in, 228–234
DHCP Relay support, 107–109
Dot1q support, 109
failure example, 423–426
MTU support, 109
multicast support, 104–107
packet forwarding, 674–679
QoS support, 111–113, 672–674
remote leaf connectivity, 237–241

IPS (intrusion prevention system),
service graph with, 319

IS-IS protocol, 17
TEP addressing and, 615–618

iStack, 745, 747
iTraceroute, 672, 780–782
iVXLAN. See VXLAN

J
JSON format, 353
JSON script errors, troubleshooting,

844–846

K
knet_parser, 746
Kubernetes integration, 272–280

installing containers, 279
planning, 272–273

preparing nodes, 277–279
prerequisites, 273–274
provisioning ACI for, 274–277
verifying, 280

L
L3Out

border leaf access policies, 520–522
dynamic routing, 651–656
flags, 668–669
INB management external routed

networks, 522–526
logical topology, 606–608
policy enforcement, 693
troubleshooting, 839–841

L4/L7 services
deployment, troubleshooting,

832–836
device connectivity, 210–213

firewalls, 211–212
load balancers, 212–213

in multi-pod design, 332–338
in multi-site design, 338–340
in OpenStack integration, 270
PBR (policy-based redirect), 322–331

configuring, 325–326
design considerations, 323
design scenarios, 324–325
service node health check,

326–328
troubleshooting, 328–331

service graph, 300–319
configuring, 307–311
contracts, 303–306
design and deployment

options, 312–319

logical design  893

integration use cases, 302–303
modes, 301–302
shadow EPGs, 306–307
troubleshooting, 834–836

service insertion, 299–300
labels, 48–49
lambdas, 92
Latency tab (Visibility &

Troubleshooting tool), 785
Layer 2 known unicast, 688
Layer 2 unknown unicast proxy,

690–693
Layer 2–only bridge domain,

endpoint learning in, 627–635
Layer 3 proxy flow

in multi-pod design, 700–703
in multi-site design, 705
in remote leaf design, 710–713

Layer 3–enabled bridge domain,
endpoint learning in, 635–640

leaf command, 68
leaf nodes

connectivity, troubleshooting,
821–826

discovery troubleshooting use case,
792–795

health scores, 413
interface access policies, 518–520
membership failure example,

423–424
monitoring, 482–499

CPU utilization, 482–485
fan status, 488–489
interface status, 496–499
membership status, 491–496
memory utilization, 485–486

module status, 489–491
PSU (power supply unit) status,

486–488
registering, 364–372

leaf switches, purpose of, 14
Linux, installing Tetration software

agents, 459–460
Linux routing table, viewing, 75
listing

available commands, 82, 84
command options, 79
show commands, 69–70

LLDP frames, viewing, 730–731
load balancer drops, 738, 776–777
load balancers

connectivity, 212–213
for container-as-a-service (CaaS),

151–154
in multi-pod design, 332

local admin fallback user, logging in
as, 550

log files (EPMC), 752–755
logical constructs, 37–38

application profile objects, 40
bridge domain objects, 43–46
contract objects, 46–50
EPG objects, 41–43
outside network policies, 51–52
subnet objects, 43–44
tenant objects, 38–39
VRF objects, 39–40
vzAny managed objects,

50–51
logical design, 149–180

container-as-a-service (CaaS),
149–165

894  logical design

vBrick Digital Media Engine (DME),
175–180

vendor-based ERP (enterprise
resource planning), 165–175

logical interface profiles for
container-as-a-service (CaaS), 155

logical objects, 32
logical topology

for application-centric design, 606
for L3Out, 606–608
for network-centric design, 605
with OpenStack, 265–266

loopback addresses in multi-pod
design, 675

M
managed mode (service graph),

301–302
managed objects (MOs)

application profiles, 40
BDs (bridge domains), 43–46
contracts, 46–50
EPGs (endpoint groups), 41–43
in MIT (management information

tree), 33–37
outside network policies, 51–52
relationships, 57–58
subnets, 43–44
tags, 58
tenants, 38–39
updating tree, 634–635
VRF objects, 39–40
vzAny, 50–51

management information tree (MIT),
33–37

mapping
multiple SCVMMs to APIC, 262
OpenStack constructs, 266–267
SCVMM constructs, 261–262

maximum transmission unit (MTU)
support in IPNs (inter-pod
networks), 109

MDT (multicast distribution tree),
618–625

membership status, monitoring on
leafs/spines, 491–496

memory utilization, monitoring
on APICs, 475–477
on leafs/spines, 485–486

metadata services in OpenStack
integration, 270, 271

Mgmt tenant, 36
Microsoft SCVMM integration,

260–263
mapping constructs, 261–262
mapping multiple SCVMMs to APIC,

262
topology, 260
verifying, 263
verifying OpFlex certificate

deployment, 262–263
workflow, 261

migration scenarios for multi-site
design, 124–128

minority state, 95
MIT (management information tree),

33–37
model-driven architecture, 31
modes

in NX-OS–style CLI (command-line
interface), 69

for service graph, 301–302

multi-pod design  895

module status, monitoring on leafs/
spines, 489–491

monitoring
benefits of, 405–406
with external monitoring tools,

430–473
Network Assurance Engine,

437–453
Network Insights suite,

430–435
Tetration, 453–473

with faults, 407–411
with health scores, 411–415
with internal monitoring tools,

415–430
NetFlow, 426–430
SNMP, 415–420
syslog, 420–426

with REST API, 473–505
APIC components, 475–482
applications, 499–505
health scores, 413
leafs and spines, 482–499

MOQuery, 357–364, 634–635, 722–
724, 742–743

MOs (managed objects)
application profiles, 40
BDs (bridge domains), 43–46
contracts, 46–50
EPGs (endpoint groups), 41–43
in MIT (management information

tree), 33–37
outside network policies, 51–52
relationships, 57–58
subnets, 43–44
tags, 58

tenants, 38–39
updating tree, 634–635
VRF objects, 39–40
vzAny, 50–51

MSO (Multi-Site Orchestrator), 117,
120–122

creating policies, 124–127
importing policies, 127–128

MTU (maximum transmission
unit) support in IPNs (inter-pod
networks), 109

multicast distribution tree (MDT),
618–625

multicast issues, troubleshooting,
846–860

multicast support in IPNs (inter-pod
networks), 104–107

multiple locations, VMM integration
at, 292–297

multi-site design, 292–295
remote leaf design, 295–297

multiple service nodes, service graph
with, 317–319

multiple-fabric design, single-fabric
design versus, 87–97

multi-pod design, 97–116
APIC cluster deployment, 113–116
inter-pod connectivity, 104–113
L4/L7 services in, 332–338
network connectivity, 228–241
packet forwarding, 674–679,

698–703
physical topology for, 591
QoS support, 672–674
remote leaf connectivity, 239–241
remote leaf integration, 143–148

896  multi-pod design

scalability of, 103
troubleshooting, 837–841
use cases, 100–103

multi-site design, 116–130
best practices, 129–130
L4/L7 services in, 338–340
migration scenarios, 124–128
MSO (Multi-Site Orchestrator),

120–122
network connectivity, 228–241
packet forwarding, 680–682,

703–705
physical topology for, 591–592
troubleshooting, 841–843
use cases, 122–124
VMM integration, 292–295

Multi-Site Orchestrator (MSO), 117,
120–122

creating policies, 124–127
importing policies, 127–128

N
NAE (Network Assurance Engine),

437–453
building blocks, 437–438
configuring, 440–450
installing, 439–440
subnet reachability example,

450–453
use cases, 438–439

naming schemes, 772
NAT (Network Address Translation) in

OpenStack integration, 269, 271
navigating file system, 76–77

NetFlow, 426–430
configuring, 577–586

with access policies, 580–582
steps in, 577–579
with tenant policies, 582–585
verifying configuration,

585–586
network connectivity, 213–241

external bridged networks, 213–218
external routed networks, 218–227
for multi-pod/multi-site design,

228–241
troubleshooting, 242–245

Network Insights Advisor (NIA),
432–433

Network Insights for Resources (NIR),
431, 787–790

Network Insights suite, 430–435
standalone compute application

connectivity example, 433–435
tools in, 431–433
virtual compute application

connectivity example, 435
network-centric design, 6

logical topology for, 605
Nexus 9000 Series, 9–12
Nexus 9300 Series, 11–12
Nexus 9500 Series, 9–10
NIA (Network Insights Advisor),

432–433
NIR (Network Insights for Resources),

431, 787–790
no keyword, 72–73
node management EPGs

choosing, 513–514
configuring, 529

optimized DHCP in OpenStack integration  897

nullipotent, 349, 473–474
NX-OS–style CLI (command-line

interface), 68–74
accessing, 68
auto-completing commands, 70
current working path, 73
entering configuration mode, 72
executing Bash commands, 75–76
executing commands, 71–72
initiating SSH sessions, 73
listing show commands, 69–70
modes, 69
restoring configurations, 72–73
retrieving fabric node information,

74
viewing audit log entries, 70

O
Object (Save As) method, 353–355
Object Store Browser, 355–358
objects, 31. See also MOs (managed

objects)
in MIT (management information

tree), 33–37
types of, 32

offline analysis with NAE (Network
Assurance Engine), 447–450

One-Arm mode (service graph), 312
OOB (out-of-band) EPGs,

troubleshooting, 799–801
OOB (out-of-band) management

addresses, assigning, 364–372,
377–378

configuring, 509–517
external management entity

EPG, 513–515

management contracts,
510–513

node management EPG,
513–514

static management addresses,
510

verifying configuration,
515–517

Open Shortest Path First (OSPF), 220
OpenShift for container-as-a-service

(CaaS), 149–165
OpenShift integration, 281–292

installing containers, 290
planning, 282–283
preparing nodes, 287–290
prerequisites, 283
provisioning ACI for, 284–287
updating router, 291
verifying, 291–292

OpenStack integration, 263–271
configuration examples, 271
extending OpFlex to compute node,

264
guidelines and limitations,

268–270
logical topology, 265–266
mapping constructs, 266–267
physical architecture, 264
prerequisites, 267–268
software architecture, 265
verifying, 270–271

OpFlex, 15
extending to compute node, 264
verifying certificate deployment,

262–263
optimized DHCP in OpenStack

integration, 270, 271

898  orchestration

orchestration
automation versus, 343–344
benefits of, 344–345
configuration examples, 345–349
with UCS Director, 392–401

explained, 392–393
tasks and workflows, 393–395
use cases, 395–401

OSPF (Open Shortest Path First), 220
outer headers, defined, 615
out-of-band (OOB) EPGs,

troubleshooting, 799–801
out-of-band (OOB) management

addresses, assigning, 364–372,
377–378

configuring, 509–517
external management entity

EPG, 513–515
management contracts,

510–513
node management EPG,

513–514
static management addresses,

510
verifying configuration,

515–517
outside network policies, 25–26,

51–52
outside networks, 211
overlay, defined, 615
overlay networks, benefits of,

611–612

P
packet forwarding

anycast gateways, 647–649
ARP flooding, 686

ARP optimization, 690
endpoint learning, 626–645

fabric glean process, 640–641
in Layer 2–only bridge

domain, 627–635
in Layer 3–enabled bridge

domain, 635–640
remote learning, 641–645

endpoint mobility, 645–647
Layer 2 known unicast, 688
Layer 2 unknown unicast proxy,

690–693
Layer 3 policy enforcement

for external traffic, 695
to L3Out, 693

in multi-pod design, 674–679,
698–703

in multi-site design, 680–682,
703–705

QoS support, 669–674
CoS preservation, 672–674
CoS values, 670
externally set markings, 671

in remote leaf design, 141, 684,
707–713

routing, 651–661
dynamic, 651–656
learning external routes,

656–659
transit, 659–661

VPC (Virtual Port Channel),
649–651

VXLAN, 17–18, 613–625
benefits of, 17
FTags and MDT, 618–625
IS-IS and TEP addressing,

615–618

policies  899

operational overview, 613–615
policy enforcement, 661–663
purpose of, 14
shared services, 664–668,

695–698
packets, viewing

with knet_parser, 746
with tcpdump2, 745

paging, 726
PBR (policy-based redirect), 312,

322–331
configuring, 325–326
design considerations, 323
design scenarios, 324–325
service node health check, 326–328
troubleshooting, 328–331

PBR (policy-based routing)
monitoring service graph, 504–505
for vendor-based ERP, 170–175

PCTags
policy enforcement, 661–663
shared services, 664–668

Phantom RP, 105–107
physical constructs, 52

access policies, 52
default policies, 58–60
global policies, 55–57
interface policies, 54–55
managed object relationships, 57–58
policy resolution, 57–58
switch policies, 53
tags, 58

physical design, 85–148
multi-pod, 97–116
multi-site, 116–130

with OpenStack, 264
remote leaf, 131–142
single-fabric versus multiple-fabric,

87–97
physical domains, 56, 187
physical topologies

multi-pod design, 591
multi-site design, 591–592
remote leaf design, 592–593
single-pod design, 589–590

physical tunnel endpoint (PTEP),
defined, 615

physical-related issues,
troubleshooting, 737–751

with counters, 737–743
with CPU packet captures, 743–748
with SPAN sessions, 748–751

PIM Bidir (Platform Independent
Multicast Bidirectional), 105

PIM Sparse Mode ASM (Any-Source
Multicast), 846–860

planning
Kubernetes integration, 272–273
OpenShift integration, 282–283

platform-related issues,
troubleshooting, 737–751

with counters, 737–743
with CPU packet captures, 743–748
with SPAN sessions, 748–751

playbooks, 372–374
policies

access policies, 52, 595–601
best practices, 206
creating, 124–127
Deployment Immediacy option

(EPGs), 256

900  policies

enforcing
with contracts, 303–306
for external traffic, 695
to L3Out, 693
with PCTags, 661–663

importing, 127–128
interface policies, 54, 188–191,

596–597
Resolution Immediacy option

(EPGs), 255–256
switch policies, 53, 187–188,

595–596
vSwitch policies, 602

policy deny drops, verifying,
764–765

policy drops, 788
policy groups

for access policies, 52
for interface policies, 54, 596–597
for switch policies, 53

Policy Manager, 600
policy model. See ACI policy model
policy resolution, 57–58
policy-based redirect (PBR), 312,

322–331
configuring, 325–326
design considerations, 323
design scenarios, 324–325
service node health check, 326–328
troubleshooting, 328–331

policy-based routing (PBR)
monitoring service graph, 504–505
for vendor-based ERP, 170–175

port channels, 197–201
configuring, 198
interface policies, 199–200

policy groups, 596
switch profiles, 200–201

port local SPAN sessions, 749
POST method, 349, 473
Postman Collection Runner tool,

369–370
power supply unit (PSU) status,

monitoring on leafs/spines,
486–488

private subnets, 25, 44
proactive monitoring with health

scores, 413–414
problem-solving. See troubleshooting
profiles

for access policies, 52
for interface policies, 54, 595–596
for switch policies, 53, 595–596

promise theory, 7
provisioning ACI

for Kubernetes integration, 274–277
for OpenShift integration, 284–287

PSU (power supply unit) status,
monitoring on leafs/spines,
486–488

PTEP (physical tunnel endpoint),
defined, 615

public subnets, 25, 44
publishing EPGs to VMM domain

with VMware, 258–259
PUT method, 349, 474

Q
QoS (Quality of Service) support,

669–674
CoS preservation, 672–674
CoS values, 670

route controls for container-as-a-service (CaaS)  901

externally set markings, 671
in IPNs (inter-pod networks),

111–113
for remote leaf design, 134–136

QoS drops, 788

R
reactive monitoring with health

scores, 414
redirecting commands to file, 82, 83
redundancy of OpenStack

integration, 269
regions, 116
registering leaf nodes, 364–372
relative names (RNs), 35
remote endpoint learning, 641–645
remote leaf data-plane TEP (RL-DP-

TEP), 684
remote leaf design, 131–142

control plane/data plane, 138–140
discovery in, 136–139
hardware support, 134
inter-VRF traffic, 142
IPN connectivity, 237–241
multi-pod integration, 143–148
packet forwarding, 684, 707–713
packet forwarding in, 141
physical topology for, 592–593
QoS support, 134–136
use cases, 131–132
VMM integration, 295–297

remote leaf multicast TEP (RL-Mcast-
TEP), 684

remote leaf unicast TEP (RL-Ucast-
TEP), 684

remote leaf VPC TEP (RL-VPC-TEP),
684

Representational State Transfer. See
REST API

Resolution Immediacy option (EPGs),
255–256

resolved objects, 32
RESPONSE command, 417
REST API

automation tools, 351
API Inspector, 351–353
MOQuery, 357–364
Object (Save As) method,

353–355
use cases, 364–372
Visore, 355–358

explained, 349–350, 473–475
monitoring with, 473–505

APIC components, 475–482
applications, 499–505
health scores, 413
leafs and spines, 482–499

restoring configurations, 72–73
RL-DP-TEP (remote leaf data-plane

TEP), 684
RL-Mcast-TEP (remote leaf multicast

TEP), 684
RL-Ucast-TEP (remote leaf unicast

TEP), 684
RL-VPC-TEP (remote leaf VPC TEP),

684
RNs (relative names), 35
Rogue Endpoint Detection, 758–759
route command, 75
route controls for container-as-a-

service (CaaS), 157–160

902  route peering

route peering
configuring, 345–347
with firewalls, 314–315

route reflectors, configuring,
221–222

Routed mode (service graph), 312
routing, 651–661

dynamic, 651–656
learning external routes, 656–659
transit, 659–661

S
sandwich design, 299–300
Save As method, 353–355
scalability

of multi-pod design, 103
of OpenStack integration, 268–269

scopes in Tetration, 465
scripts in Bash shell, 77
SCVMM integration, 260–263

mapping constructs, 261–262
mapping multiple SCVMMs to APIC,

262
topology, 260
verifying, 263
verifying OpFlex certificate

deployment, 262–263
workflow, 261

security, whitelist policy model, 6–7
security policies. See contracts
server staging for container-as-a-

service (CaaS), 163–164
server virtualization, 2–3
service chaining, 299–300

service graph, 300–319
configuring, 307–311
contracts, 303–306
design and deployment options,

312–319
integration use cases, 302–303
modes, 301–302
PBR (policy-based redirect), 322–331

configuring, 325–326
design considerations, 323
design scenarios, 324–325
service node health check,

326–328
troubleshooting, 328–331

shadow EPGs, 306–307
troubleshooting, 834–836

service insertion, 299–300
SET command, 417
shadow EPGs, 306–307
shards, 12–13, 35, 113
shared services, 664–668, 695–698
shared subnets, 25, 44
show audits command, 70
show cli list command, 82, 84
show commands, listing, 69–70
show switch command, 74
signature-based authentication, 382
single-fabric design

multiple-fabric design versus, 87–97
remote leaf connectivity, 238–240

single-pod design, physical topology
for, 589–590

SNMP (Simple Network Management
Protocol), 415–420

commands, 417

syslog  903

configuring, 556–566
steps in, 556–562
verifying configuration,

562–566
interface failures example, 418–420
MIB and TRAPs support in ACI,

417–418
software agents (Tetration), 455

downloading, 456
installing

on Linux, 459–460
on Windows, 460–461

software architecture with
OpenStack, 265

software specifications, 603–605
SPAN (Switched Port Analyzer)

configuring, 566–577
access SPAN, 567–570
fabric SPAN, 571–573
tenant SPAN, 572–574
verifying configuration,

576–577
in Visibility & Troubleshooting

tool, 575–576
troubleshooting with, 748–751

SPAN tab (Visibility &
Troubleshooting tool), 575–576,
786–787

spines
monitoring, 482–499

CPU utilization, 482–485
fan status, 488–489
interface status, 496–499
membership status, 491–496
memory utilization, 485–486
module status, 489–491

PSU (power supply unit) status,
486–488

purpose of, 14
split-brain, 95
SSH sessions, initiating, 73
standalone rack-mount servers

connectivity, 209
static management addresses,

creating, 510, 530
static routes, 220
storage connectivity, 209–210
storm control, 774–775
stretched fabric, 97
subjects, creating, 384–388
subnets

advertising, 651–656
BDs (bridge domains) with, 527–529
creating, 384–388
reachability example, 450–453
types of, 25, 43–44

switch policies, 53, 187–188,
595–596

switch policy groups, 187
switch profiles, 187–188, 595–596

for access ports, 205–206
for port channels, 200–201
for VPC, 196–197

Switched Port Analyzer. See SPAN
(Switched Port Analyzer)

syslog, 420–426
configuring, 551–556

steps in, 551–555
verifying configuration,

555–556
critical messages, 422–423
enabling for Tetration, 464

904  syslog

IPN failure example, 423–426
leaf membership failure example,

423–424
message structure, 420–421
severity levels, 421–422

system requirements. See hardware
specifications

T
TACACS+. See AAA (authentication,

authorization, accounting) policies
tags, 58
TAN (Tetration Alerts Notification)

agent, 461–463
tasks in UCS Director, 393–395
tcpdump

SNMP verification, 564–565
syslog verification, 556

tcpdump2, 745
tenant policies, NetFlow configuration

with, 582–585
tenant SPAN sessions, 749

configuring, 572–574
tenants

explained, 18–19
health scores, 413
MOs (managed objects), 35–36,

38–39
VRF instances in, 19

TEP addresses
IS-IS and, 615–618
in multi-pod design, 591
in multi-site design, 592
in remote leaf design, 593, 684
in single-pod design, 590

Tetration, 453–473
applications, 465–467
cluster reboots, 469
cluster shutdowns, 469–470
code upgrades, 467–468
email alerts, 463
enabling syslog, 464
hardware agents, 455
installing and configuring, 455–461
patch upgrades, 467–469
scopes, 465
software agents, 455
TAN (Tetration Alerts Notification)

agent, 461–463
workload security example, 470–473

Tetration Alerts Notification (TAN)
agent, 461–463

three-site stretch fabric, APIC (ACI
controllers) in, 97

three-tier network infrastructure, 2–3
ACI (Application Centric

Infrastructure) versus, 4–6
TL (transit leaf), 90
topology of ACI, 8
Traceroute tab (Visibility &

Troubleshooting tool), 780–782
traffic status, monitoring, 499–502
transit leaf (TL), 90
transit routing, 659–661
Transparent mode (service graph),

312
TRAPS command, 417
troubleshooting

with ACI policy model, 60–63
APIC (ACI controllers) clusters,

727–734

UCS Director  905

with audit logs, 720
connectivity, 242–245
contracts, 759–765
with ELAM, 765–768
endpoint connectivity, 751–759

with Endpoint Tracker, 752–
755

with EPMC log files, 752–755
with EPT (Enhanced Endpoint

Tracker) app, 756–757
Layer 2 traffic flow, 807–812
with Rogue Endpoint

Detection, 758–759
with events, 720–722
fabric nodes, 734–737
with faults, 718–719
with iCurl, 724–726
with MOQuery, 722–724
with NIR (Network Insights

Resources), 787–790
PBR (policy-based redirect), 328–331
physical- and platform-related issues,

737–751
with counters, 737–743
with CPU packet captures,

743–748
with SPAN sessions, 748–751

use cases
APIC clusters, 795–798
contract directionality, 804–

807
end host connectivity, 807–812
external Layer 2 connectivity,

812–813
external Layer 3 connectivity,

814–821

firewall traffic, 801–804
JSON script errors, 844–846
L4/L7 deployment, 832–836
leaf and spine connectivity,

821–826
leaf discovery, 792–795
multicast issues, 846–860
multi-pod design, 837–841
multi-site design, 841–843
out-of-band EPG, 799–801
VMM (Virtual Machine

Manager) domains, 826–832
with Visibility & Troubleshooting

Tool, 771–787
Atomic Counter tab, 782–784
Contract Drops tab, 777
Contracts tab, 777–779
Drop/Stats tab, 773–777
Events and Audits tab, 779–780
Faults tab, 772–773
Latency tab, 785
SPAN tab, 786–787
Traceroute tab, 780–782

with Visore, 726
Two-Arm mode (service graph), 312
two-site stretch fabric, APIC (ACI

controllers) in, 97

U
UCS B-Series blade chassis

connectivity, 208
UCS Director, 392–401

explained, 392–393
tasks and workflows, 393–395
use cases, 395–401

906  uFib (Unicast Forwarding Information Base)

uFib (Unicast Forwarding Information
Base), 604

underlay, 613–625
defined, 615
FTags and MDT, 618–625
IS-IS and TEP addressing, 615–618

unicast routing, 45
un-managed mode (service graph),

302
uRib (Unicast Routing Information

Base), 600
URL format for REST API, 349–350,

474–475
use cases

for automation
with Ansible, 384–392
with REST API tools, 364–372
with UCS Director, 395–401

for multi-pod design, 100–103
for multi-site design, 122–124
for NAE (Network Assurance

Engine), 438–439
for remote leaf design, 131–132
for troubleshooting

APIC clusters, 795–798
contract directionality, 804–

807
end host connectivity, 807–812
external Layer 2 connectivity,

812–813
external Layer 3 connectivity,

814–821
firewall traffic, 801–804
JSON script errors, 844–846
L4/L7 deployment, 832–836

leaf and spine connectivity,
821–826

leaf discovery, 792–795
multicast issues, 846–860
multi-pod design, 837–841
multi-site design, 841–843
out-of-band EPG, 799–801
VMM (Virtual Machine

Manager) domains, 826–832
user tenants, 35

V
vBrick Digital Media Engine (DME),

175–180
VDS (VMware vSphere Distributed

Switch)
guidelines and limitations, 257–258
prerequisites, 257
verifying, 259–260

vendor-based ERP (enterprise
resource planning), 165–175

viewing
audit log entries, 70
available commands, 82, 84
bond interfaces, 730
buffer drops, 742
CRC errors, 741, 742–743
current working path, 73
fabric node status, 734–735
health scores, 413
interface rate, 742
Linux routing table, 75
LLDP frames, 730–731

VMM (Virtual Machine Manager) integration  907

packets
with knet_parser, 746
with tcpdump2, 745

previous commands, 78
Virtual Port Channel (VPC), 191–197

configuring, 192–193
defining domains, 193–194
interface policies, 195–196
switch profiles, 196–197

virtual routing and forwarding (VRF)
objects, 39–40

virtual switch status, verifying with
VMware, 259

Visibility & Troubleshooting Tool,
771–787

Atomic Counter tab, 782–784
Contract Drops tab, 777
Contracts tab, 777–779
Drop/Stats tab, 773–777
Events and Audits tab, 779–780
Faults tab, 772–773
Latency tab, 785
SPAN tab, 575–576, 786–787
Traceroute tab, 780–782

Visore, 355–358, 726
VLAN pools, 55, 186, 252, 597–600
VLANs, types of, 628
VMM (Virtual Machine Manager)

domains, 56, 187, 250–252
AAEP association, 252
components, 250
configuring, 601–602
EPG association, 253–256
policy model, 250
publishing EPGs to with VMware,

258–259

troubleshooting, 826–832
VLAN pool association, 252

VMM (Virtual Machine Manager)
integration, 249

with Kubernetes, 272–280
installing containers, 279
planning, 272–273
preparing nodes, 277–279
prerequisites, 273–274
provisioning ACI for,

274–277
verifying, 280

at multiple locations, 292–297
multi-site design, 292–295
remote leaf design,

295–297
with OpenShift, 281–292

installing containers, 290
planning, 282–283
preparing nodes, 287–290
prerequisites, 283
provisioning ACI for,

284–287
updating router, 291
verifying, 291–292

with OpenStack, 263–271
configuration examples, 271
extending OpFlex to compute

node, 264
guidelines and limitations,

268–270
logical topology, 265–266
mapping constructs,

266–267
physical architecture, 264
prerequisites, 267–268

908  VMM (Virtual Machine Manager) integration

software architecture, 265
verifying, 270–271

with SCVMM, 260–263
mapping constructs,

261–262
mapping multiple SCVMMs to

APIC, 262
topology, 260
verifying, 263
verifying OpFlex certificate

deployment, 262–263
workflow, 261

with VMware, 257–260
connecting VMs to EPG port

groups, 259
guidelines and limitations,

257–258
prerequisites, 257
publishing EPGs to VMM

domain, 258–259
verifying, 259–260
workflow, 258

VMM (Virtual Machine Manager)
policies, 36

VMs (virtual machines), connecting to
EPG port groups, 259

VMware integration, 257–260
connecting VMs to EPG port groups,

259
guidelines and limitations,

257–258
prerequisites, 257
publishing EPGs to VMM domain,

258–259
verifying, 259–260
workflow, 258

vNIC status, verifying with VMware,
259

VPC (Virtual Port Channel), 191–197,
649–651

configuring, 192–193, 347–349
defining domains, 193–194
interface policies, 195–196
policy groups, 597
switch profiles, 196–197

VPC TEP (VPC tunnel endpoint),
defined, 615

VRF (virtual routing and forwarding)
objects, 39–40

VRF instances, 19
logical topology, 605–606

VSH shell, 81–82
accessing, 82
executing commands and redirecting

to file, 82
show cli list command, 82

VSH_LC shell, 83–84
accessing, 83
executing commands and redirecting

to file, 83
show cli list command, 84

vSwitch policies, configuring, 602
VTEP (VXLAN Tunnel Endpoint)

addresses, 15, 17
VXLAN, 17–18, 613–625

benefits of, 17
FTags and MDT, 618–625
IS-IS and TEP addressing,

615–618
operational overview,

613–615
policy enforcement, 661–663

YAML  909

purpose of, 14
shared services, 664–668, 695–698

vzAny managed objects, 50–51

W
watch command, 80
where command, 73
whitelist policy model, 6–7

Windows, installing Tetration
software agents, 460–461

wiring errors, 732–733
workflows in UCS Director, 393–395

Y
YAML, 373–374

	Cover
	Title Page
	Copyright Page
	About the Authors
	Dedications
	Acknowledgments
	Contents at a Glance
	Contents
	Foreword
	Foreword
	Introduction
	Chapter 6 VMM Integration
	Virtual Machine Manager (VMM)
	VMM Domain Policy Model
	VMM Domain Components
	VMM Domains
	VMM Domain VLAN Pool Association
	Attachable Access Entity Profile Association
	VMM Domain EPG Association
	EPG Policy Resolution and Deployment Immediacy

	VMware Integration
	Prerequisites for VMM Integration with AVS or VDS
	Guidelines and Limitations for VMM Integration with AVS or VDS
	ACI VMM Integration Workflow
	Publishing EPGs to a VMM Domain
	Connecting Virtual Machines to the Endpoint Group Port Groups on vCenter
	Verifying VMM Integration with the AVS or VDS
	Verifying the Virtual Switch Status
	Verifying the vNIC Status

	Microsoft SCVMM Integration
	Mapping ACI and SCVMM Constructs
	Mapping Multiple SCVMMs to an APIC
	Verifying That the OpFlex Certificate Is Deployed for a Connection from the SCVMM to the APIC
	Verifying VMM Deployment from the APIC to the SCVMM

	OpenStack Integration
	Extending OpFlex to the Compute Node
	ACI with OpenStack Physical Architecture
	OpFlex Software Architecture
	OpenStack Logical Topology
	Mapping OpenStack and ACI Constructs
	Prerequisites for OpenStack and Cisco ACI
	Guidelines and Limitations for OpenStack and Cisco ACI
	Verifying the OpenStack Configuration
	Configuration Examples for OpenStack and Cisco ACI

	Kubernetes Integration
	Planning for Kubernetes Integration
	Prerequisites for Integrating Kubernetes with Cisco ACI
	Provisioning Cisco ACI to Work with Kubernetes
	Preparing the Kubernetes Nodes
	Installing Kubernetes and Cisco ACI Containers
	Verifying the Kubernetes Integration

	OpenShift Integration
	Planning for OpenShift Integration
	Prerequisites for Integrating OpenShift with Cisco ACI
	Provisioning Cisco ACI to Work with OpenShift
	Preparing the OpenShift Nodes
	Installing OpenShift and Cisco ACI Containers
	Updating the OpenShift Router to Use the ACI Fabric
	Verifying the OpenShift Integration

	VMM Integration with ACI at Multiple Locations
	Multi-Site
	Multiple Virtual Machine Managers Across Sites
	Single Virtual Machine Manager Across Sites
	Remote Leaf

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

