
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9781587145148
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9781587145148
https://plusone.google.com/share?url=http://www.informit.com/title/9781587145148
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9781587145148
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9781587145148/Free-Sample-Chapter

Network Programmability
and Automation
Fundamentals

Khaled Abuelenain, CCIE No. 27401

Jeff Doyle, CCIE No. 1919

Anton Karneliuk, CCIE No. 49412

Vinit Jain, CCIE No. 22854

Cisco Press
Hoboken, New Jersey

9781587145148_print.indb 1 25/03/21 11:42 am

ii    Network Programmability and Automation Fundamentals

Network Programmability and Automation
Fundamentals
Copyright© 2021 Cisco Systems, Inc.

Cisco Press logo is a trademark of Cisco Systems, Inc.

Published by:
Cisco Press

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

ScoutAutomatedPrintCode

Library of Congress Control Number: 2020922839

ISBN-13: 978-1-58714-514-8
ISBN-10: 1-58714-514-6

Warning and Disclaimer
This book is designed to provide information about network programmability and automation. Every
effort has been made to make this book as complete and as accurate as possible, but no warranty or
fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc. shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages arising
from the information contained in this book or from the use of the discs or programs that may accom-
pany it.

The opinions expressed in this book belong to the author and are not necessarily those of
Cisco Systems, Inc.

Trademark Acknowledgments
All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. Cisco Press or Cisco Systems, Inc. cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

9781587145148_print.indb 2 25/03/21 11:42 am

http://www.pearson.com/permissions

iii

Feedback Information
At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book
is crafted with care and precision, undergoing rigorous development that involves the unique expertise of
members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we
could improve the quality of this book or otherwise alter it to better suit your needs, you can contact us
through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your
message.

We greatly appreciate your assistance.

Editor-in-Chief: Mark Taub

Director, ITP Product Management: Brett Bartow

Alliances Manager, Cisco Press: Arezou Gol

Managing Editor: Sandra Schroeder

Development Editor: Ellie C. Bru

Project Editor: Mandie Frank

Copy Editor: Kitty Wilson

Technical Editors: Jeff Tantsura, Viktor Osipchuk

Editorial Assistant: Cindy Teeters

Designer: Chuti Prasertsith

Composition: codeMantra

Indexer: Ken Johnson

Proofreader: Abigail Bass

Americas Headquarters
Cisco Systems, Inc.
San Jose, CA

Asia Pacific Headquarters
Cisco Systems (USA) Pte. Ltd.
Singapore

Europe Headquarters
Cisco Systems International BV Amsterdam,
The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go
to this URL: www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply
a partnership relationship between Cisco and any other company. (1110R)

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks,
go to this URL: www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does

not imply a partnership relationship between Cisco and any other company. (1110R)

Americas Headquarters
Cisco Systems, Inc.
San Jose, CA

Asia Pacific Headquarters
Cisco Systems (USA) Pte. Ltd.
Singapore

Europe Headquarters
Cisco Systems International BV Amsterdam,
The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

9781587145148_print.indb 3 25/03/21 11:42 am

mailto:feedback@ciscopress.com
http://www.cisco.com/go/offices
http://www.cisco.com/go/trademarks
http://www.cisco.com/go/trademarks
http://www.cisco.com/go/offices

iv    Network Programmability and Automation Fundamentals

Credits

Figure/Text Selection Attribution/Credit

“HTTP is not designed to be a transport protocol. It is a
transfer protocol in which the messages reflect the
semantics of the Web architecture by performing actions
on resources through the transfer and manipulation of
representations of those resources [Section 6.5.2]”

© Roy Thomas Fielding, 2000

“This specification [HTTP/2.0] is an alternative to, but
does not obsolete, the HTTP/1.1 message syntax.
HTTP’s existing semantics remain unchanged.”

Hypertext Transfer Protocol
Version 2

“a sequence of octets, along with representation metadata
describing those octets that constitutes a record of the
state of the resource at the time when the representation
is generated.”

Uniform Resource Identifier
(URI): Generic Syntax,
Copyright © The Internet
Society (2005)

“While RFC 2396, section 1.2, attempts to address the
distinction between URIs, URLs and URNs, it has not
been successful in clearing up the confusion.”

IETF (Internet Engineering Task
Force). Architectural Principles
of Uniform Resource Name
Resolution, ed. K. Sollins. 1998

 1. Device state metrics;

 2. Data from shared services such as DDI (DNS, DHCP
and IPAM) and Active Directory;

 3. Network flows from sources such as NetFlow; and

 4. Configuration data normalized into key value pairs.

Shamus McGillicudy,
“A Network Source of Truth
Promotes Trust in Network
Automation,” Enterprise
management Associates,
May 2020

“Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale”.

©2020 Agile Alliance

“allows client/server applications to communicate over
the Internet in a way that is designed to prevent
eavesdropping, tampering, and message forgery.”

Copyright (c) 2020 IETF

“the most important security protocol on the internet” Copyright (c) 2020 IETF

“there was more TLS 1.3 use in the first five months after
RFC 8446 was published than in the first five years after
the last version of TLS was published as an RFC”

Copyright (c) 2020 IETF

9781587145148_print.indb 4 25/03/21 11:42 am

Credits    v

Figure 1-6 CI/CD ©2021 Red Hat, Inc. www.redhat.com

Figure 6-2 Accessing a Django Application
in a Web Browser

© 2005-2021 Django Software
Foundation

Figure 7-1 The SupportApache-small.png Image,
as It Appears in a Web Browser

Copyright © 2020 The Apache
Software Foundation

Figure 7-6 The Postman Interface ©2020 Postman, Inc.

Figure 7-7 A GET Request Using Postman ©2020 Postman, Inc.

Figure 7-8 Viewing the Response Headers in
Postman

©2020 Postman, Inc.

Figure 13-1 GitHub Website with YANG
Modules

© 2020 GitHub, Inc.

Figure 17-3 Comparing the Body of the Response
in the Developer Sandbox and
Postman

Screenshot of Comparing the
body of the response in the
Developer Sandbox and Postman
©2020 Postman, Inc.

Figure 18-3 Converting a username:password
Tuple to Base64 Format

Screenshot of Converting
username:password tuple to
Base64 format © Cisco systems

Figure 18-4 Arista YANG Modules Screenshot of Arista YANG modules
© 2020 GitHub, Inc.

Figure 19-3 Available Ansible Module Categories Copyright © 2020 Red Hat, Inc.

9781587145148_print.indb 5 25/03/21 11:42 am

http://www.redhat.com

vi    Network Programmability and Automation Fundamentals

About the Authors
Khaled Abuelenain, CCIE No. 27401 (R&S, SP), is currently the Consulting Director at
Acuative, a Cisco Managed Services Master Partner. Khaled has spent the past 18 years
designing, implementing, operating, and automating networks and clouds. He specializes
in service provider technologies, SD-WAN, data center technologies, programmabil-
ity, automation, and cloud architectures. Khaled is especially interested in Linux and
OpenStack.

Khaled is a contributing author of the best-selling Cisco Press book Routing TCP/IP,
Volume II, 2nd edition, by Jeff Doyle. He also blogs frequently on network program-
mability and automation on blogs.cisco.com. Khaled is also a member of the DevNet500
group, being one of the first 500 individuals in the world to become DevNet certified.

Khaled lives in Riyadh, Saudi Arabia, and when not working or writing, he likes to run
marathons and skydive. He can be reached at kabuelenain@gmail.com, on Twitter at
@kabuelenain or on LinkedIn at linkedin.com/in/kabuelenain.

Jeff Doyle, CCIE No. 1919, is a Member of Technical Staff at Apstra. Specializing in
IP routing protocols, complex BGP policy, SDN/NFV, data center fabrics, IBN, EVPN,
MPLS, and IPv6, Jeff has designed or assisted in the design of large-scale IP and IPv6
service provider networks in 26 countries over 6 continents.

Jeff is the author of CCIE Professional Development: Routing TCP/IP, Volumes I and
II and OSPF and IS-IS: Choosing an IGP for Large-Scale Networks; a co-author of
Software-Defined Networking: Anatomy of OpenFlow; and an editor and contributing
author of Juniper Networks Routers: The Complete Reference. Jeff is currently writ-
ing CCIE Professional Development: Switching TCP/IP. He also writes for Forbes and
blogs for both Network World and Network Computing. Jeff is one of the founders of
the Rocky Mountain IPv6 Task Force, is an IPv6 Forum Fellow, and serves on the execu-
tive board of the Colorado chapter of the Internet Society (ISOC).

Anton Karneliuk, CCIE No. 49412 (R&S, SP), is a Network Engineer and Manager at
THG Hosting, responsible for the development, operation, and automation of networks
in numerous data centers across the globe and the international backbone. Prior to join-
ing THG, Anton was a team lead in Vodafone Group Network Engineering and Delivery,
focusing on introduction of SDN and NFV projects in Germany. Anton has 15 years of
extensive experience in design, rollout, operation, and optimization of large-scale service
providers and converged networks, focusing on IP/MPLS, BGP, network security, and
data center Clos fabrics built using EVPN/VXLAN. He also has several years of full-stack
software development experience for network management and automation.

Anton holds a B.S. in telecommunications and an M.S. in information security from
Belarusian State University of Informatics and Radio Electronics. You can find him
actively blogging about network automation and running online training at Karneliuk.
com. Anton lives with his wife in London.

9781587145148_print.indb 6 25/03/21 11:42 am

http://blogs.cisco.com
mailto:kabuelenain@gmail.com
http://linkedin.com/in/kabuelenain
http://Karneliuk.com
http://Karneliuk.com

About the Authors    vii

Vinit Jain, CCIE No. 22854 (R&S, SP, Security & DC), is a Network Development
Engineer at Amazon, managing the Amazon network backbone operations team.
Previously, he worked as a technical leader with the Cisco Technical Assistance Center
(TAC), providing escalation support in routing and data center technologies. Vinit is a
speaker at various networking forums, including Cisco Live! events. He has co-authored
several Cisco Press titles, such as Troubleshooting BGP, and Troubleshooting Cisco
Nexus Switches and NX-OS, LISP Network Deployment and Troubleshooting, and
has authored and co-authored several video courses, including BGP Troubleshooting,
the CCNP DCCOR Complete video course, and the CCNP ENCOR Complete video
course. In addition to his CCIEs, Vinit holds multiple certifications related to program-
ming and databases. Vinit graduated from Delhi University in mathematics and earned a
master’s in information technology from Kuvempu University in India. Vinit can be found
on Twitter as @VinuGenie.

9781587145148_print.indb 7 25/03/21 11:42 am

viii    Network Programmability and Automation Fundamentals

About the Technical Reviewers
Jeff Tantsura, CCIE No. 11416 (R&S), has been in the networking space for over 25
years and has authored and contributed to many RFCs and patents and worked in both
service provider and vendor environments.

He is co-chair of IETF Routing Working Group, chartered to work on new network
architectures and technologies, including protocol-independent YANG models and next-
generation routing protocols. He is also the co-chair of the RIFT (Routing in Fat Trees)
Working Group, chartered to work on a new routing protocol that specifically addresses
fat tree topologies typically seen in the data center environment.

Jeff serves on the Internet Architecture Board (IAB). His focus has been on 5G transport
and integration with RAN, IoT, MEC, low-latency networking, and data modeling. He’s
also a board member of San Francisco Bay Area ISOC chapter.

Jeff is Head of Networking Strategy at Apstra, a leader in intent networking, where he
defines networking strategy and technologies.

Jeff also holds the certification Ericsson Certified Expert IP Networking.

Jeff lives in Palo Alto, California, with his wife and youngest child.

Viktor Osipchuk, CCIE No. 38256 (R&S, SP), is a Senior Network Engineer at Google,
focusing on automation and improving one of the largest production networks in the
world. Before joining Google, Viktor spent time at DigitalOcean and Equinix, helping to
architect and run their worldwide infrastructures. Viktor spent many years at Cisco,
supporting customers and focusing on automation, telemetry, data models, and APIs
for large-scale web and service provider deployments. Viktor has around 15 years of
diverse network experience, an M.S. in telecommunications, and associated industry
certifications.

9781587145148_print.indb 8 25/03/21 11:42 am

ix

Dedications
Khaled Abuelenain: To my mother, the dearest person to my heart, who invested all
the years of her life so I can be who I am today. I owe you more than any words can
express. To my father, my role model, who always led by example and showed me the
real meaning of work ethic. Nothing I do or say will ever be enough to thank you both.

And to the love of my life, my soulmate, and my better half, Mai, for letting me work
and write while you take care of, literally, everything else. This book would not have
happened if not for your phenomenal support, patience and love. I will forever be
grateful for the blessing of having you in my life.

Jeff Doyle: I would like to dedicate this book to my large and growing herd of grand-
children: Claire, Samuel, Caroline, Elsie, and Amelia. While they are far too young to
comprehend or care about the contents of this book, perhaps someday they will look at
it and appreciate that Grampa is more than a nice old man and itinerant babysitter.

Anton Karneliuk: I dedicate this book to my family, which has tremendously supported
me during the writing process. First of all, many thanks to my amazing wife, Julia, who
took on the huge burden of sorting out many things for our lives, allowing me to con-
centrate on the book. You acted as a navigation star during this journey, and you are my
beauty. I’d also like to thank my parents and brother for me helping me form the habit
of working hard and completing the tasks I’ve committed to, no matter how badly I want
to drop them.

Vinit Jain: I would like to dedicate this book to the woman who has been a great influ-
ence and inspiration in my life: Sonal Sethia (Sonpari). You are one of the most brilliant,
talented, courageous, and humble people I have ever known. You have always inspired
me to push myself beyond what I thought I was capable of. You have been there for me
during difficult times and believed in me when even I did not. You are my rock. This is
a small token of my appreciation, gratitude, and love for you. I am really glad to have
found my best friend in you and know that I will always be there for you.

9781587145148_print.indb 9 25/03/21 11:42 am

x    Network Programmability and Automation Fundamentals

Acknowledgments
Khaled: First and foremost, I would like to thank Jeff Doyle, my co-author, mentor, and
friend, for getting me started with writing, and for his continuous assistance and guid-
ance. Jeff has played a fundamental role in my professional life as well as in the lives of
many other network engineers; he probably doesn’t realize the magnitude of this role!
Despite all that he has done for this industry and the network engineering community,
Jeff remains one of the most humble and amiable human beings I have ever come across.
Thank you, Jeff, I owe you a lot!

I am grateful to Anton and Vinit for agreeing to work with me on this project. It has been
challenging at times, but it has been seriously fun most of the time.

I would also like to thank Jeff Tantsura and Viktor Osipchuk for their thorough technical
reviews and feedback. I bothered Viktor very frequently with discussions and questions
over email, and never once did he fail to reply and add a ton of value!

I especially want to thank Brett Bartow and Eleanor Bru for their immense support and
phenomenal patience. And I’m grateful to Mandie Frank, Kitty Wilson, and everyone else
at Cisco Press who worked hard to get this book out to the light. Such an amazing team.

Jeff Doyle: I would like to express my thanks to my friend Khaled Abuelenain for bring-
ing me into this project, and thanks to Anton and Vinit for letting me be a part of their
excellent work. Thanks also to Brett Bartow and everyone at Pearson, whom I’ve worked
with for many years and continue to tell everyone who will listen that this is the best pub-
lishing team any technical writer could hope to work for. Finally, thanks to my wife Sara
who, as always, puts up with my obsessiveness. When she sees me sitting and staring into
nothingness she knows there’s writing going on in my head.

Anton: Special thanks to Schalk Van Der Merwe, CTO, and Andrew Mutty, CIO, at The
Hut Group for believing in me and giving me freedom and responsibility to implement
my automation ideas in a high-scale data center environment. Thanks to all my brothers-
in-arms from The Hut Group hosting networks for constantly sharing with me ideas
about what use cases to focus on for automation. I want to thank my previous manager
in Vodafone Group, Tamas Almasi, who supported me during my initial steps in network
automation and helped me create an appropriate mindset during numerous testbeds and
proofs of concept. Last but not least, I’m very grateful to Khaled Abuelenain for his invi-
tation to co-author this book and the whole author and technical reviewer team; it was a
pleasure to work with you.

Vinit: A special thanks to Khaled for asking me to co-author this book and for being amaz-
ingly patient and supportive of me as I faced challenges during this project. I would like
to thank Jeff Doyle and Anton Karneliuk for their amazing collaboration on this project. I
learned a lot from all of you guys and look forward to working with all of you in the future.

I would also like to thank our technical reviewers, Jeff Tantsura and Viktor Osipchuk, and
our editor, Eleanor Bru, for your in-depth verification of the content and insightful input
to make this project a successful one.

This project wouldn’t have been possible without the support of Brett Bartow and other
members of the editorial team.

A01_Abuelenain_FM_pi-pxxxvi.indd 10 27/03/21 6:49 pm

    xi

Contents at a Glance

 Introduction xxix

Part I Introduction

Chapter 1 The Network Programmability and Automation Ecosystem 1

Part II Linux

Chapter 2 Linux Fundamentals 21

Chapter 3 Linux Storage, Security, and Networks 119

Chapter 4 Linux Scripting 183

Part III Python

Chapter 5 Python Fundamentals 249

Chapter 6 Python Applications 311

Part IV Transport

Chapter 7 HTTP and REST 387

Chapter 8 Advanced HTTP 469

Chapter 9 SSH 509

Part V Encoding

Chapter 10 XML 553

Chapter 11 JSON 591

Chapter 12 YAML 615

Part VI Modeling

Chapter 13 YANG 639

Part VII Protocols

Chapter 14 NETCONF and RESTCONF 689

Chapter 15 gRPC, Protobuf, and gNMI 781

Chapter 16 Service Provider Programmability 819

9781587145148_print.indb 11 25/03/21 11:42 am

xii    Network Programmability and Automation Fundamentals

Part VIII Programmability Applications

Chapter 17 Programming Cisco Platforms 881

Chapter 18 Programming Non-Cisco Platforms 957

Chapter 19 Ansible 989

Part IX Looking Ahead

Chapter 20 Looking Ahead 1109

 Index 1121

9781587145148_print.indb 12 25/03/21 11:42 am

    xiii

Contents
Introduction xxix

Part I Introduction

Chapter 1 The Network Programmability and Automation Ecosystem 1

First, a Few Definitions 2

Network Management 3

Automation 5

Orchestration 6

Programmability 7

Virtualization and Abstraction 8

Software-Defined Networking 13

Intent-Based Networking 13

Your Network Programmability and Automation Toolbox 14

Python 15

Ansible 15

Linux 16

Virtualization 17

YANG 17

Protocols 18

Encoding the Protocols 18

Transporting the Protocols 18

Software and Network Engineers: The New Era 19

Part II Linux

Chapter 2 Linux Fundamentals 21

The Story of Linux 21

History 21

Linux Today 22

Linux Development 22

Linux Architecture 23

Linux Distributions 26

The Linux Boot Process 26

A Linux Command Shell Primer 28

Finding Help in Linux 31

9781587145148_print.indb 13 25/03/21 11:42 am

xiv    Network Programmability and Automation Fundamentals

Files and Directories in Linux 35

The Linux File System 35

File and Directory Operations 38

Navigating Directories 38

Viewing Files 41

File Operations 46

Directory Operations 48

Hard and Soft Links 51

Hard Links 51

Soft Links 55

Input and Output Redirection 57

Archiving Utilities 67

Linux System Maintenance 73

Job, Process, and Service Management 73

Resource Utilization 83

System Information 85

System Logs 91

Installing and Maintaining Software on Linux 94

Manual Compilation and Installation 96

RPM 97

YUM 101

DNF 117

Summary 118

Chapter 3 Linux Storage, Security, and Networks 119

Linux Storage 119

Physical Storage 119

Logical Volume Manager 128

Linux Security 135

User and Group Management 136

File Security Management 143

Access Control Lists 148

Linux System Security 155

Linux Networking 158

The ip Utility 159

The NetworkManager Service 168

9781587145148_print.indb 14 25/03/21 11:42 am

Contents    xv

Network Scripts and Configuration Files 174

Network Services: DNS 179

Summary 181

Chapter 4 Linux Scripting 183

Regular Expressions and the grep Utility 184

The AWK Programming Language 193

The sed Utility 196

General Structure of Shell Scripts 203

Output and Input 207

Output 207

Input 211

Variables 215

Integers and Strings 216

Indexed and Associative Arrays 220

Conditional Statements 223

The if-then Construct 224

The case-in Construct 230

Loops 232

The for-do Loop 232

The while-do Loop 236

The until-do Loop 237

Functions 238

Expect 242

Summary 246

Part III Python

Chapter 5 Python Fundamentals 249

Scripting Languages Versus Programming Languages 250

Network Programmability 253

Computer Science Concepts 255

Object-Oriented Programming 256

Algorithms 258

Python Fundamentals 260

Python Installation 260

Python Code Execution 263

Python Data Types 270

9781587145148_print.indb 15 25/03/21 11:42 am

xvi    Network Programmability and Automation Fundamentals

Variables 270

Numbers 273

Strings 276

Operators 281

Python Data Structures 286

List 286

Dictionaries 290

Tuples 292

Sets 294

Control Flow 295

if-else Statements 296

for Loops 301

while Loops 304

Functions 306

Summary 309

References 310

Chapter 6 Python Applications 311

Organizing the Development Environment 311

Git 312

Docker 317

The virtualenv Tool 331

Python Modules 333

Python Applications 336

Web/API Development 336

Django 337

Flask 345

Network Automation 353

NAPALM 354

Nornir 359

Templating with Jinja2 363

Orchestration 375

Docker 376

Kubernetes 378

Machine Learning 382

Summary 385

9781587145148_print.indb 16 25/03/21 11:42 am

Contents    xvii

Part IV Transport

Chapter 7 HTTP and REST 387

HTTP Overview 387

The REST Framework 392

The HTTP Connection 394

Client/Server Communication 394

HTTP/1.1 Connection Enhancements 395

Persistent Connections 395

Pipelining 396

Compression 396

HTTP Transactions 397

Client Requests 397

GET 398

HEAD 398

POST 399

PUT 402

DELETE 405

CONNECT 407

OPTIONS 407

TRACE 408

Server Status Codes 408

1xx: Informational Status Codes 411

2xx: Successful Status Codes 411

3xx: Redirection Status Codes 412

4xx: Client Error Status Codes 413

5xx: Server Error Status Codes 414

Server Status Codes on Cisco Devices 414

HTTP Messages 415

HTTP General Header Fields 418

Cache Servers: Cache-Control and Pragma 418

Connection 420

Date 420

Upgrade 420

Via 421

Transfer-Encoding 421

Trailer 422

Client Request Header Fields 422

9781587145148_print.indb 17 25/03/21 11:42 am

xviii    Network Programmability and Automation Fundamentals

Content Negotiation Header Fields: Accept, Accept-Charset,
Accept-Encoding and Accept-Language 423

Client Authentication Credentials: Authorization,
Proxy-Authorization and Cookie 423

Host 424

Expect 424

Max-Forwards 424

Request Context: From, Referer and User-Agent 424

TE 425

Server Response Header Fields 425

Age 425

Validator Header Fields: ETag and Last-Modified 425

Response Authentication Challenges: X-Authenticate and
Set-Cookie 426

Response Control Header Fields: Location, Retry-After, and Vary 426

Response Context: Server 427

The HTTP Entity Header Fields 427

Control Header Fields: Allow 428

Representation Metadata Header Fields: Content-X 428

Content-Length 430

Expires 430

Resource Identification 431

URI, URL, and URN 431

URI Syntax 432

URI Components 432

Characters 435

Absolute and Relative References 436

Postman 436

Downloading and Installing Postman 438

The Postman Interface 438

Using Postman 441

HTTP and Bash 447

HTTP and Python 455

TCP Over Python: The socket Module 455

The urllib Package 458

The requests Package 464

Summary 467

9781587145148_print.indb 18 25/03/21 11:42 am

Contents    xix

Chapter 8 Advanced HTTP 469

HTTP/1.1 Authentication 469

Basic Authentication 472

OAuth and Bearer Tokens 474

Client Registration 476

Authorization Grant 477

Access Token 481

API Call to the Resource Server 483

State Management Using Cookies 483

Transport Layer Security (TLS) and HTTPS 487

Cryptography Primer 488

Key Generation and Exchange 488

Stream and Block Data Encryption 492

Message Integrity and Authenticity 493

Encryption and Message Integrity and Authenticity Combined 495

Digital Signatures and Peer Authentication 496

TLS 1.3 Protocol Operation 498

The TLS Version 1.3 Handshake 500

0-RTT and Early Data 502

The Record Protocol 503

HTTP over TLS (HTTPS) 503

HTTP/2 503

Streams, Messages, and Frames 504

Frame Multiplexing 505

Binary Message Framing 506

Other HTTP/2 Optimizations 507

Summary 508

Chapter 9 SSH 509

SSH Overview 509

SSH1 510

SSH2 512

SSH Transport Layer Protocol 513

SSH Authentication Protocol 514

SSH Connection Protocol 518

9781587145148_print.indb 19 25/03/21 11:42 am

xx    Network Programmability and Automation Fundamentals

Setting Up SSH 521

Setting Up SSH on CentOS 521

Enabling SSH on Cisco Devices 526

Configuring and Verifying SSH on Cisco IOS XE 526

Configuring SSH on IOS XR 532

Configuring SSH on NX-OS 537

Secure File Transfer 540

Setting Up SFTP on Cisco Devices 545

Secure Copy Protocol 549

Summary 551

References 551

Part V Encoding

Chapter 10 XML 553

XML Overview, History, and Usage 553

XML Syntax and Components 554

XML Document Building Blocks 554

XML Attributes, Comments, and Namespaces 558

XML Formatting Rules 561

Making XML Valid 562

XML DTD 563

XSD 565

Brief Comparison of XSD and DTD 574

Navigating XML Documents 574

XPath 574

XML Stylesheet Language Transformations (XSLT) 578

Processing XML Files with Python 580

Summary 588

Chapter 11 JSON 591

JavaScript Object Notation (JSON) 591

JSON Data Format and Data Types 592

JSON Schema Definition (JSD) 595

Structure of the JSON Schema 595

Repetitive Objects in the JSON Schema 598

Referencing External JSON Schemas 602

Using JSON Schemas for Data Validation 609

Summary 614

9781587145148_print.indb 20 25/03/21 11:42 am

Contents    xxi

Chapter 12 YAML 615

YAML Structure 616

Collections 618

Scalars 620

Tags 621

Anchors 624

YAML Example 625

Handling YAML Data Using Python 626

Summary 637

Part VI Modeling

Chapter 13 YANG 639

A Data Modeling Primer 639

What Is a Data Model? 639

Why Data Modeling Matters 640

YANG Data Models 642

Structure of a YANG Module 644

Data Types in a YANG Module 646

Built-in Data Types 647

Derived Data Types 648

Data Modeling Nodes 649

Leaf Nodes 649

Leaf-List Nodes 651

Container Nodes 652

List Nodes 653

Grouping Nodes 654

Augmentations in YANG Modules 656

Deviations in YANG Modules 658

YANG 1.1 662

Types of YANG Modules 663

The Home of YANG Modules 664

Native (Vendor-Specific) YANG Modules 666

IETF YANG Modules 670

OpenConfig YANG Modules 671

YANG Tools 673

Using pyang 673

9781587145148_print.indb 21 25/03/21 11:42 am

xxii    Network Programmability and Automation Fundamentals

Using pyangbind 679

Using pyang to Create JTOX Drivers 683

Summary 688

Part VII Protocols

Chapter 14 NETCONF and RESTCONF 689

NETCONF 689

NETCONF Overview 689

NETCONF Architecture 692

The NETCONF Transport Layer 693

NETCONF Transport Protocol Requirements 693

NETCONF over SSH 694

The NETCONF Messages Layer 695

Hello Messages 696

rpc Messages 698

rpc-reply Messages 699

The NETCONF Operations Layer 701

Retrieving Data: <get> and <get-config> 702

Changing Configuration: <edit-config>, <copy-config>, and
<delete-config> 712

Datastore Operations: <lock> and <unlock> 720

Session Operations: <close-session> and <kill-session> 721

Candidate Configuration Operations: <commit>, <discard-changes>,
and <cancel-commit> 722

Configuration Validation: <validate> 724

The NETCONF Content Layer 725

NETCONF Capabilities 731

The Writable Running Capability 732

The Candidate Configuration Capability 732

The Confirmed Commit Capability 732

The Rollback-on-Error Capability 732

The Validate Capability 733

The Distinct Startup Capability 733

The URL Capability 733

The XPath Capability 735

NETCONF Using Python: ncclient 735

RESTCONF 739

Protocol Overview 739

9781587145148_print.indb 22 25/03/21 11:42 am

Contents    xxiii

Protocol Architecture 742

The RESTCONF Transport Layer 743

The RESTCONF Messages Layer 743

Request Messages 743

Response Messages 744

Constructing RESTCONF Messages 745

RESTCONF HTTP Headers 745

RESTCONF Error Reporting 746

Resources 746

The API Resource 747

The Datastore Resource 749

The Schema Resource 750

The Data Resource 753

The Operations Resource 756

The YANG Library Version Resource 758

Methods and the RESTCONF Operations Layer 759

Retrieving Data: OPTIONS, GET, and HEAD 759

Editing Data: POST, PUT, PATCH, and DELETE 763

Query Parameters 771

RESTCONF and Python 777

Summary 779

Chapter 15 gRPC, Protobuf, and gNMI 781

Requirements for Efficient Transport 781

History and Principles of gRPC 782

gRPC as a Transport 784

The Protocol Buffers Data Format 786

Working with gRPC and Protobuf in Python 790

The gNMI Specification 798

The Anatomy of gNMI 799

The Get RPC 801

The Set RPC 807

The Capabilities RPC 810

The Subscribe RPC 811

Managing Network Elements with gNMI/gRPC 814

Summary 818

9781587145148_print.indb 23 25/03/21 11:42 am

xxiv    Network Programmability and Automation Fundamentals

Chapter 16 Service Provider Programmability 819

The SDN Framework for Service Providers 819

Requirements for Service Provider Networks of the Future 819

SDN Controllers for Service Provider Networks 821

Segment Routing (SR) 823

Segment Routing Basics 823

Segment Routing Traffic Engineering 832

BGP Link State (BGP-LS) 843

BGP-LS Basics 843

BGP-LS Route Types 850

Node NLRI 854

Link NLRI 856

Prefix NLRI 858

Path Computation Element Protocol (PCEP) 859

Typical PCEP Call Flow 861

PCEP Call Flow with Delegation 865

Configuring PCEP in Cisco IOS XR 867

Summary 880

Part VIII Programmability Applications

Chapter 17 Programming Cisco Platforms 881

API Classification 882

Network Platforms 883

Networking APIs 884

Open NX-OS Programmability 884

IOS XE Programmability 885

IOS XR Programmability 886

Use Cases 887

Use Case 1: Linux Shells 887

Use Case 2: NX-API CLI 893

Use Case 3: NX-API REST 898

Use Case 4: NETCONF 905

Meraki 922

Meraki APIs 922

Meraki Use Case: Dashboard API 923

DNA Center 931

DNA Center APIs 933

Intent API 934

9781587145148_print.indb 24 25/03/21 11:42 am

Contents    xxv

Device Management 934

Event Notifications and Webhooks 935

Integration API 935

Use Case: Intent API 936

Collaboration Platforms 942

Cisco’s Collaboration Portfolio 942

Collaboration APIs 944

Cisco Unified Communications Manager (CUCM) 944

Webex Meetings 945

Webex Teams 945

Webex Devices 946

Finesse 946

Use Case: Webex Teams 948

Summary 954

Chapter 18 Programming Non-Cisco Platforms 957

General Approaches to Programming Networks 957

The Vendor/API Matrix 957

Programmability via the CLI 958

Programmability via SNMP 959

Programmability via the Linux Shell 960

Programmability via NETCONF 960

Programmability via RESTCONF and REST APIs 961

Programmability via gRPC/gNMI 961

Implementation Examples 962

Converting the Traditional CLI to a Programmable One 962

Classical Linux-Based Programmability 967

Managing Network Devices with NETCONF/YANG 973

Managing Network Devices with RESTCONF/YANG 978

Summary 987

Chapter 19 Ansible 989

Ansible Basics 989

How Ansible Works 990

Ad Hoc Commands and Playbooks 996

The World of Ansible Modules 1000

Extending Ansible Capabilities 1003

Connection Plugins 1003

9781587145148_print.indb 25 25/03/21 11:42 am

xxvi    Network Programmability and Automation Fundamentals

Variables and Facts 1005

Filters 1013

Conditionals 1016

Loops 1024

Jinja2 Templates 1034

The Need for Templates 1034

Variables, Loops, and Conditions 1040

Using Python Functions in Jinja2 1049

The join() Function 1050

The split() Function 1051

The map() Function 1054

Using Ansible for Cisco IOS XE 1055

Operational Data Verification Using the ios_command Module 1058

General Configuration Using the ios_config Module 1061

Configuration Using Various ios_* Modules 1069

Using Ansible for Cisco IOS XR 1073

Operational Data Verification Using the iosxr_command Module 1075

General Configuration Using the iosxr_config Module 1078

Configuration Using Various iosxr_* Modules 1083

Using Ansible for Cisco NX-OS 1084

Operational Data Verification Using the nxos_command Module 1086

General Configuration Using the nxos_config Module 1090

Configuration Using Various nxos_* Modules 1093

Using Ansible in Conjunction with NETCONF 1095

Operational Data Verification Using the netconf_get Module 1098

General Configuration Using the netconf_config Module 1103

Summary 1108

Part IX Looking Ahead

Chapter 20 Looking Ahead 1109

Some Rules of Thumb 1109

Automate the Painful Stuff 1109

Don’t Automate a Broken Process 1110

Clean Up Your Network 1110

Find Your Sources of Truth 1110

Avoid Automation You Can’t Reuse 1111

9781587145148_print.indb 26 25/03/21 11:42 am

Document What You Do 1111

Understand What Level of Complexity You’re Willing to Handle 1111

Do a Cost/Benefit Analysis 1112

What Do You Study Next? 1112

Model-Driven Telemetry 1113

Containers: Docker and Kubernetes 1114

Application Hosting 1115

Software Development Methodologies 1116

Miscellaneous Topics 1117

What Does All This Mean for Your Career? 1118

 Index 1121

Contents    xxvii

9781587145148_print.indb 27 25/03/21 11:42 am

xxviii    Network Programmability and Automation Fundamentals

Icons Used in This Book

Laptop Cisco Carrier
Routing System

Mobile
Customer

PC with software

Router Database

Switch Cloud
Wireless

Connectivity
Wireless Modem/
Wireless Gateway

Server Cisco Nexus 7000 File Server

Command Syntax Conventions
The conventions used to present command syntax in this book are the same conventions
used in Cisco’s Command Reference. The Command Reference describes these conven-
tions as follows:

■■ Boldface indicates commands and keywords that are entered literally as shown. In
actual configuration examples and output (not general command syntax), boldface
indicates commands that are manually input by the user (such as a show command).

■■ Italics indicate arguments for which you supply actual values.

■■ Vertical bars (|) separate alternative, mutually exclusive elements.

■■ Square brackets [] indicate optional elements.

■■ Braces { } indicate a required choice.

■■ Braces within brackets [{ }] indicate a required choice within an optional element.

Note This book covers multiple operating systems, and in each example, icons and router
names indicate the OS that is being used. IOS and IOS XE use router names like R1 and R2
and are referenced by the IOS router icon. IOS XR routers use router names like XR1 and
XR2 are referenced by the IOS XR router icon.

9781587145148_print.indb 28 25/03/21 11:42 am

    xxix

Introduction
For more than three decades, network management has been entirely based on the
command-line interface (CLI) and legacy protocols such as SNMP. These protocols and
methods are severely limited. The CLI, for example, is vendor specific, lacks a unified
data hierarchy (sometimes even for platforms from the same vendor), and was designed
primarily as a human interface. SNMP suffers major scaling problems, is not fit for writ-
ing configuration to devices, and overall, is very complex to implement and customize.

In essence, automation aims at offloading as much work from humans as possible and
delegating that work to machines. But with the aforementioned legacy interfaces and pro-
tocols, machine-to-machine communication is neither effective nor efficient; and at times,
close to impossible.

Moreover, device configuration and operational data have traditionally lacked a proper
hierarchy and failed to follow a data model. In addition, network management workflows
have always been far from mature, compared to software development workflows in
terms of versioning, collaboration, testing, and automated deployments.

Enter network programmability. Programmability revolves around programmable inter-
faces, commonly referred to as application programming interfaces (APIs). APIs are inter-
faces that are designed primarily to be used for machine-to-machine communication. A
Python program accessing a network router to retrieve or push configuration, without
human intervention, is an example of a machine-to-machine interaction. Contrast this
with the CLI, where a human needs to manually enter commands on a device and then
visually inspect the output.

Network equipment vendors (for both physical and virtual equipment) are placing ever-
increasing emphasis on the importance of managing their equipment using programmable
interfaces, and Cisco is at the forefront of this new world. This new approach to managing
a network provides several benefits over legacy methods, including the following:

■■ Normalizing the interface for interaction with network platforms by abstracting
communication with these platforms and breaking the dependency of this commu-
nication on specific network OS scripting languages (for example, NX-OS, IOS XR,
and Junos OS)

■■ Providing new methods of interacting with network platforms and, in the process,
enabling and aligning with new technologies and architectures, such as SDN, NFV,
and cloud

■■ Harnessing the power of programming to automate manual tasks and perform
repetitive tasks efficiently

■■ Enabling rapid infrastructure and service deployment by using workflows for service
provisioning

■■ Increasing the reliability of the network configuration process by leveraging error
checking, validation, and rollback and minimizing human involvement in the
configuration process

A01_Abuelenain_FM_pi-pxxxvi.indd 29 25/03/21 2:57 pm

xxx    Network Programmability and Automation Fundamentals

■■ Using common software development tools and techniques for network configura-
tion management, such as software development methodologies, versioning, staging,
collaboration, testing, and continuous integration/continuous delivery

This book covers all the major programmable interfaces used in the market today for net-
work management. The book discusses the protocols, tools, techniques, and technologies
on which network programmability is based. Programming, operating systems, and APIs
are not new technologies. However, programmable interfaces on network platforms, and
using these programmable interfaces to fully operate and maintain a network, along with
the culture accompanying these new methods and protocols, may be (relatively) new. This
book explains, in detail, all the major components of this new ecosystem.

Goals and Methods of This Book
This is a “fundamentals” book aimed at transitioning network engineers from a legacy
network-based mindset to a software-based (and associated technologies) mindset. A
book covering fundamentals generally struggles to cover as many subjects as possible
with just enough detail. The fine balance between breadth and depth is challenging, but
this book handles this challenge very well.

This book introduces the emerging network programmability and automation ecosystem
based on programmable interfaces. It covers each protocol individually, in some significant
detail, using the relevant RFCs as guiding documents. Protocol workflows, messages, and
other protocol nuances tend to be dry, and at times boring, so to keep things interesting,
practical examples are given wherever possible and relevant. You, the reader, can follow
and implement these examples on your machine, which can be as simple as a Linux virtual
machine with Python Version 3.x installed, and free tools to work with APIs, such as Postman
and cURL. This book makes heavy use of the Cisco DevNet sandboxes, so in the majority of
cases, you do not need a home lab to test and experiment with physical equipment.

A whole section of the book is dedicated to putting the knowledge and skills learned
throughout the book to good use. One chapter covers programming Cisco platforms and
another covers programming non-Cisco platforms. A third chapter in that same section is
dedicated exclusively to Ansible. This book provides an abundance of hands-on practice.

The last chapter provides a way forward, discussing tools and technologies that you
might want to explore after you are done with this book.

Who This Book Is For
This book is meant for the following individuals and roles, among others:

■■ Network architects and engineers who want to integrate programmability into their
network designs

■■ NOC engineers monitoring and operating programmable networks or those who
rely on network management systems that utilize programmability protocols

9781587145148_print.indb 30 25/03/21 11:42 am

Introduction    xxxi

■■ Network engineers designing, implementing, and deploying new network services

■■ Software engineers or programmers developing applications for network manage-
ment systems

■■ Network and software engineers working with networks or systems involving SDN,
NFV, or cloud technologies

■■ Network engineers pursuing their Cisco DevNet certifications

Whether you are an expert network engineer with no prior programming experience or
knowledge, or a software engineer looking to utilize your expertise in the network auto-
mation domain, after reading this book, you will fully understand the most commonly
used protocols, tools, technologies, and techniques related to the subject, and you will be
capable of effectively using the newly learned material to design, implement, and operate
full-fledged programmable networks and the associated network automation systems.

How This Book Is Organized
This book covers the information you need to transition from having a focus on net-
working technology to focusing on software and network programmability. This book
covers six main focus areas:

■■ Operating systems: Linux

■■ Software development: Python

■■ Transport: HTTP, REST, and SSH

■■ Encoding: XML, JSON, and YAML

■■ Modeling: YANG

■■ Protocols: NETCONF, RESTCONF, gRPC, and service provider programmability

■■ Practical programmability: Cisco platforms, non-Cisco platforms, and Ansible

Each chapter in this book either explicitly covers one of these focus areas or prepares
you for one of them. Special consideration has been given to the ordering of topics to
minimize forward referencing. Following an introduction to the programmability land-
scape, Linux is covered first because to get anything done in network programmability,
you will almost always find yourself working with Linux. The book next covers Python
because the vast majority of the rest of the book includes coverage of Python in the con-
text of working with various protocols. The following chapters present an organic flow
of topics: transport, encoding, modeling, and the protocols that build on all the previous
sections. For example, understanding NETCONF requires you to understand SSH, XML,
and YANG, and understanding RESTCONF requires that you understand HTTP, XML/
JSON, and YANG. Both NETCONF and RESTCONF require knowledge of Python, most
likely running on a Linux machine.

A01_Abuelenain_FM_pi-pxxxvi.indd 31 25/03/21 2:57 pm

xxxii    Network Programmability and Automation Fundamentals

How This Book Is Structured
The book is organized into nine parts, described in the following sections.

PART I, “Introduction”

Chapter 1, “The Network Programmability and Automation Ecosystem”: This chapter
introduces the concepts and defines the terms that are necessary to understand the pro-
tocols and technologies covered in the following chapters. It also introduces the network
programmability stack and explores the different components of the stack that constitute
a typical network programmability and automation toolbox.

PART II, “Linux”

Chapter 2, “Linux Fundamentals”: Linux is the predominant operating system used
for running software for network programmability and automation. Linux is also the
underlying operating system for the vast majority of network device software, such as
IOS XR, NX-OS, and Cumulus Linux. Therefore, to be able to effectively work with pro-
grammable devices, it is of paramount importance to master the fundamentals of Linux.
This chapter introduces Linux, including its architecture and boot process, and covers
the basics of working with Linux through the Bash shell, such as working with files and
directories, redirecting input and output, performing system maintenance, and installing
software.

Chapter 3, “Linux Storage, Security, and Networks”: This chapter builds on Chapter 2
and covers more advanced Linux topics. It starts with storage on Linux systems and the
Linux Logical Volume Manager. It then covers Linux user, group, file, and system secu-
rity. Finally, it explains three different methods to manage networking in Linux; the ip
utility, the NetworkManager service, and network configuration files.

Chapter 4, “Linux Scripting”: This chapter builds on Chapters 2 and 3 and covers Linux
scripting using the Bash shell. The chapter introduces the grep, awk, and sed utilities and
covers the syntax and semantics of Bash scripting. The chapter covers comments, input
and output, variables and arrays, expansion, operations and comparisons, how to execute
system commands from a Bash script, conditional statements, loops, and functions. It also
touches on the Expect programming language.

PART III, “Python”

Chapter 5, “Python Fundamentals”: This chapter assumes no prior knowledge of pro-
gramming and starts with an introduction to programming, covering some very important
software and computer science concepts, including algorithms and object-oriented pro-
gramming. It also discusses why programming is a foundational skill for learning network
programmability and covers the fundamentals of the Python programming language,

9781587145148_print.indb 32 25/03/21 11:42 am

Introduction    xxxiii

including installing Python Version 3.x, executing Python programs, input and output,
data types, data structures, operators, conditional statements, loops, and functions.

Chapter 6, “Python Applications”: This chapter builds on Chapter 5 and covers the
application of Python to different domains. The chapter illustrates the use of Python for
creating web applications using Django and Flask, for network programmability using
NAPALM and Nornir, and for orchestration and machine learning. The chapter also cov-
ers some very important tools and protocols used in software development in general,
such as Git, containers, Docker and virtual environments.

PART IV, “Transport”

Chapter 7, “HTTP and REST”: This is one of the most important chapters in this book.
It introduces the HTTP protocol and the REST architectural framework, as well as the
relationship between them. This chapter covers HTTP connections based on TCP. It
also covers the anatomy of HTTP messages and dives into the details of HTTP request
methods and response status codes. It also provides a comprehensive explanation of the
most common header fields. The chapter discusses the syntax rules that govern the use
of URIs and then walks through working with HTTP, using tools such as Postman, cURL,
and Python libraries, such as the requests library.

Chapter 8, “Advanced HTTP”: Building on Chapter 7, this chapter moves to more
advanced HTTP topics, including HTTP authentication and how state can be maintained
over HTTP connections by using cookies. This chapter provides a primer on cryptogra-
phy for engineers who know nothing on the subject and builds on that to cover TLS, and
HTTP over TLS (aka HTTPS). It also provides a glimpse into HTTP/2 and HTTP/3, and
the enhancements introduced by these newer versions of HTTP.

Chapter 9, “SSH”: Despite being a rather traditional protocol, SSH is still an integral
component of the programmability stack. SSH is still one of the most widely used pro-
tocols, and having a firm understanding of the protocol is crucial. This chapter discusses
the three sub-protocols that constitute SSH and cover the lifecycle of an SSH connec-
tion: the SSH Transport Layer Protocol, User Authentication Protocol, and Connection
Protocol. It also discusses how to set up SSH on Linux systems as well as how to work
with SSH on the three major network operating system: IOS XR, IOS XE, and NX-OS.
Finally, it covers SFTP, which is a version of FTP based on SSH.

PART V, “Encoding”

Chapter 10, “XML”: This chapter covers XML, the first of three encoding protocols
covered in this book. XML is the oldest of the three protocols and is probably the most
sophisticated. This chapter describes the general structure of an XML document as well
as XML elements, attributes, comments, and namespaces. It also covers advanced XML
topics such as creating document templates using DTD and XML-based schemas using
XSD, and it compares the two. This chapter also covers XPath, XSLT, and working with
XML using Python.

9781587145148_print.indb 33 25/03/21 11:42 am

xxxiv    Network Programmability and Automation Fundamentals

Chapter 11, “JSON”: JSON is less sophisticated, newer, and more human-readable than
XML, and it is therefore a little more popular that XML. This chapter covers JSON data
formats and data types, as well as the general format of a JSON-encoded document.
The chapter also covers JSON Schema Definition (JSD) for data validation and how JSD
coexists with YANG.

Chapter 12, “YAML”: YAML is frequently described as a superset of JSON. YAML is
slightly more human-readable than JSON, but data encoded in YAML tends to be signifi-
cantly lengthier than its JSON-encoded counterpart. YAML is a very popular encoding
format and is required for effective use of tools such as Ansible. This chapter covers the
differences between XML, JSON, and YAML and discusses the structure of a YAML
document. It also explains collections, scalers, tags, and anchors. Finally, the chapter
discusses working with YAML in Python.

PART VI, “Modeling”

Chapter 13, “YANG”: At the heart of the new paradigm of network programmability is
data modeling. This is a very important chapter that covers both generic modeling and
the YANG modeling language. This chapter starts with a data modeling primer, explain-
ing what a data model is and why it is important to have data models. Then it explains
the structure of a data model. This chapter describes the different node types in YANG
and their place in a data model hierarchy. It also delves into more advanced topics, such
as augmentations and deviations in YANG. It describes the difference between open-
standard and vendor-specific YANG models and where to get each type. Finally, the
chapter covers a number of tools for working with YANG modules, including pyang and
pyangbind.

PART VII, “Protocols”

Chapter 14, “NETCONF and RESTCONF”: NETCONF was the first protocol developed
to replace SNMP. RESTCONF was developed later and is commonly referred to as the
RESTful version of NETCONF. Building on earlier chapters, this chapter takes a deep
dive into both NETCONF and RESTCONF. The chapter covers the protocol architecture
as well as the transport, message, operations, and content layers of each of the two
protocols. It also covers working with these protocols using Python.

Chapter 15, “gRPC, Protobuf, and gNMI”: The gRPC protocol was initially developed
by Google for network programmability that borrows its operational concepts from the
communications models of distributed applications. This chapter provides an overview of
the motivation that drove the development of gRPC. It covers the communication flow of
gRPC and protocol buffers (Protobuf) used to serialize data for gRPC communications.
The chapter also shows how to work with gRPC using Python. The chapter then takes a
deep dive into gNMI, a gRPC-based specification. Finally, the chapter shows how gRPC
and gNMI are used to manage a Cisco IOS XE device.

9781587145148_print.indb 34 25/03/21 11:42 am

Chapter 16, “Service Provider Programmability”: Service providers face unique
challenges due to the typical scale of their operations and the stringent KPIs that must be
imposed on their networks, especially given the heated race to adopt 5G and associated
technologies. This chapter discusses how such challenges influence the programmability
and automation in service provider networks and provides in-depth coverage of Segment
Routing, BGP-LS, and PCEP.

PART VIII, “Programmability Applications”

Chapter 17, “Programming Cisco Platforms”: This chapter explores the programmabil-
ity capabilities of several Cisco platforms, covering a wide range of technology domains.
In addition, this chapter provides several practical examples and makes heavy use of
Cisco’s DevNet sandboxes. This chapter covers the programmability of IOS XE, IOS XR,
NX-OS, Meraki, DNA Center, and Cisco’s collaboration platforms, with a use case
covering Webex Teams.

Chapter 18, “Programming Non-Cisco Platforms”: This chapter covers the program-
mability of a number of non-Cisco platforms, such as the Cumulus Linux and Arista EOS
platforms. This chapter shows that the knowledge and skills gained in the previous chap-
ters are truly vendor neutral and global. In addition, this chapter shows that programma-
bility using APIs does in fact abstract network configuration and management and breaks
the dependency on vendor-specific CLIs.

Chapter 19, “Ansible”: This chapter covers a very popular tool that has become synony-
mous with network automation: Ansible. As a matter of fact, Ansible is used in the appli-
cation and compute automation domains as well. Ansible is a very simple, yet extremely
powerful, automation tool that provides a not-so-steep learning curve, and hence a quick
and effective entry point into network automation. This is quite a lengthy chapter that
takes you from zero to hero in Ansible.

PART IX, “Looking Ahead”

Chapter 20, “Looking Ahead”: This chapter builds on the foundation covered in the pre-
ceding chapters and discusses more advanced technologies and tools that you might want
to explore to further your knowledge and skills related to network programmability and
automation.

Introduction    xxxv

9781587145148_print.indb 35 25/03/21 11:42 am

9781587145148_print.indb 36 25/03/21 11:42 am

This page intentionally left blank

Chapter 2, “Linux Fundamentals,” covers Linux basics, and by now, you should be
familiar with the Linux environment and feel comfortable performing general system
maintenance tasks. This chapter takes you a step further in your Linux journey and
covers storage, security, and networking.

Linux Storage
Many network engineers struggle with concepts such as what mounting a volume means
and the relationship between physical and logical volumes. This section covers every-
thing you need to know about storage to effectively manage a Linux-based environment,
whether it is your development environment or the underlying Linux system on which a
network operating system is based, such as IOS XR and NX-OS.

Physical Storage

The /dev directory contains device files, which are special files used to access the hard-
ware on a system. A program trying to access a device uses a device file as an interface to
the device driver of that device. Writing data to a device file is the same as sending data
to the device represented by that device file, and reading data from a device file is the
same as receiving data from that device. For example, writing data to the printer device
file prints this data, and reading data from the device file of a hard disk partition is the
same as reading data from that partition on the disk.

Example 3-1 shows the output of the ls -l command for the /dev directory. Notice that,
unlike other directories, the first bit of the file permissions is one of five characters:

■■ - for regular files

■■ d for directories

Linux Storage, Security,  
and Networks

Chapter 3

9781587145148_print.indb 119 25/03/21 11:43 am

120    Chapter 3: Linux Storage, Security, and Networks 

■■ l for links

■■ c for character device files

■■ b for block device files

You learned about the first three of these bits in Chapter 2, and the other two are covered
here.

Example 3-1 Contents of the /dev Directory

[netdev@server1 dev]$ ls -l

total 0

-rw-r--r--. 1 root root 0 Aug 10 00:28 any_regular_file

crw-r--r--. 1 root root 10, 235 Aug 10 00:19 autofs

drwxr-xr-x. 2 root root 140 Aug 10 00:18 block

drwxr-xr-x. 2 root root 60 Aug 10 00:18 bsg

drwxr-xr-x. 3 root root 60 Aug 10 00:19 bus

drwxr-xr-x. 2 root root 2940 Aug 10 00:20 char

drwxr-xr-x. 2 root root 80 Aug 10 00:18 cl

crw-------. 1 root root 5, 1 Aug 10 00:20 console

lrwxrwxrwx. 1 root root 11 Aug 10 00:18 core -> /proc/kcore

drwxr-xr-x. 6 root root 120 Aug 10 00:19 cpu

crw-------. 1 root root 10, 62 Aug 10 00:19 cpu_dma_latency

drwxr-xr-x. 6 root root 120 Aug 10 00:18 disk

brw-rw----. 1 root disk 253, 0 Aug 10 00:19 dm-0

brw-rw----. 1 root disk 253, 1 Aug 10 00:19 dm-1

--------- OUTPUT TRUNCATED FOR BREVITY ---------

Character device files provide unbuffered access to hardware. This means that what is
written to the file is transmitted to the hardware device right away, byte by byte. The
same applies to read operations. Think of data sent to the device file of an audio output
device or data read from the device file representing your keyboard. This data should not
be buffered.

On the other hand, block device files provide buffered access; that is, data written to a
device file is buffered by the kernel before it is passed on to the hardware device. The
same applies to read operations. Think of data written to or read from a partition on your
hard disk. This is typically done in data blocks, not individual bytes.

However, note that the device file type (as seen in the /dev directory) is not necessarily
the same as the device type. Storage devices such as hard disks are block devices, which
means that data is read from and written to the device in fixed-size blocks. Although this
may sound counterintuitive, block devices may be accessed using character device files
on some operating systems, such as BSD. This is not the case with Linux, where block

9781587145148_print.indb 120 25/03/21 11:43 am

Linux Storage    121

devices are always associated with block device files. The difference between block
devices and block device files is sometimes a source of confusion.

The first step in analyzing a storage and file system is getting to know the hard disks.
Each hard disk and partition has a corresponding device file in the /dev directory. By
listing the contents of this directory, you find the sda file for the first hard disk, and, if
installed, sdb for the second hard disk, sdc for the third hard disk, and so forth. Partitions
are named after the hard disk that the partition belongs to, with the partition number
appended to the name. For example, the first partition on the second hard disk is
named sdb1. The hard disk naming convention follows the configuration in the /lib/udev/
rules.d/60-persistent-storage.rules file, and the configuration is per hard disk type (ATA,
USB, SCSI, SATA, and so on). Example 3-2 lists the relevant files in the /dev directory on
a CentOS 7 distro. As you can see, this system has two hard disks. The first hard disk is
named sda and has two partitions—sda1 and sda2—and the second is named sdb and has
three partitions—sdb1, sdb2, and sdb3.

Example 3-2 Hard Disks and Partitions in the /dev Directory

[root@localhost ~]# ls -l /dev | grep sd

brw-rw----. 1 root disk 8, 0 Jun 8 04:55 sda

brw-rw----. 1 root disk 8, 1 Jun 8 04:55 sda1

brw-rw----. 1 root disk 8, 2 Jun 8 04:55 sda2

brw-rw----. 1 root disk 8, 16 Jun 8 04:55 sdb

brw-rw----. 1 root disk 8, 17 Jun 8 04:55 sdb1

brw-rw----. 1 root disk 8, 18 Jun 8 04:55 sdb2

brw-rw----. 1 root disk 8, 19 Jun 8 04:55 sdb3

Notice the letter b at the beginning of each line of the output in Example 3-2. This indi-
cates a block device file. A character device file would have the letter c instead.

The command fdisk -l lists all the disks and partitions on a system, along with some use-
ful details. Example 3-3 shows the output of this command for the same system as in
Example 3-2.

Example 3-3 Using the fdisk -l Command to Get Hard Disk and Partition Details

[root@localhost ~]# fdisk -l

Disk /dev/sda: 26.8 GB, 26843545600 bytes, 52428800 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk label type: dos

Disk identifier: 0x000b4fba

9781587145148_print.indb 121 25/03/21 11:43 am

122    Chapter 3: Linux Storage, Security, and Networks 

 Device Boot Start End Blocks Id System

/dev/sda1 * 2048 2099199 1048576 83 Linux

/dev/sda2 2099200 52428799 25164800 8e Linux LVM

Disk /dev/sdb: 107.4 GB, 107374182400 bytes, 209715200 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk label type: dos

Disk identifier: 0x149c8964

 Device Boot Start End Blocks Id System

/dev/sdb1 2048 41945087 20971520 83 Linux

/dev/sdb2 41945088 83888127 20971520 83 Linux

/dev/sdb3 83888128 115345407 15728640 83 Linux

Disk /dev/mapper/centos-root: 23.1 GB, 23081254912 bytes, 45080576 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/mapper/centos-swap: 2684 MB, 2684354560 bytes, 5242880 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

[root@localhost ~]#

In addition to physical disks /dev/sda and /dev/sdb and their respective partitions, the
command output in Example 3-3 lists two other disks: /dev/mapper/centos-root and /dev/
mapper/centos-swap. These are two logical volumes. (Logical volumes are discussed in
detail in the next section.) Notice that there is an asterisk (*) under the title Boot for parti-
tion /dev/sda1. As you may have guessed, this indicates that this is the partition on which
the boot sector resides, containing the boot loader. The boot loader is the software that
will eventually load the kernel image into memory during the system boot process, as
you have read in Section “The Linux Boot Process” in Chapter 2.

In addition to displaying existing partition details, fdisk can create new partitions and
delete existing ones. For example, after a third hard disk, sdc, is added to the system,
the fdisk utility can be used to create two partitions, sdc1 and sdc2, as shown in
Example 3-4.

9781587145148_print.indb 122 25/03/21 11:43 am

Linux Storage    123

Example 3-4 Creating New Hard Disk Partitions by Using the fdisk Utility

! Current status of the sdc hard disk: no partitions exist

[root@localhost ~]# fdisk -l /dev/sdc

Disk /dev/sdc: 21.5 GB, 21474836480 bytes, 41943040 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

! Using fdisk to create two new partitions on sdc

[root@localhost ~]# fdisk /dev/sdc

Welcome to fdisk (util-linux 2.23.2).

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

Device does not contain a recognized partition table

Building a new DOS disklabel with disk identifier 0x4cd00767.

Command (m for help): m

Command action

 a toggle a bootable flag

 b edit bsd disklabel

 c toggle the dos compatibility flag

 d delete a partition

 g create a new empty GPT partition table

 G create an IRIX (SGI) partition table

 l list known partition types

 m print this menu

 n add a new partition

 o create a new empty DOS partition table

 p print the partition table

 q quit without saving changes

 s create a new empty Sun disklabel

 t change a partition's system id

 u change display/entry units

 v verify the partition table

 w write table to disk and exit

 x extra functionality (experts only)

Command (m for help): n

Partition type:

 p primary (0 primary, 0 extended, 4 free)

 e extended

9781587145148_print.indb 123 25/03/21 11:43 am

124    Chapter 3: Linux Storage, Security, and Networks 

Select (default p): p

Partition number (1-4, default 1):

First sector (2048-41943039, default 2048):

Using default value 2048

Last sector, +sectors or +size{K,M,G} (2048-41943039, default 41943039): +5G

Partition 1 of type Linux and of size 5 GiB is set

Command (m for help): n

Partition type:

 p primary (1 primary, 0 extended, 3 free)

 e extended

Select (default p):

Using default response p

Partition number (2-4, default 2):

First sector (10487808-41943039, default 10487808):

Using default value 10487808

Last sector, +sectors or +size{K,M,G} (10487808-41943039, default 41943039):

Using default value 41943039

Partition 2 of type Linux and of size 15 GiB is set

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

Syncing disks.

! Status after creating the two new partitions sdc1 and sdc2

[root@localhost ~]# fdisk -l /dev/sdc

Disk /dev/sdc: 21.5 GB, 21474836480 bytes, 41943040 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk label type: dos

Disk identifier: 0x4cd00767

 Device Boot Start End Blocks Id System

/dev/sdc1 2048 10487807 5242880 83 Linux

/dev/sdc2 10487808 41943039 15727616 83 Linux3

[root@localhost ~]#

The interactive dialogue of the fdisk utility is self-explanatory. After the fdisk /dev/sdc
command is issued, you can enter m to see all available options. You can enter n to start
the new partition dialogue. Note the different methods to specify the size of the

9781587145148_print.indb 124 25/03/21 11:43 am

Linux Storage    125

partition. If you go with the default option (by simply pressing Enter), the command uses
all the remaining space on the disk to create that particular partition.

Before a hard disk partition can be used to store data, the partition needs to be format-
ted; that is, a file system has to be created. (File systems are discussed in some detail in
Chapter 2.) At the time of writing, the two most common file systems used on Linux are
ext4 and xfs. A partition is formatted using the mkfs utility. In Example 3-5, the sdc1
partition is formatted to use the ext4 file system, and sdc2 is formatted to use the xfs
file system.

Example 3-5 Creating File Systems by Using the mkfs Command

[root@localhost ~]# mkfs -t ext4 /dev/sdc1

mke2fs 1.42.9 (28-Dec-2013)

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

Stride=0 blocks, Stripe width=0 blocks

327680 inodes, 1310720 blocks

65536 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=1342177280

40 block groups

32768 blocks per group, 32768 fragments per group

8192 inodes per group

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912, 819200, 884736

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done

[root@localhost ~]# mkfs -t xfs /dev/sdc2

meta-data=/dev/sdc2 isize=512 agcount=4, agsize=982976 blks

 = sectsz=512 attr=2, projid32bit=1

 = crc=1 finobt=0, sparse=0

data = bsize=4096 blocks=3931904, imaxpct=25

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0 ftype=1

log =internal log bsize=4096 blocks=2560, version=2

 = sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

[root@localhost ~]#

9781587145148_print.indb 125 25/03/21 11:43 am

126    Chapter 3: Linux Storage, Security, and Networks 

To specify a file system type, you use mkfs with the -t option. Keep in mind that the
command output depends on the file system type used with the command.

The final step toward making a partition usable is to mount that partition or file system.
Mounting is usually an ambiguous concept to engineers who are new to Linux. As dis-
cussed in Chapter 2, the Linux file hierarchy always starts at the root directory, repre-
sented by /, and branches down. For a file system to be accessible, it has to be mounted
to a mount point—that is, attached (mounted) to the file hierarchy at a specific path in
that hierarchy (mount point). The mount point is the path in the file hierarchy that the file
system is attached to and through which the contents of that file system can be accessed.
For example, mounting the /dev/sdc1 partition to the /Operations directory maps the
content of /dev/sdc1 to, and makes it accessible through, the /Operations directory, for
both read and write operations. Example 3-6 shows the /Operations directory being
created and the sdc1 partition being mounted to it.

Example 3-6 Mounting /dev/sdc1 to /Operations

[root@localhost ~]# mkdir /Operations

[root@localhost ~]# mount /dev/sdc1 /Operations

To display all the mounted file systems, you use the df command, as shown in
Example 3-7. The option -h displays the file system sizes in human-readable format.

Example 3-7 Output of the df -h Command

[root@localhost ~]# df -h

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/centos-root 22G 5.3G 17G 25% /

devtmpfs 3.9G 0 3.9G 0% /dev

tmpfs 3.9G 0 3.9G 0% /dev/shm

tmpfs 3.9G 9.4M 3.9G 1% /run

tmpfs 3.9G 0 3.9G 0% /sys/fs/cgroup

/dev/sda1 1014M 333M 682M 33% /boot

tmpfs 783M 32K 783M 1% /run/user/1000

/dev/sdc1 4.8G 20M 4.6G 1% /Operations

[root@localhost ~]#

Each row in the output in Example 3-7 is a separate file system. The entry /dev/mapper/
centos-root is a logical volume (and is discussed in detail in the next section). The fol-
lowing few entries are tmpfs file systems, which are temporary file systems created in
memory (not on disk) for cache-like operations due to the high speed of RAM, as com-
pared to the low speed of hard disks. An entry exists in the list for partition /dev/sda1
that is mounted to directory /boot. Then the entry at the bottom is for /dev/sdc1 that was
mounted to directory /Operations as shown in Example 3-6.

9781587145148_print.indb 126 25/03/21 11:43 am

Linux Storage    127

To unmount the /dev/sdc1 file system, you use the umount /dev/sdc1 command. You can
also use the mount point, in which case the command is umount /Operations. Note that
the command is umount, not unmount. Adding the letter n is a very common error.

The mounting done by using the mount command is not persistent. In other words, once
the system is rebooted, the volumes mounted using the mount command are no longer
mounted. For persistent mounting, an entry needs to be added to the /etc/fstab file.
Example 3-8 shows the contents of the /etc/fstab file after the entry for /dev/sdc1 is added.

Example 3-8 Editing the /etc/fstab File for Persistent Mounting

! Adding an entry for /etc/sdc1 using the echo command

[root@localhost ~]# echo "/dev/sdc1 /Operations ext4 defaults 0 0" >> /etc/fstab

! After adding an entry for /etc/sdc1

[root@localhost ~]# cat /etc/fstab

#

/etc/fstab

Created by anaconda on Sat May 26 04:28:54 2018

#

Accessible filesystems, by reference, are maintained under '/dev/disk'

See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info

#

/dev/mapper/centos-root / xfs defaults 0 0

UUID=dfe65618-19ab-458d-b5e3-dafdb59b4e68 /boot xfs defaults 0 0

/dev/mapper/centos-swap swap swap defaults 0 0

/dev/sdc1 /Operations ext4 defaults 0 0

! Command mount -a immediately mounts all file systems listed in fstab

[root@localhost ~]# mount -a

The command mount -a immediately mounts all file systems listed in /etc/fstab.

The /etc/fstab file has one entry for each file system that is to be mounted at system boot.
It is important to understand the entries in the /etc/fstab file because this is the file that
defines what file systems a system will have mounted right after it boots and the options
that each of these file systems will be mounted with. Each line has the following fields:

■■ The first field can be either the file system path, the universal unique identifier (UUID),
or the label. You can learn the UUID (and type) of all file systems by using the com-
mand blkid. You can show the label by using the command tune2fs -l {file_system}
for ext2/3/4 file systems or xfs_admin -l {file_system} for xfs file systems. Using the
file system path, which is /dev/sdc1 in this case, is pretty straightforward. However,
when a system has tens of hard disks installed, it would be wiser to use the partition
UUIDs. A UUID is a unique number that identifies a partition. The UUID does not
change if the hard disk containing the partition is moved to another system, and hence
it is universal. Using a UUID eliminates the possibility of errors in the /etc/fstab file.

9781587145148_print.indb 127 25/03/21 11:43 am

128    Chapter 3: Linux Storage, Security, and Networks 

■■ The second field is the file system mount point, which is /Operations in this case.

■■ The third field is the file system type, which is ext4 in this example.

■■ The fourth field is the mounting options. In this example, defaults indicates that
the default mounting options will be used. You can also add non-default mounting
options such as acl for ACL support. You add options in a comma-separated list.

■■ The fifth field indicates which file systems are to be backed up by the dump utility.
The zero value in this case indicates that this file system will not be automatically
backed up.

■■ The sixth field is used by the fsck utility to determine whether to check the health
of the file system. The fsck utility checks file systems with a nonzero value in this
field, in order, starting with the file system that has the value one. A zero in this field
tells the fsck utility not to check that file system.

fdisk is not the only Linux utility available to manipulate disk partitions. Two other
popular utilities for disk partitioning are gdisk and parted. You can use the man pages
for these utilities to explore them and use a non-production environment (ideally a virtual
machine) to experiment with using them. You may run into a distro that has one of them
implemented but not the other. The more utilities you are familiar with, the better.

Logical Volume Manager

Linux generally uses the concept of logical volumes to provide storage to users. Logical
volumes abstract the storage that is available to a user from the actual physical disks.
Logical volumes on Linux are managed by system software called Logical Volume
Manager (LVM). LVM operates by grouping physical disks or disk partitions, each
referred to as a physical volume (PV), such as /dev/sda or /dev/sdb2, into a volume
group (VG). LVM then manages a VG as one pool of storage that is split by the LVM into
one or more logical volumes (LVs). Figure 3-1 illustrates these concepts.

Logical
Volume 1 Logical

Volume 2 Logical
Volume Z

Volume Group Y

Physical
Volume 1

Physical
Volume 2

Physical
Volume X…

Figure 3-1 Physical Volumes, Volume Groups, and Logical Volumes

M03_Abuelenain_C03_p119-p182.indd 128 26/03/21 1:44 pm

Linux Storage    129

To better understand the concept of logical volumes, keep in mind the following:

■■ The different PVs that constitute a VG do not have to be equal in size.

■■ The different PVs that constitute a VG may be different disks, or different partitions
on the same disk, or different partitions on different disks.

■■ Two different partitions on the same disk may be members of two different VGs.

■■ The LVs that are created from a VG do not correlate to the PVs that constitute the
VG in either size or number.

Using LVs created by LVM provides several advantages over using physical storage directly.
The most significant benefit is the disassociation between user data and specific physi-
cal storage volumes. From a capacity perspective, capacity can be added to and removed
from a logical volume without having to repartition a physical disk to create a bigger or
smaller partition, and a file system is not limited by the size of the physical disk that it
resides on. From a performance perspective, data may be striped across several physical
volumes (for added throughput) transparently from the user. These are just a few of the
advantages.

The following steps are involved in creating a logical volume that is ready to use:

Step 1. Using the command pvcreate {physical_disk/partition}, label the physical
volumes that will constitute the volume group as LVM physical volumes.

Step 2. Using the command vgcreate {vg_name} {pv1} {pv2} .. {pvN}, create the VG
by using the physical volumes pv1, pv2,…pvN.

Step 3. Using the command lvcreate -n {lv_name} -L {lv_size} {vg_name}, create the
logical volume named lv_name from the volume group named vg_name.

Step 4. Create the file system of choice on the new logical volume by using the mkfs
command, exactly as you would on a physical partition.

Step 5. Mount the new file system by using the mount command exactly as you
would mount a file system created on a physical partition.

In Example 3-9, two disks, sdb and sdc, are each divided into two partitions
as follows:

■■ sdb1: 12 GB

■■ sdb2: 8 GB

■■ sdc1: 15 GB

■■ sdc2: 10 GB

9781587145148_print.indb 129 25/03/21 11:43 am

130    Chapter 3: Linux Storage, Security, and Networks 

Example 3-9 The Four Partitions That Will Be Used to Create a Volume Group

[root@server1 ~]# fdisk -l | grep –E sd[b,c]

Disk /dev/sdc: 26.8 GB, 26843545600 bytes, 52428800 sectors

/dev/sdc1 2048 31459327 15728640 83 Linux

/dev/sdc2 31459328 52428799 10484736 83 Linux

Disk /dev/sdb: 21.5 GB, 21474836480 bytes, 41943040 sectors

/dev/sdb1 2048 25167871 12582912 83 Linux

/dev/sdb2 25167872 41943039 8387584 83 Linux

[root@server1 ~]#

After each of the four partitions is labeled as a PV, all four partitions are added to the VG
VGNetProg, which has a total capacity of 40 GB. The volume group capacity is then used
to create two logical volumes—LVNetAutom with a capacity of 10 GB and LVNetDev
with a capacity of 30 GB—as shown in Example 3-10.

Example 3-10 Creating Physical Volumes, Volume Groups, and Logical Volumes

! Label the physical volumes

[root@server1 ~]# pvcreate /dev/sdb1 /dev/sdb2 /dev/sdc1 /dev/sdc2

 Physical volume "/dev/sdb1" successfully created.

 Physical volume "/dev/sdb2" successfully created.

 Physical volume "/dev/sdc1" successfully created.

 Physical volume "/dev/sdc2" successfully created.

! Create the volume group

[root@server1 ~]# vgcreate VGNetProg /dev/sdb1 /dev/sdb2 /dev/sdc1 /dev/sdc2

 Volume group "VGNetProg" successfully created

! Create the two logical volumes

[root@server1 ~]# lvcreate -n LVNetAutom -L 10G VGNetProg

 Logical volume "LVNetAutom" created.

[root@server1 ~]# lvcreate -n LVNetDev -L 30G VGNetProg

 Logical volume "LVNetDev" created.

[root@server1 ~]#

Example 3-11 shows the pvdisplay command being used to display the details of the
physical volumes.

9781587145148_print.indb 130 25/03/21 11:43 am

Linux Storage    131

Example 3-11 Displaying Physical Volume Details by Using the pvdisplay Command

[root@server1 ~]# pvdisplay /dev/sdb1

 --- Physical volume ---

 PV Name /dev/sdb1

 VG Name VGNetProg

 PV Size 12.00 GiB / not usable 4.00 MiB

 Allocatable yes

 PE Size 4.00 MiB

 Total PE 3071

 Free PE 511

 Allocated PE 2560

 PV UUID dPYPj6-Wv1i-iX7H-3iH0-oCnE-OzkA-2LcJlx

[root@server1 ~]# pvdisplay /dev/sdb2

 --- Physical volume ---

 PV Name /dev/sdb2

 VG Name VGNetProg

 PV Size <8.00 GiB / not usable 3.00 MiB

 Allocatable yes

 PE Size 4.00 MiB

 Total PE 2047

 Free PE 765

 Allocated PE 1282

 PV UUID ftOYQo-a19G-0Gs6-01ir-i6M5-Yj1N-TRREDR

[root@server1 ~]# pvdisplay /dev/sdc1

 --- Physical volume ---

 PV Name /dev/sdc1

 VG Name VGNetProg

 PV Size 15.00 GiB / not usable 4.00 MiB

 Allocatable yes (but full)

 PE Size 4.00 MiB

 Total PE 3839

 Free PE 0

 Allocated PE 3839

 PV UUID DYW0TD-vXGl-8Ssr-BCcy-SLQQ-mkfi-rvQFVd

[root@server1 ~]# pvdisplay /dev/sdc2

 --- Physical volume ---

 PV Name /dev/sdc2

 VG Name VGNetProg

 PV Size <10.00 GiB / not usable 3.00 MiB

 Allocatable yes (but full)

 PE Size 4.00 MiB

 Total PE 2559

 Free PE 0

 Allocated PE 2559

 PV UUID n1snhx-aevL-X5ay-la43-ljlo-83uC-LIkIT7

[root@server1 ~]#

9781587145148_print.indb 131 25/03/21 11:43 am

132    Chapter 3: Linux Storage, Security, and Networks 

Example 3-12 shows the vgdisplay command being used to display the volume group
that has been created.

Example 3-12 Displaying Volume Group Details by Using the vgdisplay Command

[root@server1 ~]# vgdisplay VGNetProg

 --- Volume group ---

 VG Name VGNetProg

 System ID

 Format lvm2

 Metadata Areas 4

 Metadata Sequence No 3

 VG Access read/write

 VG Status resizable

 MAX LV 0

 Cur LV 2

 Open LV 0

 Max PV 0

 Cur PV 4

 Act PV 4

 VG Size 44.98 GiB

 PE Size 4.00 MiB

 Total PE 11516

 Alloc PE / Size 10240 / 40.00 GiB

 Free PE / Size 1276 / 4.98 GiB

 VG UUID PSi3RJ-9lkc-lZFE-oCVA-RaXC-HDh5-K0VuV3

[root@server1 ~]#

Example 3-13 shows the lvdisplay command being used to display the logical volumes
that have been created. A logical volume is addressed using its full path in the /dev
directory, as shown in the example.

Example 3-13 Displaying Logical Volume Details by Using the lvdisplay Command

[root@server1 ~]# lvdisplay /dev/VGNetProg/LVNetAutom

 --- Logical volume ---

 LV Path /dev/VGNetProg/LVNetAutom

 LV Name LVNetAutom

 VG Name VGNetProg

 LV UUID Y09QdN-J8Fw-s3Nb-RB84-bBPs-1USv-tzMfAw

 LV Write Access read/write

 LV Creation host, time server1, 2018-08-05 21:57:42 +0300

 LV Status available

 # open 0

 LV Size 10.00 GiB

9781587145148_print.indb 132 25/03/21 11:43 am

Linux Storage    133

 Current LE 2560

 Segments 1

 Allocation inherit

 Read ahead sectors auto

 - currently set to 8192

 Block device 253:2

[root@server1 ~]# lvdisplay /dev/VGNetProg/LVNetDev

 --- Logical volume ---

 LV Path /dev/VGNetProg/LVNetDev

 LV Name LVNetDev

 VG Name VGNetProg

 LV UUID Z9VRTv-CUe6-uSa8-S821-jGY5-ymKh-zsKfHZ

 LV Write Access read/write

 LV Creation host, time server1, 2018-08-05 21:58:17 +0300

 LV Status available

 # open 0

 LV Size 30.00 GiB

 Current LE 7680

 Segments 3

 Allocation inherit

 Read ahead sectors auto

 - currently set to 8192

 Block device 253:3

[root@server1 ~]#

Note that you can issue the pvdisplay, vgdisplay, and lvdisplay commands without any
arguments to display all physical volumes, all volume groups, and all logical volumes,
respectively, that are configured on the system.

To delete a physical volume, volume group, or logical volume, you use the commands
pvremove, vgremove, or lvremove, respectively.

After logical volumes are created, you use the mkfs command to format the LVNetAutom
LV as an ext4 file system and the LVNetDev LV as an xfs file system, as shown in
Example 3-14.

Example 3-14 Creating File Systems on the new Logical Volumes by Using the mkfs
Command

[root@server1 ~]# mkfs -t ext4 /dev/VGNetProg/LVNetAutom

mke2fs 1.42.9 (28-Dec-2013)

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

Stride=0 blocks, Stripe width=0 blocks

9781587145148_print.indb 133 25/03/21 11:43 am

134    Chapter 3: Linux Storage, Security, and Networks 

655360 inodes, 2621440 blocks

131072 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=2151677952

80 block groups

32768 blocks per group, 32768 fragments per group

8192 inodes per group

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done

[root@server1 ~]# mkfs -t xfs /dev/VGNetProg/LVNetDev

meta-data=/dev/VGNetProg/LVNetDev isize=512 agcount=4, agsize=1966080 blks

 = sectsz=512 attr=2, projid32bit=1

 = crc=1 finobt=0, sparse=0

data = bsize=4096 blocks=7864320, imaxpct=25

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0 ftype=1

log =internal log bsize=4096 blocks=3840, version=2

 = sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

[root@server1 ~]#

Finally, in Example 3-15, both logical volumes are mounted, which means they are usable
for storing and retrieving data.

Example 3-15 Mounting Both Logical Volumes by Using the mount Command

[root@server1 ~]# mkdir /Automation

[root@server1 ~]# mkdir /Development

[root@server1 ~]# ls /

Automation dev hd3 lib64 opt root srv usr

bin Development home media proc run sys var

boot etc lib mnt Programming sbin tmp

[root@server1 ~]# mount /dev/VGNetProg/LVNetAutom /Automation

[root@server1 ~]# mount /dev/VGNetProg/LVNetDev /Development/

[root@server1 ~]# df -h

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/centos-root 44G 6.7G 38G 16% /

devtmpfs 3.9G 0 3.9G 0% /dev

9781587145148_print.indb 134 25/03/21 11:43 am

Linux Security    135

tmpfs 3.9G 0 3.9G 0% /dev/shm

tmpfs 3.9G 8.8M 3.9G 1% /run

tmpfs 3.9G 0 3.9G 0% /sys/fs/cgroup

/dev/sda1 1014M 233M 782M 23% /boot

tmpfs 783M 20K 783M 1% /run/user/1001

/dev/mapper/VGNetProg-LVNetAutom 9.8G 37M 9.2G 1% /Automation

/dev/mapper/VGNetProg-LVNetDev 30G 33M 30G 1% /Development

[root@server1 ~]#

Of course, the mounting done in Example 3-15 is not persistent. To mount both logical
volumes during system boot, two entries need to be added to the /etc/fstab file—one
entry for each LV.

You may have noticed in the output of the df -h command in Example 3-15 that each LV
appears as a subdirectory to the directory /dev/mapper. The device mapper is a kernel
space driver that provides the generic function of creating mappings between different
storage volumes. The term generic is used here because the mapper is not particularly
aware of the constructs used by LVM to implement logical volumes. LVM uses the
device mapper to create the mappings between a volume group and its constituent logical
volumes, without the device mapper explicitly knowing that the latter is a logical volume
(rather than a physical one).

The examples in this section show only the very basic functionality of LVM—that is,
creating the basic building blocks for having and using logical volumes on a system.
However, the real power of LVM becomes clear when you use advanced features such as
increasing or decreasing the size of a logical volume, without having to delete the volume
and re-create it, or the several options for high availability of logical volumes. Red Hat
has a 147-page document titled “Logical Volume Manager Administration” on managing
logical volumes. You can check out the document for RHEL 8 at https://access.redhat.
com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_
logical_volumes/index.

Linux Security
Linux security is a massive and complex topic so it is important to establish the intended
scope of this section early on. The purpose of this section is two-fold. The first purpose
is to familiarize you with basic Linux security operations that would enable you to effec-
tively manage your development environment without being stumped. For example, you
can’t execute a script unless your user on the system has the privileges to execute that
script, based on the script’s file permissions and your group memberships. The second
purpose of this section is to show you how to accomplish a minimal level of hardening
for your development environment. Using an unsecured device to run scripts that access
network devices—and possibly push configuration to those devices—is not a wise thing
to do. Accordingly, this section covers user, group, file, and directory security, including
access control lists. This chapter also covers the Linux firewall.

9781587145148_print.indb 135 25/03/21 11:43 am

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/index

136    Chapter 3: Linux Storage, Security, and Networks 

User and Group Management

Linux is a multiuser operating system, which means that more than one user can access a
single Linux system at a time.

For a user to access a Linux system, the user’s account must be configured on the system.
The user will then have a username and user ID (UID). A user with an account on the
system is a member of one or more groups. Each group has a group name and a group ID
(GID). By default, when a user is created on the system, a new group is also created; it has
the same name as the username, and this becomes the primary group of the user. A user
typically has a password, and each group also has a password.

Each user has a home directory that contains that user’s files. One way that Linux main-
tains user segregation and security is by maintaining permissions on files and directories
and allowing users with the appropriate authorization level to set those permissions. File
permissions are classified into permissions for the owner of the file, the group of the file,
and everyone else. The root user and any other user with root privileges can access all
resources on the system, including other users’ files and directories. The root user and
users with root privileges are members of a group named wheel.

You can find user information by using the command id {username}, as shown in
Example 3-16 for user NetProg.

Example 3-16 Getting User Information by Using the id Command

[root@localhost ~]# id NetProg

uid=1001(NetProg) gid=1002(NetProg) groups=1002(NetProg),10(wheel)

[root@localhost ~]#

User NetProg’s UID is 1001. The output in Example 3-16 shows that the user’s default
(primary) group has the same name as the username. User NetProg in the example is also
a member of the wheel group and therefore has root privileges that can be invoked by
using the sudo {command} command, where command requires root privileges to be
executed. The number to the left of each group name is the group ID.

User information is also stored in the /etc/passwd file, and group information is stored in
the /etc/group file. Hashed user passwords are stored in the file /etc/shadow, and hashed
group passwords are stored in the file /etc/gshadow. Example 3-17 displays the last five
entries of each of the files.

Example 3-17 Last Five Entries from the /etc/passwd, /etc/group, /etc/shadow, and /etc/
gshadow Files

! Sample entries from the /etc/passwd file

[netdev@server1 ~]$ tail -n 5 /etc/passwd

netdev:x:1000:1000:Network Developer:/home/netdev:/bin/bash

vboxadd:x:970:1::/var/run/vboxadd:/bin/false

cockpit-wsinstance:x:969:969:User for cockpit-ws instances:/nonexisting:/sbin/
nologin

9781587145148_print.indb 136 25/03/21 11:43 am

Linux Security    137

flatpak:x:968:968:User for flatpak system helper:/:/sbin/nologin

rngd:x:967:967:Random Number Generator Daemon:/var/lib/rngd:/sbin/nologin

[netdev@server1 ~]$

! Sample entries from the /etc/group file

[netdev@server1 ~]$ tail -n 5 /etc/group

netdev:x:1000:

vboxsf:x:970:

cockpit-wsinstance:x:969:

flatpak:x:968:

rngd:x:967

[netdev@server1 ~]$

! file /etc/shadow requires root privileges to be read

[netdev@server1 ~]$ tail -n 5 /etc/shadow

tail: cannot open '/etc/shadow' for reading: Permission denied

[netdev@server1 ~]$

! Sample entries from the /etc/shadow file

[netdev@server1 ~]$ sudo tail -n 5 /etc/shadow

[sudo] password for netdev:

netdev:6.JUG9NvdC/NzqiYq$zpCkMR3eENFgk906PjFVLJ526qFRI9L2n13rFApiyPS0lgb2F1CTjJvc1
dqvvE3XV91q2fK.p3hvlEYtKciD2.:18489:0:99999:7:::

vboxadd:!!:18473::::::

cockpit-wsinstance:!!:18473::::::

flatpak:!!:18473::::::

rngd:!!:18473::::::

[netdev@server1 ~]$

! file /etc/gshadow requires root privileges to be read

[netdev@server1 ~]$ tail -n 5 /etc/gshadow

tail: cannot open '/etc/gshadow' for reading: Permission denied

[netdev@server1 ~]$

! Sample entries from the /etc/gshadow file

[netdev@server1 ~]$ sudo tail -n 5 /etc/gshadow

netdev:!::

vboxsf:!::

cockpit-wsinstance:!::

flatpak:!::

rngd:!::

[netdev@server1 ~]$

9781587145148_print.indb 137 25/03/21 11:43 am

138    Chapter 3: Linux Storage, Security, and Networks 

Each line in the /etc/passwd file is a record containing the information for one user
account. Each record is formatted as follows: username:x:user_id:primary_group_
id:user_extra_information:user_home_directory:user_default_shell.

The /etc/passwd and /etc/group files can be read by any user on the system but can only
be edited by a user with root privileges. For this reason, as a security measure, the sec-
ond field in the record, which historically contained the user password hash, now shows
only the letter x. The user password hashes are now maintained in the /etc/shadow file,
which can only be read by users with root privileges. The same arrangement is true for
the /etc/group and the /etc/gshadow files. Whenever a user does not have a password, the
x is omitted. Two consecutive colons in any record indicate missing information for the
respective field.

Each line in the /etc/group file is a record containing information for one group. Each
record is formatted as follows: groupname:x:group_id:group_members. The last field
is a comma-separated list of non-default users in the group. For example, the record for
the netdev group shows all users who are members of the group netdev except the user
netdev itself.

Each line in the /etc/shadow file is a record containing the password information for one
user. Each record is formatted as follows: username:password_hash:last_changed:min:
max:warn:expired:disabled:reserved.

The field last_changed is the number of days between January 1, 1970, and the date the
password was last changed. The field min is the minimum number of days to wait before
the password can be changed. The value 0 indicates that it may be changed at any time.
The field max is the number of days after which the password must be changed. The
value 99999 means that the user can keep the same password practically forever. The
field warn is the number of days to send a warning to the user prior to the password
expiring. The field expired is the number of days after the password expires before the
account should be disabled. The field disabled is the number of days since January 1,
1970, that an account has been disabled. The last field is reserved.

Finally, each line in the /etc/gshadow file is a record that contains the password informa-
tion for one group. Each record is formatted as follows: groupname:group_password_
hash:group_admins:group_members. The group_password_hash field contains an
exclamation symbol (!) if no user is allowed to access the group by using the newgrp
command. (This command is covered later in this section.)

You use the command useradd {username} to create a new user, and the command
passwd {username} to set or change the password for a user. After switching to user root
by using the su command in Example 3-18, the id NetDev command is used to verify
that user NetDev does not already exist. The new user NetDev is then created by issuing
the command useradd NetDev.

Next, the example shows the su command being used to attempt to log in as user
NetDev. Notice that although a password was requested, no password will actually work.
This is because, by default, when a new user is created, a password entry is created in

9781587145148_print.indb 138 25/03/21 11:43 am

Linux Security    139

the /etc/shadow file, but until this password is actually set by using the passwd com-
mand, you cannot log in as the user because the default password hash in the shadow file
is an invalid hash. The example shows the password being removed altogether with the
command passwd -d NetDev. Only at this point are you able to log in without getting a
password prompt. The password is then set using the command passwd NetDev, and a
warning is displayed because the password entered was Cisco123. Once the password is
set, it is possible to log in as the user in question. Note that creating a user also creates a
home directory—in this case /home/NetDev—as shown in the output of the pwd com-
mand. The files /etc/passwd, /etc/group, and /etc/shadow are also updated to reflect the
new user details, as shown in the example.

Example 3-18 Creating a New User and Setting the Password

[NetProg@localhost ~]$ su -

Password:

Last login: Sun Apr 15 14:26:29 +03 2018 on pts/1

[root@localhost ~]#

! Verify whether the user NetDev exists

[root@localhost ~]# id NetDev

id: NetDev: no such user

[root@localhost ~]#

! Add user NetDev and log in to it

[root@localhost ~]# useradd NetDev

[root@localhost ~]# exit

Logout

[NetProg@localhost ~]$

! Authentication will fail due to invalid "default" hash

[NetProg@localhost ~]$ su NetDev

Password:

su: Authentication failure

[NetProg@localhost ~]$

! Switch back to user root and remove the password

[NetProg@localhost ~]$ su -

Password:

Last login: Sun Apr 15 14:27:07 +03 2018 on pts/1

[root@localhost ~]# passwd -d NetDev

Removing password for user NetDev.

passwd: Success

[root@localhost ~]# exit

logout

9781587145148_print.indb 139 25/03/21 11:43 am

140    Chapter 3: Linux Storage, Security, and Networks 

[NetProg@localhost ~]$ su NetDev

[NetDev@localhost NetProg]$ exit

Exit

[NetProg@localhost ~]$

! Switch to user root and set the password manually then test

[NetProg@localhost ~]$ su -

Password:

Last login: Sun Apr 15 14:28:12 +03 2018 on pts/1

[root@localhost ~]# passwd NetDev

Changing password for user NetDev.

New password:

BAD PASSWORD: The password fails the dictionary check - it is based on a dictionary
word

Retype new password:

passwd: all authentication tokens updated successfully.

[root@localhost ~]# exit

logout

[NetProg@localhost ~]$ su NetDev

Password:

[NetDev@localhost NetProg]$

! Check the home directory and other details for user NetDev

[NetDev@localhost NetProg]$ cd

[NetDev@localhost ~]$ pwd

/home/NetDev

[NetDev@localhost ~]$ id NetDev

uid=1002(NetDev) gid=1003(NetDev) groups=1003(NetDev)

[NetDev@localhost ~]$ tail -n 1 /etc/passwd

NetDev:x:1002:1003::/home/NetDev:/bin/bash

[NetDev@localhost ~]$ tail -n 1 /etc/group

NetDev:x:1003:

[NetDev@localhost ~]$

! Switch to user root and check file /etc/shadow

[NetDev@localhost ~]$ su -

Password:

Last login: Sun Apr 15 14:50:37 +03 2018 on pts/0

[root@localhost ~]# tail -n 1 /etc/shadow

NetDev:6y27JA0id$i8Wze1ShSptxy5wRS8f7fOkPeeAezo2cayDl/
sqikRkYp2VseEXNrzwqDQXqvMeAqzMs2Jd./jj5fm05PK.Wi/:17636:0:99999:7:::

[root@localhost ~]# exit

logout

[NetDev@localhost ~]$

9781587145148_print.indb 140 25/03/21 11:43 am

Linux Security    141

A user can change her own password by simply typing passwd without any arguments.
The user is then prompted to enter the current password and then the new password and
then to confirm the new password.

To delete a user, you use the command userdel {username}. This command deletes the
user from the system; to delete that user’s home directory and print spool as well, you
use the option -r with the command. You use the option -f to force the delete action even
if the user is still logged in.

You can add groups separately from users by using the command groupadd {group_
name}. You can use the option -g to set the GID manually instead of allowing automatic
assignment of the next available GID. You delete groups by using the command groupdel
{group_name}. Example 3-19 shows how to create a new group called engineers and set
its GID to 1111.

Example 3-19 Creating a New Group engineers

[root@localhost ~]# tail -n 2 /etc/group

NetProg:x:1002:

NetDev:x:1003:

[root@localhost ~]# groupadd -g 1111 engineers

[root@localhost ~]# tail -n 3 /etc/group

NetProg:x:1002:

NetDev:x:1003:

engineers:x:1111:

[root@localhost ~]#

To delete a group, you use the command groupdel {group_name}. You change a group’s
details by using the command groupmod. The command groupmod -g {new_gid} {group_
name} changes the group gid to new_gid, and the command groupmod -n {new_name}
{old_name} changes the group’s name from old_name to new_name. Finally, you change
the group password by using the command gpasswd {group_name}. In Example 3-20,
the group engineers is changed to NetDevOps, and its GID is changed to 2222. Then its
password is modified to Cisco123.

Example 3-20 Modifying Group Details

[root@localhost ~]# tail -n -1 /etc/group

engineers:x:1111:

[root@localhost ~]#

! Change the group name to NetDevOps

[root@localhost ~]# groupmod -n NetDevOps engineers

[root@localhost ~]# tail -n -1 /etc/group

NetDevOps:x:1111:

[root@localhost ~]#

9781587145148_print.indb 141 25/03/21 11:43 am

142    Chapter 3: Linux Storage, Security, and Networks 

! Change the gid to 2222

[root@localhost ~]# groupmod -g 2222 NetDevOps

[root@localhost ~]# tail -n -1 /etc/group

NetDevOps:x:2222:

[root@localhost ~]#

! Change the group password to Cisco123

[root@localhost ~]# gpasswd NetDevOps

Changing the password for group NetDevOps

New Password:

Re-enter new password:

[root@localhost ~]#

A user has one primary group and one or more secondary groups. A user’s primary group
is the group that the user is placed in when logging in. You modify user group member-
ship by using the command usermod. To change a user’s primary group, you use the
syntax usermod -g {primary_group} {username}. To change a user’s secondary group,
you use the syntax usermod -G {secondary_group} {username}; note that this command
removes all secondary group memberships for this user and adds the group secondary_
group specified in the command. To add a user to a secondary group while maintaining
his current group memberships, you use the syntax usermod -aG {new_secondary_
group} {username}. To lock a user account, you use the option -L with the usermod
command, and to unlock an account, you use the -U option with this command.
Example 3-21 shows how to change the primary group of user NetDev from NetDev to
NetOps and add the wheel group to the list of secondary groups to give the user root
privileges through the sudo command.

Example 3-21 Modifying User Details

[root@localhost ~]# id NetDev

uid=1002(NetDev) gid=1003(NetDev) groups=1003(NetDev)

[root@localhost ~]# usermod -g NetOps NetDev

[root@localhost ~]# id NetDev

uid=1002(NetDev) gid=2222(NetOps) groups=2222(NetOps)

[root@localhost ~]# usermod -aG wheel NetDev

[root@localhost ~]# id NetDev

uid=1002(NetDev) gid=2222(NetOps) groups=2222(NetOps),10(wheel)

[root@localhost ~]#

Notice that when the -g option is used to change the primary group, the secondary
group is also changed. This is because user NetDev was only a member of a single group,
NetDev, and that group was both the user’s primary group and secondary group. When
the primary and secondary groups are different, the -g option changes only the primary
group of the user.

9781587145148_print.indb 142 25/03/21 11:43 am

Linux Security    143

File Security Management

Chapter 2 describes the output of the ls -l command and introduces file permissions,
also known as the file mode bits. This section builds on that introduction and expands on
how to manage access to files and directories by modifying their permissions. It also dis-
cusses changing the file owner (user) and group. Keep in mind that in Linux, everything
is represented by a file. Therefore, the concepts discussed here have a wider scope than
what seems to be obvious. Also, whenever a reference is made to a file, the same concept
applies to a directory, unless explicitly stated otherwise.

Example 3-22 shows the output of ls -l for the NetProg home directory.

Example 3-22 Output of the ls -l Command

[NetProg@localhost ~]$ ls -l

total 0

drwxr-xr-x. 2 NetProg NetProg 40 Apr 9 09:41 Desktop

drwxr-xr-x. 2 NetProg NetProg 6 Mar 31 17:34 Documents

drwxr-xr-x. 2 NetProg NetProg 6 Mar 31 17:34 Downloads

drwxr-xr-x. 2 NetProg NetProg 6 Mar 31 17:34 Music

drwxr-xr-x. 2 NetProg NetProg 6 Mar 31 17:34 Pictures

drwxr-xr-x. 2 NetProg NetProg 6 Mar 31 17:34 Public

drwxrwxr-x. 2 NetProg NetProg 183 Apr 7 22:53 Scripts

drwxr-xr-x. 2 NetProg NetProg 6 Mar 31 17:34 Templates

-rw-rw-r--. 1 NetProg NetProg 0 Apr 9 17:51 Testfile.txt

drwxr-xr-x. 2 NetProg NetProg 6 Mar 31 17:34 Videos

[NetProg@localhost ~]$

Here is a quick recap on the file permissions: The very first bit indicates whether this is
a file (-), a directory (d), or a link (l). Then the following 3 bits define the permissions for
the file owner. By default, the owner is the user who created the file. The following 3 bits
define the permissions for the users who are members of the file group. By default, this is
the primary group of the user who created the file. The last 3 bits define the permissions
for everyone else, referred to as other. The letter r stands for read permission, w for write
permission, and x for execute permission.

The dot right after the mode bits indicates that this file has an SELinux context. SELinux
is a kernel security module that defines the access rights of every user, application,
process, and file on the system. SELinux then governs the interactions of these entities
using a security policy, where an entity referred to as a subject attempts to access another
entity referred to as an object. SELinux is an important component of Linux security but
is beyond the scope of this book. When a file or a directory has a + symbol in place of
the dot (.), it means the file has an access control list (ACL) applied to it. ACLs, which
are covered later in this chapter, provide more granular access control to files on a
per-user basis.

9781587145148_print.indb 143 25/03/21 11:43 am

144    Chapter 3: Linux Storage, Security, and Networks 

The output of the ls -l command also displays the file owner (more formally referred to as
user) and the file group.

File permissions can be represented (and modified) by either using symbolic notation or
octal notation.

Symbolic notation is the type of notation described so far, where user, group, and others
are represented by u, g, and o, respectively, and the access permissions are write, read,
and execute, represented by w, r, and x, respectively. The following syntax is used to
set the file permissions: chmod [u={permissions}][,g={permissions}][,o={permissions}]
{file_name}.

Example 3-23 shows how to modify the file permissions for file TestFile.txt to the
following:

■■ User: Read, write, and execute

■■ Group: Read and write

■■ Other: No access

Example 3-23 Setting File Permissions by Using Symbolic Notation

! Current file permissions

[NetProg@localhost ~]$ ls -l Testfile.txt

-rw-rw-r--. 1 NetProg NetProg 0 Apr 9 17:51 Testfile.txt

[NetProg@localhost ~]$

! Change the file permissions as listed

[NetProg@localhost ~]$ chmod u=rwx,g=rw,o= Testfile.txt

! New file permissions

[NetProg@localhost ~]$ ls -l Testfile.txt

-rwxrw----. 1 NetProg NetProg 0 Apr 9 17:51 Testfile.txt

[NetProg@localhost ~]$

Notice that in order to remove all permissions for one of the categories, you just leave the
right side of the = symbol blank.

One of the challenges with the symbolic notation syntax as used in Example 3-23 is that
you have to know beforehand what permissions the file already has and make sure to
align the current permissions with the new permissions you are trying to set. For exam-
ple, if a file already has read and write permissions set for the file group and you would
like to add the execute permission, you have to know this fact prior to the change, and
then you need to make sure you do not delete the already existing write or read permis-
sions while setting the execute permission. In order to just add or remove permissions for

9781587145148_print.indb 144 25/03/21 11:43 am

Linux Security    145

a specific category, without explicitly knowing or considering the existing permissions,
you replace the = symbol in the previous syntax with either a + or a - symbol, as follows:
chmod [u[+|-]{permissions}][,g[+|-]{permissions}][,o[+|-]{permissions}] {file_name}.

In Example 3-24 the permissions for the file TestFile.txt are modified as follows:

■■ User: Unchanged

■■ Group: Write permission removed and execute permission added

■■ Other: Execute permission added

Notice that when using this syntax, you do not need to know what permissions the file
already has. You only need to consider the changes that you want to implement.

Example 3-24 Adding and Removing File Permissions by Using Symbolic Notation

[NetProg@localhost ~]$ ls -l Testfile.txt

-rwxrw----. 1 NetProg NetProg 0 Apr 9 17:51 Testfile.txt

[NetProg@localhost ~]$ chmod g-w,g+x,o+x Testfile.txt

[NetProg@localhost ~]$ ls -l Testfile.txt

-rwxr-x--x. 1 NetProg NetProg 0 Apr 9 17:51 Testfile.txt

[NetProg@localhost ~]$

Notice that you can mix the + and - symbols in the same command and for the same
category, as shown in Example 3-24 for the file group, where g-w is used to remove the
write permission for the group, and g+x is used to add the execute permission for
the group.

When a certain permission has to be granted or revoked from all categories, the letter a
is used to collectively mean u, g, and o. The letter a in this case stands for all. The letter a
may be dropped altogether, and the command then applies to all categories. For example,
the command chmod +w Example.py adds the write permission to all categories for the
file Example.py.

Octal notation, on the other hand, uses the following syntax: chmod {user_permission}
{group_permission}{other_permission} {file_name}. The user, group, and other catego-
ries are represented by their positions in the command. The permission granted to each
category is represented as a numeric value that is equal to the summation of each permis-
sion’s individual value. To elaborate, note the following permission values:

■■ Read=4

■■ Write=2

■■ Execute=1

9781587145148_print.indb 145 25/03/21 11:43 am

146    Chapter 3: Linux Storage, Security, and Networks 

To set the read permission only, you need to use the value 4; for write permission only,
you use the value 2; and for execute permission only, you use the value 1. To set all per-
missions for any category, you need to use 4+2+1=7. To set the read and write permis-
sions only, you need to use 4+2=6, and so forth. Example 3-25 illustrates this concept
and uses octal notation to set the read, write, and execute permissions for both user and
group, and set only the execute permission for the category other for file Testfile.txt.

Example 3-25 Setting File Permissions Using Octal Notation

[NetProg@localhost ~]$ ls -l Testfile.txt

-rwxr-x--x. 1 NetProg NetProg 0 Apr 9 17:51 Testfile.txt

[NetProg@localhost ~]$ chmod 771 Testfile.txt

[NetProg@localhost ~]$ ls -l Testfile.txt

-rwxrwx--x. 1 NetProg NetProg 0 Apr 9 17:51 Testfile.txt

[NetProg@localhost ~]$

The number 7 in each of the first two positions in the command chmod 771 Testfile.txt
represents the sum of 4, 2, and 1 and is used to set all permissions for user and group.
The number 1 in the last position sets the execute only permission for other.

While octal notation looks snappier than symbolic notation, it does not provide the
option of adding or removing permissions without considering the existing file permis-
sions, as provided by the + and - symbols used with symbolic notation.

Besides modifying file and directory permissions, you can control access to a file or
directory by changing the file’s user and/or group through the chown command. The
command syntax is chown {user}:{group} {file}. Example 3-26 shows how to change the
user and group of file TestFile.txt to NetDev and networks, respectively.

Example 3-26 Changing File User and Group by Using the chown Command

[root@localhost ~]# ls -l /home/NetProg/Testfile.txt

-rwxrwx--x. 1 NetProg NetProg 0 Apr 9 17:51 /home/NetProg/Testfile.txt

[root@localhost ~]# chown NetDev:networks /home/NetProg/Testfile.txt

[root@localhost ~]# ls -l /home/NetProg/Testfile.txt

-rwxrwx--x. 1 NetDev networks 0 Apr 9 17:51 /home/NetProg/Testfile.txt

[root@localhost ~]#

You use the -R option (which stands for recursive) with both the chmod and the chown
commands if the operation is being performed on a directory, and you want the changes
to also be made to all subdirectories and files in that directory.

By default, any file or directory created by a user is assigned to the primary group of
that user. For example, if user NetDev is in the NetOps group, any file created by user
NetDev has NetDev as the file user and NetOps as the file group. You can change this

9781587145148_print.indb 146 25/03/21 11:43 am

Linux Security    147

default behavior by either using the sg command when creating the file or by logging in
to another group by using the command newgrp. If that other group is one of the user’s
secondary groups, no password is required. If that other group is not one of the user’s
secondary groups, the user is prompted for a password.

Example 3-27 shows the default behavior when creating a file. In this case, a new file
named NewFile is created by user NetDev. As expected, the file user is NetDev, and the
file group is NetOps.

Example 3-27 Default User and Group of a Newly Created File

[NetDev@localhost ~]$ id NetDev

uid=1002(NetDev) gid=2222(NetOps) groups=2222(NetOps),10(wheel)

[NetDev@localhost ~]$ touch NewFile

[NetDev@localhost ~]$ ls -l NewFile

-rw-r--r--. 1 NetDev NetOps 0 Apr 17 00:59 NewFile

[NetDev@localhost ~]$

Example 3-28 shows how to use the sg command to create file NewFile_1 but under the
group networks.

Example 3-28 Using the sg Command to Create a File Under a Different Group

[NetDev@localhost ~]$ id NetDev

uid=1002(NetDev) gid=2222(NetOps) groups=2222(NetOps),10(wheel)

[NetDev@localhost ~]$ sg networks 'touch NewFile_1'

Password:

[NetDev@localhost ~]$ ls -l NewFile_1

-rw-r--r--. 1 NetDev networks 0 Apr 17 01:03 NewFile_1

[NetDev@localhost ~]$

Notice that the command touch {file_name}, which itself is an argument to the sg com-
mand, has to be enclosed in quotes because it is a multi-word command. Notice also that
because the user NetDev is not a member in the networks group, as you can see from the
output of the id command, the user is prompted for the group password, which was set
earlier by using the command gpasswd networks.

Alternatively, the user can log in to another group by using the command newgrp and
create a file or directory under that group. Example 3-29 shows the user NetProg logging
in to group systems and not being prompted for a password since this is one of NetProg’s
secondary groups. When the file NewFile_2 is created, the user of the file is NetProg,
and the group is systems, not NetProg.

9781587145148_print.indb 147 25/03/21 11:43 am

148    Chapter 3: Linux Storage, Security, and Networks 

Example 3-29 Using the newgrp Command to Log In to a Different Group

[NetProg@localhost ~]$ id NetProg

uid=1001(NetProg) gid=1002(NetProg) groups=1002(NetProg),10(wheel),2224(systems)

[NetProg@localhost ~]$ newgrp systems

[NetProg@localhost ~]$ touch NewFile_2

[NetProg@localhost ~]$ ls -l NewFile_2

-rw-r--r--. 1 NetProg systems 0 Apr 17 01:15 NewFile_2

[NetProg@localhost ~]$

Access Control Lists

So far in this chapter, you have seen how to set file and directory access permissions for
either user, or collectively for group, or other. What if you want to set those permissions
individually for a specific user who is not the file owner or for a group of users who
belong to a group other than the file group? File mode bits do not help in such situations.
Using the file mode bits, the only user whose permissions can be changed individually is
the file or directory owner (user) and the only group of users whose permissions can be
changed collectively are the users who are members of the file or directory group.

Access control lists (ACLs) provide more granular control over file and directory access.
ACLs allow a system administrator (or any other user who has root privileges) to set file
and directory permissions for any user or group on the system.

Before you can configure ACLs, three prerequisites must be met:

■■ The kernel must support ACLs for the file system type on which ACLs will be
applied.

■■ The file system on which ACLs will be used must be mounted with the ACL option.

■■ The ACL package must be installed.

Most common distros today—including CentOS 7 and Red Hat Enterprise Linux
(RHEL) 7 and later versions—have these prerequisites configured by default, and you
do not need to do any further configuration.

If you are running a different distro or an older version of CentOS, you can check the
first prerequisite by using either the findmnt or blkid command to determine the file sys-
tem type on your system. The command findmnt works only if the file system has been
mounted, and blkid works whether it is mounted or not. Then you need to inspect the
kernel configuration file /boot/conf-<version.architecture> to determine whether ACLs
have been enabled for this file system type. Example 3-30 shows the relevant output for
the file system on the sda1 partition.

9781587145148_print.indb 148 25/03/21 11:43 am

Linux Security    149

Example 3-30 ACL Support for the sda1 File System

[root@server1 ~]# findmnt /dev/sda1

TARGET SOURCE FSTYPE OPTIONS

/boot /dev/sda1 xfs rw,relatime,seclabel,attr2,inode64,noquota

[root@server1 ~]# cat /boot/config-3.10.0-693.el7.x86_64 | grep ACL

CONFIG_EXT4_FS_POSIX_ACL=y

CONFIG_XFS_POSIX_ACL=y

CONFIG_BTRFS_FS_POSIX_ACL=y

CONFIG_FS_POSIX_ACL=y

CONFIG_GENERIC_ACL=y

CONFIG_TMPFS_POSIX_ACL=y

CONFIG_NFS_V3_ACL=y

CONFIG_NFSD_V2_ACL=y

CONFIG_NFSD_V3_ACL=y

CONFIG_NFS_ACL_SUPPORT=m

CONFIG_CEPH_FS_POSIX_ACL=y

CONFIG_CIFS_ACL=y

[root@server1 ~]#

The kernel configuration file lists different configuration options, each followed by an
= symbol and then the letter y, n, or m. The letter y means that this option (module) was
configured as part of the kernel when the kernel was first compiled. In this example,
CONFIG_XFS_POSIX_ACL=y means that the kernel supports ACLs for the xfs file
system. The letter n indicates that this module was not compiled into the kernel, and the
letter m means that this module was compiled as a loadable kernel module (introduced in
Chapter 2).

The second prerequisite is that the partition on which the ACLs will be used has to be
mounted with the ACL option. By default, on ext3/4 and xfs file systems, ACL support is
enabled. In older CentOS versions and other distros where the ACL option is not enabled
by default, the file system can be mounted with the ACL option by using the syntax
mount -o acl {partition} {mount_point}. On the other hand, if the ACL option is enabled
by default, and you want to disable ACL support while mounting the file system, you can
use the noacl option with the mount command. As discussed in the previous section,
mounting using the mount command is non-persistent. For persistent mounting with the
ACL option, you can add an entry to the /dev/fstab file (or amend an existing entry) and
add the acl option (right after the defaults keyword). The /dev/fstab file is discussed in
detail earlier in this chapter.

Finally, by using the yum info acl command, you can confirm whether the ACL package
has been installed. The yum command is covered in detail in Chapter 2.

When ACL support has been established, you can use the command getfacl {filename|
directory} to display the ACL configuration for a file or directory. Example 3-31 shows
the output of the getfacl command for the directory /Programming and then for the file
NewFile.txt.

9781587145148_print.indb 149 25/03/21 11:43 am

150    Chapter 3: Linux Storage, Security, and Networks 

Example 3-31 Output of the getfacl Command

[root@localhost /]# ls -ld Programming

drwxr-xr-x. 2 root root 25 Jun 9 05:46 Programming

[root@localhost /]# ls -l Programming

total 0

-rw-r--r--. 1 root root 0 Jun 9 05:46 NewFile.txt

[root@localhost /]# getfacl Programming

file: Programming

owner: root

group: root

user::rwx

group::r-x

other::r-x

[root@localhost /]# getfacl Programming/NewFile.txt

file: Programming/NewFile.txt

owner: root

group: root

user::rw-

group::r--

other::r—

[root@localhost /]#

As you can see from the output in Example 3-31, both the directory and file are owned
by the user root, and the group of both is also root. So far, there is no additional infor-
mation provided by the getfacl command beyond what is already displayed by ls -l; the
format is the only difference.

For the file NewFile.txt, the user NetProg is not the file owner and is not a member of
the file group. As per the permissions for other, the user NetProg should be able to only
read the file but not write to it or execute it. In Example 3-32, the user NetProg attempts
to write to the file NewFile.txt by using the echo command, but a “Permission denied”
error message is displayed. The setfacl -m u:NetProg:rw /Programming/Newfile.txt
command grants write permission to the user NetProg. When the write operation is
attempted again, it is successful due to the new elevated permissions.

Example 3-32 Changing the Permissions for the User NetProg by Using setfacl

! Echo(write) operation fails since NetProg has no write permissions

[NetProg@localhost /]$ echo "This is a write test" > /Programming/NewFile.txt

bash: /Programming/NewFile.txt: Permission denied

! Grant user NetProg write permission (requires root permissions)

[NetProg@localhost /]$ su

Password:

9781587145148_print.indb 150 25/03/21 11:43 am

Linux Security    151

[root@localhost /]# setfacl -m u:NetProg:rw /Programming/NewFile.txt

[root@localhost /]# getfacl /Programming/NewFile.txt

getfacl: Removing leading '/' from absolute path names

file: Programming/NewFile.txt

owner: root

group: root

user::rw-

user:NetProg:rw-

group::r--

mask::rw-

other::r--

! Write operation now successful

[root@localhost /]# su NetProg

[NetProg@localhost /]$ echo "This is a write test" > /Programming/NewFile.txt

[NetProg@localhost /]$ cat /Programming/NewFile.txt

This is a write test

[NetProg@localhost /]$ ls -l /Programming/NewFile.txt

-rw-rw-r--+ 1 root root 21 Jun 9 07:24 /Programming/NewFile.txt

[NetProg@localhost /]$

Notice the + symbol that now replaces the dot to the right of file permission bits at the
end of Example 3-32. This indicates that an ACL has been applied to this file. The new
write permission has been granted to the user NetProg only, and not to any other user.
This was done without amending the file permissions for the user, group, or other cat-
egories. It was also done without modifying the group memberships of the user NetProg.
The same permission could also be applied to a group instead of an individual user. The
level of granularity provided by ACLs should be clear by now.

The setfacl command used in Example 3-32 was issued with the option -m, which is
short for modify and is used to apply a new ACL or modify an existing ACL. To remove
an ACL, you use the option -x instead of -m; the remainder of the command remains the
same, except that the ACL in the command is an existing ACL that is now being removed.

In Example 3-32 you can see the three-field argument u:NetProg:rw. When setting an
ACL for a user, the first field is u, as in the example. For a group, the first field would be
g, and for other, the first field would be o. The second field is the user or group name,
which is NetProg in this example. If the ACL is for other, this field remains empty. The
third field is the permissions you wish to grant to the user or group.

Finally, after the three-field argument is the name of the directory or file to which the
ACL is applied. Note that whether a full path or only a relative path is required depends
on the current working directory relative to the location of the file or directory to which
the ACL is being applied. The same rules apply here as with any other Linux command
that operates on a file or directory.

9781587145148_print.indb 151 25/03/21 11:43 am

152    Chapter 3: Linux Storage, Security, and Networks 

Therefore, the general syntax of the setfacl command to add, modify, or remove an ACL
is setfacl {-m|-x} {u|g|o}:{username|group}:{permissions} {file|directory}. To remove all
ACL entries applied to a file, you use the option -b followed by the filename, omitting
the three-field argument.

In Example 3-32, notice the text mask::rw- in the output of the getfacl command, after
the ACL has been applied. The mask provides one more level of control over the permis-
sions granted by the ACL. Say that after granting several users different permissions to
a file, you decide to remove a specific permission, such as the write permission, from all
named users. The ACL mask then comes in handy. The permissions in the mask override
the permissions for all named users and the file group. For example, if the mask permis-
sions are r-x and the user NetProg has been granted rwx permissions, that user’s effective
permissions are r-x after the mask is set. The effective mask permissions are applied using
the command setfacl -m m:{permissions} {filename}. In Example 3-33, the user NetProg
has permissions rw-, and so does the mask. The mask is modified to r--. Notice the effec-
tive permissions that appear on the right side of the output of the getfacl command
after the mask has been modified. After you remove the write permission from the mask,
NetProg’s write attempt to the file fails.

Example 3-33 Changing the Mask Permissions by Using setfacl

! Set the effective rights mask

[root@localhost /]# setfacl -m m:r /Programming/NewFile.txt

[root@localhost /]# getfacl /Programming/NewFile.txt

getfacl: Removing leading '/' from absolute path names

file: Programming/NewFile.txt

owner: root

group: root

user::rw-

user:NetProg:rw- #effective:r--

group::r--

mask::r--

other::r--

! Write operation to file by user NetProg now fails

[root@localhost /]# su NetProg

[NetProg@localhost /]$ echo "Testing mask permissions" > /Programming/NewFile.txt

bash: /Programming/NewFile.txt: Permission denied

[NetProg@localhost /]$

When ACLs are applied to directories, by default, these ACLs are not inherited by files
and subdirectories in that directory. In order to achieve inheritance, the option -R has to

9781587145148_print.indb 152 25/03/21 11:43 am

Linux Security    153

be added to the same setfacl command used earlier. In Example 3-34, an ACL setting rwx
permissions for the user NetProg is applied to the directory Programming. Attempting to
write to file NewFile.txt under the directory by user NetProg fails because the write per-
mission has not been inherited by the file.

Example 3-34 ACLs Are Not Inherited by Default by Subdirectories and Files Under a
Directory

! Apply an acl to the /Programming directory

[root@localhost ~]# setfacl -m u:NetProg:rwx /Programming

[root@localhost ~]# getfacl /Programming

getfacl: Removing leading '/' from absolute path names

file: Programming

owner: root

group: root

user::rwx

user:NetProg:rwx

group::r-x

mask::rwx

other::r-x

! The acl is not applied to NewFile.txt under the directory

[root@localhost ~]# getfacl /Programming/NewFile.txt

getfacl: Removing leading '/' from absolute path names

file: Programming/NewFile.txt

owner: root

group: root

user::rw-

group::r--

other::r--

! And the write operation fails as expected

[root@localhost ~]# su - NetProg

[NetProg@localhost ~]$ echo "This is a write test" > /Programming/NewFile.txt

bash: /Programming/NewFile.txt: Permission denied

[NetProg@localhost ~]$

After the ACL has been removed and then reapplied in Example 3-35 using the -R option,
the user NetProg can write to the file successfully. The getfacl command also shows that
the ACL has been applied to the file as if the setfacl command had been applied to the
file directly.

9781587145148_print.indb 153 25/03/21 11:43 am

154    Chapter 3: Linux Storage, Security, and Networks 

Example 3-35 ACL Inheritance by Subdirectories and Files Under a Directory Using
the -R Option

! Clear the acl from the /Programming directory

[root@localhost ~]# setfacl -b /Programming

! Apply the acl to directory /Programming using the -R option

[root@localhost ~]# setfacl -R -m u:NetProg:rwx /Programming

[root@localhost ~]# getfacl /Programming

getfacl: Removing leading '/' from absolute path names

file: Programming

owner: root

group: root

user::rwx

user:NetProg:rwx

group::r-x

mask::rwx

other::r-x

! The acl is inherited by the file NewFile.txt

[root@localhost ~]# getfacl /Programming/NewFile.txt

getfacl: Removing leading '/' from absolute path names

file: Programming/NewFile.txt

owner: root

group: root

user::rw-

user:NetProg:rwx

group::r--

mask::rw-

other::r--

! And the write operation is successful

[root@localhost ~]# su - NetProg

[NetProg@localhost ~]$ echo "This is to test inheritance" > /Programming/NewFile.txt

[NetProg@localhost ~]$ cat /Programming/NewFile.txt

This is to test inheritance

[NetProg@localhost ~]$

It is important to remember that the ACL applied to a directory and inherited by all
subdirectories and files will not be applied to any files created after the ACL has been
applied. Only the files that existed before the ACL was applied will be affected.

The ACLs described so far are called access ACLs. Another type of ACLs, called default
ACLs, may be used with directories (only) if the requirement is that all files and subdirec-
tories, when created, should inherit the parent directory ACLs. The syntax for applying a
default ACL is setfacl -m d:{u|g|o}:{username|group}:{permissions} {directory}. Try to

9781587145148_print.indb 154 25/03/21 11:43 am

Linux Security    155

experiment with default ACLs and note how newly created files inherit the directory
ACL without your having to explicitly issue the setfacl command after the file or subdi-
rectory has been created.

The same concepts discussed previously for a single user apply to a group when you set
the ACL for a group of users other than the file or directory group by using the letter g
along with the group name in the setfacl command instead of a u with the username.

In addition to using the setfacl command to set permissions for a specific user or group,
you can use this command to set permissions for the file user, group, or other categories,
similar to what can be accomplished using the chmod command as shown in the previous
section. Note that if the setfacl command is used to apply an ACL to a file or directory, it
is recommended that you not use chmod.

When a file or directory is copied or moved, ACLs are moved along with the file or
directory.

Linux System Security

CentOS 7 and later versions come with a default built-in firewall service named firewalld.
This service functions in a similar manner to a regular firewall in terms of providing
security zones with different trust levels. Each zone constitutes a group of permit/deny
rules for incoming traffic. Each physical interface on the server is bound to one of the
firewall zones. However, firewalld provides only a subset of the services provided by a
full-fledged firewall.

You can check the status of the firewalld service and start, stop, enable, and disable the
service just as you would any other service on Linux by using the systemctl command.
Example 3-36 shows the status of the firewalld service: In this example, you can see that
it is active and enabled.

Example 3-36 The firewalld Service Status

[NetProg@localhost ~]$ systemctl status firewalld

● firewalld.service - firewalld - dynamic firewall daemon

 Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enabled; vendor
 preset: enabled)

 Active: active (running) since Sat 2018-04-21 21:37:06 +03; 30min ago

 Docs: man:firewalld(1)

 Main PID: 787 (firewalld)

 CGroup: /system.slice/firewalld.service

 └─787 /usr/bin/python -Es /usr/sbin/firewalld --nofork --nopid

Apr 21 21:37:05 localhost.localdomain systemd[1]: Starting firewalld - dynamic
firewall daemon...

Apr 21 21:37:06 localhost.localdomain systemd[1]: Started firewalld - dynamic
firewall daemon.

--------- OUTPUT TRUNCATED FOR BREVITY ---------

9781587145148_print.indb 155 25/03/21 11:43 am

156    Chapter 3: Linux Storage, Security, and Networks 

The firewalld service has a set of zones created by default when the service is first
installed; these zones are sometimes referred to as the base or predefined zones. Custom
zones can also be created and deleted. However, base zones cannot be deleted. One zone
is designated as the default zone and is the zone to which all interfaces are bound, by
default, unless the interface is explicitly moved to another zone. By default, the default
zone is the public zone. Each zone has a set of rules attached to it and a list of interfaces
bound to it. Rules and interfaces can be added to or removed from a zone.

Example 3-37 shows how to list the base zones of firewalld by using the command
firewall-cmd --get-zones and how to identify the default zone by using the command
firewall-cmd --get-default-zone.

Example 3-37 Listing the Base and Default Zones of a Firewall

[root@localhost ~]# firewall-cmd --get-zones

block dmz drop external home internal public trusted work

[root@localhost ~]# firewall-cmd --get-default-zone

public

[root@localhost ~]#

You can change the default zone by using the command firewall-cmd --set-default-
zone={zone_name}.

You can list the details of a zone by using the command firewall-cmd --list-all
--zone={zone_name}, as shown in Example 3-38. To list the details of the default zone,
you omit the --zone={zone_name} option.

Example 3-38 Listing Zone Details

[root@localhost ~]# firewall-cmd --list-all --zone=internal

internal

 target: default

 icmp-block-inversion: no

 interfaces:

 sources:

 services: ssh mdns samba-client dhcpv6-client

 ports:

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

[root@localhost ~]# firewall-cmd --list-all

public (active)

9781587145148_print.indb 156 25/03/21 11:43 am

Linux Security    157

 target: default

 icmp-block-inversion: no

 interfaces: enp0s3 enp0s9 enp0s10 enp0s8

 sources:

 services: ssh dhcpv6-client

 ports:

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

[root@localhost ~]#

Example 3-39 shows how to add rules to the zone dmz to permit specific incoming
traffic on interfaces bound to this zone. The first rule added permits traffic from the
source IP address 10.10.1.0/24 by using a source-based rule. Then BGP traffic on TCP
port 179 is permitted by using a port-based rule. HTTP service is then permitted by
defining a service-based rule. Finally, interface enp0s9 is removed from the public zone
and bound to the dmz zone. Notice how the rules appear when the details of the zone are
listed at the end of the example.

Example 3-39 Adding Rules to Zone dmz

[root@localhost ~]# firewall-cmd --list-all --zone=dmz

dmz

 target: default

 icmp-block-inversion: no

 interfaces:

 sources:

 services: ssh

 ports:

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

[root@localhost ~]# firewall-cmd --zone=dmz --add-source=10.10.1.0/24

success

[root@localhost ~]# firewall-cmd --zone=dmz --add-port=179/tcp

success

9781587145148_print.indb 157 25/03/21 11:43 am

158    Chapter 3: Linux Storage, Security, and Networks 

[root@localhost ~]# firewall-cmd --zone=dmz --add-service=http

success

[root@localhost ~]# firewall-cmd --zone=dmz --add-interface=enp0s9

The interface is under control of NetworkManager, setting zone to 'dmz'.

success

[root@localhost ~]# firewall-cmd --zone=dmz --list-all

dmz (active)

 target: default

 icmp-block-inversion: no

 interfaces: enp0s9

 sources: 10.10.1.0/24

 services: ssh http

 ports: 179/tcp

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

[root@localhost ~]#

Note that in order to remove a rule, instead of using the --add option, you use the
--remove option. For example, to remove the rule for TCP port 179, you use the com-
mand firewall-cmd --zone=dmz --remove-port=179/tcp.

Much like running and startup configurations on routers and switches, firewalld supports
both runtime and permanent configurations. A runtime configuration is not persistent
and is lost after a reload. A permanent configuration is persistent but takes effect only
after a reload when the configuration has been changed. Any configuration commands
that have been executed are reflected in the runtime configuration. To make a configura-
tion permanent, you use the option --permanent with the command. You reload the
firewalld service by using the command firewall-cmd --reload.

Linux Networking
Linux provides several methods for managing network devices and interfaces on a sys-
tem. Usually, a system administrator can accomplish the same task using several different
methods. A network device or an interface is managed by the kernel, and each method
accesses the Linux kernel via a different path. There are three popular methods for man-
aging Linux networking:

■■ Using the command-line ip utility

■■ Using the NetworkManager service

■■ Using network configuration files

9781587145148_print.indb 158 25/03/21 11:43 am

Linux Networking    159

This section covers these three methods listed. It should be fairly easy to use the help
resources on your Linux distro, such as the man and info pages, to learn about any utility
not covered here.

Note Keep in mind that some commands and utilities for managing Linux networking,
such as ifconfig, netstat, arp, and route, are considered legacy utilities. These utilities have
not been updated for years and have been deprecated on some distros but are still available
on others. Even if any of these commands are available in the distro you are using, we do
not recommend using them; instead, use the methods described in this section. Basically,
the way legacy utilities function, particularly how these utilities speak with the kernel,
is not very efficient. You will probably run into these legacy utilities at some point while
working on Linux. For example, at the time of this writing, all four legacy utilities men-
tioned here are still supported on the Bash shells exposed by IOS XR and NX-OS.

The ip Utility

ip is a command-line utility that is part of the iproute2 group of utilities. It is invoked
using the command ip [options] {object} {action}. This syntax is quite intuitive in that the
action in the command indicates what action you would want to apply to an object. For
example, the command ip link show applies the action show to the object link. As you
may have guessed, this command displays the state of all network interfaces (links) on the
system, as shown in Example 3-40. To limit the output to one specific interface, you can
add dev {intf} to the end of the command, as also shown in the example.

Note The man pages for the ip command refer to the action part in the previous syntax
as command. We took the liberty to call it action in the upcoming few paragraphs in order
to avoid the obvious confusion that will result from calling it command.

Example 3-40 Output of the Command ip link show

[NetProg@localhost ~]$ ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
qlen 1

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode
DEFAULT qlen 1000

 link/ether 08:00:27:a7:32:f7 brd ff:ff:ff:ff:ff:ff

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode
DEFAULT qlen 1000

 link/ether 08:00:27:83:40:75 brd ff:ff:ff:ff:ff:ff

4: enp0s9: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode
DEFAULT qlen 1000

 link/ether 08:00:27:b4:ce:55 brd ff:ff:ff:ff:ff:ff

9781587145148_print.indb 159 25/03/21 11:43 am

160    Chapter 3: Linux Storage, Security, and Networks 

5: enp0s10: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT qlen 1000

 link/ether 08:00:27:48:59:02 brd ff:ff:ff:ff:ff:ff

6: virbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN
mode DEFAULT qlen 1000

 link/ether 52:54:00:ea:c5:d4 brd ff:ff:ff:ff:ff:ff

7: virbr0-nic: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast master virbr0 state
DOWN mode DEFAULT qlen 1000

 link/ether 52:54:00:ea:c5:d4 brd ff:ff:ff:ff:ff:ff

[NetProg@localhost ~]$ ip link show dev enp0s3

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode
DEFAULT qlen 1000

 link/ether 08:00:27:a7:32:f7 brd ff:ff:ff:ff:ff:ff

[NetProg@localhost ~]$

Table 3-1 lists some of the objects that are commonly used with the ip command.

Table 3-1 Objects That Are Commonly Used with the ip Command

Object Description

address IPv4 or IPv6 protocol address

link Network interface

route Routing table entry

maddress Multicast address

neigh ARP entry

As of this writing, there are 19 objects that can be acted upon by using the ip command.
A full list of objects can be found in the man pages for the ip command. Objects can be
written in full or in abbreviated form, such as address or addr. The actions that can be
used with the ip command are limited to three options listed in Table 3-2.

Table 3-2 Actions That Can Be Used with the ip Command

Action Description

add Adds the object

delete Deletes the object

show (or list) Displays information about the object

9781587145148_print.indb 160 25/03/21 11:43 am

Linux Networking    161

The keyword show or list can be dropped from a command, and the command will still
be interpreted as a show action. For example, the command ip link show is equivalent to
just ip link.

The ip addr command lists all interfaces on the system, each with its IP address informa-
tion, and the ip maddr command displays the multicast information for each and every
interface. The ip neigh command displays the ARP table. The ARP table consists of a list
of neighbors on each interface on the local network. The examples in this section show
how to use these show commands.

You can bring an interface on Linux up or down by using the command ip link set {intf}
{up|down}. The set action is only applicable to the link object and therefore was not listed in
Table 3-2. Example 3-41 shows how to bring interface enp0s8 down and then up again. Note
that changing networking configuration on Linux, including toggling an interface’s state,
requires root privileges. The show commands, however, do not. To keep Example 3-41
short and avoid the frequent password prompt, all commands in the example are issued
by the root user. However, running commands as root in general is not a recommended
practice. On a production network, make sure to avoid logging in as root. It is best prac-
tice to log in with your regular user account and use the sudo command whenever a com-
mand requires root privileges to execute, as explained in Chapter 2.

Example 3-41 Toggling Interface State

[root@localhost ~]# ip link show dev enp0s8

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode
DEFAULT qlen 1000

 link/ether 08:00:27:83:40:75 brd ff:ff:ff:ff:ff:ff

[root@localhost ~]# ip link set enp0s8 down

[root@localhost ~]# ip link show dev enp0s8

3: enp0s8: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast state DOWN mode DEFAULT
qlen 1000

 link/ether 08:00:27:83:40:75 brd ff:ff:ff:ff:ff:ff

[root@localhost ~]# ip link set enp0s8 up

[root@localhost ~]# ip link show dev enp0s8

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode
DEFAULT qlen 1000

 link/ether 08:00:27:83:40:75 brd ff:ff:ff:ff:ff:ff

[root@localhost ~]#

You can add an IP address to an interface by using the command ip addr add {IP_
address} dev {intf}. By replacing the action add with del, you remove the IP address.
In Example 3-42, IP address 10.1.0.10/24 is added to interface enp0s8, and then the origi-
nal IP address, 10.1.0.1/24, is removed. The ip addr show dev enp0s8 command is used
to inspect the interface IP address before and after the change.

9781587145148_print.indb 161 25/03/21 11:43 am

162    Chapter 3: Linux Storage, Security, and Networks 

Example 3-42 Adding and Removing IP Addresses on Interfaces

[root@localhost ~]# ip addr show dev enp0s8

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen
1000

 link/ether 08:00:27:83:40:75 brd ff:ff:ff:ff:ff:ff

 inet 10.1.0.1/24 brd 10.1.0.255 scope global enp0s8

 valid_lft forever preferred_lft forever

 inet6 fe80::8b8:d663:847f:79d9/64 scope link

 valid_lft forever preferred_lft forever

[root@localhost ~]# ip addr add 10.1.0.10/24 dev enp0s8

[root@localhost ~]# ip addr show dev enp0s8

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen
1000

 link/ether 08:00:27:83:40:75 brd ff:ff:ff:ff:ff:ff

 inet 10.1.0.1/24 brd 10.1.0.255 scope global enp0s8

 valid_lft forever preferred_lft forever

 inet 10.1.0.10/24 scope global secondary enp0s8

 valid_lft forever preferred_lft forever

 inet6 fe80::8b8:d663:847f:79d9/64 scope link

 valid_lft forever preferred_lft forever

[root@localhost ~]# ip addr del 10.1.0.1/24 dev enp0s8

[root@localhost ~]# ip addr show dev enp0s8

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen
1000

 link/ether 08:00:27:83:40:75 brd ff:ff:ff:ff:ff:ff

 inet 10.1.0.10/24 scope global enp0s8

 valid_lft forever preferred_lft forever

 inet6 fe80::8b8:d663:847f:79d9/64 scope link

 valid_lft forever preferred_lft forever

[root@localhost ~]#

Notice that the IP address 10.1.0.10/24 is added as a secondary address, as long as another
IP address is configured on the interface. When the original IP address is removed, the
new IP address becomes the primary address.

Notice the mtu value in the output of the ip addr show command in Example 3-42. By
default the mtu is set to 1500 bytes. To change that value, you use the command ip link
set {intf} mtu {mtu_value}.

A very useful feature that any network engineer would truly appreciate is interface
promiscuous mode. By default, when an Ethernet frame is received on an interface,
that frame is passed on to the upper layers for processing only if the destination MAC
address of the frame matches the MAC address of the interface (or if the destination
MAC address is a broadcast address). If the MAC addresses do not match, the frame is
ignored. This renders packet sniffing applications such as Wireshark and features such as
port mirroring unusable. In promiscuous mode, an interface accepts any and all incoming

9781587145148_print.indb 162 25/03/21 11:43 am

Linux Networking    163

packets, whether the packets are addressed to that interface or not. You can enable pro-
miscuous mode by using the command ip link set {intf} promisc on.

In the routing table, the list of routes on the system can be displayed by using the com-
mand ip route. Example 3-43 shows that the routing table is empty when no IP addresses
are configured on any of the interfaces. When the IP address 10.2.0.30/24 is configured on
interface enp0s3, one entry, corresponding to that interface, is added to the routing table.

Example 3-43 Viewing a Routing Table by Using the ip route Command

[NetProg@server4 ~]$ ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen
1000

 link/ether 08:00:27:2c:61:d0 brd ff:ff:ff:ff:ff:ff

 inet6 fe80::a00:27ff:fe2c:61d0/64 scope link

 valid_lft forever preferred_lft forever

[NetProg@server4 ~]$ ip route

[NetProg@server4 ~]$ sudo ip addr add 10.2.0.30/24 dev enp0s3

[sudo] password for NetProg:

[NetProg@server4 ~]$ ip addr show dev enp0s3

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen
1000

 link/ether 08:00:27:2c:61:d0 brd ff:ff:ff:ff:ff:ff

 inet 10.2.0.30/24 scope global enp0s3

 valid_lft forever preferred_lft forever

 inet6 fe80::a00:27ff:fe2c:61d0/64 scope link

 valid_lft forever preferred_lft forever

[NetProg@server4 ~]$ ip route

10.2.0.0/24 dev enp0s3 proto kernel scope link src 10.2.0.30

[NetProg@server4 ~]$

Routing tables on Linux systems are very similar to routing tables on routers. In fact, a
Linux server could easily function as a router. In order to display routing table function-
ality in Linux, server1 in the topology in Figure 3-2 is used as a router to route traffic
between server2 and server3. server2 is connected to network 10.1.0.0/24, and server3
is connected to network 10.2.0.0/24. All three servers are configured such that server1
routes between the two networks, and eventually server2 should be able to ping server3.

9781587145148_print.indb 163 25/03/21 11:43 am

164    Chapter 3: Linux Storage, Security, and Networks 

.20 .10

10.1.0.0/24 10.2.0.0/24

.10 .30

server2 server1 server3

Figure 3-2 Server1 Configured to Route Between server2 and server3, Each on a
Different Subnet

IP addressing needs to be configured first. server1 is configured with IP addresses ending
with .10, server2 with an IP address ending in .20, and server3 with an IP address ending
in .30, as shown in Example 3-44.

Example 3-44 Configuring IP Addresses on the Interfaces Connecting The Three
Servers

! server1

[root@server1 ~]# ip addr add 10.1.0.10/24 dev enp0s8

[root@server1 ~]# ip addr add 10.2.0.10/24 dev enp0s9

[root@server1 ~]# ip addr show enp0s8 | grep "inet "

 inet 10.1.0.10/24 scope global enp0s8

[root@server1 ~]# ip addr show enp0s9 | grep "inet "

 inet 10.2.0.10/24 scope global enp0s9

[root@server1 ~]#

! server2

[root@server2 ~]# ip addr add 10.1.0.20/24 dev enp0s3

[root@server2 ~]# ip addr show enp0s3 | grep "inet "

 inet 10.1.0.20/24 scope global enp0s3

[root@server2 ~]#

! server3

[root@server3 ~]# ip addr add 10.2.0.30/24 dev enp0s3

[root@server3 ~]# ip addr show dev enp0s3 | grep "inet "

 inet 10.2.0.30/24 scope global enp0s3

[root@server3 ~]#

A ping to the directly connected server is successful on all three servers. However, when
server2 attempts to ping server3, the ping fails, as shown in Example 3-45.

9781587145148_print.indb 164 25/03/21 11:43 am

Linux Networking    165

Example 3-45 Pinging the Directly Connected Interfaces Is Successful but Pinging
server3 From server2 Is Not

! Pinging the directly connected interfaces

! server2 to server1

[root@server2 ~]# ping -c 1 10.1.0.10

PING 10.1.0.10 (10.1.0.10) 56(84) bytes of data.

64 bytes from 10.1.0.10: icmp_seq=1 ttl=64 time=0.796 ms

--- 10.1.0.10 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.796/0.796/0.796/0.000 ms

[root@server2 ~]#

! server3 to server1

[root@server3 ~]# ping -c 1 10.2.0.10

PING 10.2.0.10 (10.2.0.10) 56(84) bytes of data.

64 bytes from 10.2.0.10: icmp_seq=1 ttl=64 time=1.13 ms

--- 10.2.0.10 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 1.139/1.139/1.139/0.000 ms

[root@server3 ~]#

! Pinging server2 to server3 and vice versa is not successful

! server2 to subnet 10.2.0.0/24

[root@server2 ~]# ping 10.2.0.10

connect: Network is unreachable

[root@server2 ~]# ping 10.2.0.30

connect: Network is unreachable

[root@server2 ~]#

! server3 to subnet 10.1.0.0/24

[root@server3 ~]# ping -c 1 10.1.0.10

connect: Network is unreachable

[root@server3 ~]# ping -c 1 10.1.0.20

connect: Network is unreachable

[root@server3 ~]#

You are probably very familiar with the ping command. ping works on Linux exactly as
it does on network devices: by sending one or more ICMP packets to the destination
and either receiving an ICMP reply if the ping is successful (one reply per packet sent)

9781587145148_print.indb 165 25/03/21 11:43 am

166    Chapter 3: Linux Storage, Security, and Networks 

or receiving an ICMP unreachable packet or no response at all if the ping is not. The
command in Example 3-45 uses the -c 1 option to send a single ICMP packet, which is
enough to test the reachability of the destination.

Example 3-46 shows how to use the command ip route add 10.2.0.0/24 via 10.1.0.10 on
server2 and the command ip route add 10.1.0.0/24 via 10.2.0.10 on server3 to add routes
to the routing tables of each server. The general syntax for adding a route to the routing
table is ip route add {destination}{/mask} via {nexthop}. The routes instruct each server
to use server1 as the next hop to reach the remote network. After the routes are added,
server2 and server3 are able to ping server1’s interface on the remote network, but they
are still not able to ping each other.

Example 3-46 Adding Routing Table Entries for Remote Subnets on server2 and
server3. server2 and server3 Can Ping the Remote Subnets on server1, But Still Cannot
Ping Each Other

! server2

[root@server2 ~]# ip route add 10.2.0.0/24 via 10.1.0.10

[root@server2 ~]# ip route

10.1.0.0/24 dev enp0s3 proto kernel scope link src 10.1.0.20

10.2.0.0/24 via 10.1.0.10 dev enp0s3

[root@server2 ~]# ping -c 1 10.2.0.10

PING 10.2.0.10 (10.2.0.10) 56(84) bytes of data.

64 bytes from 10.2.0.10: icmp_seq=1 ttl=64 time=0.822 ms

--- 10.2.0.10 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.822/0.822/0.822/0.000 ms

[root@server2 ~]# ping -c 1 10.2.0.30

PING 10.2.0.30 (10.2.0.30) 56(84) bytes of data.

--- 10.2.0.30 ping statistics ---

1 packets transmitted, 0 received, 100% packet loss, time 0ms

[root@server2 ~]#

! server3

[root@server3 ~]# ip route add 10.1.0.0/24 via 10.2.0.10

[root@server3 ~]# ip route

10.1.0.0/24 via 10.2.0.10 dev enp0s3

10.2.0.0/24 dev enp0s3 proto kernel scope link src 10.2.0.30

[root@server3 ~]# ping -c 1 10.1.0.10

PING 10.1.0.10 (10.1.0.10) 56(84) bytes of data.

64 bytes from 10.1.0.10: icmp_seq=1 ttl=64 time=0.865 ms

9781587145148_print.indb 166 25/03/21 11:43 am

Linux Networking    167

--- 10.1.0.10 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.865/0.865/0.865/0.000 ms

[root@server3 ~]# ping -c 1 10.1.0.20

PING 10.1.0.20 (10.1.0.20) 56(84) bytes of data.

--- 10.1.0.20 ping statistics ---

1 packets transmitted, 0 received, 100% packet loss, time 0ms

[root@server3 ~]#

Forwarding between the interfaces on server1 is disabled by default for security reasons.
Therefore, the remaining step is to enable forwarding in the kernel of server1 by toggling
the default value of 0 in file /proc/sys/net/ipv4/ip_forward to 1 by using either the com-
mand echo 1 > /proc/sys/net/ipv4/ip_forward or the command /sbin/sysctl -w net.ipv4.
ip_forwad=1. After either command is used, forwarding is enabled, and both servers can
ping each other successfully, as shown in Example 3-47.

Example 3-47 Enabling Routing on Server1 Resulting in Successful ping Between
server2 and server3

! Enabling routing on server1

[root@server1 ~]# echo 1 > /proc/sys/net/ipv4/ip_forward

[root@server1 ~]# cat /proc/sys/net/ipv4/ip_forward

1

! server2 to server3 ping is successful

[root@server2 ~]# ping -c 1 10.2.0.30

PING 10.2.0.30 (10.2.0.30) 56(84) bytes of data.

64 bytes from 10.2.0.30: icmp_seq=1 ttl=63 time=0.953 ms

--- 10.2.0.30 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.953/0.953/0.953/0.000 ms

[root@server2 ~]#

! server3 to server2 ping is successful

[root@server3 ~]# ping -c 1 10.1.0.20

PING 10.1.0.20 (10.1.0.20) 56(84) bytes of data.

64 bytes from 10.1.0.20: icmp_seq=1 ttl=63 time=1.39 ms

--- 10.1.0.20 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 1.394/1.394/1.394/0.000 ms

[root@server3 ~]#

9781587145148_print.indb 167 25/03/21 11:43 am

168    Chapter 3: Linux Storage, Security, and Networks 

Note that two commands to achieve the same result are mentioned here. The first method
gets the job done by editing a file, and the second gets the same job done by using the
command sysctl. Which one you should use depends on several factors, the first of
which is personal preference. Another issue is whether you know which file in the /proc/
sys/ directory contains the kernel setting (sometimes referred to as a kernel tunable) that
you need to change. If you do not know the file, you can simply use the sysctl command
to target the parameter directly, regardless of where it is located. You can list all kernel
tunables by using the command /sbni/sysctl -a.

Note You in this case does not necessarily have to literally mean you. It may refer to the
automation script or tool that you are using to get the job done. Using a particular tool to
amend a file may be more efficient than issuing a command; the reverse may be the case
for another tool. Always choose the method that is most efficient and effective for your
specific environment.

To remove a routing table entry, you use the syntax ip route delete {destination}{/mask}
via {nexthop}. You can also have routes point to exit interfaces rather than next hops
by using the syntax ip route add {destination}{/mask} dev {intf}. You can add a default
route by using the syntax ip route add default via {next_hop} dev {intf}.

One final note on the ip utility is that any configuration performed using the commands
discussed in this section is not persistent. Any changes to the configuration disappear
after a system reboot. Persistent configuration is discussed in the following sections.

The NetworkManager Service

NetworkManager is the default network management service on several Linux distros,
including Red Hat and Fedora. Because NetworkManager is a service, you can check its
status, and you can start, stop, enable, or disable it as you can any other service on Linux
by using the systemctl command. For example, the command systemctl status network-
manager displays the current status of the service. To poll NetworkManager for informa-
tion or push configuration to it, you can use one of several user interfaces:

■■ Graphical user interfaces (GUIs): There are two main graphical user interface
tools that interact with NetworkManager. The first is the Network Control Center,
which is accessible via the Settings menu. The Settings window has an icon labeled
Network that opens the network control center, which provides basic network con-
figuration. The other GUI tool is the Connection Editor and is used to configure
more advanced settings. You can start the Connection Editor from the terminal by
entering the command nm-connection-editor.

■■ NetworkManager command-line interface (nmcli): The NetworkManager CLI is a
command-line utility that you can use to control NetworkManager. You can use this
interface to NetworkManager via the nmcli command in the Bash shell.

9781587145148_print.indb 168 25/03/21 11:43 am

Linux Networking    169

■■ NetworkManager text user interface (nmtui): Similar to the interface used to con-
figure a computer’s BIOS settings or old DOS-based programs, the nmtui provides
an interface to NetworkManager that displays graphics in text mode. You start the
text user interface by issuing the nmtui command in the shell.

■■ API: NetworkManager provides an API that can be used by applications for pro-
grammatic access to NetworkManager.

Because the majority of automation is typically performed through CLI tools (and API calls)
and not the GUI, this section cover NetworkManager configuration via the nmcli interface.

NetworkManager deals with objects called connections. A connection is a representation
of a link to the outside world and may represent, for example, a wired connection, a wire-
less connection, or a VPN connection. To display the current status of all network con-
nections on a system, use the command nmcli con show, as shown in Example 3-48.

Example 3-48 Listing All Connections on a System

[root@server1 ~]# nmcli con show

NAME UUID TYPE DEVICE

Wired connection 1 d8323782-5cf2-3afc-abcd-e603605ac4f8 802-3-ethernet --

Wired connection 2 669fefb4-bc57-3d19-b83b-2b2125e0036b 802-3-ethernet --

[root@server1 ~]#

The output in Example 3-48 indicates that there are two connections, named Wired
connection 1 and Wired connection 2. These connections are not bound (applied) to
any interfaces, as indicated by the -- in the last column. Both connections are of type
Ethernet. A connection is uniquely identified by its universally unique identifier (UUID).
Although not shown in the command output, a connection can either be active or inac-
tive. To activate an inactive connection, you use the command nmcli con up {connection_
name}. To deactivate a connection, you replace the keyword up with the keyword down.

Each connection is known as a connection profile and contains several attributes or
properties that you can set. These properties are known as settings. Connection profile
settings are created and then applied to a device or device type. Settings are represented
in a dot notation. For example, a connection’s IPv4 addresses are represented by the set-
ting ipv4.addresses. To drill down on the details for a specific connection and list its
settings and their values, you can use the command nmcli con show {connection_name}.
Example 3-49 lists the connection profile settings for Wired connection 1. The output
is truncated due to the length of the list. A full list of settings and their meanings can be
found in the man pages for the nmcli command.

Note Use of the terms “master” and “slave” is ONLY in association with the official ter-
minology used in industry specifications and standards, and in no way diminishes Pearson’s
commitment to promoting diversity, equity, and inclusion, and challenging, countering and/
or combating bias and stereotyping in the global population of the learners we serve.

9781587145148_print.indb 169 25/03/21 11:43 am

170    Chapter 3: Linux Storage, Security, and Networks 

Example 3-49 Connection Attributes for Wired Connection 1

[root@server1 ~]# nmcli con show "Wired connection 1"

connection.id: Wired connection 1

connection.uuid: d8323782-5cf2-3afc-abcd-e603605ac4f8

connection.stable-id: --

connection.interface-name: --

connection.type: 802-3-ethernet

connection.autoconnect: yes

connection.autoconnect-priority: -999

connection.autoconnect-retries: -1 (default)

connection.timestamp: 1525512827

connection.read-only: no

connection.permissions: --

connection.zone: --

connection.master: --

connection.slave-type: --

connection.autoconnect-slaves: -1 (default)

connection.secondaries: --

connection.gateway-ping-timeout: 0

connection.metered: unknown

connection.lldp: -1 (default)

802-3-ethernet.port: --

802-3-ethernet.speed: 0

802-3-ethernet.duplex: --

802-3-ethernet.auto-negotiate: no

802-3-ethernet.mac-address: 08:00:27:83:40:75

802-3-ethernet.cloned-mac-address: --

802-3-ethernet.generate-mac-address-mask:--

802-3-ethernet.mac-address-blacklist: --

802-3-ethernet.mtu: auto

802-3-ethernet.s390-subchannels: --

802-3-ethernet.s390-nettype: --

802-3-ethernet.s390-options: --

802-3-ethernet.wake-on-lan: 1 (default)

802-3-ethernet.wake-on-lan-password: --

ipv4.method: auto

ipv4.dns: --

ipv4.dns-search: --

ipv4.dns-options: (default)

ipv4.dns-priority: 0

ipv4.addresses: --

ipv4.gateway: --

ipv4.routes: --

--------- OUTPUT TRUNCATED FOR BREVITY ---------

9781587145148_print.indb 170 25/03/21 11:43 am

Linux Networking    171

To list the devices (aka interfaces) on the system and the status of each one, you use the
command nmcli dev status for all devices or the command nmcli dev show {device_
name} for a specific device, as shown in Example 3-50.

Example 3-50 Device Status Using the nmcli dev status and nmcli dev show
Commands

[root@server1 ~]# nmcli dev status

DEVICE TYPE STATE CONNECTION

enp0s8 ethernet disconnected --

enp0s9 ethernet disconnected --

lo loopback unmanaged --

[root@server1 ~]# nmcli dev show enp0s8

GENERAL.DEVICE: enp0s8

GENERAL.TYPE: ethernet

GENERAL.HWADDR: 08:00:27:83:40:75

GENERAL.MTU: 1500

GENERAL.STATE: 30 (disconnected)

GENERAL.CONNECTION: --

GENERAL.CON-PATH: --

WIRED-PROPERTIES.CARRIER: on

[root@server1 ~]#

As you can see from the outputs in Examples 3-49 and 3-50, connections and devices are
mutually exclusive. A connection profile may or may not be applied to a device after it
is created.

In Example 3-51, both of the wired connections are deleted, and one new connection
named NetDev_1 is created. NetDev_1 is of type ethernet and is applied to device
enp0s8. Connections are deleted using the command nmcli con del {connection_name}.
You create new connections and configure their settings by using the command nmcli
con add {connection_name} {setting} {value}. In Example 3-51, the type, ifname, ip4, and
gw4 settings are set to Ethernet, enp0s8, 10.1.0.10/24, and 10.1.0.254, respectively. Note
that in this command, setting can either be entered in the full dot format or in abbrevi-
ated format. For example, the IP address can be set using either ip4 or ipv4.address.

Example 3-51 Deleting and Creating Connections

[root@server1 ~]# nmcli con show

NAME UUID TYPE DEVICE

Wired connection 1 d8323782-5cf2-3afc-abcd-e603605ac4f8 802-3-ethernet --

Wired connection 2 669fefb4-bc57-3d19-b83b-2b2125e0036b 802-3-ethernet --

[root@server1 ~]# nmcli con del "Wired connection 1"

Connection 'Wired connection 1' (d8323782-5cf2-3afc-abcd-e603605ac4f8) successfully
deleted.

[root@server1 ~]# nmcli con del "Wired connection 2"

9781587145148_print.indb 171 25/03/21 11:43 am

172    Chapter 3: Linux Storage, Security, and Networks 

Connection 'Wired connection 2' (669fefb4-bc57-3d19-b83b-2b2125e0036b) successfully
deleted.

[root@server1 ~]# nmcli con show

NAME UUID TYPE DEVICE

[root@server1 ~]# nmcli con add con-name NetDev_1 type ethernet ifname enp0s8 ip4
10.1.0.10/24 gw4 10.1.0.254

Connection 'NetDev_1' (a8ac9116-697a-4a0a-85a2-63428d6e75a3) successfully added.

[root@server1 ~]# nmcli con show

NAME UUID TYPE DEVICE

NetDev_1 a8ac9116-697a-4a0a-85a2-63428d6e75a3 802-3-ethernet enp0s8

[root@server1 ~]# nmcli con show --active

NAME UUID TYPE DEVICE

NetDev_1 a8ac9116-697a-4a0a-85a2-63428d6e75a3 802-3-ethernet enp0s8

[root@server1 ~]# nmcli dev status

DEVICE TYPE STATE CONNECTION

enp0s8 ethernet connected NetDev_1

enp0s9 ethernet disconnected --

lo loopback unmanaged --

[root@server1 ~]# nmcli dev show enp0s8

GENERAL.DEVICE: enp0s8

GENERAL.TYPE: ethernet

GENERAL.HWADDR: 08:00:27:83:40:75

GENERAL.MTU: 1500

GENERAL.STATE: 100 (connected)

GENERAL.CONNECTION: NetDev_1

GENERAL.CON-PATH: /org/freedesktop/NetworkManager/ActiveCon-
nection/359

WIRED-PROPERTIES.CARRIER: on

IP4.ADDRESS[1]: 10.1.0.10/24

IP4.GATEWAY: 10.1.0.254

IP6.ADDRESS[1]: fe80::8c1f:4c4a:51a5:6423/64

IP6.GATEWAY: --

[root@server1 ~]# ping 10.1.0.20 -c 3

PING 10.1.0.20 (10.1.0.20) 56(84) bytes of data.

64 bytes from 10.1.0.20: icmp_seq=1 ttl=64 time=0.604 ms

64 bytes from 10.1.0.20: icmp_seq=2 ttl=64 time=0.602 ms

64 bytes from 10.1.0.20: icmp_seq=3 ttl=64 time=0.732 ms

--- 10.1.0.20 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2011ms

rtt min/avg/max/mdev = 0.602/0.646/0.732/0.060 ms

[root@server1 ~]#

Notice that once a connection has been created and the device enp0s8 has been bound to
it (all in the same command), the connection and device both come up, and that results in
the device successfully pinging server2 on the other end of the link.

9781587145148_print.indb 172 25/03/21 11:43 am

Linux Networking    173

After a connection is created, you can modify its settings by using the command nmcli
con mod {connection_name} {setting} {value}. When modifying a setting, the full dot
format is required in the command. If the shorthand format is used, the new value in the
command may be added to the existing value of the setting. For example, if the short-
hand format is used to modify the IP address, the new IP address in the command is
added to the device as a secondary IP address. On the other hand, if the full dot format
is used, the IP address in the command replaces the IP address configured on the device.
Example 3-52 shows how to modify the IP address of device enp0s8 to 10.1.0.100/24.

Example 3-52 Deleting and Creating Connections

[root@server1 ~]# nmcli con show NetDev_1 | grep ipv4.addr

ipv4.addresses: 10.1.0.10/24

[root@server1 ~]# nmcli dev show enp0s8 | grep IP4.ADD

IP4.ADDRESS[1]: 10.1.0.10/24

[root@server1 ~]# nmcli con mod NetDev_1 ip4 10.1.0.100/24

! The new IP address is added as a secondary address due to the shorthand format

[root@server1 ~]# nmcli con show NetDev_1 | grep ipv4.addr

ipv4.addresses: 10.1.0.10/24, 10.1.0.100/24

! The new IP address is not reflected to the device enp0s8

[root@server1 ~]# nmcli dev show enp0s8 | grep IP4.ADD

IP4.ADDRESS[1]: 10.1.0.10/24

[root@server1 ~]# nmcli con up NetDev_1

Connection successfully activated (D-Bus active path: /org/freedesktop/
NetworkManager/ActiveConnection/366)

! After resetting the con, the new IP address now is reflected to the device

[root@server1 ~]# nmcli dev show enp0s8 | grep IP4.ADD

IP4.ADDRESS[1]: 10.1.0.10/24

IP4.ADDRESS[2]: 10.1.0.100/24

! Using the full dot format will replace the old IP address with the new one

[root@server1 ~]# nmcli con mod NetDev_1 ipv4.address 10.1.0.100/24

[root@server1 ~]# nmcli con up NetDev_1

Connection successfully activated (D-Bus active path: /org/freedesktop/
NetworkManager/ActiveConnection/367)

[root@server1 ~]# nmcli con show NetDev_1 | grep ipv4.addr

ipv4.addresses: 10.1.0.100/24

[root@server1 ~]# nmcli dev show enp0s8 | grep IP4.ADD

IP4.ADDRESS[1]: 10.1.0.100/24

[root@server1 ~]#

9781587145148_print.indb 173 25/03/21 11:43 am

174    Chapter 3: Linux Storage, Security, and Networks 

Note that each time a change is made to a connection using nmcli, the connection needs
to be reactivated in order for the changes to be reflected to the device.

Adding routes using nmcli is different than adding routes using the ip utility in that when
using nmcli, routes are added per interface and not globally. You add routes by using
the syntax nmcli con mod {intf} +ipv4.routes {destination} ipv4.gateway {next_hop}.
Therefore, to accomplish the same task that was done earlier by using the ip utility (to
add a route on server2 to direct traffic destined for network 10.2.0.0/24 using the next
hop 10.1.0.10 on server1), you use the following command: nmcli con mod enp0s3 +ipv4.
routes 10.2.0.0/24 ipv4.gateway 10.1.0.10.

Unlike with the ip utility, changes made through nmcli are, by default, persistent and will
survive a system reload.

It is important to understand the difference between the ip utility and NetworkManager.
The ip utility is a program. When you use the ip command, you run this program, which
makes a system call to the kernel, either to retrieve information or configure a component
of the Linux networking system.

On the other hand, NetworkManager is a system daemon. It is software that runs (lurks)
in the background, by default, and oversees the operation of the Linux network system.
NetworkManager may be used to configure components of the network or to retrieve
information about the network by using a variety of methods discussed earlier in this
section—one of them being nmcli.

The nuances of how the ip utility interacts with NetworkManager are not discussed in
detail here. All you need to know for now is that changes to the network that are made
via the ip utility are detected and preserved by NetworkManager. There is no conflict
between them. As mentioned at the very beginning of this section, different software
on Linux can achieve the same result via different communication channels with the ker-
nel. However, any software that needs access to the network will eventually have to go
through the kernel.

Network Scripts and Configuration Files

The third method for configuring network devices and interfaces is to modify network
scripts and configuration files directly. Different files in Linux control different compo-
nents of the networking ecosystem, and editing these files was the only way to configure
networking on Linux before NetworkManager was developed. Configuration files and
scripts can still be used instead of, or in addition to, NetworkManager.

On Linux distros in the Red Hat family, configuration files for network interfaces are
located in the /etc/sysconfig/network-scripts directory, and each interface configuration
file is named ifcfg-<intf_name>. The first script that is executed on system bootup is
/etc/init.d/network. When the system boots up, this script reads through all interface
configuration files whose names start with ifcfg. Example 3-53 shows the ifcfg file for
the enp0s8 interface.

9781587145148_print.indb 174 25/03/21 11:43 am

Linux Networking    175

Example 3-53 Interface Configuration File for Interface enp0s8

[root@server1 network-scripts]# cat ifcfg-enp0s8

TYPE=Ethernet

PROXY_METHOD=none

BROWSER_ONLY=no

BOOTPROTO=dhcp

DEFROUTE=yes

IPV4_FAILURE_FATAL=no

IPV6INIT=yes

IPV6_AUTOCONF=yes

IPV6_DEFROUTE=yes

IPV6_FAILURE_FATAL=no

IPV6_ADDR_GEN_MODE=stable-privacy

NAME=NetDev_1

UUID=a8ac9116-697a-4a0a-85a2-63428d6e75a3

DEVICE=enp0s8

ONBOOT=yes

[root@server1 network-scripts]#

The filename just needs to be prefixed with ifcfg. The network script simply scans the
directory and reads any file whose name has this prefix. Therefore, you can safely assume
that the configuration file is for the interface or connection. However, while the filename
has to start with ifcfg, there is general consensus that the value in the DEVICE field
(interface) should follow the ifcfg prefix.

The TYPE field in the file indicates the connection type, which is Ethernet in this case.
The BOOTPROTO field is set to dhcp, which means the connection gets an IP address
via DHCP. If a static IP address is required on the interface, then dhcp is replaced with
none. The interface associated with this configuration is also shown in the DEVICE
field (enp0s8 in this case), and the ONBOOT field indicates that this connection is to be
brought up at system bootup. When a static IP address is required on the interface, the
fields IPADDR, PREFIX, and GATEWAY and their respective values are added to the file.

When ONBOOT=yes is set, the /etc/init.d/network script checks whether this interface
is managed by NetworkManager. If it is and the connection has already been activated,
no further action is taken. If the connection has not been activated, the script requests
NetworkManager to activate the connection. In case the connection is not managed by
NetworkManager, the network script activates the connection by running another script,
/usr/sbin/ifup. The ifup script checks the field TYPE in the ifcfg file, and based on that, it
calls another type-specific script. For example, if the type of the connection is Ethernet,
the ifup-eth script is called. Linux requires type-specific scripts because different con-
nection types require different configuration parameters. For example, the concept of
an SSID (wireless network name) does not exist for an Ethernet connection. Similarly, to
bring down an interface for an unmanaged interface, the ifdown script is called. The vast
majority of interface types are managed by NetworkManager by default, unless the line
NM_CONTROLLED=no has been added to the ifcfg file.

9781587145148_print.indb 175 25/03/21 11:43 am

176    Chapter 3: Linux Storage, Security, and Networks 

While the recommended method for configuring interfaces is to use the nmcli utility, as
discussed in the previous section, you can also configure interfaces by editing the cor-
responding ifcfg file.

Static routes configured on a system have configuration files named route-<intf_name>
in the same directory as the interface configuration files. As you have probably guessed,
the name has to be prefixed with route. However, the -<intf_name> is just a naming con-
vention, and the file may have any name as long as the prefix route is there. The routing
entries in the file may have one of two formats:

■■ The ip command arguments format:

{destination}/{mask} via {next_hop} [dev interface]

With this format, specifying the interface using [dev interface] is optional.

■■ The network/netmask directives format:

ADDRESS{N}:{destination}

NETMASK{N}:{netmask}

GATEWAY{N}:{next_hop}

where N is the routing table entry starting with 0 and incrementing by 1 for each
entry, without skipping any values. In other words, if the routing table has four
entries, the entries are numbered from 0 to 3.

Going back to the network of three servers in Figure 3-2, where server1 is required to
route between server2 on subnet 10.1.0.0/24 and server3 on subnet 10.2.0.0/24: the static
routes previously configured in order to route between the servers are deleted, after
which the ping from server2 to server3 fails, as shown in Example 3-54.

Example 3-54 Ping Fails Due To Lack of Static Routes on server2 and server3

! No routes in routing table of server2 to remote subnet 10.2.0.0/24

[root@server2 ~]# ip route

10.1.0.0/24 dev enp0s3 proto kernel scope link src 10.1.0.20 metric 100

[root@server2 ~]#

! Ping to the directly connected interface on server1 is successful

[root@server2 ~]# ping -c 1 10.1.0.10

PING 10.1.0.10 (10.1.0.10) 56(84) bytes of data.

64 bytes from 10.1.0.10: icmp_seq=1 ttl=64 time=0.828 ms

--- 10.1.0.10 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.828/0.828/0.828/0.000 ms

[root@server2 ~]#

9781587145148_print.indb 176 25/03/21 11:43 am

Linux Networking    177

! Ping to server3 on subnet 10.2.0.0/24 is not successful

[root@server2 ~]# ping -c 1 10.2.0.30

connect: Network is unreachable

[root@server2 ~]#

! No routes in routing table of server3 to remote subnet 10.1.0.0/24

[root@server3 ~]# ip route

10.2.0.0/24 dev enp0s3 proto kernel scope link src 10.2.0.30 metric 100

[root@server3 ~]#

! Ping to the directly connected interface on server1 is successful

[root@server3 ~]# ping -c 1 10.2.0.10

PING 10.2.0.10 (10.2.0.10) 56(84) bytes of data.

64 bytes from 10.2.0.10: icmp_seq=1 ttl=64 time=0.780 ms

--- 10.2.0.10 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.780/0.780/0.780/0.000 ms

[root@server3 ~]#

! Ping to server2 on subnet 10.1.0.0/24 is not successful

[root@server3 ~]# ping -c 1 10.1.0.20

connect: Network is unreachable

[root@server3 ~]#

The file route-enp0s3 is created under the directory /etc/sysconfig/network-scripts/ on
both servers. A routing entry is added to the routing configuration file on server2 by
using the ip command arguments format, and a routing entry is added to the file on
server3 by using the network/netmask directives format, as shown in Example 3-55.

Example 3-55 Routing Configuration Files Added on Both server2 and server3

! server2

! No routing configuration files in the directory

[root@server2 ~]# cd /etc/sysconfig/network-scripts/

[root@server2 network-scripts]# ls -l | grep "route"

[root@server2 network-scripts]#

! Create the file route-enp0s3 and populate it with a route to the remote subnet
10.2.0.0/24 using the IP Command Arguments format

[root@server2 network-scripts]# touch route-enp0s3

[root@server2 network-scripts]# echo "10.2.0.0/24 via 10.1.0.10" >> route-enp0s3

[root@server2 network-scripts]# ls -l | grep " route"

-rw-r--r--. 1 root root 26 Aug 17 15:52 route-enp0s3

9781587145148_print.indb 177 25/03/21 11:43 am

178    Chapter 3: Linux Storage, Security, and Networks 

[root@server2 network-scripts]# cat route-enp0s3

10.2.0.0/24 via 10.1.0.10

[root@server2 network-scripts]#

! Restart the network service and check the routing table

[root@server2 network-scripts]# systemctl restart network

[root@server2 network-scripts]# ip route

10.1.0.0/24 dev enp0s3 proto kernel scope link src 10.1.0.20 metric 100

10.2.0.0/24 via 10.1.0.10 dev enp0s3 proto static metric 100

[root@server2 network-scripts]#

! server3

! No routing configuration files in the directory

[root@server3 ~]# cd /etc/sysconfig/network-scripts/

[root@server3 network-scripts]# ls -l | grep " route"

! Create the file route-enp0s3 and populate it with a route to the remote subnet
10.1.0.0/24 using the Network/Netmask Directives format

[root@server3 network-scripts]# touch route-enp0s3

[root@server3 network-scripts]# echo "ADDRESS0=10.1.0.0" >> route-enp0s3

[root@server3 network-scripts]# echo "NETMASK0=255.255.255.0" >> route-enp0s3

[root@server3 network-scripts]# echo "GATEWAY0=10.2.0.10" >> route-enp0s3

[root@server3 network-scripts]# ls -l | grep " route"

-rw-r--r--. 1 root root 60 Aug 17 16:04 route-enp0s3

[root@server3 network-scripts]# cat route-enp0s3

ADDRESS0=10.1.0.0

NETMASK0=255.255.255.0

GATEWAY0=10.2.0.10

[root@server3 network-scripts]#

! Restart the network service and check the routing table

[root@server3 network-scripts]# systemctl restart network

[root@server3 network-scripts]# ip route

10.1.0.0/24 via 10.2.0.10 dev enp0s3 proto static metric 100

10.2.0.0/24 dev enp0s3 proto kernel scope link src 10.2.0.30 metric 100

[root@server3 network-scripts]#

The ping test is now successful, and server2 can reach server3, as shown in Example 3-56.

9781587145148_print.indb 178 25/03/21 11:43 am

Linux Networking    179

Example 3-56 Ping from server2 to server3 and Vice Versa Is Successful Now

[root@server2 network-scripts]# ping -c 1 10.2.0.30

PING 10.2.0.30 (10.2.0.30) 56(84) bytes of data.

64 bytes from 10.2.0.30: icmp_seq=1 ttl=63 time=2.11 ms

--- 10.2.0.30 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 2.119/2.119/2.119/0.000 ms

[root@server2 network-scripts]#

[root@server3 network-scripts]# ping -c 1 10.1.0.20

PING 10.1.0.20 (10.1.0.20) 56(84) bytes of data.

64 bytes from 10.1.0.20: icmp_seq=1 ttl=63 time=1.58 ms

--- 10.1.0.20 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 1.585/1.585/1.585/0.000 ms

[root@server3 network-scripts]#

The network script is run as a service and, like any other service, can be controlled
by using the command systemctl {start|stop|restart|status} network. To enable/disable
the network service at startup, you use the command chkconfig network {on|off}. Keep
in mind that after a configuration file is changed, the network service has to be restarted
for the changes to take effect. It goes without saying that any configuration done via
amending the network configuration files is persistent and will remain intact after a
system reload.

Network Services: DNS

Domain Name System (DNS) is a hierarchical naming system used on the Internet and
some private networks to assign domain names to resources on the network. Domain
names tend to be easier to remember than IP addresses. Using domain names provides the
additional capability to resolve a domain name to multiple IP addresses for purposes such
as high availability or routing user traffic based on the geographically closest server.

DNS uses the concept of a resolver, commonly referred to as a DNS server, which is a
server or a database that contains mappings between domain names and the information
related to each of those domain names, such as the IP addresses. These mappings are
called records. DNS is hierarchical and distributed. The majority of DNS servers maintain
records for only some domain names and then initiate queries to other DNS servers for
the rest of the domain names, for which it does not maintain records.

9781587145148_print.indb 179 25/03/21 11:43 am

180    Chapter 3: Linux Storage, Security, and Networks 

Performing a DNS query means sending a request to a DNS server to resolve the domain
name and return the data associated with that domain name. To resolve a domain name
on Linux to its corresponding information, including its IP address, you use the dig com-
mand, which stands for domain information groper. Example 3-57 shows dig being
used to resolve google.com to its public IP address. The public IP address received from
the DNS response is highlighted in the example.

Example 3-57 Using the dig Command to Resolve google.com

[root@server1 ~]# dig google.com

; <<>> DiG 9.9.4-RedHat-9.9.4-51.el7_4.2 <<>> google.com

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38879

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096

;; QUESTION SECTION:

;google.com. IN A

;; ANSWER SECTION:

google.com. 264 IN A 216.58.207.14

;; Query time: 31 msec

;; SERVER: 192.168.8.1#53(192.168.8.1)

;; WHEN: Fri Aug 17 17:16:06 +03 2018

;; MSG SIZE rcvd: 55

[root@server1 ~]#

In Example 3-57, the DNS server used for the name resolution is 192.168.8.1. The
IP address of this DNS server is configured in the /etc/resolv.conf file, shown in
Example 3-58. To configure other DNS servers, you list each server’s IP address on a
new line in this file.

Example 3-58 List of DNS Servers in the /etc/resolv.conf File

[root@server1 ~]# cat /etc/resolv.conf

Generated by NetworkManager

nameserver 192.168.8.1

[root@server1 ~]#

9781587145148_print.indb 180 25/03/21 11:43 am

http://google.com
http://google.com
http://google.com
http://google.com
http://;google.com
http://google.com

Summary    181

Manual DNS entries are configured in the /etc/hosts file. If an entry for a domain name is
found in that file, the DNS servers are not consulted for resolution. There is one caveat,
though: The dig command still requests the name resolution from the DNS server config-
ured in /etc/resolv.conf. However, the ping command and also the web browsers on the
system use the hosts file, and, therefore, use the manual entry there. Try to add a manual
entry for google.com in the hosts file, pointing to an IP address that is not reachable and
then try to use dig, use ping, and browse to google.com and notice how each of these
behave differently.

Summary
This chapter takes Linux administration a step further and covers storage, security, and
networking. It discusses the following topics:

■■ Partitioning, formatting, and managing physical storage

■■ Creating physical volumes, volume groups, and logical volumes using LVM

■■ User and group security management

■■ File security management, including permission bits and ACLs

■■ Linux system security, including the Linux firewall

■■ Managing Linux networking by using the ip utility

■■ Managing Linux networking by using the NetworkManager CLI (nmcli)

■■ Managing Linux networking via network scripts and configuration files

■■ Network services such as DNS

Chapter 4, “Linux Scripting,” builds on this chapter and covers Linux scripting, which is
one big step towards automation.

9781587145148_print.indb 181 25/03/21 11:43 am

http://google.com
http://google.com

Index

Symbols
& (ampersands)

&= operator, Python, 284
AND operator, Python, 281,

285–286
* (asterisks)

** assignment operator, Python, 281
**= operator, Python, 284
*= operator, Python, 284
assignment operator, Python, 281
regular expressions (regex), 185, 189

\ (backslashes)
\<, regular expressions (regex), 185,

188–189
\>, regular expressions (regex), 185,

188–189
regular expressions (regex), 186

^ (carets)
^= operator, Python, 284
regular expressions (regex), 185, 187
XOR operator, 281

{ } (curly braces)
{N}, regular expressions (regex), 186,

189–192

{N, M}, regular expressions (regex),
186, 189–192

regular expressions (regex), 185
$ (dollar signs), regular expressions

(regex), 185, 187
. (dots),

.* notation, regular expressions
(regex), 190

.. notation, Linux directories, 37
regular expressions (regex), 185, 189

= (equal signs)
= assignment operator, Python,

284
== (double equal sign)

conditional statements, 229
Jinja2 operator, 1019
Python operator, 285

conditional statements, 229
!= operator

Jinja2, 1019
Python, 285

/ (forward slashes)
/ assignment operator, Python, 281
/: root directory, Linux, 36–37
/= operator, Python, 284

Z01_Abuelenain_Index_p1121-p1196.indd 1121 27/03/21 6:37 pm

1122  < (left arrows)

< (left arrows)
< operator, Python, 285, 1019
<< operator, Python, 281
<= assignment operator

Jinja2, 1019
Python, 285

- (minus signs)
-= operator, Python, 284
- assignment operator, Python, 281

() (capture groups), regular
expressions (regex), 185–186

% (percentage symbols)
%= operator, Python, 284
Modulo Operator, 274, 281

| (pipes), 58, 65–67, 281
| (OR operator)

Python, 281, 285
regular expressions (regex), 186

|= operator, Python, 284
+ (plus signs)

+ assignment operator, Python, 281
+= operator, Python, 284
regular expressions (regex), 186,

189–190, 192
#! (hashbangs), Linux shell scripting,

205–208
? (question marks), regular

expressions (regex), 186, 189,
191–192

> (right arrows)
> Jinja2 operator, 1019
> Python operator, 285
>= (right arrow, equal sign)

assignment operator, Jinja2,
1019

assignment operator, Python,
285

>> signed right shift operator,
Python, 281

>>= operator, Python, 284
; (semicolons)
;&, case-in constructs, 233–234
;; (double semicolons), case-in

constructs, 233–234
;;&, case-in constructs, 233–234
Linux notation, 61–62

[] (square brackets)
[=] operator, Python, 284
[first_literal - last_literal], regular

expressions (regex), 185
[literals], regular expressions (regex),

185
Python

lists, 286–287
strings, 278

regular expressions (regex), 185
~ (NOT) operator, Python, 281, 285

Numbers
0-RTT, TLS, 502–503
1xx information status codes, 411
2xx successful status codes, 411–412
3xx redirection status codes, 412
4xx server error status codes,

413–414
5xx client error status codes, 414
200 OK responses, static routing

DELETE method, 405–406
POST method, 394–401
PUT method, 403–404

A
absolute paths

Linux directories, 38–39
XPath expressions, 576–577

Z01_Abuelenain_Index_p1121-p1196.indd 1122 27/03/21 6:37 pm

Ansible  1123

abstraction
API, 12–13
defined, 9–13
NaC, 12
OOP, 257
single sources of truth, 11–12

access tokens, OAuth protocol,
481–483

ACI (Application Centric
Infrastructures), 13

ACL, Linux, 148–155
ad hoc command, Ansible, 994–997
Adj-SID, 824, 827, 839–842
AEAD (Authenticated Encryption

with Associated Data), 495–496
AES-CCM protocol, 495
AES-GCM protocol, 495
alert protocol, TLS 1.3, 499
algorithms, 258–259
ampersands (&),

&= operator, Python, 284
AND operator, Python, 281, 285

analyzing cost/benefit analysis, 1112
anchors, YAML, 624–625
AND operator (&), Python, 281,

285–286
AND/OR logic, combining

multiple conditional statements,
1022–1024

Android, Linux distributions, 26
annotation, JSON schemas, 596
Ansible, 15–16, 989

ad hoc command, 994–997
basics, 989–990
call flows, for a single command,

990–991
conditional statements, 1016–1019

AND/OR logic, 1022–1024

checking for substrings in
variables, 1021–1022

checking for variables,
1019–1021

combining multiple conditional
statements, 1022–1024

Jinja2 templates, 1045–1049
with loops, 1024–1027
with loops and variables,

1027–1033
configuring, 991–995
connection plug-ins, 1003–1004
filters, 1013–1015
help, 995–996
installing, 990
inventories

default paths, 992
IP addresses, 993–994
simple inventory files,

992–993
inventory files, defining variables,

1009–1011
IOS XE

clearing counters, 1060–1061
configuring, 1061–1069
configuring with ios_* modules,

1069–1073
configuring with iosxr_*

modules, 1083–1084
preparing for Ansible

management, 1055–1057
preparing for NETCONF

management, 1095–1096
updating files with additional

hosts/variables, 1057–1058
verifying Ansible management,

1057
verifying operational data,

1058–1060

Z01_Abuelenain_Index_p1121-p1196.indd 1123 27/03/21 6:37 pm

1124  Ansible

IOS XR
configuring, 1078–1084
preparing for management,

1073–1074
preparing for NETCONF

management, 1096–1098
verifying Ansible management,

1074–1075
verifying operational data,

1074–1078
ios_command module

clearing counters,
1060–1061

verifying operational data,
1058–1060

iosxr_command
input parameters, 1001
playbooks, 997–999
verifying operational data,

1074–1078
Jinja2 templates, 1034–1040

conditional statements,
1045–1049

loops, 1040–1043
playbooks, 1040–1043
variables, 1042–1043

Linux, host files, 993
loops

conditional statements with
loops, 1024–1027

Jinja2 templates, 1040–1043
modules

control functions, 1001–1002
debug modules, 999
file modules, 1003
iosxr_command, parameters,

1001
network modules, 1003
return values, 1001–1002

structure of, 1000
utility modules, 1003

NETCONF
configuring, 1103–1107
IOS XE management,

1095–1096
IOS XR management,

1096–1098
NX-OS management, 1098
verifying operational data,

1098–1103
NX-OS

collecting show output with
nxos_command, 1086–1088

configuring, 1090–1095
interactive commands,

1088–1089
preparing for management,

1084–1085
preparing for NETCONF

management, 1098
verifying management,

1085–1086
verifying operational data,

1086–1089
overview of, 989–990
playbooks, 990, 997–1000

conditional statements
with loops and variables,
1032–1033

defining variables, 1005–1006
Jinja2 templates, 1040–1043

Python, 991–992
variables, 999

Boolean variables, 1006
checking for substrings with

conditional statements,
1021–1022

checking with conditional
statements, 1019–1021

Z01_Abuelenain_Index_p1121-p1196.indd 1124 27/03/21 6:37 pm

API (Application Programming Interface)  1125

conditional statements with
loops and variables,
1027–1033

defining from external files,
1007–1009

defining in inventory files,
1009–1011

defining in playbooks,
1005–1006

dictionary variables, 1007
importing from external files,

1007–1009
Jinja2 templates, 1042–1043
list variables, 1007
setting dynamically, 1011–1013
string variables, 1006
types of, 1006–1007

version command, 991–992
anywhere selection, XPath

expressions, 576
API (Application Programming

Interface)
abstraction, 12–13
automation, 12–13
AXL API, 944
CER API, 944
classifications, 882–883
CLI versus, 8
collaboration API, 942–944

AXL API, 944
CER API, 944
CUCM Serviceability API, 945
Finesse Desktop API, 946–947
PAWS API, 944
REST API, 945–946, 948–954
TSP API, 945
UDS API, 945
URL API, 945

xAPI, 946
XML API, 945

CUCM Serviceability API, 945
DNA Center API

device management, 934
Eastbound API, 933
event notifications, 935
Integration API, 935–936
Intent API, 934, 936–941
Northbound API, 933
Southbound API, 933
webhooks, 935
Westbound API, 933

eastbound API, 883
endpoints, 882
IOS XE

gNMI, insecure mode, 815
NETCONF, 918–922
programmability, 885–886

IOS XR
NETCONF, 916–918
programmability, 886–887

Linux, 24
Meraki API, 922, 923

Captive Portal API, 923
Dashboard API, 922–931
Location Scanning API, 923
MV Sense API, 923
Webhook Alerts API, 922

model-based industry-standard API
IOS XE programmability, 885
Open NX-OS programmability,

884
NETCONF

IOS XE, 918–922
IOS XR, 916–918
NX-OS, 905–916

Z01_Abuelenain_Index_p1121-p1196.indd 1125 27/03/21 6:37 pm

1126  API (Application Programming Interface)

northbound API, 883
NX-API CLI, use cases, 893–898
NX-API REST, use cases, 898–905
Open NX-OS

Bash shells, 887–891
Guest shells, 887, 891–892
NETCONF, 905–916
programmability, 884–885
use cases, 887–892

PAWS API, 944
platforms, 882
Postman, 436–437

installing, 438
interface, 438–441
usage, 441–446

resource server calls, OAuth
protocol, 483

REST API, 322, 392–393, 945–946,
948–954

RESTful API, 883
RPC-based API, 883
rules of thumb, 1118
service layer API, IOS XR program-

mability, 886
southbound API, 883
transport protocols, 18–19
TSP API, 945
UDS API, 945
URL API, 945
vendor/API matrix, network

programmability, 957–958
web/API development, 336–337

back end development, 336
Django, 337–345
Flask, 345–352
front end development, 336
Postman, 337–345

webhooks, 882
westbound API, 883
XML API, 945
transport protocols, 18–19

API resource, RESTCONF, 747–749
applications

developing
different environments, 311
Docker, 317–331
Git, 312–317
organizing development

environment, 311–312
Python modules, 333–336
replicating product environ-

ments, 312
reusable code, 312
version control, 311
virtualenv tool, 331–333

Django
creating applications, 341–345
demo applications, 343–345

dockerizing, 326–331
hosting

containerized application
hosting, 1116

IOS XE programmability, 886
IOS XR programmability, 887
iPerf, 1116
native application hosting,

1115–1116
Open NX-OS programmability,

885
rules of thumb, 1115–1116

Linux communication, 24
Python

machine learning, 382–384
network automation, architec-

tures, 353–354, 371–375

Z01_Abuelenain_Index_p1121-p1196.indd 1126 27/03/21 6:37 pm

authentication  1127

network automation, Jinja2
templates, 363–375

network automation, NAPALM
libraries, 354–359

network automation, Nornir
libraries, 359–363, 367–369,
371–375

orchestration, 375–382
web/API development, Django,

337–345
web/API development, Flask,

345–352
web/API development, 336–337

back end development, 336
Django, 337–345
Flask, 345–352
front end development, 336
Postman, 337–345
web servers, running with

Django, 338–339
Arch, Linux distributions, 26
architectures

BGP-LS peering architectures,
843–844

Linux, 23–25
microservice architectures, 782
network automation, 353–354

archiving utilities, Linux
bzip2, 67, 69
gzip, 67–68
tar, 67, 70–73
xz, 67, 69–70, 72–73

Arguments.bash script, Linux
scripting, 213–214

arithmetic operators
Bash, 220–222, 229
Linux, 220–222
Python, 281–283

arrays
JSON arrays, 593
Linux scripting

adding/removing elements,
224–226

associative arrays, 222
concatenating, 221–226
declaring, 222–224
defined, 222
indexed arrays, 222–224

assignment operators, Python, 284
associative arrays, 222
asterisks (*)

Python
*= operator, 284
** assignment operator, 281
**= operator, 284
assignment operator, 281

regular expressions (regex), 185,
189–190

asymmetric keys, 490
attributes, XML, 558, 568, 570
augmentation, YANG modules,

656–658
authentication

host-based authentication, 517–518
HTTP/1.1, 469–471

base64 encoding, 472, 474
basic authentication, 472–474
OAuth protocol, 474–483
UTF-8 encoding, 472–473
workflows, 470

key-based authentication, SSH,
523–525

MAC, 493–494
NETCONF, 694
Nexus switches, 401–402, 463

Z01_Abuelenain_Index_p1121-p1196.indd 1127 27/03/21 6:37 pm

1128  authentication

password authentication, 517,
522–523, 525–526

peer authentication, 496–497
public key authentication, 516–517
SSH Authentication Protocol,

514–516
host-based authentication,

517–518
password authentication, 517,

522–523, 525–526
public key authentication,

516–517
authorization grants, OAuth protocol,

477–481
automation

API, 12–13
benefits, 6
broken processes, 1110
cloud computing, 1118
complexity, 1111–1112
configuration management

automation
IOS XE programmability, 886
Open NX-OS programmability,

885
cost/benefit analysis, 1112
defined, 5–6
model-driven telemetry, 1113–1114
Network Programmability and

Automation toolbox, 14–15
Ansible. See also separate

entry, 15–16
Linux, 16–17
protocols, 18–19
Python, 15
virtualization, 17
YANG, 17

networks
architectures, 353–354
Jinja2 templates, 363–375
NAPALM libraries, 354–359,

371–375
Nornir libraries, 359–363,

367–369, 371–375
one-time automations, 1111
orchestration versus, 6–7
reusing automations, 1111
rules of thumb, 1109–1112, 1118
single sources of truth, 11–12
software/network engineers, 19–20

awk programming language, 194–197
AXL API, 944

B
back end web/API development, 336
backslashes (\), regular expressions

(regex), 186
\<, regular expressions (regex), 185,

188–189
\>, regular expressions (regex), 185,

188–189
base64 encoding, HTTP/1.1

authentication, 472, 474
Bash, 184

Arguments.bash script, 213–214
arithmetic operators, 220–222, 229
CLI programmable interface creation,

963–967
Expect programming language,

245–246
file comparison operators, 230–232
functions, 244
HTTP, 447–454

Z01_Abuelenain_Index_p1121-p1196.indd 1128 27/03/21 6:37 pm

career paths, software/network engineers  1129

integer comparison operators,
229–230

IOS XR programmability, 886
Linux, 29
Linux interface configuration,

969–970
Open NX-OS, 884, 887–891
scripting, 206–207, 213–214
SSH, 539–540, 548–549
string comparison operators,

228–229
string operators, 227–228

Bearer Tokens, HTTP, 475–476
beginnings/endings of words,

matching, regular expressions
(regex), 188–189

benefit/cost analysis automation,
1112

BGP, SR-TE, 836–843
BGP-LS (BGP-Link State), 843

lab topologies, 845–846
link NLRI, 856–857
node NLRI, 854–855
NPF-XR, 845, 849, 851–854
peering, 843–844, 847–849
prefix NLRI, 858–859
routing, 846–847
routing types (overview), 850–854

bidirectional RPC, 785
binary message framing, HTTP/2,

506–507
BIOS (Basic Input/Output

Systems), 27
bitwise operators, Python, 281–283
blkid command, Linux, 148–149
block ciphers, 492–493
blocking, head-of-line, 504
Boolean data, JSON, 593

Boolean variables, Ansible, 1006
boot directory, Linux, 36
boot process, Linux, 26–28
broken processes, automation, 1110
buffered/unbuffered access,

Linux /dev directory, 120
built-in data types, YANG modules,

647–648
Business Edition (Cisco), 942
bytecode, Python, 265–267

generators, 264
interpreters, 264

bzip2 archiving utility, Linux, 67, 69

C
call flows, PCEP, 861–864
<cancel-commit> operations,

NETCONF, 722–724
candidate configuration, NETCONF,

722–724, 732
capabilities, NETCONF, 731

candidate configuration capability,
732

confirmed commit capability, 732
distinct startup capability, 733
rollback-on-error capability, 732–733
URL capability, 733–734
validate capability, 733
writable-running capability, 732
XPath capability, 735

Capabilities RPC, gNMI, 810–811
CAPEX (Capital Expenditures), 2
Captive Portal API (Meraki), 923
capture groups (()), regular

expressions (regex), 185–186
career paths, software/network

engineers, 1118–1119

Z01_Abuelenain_Index_p1121-p1196.indd 1129 27/03/21 6:37 pm

1130  carets (^)

carets (^)
^= operator, Python, 284
regular expressions (regex), 185, 187
XOR operator, 281

case-in constructs, Linux scripting,
232–234

;&233–234
;;, 233–234
;;&233–234

cat command, 41–42, 61–62
cat/proc/cpuinfo command, Linux,

87–88
CBC (Cipher Block Chaining),

492–493
CCM (Counter with CBC mode),

495–496
CentOS

Docker
containers, 322–325
installing, 318–320

Git, setting up, 313–314
OpenSSH installations, 522
SCP, 549–550
SSH setup, 521–526

CER API, 944
changing

CLI, 19
file users/groups, Linux, 146

channels, SSH Connection Protocol,
518–521

character classes, matching uppercase/
lowercase characters in regular
expressions (regex), 187–188

child/parent relationships, XML,
555–556

chmod command, Linux, 144–146
chown command, Linux, 146
Chrome (Google), LocalRepo

repositories, 114–117

ciphers, 492
block ciphers, 492–493
CBC, 492–493
CMAC, 494
CTR mode, 492–493
symmetric ciphers, 492

Cisco Business Edition, 942
Cisco collaboration portfolio, 942–944
Cisco devices

server status codes, 414
SSH setup, 545–549

Cisco Finesse, 943, 946–947
Cisco IOS XE

Ansible
clearing counters, 1060–1061
configuring IOS XE, 1061–1069
configuring IOS XE with ios_*

modules, 1069–1073
configuring IOS XR with

iosxr_* modules, 1083–1084
preparing IOS XE for Ansible

management, 1055–1057
preparing IOS XE for

NETCONF management,
1095–1096

updating files with additional
hosts/variables, 1057–1058

verifying IOS XE for Ansible
management, 1057

verifying operational data,
1058–1060

SSH setup, 526–531, 545–546
Cisco IOS XR

Ansible
configuring IOS XR, 1078–1084
preparing for management,

1073–1074
preparing IOS XR for

NETCONF management,
1096–1098

Z01_Abuelenain_Index_p1121-p1196.indd 1130 27/03/21 6:37 pm

code execution, Python  1131

verifying IOS XR for Ansible
management, 1074–1075

verifying operational data,
1074–1078

PCEP configurations, 867–880
SSH setup, 532–536, 546–547

Cisco IP Phones, 944
Cisco Meeting Server, 943
Cisco Unified Contact Center, 943
Cisco Webex Board, 943
Cisco Webex Cloud Calling, 942
Cisco Webex Contact Center, 943
Cisco Webex Meetings, 943

REST API, 945–946, 948–954
TSP API, 945
URL API, 945
XML API, 945

Cisco Webex Room Series, 944
Cisco Webex Support, 943
Cisco Webex Teams, 942, 945–946,

948–954
classes, Python modules, 335–336
cleaning up networks, 1110
clear command, 30
CLI (Command-Line Interface)

API versus, 8
changing, 19
command shell, Linux, 28–30
loopback interfaces, CLI programma-

bility, 962–963
network programmability, 958–959,

962–967
NX-API CLI

Open NX-OS programmability,
884

use cases, 893–898
as programmable CLI, 962–967

transport protocols, 19
unstructured data, 19

client registration, OAuth protocol,
476–477

client requests, HTTP, 388–392,
397–398

CONNECT method, 407
DELETE method, 405–406
GET method, 398

Bash shells, 447–454
Postman, 445–446

HEAD method, 398
header fields, 422–425
OPTIONS method, 407–408
POST method, 399–402

Postman, 443–445
Python and HTTP, 465

PUT method, 402–405
TRACE method, 408

client/server connections, HTTP,
394–395

client-streaming RPC, 785
cloning

git repositories, 316–317
YANG modules, 665

<close-session> operations,
NETCONF, 721–722

cloud computing
Cisco Webex Cloud Calling, 942
rules of thumb, 1118

CMAC (Cipher-based MAC), 494
CMDB (Configuration Management

Database), 12
code execution, Python, 263–269

bytecode, 265–267
generators, 264
interpreters, 264

Z01_Abuelenain_Index_p1121-p1196.indd 1131 27/03/21 6:37 pm

1132  code execution, Python

code testing/verification, 269
compiling code, 265–266
executable Python files, 265
lexical analyzers, 263
numeric data, 269
simple Python program, 264
tokenizers, 263

collaboration
API, 942–944

AXL API, 944
CER API, 944
CUCM Serviceability API, 945
Finesse Desktop API, 946–947
PAWS API, 944
REST API, 945–946, 948–954
TSP API, 945
UDS API, 945
URL API, 945
xAPI, 946
XML API, 945

Cisco collaboration portfolio,
942–944

endpoints, 943
Cisco IP Phones, 944
Cisco Webex Room Series, 944

platforms, API, 942
AXL API, 944
CER API, 944
CUCM Serviceability API, 945
Finesse Desktop API, 946–947
PAWS API, 944
REST API, 945–946, 948–954
TSP API, 945
UDS API, 945
URL API, 945
xAPI, 946
XML API, 945

collections, YAML, 618–620
command shell, Linux, 28–30
comments

Linux scripting, 207–208
XML, 558
YAML, 616

<commit> operations, NETCONF,
722–724

commit phase, Git workflows, 317
compact GBP, 1113–1114
comparison operators

Jinja2, 1018–1019
Python, 284–285

compiling
Linux software installations, 94,

96–97
Python code, 265–266

complex elements, XML validation,
570–573

complex numbers, Python, 276
compose versions, Docker, 320–322
compression, HTTP/1.1, 396–397
computer science concepts, 255
concatenating

arrays, 221–226
strings, Python, 277

conditional statements
Ansible, 1016–1019

checking for substrings in
variables, 1021–1022

checking for variables,
1019–1021

combining multiple conditional
statements, 1022–1024

conditional statements with
loops, 1024–1027

conditional statements
with loops and variables,
1027–1033

Z01_Abuelenain_Index_p1121-p1196.indd 1132 27/03/21 6:37 pm

CONNECT method  1133

Jinja2 templates, 1045–1049
AND/OR logic, 1022–1024

Jinja2 templates, 1045–1049
Linux scripting, 226

== (double equal sign), 229
= (equal sign), 229
case-in constructs, 232–234
if-then constructs, 226–232

nested code blocks with conditional
statements, Python control flow,
295–296

conferencing, 943
Cisco Meeting Server, 943
Cisco Webex Meetings, 943

REST API, 945–946, 948–954
TSP API, 945
URL API, 945
XML API, 945

Cisco Webex Support, 943
configuration files, Linux networking,

174–179
configuration management

automation
IOS XE programmability, 886
IOS XR programmability, 887
Open NX-OS programmability, 885

configuring
Ansible, 991–995
candidate configuration capability,

NETCONF, 732
CMDB, 12
IOS XE with Ansible

general configuration,
1061–1069

with ios_* modules, 1069–1073
with iosxr_* modules,

1083–1084

IOS XR with Ansible, general
configuration, 1078–1083

NETCONF, 1103–1107
<cancel-commit> operations,

722–724
candidate configuration

operations, 722–724
<close-session> operations,

721–722
<commit> operations, 722–724
configuration validation,

724–725
<copy-config> operations, 719
datastore configurations,

712–720
datastore operations, 720–721
<delete-config> operations,

719–720
<discard-changes> operations,

722–724
<edit-config> operations,

712–719
<kill-session> operations,

721–722
<lock> operations, 720–721
session operations, 721–722
<unlock> operations, 720–721
<validate> operations, 724–725

NX-OS
with nx-os_* modules,

1093–1095
with nx-os_config modules,

1086–1088
YAML configuration files, building,

635–637
confirmed commit capability,

NETCONF, 732
CONNECT method, 407

Z01_Abuelenain_Index_p1121-p1196.indd 1133 27/03/21 6:37 pm

1134  connection plug-ins, Ansible

connection plug-ins, Ansible,
1003–1004

connections, NetworkManager
attributes, 169–170
creating, 171–174
deleting, 171–174
listing, 169

constructors, Python modules,
335–336

Contact Center, 942–943
container nodes, YANG data

modeling, 652–653
containerized application hosting,

1116
containers

Docker, 1115
Docker Swarm, 1115
hello-world containers,

322–325
virtualization, 317–318

Kubernetes, 1115
rules of thumb, 1114–1115

content layer
NETCONF, 693, 725–730
RESTCONF, 743

content parameter, RESTCONF, 771
control flow, Python

elif statements, 297–298
for loops, 301–302, 306

nested for loops, 303–304
range() function, 302–303

if-else statements, 296–300
nested code blocks with conditional

statements, 295–296
while loops, 304–306

cookies, HTTP state management,
483–487

<copy-config> operations, 719

copying
directories, Linux, 49–51
files, Linux, 46–48
public keys onto servers, 524–525
SCP

CentOS, 549–550
SFTP comparisons, 550

cost/benefit analysis, automation,
1112

costs
CAPEX, 2
human operations, 2
networks, 2
OPEX, 2

cp command, 46–48, 49–51
CRLF, HTTP messages, 415, 418
cryptography, 488, 495–496

AEAD, 495–496
AES-CCM protocol, 495
AES-GCM protocol, 495
CCM, 495
ciphers, 492

block ciphers, 492–493
CBC, 492–493
CMAC, 494
CTR mode, 492–493
symmetric ciphers, 492

digital signatures, 496–497
encryption keys, 488–489

asymmetric keys, 490
DH protocol, 490–492
ephemeral keys, 490
generation/exchanges, 488–492
HKDF, 492
key exchange algorithm, 490
KM, 492
PFS, 490

Z01_Abuelenain_Index_p1121-p1196.indd 1134 27/03/21 6:37 pm

data structures, Python  1135

PSK, 489
symmetric keys, 489

GCM, 495
MAC, 493–494
peer authentication, 496–497

.csv files, 1052
CTR mode, ciphers, 492–493
CUCM (Cisco Unified

Communications Manager), 942
AXL API, 944
CER API, 944
CUCM Serviceability API, 945
PAWS API, 944
UDS API, 945

curly braces ({ })
{N}, regular expressions (regex), 186,

189–192
{N, M}, regular expressions (regex),

186, 189–192
regular expressions (regex), 185

D
daemons, Linux, 24
dashes (-)

-= operator, Python, 284
assignment operator, Python, 281

Dashboard API (Meraki), 922–931
data modeling, YANG, 642

defined, 639–640
importance of, 640–642
modules, 642–644

augmentation, 656–658
built-in data types, 647–648
cloning, 665
derived data types, 648–649
deviations, 658–662

home of, 664–666
IETF YANG modules, 670–671
native (vendor-specific)

modules, 666–669
OpenConfig YANG modules,

671–673
structure of, 644–646
verifying downloaded modules,

665–666
nodes, 649

container nodes, 647–648
grouping, 654–656
leaf nodes, 649–651
leaf-list nodes, 651–652
list nodes, 647–648

pyang, 673–679, 683–687
pyangbind, 679–682
YANG 1.1, 662–663

data plane verification
SR, 830–831
SR-TE, 842–843

data resource, RESTCONF, 753–756
data streams, YAML

saving to files, 629
sorting, 630–631

data structures, Python, 286
dictionaries, 290–291

deleting, 292
functions, 292
if-else statements, 299–300

lists, 286–288
functions, 288–289
if-else statements, 298–299
nested lists, 289–290
slicing, 286–287
square brackets ([]), 286–287
value assignments, 286–288

Z01_Abuelenain_Index_p1121-p1196.indd 1135 27/03/21 6:37 pm

1136  data structures, Python

sets, 294–295
tuples

deleting, 293
functions, 292–293
joining, 293

data types
JSON, 592–594
numbers, Python, numbers, 273–276
numbers data types, Python,

numbers, 273–276
Python, 270, 276–280
XML, 567–568

data validation, JSON schemas,
609–614

databases, rules of thumb, 1117
datastores

NETCONF
configuring datastores,

712–720
datastore operations, 720–721

RESTCONF, 749–750
date command, Linux, 85–86
Debian, Linux distributions, 26
debugging

debug modules, Ansible, 999
SSH, 528–531, 533–534

decision tree algorithms, Python
machine learning, 382–384

declaring
arrays, Linux scripting, 222–224
variables, Linux scripting, 218–219
XML declarations, 566–567

delegating PCEP, LSP delegation,
864–867

<delete-config> operations, 719–720
DELETE method, 405–406, 770–771

deleting
connections, NetworkManager,

171–174
dictionaries, Python, 292
directories, Linux, 50–51
files, Linux, 47, 48
groups, Linux user/group manage-

ment, 141–142
tuples, Python, 293
users, Linux user/group management,

141
variables, Python, 272–273

dependencies, software, 95
dependency hell, 1114–1115
depsolve, 95
depth parameter, RESTCONF, 771
derived data types, YANG modules,

648–649
/dev directory, Linux storage, 36,

119–120
contents of, 120
device file types, 120–121
fdisk command, 121–125
file system creation, 125–126
hard disk partitions, 121–125
mkfs command, 125–126
mounting file systems, 126–128
unmounting file systems, 127

developing applications
different environments, 311
Docker, 317

CentOS containers, 322–325
clients, 322
commands list, 325–326
components of, 322
compose versions, 320–322

Z01_Abuelenain_Index_p1121-p1196.indd 1136 27/03/21 6:37 pm

dict.keys() function, Python  1137

container virtualization,
317–318

docker images command, 325
docker pull command, 325
Dockerfile instructions,

326–328
dockerizing applications,

326–331
hello-world containers,

322–325
installing, 318–320
Python orchestration, 376–378
REST API, 322
servers, 322
verifying, 320–322

Git
commit phase, 317
flexibility, 312
initialization commands, 314
performance, 312
pull phase, 317
push phase, 317
repositories, 312–313, 314–317
security, 312
server setup, 313–314
workflows, 317

organizing development environment,
311–312

Python
machine learning, 382–384
modules, 333–336
network automation,

architectures, 353–354,
371–375

network automation, Jinja2
templates, 363–375

network automation, NAPALM
libraries, 354–359, 371–375

network automation, Nornir
libraries, 359–363, 367–369,
371–375

orchestration, 375–382
web/API development, Django,

337–345
web/API development, Flask,

345–352
replicating product environments,

312
reusable code, 312
version control, 311
virtualenv tool, 331

creating virtual environments,
332–333

installing, 331
web/API development, 336–337

back end development, 336
Django, 337–345
Flask, 345–352
front end development, 336
Postman, 337–345

deviations, YANG modules, 658–662
device drivers, Linux, 23
device management, DNA Center,

934
device mappers, 135
DH (Diffie-Hellman) protocol,

490–492
dictionaries, Python, 290–291,

583–585
deleting, 292
functions, 292
if-else statements, 299–300

dictionary variables, Ansible, 1007
dict.items() function, Python, 292
dict.keys() function, Python, 292,

307–308

Z01_Abuelenain_Index_p1121-p1196.indd 1137 27/03/21 6:37 pm

1138  dict.values() function, Python

dict.values() function, Python, 292
dig command, Linux, 180–181
digital signatures, 496–497
directories

Linux, 48–49
/: root directory, 36
absolute paths, 38–39
attributes, 40–41
boot directory, 36
copying, 49–51
creating, 49, 51
deleting, 50–51
dev directory, 36
double dot notation (..), 37
etc directory, 36
home directory, 36
media directory, 37
mnt directory, 37
moving, 49, 51
navigating, 38–41
opt directory, 37
proc directory, 37
relative paths, 38–39
renaming, 50–51
root directory, 37
run directory, 37
srv directory, 37
sys directory, 37
tmp directory, 37
usr directory, 37
usr/bin directory, 37
usr/local directory, 37
usr/sbin directory, 37
var directory, 37

local/remote directory operations,
SFTP, 542–543

direct-tcpip channels, SSH
Connection Protocol, 521

disabling password authentication,
525–526

<discard-changes> operations,
NETCONF, 722–724

distinct startup capability, NETCONF,
733

distributions, Linux, 26
Django, web/API development, 337

application web servers, 338–339
creating applications, 341–345
demo applications, 343–345
installing, 337–338
migrations, 338–339
models.py files, 343
serializer.py files, 343
settings.py files, 339–341
starting new projects, 337–338
urls.py files, 343
views.py files, 343

dmesg command, Linux, 90
dmidecode command, Linux, 88–89
DNA Center, 931–933

device management, 934
Eastbound API, 933
event notifications, 935
Integration API, 935–936
Intent API, 934, 936–941
Northbound API, 933
Southbound API, 933
webhooks, 935
Westbound API, 933

DNF (Dandified YUM), 95, 117
DNS (Domain Name System),

179–181
Docker, 317, 1115

Z01_Abuelenain_Index_p1121-p1196.indd 1138 27/03/21 6:37 pm

endings/beginnings of words, matching with regular expressions (regex)  1139

CentOS containers, 322–325
clients, 322
commands list, 325–326
components of, 322
compose versions, 320–322
containers, virtualization, 317–318
docker images command, 325
docker pull command, 325
Docker Swarm, 1115
Dockerfile instructions, 326–328
dockerizing applications, 326–331
hello-world containers, 322–325
installing, 318–320
Python orchestration, 376–378
REST API, 322
servers, 322
verifying, 320–322

documentation, rules of thumb, 1111
dollar signs ($) metacharacter, regular

expressions (regex), 185, 187
dots (.)

.* notation, regular expressions
(regex), 190

.. notation, Linux directories, 37
regular expressions (regex), 185, 189

double asterisks (**), assignment
operator, Python, 281

double dot notation (..), Linux
directories, 37

double equal sign (==)
conditional statements, 229
Jinja2, 1019
Python, 285

double semicolons (;;), case-in
constructs, 233–234

DRY principle, 311, 336

DTD (Document Type Definition),
563

example of, 563–564
joint XML/DTD files, 564–565

dynamic data type allocation, Python,
271–272

dynamically setting Ansible variables,
1011–1013

E
eastbound API, 883, 933
echo command, Linux, 208–210,

222–226
<edit-config> operations, 712–719
elif statements, Python control flow,

297–298
encapsulation, OOP, 257
encoding protocols, 18
encryption

AEAD, 495–496
keys, 488–489

asymmetric keys, 490
DH protocol, 490–492
ephemeral keys, 490
generation/exchanges, 488–492
HKDF, 492
key exchange algorithm, 490
KM, 492
PFS, 490
PSK, 489
symmetric keys, 489

end tags, XML, 555
endings/beginnings of words,

matching with regular expressions
(regex), 188–189

Z01_Abuelenain_Index_p1121-p1196.indd 1139 27/03/21 6:37 pm

1140  endpoints

endpoints
API, 882
collaboration endpoints, 943

Cisco IP Phones, 944
Cisco Webex Room Series, 944

Enoch, Linux distributions, 26
entity bodies, HTTP, 391
entity header fields, HTTP, 416,

427–430
EPEL repositories, 111–112
ephemeral keys, 490
equal sign (=)

assignment operator, Python, 284
conditional statements, 229
double equal sign (==)

conditional statements, 229
Jinja2 operator, 1019
Python operator, 285

error reporting, RESTCONF, 746
etc directory, Linux, 36
event notifications, DNA Center, 935
exit() function, Python, 272
Expect programming language, Linux

scripting, 245–246
expressions, XPath, 575–576

absolute path, 576
absolute path and multiple outputs,

577
anywhere selection, 576
path definitions, 578
predicates, 577

external JSON schemas, referencing,
602–609

F
FCAPS (Fault, Configuration,

Accounting, Performance,
Security), 3

fdisk command, Linux, 121–125
fetching/uploading files via SFTP, 543
fields parameter, RESTCONF, 771,

773–777
file comparison operators, Bash

shells, 230–232
file modules, Ansible, 1003
files

Linux
attributes, 40–41
copying, 46–48
creating, 46
deleting, 47, 48
moving, 47, 48
permissions, 40
removing, 47, 48
renaming, 47, 48

permissions, changing with SFTP,
544–545

security management, Linux
ACL, 148–155
changing file users/groups, 146
creating files under different

groups, 147
default users/groups of new

files, 147
logging into different groups,

147–148
permissions, 143–146,

150–152
file systems, Linux, 35–37

creating file systems, 125–126
mounting file systems, 126–128
unmounting file systems, 127

filter parameter, RESTCONF, 771
filters, Ansible, 1013–1015
finding sources of truth, 1110–1111
findmnt command, Linux, 148–149
Finesse (Cisco), 943, 946–947

Z01_Abuelenain_Index_p1121-p1196.indd 1140 27/03/21 6:37 pm

Git  1141

firewalld service, 155–158
Flask, web/API development

accessing in-memory employee data,
347–349

installing in virtual environments,
345–346

retrieving ID-based data, 349–350
simple applications, 346–347

float() function, Python, 275
floating point data, Python, 275
flow control, Python

elif statements, 297–298
for loops, 301–302, 306

nested for loops, 303–304
range() function, 302–303

if-else statements, 296–300
nested code blocks with conditional

statements, 295–296
while loops, 304–306

for-do loops, 235–237
for loops, Python control flow, 301–

302, 306
nested for loops, 303–304
range() function, 302–303

format() function, Python, 280
formatting

strings, Python, 280
XML, 561–562

forward slash (/)
/: root directory, Linux, 36
/= operator, Python, 284
assignment operator, Python, 281

forwarded-tcpip channels, SSH
Connection Protocol, 520–521

forwarding
interfaces, Linux networking, 167
SR, 832

frames, HTTP/2, 504–505
binary message framing, 506–507
multiplexing, 505–506

from-import statements, Python
modules, 334–335

front end web/API development, 336
funcname() function, Python, 307
functions

Linux scripting, 240–244
Python, 306–307

calling in code blocks, 307–309
defining in code blocks,

307–309
dictionary functions, 292
representations, 307

G
GBP, compact GBP, 1113–1114
GCM (Galois/Counter Mode), 495
general header fields, HTTP, 416,

418–422
<get> operations, NETCONF,

702–703
<get-config> operations, NETCONF,

702–703
GET method

HTTP client requests, 398
Bash shells, 447–454
Postman, 445–446

request messages, 389–391, 416–417
RESTCONF, 760–763

Get RPC, gNMI, 801–807
getfacl command, Linux, 149–155
Git

commit phase, 317
flexibility, 312

Z01_Abuelenain_Index_p1121-p1196.indd 1141 27/03/21 6:37 pm

1142  Git

initialization commands, 314
performance, 312
pull phase, 317
push phase, 317
repositories, 312–313

cloning, 316–317
fetching remote repository

updates, 314–315
setting up, 315–316
updating local repositories,

314–315
security, 312
server setup, 313–314
workflows, 317

gNMI (gRPC Network Management
Interface), 798–799

anatomy of, 799–801
Capabilities RPC, 810–811
Get RPC, 801–807
insecure mode, IOS XE, 815
managing network elements,

814–818
network programmability, 961–962
Python

metaclasses, 815–816
sample Get script, 816–818

Set RPC, 807–810
Subscribe RPC, 811–814

GNU Bash Manual, 184
GNU C library (glibc), 24
GNU info files, 35
Google Chrome, LocalRepo

repositories, 114–117
grep command, regular expressions

(regex), 184–193
groupadd command, Linux, 141
groupdel command, Linux, 141–142

grouping nodes, YANG data modeling,
654–656

group/user management, Linux,
136–138

creating
groups, 141
new users, 138–141

deleting
groups, 141–142

users, 141
getting user information, 136
modifying user details, 142
passwords

changing, 141
setting user passwords, 138–141

gRPC (Google Remote Procedure
Calls)

gNMI, 798–799
anatomy of, 799–801
Capabilities RPC, 810–811
Get RPC, 801–807
insecure mode, IOS XE, 815
managing network elements,

814–818
Python, metaclasses, 815–816
Python, sample Get script,

816–818
Set RPC, 807–810
Subscribe RPC, 811–814

history of, 782–784
networks

managing network elements,
814–818

programmability, 961–962
principles of, 782–784
Protobuf

example of, 788–789
in Python, 790–798

Z01_Abuelenain_Index_p1121-p1196.indd 1142 27/03/21 6:37 pm

HTTP (HyperText Transfer Protocol)  1143

server sample, 794–797
as a transport, 784–786

guest shells
IOS XE programmability, 885
Open NX-OS, 884, 887, 891–892

GUI and Linux CLI, 28–29
gzip archiving utility, Linux, 67–68

H
handshake protocol, TLS 1.3, 499–

502
hard disk partitions, /dev directory,

121–125
hard links, Linux, 51–55
hashbangs (#!), Linux shell scripting,

205–208
head and tail command, 45–46
HEAD method

HTTP client requests, 398
RESTCONF, 763

headers, HTTP, 389–391
client request header fields, 422–425
entity header fields, 416, 427–430
general header fields, 416, 418–422
overview of, 416–418
request header fields, 416
response header fields, 416
server response header fields, 425–427

head-of-line blocking, 504
hello messages, NETCONF, 696–698,

973–974
hello-world containers, Docker,

322–325
help

Ansible, 995–996
Linux, 31–35
SFTP, 541–542

hierarchical inheritance, OOP, 257
history command, 30
HKDF (HMAC-based Extract-and-

Expand Key Derivation Function),
492

HMAC (Hash function-based MAC),
494

home directory, Linux, 36
host-based authentication, 517–518
hosting applications

containerized application hosting,
1116

iPerf, 1116
native application hosting, 1115–1116
rules of thumb, 1115–1116

HTTP (HyperText Transfer Protocol),
414

Bash shells, 447–454
client requests, 388–392, 397–398

CONNECT method, 407
DELETE method, 405–406
GET method, 398
GET method, Bash shells,

447–454
GET method, Postman,

445–446
HEAD method, 398
header fields, 422–425
OPTIONS method, 407–408
POST method, 399–402,

443–445, 465
PUT method, 402–405
TRACE method, 408

client/server connections, 394–395
entity bodies, 391
entity header fields, 427–430
GET, request messages, 389–391,

416–417

Z01_Abuelenain_Index_p1121-p1196.indd 1143 27/03/21 6:37 pm

1144  HTTP (HyperText Transfer Protocol)

headers, 389–391
client request header fields,

422–425
entity header fields, 416,

427–430
general header fields, 416,

418–422
overview of, 416–418
request header fields, 416
response header fields, 416
server response header fields,

425–427
HTTP/1.1, 388, 504

authentication, 469–471
authentication, base64

encoding, 472, 474
authentication, basic

authentication, 472–474
authentication, OAuth protocol,

474–483
authentication, UTF-8

encoding, 472–473
authentication, workflows, 470
compression, 396–397
persistent connections,

395–396
pipelining, 396

HTTP/2, 503–504, 507–508
frames, 504–505
frames, binary message

framing, 506–507
frames, multiplexing, 505–506
messages, 504–505
streams, 505

HTTP/3, 504
HTTPS, 503
hyperlinks, 388
hypertext, 388

messages
CRLF, 416, 418
format of, 415
headers, client request header

fields, 422–425
headers, entity header fields,

416, 427–430
headers, general header fields,

416, 418–422
headers, overview of,

 416–418
headers, request header fields,

416
headers, response header fields,

416
headers, server response

header fields, 425–427
HTTP/2, 504–505
start lines, 415
whitespaces, 416

methods, 389
CONNECT method, 407
DELETE method, 405–406
GET method, 398
GET method, Bash shells,

447–454
GET method, Postman,

445–446
HEAD method, 398
OPTIONS method, 407–408
POST method, 399–402,

443–445, 465
PUT method, 402–405
TRACE method, 408

overview, 387–392
POST method

Flask, 350–352
RESTCONF, 740, 745–746

Z01_Abuelenain_Index_p1121-p1196.indd 1144 27/03/21 6:37 pm

initialization commands, Git  1145

Postman, 436–437
installing, 438
interface, 438–441

Python
requests packages, 464–467
socket modules, 455–457
TCP over Python, 455–457
urllib packages, 458–463

REST, framework, 392–394
RESTCONF, 740

HTTP headers, 745–746
request messages, 740
response messages, 740

RFC 2616, 416
RFC 3986, 393–394
RFC 6265, 484
RFC 6749, 475–476
RFC 6750, 475–476
RFC 7230, 416–417
RFC 7231, server status codes,

409–410
RFC 7540, 388
server status codes, 408–409

1xx information status codes,
411

2xx successful status codes,
411–412

3xx redirection status codes,
412

4xx server error status codes,
413–414

5xx client error status codes,
414

Cisco devices, 414
RFC 7231, 409–410

socket modules, 455–457
state management with cookies,

483–487

TCP over Python, 455–457
transactions, 389

client requests, 397–408
server status codes, 408–414

as transfer protocol, 387
URI, 389, 431, 432–436
urllib packages, 458–463
versions of, 388

HTTPS (HTTP over TSL), 503
human operations, costs, 2
hyperlinks, 388
hypertext, 388

I
IaC (Infrastructure as Code), .

See also NaC, 12
IBN (Intent-Based Networking)

defined, 13–14
intent assurance, 14
intent fulfillment, 14

id command, Linux, 136
identity operators, Python, 284–285
IETF drafts, SDN, 823
IETF YANG modules, 670–671
if-else statements, Python control

flow, 296–300
if-then constructs, Linux scripting,

226–232
import statements, Python modules,

333–334
importing Ansible variables from

external files, 1007–1009
indexed arrays, 222–224
info command, 35
inheritance, OOP, 256–257
initialization commands, Git, 314

Z01_Abuelenain_Index_p1121-p1196.indd 1145 27/03/21 6:37 pm

1146  inode numbers

inode numbers, 40
input() function, Python, 298
input, Linux scripting, 213

Arguments.bash script, 213–214
read command, 214–217

input/output redirection, Linux,
57–59

>> notation, 61–62
piping (|), 58, 65–67
stderr, 59, 62–65
stdin, 59, 61
stdout, 59, 61, 62–65
tee command, 66–67

insecure mode, gNMI in IOS XE, 815
insert parameter, RESTCONF, 771
installing

Ansible, 990
Django, 337–338
Docker, 318–320
Flask in virtual environments,

345–346
OpenSSH, CentOS installations, 522
Postman, 438
protoc on Python, 790–791
Python, 260–263
software on Linux, 94–96
virtualenv tool, 331

instance identifiers, 850
int() function, Python, 275
integer comparison operators, Bash

shells, 229–230
integer operations, Python, 275
Integration API, DNA Center,

935–936
Intent API, DNA Center, 934,

936–941
intent assurance, 14
intent fulfillment, 14

interface state (Linux), toggling, 161
interfaces, network programmability

CLI programmable interfaces,
962–967

Linux, 967–973
NETCONF/YANG, 973–978
RESTCONF/YANG, 978–987

interpreters, 28
inventories, Ansible

default paths, 992
IP addresses, 993–994
simple inventory files, 992–993

inventory files, Ansible,
1009–1011

IOS XE
Ansible

clearing counters, 1060–1061
configuring IOS XE,

1061–1069
configuring IOS XE with ios_*

modules, 1069–1073
configuring IOS XR with

iosxr_* modules, 1083–1084
preparing IOS XE for Ansible

management, 1055–1057
preparing IOS XE for

NETCONF management,
1095–1096

updating files with additional
hosts/variables, 1057–1058

verifying IOS XE for Ansible
management, 1057

verifying operational data,
1058–1060

gNMI, insecure mode, 815
Jinja2 templates, 367–371
NETCONF, 918–922
programmability, 885–886
SSH setup, 526–531, 545–546

Z01_Abuelenain_Index_p1121-p1196.indd 1146 27/03/21 6:37 pm

JSD (JSON Schema Definition)  1147

IOS XR
Ansible

configuring IOS XR,
1078–1084

preparing for management,
1073–1074

preparing IOS XR for
NETCONF management,
1096–1098

verifying IOS XR for Ansible
management, 1074–1075

verifying operational data,
1074–1078

Jinja2 templates, 367–371
NETCONF, 916–918
PCEP configurations, 867–880
programmability, 886–887
SSH setup, 532–536, 546–547

ios_command module, Ansible
clearing counters, 1060–1061
verifying operational data, 1058–1060

iosxr_command, Ansible
input parameters, 1001
playbooks, 997–999
verifying operational data, 1074–1078

IP addresses
adding to/removing from Linux

interfaces, 161–162
Ansible inventories, 993–994

ip command, Linux, 158–167
IP Phones (Cisco), 944
IP VPN, JSON schemas, 597–598,

601–602, 607–609
iPerf, application hosting, 1116
IS-IS IGP, SR configuration, 825–827
is not operator, Python, 285
is operator, Python, 285
ITIL 4 management practices, 3–5

J
Jinja2

!= operator, 1019
< operator, 1019
<= operator, 1019
> operator, 1019
>= operator, 1019
comparison operators, 1018–1019
Python functions, 1049

join() function, 1050–1051
map() function, 1054–1055
split() function, 1051–1054

templates, 363–364, 1034–1040
conditional statements,

1045–1049
IOS XE, 367–371
IOS XR, 367–371
loops, 1040–1043
NAPALM libraries, 371–375
Netmiko libraries, 364–367
Nornir libraries, 367–369,

371–375
NX-OS, 367–371
nx-os_config modules,

1091–1093
playbooks, 1043–1045
variables, 1042–1043
YAML and, 635–637

jobs, Linux, 74
displaying status, 80
stopping, 80–81

join() function, 1050–1051
joining tuples, Python, 293
joint XML/DTD files, 564–565
journald command, Linux, 93–94
JSD (JSON Schema Definition), 595

Z01_Abuelenain_Index_p1121-p1196.indd 1147 27/03/21 6:37 pm

1148  JSON (JavaScript Object Notation)

JSON (JavaScript Object Notation)
arrays, 593
Boolean data, 593
characteristics, 591
data example, 591–592
data format, 592–594
data types, 592–594
defined, 591
JSD, 595
JTOX drivers and pyang, 683–687
null values, 593
numbers, 593
objects

key/pair values, 592
out of range objects and data

validation, 613–614
referencing external JSON

schemas, 606–607
repetitive objects, 598–602
simple JSON object example,

592
typos and data validation,

611–612
unexpected keys and data

validation, 612–613
schemas

annotation, 596
basic schema without content,

596–597
data validation, 609–614
definitions in, 598–601
IP VPN, 597–598, 601–602,

607–609
JSD, 595
keywords, 596
properties of, 597–598
purpose of, 595–596
referencing external schemas,

602–609

repetitive objects, 598–602
structure of, 595–598
validation keywords, 596–597

strings, 593
YAML versus, 615–616

JTOX drivers and pyang, 683–687

K
kernels, Linux

kernel space, 23–24
LKM, 25
microkernel kernels, 25
monolithic kernels, 25
SCI, 24

key/pair values, JSON objects, 592
keys

authentication, SSH, 523–525
encryption, 488–489

asymmetric keys, 490
DH protocol, 490–492
ephemeral keys, 490
generation/exchanges, 488–492
HKDF, 492
key exchange algorithm, 490
KM, 492
PFS, 490
PSK, 489
symmetric keys, 489

RSA keys, Linux network
programmability, 971–973

keywords, JSON schemas, 596
kill command, Linux system

maintenance, 78–80, 81
<kill-session> operations, NETCONF,

721–722
KM (Keying Material), 492
Kubernetes, 378–382, 1115

Z01_Abuelenain_Index_p1121-p1196.indd 1148 27/03/21 6:37 pm

Linux  1149

L
lab topologies

BGP-LS, 845–846
PCEP, 867
SR, 825

lastlog command, Linux, 91
leading spaces, XML documents, 555
leaf nodes, YANG data modeling,

649–651
leaf-list nodes, YANG data modeling,

651–652
left arrow (<)

Jinja2 operator, 1019
Python operator, 285

left arrow, equal sign (<=)
Jinja2 operator, 1019
Python operator, 285

left shift operator (<<), Python, 281
less command, 43–44
lexical analyzers, Python code

execution, 263
libraries

NAPALM libraries, 354–359
Netmiko libraries, Jinja2 templates,

364–367
Nornir libraries, 354–359, 371–375

libsolv, 95
link NLRI, BGP-LS, 856–857
links, Linux

hard links, 51–55
soft links, 55–57
symlinks, 56–57

Linux, 16–17, 21, 25
>> notation, 61–62
ACL, 148–155
API, 24

applications, communication, 24
architecture, 23–25
archiving utilities

bzip2, 67, 69
gzip, 67–68
tar, 67, 70–73
xz, 67, 69–70, 72–73

Bash shells, 29
IOS XR programmability, 886
Open NX-OS, 886, 887–891

BIOS, 27
blkid command, 148–149
boot process, 26–28
bzip2 archiving utility, 67, 69
cat command, 41–42, 61–62
cat/proc/cpuinfo command, 87–88
chmod command, 144–146
clear command, 30
command shell, 28–30
comments in scripts, 207–208
compiling software, 94, 96–97
cp command, 46–48, 49–51
daemons, 24
date command, 85–86
depsolve, 95
/dev directory, storage, 119–120

contents of, 120
device file types, 120–121
fdisk command, 121–125
file system creation, 125–126
hard disk partitions, 121–125
mkfs command, 125–126
mounting file systems, 126–128
unmounting file systems, 127

development, 22
device drivers, 23

Z01_Abuelenain_Index_p1121-p1196.indd 1149 27/03/21 6:37 pm

1150  Linux

device mappers, 135
dig command, 180–181
directories, 48–49

/: root directory, 36
absolute paths, 38–39
attributes, 40–41
boot directory, 36
copying, 49–51
creating, 49, 51
deleting, 50–51
dev directory, 36
double dot notation (..), 37
etc directory, 36
home directory, 36
media directory, 37
mnt directory, 37
moving, 49, 51
navigating, 38–41
opt directory, 37
proc directory, 37
relative paths, 38–39
renaming, 50–51
root directory, 37
run directory, 37
srv directory, 37
sys directory, 37
tmp directory, 37
usr directory, 37
usr/bin directory, 37
usr/local directory, 37
usr/sbin directory, 37
var directory, 37

distributions, 26
dmesg command, 90
dmidecode command, 88–89
DNF, 95, 117

double dot notation (..), Linux
directories, 37

echo command, 208–210, 222–226
EPEL repositories, 111–112
fdisk command, 121–125
file security management

ACL, 148–155
changing file users/groups, 146
creating files under different

groups, 147
default users/groups of new

files, 147
logging into different groups,

147–148
permissions, 143–148, 150–

152
file systems, 35–37

creating, 125–126
mounting, 126–128
unmounting, 127

files
attributes, 40–41
creating, 46
permissions, 40
viewing, 41–46

findmnt command, 148–149
getfacl command, 149–155
GNU C library (glibc), 24
GNU info files, 35
grep command, regular expressions

(regex), 184–193
groupadd command, 141
groupdel command, 141–142
Guest shells, Open NX-OS, 884, 886,

887, 891–892
gzip archiving utility, 67–68
hard links, 51–55
head and tail command, 45–46

Z01_Abuelenain_Index_p1121-p1196.indd 1150 27/03/21 6:37 pm

Linux  1151

help, 31–35
history command, 30
history of, 21–22
host files and Ansible, 993
id command, 136
info command, 35
inode numbers, 40
interpreters, 28
ip command, 158–167
jobs, 74

displaying status, 80
stopping, 80–81

journald command, 93–94
kernels

kernel space, 23–24
LKM, 25
microkernel kernels, 25
monolithic kernels, 25
SCI, 24

kill command, 78–80, 81
lastlog command, 91
less command, 43–44
libsolv, 95
links

hard links, 51–55
soft links, 55–57
symlinks, 56–57

ls command, 31–34, 39, 143–144
lspci command, 90
lvdisplay command, 132–133
LVM, 128–135
man command, 34
MBR, 27
mkdir command, 49, 51, 134–135
mkfs command, 125–126, 133–134
more command, 42–43, 44

mv command, 47, 48, 50–51
networking, 158–159

adding/removing IP addresses
from interfaces, 161–162

configuration files, 174–179
DNS, 179–181
ip command, 158–167
NetworkManager, 168–174
ping command, 164–167,

178–179, 181
programmability, 960, 967–973
routing tables, 163–168
scripting, 174–179
sysctl command, 167–168
toggling interface state, 161

newgrp command, 138, 146–148
package management software, 95

DNF, 95, 117
RPM, 95, 97–101
YUM, 95, 101–117

patches, 22
pgrep command, 78
pinfo command, 35
ping command, 164–167, 178–179,

181
piping (|), 58, 65–67
POST, 27
printf command, 210–213
processes, 73–74, 80–81
ps command, 74–77
pvdisplay command, 130–131, 133
pwd command, 29, 138–140
read command, 214–217
redirecting input/output, 57–59

>> notation, 61–62
piping (|), 58, 65–67
stderr, 59, 62–65

Z01_Abuelenain_Index_p1121-p1196.indd 1151 27/03/21 6:37 pm

1152  Linux

stdin, 59
stdin, sort command, 59–61
stdout, 59, 62–65
stdout, sort command, 61
tee command, 66–67

resource utilization, 83–85
rm command, 47, 48
rmdir command, 50–51
RPM, 95, 97–101
RSA keys, network programmability,

971–973
ryslogd command, 91–93
scale command, 221–222
scripting, 183

Arguments.bash script,
213–214

arithmetic operations, 220–222
arrays, adding/removing

elements, 224–226
arrays, associative arrays, 222
arrays, concatenating, 221–226
arrays, declaring, 222–224
arrays, defined, 222
arrays, indexed arrays,

222–224
awk programming language,

194–197
Bash scripting, 184
Bash shells, 206–207, 213–214
Bash shells, Arguments.bash

script, 213–214
case-in constructs, 232–234
comments, 207–208
conditional statements, 226
conditional statements, case-in

constructs, 232–234
conditional statements, double

equal sign (==), 229

conditional statements, equal
sign (=), 229

conditional statements, if-then
constructs, 226–232

Expect programming language,
245–246

functions, 240–244
GNU Bash Manual, 184
if-then constructs, 226–232
input, 213
input, Arguments.bash script,

213–214
input, read command, 214–217
loops, 234–235
loops, for-do loops, 235–237
loops, until-do loops, 239–240
loops, while-do loops, 237–239
networks, 174–179
output, 208
output, echo command, 208–210
output, POSIX, 210
output, printf command,

210–213
regular expressions (regex),

184–193
scale command, 221–222
sed command, 197–205
shells, 183
shells, structure of, 205–208
variables, 217–218
variables, declaring, 218–219
variables, one-dimensional

variables, 218
variables, value assignments,

218–219
security, 135

ACL, 148–155
file security management,

143–148

Z01_Abuelenain_Index_p1121-p1196.indd 1152 27/03/21 6:37 pm

Linux  1153

system security, 155–158
user/group management,

136–142
sed command, 197–205
services, 74, 81–83
setfacl command, 151–155
sg command, 146–147
shells, 183, 205–208
shred command, 48
soft links, 55–57
software

dependencies, 95
installation/maintenance,

94–96
software repositories, 95–96

EPEL repositories, 111–112
listing, 110–111
LocalRepo repositories,

112–117
sort command, stdin, 59–61
source code, software installation, 94
SSH, network programmability,

971–973
stat command, 62–63
stderr, 59, 62–65
stdin, 59, 61
stdout, 59, 61, 62–65
storage, 119

/dev directory, 119–128
LVM, 128–135
physical storage, 119–128

su command, 29–30
sudo command, 136
sudo yum remove httpd command,

109
sudo yum update command, 110
symlinks, 56–57

sysctl command, 167–168
syslog messages, 93–94
system calls, 24
system daemons, 24
system information

cat/proc/cpuinfo command,
87–88

date command, 85–86
dmesg command, 90
dmidecode command, 88–89
lspci command, 90
timedatectl command, 86
update command, 86–87

system logs, 91
journald command, 93–94
lastlog command, 91
rotation, 91
ryslogd command, 91–93
tail command, 91

system maintenance, 73
jobs, 74, 80–81
kill command, 78–80, 81
pgrep command, 78
processes, 73–74, 80–81
ps command, 74–77
services, 74, 81–83
systemctl command, 81–83
threads, 73

system security, 155–158
systemctl command, 81–83
tar archiving utility, 67, 70–73
tee command, 66–67
Terminal, 29
threads, 73
time stamps, 41
timedatectl command, 86

Z01_Abuelenain_Index_p1121-p1196.indd 1153 27/03/21 6:37 pm

1154  Linux

today, 22
top command, 83–85
touch command, 46, 48
update command, 86–87
usage, 22
user space (userland), 23–24
useradd command, 138–140
userdel command, 141
user/group management, 136–138

changing passwords, 141
creating groups, 141
creating new users, 138–141
deleting groups, 141–142
deleting users, 141
getting user information, 136
modifying user details, 142
setting user passwords, 138–141

usermod command, 142
vgdisplay command, 132, 133–134
volumes

logical volumes, 132–133
physical volumes, 130–131
volume groups, 132, 133–134
mounting, 134–135

xz archiving utility, 67, 69–70, 72–73
YUM, 95, 101

commands list, 102–103
sudo yum remove httpd

command, 109
sudo yum update command, 110
yum info command, 104–105
yum install command, 106–109
yum list command, 103
yum repolist all command,

110–111
yum search command, 103–104
yum-config-manager command,

111–112

list nodes, YANG data modeling,
653–654

list variables, Ansible, 1007
list.append() function, Python,

288–289
list.pop() function, Python, 288–289
list.reverse() function, Python, 289
lists, Python, 286–287

accessing data/operations, 287–288
functions, 288–289
if-else statements, 298–299
nested lists, 289–290
slicing, 286–287
square brackets ([]), 286–287
value assignments, 286–288

list.sort() function, Python, 289
LKM, Linux, 25
local Git repositories, updating,

314–315
local/remote directory operations,

SFTP, 542–543
LocalRepo repositories, 112–117
Location Scanning API (Meraki), 923
<lock> operations, NETCONF,

720–721
logical AND/OR, combining multiple

conditional statements, 1022–1024
logical operators

Python, 284–285, 297–298
XPath values, 577

logins, SFTP, 541
loopback interfaces

CLI programmability, 962–963
NETCONF programmability, 975–978

loops
Ansible

conditional statements with
loops, 1024–1027

Jinja2 templates, 1040–1043

Z01_Abuelenain_Index_p1121-p1196.indd 1154 27/03/21 6:37 pm

managing  1155

for loops, Python control flow,
301–302, 306
nested for loops, 303–304
range() function, 302–303

Jinja2 templates, 1040–1043
Linux scripting, 234–235

for-do loops, 235–237
until-do loops, 239–240
while-do loops, 237–239

nx-os_config modules, 1090–1091
while loops, 304–306

lowercase/uppercase characters
(regular expressions), matching,
187–188

ls command, 31–34, 39, 143–144
LSP, PCEP

PCC, 874–876, 879–880
PCE, 876–880

lspci command, Linux, 90
lvdisplay command, Linux, 132–133
LVM (Logical Volume Manager),

128–135

M
MAC (Message Authentication Code),

493–494
machine learning, Python, 378–382
man command, 34
managing

CMDB, 12
configuration management automation

IOS XE programmability, 886
Open NX-OS programmability,

885
devices, DNA Center, 934
file security management, Linux

ACL, 148–155

changing file users/groups, 146
creating files under different

groups, 147
default users/groups of new

files, 147
logging into different groups,

147–148
permissions, 143–148, 150–152

IOS XE with Ansible
clearing counters, 1060–1061
NETCONF, 1095–1096
preparing for management,

1055–1057
preparing for NETCONF

management, 1095–1096
updating files with additional

hosts/variables, 1057–1058
verifying management, 1057
verifying operational data,

1058–1060
IOS XR with Ansible

NETCONF, 1096–1098
preparing for management,

1073–1074
preparing for NETCONF

management, 1096–1098
verifying operational data,

1074–1078
ITIL 4 management practices, 3–5
NETCONF, verifying operational

data, 1098–1103
networks

defined, 3–5
device management with

NETCONF/YANG, 975–978
FCAPS, 3

NX-OS with Ansible
collecting show output with

nxos_command, 1086–1088

Z01_Abuelenain_Index_p1121-p1196.indd 1155 27/03/21 6:37 pm

1156  managing

configuring with nx-os_*
modules, 1093–1095

configuring with nx-os_config
modules, 1086–1088

interactive commands,
1088–1089

NETCONF, 1098
preparing for management,

1084–1085
preparing for NETCONF

management, 1098
verifying management,

1085–1086
verifying operational data,

1086–1089
package management software, 95

DNF, 95, 117
RPM, 95, 97–101
YUM, 95, 101–117

state management, HTTP, 483–487
user/group management, Linux,

136–138
changing passwords, 141
creating groups, 141
creating new users, 138–141
deleting groups, 141–142
deleting users, 141
getting user information, 136
modifying user details, 142
setting user passwords,

138–141
manual software compilation/

installation, Linux, 96–97
map() function, 1054–1055
mappings, YAML, 618–620
matching

anything/everything with .* notation,
regular expressions (regex), 190

beginnings/endings of words,
regular expressions (regex),
188–189

uppercase/lowercase characters,
regular expressions (regex),
187–188

MBR (Master Boot Records), 27
media directory, Linux, 37
Meeting Server (Cisco), 943
membership operators, Python,

285–286
Meraki API, 922, 923

Captive Portal API, 923
Dashboard API, 922–931
Location Scanning API, 923
MV Sense API, 923
Webhook Alerts API, 922

merge keys, YAML, 624–625
messages, HTTP

CRLF, 415, 418
format of, 415
headers

client request header fields,
422–425

entity header fields, 416,
427–430

general header fields, 416,
418–422

overview of, 416–418
request header fields, 416
response header fields, 416
server response header fields,

425–427
HTTP/2, 504–505
MAC, 493–494
start lines, 415
whitespaces, 416

Z01_Abuelenain_Index_p1121-p1196.indd 1156 27/03/21 6:37 pm

modeling data, YANG  1157

messages layer
NETCONF, 693, 695–696

hello messages, 696–698
rpc messages, 698–699
rpc-reply messages, 699–701

RESTCONF, 742–743, 759
constructing messages, 745
content parameter, 771
DELETE method, 770–771
depth parameter, 771
editing data, 759–763
error reporting, 746
fields parameter, 771, 773–777
filter parameter, 771
GET method, 760–763
HEAD method, 763
HTTP headers, 745–746
insert parameter, 771
OPTIONS method, 759–760
PATCH method, 767–770
point parameter, 771
POST method, 763–765
PUT method, 765–767
query parameters, 771–777
request messages, 743–744
response messages, 744–745
retrieving data, 759–763
start-time parameter, 771
stop-time parameter, 771
with-defaults parameter, 771

methods, HTTP, 389
CONNECT method, 407
DELETE method, 405–406
GET method, 398

Bash shells, 447–454
Postman, 445–446

HEAD method, 398
OPTIONS method, 407–408
POST method, 399–402

Postman, 443–445
Python and HTTP, 465

PUT method, 402–405
TRACE method, 408

microkernel kernels, Linux, 25
microservice architectures, 782
migrations, Django, 338–339
minus sign (-)

-= operator, Python, 284
assignment operator, Python, 281

mkdir command, 49, 51, 134–135
mkfs command, Linux, 125–126,

133–134
mnt directory, Linux, 37
model-based industry-standard API

IOS XE programmability, 885
IOS XR programmability, 886
Open NX-OS programmability, 884

model-driven telemetry
rules of thumb, 1113–1114
SNMP, 1113
syslog, 1113

modeling data, YANG, 639–640, 642
importance of, 640–642
modules, 642–644

augmentation, 656–658
built-in data types, 647–648
cloning, 665
derived data types, 648–649
deviations, 658–662
home of, 664–666
IETF YANG modules, 670–671
native (vendor-specific) mod-

ules, 666–669

Z01_Abuelenain_Index_p1121-p1196.indd 1157 27/03/21 6:37 pm

1158  modeling data, YANG

OpenConfig YANG modules,
671–673

structure of, 644–646
verifying downloaded modules,

665–666
nodes, 649

container nodes, 647–648
grouping, 654–656
leaf nodes, 649–651
leaf-list nodes, 651–652
list nodes, 647–648

pyang, 673–679, 683–687
pyangbind, 679–682
YANG 1.1, 662–663

models.py files, Django, 343
modifying user details, Linux user/

group management, 142
modules

Ansible
control functions,

1001–1002
debug modules, 999
file modules, 1003
ios_command module,

1058–1061
iosxr_command, parameters,

1001
network modules, 1003
return values, 1001–1002
structure of, 1000
utility modules, 1003

Python
application development,

333–336
classes, 335–336
constructors, 335–336

from-import statements,
334–335

import statements, 333–334
YANG data modeling, 642–644

augmentation, 656–658
built-in data types, 647–648
cloning, 665
derived data types, 648–649
deviations, 658–662
home of, 664–666
IETF YANG modules, 670–671
native (vendor-specific)

modules, 666–669
OpenConfig YANG modules,

671–673
structure of, 644–646
verifying downloaded modules,

665–666
Modulo Operator (%), 274, 281
monitoring networks, streaming

telemetry, 1113–1114
monolithic kernels, Linux, 25
more command, 42–43, 44
mounting

file systems, 126–128
volumes, LVM, 134–135

moving
directories, Linux, 49, 51
files, Linux, 47, 48

MPLS FIB, SR, 828–830
MPLS LSP, PCEP, 864–867
multi-level inheritance, OOP, 257
multiple inheritance, OOP, 257
multiplexing frames, HTTP/2, 505–506
mv command, 47, 48, 50–51
MV Sense API (Meraki), 923

Z01_Abuelenain_Index_p1121-p1196.indd 1158 27/03/21 6:37 pm

NETCONF  1159

N
NaC (Network as Code), 12
namespaces, XML, 559–561
NAPALM libraries, network

automation, 354–359, 371–375
native (vendor-specific) YANG

modules, 666–669
native application hosting, 1115–1116
ncclient, NETCONF, 735–739
negative/positive values, arithmetic

operators, Python, 282
nested code blocks with conditional

statements, Python control flow,
295–296

nested for loops, 303–304
nested lists, Python, 289–290
nesting format, XML, 561–562
nesting relationships, XML, 555–556
NETCONF, 689

Ansible and
configuring, 1103–1107
IOS XE management, 1095–1096
IOS XR management,

1096–1098
NX-OS management, 1098
verifying operational data,

1098–1103
architecture, 692–693
authentication, 694
<cancel-commit> operations,

722–724
candidate configuration operations,

722–724
capabilities, 731

candidate configuration
capability, 732

confirmed commit capability,
732

distinct startup capability, 733
rollback-on-error capability,

732–733
URL capability, 733–734
validate capability, 733
writable-running capability, 732
XPath capability, 735

<close-session> operations, 721–722
<commit> operations, 722–724
configuration validation, 724–725
connections, 694
content layer, 693, 725–730

YANG, 725–729
<copy-config> operations, 719
data delivery, 694
data integrity/confidentiality, 694
datastores

configuring, 712–720
operations, 720–721

<delete-config> operations, 719–720
<discard-changes> operations,

722–724
<edit-config> operations, 712–719
<get> operations, 702–703
<get-config> operations, 702–703
hello messages, 696–698, 973–974
high-level operations, 691–692
IOS XE, 918–922
IOS XR, 916–918
<kill-session> operations, 721–722
<lock> operations, 720–721
messages layer, 693, 695–696

hello messages, 696–698
rpc messages, 698–699
rpc-reply messages, 699–701

ncclient, 735–739
netconf_get module

Z01_Abuelenain_Index_p1121-p1196.indd 1159 27/03/21 6:37 pm

1160  NETCONF

configuring, 1103–1107
verifying operational data,

1098–1103
NETCONF/YANG, network

programmability, 973–978
network programmability, 960,

973–978
NX-OS, 905–916
operations layer, 693, 701–702

<cancel-commit> operations,
722–724

candidate configuration
operations, 722–724

<close-session> operations,
721–722

<commit> operations, 722–724
configuration validation,

724–725
<copy-config> operations, 719
datastore configurations,

712–720
datastore operations, 720–721
<delete-config> operations,

719–720
<discard-changes> operations,

722–724
<edit-config> operations,

712–719
<get> operations, 702–703
<get-config> operations,

702–703
<kill-session> operations,

721–722
<lock> operations, 720–721
session operations, 721–722
subtree filters, 703–710
<unlock> operations, 720–721
<validate> operations, 724–725
XPath filters, 710–712

over SSH, 694–695
overview, 689–692
Python, ncclient, 735–739
reliability, 694
RESTCONF and, 740–742
rpc messages, 691, 698–699
rpc-reply messages, 691, 699–701
session operations, 721–722
transport layer, 692–693

NETCONF over SSH,
694–695

transport protocol requirements,
693–694

<unlock> operations, 720–721
<validate> operations, 724–725
Working Group, 689–690
XML attributes, 558
YANG, 725–729

NETCONF/YANG
configuring, 1103–1107
netconf_get module, 1103–1107
verifying operational data,

1098–1103
Netmiko libraries, Jinja2 templates,

364–367
network modules, Ansible, 1003
NetworkManager, 168–169

connections
attributes, 169–170
creating, 171–174
deleting, 171–174
listing, 169

interfaces, listing, 171
networks

abstraction, defined, 9–13
Ansible. See also seperate entry,

15–16

Z01_Abuelenain_Index_p1121-p1196.indd 1160 27/03/21 6:37 pm

networks  1161

automation
architectures, 353–354
Jinja2 templates, 363–375
NAPALM libraries, 354–359,

371–375
Nornir libraries, 359–363,

367–369, 371–375
CAPEX, 2
cleaning up, 1110
engineers

automation, 19–20
career paths, questions,

1118–1119
FCAPS, 3
IBN, 13–14
IP VPN, JSON schemas, 597–598,

601–602, 607–609
Linux, 16–17, 158–159

adding/removing IP addresses
from interfaces, 161–162

configuration files, 174–179
DNS, 179–181
ip command, 158–167
NetworkManager, 168–171
ping command, 164–167,

178–179, 181
routing tables, 163–168
scripting, 174–179
sysctl command, 167–168
toggling interface state, 161

managing
defined, 3–5
devices with NETCONF/

YANG, 973–978
devices with RESTCONF/

YANG, 978–987
FCAPS, 3

monitoring, streaming telemetry,
1113–1114

Network Programmability and
Automation toolbox, 14–15
Ansible. See also seperate

entry, 15–16
Linux, 16–17
protocols, 18–19
Python, 15
virtualization, 17
YANG, 17

OPEX, 2
overlay networks, 9, 821
programmability, 253–254

CLI, 958–959, 962–967
gNMI, 961–962
gRPC, 961–962
Linux shells, 960, 967–973
NETCONF/YANG, 973–978
network programmability, 960
RESTCONF, 961
RESTCONF/YANG, 978–987
SNMP, 959–960
vendor/API matrix, 957–958

protocols, 18
encoding, 18
transport protocols, 18–19

Python, 15
SDN, 13, 819

BGP-LS, 843
BGP-LS, lab topologies,

845–846
BGP-LS, link NLRI, 856–857
BGP-LS, node NLRI, 854–855
BGP-LS, NPF-XR, 845, 849,

851–854
BGP-LS, peering, 843–844,

847–849
BGP-LS, prefix NLRI, 858–859
BGP-LS, routing, 846–847

Z01_Abuelenain_Index_p1121-p1196.indd 1161 27/03/21 6:37 pm

1162  networks

BGP-LS, routing types
(overview), 850–854

controllers, 821–823
network requirements,

819–821
overlay networks, 821
PCEP, call flows, 861–864
PCEP, IOS XR configurations,

867–880
PCEP, LSP delegation, 864–867
PCEP, PCC, 860–861, 867–870,

874–880
PCEP, PCE, 860–861, 869–874,

876–880
PCEP, RFC, 860–861
PCEP, state synchronization, 863
SR, Adj-SID, 824, 827, 839–842
SR, data plane verification,

830–831
SR, forwarding, 832
SR, IETF drafts, 823
SR, lan topologies, 825
SR, MPLS FIB for NPF-XR,

828–830
SR, Node-SID, 824
SR, NPF-XR, 835
SR, Prefix-SID, 824, 827,

834–836
SR, segments, 824, 825–827
SR, SR algorithm, 827
SR, SRGB, 824, 827, 831
SR, SRLB, 824
SR, SR-MPLS, 824
SR, SR-TE, 832–843
underlay networks, 821–822

underlay networks, 9, 821–822
virtualization, 17
VLAN, awareness, 8–9

VPN, IP VPN, 597–598, 601–602,
607–609

YANG, 17
Neutron ML2 (OpenStack), Open

NX-OS programmability, 885
newgrp command, Linux, 138,

146–148
Nexus switches

authentication, 401–402, 463
static routing

DELETE method, 405–406
POST method, 399–401
PUT method, 402–405

NLRI, BGP-LS
link NLRI, 856–857
node NLRI, 854–855
prefix NLRI, 858–859

nodes
XPath, 574
YAML, 617
YANG data modeling, 649

container nodes, 647–648
grouping, 654–656
leaf nodes, 649–651
leaf-list nodes, 651–652
list nodes, 647–648

Node-SID, 824
Nornir libraries, network automation,

359–363, 367–369, 371–375
northbound API, 883, 933
not in operator, Python, 286
NOT operator (~), Python, 281, 285
notifications, DNA Center, 935
NPF-XR

BGP-LS, 845, 849, 851–854
SR, 835
SR-TE, 836–843

Z01_Abuelenain_Index_p1121-p1196.indd 1162 27/03/21 6:37 pm

objects  1163

NSX, 13
null values, JSON, 593
number data types, Python, 273–276
numbers, JSON, 593
NX-API CLI

Open NX-OS programmability, 884
use cases, 893–898

NX-API REST
Open NX-OS programmability, 884
use cases, 898–905

NX-OS
Ansible

collecting show output with
nxos_command, 1086–1088

configuring with nx-os_*
modules, 1093–1095

configuring with nx-os_config
modules, 1090–1093

interactive commands,
1088–1089

preparing for management,
1084–1085

preparing NX-OS for
NETCONF management,
1098

verifying management,
1085–1086

verifying operational data,
1086–1089

Bash shells, 887–891
Guest shells, 887, 891–892
Jinja2 templates, 367–371
NETCONF, 905–916
nxos_command

collecting show output,
1086–1088

configuring with nx-os_*
modules, 1093–1095

configuring with nx-os_config
modules, 1086–1088

interactive commands,
1088–1089

nx-os_config modules
configuring NX-OS,

1086–1088
Jinja2 templates, 1091–1093
loops, 1090–1091
variables, 1090–1091

programmability, 884–885
SSH setup, 537–540, 547–548
use cases, 887–892

O
OAuth protocol, HTTP/1.1

authentication, 474–475
access tokens, 481–483
API resource server calls, 483
authorization grants, 477–481
Bearer Tokens, 475–476
client registration, 476–477
workflows, 476

objects
JSON objects

defined, 593
key/pair values, 592
out of range objects and data

validation, 613–614
referencing external JSON

schemas, 606–607
repetitive objects, 598–602
simple JSON object example,

592
typos and data validation,

611–612
unexpected keys and data

validation, 612–613

Z01_Abuelenain_Index_p1121-p1196.indd 1163 27/03/21 6:37 pm

1164  objects

Python objects, serializing with
YAML, 628–629

octal notation, file permissions,
145–146

one-dimensional variables, 218
one-time automations, 1111
OOP (Object-Oriented Programming),

256
abstraction, 257
encapsulation, 257
inheritance, 256–257
polymorphism, 257

OpenConfig YANG modules,
671–673

OpenFlow, IOS XE programmability,
886

Open NX-OS
Bash shells, 887–891
NETCONF, 905–916
programmability, 884–885
use cases, 887–892

OpenSSH, 510, 522
OpenStack Neutron ML2, Open

NX-OS programmability, 885
operations layer,

NETCONF, 693, 701–702
<cancel-commit> operations,

722–724
candidate configuration

operations, 722–724
<close-session> operations,

721–722
<commit> operations, 722–724
configuration validation,

724–725
<copy-config> operations, 719
datastores, 712–721
<delete-config> operations,

719–720

<discard-changes> operations,
722–724

<edit-config> operations,
712–719

<get> operations, 702–703
<get-config> operations,

702–703
<kill-session> operations,

721–722
<lock> operations, 720–721
session operations, 721–722
subtree filters, 703–710
<unlock> operations, 720–721
<validate> operations, 724–725
XPath filters, 710–712

RESTCONF, 743
operations resource, RESTCONF,

756–758
OR operator (|)

Python, 281, 285
regular expressions (regex), 186

operators
Python, 281

arithmetic operators, 281–283
assignment operators, 284
bitwise operators, 281–283
comparison operators,

284–285
identity operators, 284–285
logical operators, 284–285,

297–298
membership operators,

285–286
XPath operator values, 577

OPEX (Operating Expenses), 2
opt directory, Linux, 37
OPTIONS method, 407–408,

759–760

Z01_Abuelenain_Index_p1121-p1196.indd 1164 27/03/21 6:37 pm

PCEP (Path Computation Element Protocol)  1165

orchestration, 375–376
automation versus, 6–7
defined, 6–7
Docker, 376–378
Kubernetes, 378–382
tools (overview), 7

output/input redirection, Linux,
57–59

>> notation, 61–62
piping (|), 58, 65–67
stderr, 59, 62–65
stdin, 59, 61
stdout, 59, 61, 62–65
tee command, 66–67

output, Linux scripting, 208
echo command, 208–210
printf command, 210–213

overlay networks, 9, 821

P
package management software

DNF, 95, 117
RPM, 95, 97–101
YUM, 95, 101

commands list, 102–103
sudo yum remove httpd

command, 109
sudo yum update command,

110
yum info command, 104–105
yum install command,

 106–109
yum list command, 103
yum repolist all command,

110–111

yum search command, 103–104
yum-config-manager command,

111–112
pair/key values, JSON objects, 592
parent/child relationships, XML,

555–556
parentheses (()), regular expressions

(regex), 185
partitions, /dev directory, 121–125
passwords

authentication, 517, 522–523,
525–526

user/group management, Linux
changing passwords, 141
setting user passwords,

138–141
PATCH method, RESTCONF,

767–770
patches, 22
pattern validation, XML, 569–570
PAWS API, 944
PCC (Path Computation Clients),

860–861
LSP configuration, 874–880
SR-TE configuration, 867–870

PCE (Path Computation Elements)
LSP configuration, 876–880
PCEP, 860–861
SR-PCE, 874
SR-TE configuration, 869–874

PCEP (Path Computation Element
Protocol)

call flows, 861–864
IOS XR configurations, 867–880
lab topologies, 867
LSP delegation, 864–867

Z01_Abuelenain_Index_p1121-p1196.indd 1165 27/03/21 6:37 pm

1166  PCEP (Path Computation Element Protocol)

PCC, 860–861
LSP configuration, 874–880
SR-TE configuration, 867–870

PCE, 860–861
LSP configuration, 876–880
SR-PCE, 874
SR-TE configuration, 869–874

peering, 867
RFC, 860–861
state synchronization, 863

peer authentication, 496–497
peering

BGP-LS, 843–844, 847–849
PCEP, 867

percentage symbols (%)
%= operator, Python, 284
Modulo Operator, 274, 281

performance, Git, 312
periods (.),

.* notation, regular expressions
(regex), 190

.. notation, Linux directories, 37
regular expressions (regex), 185, 189

permissions
file permissions, changing with SFTP,

544–545
file security management, Linux,

143–144, 150–152
octal notation, 145–146
symbolic notation, 144–145

persistent connections, HTTP/1.1,
395–396

person_in_list() function, Python,
307–308

PFS (Perfect Forward Secrecy), 490
pgrep command, Linux system

maintenance, 78
pinfo command, 35

ping command, Linux, 164–167,
178–179, 181

pipes (|), 58, 65–67, 281
| (OR operator)

Python, 281, 285
regular expressions (regex),

186
|= operator, Python, 284

pipelining, HTTP/1.1, 396
platforms, API, 882
playbooks, Ansible, 990, 997–1000

conditional statements with loops
and variables, 1032–1033

Jinja2 templates, 1040–1043
variables, defining, 1005–1006

+ (plus signs)
+ assignment operator, Python, 281
+= operator, Python, 284
regular expressions (regex), 186, 189,

190, 192
point parameter, RESTCONF, 771
polymorphism, OOP, 257
positive/negative values, arithmetic

operators, Python, 282
POSIX (Portable Operating System

Interface), Linux scripting, 210
POST (Power-On Self-Tests), 27
POST method

Flask, 350–352
HTTP client requests, 399–402

Postman, 443–445
Python and HTTP, 465

RESTCONF, 763–765
Postman, 436–437

HTTP
GET request messages, 447–454
POST method, 443–445

installing, 438

Z01_Abuelenain_Index_p1121-p1196.indd 1166 27/03/21 6:37 pm

programmable interfaces  1167

interface, 438–441
usage, 441–446
web/API development, 345

pound signs, #! (hashbangs), 205–208
predefined entries, XML, 557
predicates, XML expressions, 577
prefix NLRI, BGP-LS, 858–859
prefixes, XML namespaces, 560–561
Prefix-SID, 824, 827, 834–836
print_persons() function, Python,

307–309
printf command, Linux, 210–213
proc directory, Linux, 37
processes, Linux, 73–74, 80–81
product environments, replicating,

312
programmable interfaces, 881–882

API
classifications, 882–883
eastbound API, 883
endpoints, 882
IOS XE, gNMI insecure mode,

815
IOS XE, NETCONF, 918–922
IOS XE, programmability,

885–886
IOS XR, NETCONF, 916–918
IOS XR, programmability,

886–887
NETCONF on IOS XE,

918–922
NETCONF on IOS XR,

916–918
NETCONF on NX-OS,

905–916
northbound API, 883
NX-API CLI, use cases,

893–898

NX-API REST, use cases,
898–905

Open NX-OS, Bash shells,
887–891

Open NX-OS, Guest shells, 887,
891–892

Open NX-OS, NETCONF,
905–916

Open NX-OS, programmabil-
ity, 884–885

Open NX-OS, use cases,
887–892

platforms, 882
RESTful API, 883
RPC-based API, 883
southbound API, 883
webhooks, 882
westbound API, 883

collaboration platforms, 942
Cisco collaboration portfolio,

942–944
collaboration API, 944–954

DNA Center, 931–933
device management, 934
Eastbound API, 933
event notifications, 935
Integration API, 935–936
Intent API, 934, 936–941
Northbound API, 933
Southbound API, 933
webhooks, 935
Westbound API, 933

Meraki API, 922, 923
Captive Portal API, 923
Dashboard API, 922–931
Location Scanning API, 923
MV Sense API, 923
Webhook Alerts API, 922

Z01_Abuelenain_Index_p1121-p1196.indd 1167 27/03/21 6:37 pm

1168  programming

programming
API, 7–8
algorithms, 258–259
computer science concepts, 255
defined, 7–8, 249–250
IOS XE, 885–886
IOS XR, 886–887
Network Programmability and

Automation toolbox, 14–15
Ansible. See also seperate

entry, 15–16
Linux, 16–17
protocols, 18–19
Python, 15
virtualization, 17
YANG, 17

networks, 253–254
CLI, 958–959, 962–967
gNMI, 961–962
gRPC, 961–962
Linux shells, 960, 967–973
NETCONF/YANG, 973–978
network programmability, 960
RESTCONF, 961
RESTCONF/YANG, 978–987
SNMP, 959–960
vendor/API matrix, 957–958

OOP, 256
abstraction, 257
encapsulation, 257
inheritance, 256–257
polymorphism, 257

Open NX-OS, 884–885
pseudocode, 251–253
Python

bytecode, 265–267
bytecode generators, 264

bytecode interpreters, 264
code execution, 263–269
code testing/verification, 269
compiling code, 265–266
complex numbers, 276
data structures, 286–295
data types, 270
data types, numbers, 273–276
data types, strings, 276–280
dictionaries, 290–292
executable Python files, 265
float() function, 275
floating point data, 275
format() function, 280
fundamentals, 260
installing, 260–263
int() function, 275
integer operations, 275
lexical analyzers, 263
lists, 286–290
Modulo Operator (%), 274
numeric data, 269
operators, 281–286
sets, 294–295
simple Python program, 264
slicing string indexes, 278–279
square brackets ([]), 278
str.lower() function, 279–280
str.replace() function, 279–280
str.strip() function, 279–280
str.upper() function, 279–280
sum() function, 249–250
tokenizers, 263
tuples, 292–293
variables, 270–273

scripting languages vs scripting,
250–253

Z01_Abuelenain_Index_p1121-p1196.indd 1168 27/03/21 6:37 pm

protocols  1169

service providers, SDN, 819
BGP-LS, 843
BGP-LS, lab topologies,

845–846
BGP-LS, link NLRI, 856–857
BGP-LS, node NLRI, 854–855
BGP-LS, NPF-XR, 845, 849,

851–854
BGP-LS, peering, 843–844,

847–849
BGP-LS, prefix NLRI, 858–859
BGP-LS, routing, 846–847
BGP-LS, routing types

(overview), 850–854
controllers, 821–823
network requirements,

819–821
overlay networks, 821
PCEP, call flows, 861–864
PCEP, IOS XR configurations,

867–880
PCEP, lab topologies, 867
PCEP, LSP delegation, 864–867
PCEP, PCC, 860–861, 867–870,

874–880
PCEP, PCE, 860–861, 869–874,

876–880
PCEP, peering, 867
PCEP, RFC, 860–861
PCEP, state synchronization,

863
SR, Adj-SID, 824, 827, 839–842
SR, data plane verification,

830–831
SR, forwarding, 832
SR, IETF drafts, 823
SR, lan topologies, 825
SR, MPLS FIB for NPF-XR,

828–830

SR, Node-SID, 824
SR, NPF-XR, 835
SR, Prefix-SID, 824, 827,

834–836
SR, segments, 824, 825–827
SR, SR algorithm, 827
SR, SRGB, 824, 827, 831
SR, SRLB, 824
SR, SR-MPLS, 824
SR, SR-TE, 832–843
underlay networks, 821–822

web application development,
250–251

Protobuf, gRPC, 786–790
example of, 788–789
in Python, 790–798

protocols, 18
encoding, 18
gRPC

gNMI, 798–799
gNMI, anatomy of, 799–801
gNMI, Capabilities RPC,

810–811
gNMI, Get RPC, 801–807
gNMI, insecure mode in IOS

XE, 815
gNMI, managing network

elements, 814–818
gNMI, Python metaclasses,

815–816
gNMI, Python sample Get

script, 816–818
gNMI, Set RPC, 807–810
gNMI, Subscribe RPC,

811–814
history of, 782–784
managing network elements,

814–818

Z01_Abuelenain_Index_p1121-p1196.indd 1169 27/03/21 6:37 pm

1170  protocols

principles of, 782–784
Protobuf, example of, 788–789
Protobuf, Python, 790–798
server sample, 794–797
as a transport, 784–786

Protobuf, gRPC, 786–790
example of, 788–789
Python, 790–798

Python installations, 790–791
SCP

CentOS, 549–550
SFTP comparisons, 550

SFTP, 540–541
fetching/uploading files, 543
help, 541–542
local/remote directory

operations, 542–543
logins, 541
SCP comparisons, 550

SSH Authentication Protocol,
514–516
host-based authentication,

517–518
password authentication, 517
public key authentication,

516–517
SSH Connection Protocol, 518–521
SSH-TRANS, 513–514
transport protocols, 18–19, 781–782

ps command, Linux system
maintenance, 74–77

pseudocode, 251–253
PSK (Pre-Shared Keys), 489
public keys

authentication, 516–517
copying onto servers, 524–525

pull phase, Git workflows, 317

push phase, Git workflows, 317
PUT method, 402–405, 765–767
pvdisplay command, Linux, 130–131,

133
pwd command, 29, 138–140
pyang, YANG data modeling,

673–679, 683–687
pyangbind, YANG data modeling,

679–682
Python, 15

Ansible, 991–992
code execution, 263–269

bytecode, 265–267
bytecode generators, 264
bytecode interpreters, 264
code testing/verification, 269
compiling code, 265–266
executable Python files, 265
lexical analyzers, 263
numeric data, 269
simple Python program, 264
tokenizers, 263

code testing/verification, 269
comparison operators, 284–285
compiling code, 265–266
complex numbers, 276
control flow

elif statements, 297–298
if-else statements, 296–300
for loops, 301–304, 306
nested code blocks with

conditional statements,
295–296

while loops, 304–306
data structures, 286

dictionaries, 290–292
lists, 286–290

Z01_Abuelenain_Index_p1121-p1196.indd 1170 27/03/21 6:37 pm

Python  1171

sets, 294–295
tuples, 292–293

data types, 270
numbers, 273–276
strings, 276–280

dictionaries, 290–291, 583–585
deleting, 292
functions, 292
if-else statements, 299–300

dict.items() function, 292
dict.keys() function, 292, 307–308
dict.values() function, 292
DRY principle, 311, 336
exit() function, 272
float() function, 275
floating point data, 275
format() function, 280
funcname() function, 307
functions, 306–307

calling in code blocks, 307–309
defining in code blocks,

307–309
dict.items() function, 292
dict.keys() function, 292,

307–308
dict.values() function, 292
exit() function, 272
float() function, 275
format() function, 280
funcname() function, 307
input() function, 298
int() function, 275, 1049–1055
join() function, 1050–1051
list.append() function, 288–289
list.pop() function, 288–289
list.reverse() function, 289
list.sort() function, 289

map() function, 1054–1055
person_in_list() function,

307–308
print_persons() function,

307–309
range() function, 302–303
representations, 307
set.add() function, 294
set.difference() function, 294–295
set.pop() function, 294
set.remove() function, 294
set.union() function, 294–295
set.update() function, 294
split() function, 1051–1054
str.lower() function, 279–280
str.replace() function, 279–280
str.reverse() function, Python,

292–293
str.strip() function, 279–280
str.upper() function, 279–280,

292–293
sum() function, 249–250
validate_person() function,

307–308, 309
fundamentals, 260
gNMI

metaclasses, 815–816
sample Get script, 816–818

gRPC and Protobuf, 790–798
HTTP

requests packages, 464–467
socket modules, 455–457
TCP over Python, 455–457
urllib packages, 458–463

installing, 260–263
JSON schemas, data validation,

609–610
machine learning, 382–384

Z01_Abuelenain_Index_p1121-p1196.indd 1171 27/03/21 6:37 pm

1172  Python

modules
application development,

333–336
classes, 335–336
constructors, 335–336
from-import statements,

334–335
import statements, 333–334

NETCONF, ncclient, 735–739
network automation

architectures, 353–354,
371–375

Jinja2 templates, 363–375
NAPALM libraries, 354–359,

371–375
Nornir libraries, 359–363,

367–369, 371–375
network device management

NETCONF/YANG, 976–978
RESTCONF/YANG, 984–987

objects, serializing with YAML,
628–629

operators, 281
& operator, 281
&= operator, 284
**= operator, 284
*= operator, 284
^ operator, 281
^= operator, 284
= operator, 284
== operator, 285
!= operator, 285
/= operator, 284
< operator, 285
<= operator, 285
<< operator,281
-= operator, Python, 284
% operator, 274, 281

| operator, 281, 285
|= operator, 284
+= operator, 284
> operator, 285
>= operator, 285
>> (signed right shift) operator,

281
>>= operator, 284
[], square brackets, 278
[=] operator, 284
~ operator, 281, 285
and operator, 281, 285
arithmetic operators, 281–283
assignment operators, 284
bitwise operators, 281–283
identity operators, 284–285
in operator, 286
integer operations, 275
is not operator, 285
is operator, 285
logical operators, 284–285
logical operators, if-else

statements, 297–298
membership operators, 285–286
not in operator, 286
NOT operator, 281, 285
OR operator, 281, 285

orchestration, 375–376
Docker, 376–378
Kubernetes, 378–382

protoc installations, 790–791
PyYAML, 626–628
requests packages, 464–467
RESTCONF, 777–779
sets, 294–295
slicing, lists, 286–287
slicing string indexes, 278–279

Z01_Abuelenain_Index_p1121-p1196.indd 1172 27/03/21 6:37 pm

regular expressions (regex)  1173

socket modules, 455–457
tuples

deleting, 293
functions, 292–293
joining, 293

urllib packages, 458–463
variables, 270–271

deleting, 272–273
dynamic data type allocation,

271–272
scope, 272

web/API development
Django, 337–345
Flask, 345–352

XML files, processing, 580
dictionaries, 583–585
element mergers, 585–587
element name/attribute

extraction, 581–582
properties/methods, 580–581
rerunning processing for

updated documents, 587–588
script creation, 580–581
value extraction, 582–583

YAML
loading multiple documents,

632–633
PyYAML, 626–628
saving data streams to files, 629
serializing Python objects,

628–629
sorting data streams, 630–631
yaml.dump() method, 628–631
yaml.load() method, 631–632
yaml.load_all() method, 632–633
yaml.scan() method, 633–635

PyYAML, 626–628

Q
query parameters, RESTCONF,

771–777
question mark (?), regular expressions

(regex), 186, 189, 191–192

R
range() function, Python, 302–303
read command, Linux, 214–217
record protocol, TLS 1.3, 499, 503
Red Hat, Linux distributions, 26
redirecting input/output, Linux,

57–59
| (piping), 58, 65–67
>> notation, 61–62
stderr, 59, 62–65
stdin, 59, 61
stdout, 59, 61, 62–65
tee command, 66–67

regexp, XML content validation, 569
regular expressions (regex)

* metacharacter, 185, 189–190
\ metacharacter, 186
\< metacharacter, 185, 188–189
\> metacharacter, 185, 188–189
^ metacharacter, 185, 187
{ }, 185
{N, M} metacharacter, 186, 189–192
{N} metacharacter, 186, 189–192
$ metacharacter, 185, 187
. metacharacter, 185, 189
.* notation, 190
() (capture groups), 186
() (parentheses), 185
| OR operator, 186

Z01_Abuelenain_Index_p1121-p1196.indd 1173 27/03/21 6:37 pm

1174  regular expressions (regex)

+ metacharacter, 186, 189, 190, 192
? metacharacter, 186, 189, 191–192
[] (square brackets), 185
[first_literal - last_literal]

metacharacter, 185
[literals] metacharacter, 185
grep command, 184–193
matching uppercase/lowercase

characters, 187–188
printing lines without patterns,

192–193
repetition metacharacters, 185–186,

190–191
testing, 186

relative paths, Linux directories, 38–39
remote subnets, Linux routing tables,

166–167
remote/local directory operations,

SFTP, 542–543
removing Linux

directories, 50–51
files, 47, 48
routing table entries, 168

renaming Linux
directories, 50–51
files, 47, 48

repetition metacharacters, regular
expressions (regex), 185–186,
190–191

repetitive objects, JSON schemas,
598–602

replicating product environments, 312
repositories

Docker, 318
Git, 312–313

cloning, 316–317
fetching remote repository

updates, 314–315

setting up, 315–316
updating local repositories,

314–315
software, 95–96

EPEL repositories, 111–112
listing, 110–111
LocalRepo repositories,

112–117
request header fields, HTTP, 416
request messages, RESTCONF, 740,

743–744
request targets, CONNECT method

(HTTP), 407
request packages, Python and HTTP,

464–467
resources

Linux resource utilization, 83–85
RESTCONF, 746–747

API resource, 747–749
data resource, 753–758
datastore resource, 749–750
schema resource, 750–753
YANG library version resource,

758
response header fields, HTTP, 416
response messages, RESTCONF, 740,

744–745
REST framework, 392–394
REST API, 322, 392–393, 945–946,

948–954
RESTCONF, 739

architecture, 742–743
content layer, 743
editing data, 763–771
error reporting, 746
HTTP, 740

headers, 745–746
response messages, 740

Z01_Abuelenain_Index_p1121-p1196.indd 1174 27/03/21 6:37 pm

right arrows (>)  1175

messages layer, 742–743, 759
constructing messages, 745
content parameter, 771
with-defaults parameter, 771
DELETE method, 770–771
depth parameter, 771
editing data, 763–771
error reporting, 746
fields parameter, 771, 773–777
filter parameter, 771
GET method, 760–763
HEAD method, 763
HTTP headers, 745–746
insert parameter, 771
OPTIONS method, 759–760
PATCH method, 767–770
point parameter, 771
POST method, 763–765
PUT method, 765–767
query parameters, 771–777
request messages, 743–744
response messages, 744–745
retrieving data, 759–763
start-time parameter, 771
stop-time parameter, 771

NETCONF and, 740–742
network programmability, 961,

978–987
operations layer, 743
overview, 739–742
Python, 777–779
request messages, 740, 743–744
resources, 746–747

API resource, 747–749
data resource, 753–758
datastore resource, 749–750

schema resource, 750–753
YANG library version resource,

758
response messages, 744–745
RESTCONF/YANG, network

programmability, 978–987
retrieving data, 759–763
transport layer, 742, 743

RESTful API, 883
resuming stopped processes, 80–81
reusing

automations, 1111
code, application development, 312

RFC 2616, HTTP headers, 416
RFC 3986, HTTP, 393–394
RFC 6265, HTTP state management,

484
RFC 6749, HTTP, OAuth protocol,

475–476
RFC 6750, HTTP, OAuth protocol

with Bearer Tokens, 475–476
RFC 7230, HTTP headers, 416–417
RFC 7231, HTTP/1.1 server status

codes, 409–410
RFC 7457, TLS, 488
RFC 7540, HTTP, 388
RFC 8446, TLS, 487
RFC, PCEP, 860–861
right arrows (>)

> Jinja2 operator, 1019
> Python operator, 285
>= (right arrow, equal sign)

assignment operator, Jinja2, 1019
assignment operator, Python,

285
>> signed right shift operator,

Python, 281
>>= operator, Python, 284

Z01_Abuelenain_Index_p1121-p1196.indd 1175 27/03/21 6:37 pm

1176  rm command

rm command, 47, 48
rmdir command, 50–51
rollback-on-error capability,

NETCONF, 732–733
root directory (/:), Linux, 36–37
rotating Linux system logs, 91
routing (static)

200 OK responses
DELETE method, 405–406
POST method, 394–401
PUT method, 403–404

Nexus switches
DELETE method, 405–406
POST method, 399–401
PUT method, 403–404

routing tables, Linux, 163–166
forwarding interfaces, 167
remote subnets, 166–167
removing entries, 168
viewing, 163

RPC (Remote Procedure Calls)
bidirectional RPC, 785
Capabilities RPC, gNMI, 810–811
client-streaming RPC, 785
Get RPC, gNMI, 801–807
gRPC

gNMI, 798–799
gNMI, anatomy of, 799–801
gNMI, Capabilities RPC,

810–811
gNMI, Get RPC, 801–807
gNMI, insecure mode in IOS

XE, 815
gNMI, managing network

elements, 814–818
gNMI, Python metaclasses,

815–816

gNMI, Python sample Get
script, 816–818

gNMI, Set RPC, 807–810
gNMI, Subscribe RPC, 811–814
history of, 782–784
managing network elements,

814–818
principles of, 782–784
Protobuf, example of, 788–789
Protobuf, Python, 790–798
server sample, 794–797
as a transport, 784–786

server-streaming RPC, 785
Set RPC, gNMI, 807–810
Subscribe RPC, gNMI, 811–814
unary RPC, 785

RPC-based API, 883
rpc messages, 691, 698–699
rpc-reply messages, 691, 699–701
RPM (RPM Package Manager), 95,

97–101
RSA keys

generating/verifying, SSH NX-OS
setups, 538–539

Linux network programmability,
971–973

rules of thumb
API, 1118
application hosting, 1115–1116
automation, 1109–1110

complexity, 1111–1112
cost/benefit analysis, 1112
reusing automations, 1111

cleaning up networks, 1110
containers, 1114–1115
databases, 1117
documentation, 1111

Z01_Abuelenain_Index_p1121-p1196.indd 1176 27/03/21 6:37 pm

scripting, Linux  1177

model-driven telemetry, 1113–1114
search engines, 1117
software development methodologies,

1116–1117
run directory, Linux, 37
ryslogd command, Linux, 91–93

S
saving YAML data streams, 629
scalars, YAML, 620–621
scale command, Linux, 221–222
schema resource, RESTCONF,

750–753
schemas, JSON, 595

annotation, 596
basic schema without content,

596–597
data validation, 609–614
definitions in, 598–601
external schemas, referencing,

602–609
IP VPN, 597–598, 601–602,

607–609
keywords, 596
properties of, 597–598
purpose of, 595–596
repetitive objects, 598–602
structure of, 595–598
validation keywords, 596–597

SCI, Linux kernels, 24
scope, Python variables, 272
SCP (Secure Copy Protocol)

CentOS, 549–550
SFTP comparisons, 550

scripting, Linux, 183
Arguments.bash script, 213–214
arithmetic operations, 220–222

arrays
adding/removing elements,

224–226
associative arrays, 222
concatenating, 221–226
declaring, 222–224
defined, 222
indexed arrays, 222–224

awk programming language,
194–197

Bash scripting, 184
Bash shells, 206–207, 213–214
case-in constructs, 232–234
comments, 207–208
conditional statements, 226

== (double equal sign), 229
= (equal sign), 229
case-in constructs, 232–234
if-then constructs, 226–232

Expect programming language,
245–246

functions, 240–244
GNU Bash Manual, 184
if-then constructs, 226–232
input, 213

Arguments.bash script,
213–214

read command, 214–217
loops, 234–235

for-do loops, 235–237
until-do loops, 239–240
while-do loops, 237–239

networks, 174–179
output, 208

echo command, 208–210
printf command, 210–213

POSIX, 210

Z01_Abuelenain_Index_p1121-p1196.indd 1177 27/03/21 6:37 pm

1178  scripting, Linux

prigramming languages vs scripting,
250–253

regular expressions (regex), 184–193
* metacharacter, 185, 189–190
\ metacharacter, 186
\< metacharacter, 185, 188–189
\> metacharacter, 185, 188–189
^ metacharacter, 185, 187
{ }, 185
{N, M} metacharacter, 186,

189–192
{N} metacharacter, 186,

189–192
$ metacharacter, 185, 187
. metacharacter, 185, 189
.* notation, 190
() (capture groups), 186
() (parentheses), 185
| OR operator, 186
+ metacharacter, 186, 189, 190,

192
? metacharacter, 186, 189,

191–192
[] (square brackets), 185
[first_literal - last_literal]

metacharacter, 185
[literals] metacharacter, 185
grep command, 184–193
matching uppercase/lowercase

characters, 187–188
printing lines without patterns,

192–193
repetition metacharacters,

185–186, 190–191
testing, 186

scale command, 221–222
sed command, 197–205
shells, 183, 205–208

variables, 217–218
declaring, 218–219
one-dimensional variables, 218
value assignments, 218–219

web application development,
250–251

SDLC (Software Development Life
Cycle), 1116

SDN (Software-Defined Networking),
13, 819

BGP-LS, 843
lab topologies, 845–846
link NLRI, 856–857
node NLRI, 854–855
NPF-XR, 845, 849, 851–854
peering, 843–844, 847–849
prefix NLRI, 858–859
routing, 846–847
routing types (overview),

850–854
controllers, 821–823
network requirements, 819–821
overlay networks, 821
PCEP

call flows, 861–864
IOS XR configurations,

867–880
lab topologies, 867
LSP delegation, 864–867
PCC, 860–861
PCC, LSP configuration,

874–880
PCC, SR-TE configuration,

867–870
PCE, 860–861
PCE, LSP configuration,

876–880
PCE, SR-PCE, 874

Z01_Abuelenain_Index_p1121-p1196.indd 1178 27/03/21 6:37 pm

serializer.py files, Django  1179

PCE, SR-TE configuration,
869–874

peering, 867
RFC, 860–861
state synchronization, 863

SR
Adj-SID, 824, 827, 839–842
data plane verification,

830–831
forwarding, 832
IETF drafts, 823
lab topologies, 825
MPLS FIB for NPF-XR,

828–830
Node-SID, 824
NPF-XR, 835
Prefix-SID, 824, 827, 834–836
segments, 824, 825–827
SR algorithm, 827
SRGB, 824, 827, 831
SRLB, 824
SR-MPLS, 824
SR-TE, 832–843

underlay networks, 821–822
search engines, rules of thumb, 1117
security

AEAD, 495–496
AES-CCM protocol, 495
AES-GCM protocol, 495
CCM, 495
ciphers, 492

block ciphers, 492–493
CBC, 492–493
CMAC, 494
CTR mode, 492–493
symmetric ciphers, 492

digital signatures, 496–497

encryption keys, 488–489
asymmetric keys, 490
DH protocol, 490–492
ephemeral keys, 490
generation/exchanges, 488–492
HKDF, 492
key exchange algorithm, 490
KM, 492
PFS, 490
PSK, 489
symmetric keys, 489

GCM, 495
Git, 312
Linux, 135

ACL, 148–155
file security management,

143–148
system security, 155–158
user/group management,

136–142
MAC, 493–494
peer authentication, 496–497
TLS, 487–488

0-RTT, 502–503
HTTPS, 503
TLS 1.3, 498–499
TLS 1.3, alert protocol, 499
TLS 1.3, handshake protocol,

499–502
TLS 1.3, record protocol,

499, 503
workflows, 499–500

sed command, Linux, 197–205
Segment Routing. See SR
segments, 824
sequences, YAML, 618–620
serializer.py files, Django, 343

Z01_Abuelenain_Index_p1121-p1196.indd 1179 27/03/21 6:37 pm

1180  server response header fields, HTTP

server response header fields, HTTP,
425–427

servers
application web servers, running with

Django, 338–339
Docker servers, 322
Git servers, setting up, 313–314
HTTP client/server connections,

394–395
public keys, copying onto servers,

524–525
SFTP logins, 541
status codes, HTTP, 408–409

1xx information status codes,
411

2xx successful status codes,
411–412

3xx redirection status codes, 412
4xx server error status codes,

413–414
5xx client error status codes,

414
Cisco devices, 414
RFC 7231, 409–410

server-streaming RPC, 785
service layer API, IOS XR

programmability, 886
service provider programmability,

SDN, 819
BGP-LS, 843

lab topologies, 845–846
link NLRI, 856–857
node NLRI, 854–855
NPF-XR, 845, 849, 851–854
peering, 843–844, 847–849
prefix NLRI, 858–859
routing, 846–847
routing types (overview),

850–854

controllers, 821–823
network requirements, 819–821
overlay networks, 821
PCEP

call flows, 861–864
IOS XR configurations,

867–880
lab topologies, 867
LSP delegation, 864–867
PCC, 860–861
PCC, LSP configuration,

874–880
PCC, SR-TE configuration,

867–870
PCE, 860–861
PCE, LSP configuration,

876–880
PCE, SR-PCE, 874
PCE, SR-TE configuration,

869–874
peering, 867
RFC, 860–861
state synchronization, 863

SR
Adj-SID, 824, 827, 839–842
data plane verification,

830–831
forwarding, 832
IETF drafts, 823
lab topologies, 825
MPLS FIB for NPF-XR,

828–830
Node-SID, 824
NPF-XR, 835
Prefix-SID, 824, 827, 834–836
segments, 824, 825–827
SR algorithm, 827
SRGB, 824, 827, 831

Z01_Abuelenain_Index_p1121-p1196.indd 1180 27/03/21 6:37 pm

software  1181

SRLB, 824
SR-MPLS, 824
SR-TE, 832–843

underlay networks, 821–822
services, Linux, 74, 81–83
session channels, SSH Connection

Protocol, 519–520
session operations, NETCONF,

721–722
Set RPC, gNMI, 807–810
set.add() function, Python, 294
set.difference() function, Python,

294–295
setfacl command, Linux, 151–155
set.pop() function, Python, 294
set.remove() function, Python, 294
sets, Python, 294–295
settings.py files, Django, 339–341
set.union() function, Python, 294–295
set.update() function, Python, 294
SFTP (Secure File Transfer Protocol)

fetching/uploading files, 543
help, 541–542
local/remote directory operations,

542–543
logins, 541
SCP comparisons, 550
SSH (Secure Shell), 540–541

sg command, Linux, 146–147
shells

Bash shells
Arguments.bash script, 213–214
arithmetic operations, 220–222
arithmetic operators, 229
CLI programmable interface

creation, 963–967
Expect programming language,

245–246

file comparison operators,
230–232

functions, 244
integer comparison operators,

229–230
Linux interface configuration,

969–970
scripting, 206–207, 213–214
string comparison operators,

228–229
string operators, 227–228

Linux shells, 183
network programmability, 960,

967–973
scripts, 205–208

SSH, Linux network programmability,
971–973

shred command, 48
signatures, digital, 496–497
signed right shift (>>) operator,

Python, 281
single inheritance, OOP, 257
single sources of truth. See SSoT
Slackware, Linux distributions, 26
slicing, Python

lists, 286–288
string indexes, 278–279

SNMP (Simple Network Management
Protocol)

model-driven telemetry, 1113
network programmability, 959–960

socket modules, Python and HTTP,
455–457

soft links, Linux, 55–57
software

compiling, manually, Linux, 96–97
dependencies, 95
dependency hell, 1114–1115

Z01_Abuelenain_Index_p1121-p1196.indd 1181 27/03/21 6:37 pm

1182  software

development methodologies,
1116–1117

engineers
automation, 19–20
career paths, questions,

1118–1119
installing on Linux, 94–96
package management software, 95

DNF, 95, 117
RPM, 95, 97–101
YUM, 95, 101–117

repositories, 95–96
EPEL repositories, 111–112
listing, 110–111
LocalRepo repositories,

112–117
rules of thumb, 1116–1117
SDLC, 1116
SDN, 13

sort command, 59–61
stdin, 59–61
stdout, 61

sorting YAML data streams,
630–631

source code, Linux software
installations, 94

sources of truth, 11–12
automation, reusing automations,

1111
finding, 1110–1111

southbound API, 883, 933
space characters in value fields,

XML, 562
split() function, 1051–1054
square brackets ([])

[=] operator, Python, 284
[first_literal - last_literal], regular

expressions (regex), 185

[literals], regular expressions (regex),
185

Python
lists, 286–287
strings, 278

regular expressions (regex), 185
SR (Segment Routing)

Adj-SID, 824, 827, 839–842
data plane verification, 830–831
forwarding, 832
IETF drafts, 823
lab topologies, 825
MPLS FIB for NPF-XR, 828–830
Node-SID, 824
NPF-XR, 835
Prefix-SID, 824, 827, 834–836
segments, 824, 825–827
SR algorithm, 827
SRGB, 824, 827, 831
SRLB, 824
SR-MPLS, 824
SR-TE

Adj-SID, 839–842
BGP, 836–839
data plane verification, 842–843
NPF-XR, 836–843
PCEP PCC configuration,

839–842
PCEP PCE configuration,

869–874
policy components, 833–834
Prefix-SID, 834–836
process of, 832–833

SRGB (Segment Routing Global
Blocks), 824, 827, 831

SRLB (Segment Routing Local
Blocks), 824

SR-PCE, 874

Z01_Abuelenain_Index_p1121-p1196.indd 1182 27/03/21 6:37 pm

statements (conditional)  1183

srv directory, Linux, 37
SSH (Secure Shell)

Authentication Protocol, 514–516
host-based authentication,

517–518
password authentication, 517,

522–523, 525–526
public key authentication,

516–517
Bash shells, 539–540, 548–549
Connection Protocol, 518–521
debugging, 528–531, 533–534
key-based authentication, 523–525
Linux network programmability,

971–973
NETCONF over SSH, 694–695
OpenSSH, 510, 522
overview, 509–510
protocol setup flow, 510
public keys, copying onto servers,

524–525
remote access requirements, 510
SCP

CentOS, 549–550
SFTP comparisons, 550

setting up, 521
CentOS, 521–526
Cisco devices, 545–549
IOS XE, 526–531, 545–546
IOS XR, 532–536, 546–547
NX-OS, 537–540, 547–548

SFTP, 540–541
fetching/uploading files, 543
help, 541–542
local/remote directory

operations, 542–543
logins, 541
SCP comparisons, 550

SSH1, 510–512
SSH2, 512

IOS XE configurations, 527
IOS XR configurations,

532–533
SSH-TRANS, 513–514
tunneling, 520
verifying sessions, 533–534

SSoT (Single Sources of Truth),
11–12, 1110–1111

start lines, HTTP messages, 415
start tags, XML, 555
start-time parameter, RESTCONF,

771
stat command, 62–63
state management, HTTP, 483–487
state synchronization, PCEP, 863
statements (conditional)

Ansible, 1016–1019
checking for substrings in vari-

ables, 1021–1022
checking for variables,

1019–1021
combining multiple conditional

statements, 1022–1024
conditional statements with

loops, 1024–1027
conditional statements with

loops and variables,
1027–1033

Jinja2 templates, 1045–1049
AND/OR logic, 1022–1024

Jinja2 templates, 1045–1049
Linux scripting, 226

== (double equal sign), 229
= (equal sign), 229
case-in constructs, 232–234
if-then constructs, 226–232

Z01_Abuelenain_Index_p1121-p1196.indd 1183 27/03/21 6:37 pm

1184  statements (conditional)

nested code blocks with conditional
statements, Python control flow,
295–296

static routing
200 OK responses

DELETE method, 405–406
POST method, 394–401
PUT method, 403–404

Nexus switches
DELETE method, 405–406
POST method, 399–401
PUT method, 402–405

stderr, Linux, 59, 62–65
stdin, Linux, 59–61
stdout, Linux, 59, 61, 62–65
stopping jobs, 80–81
stop-time parameter, RESTCONF,

771
storage, Linux, 119

/dev directory, 119–120
contents of, 120
device file types, 120–121
fdisk command, 121–125
file system creation, 125–126
hard disk partitions, 121–125
mkfs command, 125–126
mounting file systems, 126–128
unmounting file systems, 127

LVM, 128–135
streaming telemetry, 1113–1114
streams, HTTP/2, 505
string comparison operators, Bash

shells, 228–229
string data types, Python, 276–277

concatenating, 277
formatting, 280
indexes, 277–279

string operators, Bash shells,
227–228

string variables, Ansible, 1006
strings, JSON, 593
str.lower() function, Python, 279–280
str.replace() function, Python, 279–280
str.reverse() function, Python,

292–293
str.strip() function, Python, 279–280
str.upper() function, Python,

279–280, 292–293
stylesheets, XSLT, 578–579
su command, 29–30
subnets (remote), Linux routing

tables, 166–167
Subscribe RPC, gNMI, 811–814
subtree filters, NETCONF, 703–710
sudo command, Linux, 136
sudo yum remove httpd command,

Linux, 109
sudo yum update command, Linux, 110
sum() function, Python, 249–250
switches (Nexus)

authentication, 401–402, 463
static routing

DELETE method, 405–406
POST method, 399–401
PUT method, 402–405

symbolic notation, file permissions,
144–145

symlinks, Linux, 56–57
symmetric ciphers, 492
symmetric keys, 489
sys directory, Linux, 37
sysctl command, Linux, 167–168
syslog, model-driven telemetry, 1113
syslog messages, Linux, 93–94
system calls, Linux, 24

Z01_Abuelenain_Index_p1121-p1196.indd 1184 27/03/21 6:37 pm

templates, Jinja2  1185

system daemons, Linux, 24
system information, Linux

cat/proc/cpuinfo command, 87–88
date command, 85–86
dmesg command, 90
dmidecode command, 88–89
lspci command, 90
timedatectl command, 86
update command, 86–87

system logs, Linux, 91
journald command, 93–94
lastlog command, 91
rotation, 91
ryslogd command, 91–93
tail command, 91

system maintenance, Linux, 73
jobs, 74

displaying status, 80
stopping, 80–81

kill command, 78–80, 81
pgrep command, 78
processes, 73–74, 80–81
ps command, 74–77
services, 74, 81–83
systemctl command, 81–83
threads, 73

system security, Linux, 155–158
systemctl command, Linux system

maintenance, 81–83

T
tags

XML
child/parent relationships,

555–556
creating, 557

defined, 555
end tags, 555
predefined entries, 557
prefixes, 560–561
start tags, 555
using multiple times, 558–559
values, 555

YAML, 617, 621–624
tail command, Linux system logs, 91
tar archiving utility, Linux, 67, 70–73
TCP over Python, 455–457
TE (Traffic Engineering), SR-TE

Adj-SID, 839–842
BGP, 836–839
data plane verification, 842–843
NPF-XR, 836–843
PCEP PCC configuration, 839–842
PCEP PCE configuration, 869–874
policy components, 833–834
Prefix-SID, 834–836
process of, 832–833

tee command, 66–67
telemetry

IOS XE programmability, 886
IOS XR programmability, 887
model-driven telemetry, 1113–1114
Open NX-OS programmability, 885
streaming telemetry, 1113–1114

templates, Jinja2, 363–364
Ansible, 1034–1040

conditional statements,
1045–1049

loops, 1040–1043
playbooks, 1040–1043
variables, 1042–1043

IOS XE, 367–371
IOS XR, 367–371

Z01_Abuelenain_Index_p1121-p1196.indd 1185 27/03/21 6:37 pm

1186  templates, Jinja2

NAPALM libraries, 371–375
Netmiko libraries, 364–367
Nornir libraries, 367–369, 371–375
NX-OS, 367–371
nx-os_config modules, 1091–1093

Terminal, 29
testing

Python code, 269
regular expressions (regex), 186
repetition metacharacters, 190–191

threads, Linux, 73
thumb, rules of

API, 1118
application hosting, 1115–1116
automation, 1109–1110

complexity, 1111–1112
cost/benefit analysis, 1112
reusing automations, 1111

cleaning up networks, 1110
containers, 1114–1115
databases, 1117
documentation, 1111
model-driven telemetry, 1113–1114
search engines, 1117
software development

methodologies, 1116–1117
time stamps, Linux files, 41
timedatectl command, Linux, 86
TLS (Transport Layer Security),

487–488
0-RTT, 502–503
HTTPS, 503
TLS 1.3, 498–499

alert protocol, 499
handshake protocol, 499–502
record protocol, 499, 503

workflows, 499–500

tmp directory, Linux, 37
toggling interface state, Linux, 161
tokenizers, Python code execution, 263
top command, Linux resource

utilization, 83–85
touch command, 46, 48
TRACE method, 408
Traffic Engineering. See TE
transactions, HTTP, 389

client requests, 397–398
CONNECT method, 407
DELETE method, 405–406
GET method, 398
GET method, Bash shells,

447–454
GET method, Postman, 445–446
HEAD method, 398
OPTIONS method, 407–408
POST method, 399–402,

443–445, 465
PUT method, 402–405
TRACE method, 408

server status codes, 408–409
1xx information status codes,

411
2xx successful status codes,

411–412
3xx redirection status codes, 412
4xx server error status codes,

413–414
5xx client error status codes, 414
Cisco devices, 414
RFC 7231, 409–410

transport layer
NETCONF, 692–693

over SSH, 694–695
transport protocol

requirements, 693–694
RESTCONF, 742, 743

Z01_Abuelenain_Index_p1121-p1196.indd 1186 27/03/21 6:37 pm

until-do loops  1187

transport protocols, 18–19
gRPC

gNMI, 798–799
gNMI, anatomy of, 799–801
gNMI, Capabilities RPC,

810–811
gNMI, Get RPC, 801–807
gNMI, insecure mode in IOS

XE, 815
gNMI, managing network

elements, 814–818
gNMI, Python metaclasses,

815–816
gNMI, Python sample Get

script, 816–818
gNMI, Set RPC, 807–810
gNMI, Subscribe RPC,

811–814
history of, 782–784
managing network elements,

814–818
principles of, 782–784
Protobuf, example of, 788–789
Protobuf, Python, 790–798
server sample, 794–797
as a transport, 784–786

requirements for efficent transport,
781–782

truth, sources of, 11–12
automations, 1111
finding, 1110–1111

TSP API (Transport Service Provider
API), 945

tunneling, SSH, 520
tuples, Python

deleting, 293
functions, 292–293
joining, 293

two asterisks (**), assignment
operator, Python, 281

two dot notation (..), Linux
directories, 37

two equal signs (==)
conditional statements, 229
Jinja2, 1019
Python, 285

two semicolons (;;), case-in constructs,
233–234

U
UDS API, 945
unary RPC, 785
unbuffered/buffered access, Linux /

dev directory, 120
underlay networks, 9, 821–822
Unified Communications, 942

Cisco Business Edition, 942
Cisco Webex Cloud Calling, 942
Cisco Webex Contact Center, 943
Cisco Webex teams, 942
Contact Center, 942–943
CUCM, 942

AXL API, 944
CER API, 944
CUCM Serviceability API, 945
PAWS API, 944
UDS API, 945

Unified Contact Center (Cisco), 943
Unified Contact Center (Cisco), 943
<unlock> operations, NETCONF,

720–721
unmounting Linux file systems, 127
unstructured data, CLI, 19
until-do loops, 239–240

Z01_Abuelenain_Index_p1121-p1196.indd 1187 27/03/21 6:37 pm

1188  update command, Linux

update command, Linux, 86–87
updating

IOS XE with Ansible hosts/variables,
1057–1058

local Git repositories, 314–315
remote Git repositories, fetching

updates, 314–315
uploading files via SFTP, 543
uppercase/lowercase characters,

matching, regular expressions
(regex), 187–188

URI (Universal Resource Identifiers),
389, 431, 432–436

URL (Uniform Resource Locators),
431, 432

API, 945
NETCONF, 733–734

urllib packages, Python and HTTP,
458–463

urls.py files, Django, 343
URN (Uniform Resource Names),

431–432
user space (userland), Linux, 23–24
useradd command, Linux, 138–140
userdel command, Linux, 141
user/group management, Linux,

136–138
changing passwords, 141
creating groups, 141
creating new users, 138–141
deleting groups, 141–142
deleting users, 141
getting user information, 136
modifying user details, 142
setting user passwords, 138–141

usermod command, Linux, 142
usr directory, Linux, 37
usr/bin directory, Linux, 37

usr/local directory, Linux, 37
usr/sbin directory, Linux, 37
UTF-8 encoding, HTTP/1.1

authentication, 472–473
utility modules, Ansible, 1003

V
validate capability, NETCONF, 733
<validate> operations, 724–725
validate_person() function, Python,

307–308, 309
validating

data, JSON schemas, 609–614
JSON schemas, 596–597
NETCONF configurations, 724–725
XML, 562–563

DTD, 563–565, 574
XSD, 565–574

value assignments
lists, Python, 286–288
variables, 218–219

value fields (XML), space characters
in, 562

values, XML, 555
var directory, Linux, 37
variables

Ansible, 999
Boolean variables, 1006
checking for substrings with

conditional statements,
1021–1022

checking with conditional
statements, 1019–1021

conditional statements
with loops and variables,
1027–1033

defining from external files,
1007–1009

Z01_Abuelenain_Index_p1121-p1196.indd 1188 27/03/21 6:37 pm

virtualenv tool  1189

defining in inventory files,
1009–1011

defining in playbooks,
1005–1006

dictionary variables, 1007
importing from external files,

1007–1009
Jinja2 templates, 1042–1043
list variables, 1007
setting dynamically,

1011–1013
string variables, 1006
types of, 1006–1007

Jinja2 templates, 1042–1043
Linux scripting, 217–218

declaring, 218–219
one-dimensional variables, 218
value assignments, 218–219

nx-os_config modules, 1090–1091
Python, 270–271

deleting, 272–273
dynamic data type allocation,

271–272
scope, 272

vendor/API matrix, network
programmability, 957–958

vendor-specific (native) YANG
modules, 666–669

verifying
data planes

SR, 830–831
SR-TE, 842–843

Docker, 320–322
IOS XE with Ansible

ios_command module,
1058–1060

verifying management, 1057
verifying operational data,

1058–1060

IOS XR with Ansible
verifying management,

1074–1075
verifying operational data,

1074–1078
NETCONF

configuring, 1103–1107
operational data, 1098–1103

NX-OS with Ansible
collecting show output with

nxos_command, 1086–1088
configuring with nx-os_*

modules, 1093–1095
configuring with nx-os_config

modules, 1086–1088
interactive commands,

1088–1089
verifying management,

1085–1086
verifying operational data,

1086–1089
Python code, 269
YANG modules, downloaded,

665–666
version command, Ansible, 991–992
version control, application

development, 311
vgdisplay command, Linux, 132,

133–134
viewing

Linux files, 41–46
routing tables, Linux, 163

views.py files, Django, 343
virtual environments

creating with virtualenv tool,
332–333

Flask installations, 345–346
virtualenv tool, 331

installing, 331

Z01_Abuelenain_Index_p1121-p1196.indd 1189 27/03/21 6:37 pm

1190  virtualenv tool

virtual environments, creating,
332–333

virtualization
defined, 8–9
Docker containers, 317–318
Network Programmability and

Automation toolbox, 17
single sources of truth, 11–12
VLAN, awareness, 8–9

VLAN (Virtual Local-Area
Networks), awareness, 8–9

volumes, Linux
logical volumes, 132–133
mounting, 134–135
physical volumes, 130–131
volume groups, 132, 133–134

VPN (Virtual Private Networks), IP
VPN and JSON schemas, 597–598,
601–602, 607–609

W
web application development,

250–251
web/API development, 336–337

back end development, 336
Django, 337

application web servers,
338–339

creating applications, 341–345
demo applications, 343–345
installing, 337–338
migrations, 338–339
models.py files, 343
serializer.py files, 343
settings.py files, 339–341
starting new projects, 337–338

urls.py files, 343
views.py files, 343

Flask
accessing in-memory employee

data, 347–349
installing in virtual

environments, 345–346
retrieving ID-based data,

349–350
simple applications, 346–347

front end development, 336
Postman, 345

Webex Board (Cisco), 943
Webex Cloud Calling (Cisco), 942
Webex Contact Center (Cisco), 943
Webex devices, xAPI, 946
Webex Meetings (Cisco), 943

REST API, 945–946, 948–954
TSP API, 945
URL API, 945
XML API, 945

Webex Room Series (Cisco), 944
Webex Support (Cisco), 943
Webex Teams (Cisco), 942, 945–946,

948–954
Webhook Alerts API (Meraki), 922
webhooks, 882, 933, 935
well-formed XML documents, 562
westbound API, 883, 933
while loops, control flow, 304–306
while-do loops, 237–239
whitespaces, HTTP messages, 416
Wind River, Linux distributions, 26
with-defaults parameter, RESTCONF,

771
writable-running capability,

NETCONF, 732

Z01_Abuelenain_Index_p1121-p1196.indd 1190 27/03/21 6:37 pm

XML (Extensible Markup Language)  1191

X
x11 channels, SSH Connection

Protocol, 520
xAPI (Experience API), 946
XML (Extensible Markup Language)

API, 945
attributes, 558, 568
AXL API, 944
basic XML document example, 554
child/parent relationships, 555–556
comments, 558
data types, 567–568
declarations, 566–567
DTD, 563

example of, 563–564
joint XML/DTD files, 564–565

formatting rules, 561–562
history of, 553–554
leading spaces in XML documents,

555
namespaces, 559–561
nesting

format, 561–562
relationships, 555–556

overview, 553–554
predefined entries, 557
Python and XML processing, 580

dictionaries, 583–585
element mergers, 585–587
element name/attribute

extraction, 581–582
properties/methods, 580–581
rerunning processing for

updated documents, 587–588
script creation, 580–581
value extraction, 582–583

space characters in value fields, 562
tags

child/parent relationships,
555–556

creating, 557
defined, 555
end tags, 555
predefined entries, 557
prefixes, 560–561
start tags, XML, 555
using multiple times, 558–559
values, 555

usage, 553–554
validation, 562–563

DTD, 563–565, 574
XSD, 565–574

values, 555
well-formed XML documents, 562
XPath, 574, 575

expressions, 575–576
expressions, absolute path, 576
expressions, absolute path and

multiple outputs, 577
expressions, anywhere

selection, 576
expressions, path definitions,

578
expressions, predicates, 577
logical operator values, 577
nodes, 574–575

XSD, 565
attribute validation, 570–571
attributes, 568
complex elements, 570–573
content validation, predefined

values, 568–569
content validation, regexp, 569

Z01_Abuelenain_Index_p1121-p1196.indd 1191 27/03/21 6:37 pm

1192  XML (Extensible Markup Language)

data types, 567–568
declarations, 566–567
DTD comparisons, 574
element validation, 567
example of, 565–566
pattern validation, 569–570

XSLT, 578, 579
elements of, 578
stylesheets, 578–579

YAML versus, 615–616
XOR operator (^), Python, 281
XPath, 574

expressions, 575–576
absolute path, 576
absolute path and multiple out-

puts, 577
anywhere selection, 576
path definitions, 578
predicates, 577

logical operator values, 577
NETCONF

capabilities, 735
filters, 710–712

nodes, 574–575
syntax elements, 575

XSD (XML Schema Definition), 565
attribute validation, 570–571
attributes, 568
complex elements, 570–573
content validation

predefined values, 568–569
regexp, 569

data types, 567–568
declarations, 566–567
DTD comparisons, 574
element validation, 567

example of, 565–566
pattern validation, 569–570

XSLT (XML Stylesheet Language
Transformation), 578, 579

elements of, 578
stylesheets, 578–579

xz archiving utility, Linux, 67, 69–70,
72–73

Y - Z
YAML (YAML Ain’t Markup

Language), 615
anchors, 624–625
collections, 618–620
comments, 616
configuration files, building,

635–637
data readability, 616
data representation, 615
data streams

saving to files, 629
sorting, 630–631

data types, 616
example of, 625–626
files

creating, 616
extensions, 616
rules for creating, 616

Jinja templates, 635–637
JSON versus, 615–616
mappings, 618–620
merge keys, 624–625
multiple documents, loading,

632–633
nodes, 617
performance, 616

Z01_Abuelenain_Index_p1121-p1196.indd 1192 27/03/21 6:37 pm

YANG (Yet Another Next Generation)   1193

purpose of, 616
Python

PyYAML, 626–628
saving data streams to files,

629
serializing Python objects,

628–629
sorting data streams, 630–631
yaml.dump() method, 628–631
yaml.load() method, 631–632
yaml.load_all() method,

632–633
yaml.scan() method, 633–635

scalars, 620–621
sequences, 618–620
speed, 616
starting/closing documents, 616–617
structure of, 617–618
tags, 617, 621–624
usability, 616
XML versus, 615–616
yaml.dump() method, 628–631
yaml.load() method, 631–632
yaml.load_all() method, 632–633
yaml.scan() method, 633–635

YANG (Yet Another Next
Generation), 17

content layer, NETCONF, 725–729
data modeling, 639–640, 642

importance of, 640–642
modules, 642–644
modules, augmentation,

656–658
modules, built-in data types,

647–648
modules, cloning, 665
modules, derived data types,

648–649

modules, deviations, 658–662
modules, home of, 664–666
modules, IETF YANG modules,

670–671
modules, native (vendor-

specific) modules, 666–669
modules, OpenConfig YANG

modules, 671–673
modules, structure of, 644–646
modules, verifying downloaded

modules, 665–666
nodes, 649
nodes, container nodes,

647–648
nodes, grouping, 654–656
nodes, leaf nodes, 649–651
nodes, leaf-list nodes, 651–652
nodes, list nodes, 647–648
pyang, 673–679
pyang, JTOX drivers, 683–687
pyangbind, 679–682
YANG 1.1, 662–663

JSD, 595
NETCONF/YANG

configuring, 1103–1107
netconf_get module, 1103–1107
network programmability,

973–978
verifying operational data,

1098–1103
RESTCONF

data resource, 753–756
schema resource, 750–753
YANG library version resource,

758
RESTCONF/YANG, network

programmability, 978–987
YANG 1.1, 662–663

Z01_Abuelenain_Index_p1121-p1196.indd 1193 27/03/21 6:37 pm

1194  YUM (Yellowdog Updater Modified)

YUM (Yellowdog Updater Modified),
95, 101

commands list, 102–103
sudo yum remove httpd command,

109
sudo yum update command, 110
yum info command, 104–105

yum install command, 106–109
yum list command, 103
yum repolist all command,

110–111
yum search command, 103–104
yum-config-manager command,

111–112

Z01_Abuelenain_Index_p1121-p1196.indd 1194 27/03/21 6:37 pm

	Cover
	Title Page
	Copyright Page
	Credits
	About the Authors
	About the Technical Reviewers
	Dedications
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	Chapter 3 Linux Storage, Security, and Networks
	Linux Storage
	Physical Storage
	Logical Volume Manager

	Linux Security
	User and Group Management
	File Security Management
	Access Control Lists
	Linux System Security

	Linux Networking
	The ip Utility
	The NetworkManager Service
	Network Scripts and Configuration Files
	Network Services: DNS

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

