

Data Analytics for IT Networks

Developing Innovative Use Cases

John Garrett CCIE No. 6204 Emeritus MS Predictive Analytics

ciscopress.com

FREE SAMPLE CHAPTER SHARE WITH OTHERS

in

J.

Data Analytics for IT Networks

Developing Innovative Use Cases

John Garrett CCIE Emeritus No. 6204, MSPA

Cisco Press

Data Analytics for IT Networks

Developing Innovative Use Cases

Copyright © 2019 Cisco Systems, Inc.

Published by:

Cisco Press

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

First Printing 1 18

Library of Congress Control Number: 2018949183

ISBN-13: 978-1-58714-513-1 ISBN-10: 1-58714-513-8

Warning and Disclaimer

This book is designed to provide information about Developing Analytics use cases. It is intended to be a guideline for the networking professional, written by a networking professional, toward understanding Data Science and Analytics as it applies to the networking domain. Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an "as is" basis. The authors, Cisco Press, and Cisco Systems, Inc. shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco Systems, Inc.

MICROSOFTAND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED "AS IS"

WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMATION, INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS RESPECTIVE

SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES.

THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFTAND/OR ITS RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

MICROSOFT® WINDOWS®, AND MICROSOFT OFFICE® ARE REGISTERED TRADEMARKS OF THE MICROSOFT CORPORATION IN THE U.S.A. AND OTHER COUNTRIES. THIS BOOK IS NOT SPONSORED OR ENDORSED BY OR AFFILIATED WITH THE MICROSOFT CORPORATION.

About the Author

John Garrett is CCIE Emeritus (6204) and Splunk Certified. He earned an M.S. in predictive analytics from Northwestern University, and has a patent pending related to analysis of network devices with data science techniques. John has architected, designed, and implemented LAN, WAN, wireless, and data center solutions for some of the largest Cisco customers. As a secondary role, John has worked with teams in the Cisco Services organization to innovate on some of the most widely used tools and methodologies at Customer Experience over the past 12 years.

For the past 7 years, John's journey has moved through server virtualization, network virtualization, OpenStack and cloud, network functions virtualization (NFV), service assurance, and data science. The realization that analytics and data science play roles in all these brought John full circle back to developing innovative tools and techniques for Cisco Services. John's most recent role is as an Analytics Technical Lead, developing use cases to benefit Cisco Services customers as part of Business Critical Services for Cisco. John lives with his wife and children in Raleigh, North Carolina.

About the Technical Reviewers

Dr. Ammar Rayes is a Distinguished Engineer at Advance Services Technology Office for Cisco, focusing on network analytics, IoT, and machine learning. He has authored 3 books and more than 100 publications in refereed journals and conferences on advances in software- and networking-related technologies, and he holds more than 25 patents. He is the founding president and board member of the International Society of Service Innovation Professionals (www.issip.org), editor-in-chief of the journal *Advancements in Internet of Things* and an editorial board member of the European Alliance for Innovation—Industrial Networks and Intelligent Systems. He has served as associate editor on the journals *ACM Transactions on Internet Technology* and *Wireless Communications and Mobile Computing* and as guest editor on multiple journals and several *IEEE Communications Magazine* issues. He has co-chaired the Frontiers in Service conference and appeared as keynote speaker at several IEEE and industry conferences.

At Cisco, Ammar is the founding chair of Cisco Services Research and the Cisco Services Patent Council. He received the Cisco Chairman's Choice Award for IoT Excellent Innovation and Execution.

He received B.S. and M.S. degrees in electrical engineering from the University of Illinois at Urbana and a Ph.D. in electrical engineering from Washington University in St. Louis, Missouri, where he received the Outstanding Graduate Student Award in Telecommunications.

Nidhi Kao is a Data Scientist at Cisco Systems who develops advanced analytic solutions for Cisco Advanced Services. She received a B.S. in biochemistry from North Carolina State University and an M.B.A. from the University of North Carolina Kenan Flagler Business School. Prior to working at Cisco Systems, she held analytic chemist and research positions in industry and nonprofit laboratories.

Dedications

This book is dedicated to my wife, Veronica, and my children, Lexy, Trevor, and Mason. Thank you for making it possible for me to follow my passions through your unending support.

Acknowledgments

I would like to thank my manager, Ulf Vinneras, for supporting my efforts toward writing this book and creating an innovative culture where Cisco Services incubation teams can thrive and grow.

To that end, thanks go out to all the people in these incubation teams in Cisco Services for their constant sharing of ideas and perspectives. Your insightful questions, challenges, and solutions have led me to work in interesting roles that make me look forward to coming to work every day. This includes the people who are tasked with incubation, as well as the people from the field who do it because they want to make Cisco better for both employees and customers.

Thank you, Nidhi Kao and Ammar Rayes, for your technical expertise and your time spent reviewing this book. I value your expertise and appreciate your time. Your recommendations and guidance were spot-on for improving the book.

Finally, thanks to the Pearson team for helping me make this career goal a reality. There are many areas of publishing that were new to me, and you made the process and the experience very easy and enjoyable.

Contents at a Glance

Chapter 1	Getting Started with Analytics 1
Chapter 2	Approaches for Analytics and Data Science 13
Chapter 3	Understanding Networking Data Sources 35
Chapter 4	Accessing Data from Network Components 55
Chapter 5	Mental Models and Cognitive Bias 97
Chapter 6	Innovative Thinking Techniques 127
Chapter 7	Analytics Use Cases and the Intuition Behind Them 147
Chapter 8	Analytics Algorithms and the Intuition Behind Them 217
Chapter 9	Building Analytics Use Cases 273
Chapter 10	Developing Real Use Cases: The Power of Statistics 285
Chapter 11	Developing Real Use Cases: Network Infrastructure Analytics 323
Chapter 12	Developing Real Use Cases: Control Plane Analytics Using Syslog Telemetry 355
Chapter 13	Developing Real Use Cases: Data Plane Analytics 389
Chapter 14	Cisco Analytics 425
Chapter 15	Book Summary 435
Appendix A	Function for Parsing Packets from pcap Files 443
	Index 445

Contents

	Foreword xvii
	Introduction: Your future is in your hands! xviii
Chapter 1	Getting Started with Analytics 1
	What This Chapter Covers 1
	Data: You as the SME 2
	Use-Case Development with Bias and Mental Models 2
	Data Science: Algorithms and Their Purposes 3
	What This Book Does <i>Not</i> Cover 4
	Building a Big Data Architecture 4
	Microservices Architectures and Open Source Software 5
	R Versus Python Versus SAS Versus Stata 6
	Databases and Data Storage 6
	Cisco Products in Detail 6
	Analytics and Literary Perspectives 7
	Analytics Maturity 7
	Knowledge Management 8
	Gartner Analytics 8
	Strategic Thinking 9
	Striving for "Up and to the Right" 9
	Moving Your Perspective 10
	Hot Topics in the Literature 11
	Summary 12
Chapter 2	Approaches for Analytics and Data Science 13
	Model Building and Model Deployment 14
	Analytics Methodology and Approach 15
	Common Approach Walkthrough 16
	Distinction Between the Use Case and the Solution 18
	Logical Models for Data Science and Data 19
	Analytics as an Overlay 20
	Analytics Infrastructure Model 22
	Summary 33
Chapter 3	Understanding Networking Data Sources 35
	Planes of Operation on IT Networks 36
	Review of the Planes 40

	Data and the Planes of Operation 42
	Planes Data Examples 44
	A Wider Rabbit Hole 49
	A Deeper Rabbit Hole 51
	Summary 53
Chapter 4	Accessing Data from Network Components 55
	Methods of Networking Data Access 55
	Pull Data Availability 57
	Push Data Availability 61
	Control Plane Data 67
	Data Plane Traffic Capture 68
	Packet Data 70
	Other Data Access Methods 74
	Data Types and Measurement Considerations 76
	Numbers and Text 77
	Data Structure 82
	Data Manipulation 84
	Other Data Considerations 87
	External Data for Context 89
	Data Transport Methods 89
	Transport Considerations for Network Data Sources 90
	Summary 96
Chapter 5	Mental Models and Cognitive Bias 97
	Changing How You Think 98
	Domain Expertise, Mental Models, and Intuition 99
	Mental Models 99
	Daniel Kahneman's System 1 and System 2 102
	Intuition 103
	Opening Your Mind to Cognitive Bias 104
	Changing Perspective, Using Bias for Good 105
	Your Bias and Your Solutions 106
	How You Think: Anchoring, Focalism, Narrative Fallacy, Framing, and Priming 107
	How Others Think: Mirroring 110
	What Just Happened? Availability, Recency, Correlation, Clustering, and Illusion of Truth 111

	Enter the Boss: HIPPO and Authority Bias 113
	What You Know: Confirmation, Expectation, Ambiguity, Context, and Frequency Illusion 114
	What You Don't Know: Base Rates, Small Numbers, Group Attribution, and Survivorship 117
	Your Skills and Expertise: Curse of Knowledge, Group Bias, and Dunning-Kruger 119
	We Don't Need a New System: IKEA, Not Invented Here, Pro-Innovation, Endowment, Status Quo, Sunk Cost, Zero Price, and Empathy 121
	I Knew It Would Happen: Hindsight, Halo Effect, and Outcome Bias 123
	Summary 124
Chapter 6	Innovative Thinking Techniques 127
	Acting Like an Innovator and Mindfulness 128
	Innovation Tips and Techniques 129
	Developing Analytics for Your Company 140
	Defocusing, Breaking Anchors, and Unpriming 140
	Lean Thinking 142
	Cognitive Trickery 143
	Quick Innovation Wins 143
	Summary 144
Chapter 7	Analytics Use Cases and the Intuition Behind Them 147
	Analytics Definitions 150
	How to Use the Information from This Chapter 151
	Priming and Framing Effects 151
	Analytics Rube Goldberg Machines 151
	Popular Analytics Use Cases 152
	Machine Learning and Statistics Use Cases 153
	Common IT Analytics Use Cases 170
	Broadly Applicable Use Cases 199
	Some Final Notes on Use Cases 214
	Summary 214
Chapter 8	Analytics Algorithms and the Intuition Behind Them 217
	About the Algorithms 217
	Algorithms and Assumptions 218
	Additional Background 219

Data and Statistics 221 Statistics 221 Correlation 224 Longitudinal Data 225 ANOVA 227 Probability 228 Bayes' Theorem 228 Feature Selection 230 Data-Encoding Methods 232 Dimensionality Reduction 233 Unsupervised Learning 234 Clustering 234 Association Rules 240 Sequential Pattern Mining 243 Collaborative Filtering 244 Supervised Learning 246 Regression Analysis 246 Classification Algorithms 248 Decision Trees 249 Random Forest 250 Gradient Boosting Methods 251 Neural Networks 252 Support Vector Machines 258 Time Series Analysis 259 Text and Document Analysis 262 Natural Language Processing (NLP) 262 Information Retrieval 263 Topic Modeling 265 Sentiment Analysis 266 Other Analytics Concepts 267 Artificial Intelligence 267 Confusion Matrix and Contingency Tables 267 Cumulative Gains and Lift 269 Simulation 271 Summary 271

```
Chapter 9
             Building Analytics Use Cases 273
             Designing Your Analytics Solutions 274
             Using the Analytics Infrastructure Model 275
             About the Upcoming Use Cases 276
                The Data 276
                The Data Science 278
                The Code 280
             Operationalizing Solutions as Use Cases 281
                Understanding and Designing Workflows 282
             Tips for Setting Up an Environment to Do Your Own Analysis 282
             Summary 284
Chapter 10
             Developing Real Use Cases: The Power of Statistics 285
             Loading and Exploring Data 286
             Base Rate Statistics for Platform Crashes 288
             Base Rate Statistics for Software Crashes 299
             ANOVA 305
             Data Transformation 310
                Tests for Normality 311
                Examining Variance 313
             Statistical Anomaly Detection 318
             Summary 321
Chapter 11
             Developing Real Use Cases: Network Infrastructure Analytics 323
             Human DNA and Fingerprinting 324
             Building Search Capability 325
                Loading Data and Setting Up the Environment 325
                Encoding Data for Algorithmic Use 328
                Search Challenges and Solutions 331
             Other Uses of Encoded Data 336
             Dimensionality Reduction 337
             Data Visualization 340
             K-Means Clustering 344
             Machine Learning Guided Troubleshooting 350
             Summary 353
```

Chapter 12 Developing Real Use Cases: Control Plane Analytics Using Syslog Telemetry 355

Data for This Chapter 356 OSPF Routing Protocols 357 Non-Machine Learning Log Analysis Using pandas 357 Noise Reduction 360 Finding the Hotspots 362 Machine Learning–Based Log Evaluation 366 Data Visualization 367 Cleaning and Encoding Data 369 Clustering 373 More Data Visualization 375 Transaction Analysis 379 Task List 386 Summary 387

Chapter 13 Developing Real Use Cases: Data Plane Analytics 389

The Data 390 SME Analysis 394 SME Port Clustering 407 Machine Learning: Creating Full Port Profiles 413 Machine Learning: Creating Source Port Profiles 419 Asset Discovery 422 Investigation Task List 423 Summary 424

Chapter 14 Cisco Analytics 425

Architecture and Advisory Services for Analytics 426 Stealthwatch 427 Digital Network Architecture (DNA) 428 AppDynamics 428 Tetration 430 Crosswork Automation 431 IoT Analytics 432 Analytics Platforms and Partnerships 433 Cisco Open Source Platform 433 Summary 434

Chapter 15 Book Summary 435

Analytics Introduction and Methodology 436 All About Networking Data 438 Using Bias and Innovation to Discover Solutions 439 Analytics Use Cases and Algorithms 439 Building Real Analytics Use Cases 440 Cisco Services and Solutions 442 In Closing 442

Appendix A Function for Parsing Packets from pcap Files 443

Index 445

Icons Used in This Book

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- Boldface indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a show command).
- *Italic* indicates arguments for which you supply actual values.
- Vertical bars () separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ([{ }]) indicate a required choice within an optional element.

Foreword

What's the future of network engineers? This is a question haunting many of us. In the past, it was somewhat easy; study for your networking certification, have the CCIE or CCDE as the ultimate goal, and your future was secured.

In my job as a General Manager within the Cisco Professional Services organization, working with Fortune 1000 clients from around the world, I meet a lot of people with opinions in this matter, with views ranging from "we just need software programmers in the future" to "data scientist is the way to go as we will automate everything." Is either of these views correct?

My simple answer to this is, "no," the long answer is a little more complicated.

The changes in the networking industry are to a large extent the same as the automotive industry; today most cars are computerized. Imagine though, if a car was built by people that only knew software programming, and didn't know anything about the car design, the engine, or security. The "architect" of a car needs to be an in-depth expert on car design, and at the same time know enough about software capabilities, and what can be achieved, in a way that still keeps the "soul" of the car and enhances the overall result.

When it comes to the future of networking, it is very much the same. If we replaced skilled network engineers with data science engineers, the result would be mediocre. At the same time, there is no doubt that the future of networking will be built on data science.

In my view, the ideal structure of any IT team is a core of very knowledgeable network engineers, working very closely together with skilled data scientists. The network engineers that take the time to learn the basics of data science, and start to expand into that area will automatically be the bridge to the data science, and these engineers will soon become the most critical asset in that IT department.

The author of this book, John Garrett, is a true example of someone that has made this journey. With many years of experience working with the largest Cisco clients around the world, as one of our more senior network and data center technical leads, John saw the movement of data science approaching, and decided to invest himself in learning this new discipline. I would say he did not only learn it but instead mastered the art.

In this book, John helps the reader along the journey of learning data analytics in a very practical and applied way, providing the tools to almost immediately provide value to your organization.

At the end of the day, career progress is very linked to providing unique value. If you have decided to invest in yourself, and build data science skills on top of your telecommunication, datacenter, security, or IT knowledge, this book is the perfect start.

I would argue that John is a proof point to this matter, moving from a tech lead consultant to now being part of a small core team focusing on innovation to create the future of professional services from Cisco. A confirmation of this is also the number of patent submissions that John has pending in the area, as networking skills combined with data science opened up entirely new avenues of capabilities and solutions.

By Ulf Vinneras, Cisco General Manager Customer Experience/Cross Architecture

Introduction: Your future is in your hands!

Analytics and data science are everywhere. Everything today is connected by networks. In the past networking and data science were distinct career paths, but this is no longer the case. Network and information technology (IT) specialists can benefit from understanding analytics, and data scientists can benefit from understanding how computer networks operate and produce data. People in both roles are responsible for building analytics solutions and use cases that improve the business.

This book provides the following:

- An introduction to data science methodologies and algorithms for network and IT professionals
- An understanding of computer network data that is available from these networks for data scientists
- Techniques for uncovering innovative use cases that combine the data science algorithms with network data
- Hands-on use-case development in Python and deep exploration of how to combine the networking data and data science techniques to find meaningful insights

After reading this book, data scientists will experience more success interacting with IT networking experts, and IT networking experts will be able to aid in developing complete analytics solutions. Experts from either area will learn how to develop networking use cases independently.

My Story

I am a network engineer by trade. Prior to learning anything about analytics, I was an engineer working in data networking. Thanks to my many years of experience, I could design most network architectures that used any electronics to move any kind of data—business critical or not—in support of world-class applications. I thought I knew everything I needed to know about networking.

Then digital transformation happened. The software revolution happened. Everything went software defined. Everything is "virtual" and "containerized" now. Analytics is everywhere. With all these changes, I found that I didn't know as much as I once thought I did.

If this sounds like your story, then you have enough experience to realize that you need to understand the next big thing if you want to remain relevant in a networking-related role—and analytics applied in your networking domain of expertise is the next big thing for you. If yours is like many organizations today, you have tons of data, and you have analytics tools and software to dive into it, but you just do not really know what to do with it. How can your skills be relevant here? How do you make the connection from these buckets, pockets, and piles of data to solving problems for your company? How

can you develop use cases that solve both business and technical problems? Which use cases provide some real value, and which ones are a waste of your time?

Looking for that next big thing was exactly the situation I found myself in about 10 years ago. I was experienced when it came to network design. I was a 5 year CCIE, and I had transitioned my skill set from campus design to wireless to the data center. I was working in one of the forward-looking areas of Cisco Services, Cisco Advanced Services. One of our many charters was "proactive customer support," with a goal of helping customers avoid costly outages and downtime by preventing problems from happening in the first place. While it was not called *analytics* back then, the work done by Cisco Advanced Services could fall into a bucket known today as *prescriptive analytics*.

If you are an engineer looking for that next step in your career, many of my experiences will resonate with you. Many years ago, I was a senior technical practitioner deciding what was next for developing my skill set. My son was taking Cisco networking classes in high school, and the writing was on the wall that being only a network engineer was not going to be a viable alternative in the long term. I needed to level up my skills in order to maintain a senior-level position in a networking-related field, or I was looking at a role change or a career change in the future.

Why analytics? I was learning through my many customer interactions that we needed do more with the data and expertise that we had in Cisco Services. The domain of coverage in networking was small enough back then that you could identify where things were "just not right" based on experience and intuition. At Cisco, we know how to use our collected data, our knowledge about data on existing systems, and our intuition to develop "mental models" that we regularly apply to our customer network environments.

What are mental models? Captain Sully on US Airways flight 1549 used mental models when he made an emergency landing on the Hudson River in 2009. Given all of the airplane telemetry data, Captain Sully knew best what he needed to do in order to land the plane safely and protect the lives of hundreds of passengers. Like experienced airplane pilots, experienced network engineers like you know how to avoid catastrophic failures. Mental models are powerful, and in this book, I tell you how to use mental models and innovation techniques to develop insightful analytics use cases for the networking domain.

The Services teams at Cisco had excellent collection and reporting. Expert analysis in the middle was our secret sauce. In many cases, the anonymized data from these systems became feeds to our internal tools that we developed as "digital implementations" of our mental models. We built awesome collection mechanisms, data repositories, proprietary rule-matching systems, machine reasoning systems, and automated reporting that we could use to summarize all the data in our findings for Cisco Services customers. We were finding insights but not actively looking for them using analytics and machine learning.

My primary interest as a futurist thinker was seeking to understand what was coming next for Cisco Advanced Services and myself. What was the "next big thing" for which we needed to be prepared? In this pursuit, I explored a wide array of new technology areas over the course of 10 years. I spent some years learning and designing VMware, OpenStack, network functions virtualization (NFV), and the associated virtual network functions (VNFs) solutions on top of OpenStack. I then pivoted to analytics and applied those concepts to my virtualization knowledge area.

After several years working on this cutting edge of virtualized software infrastructure design and analytics, I learned that whether the infrastructure is physical or virtual, whether the applications are local or in the cloud, the importance of being able to find insights within the data that we get from our networking environments is critical to the success of these environments. I also learned that the growth of data science and the availability of computer resources to munge through the data make analytics and data science very attainable for any networking professional who wishes to pivot in this direction.

Given this insight, I spent 3 years of time outside work, including many evenings, weekends, and all of my available vacation time in order to earn a master's degree in predictive analytics from Northwestern University. Around that same time I began reading (or listening to) hundreds of books, articles, and papers about analytics topics. I also consumed interesting writings about algorithms, data science, innovation, innovative techniques, brain chemistry, bias, and other topics related to turning data into value by using creative thinking techniques. You are an engineer, so you can associate this to learning that next new platform, software, or architecture. You go all in.

Another driver for me was that I am work centered, driven to succeed, and competitive by nature. Maybe you are, too. My customers who had purchased Cisco services were challenging us to do better. It was no longer good enough to say that everything is connected, traffic is moving just fine across your network, and if there is a problem, the network protocols will heal themselves. Our customers wanted more than that.

Cisco Advanced Services customers are highly skilled, and they wanted more than simple reporting. They wanted visibility and insights across many domains. My customers wanted data, and they wanted dashboards that shared data with them so they could determine what was wrong on their own. One customer (we will call him Dave because that was his name) wanted to be able to use his own algorithms, his own machines, and his own people to determine what was happening at the lower levels of his infrastructure. He wanted to correlate this network data with his applications and his business metrics. For me, as a very senior network and data center engineer, I felt like I was not getting the job done. I could not do the analytics. I did not have a solution that I could propose for his purpose. There was a new space in networking that I had not yet conquered. Dave wanted actionable intelligence derived from the data that he was providing to Cisco. Dave wanted real analytics insights. Challenge accepted.

That was the start of my journey into analytics and into making the transition from being a network engineer to being a data scientist with enough ability to bridge the gap between IT networking engineers and those mathematical wizards who do the hard-core data science. This book is a knowledge share of what I have learned over the past years as I have transitioned from being an enterprise-focused campus, WAN, and data center networking engineer to being a learning data scientist. I realized that it was not necessary to get to the Ph.D. level to use data science and predictive analytics. For my transition, I wanted to be someone who can use enough data science principles to find use cases in the wild and apply them to common IT networking problems to find useful, relevant, and actionable insights for my customers.

I hope you enjoy reading about what I have learned on this journey as much as I have enjoyed learning it. I am still working at it, so you will get the very latest. I hope that my learning and experiences in data, data science, innovation, and analytics use cases can help you in your career.

How This Book Is Organized

Chapter 1, "Getting Started with Analytics," defines some further details about what is explored in this book, as well as the current analytics landscape in the media. You cannot open your laptop or a social media application on your phone without seeing something related to analytics.

Chapter 2, "Approaches for Analytics and Data Science," explores methodologies and approaches that will help you find success as a data scientist in your area of expertise. The simple models and diagrams that I have developed for internal Cisco trainings can help with your own solution framing activities.

Chapter 3, "Understanding Networking Data Sources," begins by looking at network data and the planes of operation in networks that source this data. Virtualized solutions such as OpenStack and network functions virtualization (NFV) create additional complexities with sourcing data for analysis. Most network devices can perform multiple functions with the same hardware. This chapter will help you understand how they all fit together so you can get the right data for your solutions.

Chapter 4, "Accessing Data from Network Components," introduces networking data details. Networking environments produce many different types of data, and there are multiple ways to get at it. This chapter provides overviews of the most common data access methods in networking. You cannot be a data scientist without data! If you are a seasoned networking engineer, you may only need to skim this chapter.

Chapter 5, "Mental Models and Cognitive Bias," shifts gears toward innovation by spending time in the area of mental models, cognitive science, and bias. I am not a psychology expert or an authority in this space, but in this chapter I share common biases that you may experience in yourself, your users, and your stakeholders. This cognitive science is where things diverge from a standard networking book—but in a fascinating way. Understanding your audience is key to building successful use cases for them.

Chapter 6, "Innovative Thinking Techniques," introduces innovative techniques and interesting tricks that I have used to uncover use cases in my role with Cisco. Understanding bias from Chapter 5 coupled with innovation techniques from this chapter will prepare you to maximize the benefit of the use cases and algorithms you learn in the upcoming chapters. Chapter 7, "Analytics Use Cases and the Intuition Behind Them," has you use your new knowledge of innovation to walk through analytics use cases across many industries. I have learned that combining the understanding of data with new and creative—and sometimes biased—thinking results in new understanding and new perspective.

Chapter 8, "Analytics Algorithms and the Intuition Behind Them," walks through many common industry algorithms from the use cases in Chapter 7 and examines the intuition behind them. Whereas Chapter 7 looks at use cases from a top-down perspective, this chapter looks at algorithms to give you an inside-out view. If you know the problems you want to solve, this is your toolbox.

Chapter 9, "Building Analytics Use Cases," brings back the models and methodologies from Chapter 2 and reviews how to turn your newfound ideas and algorithms into solutions. The use cases and data for the next four chapters are outlined here.

Chapter 10, "Developing Real Use Cases: The Power of Statistics," moves from the abstract to the concrete and explores some real Cisco Services use cases built around statistics. There is still a very powerful role for statistics in our fancy data science world.

Chapter 11, "Developing Real Use Cases: Network Infrastructure Analytics," looks at actual solutions that have been built using the feature information about your network infrastructure. A detailed look at Cisco Advanced Services fingerprinting, and other infrastructure-related capabilities is available here.

Chapter 12, "Developing Real Use Cases: Control Plane Analytics Using Syslog Telemetry," shows how to build solutions that use network event telemetry data. The popularity of pushing data from devices is growing, and you can build use cases by using such data. Familiar algorithms from previous chapters are combined with new data in this chapter to provide new insight.

Chapter 13, "Developing Real Use Cases: Data Plane Analytics," introduces solutions built for making sense of data plane traffic. This involves analysis of the packets flowing across your network devices. Familiar algorithms are used again to show how you can use the same analytics algorithms in many ways on many different types of data to find different insights.

Chapter 14, "Cisco Analytics," runs through major Cisco product highlights in the analytics space. Any of these products can function as data collectors, sources, or engines, and they can provide you with additional analytics and visualization capabilities to use for solutions that extend the capabilities and base offerings of these platforms. Think of them as "starter kits" that help you get a working product in place that you can build on in the future.

Chapter 15, "Book Summary," closes the book by providing a complete wrap-up of what I hope you learned as you read this book.

Credits

Stephen R. Covey, The 7 Habits of Highly Effective People: Powerful Lessons in Personal Change, 2004, Simon and Schuster.

ITU Annual Regional Human Capacity Building Workshop for Sub-Saharan Countries in Africa Mauritius, 28-30 June 2017

Empirical Model-Building and Response Surfaces, 1987, George box, John Wiley.

Predictably Irrational: The Hidden Forces that Shape Our Decisions, Dan Ariely, HarperCollins.

Thinking, Fast and Slow, Daniel Kahneman, Macmillan Publishers Abraham Wald

Thinking, Fast and Slow, Daniel Kahneman, Macmillan Publishers

Thinking, Fast and Slow, Daniel Kahneman, Macmillan Publishers

Thinking, Fast and Slow, Daniel Kahneman, Macmillan Publishers

Charles Duhigg

De, B. E. (1985). Six thinking hats. Boston: Little, Browne and Company.

Henry Ford

Ries, E. (2011). The lean startup: How constant innovation to creates radically successful businesses. Penguin Books

The Post-Algorithmic Era Has Arrived By Bill Franks, Dec 14, 2017.

Figure Credits

Figure 8-13	Scikit-learn
Figure 8-32	Screenshot of Jupyter Notebook © 2018 Project Jupyter
Figure 8-33	Screenshot of Jupyter Notebook © 2018 Project Jupyter
Figure 8-34	Screenshot of Jupyter Notebook © 2018 Project Jupyter
Figure 10-07	Screenshot of Jupyter Notebook © 2018 Project Jupyter
Figure 10-08	Screenshot of Jupyter Notebook © 2018 Project Jupyter
Figure 10-18	Screenshot of Jupyter Notebook © 2018 Project Jupyter
Figure 10-22	Screenshot of Jupyter Notebook © 2018 Project Jupyter
Figure 10-23	Screenshot of Jupyter Notebook © 2018 Project Jupyter
Figure 10-24	Screenshot of Jupyter Notebook © 2018 Project Jupyter
Figure 10-26	Screenshot of Jupyter Notebook © 2018 Project Jupyter
Figure 10-27	Screenshot of Jupyter Notebook © 2018 Project Jupyter
Figure 10-30	Screenshot of Jupyter Notebook © 2018 Project Jupyter
Figure 10-31	Screenshot of Jupyter Notebook © 2018 Project Jupyter
Figure 10-32	Screenshot of Jupyter Notebook © 2018 Project Jupyter

Figure 10-34 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 10-37 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 10-38 Screenshot of Jupyter Notebook © 2018 Project Jupyter Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 10-39 Figure 10-40 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 10-47 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 10-49 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 10-51 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 10-53 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 10-54 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 10-61 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 10-62 Screenshot of Excel © Microsoft Figure 11-22 Screenshot of Business Critical Insights © 2018 Cisco Systems, Inc. Figure 11-32 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 11-34 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 11-38 Screenshot of Jupyter Notebook © 2018 Project Jupyter Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 11-41 Figure 11-51 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 13-10 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 13-12 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 13-13 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 13-14 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 13-15 Screenshot of Jupyter Notebook © 2018 Project Jupyter Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 13-35 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 12-03 Figure 12-04 Screenshot of Jupyter Notebook © 2018 Project Jupyter Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 12-05 Figure 12-07 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 12-08 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 12-09 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 12-10 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 12-11 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 12-12 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 12-15 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 12-18 Screenshot of Jupyter Notebook © 2018 Project Jupyter Figure 12-42 Screenshot of Jupyter Notebook © 2018 Project Jupyter

Chapter 2

Approaches for Analytics and Data Science

This chapter examines a simple methodology and approach for developing analytics solutions. When I first started analyzing networking data, I used many spreadsheets, and I had a lot of data access, but I did not have a good methodology to approach the problems. You can only sort, filter, pivot, and script so much when working with a single data set in a spreadsheet. You can spend hours, days, or weeks diving into the data, slicing and dicing, pivoting this way and that...only to find that the best you can do is show the biggest and the smallest data points. You end up with no real insights. When you share your findings to glassy-eyed managers, the rows and columns of data are a lot more interesting to you than they are to them. I have learned through experience that you need more.

Analytics solutions look at data to uncover stories about what is happening now or what will be happening in the future. In order to be effective in a data science role, you must step up your storytelling game. You can show the same results in different ways—sometimes many different ways—and to be successful, you must get the audience to see what you are seeing. As you will learn in Chapter 5, "Mental Models and Cognitive Bias," people have biases that impact how they receive your results, and you need to find a way to make your results relevant to each of them—or at least make your results relevant to the stakeholders who matter.

You have two tasks here. First, you need to find a way to make your findings interesting to nontechnical people. You can make data more interesting to nontechnical people with statistics, top-*n* reporting, visualization, and a good storyline. I always call this the "BI/BA of analytics," or the simple descriptive analytics. Business intelligence (BI)/ business analytics (BA) dashboards are a useful form of data presentation, but they typically rely on the viewer to find insight. This has value and is useful to some extent but generally tops out at cool visualizations that I call "*Sesame Street* analytics."

If you are from my era, you grew up with the *Sesame Street* PBS show, which had a segment that taught children to recognize differences in images and had the musical tagline "One of these things is not like the others." Visualizations with anomalies identified in contrasting colors immediately help the audience see how "one of these things is not like the others," and you do not need a story if you have shown this properly. People look at your visualization or infographic and just see it.

Your second task is to make the data interesting to the technical people, your new data science friends, your peers. You do this with models and analytics, and your visualizing and storytelling must be at a completely new level. If you present "*Sesame Street* analytics" to a technical audience, you are likely to hear "That's just visualization; I want to know *why* is it an outlier." You need to do more—with real algorithms and analytics—to impress this audience. This chapter starts your journey toward impressing both audiences.

Model Building and Model Deployment

As mentioned in Chapter 1, "Getting Started with Analytics," when it comes to analytics models, people often overlook a very important distinction between *developing and building* and *implementing and deploying* models. The ability for your model to be usable outside your own computer is a critical success factor, and you need to know how to both build and deploy your analytics use cases. It is often the case that you build models centrally then deploy them at the edge of a network or at many edges of corporate or service provider networks. Where do you think the speech recognition models on your mobile phone were built? Where are they ultimately deployed? If your model is going to have impact in your organization, you need to develop workflows that use your model to benefit the business in some tangible way.

Many models are developed or built from batches of test data, perhaps with data from a lab or a big data cluster, built on users' machines or inside an analytics package of data science algorithms. This data is readily available, cleaned, and standardized, and they have no missing values. Experienced data science people can easily run through a bunch of algorithms to visualize and analyze the data in different ways to glean new and interesting findings. With this captive data, you can sometimes run through hundreds of algorithms with different parameters, treating your model like a black box, and only viewing the results. Sometimes you get very cool-looking results that are relevant. In the eyes of management or people who do not understand the challenges in data science, such development activity looks like the simple layout in Figure 2-1, where data is simply combined with data science to develop a solution. Say hello to your nontechnical audience. This is not a disparaging remark; some people—maybe even most people—prefer to just get to the point, and nothing gets to the point better than results. These people do not care about the details that you needed to learn in order to provide solutions at this level of simplicity.

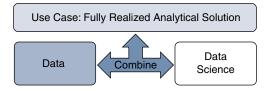


Figure 2-1 Simplified View of Data Science

Once you find a model, you bring in more data to further test and validate that the model's findings are useful. You need to prove beyond any reasonable doubt that the model you have on your laptop shows value. Fantastic. Then what? How can you bring all data across your company to your computer so that you can run it through the model you built?

At some point in the process, you will deploy your analytics to a production system, with real data, meaning that an automated system is set up to run new data, in batches or streaming, against your new model. This often involves working with a development team, whose members may or may not be experts in analytics. In some cases, you do not need to deploy into production at all because the insight is learned, and no further understanding is required. In either case, you then need to use your model against new batches of data to extend the value beyond the data you originally used to build and test it.

Because I am often the one with models on my computer, and I have learned how to deploy those models as part of useful applications, I share my experiences in turning models into useful tools in later chapters of this book, as we go through actual use cases.

Analytics Methodology and Approach

How you approach an analytics problem is one of the factors that determine how successful your solution will be in solving the problem. In the case of analytics problems, you can use two broad approaches, or methodologies, to get to insightful solutions. Depending on your background, you will have some predetermined bias in terms of how you want to approach problems. The ultimate goal is to convert data to value for your company. You get to that value by finding insights that solve technical or business problems. The two broad approaches, shown in Figure 2-2, are the "explore the data" approach, and the "solve the business problem" approach.

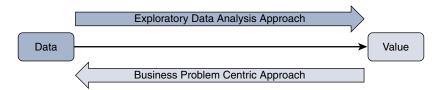


Figure 2-2 Two Approaches to Developing Analytics Solutions

These are the two main approaches that I use, and there is literature about many granular, systematic methodologies that support some variation of each of these approaches. Most analytics literature guides you to the problem-centric approach. If you are strongly aware of the data that you have but not sure how to use it to solve problems, you may find yourself starting in the statistically centered exploratory data analysis (EDA) space that is most closely associated with statistical John Tukey. This approach often has some quick wins along the way in finding statistical value in the data rollups and visualizations used to explore the data.

Most domain data experts tend to start with EDA because it helps you understand the data and get the quick wins that allow you to throw a bone to the stakeholders while digging into the more time-consuming part of the analysis. Your stakeholders often have hypotheses (and some biases) related to the data. Early findings from this side often sound like "You can see that issue X is highly correlated with condition Y in the environment; therefore, you should address condition Y to reduce the number of times you see issue X." Most of my early successes in developing tools and applications for Cisco Advanced Services were absolutely data first and based on statistical findings instead of analytics models. There were no heavy algorithms involved, there was no machine learning, and there was no real data science. Sometimes, statistics are just as effective at telling interesting stories. Figure 2-3 shows how to view these processes as a comparison. There is no right or wrong side on which to start; depending on your analysis goals, either direction or approach is valid. Note that this model includes data acquisition, data transport, data storage, sharing, or streaming, and secure access to that data, all of which are things to consider if the model is to be implemented on a production data flow—or "operationalized." The previous, simpler model that shows a simple data and data science combination (refer to Figure 2-1) still applies for exploring a static data set or stream that you can play back and analyze using offline tools.

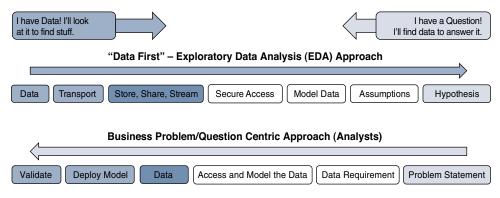


Figure 2-3 Exploratory Data Versus Problem Approach Comparison

Common Approach Walkthrough

While many believe that analytics is done only by math PhDs and statisticians, general analysts and industry subject matter experts (SMEs) now commonly use software to explore, predict, and preempt business and technical problems in their areas of expertise. You and other "citizen data scientists" can use a variety of software packages available today to find interesting insights and build useful models. You can start from either side when you understand the validity of both approaches. The important thing to understand is that many of the people you work with may be starting at the other end of the spectrum, and you need to be aware of this as you start sharing your insights with a wider audience. When either audience asks, "What problem does this solve for us?" you can present relevant findings.

Let's begin on the data side. During model *building*, you skip over the transport, store, and secure phases as you grab a batch of useful data, based on your assumptions, and try to test some hypothesis about it. Perhaps through some grouping and clustering of your trouble ticket data, you have seen excessive issues on your network routers with some specific version of software. In this case, you can create an analysis that proves your hypothesis that the problems are indeed related to the version of software that is running on the suspect network routers. For the data first approach, you need to determine the problems you want to solve, and you are also using the data to guide you to what is possible, given your knowledge of the environment.

What do you need in this suspect routers example? Obviously, you must get data about the network routers when they showed the issue, as well as data about the same types of routers that have not had the issue. You need both of these types of information in order to find the underlying factors that may or may not have contributed to the issue you are researching. Finding these factors is a form of inference, as you would like to infer something about all of your routers, based on comparisons of differences in a set of devices that exhibit the issue and a set of devices that do not. You will later use the same analytics model for prediction.

You can commonly skip the "production data" acquisition and transport parts of the model building phase. Although in this case you have a data set to work with for your analysis, consider here how to automate the acquisition of data, how to transport it, and where it will live if you plan to put your model into a fully automated production state so it can notify you of devices in the network that meet these criteria. On the other hand, full production state is not always necessary. Sometimes you can just grab a batch of data and run it against something on your own machine to find insights; this is valid and common. Sometimes you can collect enough data about a problem to solve that problem, and you can gain insight without having to implement a full production system.

Starting at the other end of this spectrum, a common analyst approach is to start with a known problem and figure out what data is required to solve that problem. You often need to seek things that you don't know to look for. Consider this example: Perhaps you have customers with service-level agreements (SLAs), and you find that you are giving them discounts because they are having voice issues over the network and you are not meeting the SLAs. This is costing your company money. You research what you need to analyze in order to understand why this happens, perhaps using voice drop and latency data from your environment. When you finally get these data, you build a proposed model that identifies that higher latency with specific versions of software on network routers is common on devices in the network path for customers who are asking for refunds. Then you deploy the model to flag these "SLA suckers" in your production systems and then validate that the model is effective as the SLA issues have gone away. In this case, *deploy* means that your model is watching your daily inventory data and looking for a device that matches the parameters that you have seen are problematic. What may have been a very complex model has a simple deployment.

Whether starting at data or at a business problem, ultimately solving the problem represents the value to your company and to you as an analyst. Both of these approaches follow many of the same steps on the analytics journey, but they often use different terminology. They are both about turning data into value, regardless of starting point, direction, or approach. Figure 2-4 provides a more detailed perspective that illustrates that these two approaches can work in the same environment on the same data and the very same problem statement. Simply put, all of the work and due diligence needs to be done to have a fully operational (with models built, tested, and deployed), end-to-end use case that provides real, continuous value.

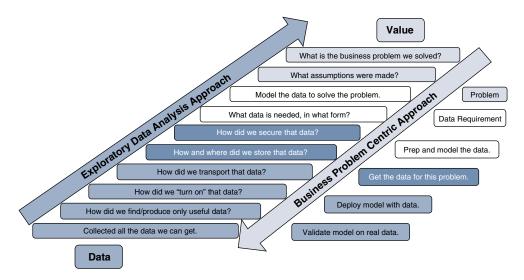


Figure 2-4 Detailed Comparison of Data Versus Problem Approaches

There are a wide variety of detailed approaches and frameworks available in industry today, such as CRISP-DM (cross-industry standard process for data mining) and SEMMA (Sample Explore, Modify, Model, and Assess), and they all generally follow these same principles. Pick something that fits your style and roll with it. Regardless of your approach, the primary goal is to create useful solutions in your problem space by combining the data you have with data science techniques to develop use cases that bring insights to the forefront.

Distinction Between the Use Case and the Solution

Let's slow down a bit and clarify a few terms. Basically, a *use case* is simply a description of a problem that you solve by combining data and data science and applying analytics. The underlying algorithms and models comprise the actual analytics solution. In the case of Amazon, for example, the use case is getting you to spend more money. Amazon does this by showing you what other people have also bought in addition to buying the same item that are purchasing. The intuition behind this is that you will buy more things because

other people like you needed those things when they purchased the same item that you did. The model is there to uncover that and remind you that you may also need to purchase those other things. Very helpful, right?

From the exploratory data approach, Amazon might want to do something with the data it has about what people are buying online. It can then collect the high patterns of common sets of purchases. Then, for patterns that are close but missing just a few items, Amazon may assume that those people just "forgot" to purchase something they needed because everyone else purchased the entire "item set" found in the data. Amazon might then use software implementation to find the people who "forgot" and remind them that they might need the other common items. Then Amazon can validate the effectiveness by tracking purchases of items that the model suggested.

From a business problem approach, Amazon might look at wanting to increase sales, and it might assume (or find research which suggests) that, if reminded, people often purchase common companion items to what they are currently viewing or have in their shopping carts. In order to implement this, Amazon might collect buying pattern data to determine these companion items. The company might then suggest that people may also want to purchase these items. Amazon can then validate the effectiveness by tracking purchases of suggested items.

Do you see how both of these approaches reach the same final solution?

The Amazon case is about increasing sales of items. In predictive analytics, the use case may be about predicting home values or car values. More simply, the use case may be the ability to predict a continuous number from historical numbers. No matter the use case, you can view analytics as simply the application of data and data science to the problem domain. You can choose how you approach finding and building the solutions either by using the data as a guide or by dissecting the stated problem.

Logical Models for Data Science and Data

This section discusses analytics solutions that you model and build for the purpose of deployment to your environment. When I was working with Cisco customers in the early days of analytics, it became clear that setting up the entire data and data science pipeline as a working application on a production network was a bit confusing to many customers, as well as to traditional Cisco engineers.

Many customers thought that they could simply buy network analytics software and install it onto the network as they would any other application—and they would have fully insightful analytics. This, of course, is not the case. Analytics packages integrate into the very same networks for which you build models to run. We can use this situation to introduce the concept of an *overlay*, which is a very important concept for understanding network data (covered in Chapter 3, "Understanding Networking Data Sources"). Analytics packages installed on computers that sit on networks can *build* the models as discussed earlier, but when it is time to *deploy* the models that include data feeds from network environments, the analytics packages often have tendrils that reach deep into

the network and IT systems. Further, these solutions can interface with business and customer data systems that exist elsewhere in the network. Designing such a system can be daunting because most applications on a network do not interact with the underlying hardware. A second important term you should understand is the *underlay*.

Analytics as an Overlay

So how do data and analytics applications fit within network architectures? In this context, you need to know the systems and software that consume the data, and you need to use data science to provide solutions as general applications. If you are using some data science packages or platforms today, then this idea should be familiar to you. These applications take data from the infrastructure (perhaps through a central data store) and combine it with other applications data from systems that reside within the IT infrastructure.

This means the solution is analyzing the very same infrastructure in which it resides, along with a whole host of other applications. In networking, an *overlay* is a solution that is abstracted from the underlying physical infrastructure in some way. Networking purists may not use the term *overlay* for applications, but it is used here because it is an important distinction needed to set up the data discussion in the next chapter. Your model, when implemented in production on a live network, is just an overlay instance of an application, much like other overlay application instances riding on the same network.

This concept of network layers and overlay/underlay is why networking is often blamed for fault or outage—because the network underlays all applications (and other network instances, as discussed in the next chapter). Most applications, if looked at from an application-centric view, are simply overlays onto the underlying network infrastructure. New networking solutions such as Cisco Application Centric Infrastructure (ACI) and common software-defined wide area networks (SD-WANs) such as Cisco iWAN+Viptela take overlay networking to a completely new level by adding additional layers of policy and network segmentation. In case you have not yet surmised, you probably should have a rock-solid underlay network if you want to run all these overlay applications, virtual private networks (VPNs), and analytics solutions on it.

Let's look at an example here to explain overlays. Consider your very own driving patterns (or walking patterns, if you are urban) and the roads or infrastructure that you use to get around. You are one overlay on the world around you. Your neighbor traveling is another overlay. Perhaps your overlay is "going to work," and your neighbor's overlay for the day is "going shopping." You are both using the same infrastructure but doing your own things, based on your interactions with the underlay (walkways, roads, bridges, home, offices, stores, and anything else that you interact with). Each of us is an individual "instance" using the underlay, much as applications are instances on networks. There could be hundreds or even thousands of these applications—or millions of people using the roadway system. The underlay itself has lots of possible "layers," such as the physical roads and intersections and the controls such as signs and lights. Unseen to you, and therefore "virtual," is probably some satellite layer where GPS is making decisions about how another application overlay (a delivery truck) should be using the underlay (roads). This concept of overlays and layers, both physical and virtual, for applications as well as networks, was a big epiphany for me when I finally got it. The very networks themselves have layers and planes of operations. I recall it just clicking one day that the packets (routing protocol packets) that were being used to "set up" packet forwarding for a path in my network were using the same infrastructure that they were actually setting up. That is like me controlling the stoplights and walk signs as I go to work, while I am trying to get there. We'll talk more about this "control plane" later. For now, let's focus on what is involved with an analytics infrastructure overlay model.

By now, I hope that I have convinced you that this concept of some virtual overlay of functionality on a physical set of gear is very common in networking today. Let's now look at an analytics infrastructure overlay diagram to illustrate that the data and data science come together to form the use cases of always-on models running in your IT environment. Note in Figure 2-5 how other data, such as customer, business, or operations data, is exported from other application overlays and imported into yours.

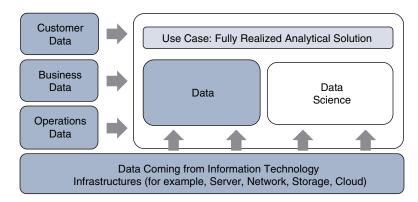


Figure 2-5 Analytics Solution Overlay

In today's digital environment, consider that all the data you need for analysis is produced by some system that is reachable through a network. Since everyone is connected, this is the very same network where you will use some system to collect and store this data. You will most likely deploy your favorite data science tools on this network as well. Your role as the analytics expert here is to make sure you identify how this is set up, such that you successfully set up the data sources that you need to build your analytics use case. You must ensure these data sources are available to the proper layer—your layer—of the network.

The concept of customer, business, and operations data may be new, so let's get right to the key value. If you used analytics in your customer space, you know who your valuable customers are (and, conversely, which customers are more costly than they are worth). This adds context to findings from the network, as does the business context (which network components have the greatest impact) and operations (where you are spending excessive time and money in the network). Bringing all these data together allows you to develop use cases with relevant context that will be noticed by business sponsors and stakeholders at higher levels in your company.

As mentioned earlier in this chapter, you can build a model with batches of data, but deploying an active model into your environment requires planning and setup of the data sources needed to "feed" your model as it runs every day in the environment. This may also include context data from other customer or business applications in the network environment. Once you have built a model and wish to operationalize it, making sure that everything properly feeds into your data pipelines is crucial—including the customer, business, operations, and other applications data.

Analytics Infrastructure Model

This section moves away from the overlays and network data to focus entirely on building an analytics solution. (We revisit the concepts of layers and overlays in the next chapter, when we dive deeper into the data sources in the networking domain.) In the case of IT networking, there are many types of deep technical data sources coming up from the environment, and you may need to combine them with data coming from business or operations systems in a common environment in order to provide relevance to the business. You use this data in the data science space with maturity levels of usage, as discussed in Chapter 1. So how can you think about data that is just "out there in the ether" in such a way that you can get to actual analytics use cases? All this is data that you define or create. This is just one component of a model that looks at the required data and components of the analytics use cases.

Figure 2-6 is a simple model for thinking about the flow of data for building deployable, operationalized models that provide analytics solutions. We can call this a simple model for analytics infrastructure, and, as shown in the figure, we can contrast this model with a problem-centric approach used by a traditional business analyst.

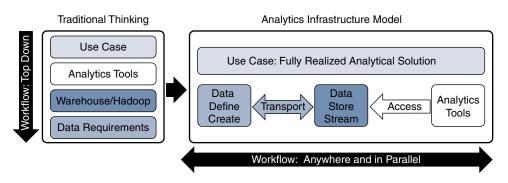


Figure 2-6 Traditional Analyst Thinking Versus Analytics Infrastructure Model

No, analytics infrastructure is not artificial intelligence. Due to the focus on the lower levels of infrastructure data for analytics usage, this analytics infrastructure name fits best. The goal is to identify how to build analytics solutions much the same way you have built LAN, WAN, wireless, and data center network infrastructures for years. Assembling a full architecture to extract value from data to solve a business problem is an infrastructure in itself. This is very much like an end-to-end application design or an end-to-end networking design, but with a focus on analytics solutions only.

The analytics infrastructure model used in IT networking differs from traditional analyst thinking in that it involves always looking to build repeatable, reusable, flexible solutions and not just find a data requirement for a single problem. This means that once you set up a data source—perhaps from routers, switches, databases, third-party systems, network collectors, or network management systems—you want to use that data source for multiple applications. You may want to replicate that data pipeline across other components and devices so others in the company can use it. This is the "build once, use many" paradigm that is common in Cisco Services and in Cisco products. Solutions built on standard interfaces are connected together to form new solutions. These solutions are reused as many times as needed. Analytics infrastructure model components can be used as many times as needed.

It is important to use standards-based data acquisition technologies and perhaps secure the transport and access around the central data cleansing, sharing, and storage of any networking data. This further ensures the reusability of your work for other solutions. Many such standard data acquisition techniques for the network layer are discussed in Chapter 4, "Accessing Data from Network Components."

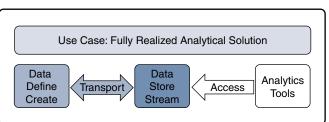
At the far right of the model in Figure 2-6, you want to use any data science tool or package you can to access and analyze your data to create new use cases. Perhaps one package builds a model that is implemented in code, and another package produces the data visualization to show what is happening. The components in the various parts of the model are pluggable so that parts (for example, a transport or a database) could be swapped out with suitable replacements. The role and functionality of a component, not the vendor or type, is what is important.

Finally, you want to be able to work this in an Agile manner and not depend on the topdown Waterfall methods used in traditional solution design. You can work in parallel in any sections of this analytics infrastructure model to help build out the components you need to enable in order to operationalize any analytics model onto any network infrastructure. When you have a team with different areas of expertise along the analytics infrastructure model components, the process is accelerated.

Later in the book, this model is referenced as an aid to solution building. The analytics infrastructure model is very much a generalized model, but it is open, flexible, and usable across many different job roles, both technical and nontechnical, and allows for discussion across silos of people with whom you need to interface. All components are equally important and should be used to aid in the design of analytics solutions.

The analytics infrastructure model (shown enlarged in in Figure 2-7) also differs from many traditional development models in that it segments functions by job roles, which allows for the aforementioned Agile parallel development work. Each of these job roles may still use specialized models within its own functions. For example, a data scientist

might use a preferred methodology and analytics tools to explore the data that you provided in the data storage location. As a networking professional, defining and creating data (far left) in your domain of expertise is where you play, and it is equally as important as the setup of the big data infrastructure (center of the model) or the analysis of the data using specialized tools and algorithms (far right).



Analytics Infrastructure (AI) Model

Figure 2-7 Analytics Infrastructure Model for Developing Analytics Solutions

Here is a simple elevator pitch for the analytics infrastructure model: "Data is defined, created, or produced in some system from which it is moved into a place where it is stored, shared, or streamed to interested users and data science consumers. Domain-specific solutions using data science tools, techniques, and methodologies provide the analysis and use cases from this data. A fully realized solution crosses all of the data, data storage, and data science components to deliver a use case that is relevant to the business."

As mentioned in Chapter 1, this book spends little time on "the engine," which is the center of this model, identified as the big data layer shown in Figure 2-8. When I refer to anything in this engine space, I call out the function, such as "store the data in a data-base" or "stream the data from the Kafka bus." Due to the number of open source and commercial components and options in this space, there is an almost infinite combination of options and instructions readily available to build the capabilities that you need.

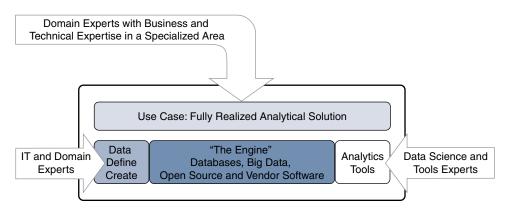


Figure 2-8 Roles and the Analytics Infrastructure Model

It is not important that you understand how "the engine" in this car works; rather, it is important to ensure that you can use it to drive toward analytics solutions. Whether using open source big data infrastructure or packages from vendors in this space, you can readily find instructions to transport, store, share, and stream and provide access to the data on the Internet. Run a web search on "data engineering pipelines" and "big data architecture," and you will find a vast array of information and literature in the data engineering space.

The book aims to help you understand the job roles around the common big data infrastructure, along with data, data science, and use cases. The following are some of the key roles you need to understand:

- Data domain experts—These experts are familiar with the data and data sources.
- Analytics or business domain experts—These experts are familiar with the problems that need to be solved (or questions that need to be answered).
- Data scientists—These experts have knowledge of the tools and techniques available to find the answers or insights desired by the business or technical experts in the company.

The analytics infrastructure model is location agnostic, which is why you see callouts for data transport and data access. This overall model approach applies regardless of technology or location. Analytics systems can be on-premises, in the cloud, or hybrid solutions, as long as all the parts are available for use. Regardless of where the analytics is used, the networking team is a usually involved in ensuring that the data is in the right place for the analysis. Recall from the overlay discussion earlier in the chapter that the underlay is necessary for the overlay to work. Parts of this analysis may exist in the cloud, other parts on your laptop, and other parts on captive customer relationship management (CRM) systems on your corporate networks. You can use the analytics infrastructure model to diagram a solution flow that results in a fully realized analytics use case.

Depending on your primary role, you may be involved in gathering the data, moving the data, storing the data, sharing the data, streaming the data, archiving the data, or providing the analytics analysis. You may be ready to build the entire use case. There are many perspectives when discussing analytics solutions. Sometimes you will wear multiple hats. Sometimes you will work with many people; sometimes you will work alone if you have learned to fill all the required roles. If you decide to work alone, make sure you have access to resources or expertise to validate findings in areas that are new to you. You don't want to spend a significant amount of time uncovering something that is already general knowledge and therefore not very useful to your stakeholders.

Building your components using the analytics infrastructure model ensures that you have reusable assets in each of the major parts of the model. Sometimes you will spend many hours, days, or weeks developing an analysis, only to find that there are no interesting insights. This is common in data science work. By using the analytics infrastructure model, you can maintain some parts of your work to build other solutions in the future.

The Analytics Infrastructure Model In Depth

So what are the "reusable and repeatable components" touted in the analytics infrastructure model? This section digs into the details of what needs to happen in each part of the model. Let's start by digging into the lower-left data component of the model, looking at the data that is commonly available in an IT environment. Data pipelines are big business and well covered in the "for fee" and free literature.

Building analytics models usually involves getting and modeling some data from the infrastructure, which includes spending a lot of time on research, data munging, data wrangling, data cleansing, ETL (Extract, Transform, Load), and other tasks. The true power of what you build is realized when you deploy your model into an environment and turn it on. As the analytics infrastructure model indicates, this involves acquiring useful data and transporting it into an accessible place. What are some examples of the data that you may need to acquire? Expanding on the data and transport sections of the model in Figure 2-9, you will find many familiar terms related to the combination of networking and data.

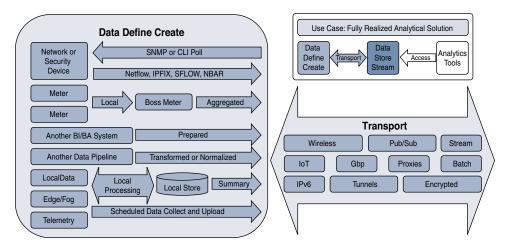


Figure 2-9 Analytics Infrastructure Model Data and Transport Examples

Implementing a model involves setting up a full pipeline of new data (or reusing a part of a previous pipeline) to run through your newly modeled use cases, and this involves "turning on" the right data and transporting it to where you need it to be. Sometimes this is kept local (as in the case of many Internet of Things [IoT] solutions), and sometimes data needs to be transported. This is all part of setting up the full data pipeline. If you need to examine data in flight for some real-time analysis, you may need to have full data streaming capabilities built from the data source to the place where the analysis happens.

Do not let the number of words in Figure 2-9 scare you; not all of these things are used. This diagram simply shares some possibilities and is in no way a complete set of everything that could be at each layer.

To illustrate how this model works, let's return to the earlier example of the router problem. If latency and sometimes router crashes are associated with a memory leak in some software versions of a network router, you can use a telemetry data source to access memory statistics in a router. Telemetry data, covered in Chapter 4, is a push model whereby network devices send periodic or triggered updates to a specified location in the analytics solution overlay. Telemetry is like a hospital heart monitor that gets constant updates from probes on a patient. Getting router memory-related telemetry data to the analytics layer involves using the components identified in white in Figure 2-10—for just a single stream. By setting this up for use, you create a reusable data pipeline with telemetry-supplied data. A new instance of this full pipeline must be set up for each device in the network that you want to analyze for this problem. The hard part—the "feature engineering" of building a pipeline—needs to happen only once. You can easily replicate and reuse that pipeline, as you now have your memory "heart rate monitor" set up for all devices that support telemetry. The left side of Figure 2-10 shows many ways data can originate, including methods and local data manipulations, and the arrow on the right side of the figure shows potential transport methods. There are many types of data sources and access methods.

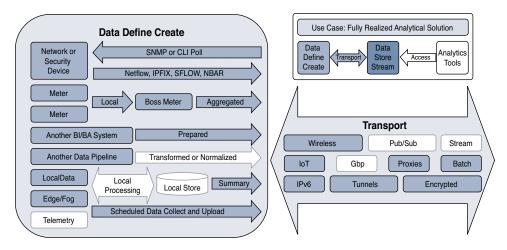


Figure 2-10 Analytics Infrastructure Model Telemetry Data Example

In this example, you are taking in telemetry data at the data layer, and you may also do some local processing of the data and store it in a localized database. In order to send the memory data upstream, you may standardize it to a megabyte or gigabyte number, standardize it to a "z" value, or perform some other transformation. This design work must happen once for each source. Does this data transformation and standardization stuff sound tedious to you? Consider that in 1999, NASA lost a \$125 million Mars orbiter due to a mismatch of metric to English units in the software. Standardization, transformation, and data design are important. Now, assuming that you have the telemetry data you want, how do you send it to a storage location? You need to choose transport options. For this example, say that you choose to send a steady stream to a Kafka publisher/subscriber location by using Google Protocol Buffers (GPB) encoding. There are lots of capabilities, and lots of options, but after a one-time design, learning, and setup process, you can document it and use it over and over again. What happens when you need to check another router for this same memory leak? You call up the specification that you designed here and retrofit it for the new requirement.

While data platforms and data movement are not covered in detail in this book, it is important that you have a basic understanding of what is happening inside the engine, all around the "the data platform."

The Analytics Engine

Unless you have a dedicated team to do this, much of this data storage work and setup may fall in your lap during model building. You can find a wealth of instruction for building your own data environments by doing a simple Internet search. Figure 2-11 shows many of the activities related to this layer. Note how the transport and data access relate to the configuration of this centralized engine. You need a destination for your prepared data, and you need to know the central location configuration so you can send it there. On the access side, the central data location will have access methods and security, which you must know or design in order to consume data from this layer.

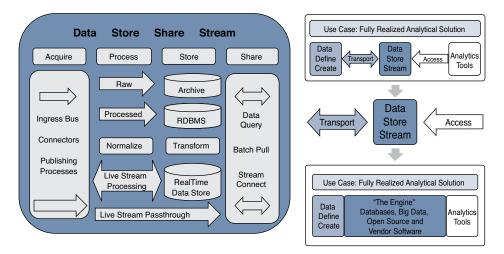


Figure 2-11 The Analytics Infrastructure Model Data Engine

Once you have defined the data parameters, and you understand where to send the data, you can move the data into the engine for storage, analysis, and streaming. From each individual source perspective, the choice comes down to push or pull mechanisms, as

per the component capabilities available to you in your data-producing entities. This may include pull methods using polling protocols such as Simple Network Management Protocol (SNMP) or push methods such as the telemetry used in this example.

This centralized data-engineering environment is where the Hadoop, Spark, or commercial big data platform lives. Such platforms are often set up with receivers for each individual type of data. The pipeline definition for each of these types of data includes the type and configuration of this receiver at the central data environment. Very common within analytics engines today is something called a publisher/subscriber environment, or "pub/sub" bus. Apache Kafka is a very common bus used in these engines today.

A good analogy for the pub/sub bus is broadcast TV channels with a DVR. Data feeds (through analytics infrastructure model transports) are sent to specific channels from data producers, and subscribers (data consumers) can choose to listen to these data feeds and subscribe (using some analytics infrastructure model access method, such as a Kafka consumer) to receive them. In this telemetry example, the telemetry receiver takes interesting data and copies or publishes it to this bus environment. Any package requiring data for doing analytics subscribes to a stream and has it copied to its location for analysis in the case of streaming data. This separation of the data producers and consumers makes for very flexible application development. It also means that your single data feed could be simultaneously used by multiple consumers.

What else happens here at the central environment? There are receivers for just about any data type. You can both stream into the centralized data environment and out of the centralized environment in real time. While this is happening, processing functions decode the stream, extract interesting data, and put the data into relational databases or raw storage. It is also common to copy items from the data into some type of "object" storage environment for future processing. During the transform process, you may standardize, summarize, normalize, and store data. You transform data to something that is usable and standardized to fit into some existing analytics use case. This centralized environment, often called the "data warehouse" or "data lake," is accessed through a variety of methods, such as Structured Query Language (SQL), application programming interface (API) calls, Kafka consumers, or even simple file access, just to name a few.

Before the data is stored at the central location, you may need to adjust these data, including doing the following:

- Data cleansing to make sure the data matches known types that your storage expects
- Data reconciliation, including filling missing data, cleaning up formats, removing duplicates, or bounding values to known ranges
- Deriving or generating any new values that you want included in the records
- Splitting or combining data into meaningful values for the domain
- Standardizing the data ingress or splitting a stream to keep standardized and raw data

Now let's return to the memory example: These telemetry data streams (subject: memory leak) from the network infrastructure must now be made available to the analytics tools and data scientists for analysis or application of the models. This availability must happen through the analytics engine part of the analytics infrastructure model. Figure 2-12 shows what types of activities are involved if there is a query or request for this data stream from analytics tools or packages. This query is requesting that a live feed of the stream be passed through the publisher/subscriber bus architecture and a normalized feed of the same stream be copied to a database for batch analysis. This is all set up in the software at the central data location.

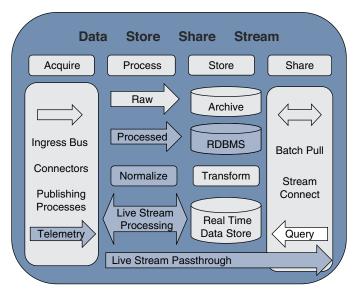


Figure 2-12 Analytics Infrastructure Model Streaming Data Example

Data Science

Data science is the sexy part of analytics. Data science includes the data mining, statistics, visualization, and modeling activities performed on readily available data. People often forget about the requirements to get the proper data to solve the individual use cases. The focus for most analysts is to start with the business problem first and then determine which type of data is required to solve or provide insights from the particular use cases. Do not underestimate the time and effort required to set up the data for these use cases. Research shows that analysts spend 80% or more of their time on acquiring, cleaning, normalizing, transforming, or otherwise manipulating the data. I've spent upward of 90% on some problems. Analysts must spend so much time because analytics algorithms require specific representations or encodings of the data. In some cases, encoding is required because the raw stream appears to be gibberish. You can commonly do the transformations, standardizations, and normalizations of data in the data pipeline, depending on the use case. First you need to figure out the required data manipulations through your model building phases; you will ultimately add them inline to the model deployment phases, as shown in the previous diagrams, such that your data arrives at the data science tools ready to use in the models.

The analytics infrastructure model is valuable from the data science tools perspective because you can assume that the data is ready, and you can focus clearly on the data access and the tools you need to work on that data. Now you do the data science part. As shown in Figure 2-13, the data science part of the model highlights tools, processes, and capabilities that are required to build and deploy models.

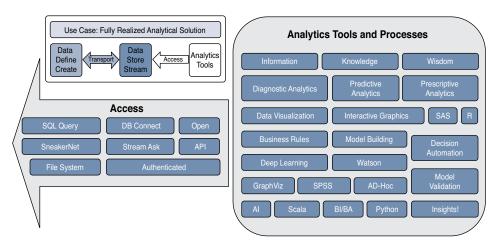


Figure 2-13 Analytics Infrastructure Model Analytics Tools and Processes

Going back to the streaming telemetry memory leak example, what should you do here? As highlighted in Figure 2-14, you use a SQL query to an API to set up the storage of the summary data. You also request full stream access to provide data visualization. Data visualization then easily shows both your technical and nontechnical stakeholders the obvious untamed growth of memory on certain platforms, which ultimately provides some "diagnostic analytics." Insight: This platform, as you have it deployed, leaks memory with the current network conditions. You clearly show this with a data visualization, and now that you have diagnosed it, you can even build a predictive model for catching it before it becomes a problem in your network.

Use Case: Fully Realized Analytical Solution	Analytics Tools and Processes		
Data Define Create	Information	Knowledge	Wisdom
	Diagnostic Analytics	Predictive Analytics	Prescriptive Analytics
Access SQL Query DB Connect Open SneakerNet Stream Ask API	Data Visualization	Interactive Graphics	SAS R
	Business Rules	Model Building	Decision Automation
File System Authenticated	Deep Learning	Watson	Model
	GraphViz SPSS	AD-Hoc	Validation
\bigvee	Al Scala	BI/BA Python	Insights!

Figure 2-14 Analytics Infrastructure Model Streaming Analytics Example

Analytics Use Cases

The final section of the analytics infrastructure model is the use cases built on all this work that you performed: the "analytics solution." Figure 2-15 shows some examples of generalized use cases that are supported with this example. You can build a predictive application for your memory case and use survival analysis techniques to determine which routers will hit this memory leak in the future. You can also use your analytics for decision support to management in order to prioritize activities required to correct the memory issue. Survival analysis here is an example of how to use common industry intuition to develop use cases for your own space. Survival analysis is about recognizing that something will not survive, such as a part in an industrial machine. You can use the very same techniques to recognize that a router will not survive a memory leak.

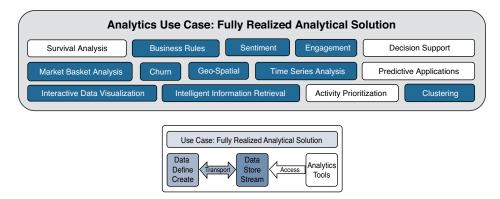


Figure 2-15 Analytics Infrastructure Model Analytics Use Cases Example

As you go through the analytics use cases in later chapters, it is up to you and your context bias to determine how far to take each of the use cases. Often simple descriptive analytics or a picture of what is in the environment is enough to provide a solution. Working toward wisdom from the data for predictive, prescriptive, and preemptive analytics solutions is well worth the effort in many cases. The determination of whether it is worth the effort is highly dependent on the capabilities of the systems, people, process, and tools available in your organization (including you).

Figure 2-16 shows where fully automated service assurance is added to the analytics infrastructure model. When you combine the analytics solution with fully automated remediation, you build a full-service assurance layer. Cisco builds full-service assurance layers into many architectures today, in solutions such as Digital Network Architecture (DNA), Application Centric Infrastructure (ACI), Crosswork Network Automation, and more that are coming in the near future. Automation is beyond the scope of this book, but rest assured that your analytics solutions are a valuable source for the automated systems to realize full-service assurance.

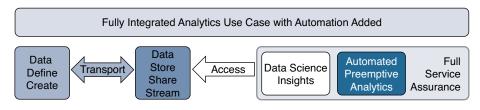


Figure 2-16 Analytics Infrastructure Model with Service Assurance Attachment

Summary

Now you understand that there is a method to the analytics madness. You also now know that there are multiple approaches you can take to data science problems. You understand that building a model on captive data in your own machine is an entirely different process from deploying a model in a production environment. You also understand different approaches to the process and that you and your stakeholders may each show preferences for different ones. Whether you are starting with the data exploration or the problem statement, you can find useful and interesting insights.

You may also have had your first introduction to the overlays and underlays concepts, which are important concepts as you go deeper into the data that is available to you from your network in the next chapter. Getting data to and from other overlay applications, as well as to and from other layers of the network is an important part of building complete solutions.

You now have a generalized analytics infrastructure model that helps you understand how the parts of analytics solutions come together to form a use case. Further, you understand that using the analytics infrastructure model allows you to build many different levels of analytics and provides repeatable, reusable components. You can choose how mature you wish your solution to be, based on factors from your own environment. The next few chapters take a deep dive into understanding the networking data from that environment. This page intentionally left blank

Index

Symbols

& (ampersand), 306 \ (backslash), 288 ~ (tilde), 291–292, 370 2×2 charts, 9–10 5-tuple, 65

A

access, data. See data access ACF (autocorrelation function), 262 ACI (Application Centric Infrastructure), 20, 33, 430-431 active-active load balancing, 186 activity prioritization, 170-173 AdaBoost, 252 Address Resolution Protocol (ARP), 61 addresses IP (Internet Protocol) packet counts, 395-397 packet format, 390-391 MAC, 61, 398 algorithms, 3-4, 217-218, 439 apriori, 242-243, 381-382 artificial intelligence, 267 assumptions of, 218-219

classification choosing algorithms for, 248-249 decision trees, 249-250 gradient boosting methods, 251-252 neural networks, 252–258 random forest, 250-251 SVMs (support vector machines), 258-259 time series analysis, 259-262 confusion matrix, 267-268 contingency tables, 267-268 cumulative gains and lift, 269-270 data-encoding methods, 232-233 dimensionality reduction, 233-234 feature selection, 230-232 regression analysis, 246-247 simulation. 271 statistical analysis ANOVA (analysis of variance), 227 Bayes' theorem, 228-230 box plots, 221–222 correlation, 224-225 longitudinal data, 225-226 normal distributions, 222-223 outliers, 223 probability, 228 standard deviation, 222-223

supervised learning, 246 terminology, 219-221 text and document analysis, 256-262 information retrieval, 263-264 NLP (natural language processing), 262-263 sentiment analysis, 266-267 topic modeling, 265-266 unsupervised learning association rules, 240-243 clustering, 234-239 collaborative filtering, 244-246 defined, 234 sequential pattern mining, 243-244 alpha, 261 Amazon, recommender system for, 191-194 ambiguity bias, 115-116 ampersand (&), 306 analysis of variance. See ANOVA (analysis of variance) analytics algorithms. See algorithms analytics experts, 25 analytics infrastructure model, 22-25, 275 - 276data and transport, 26–28 data engine, 28-30 data science, 30-32 data streaming example, 30 illustrated, 437 publisher/subscriber environment, 29 roles, 24-25 service assurance, 33 traditional thinking versus, 22-24 use cases algorithms, 3-4 defined, 18-19 development, 2-3 examples of, 32-33 analytics maturity, 7-8 analytics models, building, 2, 14-15, 19–20. See also use cases

analytics infrastructure model, 22-25, 275-276, 437 data and transport, 26–28 data engine, 28-30 data science, 30-32 data streaming example, 30 publisher/subscriber environment, 29 roles, 24-25 service assurance, 33 traditional thinking versus, 22-24 deployment, 2, 14-15, 17-18 EDA (exploratory data analysis) defined. 15-16 use cases versus solutions, 18–19 walkthrough, 17–18 feature engineering, 219 feature selection, 219 interpretation, 220 overfitting, 219 overlay, 20–22 problem-centric approach defined, 15-16 use cases versus solutions, 18-19 walkthrough, 17–18 underlay, 20-22 validation, 219 analytics process, 437 analytics scales, 436 analytics solutions, defined, 150 anchoring effect, 107-109 AND operator, 306 ANNs (artificial neural networks), 254-255 anomaly detection, 153-155 clustering, 239 statistical, 318-320 ANOVA (analysis of variance), 227, 305-310 data filtering, 305-306 describe function, 308 drop command, 309 groupby command, 307

homogeneity of variance, 313-318 Levene's test, 313 outliers, dropping, 307-310 pairwise, 317 Apache Kafka, 28–29 API (application programming interface) calls, 29 App iQ platform, 430 AppDynamics, 6, 428–430 Application Centric Infrastructure (ACI), 20, 33, 430-431 application programming interface (API) calls, 29 application-specific integrated circuits (ASICs), 67 apply method, 295-296, 346 approaches. See methodology and approach apriori algorithms, 242-243, 381-382 architecture architecture and advisory services, 426-427 big data, 4–5 microservices, 5-6 Ariely, Dan, 108 ARIMA (autoregressive integrated moving average), 101-102, 262 ARP (Address Resolution Protocol), 61 artificial general intelligence, 267 artificial intelligence, 11, 267 artificial neural networks (ANNs), 254-255 ASICs (application-specific integrated circuits), 67 assets data plane analytics use case, 422–423 tracking, 173-175 association rules, 240-243 associative thinking, 131–132 authority bias, 113-114 autocorrelation function (ACF), 262 automation, 11, 33, 431-432 autonomous applications, use cases for, 200-201

autoregressive integrated moving average (ARIMA), 101–102, 262 autoregressive process, 262 availability bias, 111 availability cascade, 112, 141 averages ARIMA (autoregressive integrated moving average), 262 moving averages, 262 Azure Cloud Network Watcher, 68

В

BA (business analytics) dashboards, 13.42 back-propagation, 254 backslash (\), 288 bagging, 250-251 bar charts, platform crashes example, 289-290 base-rate neglect, 117 Bayes' theorem, 228-230 Bayesian methods, 230 BCI (Business Critical Insights), 335, 425 behavior analytics, 175-178 benchmarking use cases, 155–157 BGP (Border Gateway Protocol), 41, 61 BI (business intelligence) dashboards, 13, 42 bias, 2-3, 439 ambiguity, 115-116 anchoring effect, 107-109 authority, 113-114 availability, 111 availability cascade, 112 base-rate neglect, 117 clustering, 112 concept of, 104-105 confirmation, 114–115 context. 116-117 correlation, 112 "curse of knowledge", 119 Dunning-Kruger effect, 120-121

empathy gap, 123 endowment effect, 121 expectation, 114-115 experimenter's, 116 focalism, 107 framing effect, 109-110, 151 frequency illusion, 117 group, 120 group attribution error, 118 halo effect, 123-124 hindsight, 9, 123-124 HIPPO (highest paid persons' opinion) impact, 113-114 IKEA effect, 121–122 illusion of truth effect, 112-113 impact of, 105-106 imprinting, 107 innovation and, 128 "law of small numbers", 117-118 mirroring, 110-111 narrative fallacy, 107-108 not-invented-here syndrome, 122 outcome, 124 priming effect, 109, 151 pro-innovation, 121 recency, 111 solutions and, 106–107 status-quo, 122 sunk cost fallacy, 122 survivorship, 118-119 table of, 124-126 thrashing, 122 tunnel vision, 107 WYSIATI (What You See Is All There Is), 118 zero price effect, 123 Bias, Randy, 204 big data, 4–5 Border Gateway Protocol (BGP), 41, 61 box plots, 221-222 platform crashes example, 297–299 software crashes example, 300-305

Box-Jenkins method, 262 breaking anchors, 140 Breusch-Pagan tests, 220 budget analysis, 169 bug analysis use cases, 178–179 business analytics (BA) dashboards, 13, 42 Business Critical Insights (BCI), 335, 425 business domain experts, 25 business intelligence (BI) dashboards, 13, 42 business model analysis, 200–201 optimization, 201–202

С

capacity planning, 180-181 CARESS technique, 137 cat /etc/*release command, 61 categorical data, 77-78 causation, correlation versus, 112 CDP (Cisco Discovery Protocol), 60, 93 charts cumulative gains, 269-270 lift, 269-270 platform crashes use case, 289-290 churn use cases, 202-204 Cisco analytics solutions, 6, 425-426, 442 analytics platforms and partnerships, 433 AppDynamics, 428–430 architecture and advisory services, 426-427 BCI (Business Critical Insights), 335, 425 CMS (Cisco Managed Services), 425 Crosswork automation, 431–432 DNA (Digital Network Architecture), 428 IoT (Internet of Things) analytics, 432 open source platform, 433-434 Stealthwatch, 427 Tetration, 430-431

Cisco Application Centric Infrastructure (ACI), 20 Cisco Discovery Protocol (CDP), 60 Cisco Identity Service Engine (ISE), 427 Cisco IMC (Integrated Management Controller), 40-41 Cisco iWAN+Viptela, 20 Cisco TrustSec, 427 **Cisco Unified Computing System** (UCS), 62 citizen data scientists, 11 classification, 157-158 algorithms choosing, 248-249 decision trees, 249–250 gradient boosting methods, 251-252 neural networks, 252–258 random forest, 250-251 SVMs (support vector machines), 258-259 time series analysis, 259–262 cleansing data, 29, 86 CLI (command-line interface) scraping, 59.92 cloud software, 5-6 Cloudera, 433 clustering, 234-239 K-means, 344-349, 373-375 machine learning-guided troubleshooting, 350-353 SME port clustering, 407–413 *cluster scatterplot*, 410–411 bost patterns, 411-413 K-means clustering, 408–410 port profiles, 407–408 use cases, 158-160 clustering bias, 112 CMS (Cisco Managed Services), 425 CNNs (convolutional neural networks), 254 - 255cognitive bias. See bias Cognitive Reflection Test (CRT), 98 cognitive trickery, 143

cohorts, 160 collaborative filtering, 244-246 collinearity, 225 columns dropping, 287 grouping, 307 columns command, 286 Colvin, Geoff, 103 command-line interface (CLI) scraping, 59.92 commands. See also functions cat /etc/*release, 61 columns, 286 drop, 309 groupby, 307, 346, 380, 398 head, 396, 404 join, 291 tcpdump, 68 comma-separated values (CSV) files, 82 communication, control plane, 38 Competing on Analytics (Davenport and Harris), 148 compliance to benchmark, 155 computer thrashing, 140 condition-based maintenance, 189 confirmation bias, 114-115 confusion matrix, 267-268 container on box, 74-75 context context bias, 116-117 context-sensitive stop words, 329 external data for, 89 contingency tables, 267-268 continuous numbers, 78-79 control plane, 441 activities in, 41 communication, 38 data examples, 46-47, 67-68 defined, 37 syslog telemetry use case, 355 data encoding, 371–373 data preparation, 356-357, 369-371

high-volume producers, identifying, 362-366 K-means clustering, 373–375 log analysis with pandas, 357-360 machine learning-based evaluation, 366-367 noise reduction, 360-362 **OSPF** (Open Shortest Path First) routing, 357 syslog severities, 359-360 task list, 386–387 transaction analysis, 379–386 word cloud visualization, 367-369, 375-379 convolutional neural networks (CNNs), 254-255 correlation correlation bias, 112 explained, 224-225 use cases, 160-162 cosine distance, 236 count-encoded matrix, 336-338 CountVectorizer method, 338 covariance, 167 Covey, Stephen, 10 crashes, device. See device crash use cases crashes, network. See network infrastructure analytics use case CRISP-DM (cross-industry standard process for data mining), 18 critical path, 172, 211 CRM (customer relationship management) systems, 25, 187 cross-industry standard process for data mining (CRISP-DM), 18 Crosswork Network Automation, 33, 431-432 crowdsourcing, 133-134 CRT (Cognitive Reflection Test), 98 CSV (comma-separated value) files, 82 cumulative gains, 269-270 curse of dimensionality, 159 "curse of knowledge", 119 custom labels, 93

customer relationship management (CRM) systems, 25, 187 customer segmentation, 160

D

data. See also data access domain experts, 25 encoding, 232-233 network infrastructure analytics use case, 328-336 syslog telemetry use case, 371–373 engine, 28-30 gravity, 76 loading data plane analytics use case, 390-394 network infrastructure analytics use case, 325-328 statistics use cases, 286-288 mining, 150 munging, 85 network, 35-37 business and applications data relative to, 42–44 control plane, 37, 38, 41, 46-47 data plane, 37, 41, 47-49 management plane, 37, 40-41, 44 - 46network virtualization, 49-51 OpenStack nodes, 39-40 planes, combining across virtual and physical environments, 51-52 sample network, 38 normalization, 85 preparation, 29, 86 encoding methods, 85 KPIs (key performance indicators), 86-87 made-up data, 84–85 missing data, 86 standardized data, 85 syslog telemetry use case, 355, 369-371, 379

reconciliation, 29 regularization, 85 scaling, 298 standardizing, 85 storage, 6 streaming, 30 structure, 82 JSON (JavaScript Object Notation), 82-83 semi-structured data, 84 structured data, 82 unstructured data, 83-84 transformation, 310 transport, 89-90 CLI (command-line interface) scraping, 92 HLD (high-level design), 90 IPFIX (IP Flow Information Export), 95 LLD (low-level design), 90 NetFlow, 94 other data, 93 sFlow, 95 SNMP (Simple Network Management Protocol), 90–92 SNMP (Simple Network Management Protocol) traps, 93 Syslog, 93–94 telemetry, 94 types, 76-77 continuous numbers, 78-79 discrete numbers, 79 higher-order numbers, 81–82 interval scales, 80 nominal data, 77–78 ordinal data, 79-80 ratios, 80-81 warehouses, 29 data access. See also data structure; transport of data; types container on box, 74-75 control plane data, 67-68 data plane traffic capture, 68-69

ERSPAN (Encapsulated Remote Switched Port Analyzer), 69 inline security appliances, 69 port mirroring, 69 RSPAN (Remote SPAN), 69 SPAN (Switched Port Analyzer), 69 virtual switch operations, 69–70 DPI (deep packet inspection), 56 external data for context, 89 IoT (Internet of Things) model, 75-76 methods of, 55-57 observation effect, 88 packet data, 70-74 HTTP (Hypertext Transfer *Protocol*), 71–72 IPsec (Internet Protocol Security), 73-74 IPv4, 70-71 SSL (Secure Sockets Layer), 74 TCP (Transmission Control Protocol), 71–72 VXLAN (Virtual Extensible LAN), 74 panel data, 88 pull data availability CLI (command-line interface) scraping, 59, 92 NETCONF (Network Configuration Protocol), 60 SNMP (Simple Network Management Protocol), 57–59 unconventional data sources, 60-61 YANG (Yet Another Next Generation), 60 push data availability IPFIX (IP Flow Information Export), 64–67 NetFlow, 65-66 sFlow, 67, 95 SNMP (Simple Network Management Protocol) traps, 61-62.93 Syslog, 62-63, 93-94 telemetry, 63-64 timestamps, 87-88

data lake, 29 data pipeline engineering, 90 data plane. See also data plane analytics use case activities in, 41 data examples, 47-49 defined. 37 traffic capture, 68-69 ERSPAN (Encapsulated Remote Switched Port Analyzer), 69 inline security appliances, 69 port mirroring, 69 RSPAN (Remote SPAN), 69 SPAN (Switched Port Analyzer), 69 virtual switch operations, 69-70 data plane analytics use case, 389, 442 assets, 422-423 data loading and exploration, 390-394 IP package format, 390–391 packet file loading, 390 parsed fields, 392–393 Python packages, importing, 390 TCP package format, 391 full port profiles, 413-419 investigation task list, 423-424 SME analysis dataframe and visualization library loading, 394 host analysis, 399-404 IP address packet counts, 395–397 IP packet protocols, 398 MAC addresses, 398 output, 404-406 time series counts, 395 timestamps and time index, 394-395 topology mapping information, 398 SME port clustering, 407–413 cluster scatterplot, 410-411 host patterns, 411–413 K-means clustering, 408-410 port profiles, 407–408 source port profiles, 419-422

data science, 25, 30-32, 278-280 data structure, 82 databases, 6 dataframes combining, 292-293 defined, 286-287 dropping columns from, 287 filtering, 287, 290-292, 300, 330, 370 grouping, 293-296, 299-300, 307 loading, 394 outlier analysis, 318-320 PCA (principal component analysis), 339-340, 372-373 sorting without, 326–327 value counts function, 288-290 views, 329-330, 347 data-producing sensors, 210-211 Davenport, Thomas, 148 de Bono, Edward, 132 decision trees example of, 249-250 random forest, 250-251 deep packet inspection (DPI), 56 defocusing, 140 deliberate practice, 100, 102 delivery models, use cases for, 210-212 delta, 262 dependence, 261 deployment of models, 2, 14-15, 17-18 describe function, 308 descriptive analytics, 8-9 descriptive analytics use cases, 167 - 168designing solutions. See solution design destination IP address packet counts, 396-397 deviation, standard, 222-223 device crash use cases, 285 anomaly detection, 318-320 ANOVA (analysis of variance), 305-310 data filtering, 305-306 describe function, 308

drop command, 309 groupby command, 307 homogeneity of variance, 313-318 outliers, dropping, 307-310 pairwise, 317 data loading and exploration, 286-288 data transformation, 310 normality, tests for, 311-313 platform crashes, 288-299 apply method, 295-296 box plot, 297–298 crash counts by product ID, 294-295 crash counts/rate comparison plot, 298-299 crash rates by product ID, 296–298 crashes by platform, 292-294 data scaling, 298 dataframe filtering, 290-292 groupby object, 293-296 horizontal bar chart, 289-290 lambda function, 296 overall crash rates, 292 router reset reasons, 290 simple bar chart, 289 value_counts function, 288-289 software crashes, 299-305 box plots, 300-305 dataframe filtering, 300 dataframe grouping, 299-300 diagnostic targeting, 209 "dial-in" telemetry configuration, 64 "dial-out" telemetry configuration, 64 dictionaries, tokenization and, 328 diffs function, 352 Digital Network Architecture (DNA), 33, 428 dimensionality curse of, 159 reduction, 233-234, 337-340 discrete numbers, 79 distance methods, 236

divisive clustering, 236 DNA (Digital Network Architecture), 33, 428 DNA mapping, 324–325 DNAC (DNA Center), 428 doc2bow, 331-332 document analysis, 256-262 information retrieval, 263-264 NLP (natural language processing), 262 - 263sentiment analysis, 266-267 topic modeling, 265-266 DPI (deep packet inspection), 56 drop command, 309 dropouts, 204-206 dropping columns, 287 Duhigg, Charles, 99 dummy variables, 232 Dunning-Kruger effect, 120–121

Ε

EDA (exploratory data analysis) defined. 15-16 use cases versus solutions, 18-19 walkthrough, 17-18 edit distance, 236 EDT (event-driven telemetry), 64 EIGRP (Enhanced Interior Gateway Routing Protocol), 61, 398 ElasticNet regression, 247 electronic health records, 210 empathy gap, 123 **Encapsulated Remote Switched Port** Analyzer (ERSPAN), 69 encoding methods, 85, 232-233 network infrastructure analytics use case, 328-336 syslog telemetry use case, 371-373 Encrypted Traffic Analytics (ETA), 427 endowment effect, 121 engagement models, 206-207

engine, analytics infrastructure model, 28 - 30Enhanced Interior Gateway Routing Protocol (EIGRP), 61, 398 entropy, 250 environment setup, 282-284, 325-328 episode mining, 244 errors, group attribution, 118. See also bias **ERSPAN** (Encapsulated Remote Switched Port Analyzer), 69 ETA (Encrypted Traffic Analytics), 427 ETL (Extract, Transform, Load), 26 ETSI (European Telecommunications Standards Institute), 75 Euclidean distance, 236 **European Telecommunications Standards** Institute (ETSI), 75 event log analysis use cases, 181-183 event-driven telemetry (EDT), 64 expectation bias, 114-115 experimentation, 141-142 experimenter's bias, 116 expert systems deployment, 214 exploratory data analysis. See EDA (exploratory data analysis) exponential smoothing techniques, 261 external data for context, 89 Extract, Transform, Load (ETL), 26

F

F statistic, 220 failure analysis use cases, 183–185 fast path, 211 features defined, 42–43 feature engineering, 219 selection, 219, 230–232 Few, Stephen, 163 fields, data plane analytics use case, 392–393 files, CSV (comma-separated value), 82. *See also* logs fillna, 342–343

filtering ANOVA and, 305-306 collaborative, 244-246 dataframes, 287, 290-292, 300, 330, 370 platform crashes example, 290-292 software crashes example, 300 fingerprinting, 324-325 "Five whys" technique, 137-138 Flexible NetFlow, 65 Flight 1549, 99–100 focalism, 107 fog computing, 76 foresight, 9 FP growth algorithms, 242 framing effect, 109-110, 151 Franks, Bill, 147 fraud detection use cases, 207-209 Frederick, Shane, 98 FreeSpan, 244 frequency illusion, 117 F-tests, 227, 314 full host profiles, 401-403 full port profiles, 413-419 functions apply, 295-296, 346 apriori, 242-243, 381-382 CountVectorizer, 338 describe, 308 diffs, 352 host profile, 403 join, 370 lambda, 296 max, 347 reset index, 414 split, 368 value counts, 288-289, 396, 400, 403

G

gains, cumulative, 269–270 gamma, 261 Gartner analytics, 8 gender bias, 97–98 generalized sequential pattern (GSP), 244 Gensim package, 264, 283, 328, 331-332 Gladwell, Malcolm, 99 Global Positioning System (GPS), 210 - 211Goertzel, Ben, 267 GPS (Global Positioning System), 210-211 gradient boosting methods, 251-252 gravity, data, 76 group attribution error, 118 group bias, 120 group-based strong learners, 250 groupby command, 307, 346, 380, 398 groupby object, 293-296 grouping columns, 307 dataframes, 293-296, 299-300 GSP (generalized sequential pattern), 244

Η

Hadoop, 28-29 halo effect, 123-124 hands-on experience, mental models and, 100 hard data, 150 Harris, Jeanne, 148 head command, 396, 404 Head Game (Mudd), 110 healthcare use cases, 209-210 Hewlett-Packard iLO (Integrated Lights Out), 40-41 hierarchical agglomerative clustering, 236 - 237higher-order numbers, 81-82 highest paid persons' opinion (HIPPO) impact, 113-114 high-level design (HLD), 90 high-volume producers, identifying, 362-366 hindsight bias, 9, 123-124 HIPPO (highest paid persons' opinion) impact, 113-114

HLD (high-level design), 90 homogeneity of variance, 313-318 homoscedasticity, 313-318 Hortonworks, 433 host analysis, 399-404 data plane analytics use case, 411–413 full host profile analysis, 401–403 per-host analysis function, 399 per-host conversion analysis, 400-401 per-host port analysis, 403 host profile function, 403 How Not to Be Wrong (Ellenberg), 118-119 HTTP (Hypertext Transfer Protocol), 71-72 human bias, 97-98 Hypertext Transfer Protocol (HTTP), 71-72 Hyper-V, 70

IBM, Cisco's partnership with, 433 IBN (intent-based networking), 11, 428 ICMP (Internet Control Message Protocol), 398 ID3 algorithm, 250 Identity Service Engine (ISE), 427 IETF (Internet Engineering Task Force), 66-67.95 IGMP (Internet Group Management Protocol), 398 IGPs (interior gateway protocols), 357 IIA (International Institute for Analytics), 147 IKEA effect, 121-122 illusion of truth effect, 112-113 iLO (Integrated Lights Out), 40-41 image recognition use cases, 170 IMC (Integrated Management Controller), 40 - 41importing Python packages, 390 imprinting, 107 industry terminology, 7

inference, statistical, 228 influence, 227 information retrieval algorithms, 263-264 use cases, 185-186 Information Technology Infrastructure Library (ITIL), 161 infrastructure analytics use case, 323-324 data encoding, 328-336 data loading, 325-328 data visualization, 340-344 dimensionality reduction, 337-340 DNA mapping and fingerprinting, 324-325 environment setup, 325-328 K-means clustering, 344-349 machine learning-guided troubleshooting, 350-353 search challenges and solutions, 331-336 in-group bias, 120 inline security appliances, 69 innovative thinking techniques, 127-128, 439 associative thinking, 131-132 bias and, 128 breaking anchors, 140 cognitive trickery, 143 crowdsourcing, 133-134 defocusing, 140 experimentation, 141-142 inverse thinking, 139-140, 204-206 lean thinking, 142 metaphoric thinking, 130-131 mindfulness, 128 networking, 133-135 observation, 138-139 perspectives, 130-131 questioning CARESS technique, 137 example of, 135-137 "Five whys", 137-138

quick innovation wins, 143-144 six hats thinking approach, 132–133 unpriming, 140 The Innovator's DNA (Dyer et al), 128 insight, 9 installing Jupyter Notebook, 282-283 Integrated Lights Out (iLO), 40-41 Integrated Management Controller (IMC), 40-41 Intelligent Wide Area Networks (iWAN), 20.428 intent-based networking (IBN), 11, 428 interior gateway protocols (IGPs), 357 International Institute for Analytics (IIA), 147 Internet clickstream analysis, 169 Internet Control Message Protocol (ICMP), 398 Internet Engineering Task Force (IETF), 66-67,95 Internet Group Management Protocol (IGMP), 398 Internet of Things (IoT), 75-76 analytics, 432 growth of, 214 Internet of Things—From Hype to Reality (Rayes and Salam), 75 Internet Protocol (IP) IP address packet counts, 395-397 packet format, 390-391 packet protocols, 398 Internet Protocol Security (IPsec), 73-74 interval scales, 80 intrusion detection use cases, 207-209 intuition explained, 103-104 System 1/System 2, 102-103 inventory management, 169 inverse problem, 206 inverse thinking, 139-140, 204-206 IoT. See Internet of Things (IoT) IP (Internet Protocol)

IPFIX (IP Flow Information Export), 64-67,95 packet counts, 395–397 packet data, 70-71 packet format, 390-391 packet protocols, 398 **IPFIX** (IP Flow Information Export), 64-67,95 IPsec (Internet Protocol Security), 73 - 74ISE (Identity Service Engine), 427 isin keyword, 366 IT analytics use cases, 170 activity prioritization, 170-173 asset tracking, 173-175 behavior analytics, 175–178 bug and software defect analysis, 178 - 179capacity planning, 180-181 event log analysis, 181–183 failure analysis, 183–185 information retrieval, 185–186 optimization, 186-188 prediction of trends, 190-194 predictive maintenance, 188-189 scheduling, 194-195 service assurance, 195–197 transaction analysis, 197-199 ITIL (Information Technology Infrastructure Library), 161 iWAN (Intelligent Wide Area Networks), 20, 428

J

Jaccard distance, 236 Jasper, 432 JavaScript Object Notation (JSON), 82–83 join command, 291 join function, 370 JSON (JavaScript Object Notation), 82–83 Jupyter Notebook, installing, 282–283

Κ

Kafka (Apache), 28-29 Kahneman, Daniel, 102-103 kcluster values, 347. See also K-means clustering Kendall's tau, 225, 236 Kenetic, 430–433 key performance indicators (KPIs), 86-87 keys, 82-83 key/value pairs, 82-83 keywords, isin, 366 Kinetic, 430-433 K-means clustering data plane analytics use case, 408-410 network infrastructure analytics use case, 344-349 syslog telemetry use case, 373-375 knowledge curse of, 119 management of, 8 known attack vectors, 214 KPIs (key performance indicators), 86-87 Kurzweil, Ray, 267

labels, 151 ladder of powers methods, 310 lag, 262 lambda function, 296 language selection, 6 translation, 11 lasso regression, 247 latent Dirichlet allocation (LDA), 265, 334–335 latent semantic indexing (LSI), 265–266, 334–335 law of parsimony, 120, 152 "law of small numbers", 117–118 LDA (latent Dirichlet allocation), 265, 334-335 The Lean Startup (Ries), 142 lean thinking, 142 learning reinforcement, 212-213 left skewed distribution, 310 lemmatization, 263 Levene's test, 313 leverage, 227 lift charts, 269-270 lift-and-gain analysis, 194 LightGBM, 252 linear regression, 246-247 Link Layer Discovery Protocol (LLDP), 61 Linux servers, pull data availability, 61 LLD (low-level design), 90 LLDP (Link Layer Discovery Protocol), 61.93 load balancing, active-active, 186 loading data data plane analytics use case, 390-394 dataframes, 394 IP package format, 390–391 packet file loading, 390 parsed fields, 392-393 Python packages, importing, 390 TCP package format, 391 network infrastructure analytics use case, 325 - 328statistics use cases, 286-288 logical AND, 306 logistic regression, 101–102, 247 logistics use cases, 210-212 logs event log analysis, 181-183 syslog telemetry use case, 355 data encoding, 371-373 data preparation, 356-357, 369-371 high-volume producers, identifying, 362-366 K-means clustering, 373–375

log analysis with pandas, 357–360 machine learning-based evaluation, 366-367 noise reduction, 360-362 **OSPF** (Open Shortest Path First) routing, 357 syslog severities, 359-360 task list, 386-387 transaction analysis, 379-386 word cloud visualization, 367-369, 375-379 Long Short Term Memory (LSTM) networks, 254-258 longitudinal data, 225-226 low-level design (LLD), 90 LSI (latent semantic indexing), 265-266, 334-335 LSTM (Long Short Term Memory) networks, 254-258

Μ

M2M initiatives, 75 MAC addresses, 61, 398 machine learning classification algorithms choosing, 248-249 decision trees, 249-250 gradient boosting methods, 251-252 neural networks, 252-258 random forest, 250-251 defined. 150 machine learning-based log evaluation, 366-367 supervised, 151, 246 troubleshooting with, 350-353 unsupervised association rules, 240-243 clustering, 234-239 collaborative filtering, 244–246 defined, 151, 234 sequential pattern mining, 243-244

use cases, 153 anomalies and outliers, 153-155 benchmarking, 155-157 classification, 157-158 clustering, 158-160 correlation, 160-162 data visualization, 163-165 descriptive analytics, 167-168 NLP (natural language processing), 165-166 time series analysis, 168-169 voice, video, and image recognition. 170 making your own data, 84-85 Management Information Bases (MIBs), 57 management plane activities in, 40-41 data examples, 44-46 defined, 37 Manhattan distance, 236 manipulating data encoding methods, 85 KPIs (key performance indicators), 86–87 made-up data, 84-85 missing data, 86 standardized data, 85 manufacturer's suggested retail price (MSRP), 108 mapping, DNA, 324-325 market basket analysis, 199 Markov Chain Monte Carlo (MCMC) systems, 271 matplotlib package, 283 maturity levels, 7-8 max method, 347 MBIs (Management Information Bases), 57 MCMC (Markov Chain Monte Carlo) systems, 271 MDT (model-driven telemetry), 64 mean squared error (MSE), 227 memory, muscle, 102

mental models bias ambiguity, 115–116 anchoring effect, 107-109 authority, 113-114 availability, 111, 112 base-rate neglect, 117 clustering, 112 concept of, 104–105 confirmation, 114-115 context, 116-117 correlation, 112 "curse of knowledge", 119 Dunning-Kruger effect, 120–121 empathy gap, 123 endowment effect, 121 expectation, 114-115 experimenter's, 116 focalism, 107 framing effect, 109–110, 151 frequency illusion, 117 group, 120 group attribution error, 118 halo effect, 123-124 bindsight, 9, 123-124 HIPPO (highest paid persons' opinion) impact, 113–114 IKEA effect, 121–122 illusion of truth effect, 112–113 impact of, 105-106 imprinting, 107 "law of small numbers", 117–118 mirroring, 110-111 narrative fallacy, 107–108 not-invented-here syndrome, 122 outcome, 124 priming effect, 109, 151 pro-innovation, 121 recency, 111 solutions and, 106-107 status-quo, 122 sunk cost fallacy, 122

survivorship, 118–119 table of, 124-126 thrashing, 122 tunnel vision, 107 WYSIATI (What You See Is All There Is), 118 zero price effect, 123 changing how you think, 98-99 concept of, 97-98, 99-102 CRT (Cognitive Reflection Test), 98 human bias, 97–98 intuition, 103-104 System 1/System 2, 102-103 metaphoric thinking, 130-131 meters, smart, 189 methodology and approach, 13-14 analytics infrastructure model, 22-25. See also use cases data and transport, 26–28 data engine, 28-30 data science, 30–32 data streaming example, 30 publisher/subscriber environment, 29 roles, 24–25 service assurance, 33 traditional thinking versus, 22-24 BI/BA dashboards, 13 CRISP-DM (cross-industry standard process for data mining), 18 EDA (exploratory data analysis) defined, 15-16 use cases versus solutions, 18–19 walkthrough, 17-18 overlay/underlay, 20-22 problem-centric approach defined, 15-16 use cases versus solutions, 18-19 walktbrough, 17–18 SEMMA (Sample Explore, Modify, Model, and Assess), 18 microservices architectures, 5-6 Migration Analytics, 425

mindfulness, 128-129 mindset. See mental models mirror-image bias, 110-111 mirroring, 69, 110-111 missing data, 86 mlextend package, 283 model-driven telemetry (MDT), 64 models. See analytics models, building; mental models Monte Carlo simulation, 202, 271 moving averages, 262 MSE (mean squared error), 227 MSRP (manufacturer's suggested retail price), 108 Mudd, Philip, 110 multicollinearity, 225 muscle memory, 102–103

Ν

narrative fallacy, 107-108 natural language processing (NLP), 165-166, 262-263 negative correlation, 224 **NETCONF** (Network Configuration Protocol), 60 Netflix recommender system, 191-194 **NetFlow** architecture of, 65 capabilities of, 65-66 data transport, 94 versions of, 65 Network Configuration Protocol (NETCONF), 60 network functions virtualization (NFV), 5-6, 51-52, 365 network infrastructure analytics use case, 323-324, 441 data encoding, 328-336 data loading, 325-328 data visualization, 340-344 dimensionality reduction, 337-340

DNA mapping and fingerprinting, 324 - 325environment setup, 325-328 K-means clustering, 344-349 machine learning-guided troubleshooting, 350-353 search challenges and solutions, 331-336 Network Time Protocol (NTP), 87-88 Network Watcher, 68 networking, social, 133-135 networking data, 35-37 business and applications data relative to, 42 - 44control plane activities in, 41 data examples, 46-47 defined, 37 control plane communication, 38 data access container on box, 74-75 control plane data, 67-68 data plane traffic capture, 68–70 DPI (deep packet inspection), 56 external data for context, 89 IoT (Internet of Things) model, 75-76 methods of, 55-57 observation effect, 88 packet data, 70–74 panel data, 88 pull data availability, 57-61 push data availability, 61-67 timestamps, 87–88 data manipulation KPIs (key performance indicators), 86-87 made-up data, 84–85 missing data, 86 standardized data, 85 data plane activities in. 41 data examples, 47-49 defined, 37

data structure ISON (JavaScript Object Notation), 82 - 83semi-structured data, 84 structured data, 82 unstructured data, 83-84 data transport, 89–90 CLI (command-line interface) scraping, 92 HLD (high-level design), 90 IPFIX (IP Flow Information Export), 95 LLD (low-level design), 90 NetFlow, 94 other data, 93 sFlow, 95 SNMP (Simple Network Management Protocol), 90-92 SNMP (Simple Network Management Protocol) traps, 93 Syslog, 93-94 telemetry, 94 data types, 76-77 continuous numbers, 78-79 discrete numbers, 79 higher-order numbers, 81-82 interval scales, 80 nominal data, 77–78 ordinal data, 79–80 ratios, 80-81 encoding methods, 85 management plane activities in, 40-41 data examples, 44-46 defined, 37 network virtualization, 49-51 OpenStack nodes, 39-40 planes, combining across virtual and physical environments, 51-52 sample network, 38 networks, computer. See also IBN (intentbased networking) DNA (Digital Network Architecture), 428

IBN (intent-based networking), 11, 428 NFV (network functions virtualization), 51 - 52overlay/underlay, 20-22 planes of operation, 36-37 business and applications data relative to, 42-44 combining across virtual and physical environments, 51–52 control plane, 37, 41, 46-47 control plane communication, 38 data plane, 37, 41, 47-49 illustrated, 438 management plane, 37, 40-41, 44 - 46network virtualization, 49–51 NFV (network functions virtualization), 51-52 OpenStack nodes, 39-40 sample network, 38 virtualized environment, 438 SD-WANs (software-defined wide area networks), 20 virtualization, 49-51 networks, neural. See neural networks neural networks, 11, 252-258 next-best-action analysis, 193 next-best-offer analysis, 193 NFV (network functions virtualization), 5-6, 51-52, 365 Ng, Andrew, 267 N-grams, 263 NLP (natural language processing), 165-166, 262-263 **NLTK, 263** nltk package, 283, 328 noise reduction, syslog telemetry use case, 360-362 nominal data, 77-78 normal distributions, 222-223 normality, tests for, 311-313 not-invented-here syndrome, 122 novelty detection, 153-155 np (numpy package), 313

NTOP, 68 NTP (Network Time Protocol), 87–88 numbers continuous, 78–79 discrete, 79 higher-order, 81–82 interval scales, 80 nominal data, 77–78 ordinal data, 79–80 ratios, 80–81 numpy package, 283, 313

0

objects, groupby, 293-296 observation, 138-139 observation effect, 88 Occam's razor, 120 one-hot encoding, 232-233, 336 oneM2M.75 Open Shortest Path First (OSPF), 41, 61, 357 open source software, 5-6, 11, 433-434 OpenNLP, 263 OpenStack, 5-6, 39-41 operation, planes of. See planes of operation operations research, 214 operators, logical AND, 306 optimization, business model, 201-202 optimization use cases, 186-188 orchestration, 11 ordinal data, 79-80 ordinal numbers, 232 orthodoxies, 139-140 **OSPF** (Open Shortest Path First), 41, 61, 357 outcome bias, 124 out-group bias, 120 outlier analysis, 153-155, 307-310, 318-320

Outliers (Gladwell), 99 overfitting, 219 overlay, analytics as, 20–22

Ρ

PACF (partial autocorrelation function), 262 packages fillna, 342-343 Gensim, 264, 283, 328, 331-332 importing, 390 matplotlib, 283 mlextend, 283 nltk. 283. 328 numpy, 283, 313 pandas, 283, 346, 357-360 pylab, 283 scipy, 283 sklearn, 283 statsmodels, 283 table of, 283-284 wordcloud, 283 packets file loading, 390 HTTP (Hypertext Transfer Protocol), 71-72 IP (Internet Protocol), 390-391 packet counts, 395-397 packet protocols, 398 IPsec (Internet Protocol Security), 73-74 IPv4, 70-74 port assignments, 393-394 SSL (Secure Sockets Layer), 74 TCP (Transmission Control Protocol), 71-72, 391 VXLAN (Virtual Extensible LAN), 74 pairwise ANOVA (analysis of variance), 317 pandas package, 283 apply, 346 fillna, 342-343 log analysis with, 357–360

panel data, 88, 225-226 parsimony, law of, 120, 152 partial autocorrelation function (PACF), 262 partnerships, Cisco, 433 part-of-speech tagging, 263 pattern mining, 243-244 pattern recognition, 190 PCA (principal component analysis), 233-234 network infrastructure analytics use case, 339 - 340syslog telemetry use case, 372–373 Pearson's correlation coefficient, 225, 236 perceptrons, 252 perspectives, gaining new, 130-131 phi, 262 physical environments, combining planes across, 51-52 pivoting, 142 planes of operation, 36-37 business and applications data relative to, 42 - 44combining across virtual and physical environments, 51-52 control plane activities in, 41 communication, 38 data examples, 46-47 defined, 37 data plane. See also data plane analytics use case activities in, 41 data examples, 47-49 defined, 37 illustrated, 438 management plane activities in, 40-41 data examples, 44-46 defined, 37 network virtualization, 49-51 NFV (network functions virtualization), 51 - 52OpenStack nodes, 39-40

sample network, 38 virtualized environments, 438 planning, capacity, 180-181 platform crashes, statistics use case for, 288-299 apply method, 295-296 box plot, 297-298 crash counts by product ID, 294-295 crash counts/rate comparison plot, 298 - 299crash rates by product ID, 296-298 crashes by platform, 292 data scaling, 298 dataframe filtering, 290-292 groupby object, 293-296 horizontal bar chart, 289–290 lambda function, 296 overall crash rates, 292 router reset reasons, 290 simple bar chart, 289 value counts function, 288-289 Platform for Network Data Analytics (PNDA), 433 platforms, Cisco analytics solutions, 433 plots box, 221-222 cluster scatterplot, 410-411 defined, 220 platform crashes example, 297–299 Q-Q (quartile-quantile), 220, 311-312 software crashes example, 300-305 PNDA (Platform for Network Data Analytics), 433 polynomial regression, 247 population variance, 167 ports assignments, 393-394 mirroring, 69 per-host port analysis, 403 profiles, 407-408 full, 413–419 source, 419-422

SME port clustering, 407-413 cluster scatterplot, 410-411 bost patterns, 411-413 K-means clustering, 408–410 port profiles, 407-408 positive correlation, 224 post-algorithmic era, 147-148 post-hoc testing, 317 preconceived notions, 107-108 Predictably Irrational (Ariely), 108 prediction of trends, use cases for, 190-191 Predictive Analytics (Siegel), 148 predictive maintenance use cases, 188-189 predictive maturity, 8 preemptive analytics, 9 preemptive maturity, 8 PrefixScan, 244 prescriptive analytics, 9 priming effect, 109, 151 principal component analysis (PCA), 233-234 network infrastructure analytics use case, 339-340 syslog telemetry use case, 372-373 proactive maturity, 8 probability, 228 problem-centric approach defined, 15-16 use cases versus solutions, 18–19 walkthrough, 17-18 process, analytics, 437 profiles, port, 407-408 full. 413-419 source, 419-422 pro-innovation bias, 121 psychology use cases, 209-210 publisher/subscriber environment, 29 pub/sub bus, 29 pull data availability CLI (command-line interface) scraping, 59, 92

NETCONF (Network Configuration Protocol), 60 SNMP (Simple Network Management Protocol), 57-59 unconventional data sources, 60-61 YANG (Yet Another Next Generation), 60 pull methods, 28-29 push data availability IPFIX (IP Flow Information Export), 64-67.95 NetFlow, 65-66, 94 sFlow, 67, 95 SNMP (Simple Network Management Protocol) traps, 61-62, 93 Syslog, 62-63, 93-94 telemetry, 63-64, 94 push methods, 28-29 p-values, 227, 314-317 pylab package, 283 pyplot, 395 Python packages. See packages

Q

Q-Q (quartile-quantile) plots, 220, 311–312 qualitative data, 77–78 queries (SQL), 82 questioning CARESS technique, 137 example of, 135–137 "Five whys", 137–138

R

race bias, 97–98 radio frequency identification (RFID), 210–211 random forest, 250–251 ratios, 80–81 RCA (root cause analysis), 184 RcmdrPLugin.temis, 263 reactive maturity, 7–8 recency bias, 111 recommender systems, 191-194 reconciling data, 29 recurrent neural networks (RNNs), 254 - 256regression analysis, 101-102, 246-247 reinforcement learning, 173, 212-213 relational database management system (RDBMS), 82 Remote SPAN (RSPAN), 69 reset index function, 414 retention use cases, 202-204 retrieval of information algorithms, 263-264 use cases, 185-186 reward functions, 186 RFIS (radio frequency identification), 210-211 ridge regression, 247 right skewed distribution, 310 RNNs (recurrent neural networks), 254-256 roles analytics experts, 25 analytics infrastructure model, 24-25 business domain experts, 25 data domain experts, 25 data scientists, 25 root cause analysis (RCA), 184 RSBMS (relational database management system), 82 RSPAN (Remote SPAN), 69 R-squared, 227 Rube Goldberg machines, 151–152 rules, association, 240-243

S

Sample Explore, Modify, Model, and Assess (SEMMA), 18 Sankey diagrams, 199 SAS, Cisco's partnership with, 433 scaling data, 298

scatterplots, 410-411 scheduling use cases, 194-195 scipy package, 283 scraping, CLI (command-line interface), 59 SDA (Secure Defined Access), 428 SDN (software-defined networking), 61.365 SD-WANs (software-defined wide area networks), 20 searches, network infrastructure analytics use case, 331-336 seasonality, 261 Secure Defined Access (SDA), 428 Secure Sockets Layer (SSL), 74 security signatures, 214 segmentation, customer, 160 self-leveling wireless networks, 186 SELs (system event logs), 62 semi-structured data, 84 SEMMA (Sample Explore, Modify, Model, and Assess), 18 sentiment analysis, 266-267 sequential pattern mining, 243-244 sequential patterns, 197 service assurance analytics infrastructure model with, 33 defined, 11-12 Service Assurance Analytics, 425 use cases for, 195-197 service-level agreements (SLAs), 11-12, 196 The Seven Habits of Highly Successful People (Covey), 10 severities, syslog, 359-360 sFlow, 67, 95 Shapiro-Wilk test, 311 Siegel, Eric, 148 signatures, security, 214 Simple Network Management Protocol. See SNMP (Simple Network Management Protocol) simulations, 271 Sinek, Simon, 148 singular value decomposition (SVD), 265

six hats thinking approach, 132–133 sklearn package, 283 SLAs (service-level agreements), 11-12, 196 slicing data, 286 small numbers, mental models and, 117-118 smart meters, 189 smart society, 213-214 Smarter, Faster, Better (Duhigg), 99 SME analysis dataframe and visualization library loading, 394 host analysis, 399-404 IP address packet counts, 395–397 IP packet protocols, 398 MAC addresses, 398 output, 404-406 time series counts, 395 timestamps and time index, 394-395 topology mapping information, 398 SME port clustering, 407-413 cluster scatterplot, 410-411 host patterns, 411-413 K-means clustering, 408–410 port profiles, 407-408 SMEs (subject matter experts), 1-2 SNMP (Simple Network Management Protocol), 28-29 data transport, 90-92 pull data availability, 57-59 traps, 61-62, 93 social filtering solution, 191 soft data. 150 software crashes use case, 299-305 box plots, 300-305 dataframe filtering, 300 dataframe grouping, 299–300 defect analysis use cases, 178–179 open source, 5-6, 11 software-defined networking (SDN), 61, 365

software-defined wide area networks (SD-WANs), 20 solution design, 150, 274 breadth of focus, 274 operationalizing as use cases, 281 time expenditure, 274-275 workflows, 282 sorting dataframes, 326-327 source IP address packet counts, 396 source port profiles, 419-422 **SPADE**, 244 SPAN (Switched Port Analyzer), 69 Spanning Tree Protocol (STP), 41 Spark, 28–29 SPC (statistical process control), 189 Spearman's rank, 225, 236 split function, 368 SQL (Structured Query Language), 29, 82 SSE (sum of squares error), 227 SSL (Secure Sockets Layer), 74 standard deviation, 167, 222-223 standardizing data, 85 Stanford CoreNLP, 263 Starbucks, 110 Start with Why (Sinek), 148 stationarity, 261 statistical analysis, 440. See also statistics use cases ANOVA (analysis of variance), 227 Bayes' theorem, 228-230 box plots, 221-222 correlation, 224-225 defined, 220 longitudinal data, 225-226 normal distributions, 222-223 probability, 228 standard deviation, 222-223 statistical inference, 228 statistical process control (SPC), 189 statistics use cases, 153, 285 anomalies and outliers, 153-155 anomaly detection, 318-320 ANOVA (analysis of variance), 305-310

data filtering, 305–306 describe function, 308 drop command, 309 groupby command, 307 homogeneity of variance, 313-318 outliers, dropping, 307-310 pairwise, 317 benchmarking, 155-157 classification, 157-158 clustering, 158-160 correlation, 160-162 data loading and exploration, 286-288 data transformation, 310 data visualization, 163-165 descriptive analytics, 167-168 NLP (natural language processing), 165 - 166normality, tests for, 311-313 platform crashes example, 288-299 apply method, 295-296 box plot, 297-298 crash counts by product ID, 294-295 crash counts/rate comparison plot, 298-299 crash rates by product ID, 296-298 crashes by platform, 292–294 data scaling, 298 dataframe filtering, 290–292 groupby object, 293-296 horizontal bar chart, 289-290 lambda function, 296 overall crash rates, 292 router reset reasons, 290 simple bar chart, 289 value counts function, 288-289 software crashes example, 299-305 box plots, 300-305 dataframe filtering, 300 dataframe grouping, 299-300 time series analysis, 168-169 voice, video, and image recognition, 170

statsmodels package, 283 status-quo bias, 122 Stealthwatch, 6, 65, 427 Steltzner, Adam, 202 stemming, 263 stepwise regression, 247 stop words, 263, 329 STP (Spanning Tree Protocol), 41 strategic thinking, 9 streaming data, 30 structure. See data structure Structured Query Language (SQL), 29, 82 subject matter experts (SMEs), 1-2 Sullenberger, Chesley "Sully", 99-100 Sully, 99-100 sum of squares error (SSE), 227 sums-of-squares distance measures, 167 sunk cost fallacy, 122 supervised machine learning, 151, 246 support vector machines (SVMs), 258-259 survivorship bias, 118-119 SVD (singular value decomposition), 265 SVMs (support vector machines), 258 - 259swim lanes configuration, 161 Switched Port Analyzer (SPAN), 69 switches, virtual, 69-70 syslog, 62-63, 93-94 syslog telemetry use case, 355, 441 data encoding, 371-373 data preparation, 356-357, 369-371 high-volume producers, identifying, 362-366 K-means clustering, 373-375 log analysis with pandas, 357-360 machine learning-based evaluation, 366-367 noise reduction, 360-362 OSPF (Open Shortest Path First) routing, 357 syslog severities, 359-360 task list, 386-387

transaction analysis, 379–386 apriori function, 381–382 data preparation, 379 dictionary-encoded message lookup, 380–381 groupby method, 380 log message groups, 382–386 tokenization, 381 word cloud visualization, 367–369, 375–379 System 1/System 2 intuition, 102–103 system event logs (SELs), 62

Т

tables, contingency, 267-268 tags, data transport, 93 Talent Is Overrated (Colvin), 103 Taming the Big Data Tidal Wave (Franks), 147 task lists data plane analytics use case, 423-424 syslog telemetry use case, 386–387 TCP (Transmission Control Protocol) packet data, 71–72 packet format, 391 tcpdump, 68 telemetry, 441 analytics infrastructure model, 27-28 architecture of, 63 capabilities of, 64 data transport, 94 EDT (event-driven telemetry), 64 MDT (model-driven telemetry), 64 syslog telemetry use case, 355 data encoding, 371-373 data preparation, 356-357, 369-371 high-volume producers, identifying, 362-366 K-means clustering, 373-375 log analysis with pandas, 357-360

machine learning-based evaluation, 366-367 noise reduction, 360–362 **OSPF** (Open Shortest Path First) routing, 357 syslog severities, 359-360 task list, 386–387 transaction analysis, 379–386 word cloud visualization, 367-369, 375-379 term document matrix, 336 term frequency-inverse document frequency (TF-IDF), 232 terminology, 7 tests, 219, 220 F-tests, 227 Levene's, 313 normality, 311-313 post-hoc testing, 317 Shapiro-Wilk, 311 Tetration, 6, 430-431 text analysis, 256-262 information retrieval, 263-264 NLP (natural language processing), 262-263 nominal data, 77-78 ordinal data, 79-80 sentiment analysis, 266-267 topic modeling, 265-266 TF-IDF (term frequency-inverse document frequency), 232 thinking innovative, 127-128, 439 associative thinking, 131–132 bias and, 128 breaking anchors, 140 cognitive trickery, 143 crowdsourcing, 133-134 defocusing, 140 experimentation, 141-142 inverse, 204-206 inverse thinking, 139–140 lean thinking, 142

metaphoric thinking, 130–131 mindfulness, 128-129 networking, 133–135 observation, 138-139 perspectives, 130-131 questioning, 135–138 quick innovation wins, 143–144 six hats thinking approach, 132 - 133unpriming, 140 strategic, 9 Thinking Fast and Slow (Kahneman), 102 thinking hats approach, 132-133 thrashing, 122 tilde (~), 291-292, 370 time index creating from timestamp, 357-358 data plane analytics use case, 394–395 time series analysis, 168-169, 259-262 time series counts, 395 time to failure, 183-184 TimeGrouper, 395 timestamps, 87-88 creating time index from, 357-358 data plane analytics use case, 394-395 tm. 263 tokenization, 263, 328 syslog telemetry use case, 371 tokenization, 381 topic modeling, 265-266 traffic capture, data plane, 68-69 ERSPAN (Encapsulated Remote Switched Port Analyzer), 69 inline security appliances, 69 port mirroring, 69 RSPAN (Remote SPAN), 69 SPAN (Switched Port Analyzer), 69 virtual switch operations, 69-70 training data, 219 transaction analysis explained, 193, 197-199

syslog telemetry use case, 379-386 apriori function, 381-382 data preparation, 379 dictionary-encoded message lookup, 380–381 groupby method, 380 log message groups, 382–386 tokenization, 381 transformation, data, 310 translation, language, 11 Transmission Control Protocol (TCP), 391 transport of data, 89-90 analytics infrastructure model, 26 - 28CLI (command-line interface) scraping, 92 HLD (high-level design), 90 **IPFIX (IP Flow Information Export)**, 95 LLD (low-level design), 90 NetFlow, 94 other data, 93 sFlow, 95 SNMP (Simple Network Management Protocol), 90–92, 93 Syslog, 93-94 telemetry, 94 traps (SNMP), 61-62 trees, decision example of, 249-250 random forest, 250-251 trends, prediction of, 11-12, 190-191 troubleshooting, machine learning-guided, 350 - 353truncation, 263 TrustSec, 427 Tufte, Edward, 163 Tukey post-hoc test, 317 tunnel vision, 107 types, 76-77 continuous numbers, 78-79 discrete numbers, 79 higher-order numbers, 81–82 interval scales, 80

nominal data, 77–78 ordinal data, 79–80 ratios, 80–81

U

UCS (Unified Computing System), 62 unconventional data sources, 60-61 underlay, 20-22 Unified Computing System (UCS), 62 unpriming, 140 unstructured data, 83-84 unsupervised machine learning association rules, 240-243 clustering, 234-239 collaborative filtering, 244-246 defined, 151, 234 sequential pattern mining, 243-244 use cases, 439 algorithms, 3-4 autonomous applications, 200-201 benefits of, 147-149, 273-274 building analytics infrastructure model, 275-276 analytics solution design, 274 code, 280-281 data. 276-278 data science, 278-280 environment setup, 282-284 time expenditure, 440 workflows, 282 business model analysis, 200-201 business model optimization, 201-202 churn and retention, 202-204 control plane analytics, 441 data plane analytics, 389, 442 assets, 422-423 data loading and exploration, 390-394 full port profiles, 413–419 investigation task list, 423–424 SME analysis, 394-406

SME port clustering, 407–413 source port profiles, 419–422 defined, 18-19, 150 development, 2-3 dropouts and inverse thinking, 204-206 engagement models, 206-207 examples of, 32-33 fraud and intrusion detection, 207-209 healthcare and psychology, 209-210 IT analytics, 170 activity prioritization, 170–173 asset tracking, 173–175 behavior analytics, 175-178 bug and software defect analysis, 178-179 capacity planning, 180-181 event log analysis, 181–183 failure analysis, 183–185 information retrieval, 185–186 optimization, 186-188 prediction of trends, 190-191 predictive maintenance, 188–189 recommender systems, 191–194 scheduling, 194-195 service assurance, 195-197 transaction analysis, 197-199 logistics and delivery models, 210–212 machine learning and statistics, 153 anomalies and outliers, 153–155 benchmarking, 155-157 classification, 157-158 clustering, 158-160 correlation, 160-162 data visualization, 163-165 descriptive analytics, 167-168 NLP (natural language processing), 165 - 166time series analysis, 168-169 voice, video, and image recognition, 170 network infrastructure analytics, 323-324, 441 data encoding, 328-331, 336-337 data loading, 325–328

data visualization, 340-344 dimensionality reduction, 337-340 DNA mapping and fingerprinting, 324-325 environment setup, 325–328 K-means clustering, 344–349 machine learning-guided troubleshooting, 350-353 search challenges and solutions, 331-336 operationalizing solutions as, 281 packages for, 283-284 reinforcement learning, 212-213 smart society, 213-214 versus solutions, 18-19 statistics, 153, 285, 440 anomalies and outliers, 153 - 155anomaly detection, 318-320 ANOVA (analysis of variance), 305-310 benchmarking, 155–157 classification, 157–158 clustering, 158–160 correlation, 160–162 data loading and exploration, 286-288 data transformation, 310 data visualization, 163-165 descriptive analytics, 167–168 NLP (natural language processing), 165 - 166normality, tests for, 311–313 platform crashes example, 288-299 software crashes example, 299-305 time series analysis, 168–169 voice, video, and image recognition, 170 summary table, 215 syslog telemetry, 355 data encoding, 371–373 data preparation, 356-357, 369-371

high-volume producers, identifying, 362–366 K-means clustering, 373–375 log analysis with pandas, 357–360 machine learning-based evaluation, 366–367 noise reduction, 360–362 OSPF (Open Shortest Path First) routing, 357 syslog severities, 359–360 task list, 386–387 transaction analysis, 379–386 word cloud visualization, 367–369, 375–379

V

validation, 219 value_counts function, 288-289, 396, 400, 403 values, key/value pairs, 82-83 variables, dummy, 232 variance, analysis of. See ANOVA (analysis of variance) vectorized features, finding, 338 video recognition use cases, 170 views, dataframe, 329-330, 347 Viptela, 20 Virtual Extensible LAN (VXLAN), 74 virtual private networks (VPNs), 20 virtualization network, 49-51 NFV (network functions virtualization). 51-52, 365

planes of operation, 51–52, 438 virtual switch operations, 69–70 VPNs (virtual private networks), 20 VXLAN (Virtual Extensible LAN), 74 voice recognition, 11, 170 VPNs (virtual private networks), 20 VXLAN (Virtual Extensible LAN), 74

W

Wald, Abraham, 118–119
What You See Is All There Is (WYSIATI), 118
whys, "five whys" technique, 137–138
Windows Management Instrumentation (WMI), 61
Wireshark, 68
wisdom of the crowd, 250
WMI (Windows Management Instrumentation), 61
word clouds, 367–369, 375–379
wordcloud package, 283
workflows, designing, 282
WYSIATI (What You See Is All There Is), 118

X-Y-Z

XGBoost, 252 YANG (Yet Another Next Generation), 60 Yau, Nathan, 163 Yet Another Next Generation (YANG), 60 zero price effect, 123