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Command Syntax Conventions
The conventions used to present command syntax in this book are the same conventions 

used in the IOS Command Reference. The Command Reference describes these 

conventions as follows:

■ Boldface indicates commands and keywords that are entered literally as shown. In 

actual configuration examples and output (not general command syntax), boldface 

indicates commands that are manually input by the user (such as a show command).

■ Italic indicates arguments for which you supply actual values.
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■ Square brackets ([ ]) indicate an optional element.

■ Braces ({ }) indicate a required choice.

■ Braces within brackets ([{ }]) indicate a required choice within an optional element.
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Introduction
In today’s bus iness environment, enterprise customers are under more pressure than ever 

to innovate and adapt to new challenges and market conditions. Enterprises want to 

focus their investments on their core business while reducing IT spending. 

The cloud offers enterprise customers many benefits, such as lower costs and flexibility. 

The cloud’s elastic model enables a company to increase and decrease infrastructure 

capacity on demand. The usage-based model offered by the cloud helps governments 

and enterprises reduce costs while increasing business agility by moving applications to 

the cloud and consuming infrastructure resources from the cloud. This leads to enter-

prises looking at consuming network and IT services from the cloud rather than investing 

in in-house operations.

The enabling technology in unlocking the cloud is virtualization. Virtualization abstracts 

and isolates the computing hardware and underlying infrastructure into a logical 

resource pool, allowing key capabilities such as resource sharing, virtual machine (VM) 

isolation, and load balancing. These capabilities provide the fundamental building blocks 

for an agile and scalable cloud environment with rapid provisioning, workload sharing, 

and increased availability.

The surge in applications and IT service consumption moving to the cloud highlights the 

need for evolved technologies and network elements in the cloud that offer security 

and visibility to help businesses with performance and compliance verification. Evolved 

networks and network services enable the provider to offer cloud services with security, 

performance, and availability. The Cisco Cloud Services Router 1000V (CSR 1000V) is a 

fully virtualized software router that offers a platform for enterprises to extend the data 

center to the cloud and to enforce their policies in the cloud. 

The Cisco CSR 1000V provides a transparent solution for extending IT services into 

provider-hosted clouds. The solution offers a rich set of features, including VPN, fire-

wall, Network Address Translation (NAT), application visibility, and WAN optimization. 

These functions allow enterprise and cloud providers to build highly secure, scalable, 

and extensible cloud networks. In addition, the Cisco CSR 1000V supports a rich set of 

application programming interfaces (API), providing robust integration into software-

defined networking (SDN) for automated provisioning of these networks and network 

services and allowing simplified management and orchestration, which help in driving 

down costs further.

Networks inherently carry vast amounts of information, including user locations, device 

capabilities, topologies, and end-to-end performance characteristics. When exposed 

appropriately through well-defined APIs, such information can be consumed by cloud 

applications to fine-tune and customize their efficient delivery. The future holds the 

promise of increasingly rich application–network interactions.

The primary objective of this book is to simplify design aspects and architectural details 

in a unified resource, augmenting Cisco’s existing collection of installation and configura-

tion guides for various cloud-related products and solutions. This book covers the key 
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virtualization technologies used in the cloud; it provides a concise, accessible presenta-

tion of cloud network services and the different types of operational environments in the 

cloud. Cloud networking service and delivery concepts are reinforced with illustrative 

examples; architecture of SDN orchestration and its connection to Cisco CSR 1000V 

network services are introduced and elaborated upon. In addition, the book reviews the 

building blocks of the CSR 1000V, covering its architecture and software design. 

This book also explains network design and deployment scenarios for the Cisco CSR 

1000V, which influence its pivotal role in the cloud environment. Furthermore, the book 

distills how intelligent networks help providers simplify cloud service management and 

reduce costs through efficient scaling and optimized capacity utilization. This book 

provides architectural knowledge that contextualizes the roles and capabilities of these 

advanced networks and network services, along with discussions of design factors essen-

tial for their insertion into cloud services:

■ The book introduces the readers to the cloud and provides an overview to different 

types of cloud operational environments, including a prelude to the evolution of 

virtual routers.

■ Virtualization is introduced as a pivotal technology in cloud adoption. 

■ The book covers the details of the operating systems and hypervisors on which vir-

tual routers run. It provides details pertaining to the operational aspects of virtual 

routing.

■ The reader is introduced to the architecture and software design of the Cisco CSR 

1000V virtual router. The reader is subsequently introduced to a comprehensive set 

of APIs that can be leveraged by SDN. 

■ The book focuses on different designs and use cases and configuration examples for 

routing, secure extension of enterprises to the cloud, and VM mobility. It illustrates 

how the CSR 1000V addresses the challenges that an architect faces in migrating 

toward the cloud. 

■ This book covers the different management techniques available to simplify opera-

tional and monitoring aspects of cloud services.

Who Should Read This Book?
This book is targeted for a technical audience responsible for architecture, design, and 

deployment of data center and enterprise cloud services.

This book also caters to the next generation of cloud network operators to implement 

enterprise features in the cloud, leveraging the CSR 1000V.

After reading this book, you will have a better understanding of the following:

■ Key virtualization concepts and cloud models

■ CSR 1000V software architecture and design
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■ SDN and the CSR 1000V platform and API

■ Simplification of data center multitenant design with the CSR 1000V

■ Use cases for the CSR 1000V to simplify enterprise routing in the cloud

■ Operational visibility, management, and control of an enterprise network in the 

cloud

How This Book Is Organized
This book is organized into the following chapters.

Chapter 1: Introduction to Cloud

This chapter introduces the concept of cloud computing. It describes the various 

cloud models available and how virtualization enables the present-day transition to 

the cloud. Multitenant data center designs are illustrated, and the concept of SDN is 

introduced here. 

Chapter 2: Software Evolution of the CSR 1000

This chapter introduces the software evolution of the Cisco Cloud Services Router 

(CSR 1000V). It covers the infrastructure requirements and design considerations of a 

CSR 1000V, and it discusses the features that a CSR 1000V brings to the virtual rout-

ing realm.

Chapter 3: Hypervisor Considerations for the CSR

This chapter describes the different hypervisor technologies available on servers to man-

age the hardware resources for virtual machines. Hypervisor technology selection is an 

important consideration when deploying the CSR 1000V. 

Chapter 4: CSR 1000V Software Architecture

This chapter describes the software design of the CSR 1000V. It details the control-

plane and data-plane design of the CSR 1000V. It also describes licensing requirements, 

software implementation, and packet flow related to the CSR 1000V.

Chapter 5: CSR 1000V Deployment Scenarios

This chapter describes the common deployment scenarios for the CSR 1000V. It depicts 

these scenarios using configuration examples. 
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Chapter 6: CSR Cloud Deployment Scenarios

This chapter describes CSR 1000V deployments in the cloud and data center 

environments.

Chapter 7: CSR in the SDN Framework

This chapter describes SDN components. It also provides an overview of the CSR 1000V 

in the OpenStack framework. Case studies in this chapter aim to educate the reader on 

using the APIs for user-defined outcomes. 

Chapter 8: CSR 1000V Automation, Orchestration, and 
Troubleshooting

This chapter provides an overview of CSR 1000V management tools for orchestration, 

monitoring, and troubleshooting. It also illustrates the operation workflow for deploying 

a CSR 1000V. 



This chapter describes the software design of the CSR 1000V  and details the data plane 

design. It also illustrates the software implementation and packet flow within the CSR 

1000V, as well as how to bring up the CSR 1000V.

System Design
CSR 1000V is a    virtualized software router that runs the IOS XE   operating system. 

IOS XE uses Linux as the kernel, whereas the IOS daemon (IOSd)    runs as a Linux 

process providing the core set of IOS features and functionality. IOS XE provides a 

native Linux infrastructure for distributing the control plane forwarding state into an 

accelerated data path. The control and data planes in IOS XE are separated into differ-

ent processes, and the infrastructure to communicate between these processes supports 

distribution and concurrent processing. In addition, IOS XE offers inherent multicore 

capabilities, allowing you to increase performance by scaling the number of processors. 

It also provides infrastructure services for hosting applications outside IOSd.

Originally  , IOS XE was designed to run on a system with redundant hardware, which 

supports physical separation of the control and data plane units. This design is imple-

mented in the ASR 1006 and ASR 1004 series routers. The original ASR 1000  family 

hardware architecture consisted of the following main elements:

■ Chassis

■ Route processor (RP)

■ Embedded service processor (ESP)

■ SPA interface processors (SIP)

The RP is the control plane, whereas the ESP is the data plane. In an ASR 1006 and 

ASR 1004, the RP and ESP processes have separate kernels and run on different sets of 

hardware. ASR 1000 was designed for high availability (HA). The ASR 1006 is a fully 

CSR 1000V Software 
Architecture

Chapter 4
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hardware redundant version of the ASR, and its RP and ESP are physically backed up by 

a standby unit. IOSd runs on the RP (as do the majority of the XE processes), and the 

RP is backed up by another physical card with its own IOSd process. The ASR 1004 and 

fixed ASR 1000s (ASR 1001-X and ASR 1002-X) do not have physical redundancy of 

the RP and ESP.

In the hardware-based routing platform for IOS XE, the data plane processing runs out-

side the IOSd process in    a separate data plane engine via custom ASIC: QuantumFlow 

Processor (QFP). This architecture creates an important framework for the software 

design. Because these cards each have independent processors, the system disperses 

many elements of software and runs them independently on the different processors.

Tip The ASR 1000  platform first introduced IOS XE  . Multiple products run IOS XE, 

including the following:

ASR 1000 family:

■ ASR 1001-X

■ ASR 1002-X

■ ASR 1004

■ ASR 1006

■ ASR 1006-X

■ ASR 1009-X

■ ASR 1013

ASR 900 family:

■ ASR 903

ISR family:

■ ISR 4321

■ ISR 4331

■ ISR 4351

■ ISR 4431

■ ISR 4451-X

IOS XE   retains the look and feel of IOS. However, because IOS runs as a Linux process, 

it enables the platform-independent code to reside inside the IOSd process running on 

the Linux kernel. By moving the platform-dependent code (drivers) outside the IOSd 

process, it makes IOS XE a very efficient software delivery model. Different platforms 

write their drivers and leverage the existing feature-rich control plane code from IOSd.

Multiple    platforms run IOS XE. However, when understanding CSR 1000V architecture 

in this chapter, ASR 1000 is used as a hardware example because it was the first platform 

to run IOS XE.
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As the need for smaller form factor ASRs arose, a one rack unit (RU) ASR 1000  was con-

ceptualized and developed: ASR 1001 . The ASR 1001 is a 64-bit architecture in which all 

processes (RP, SIP, and ESP) are controlled by a single CPU. The SPA interface complex, 

forwarding engine complex, and IOS XE middleware all access the same Linux kernel. 

This is achieved by mapping the RP, ESP, and SIP domains into logical process groups. 

The RP’s process domain includes IOSd, a chassis manager process and forwarding man-

ager. The ESP process domain includes the chassis manager process, QFP client/driver 

process, and forwarding manager.

The architecture  diagram in Figure 4-1 provides a high-level overview of the major 

components.

IOSd Active IOSd Standby

RP

Linux Kernel

SPA ESP

Chassis Manager

SPA Driver

Chassis
Manager

Interface
Manager

ESP

QFP Client/Driver

Forwarding
Manager

Chassis
Manager

Forwarding Manager

Figure 4-1 ASR 1001 Platform Logical Architecture

The details on grouping of the components are as follows:

■ RP—RP   mainly contains the IOS daemon (IOSd), the forwarding manager for RP 

(FMAN-RP), the chassis manager for RP (CMAN-RP), the kernel, and bootstrap 

utilities.
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■ ESP (forwarding plane)—ESP   contains FMAN-FP and CMAN-FP, as well as QFP 

microcode and data plane drivers and crypto offload ASIC for handling hardware 

assist encryption.

■ SIP/SPA—SIP/SPA   houses the I/O interface for the chassis. It has its own CMAN 

and kernel process to handle the discovery     , bootstrapping, and initialization of the 

physical interfaces.

Virtualizing the ASR 1001 into the CSR 1000V

There    are a lot of commonalities between the system architectures of the CSR 1000V 

and the ASR 1001, and there are some differences as well. The CSR 1000V is essentially 

an ASR 1001 without the hardware. The following measures brought the ASR 1001 into 

the software-based design of the CSR 1000V:

■ All the inter-unit communication with the SIP/CC was removed.

■ The entire SIP/SPA interface complex was eliminated.

■ The kernel utilities have been shared across the RP and ESP software complexes.

■ The kernel utilities use the virtualized resources presented to it by the hypervisor.

The CSR is basically the ASR 1000 design stripped of its hardware components. When 

you compare the two designs, you find that the data path implementation is very differ-

ent. This is because the ASR 1001 has a physical processor (the QFP) for running data 

path forwarding. In a CSR, the IOS XE data path is implemented as a Linux process.

The CSR 1000V is meant to leverage as much of the ASR 1001 architecture as possible. 

There are places in the CSR 1000V system where software emulation for hardware-

specific requirements is needed. In general, the software architecture is kept the same, 

using the same grouping approach as for the hardware components. One of the major 

engineering efforts has been focused on migrating the QFP custom ASIC network pro-

cessor capabilities onto general-purpose x86 CPU architectures and providing the dis-

tributed data path implementation for IOS XE. This effort creates a unique opportunity 

for Cisco to package this high-performance and feature-rich technology into the CSR 

1000V. Figure 4-2 shows the high-level architecture of the CSR 1000V   .
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Figure 4-2 CSR 1000V High-Level Architecture

CSR 1000V Initialization Process

This   section examines the initialization of a CSR 1000V running on a type 1 hypervisor. 

Refer to Chapter 2, “Software Evolution of the CSR 1000,” for details on the IOSd pro-

cess running on the control plane.

When a CSR boots up as a virtual machine, interfaces are discovered by parsing the con-

tents of /proc/net/dev on the Linux kernel. The gethd (Guest Ethernet Management 

Daemon) process performs the port enumeration at startup and then passes the interface 

inventory to the guest Ethernet driver within the IOS complex. The IOSd gethd driver 

then instantiates the Ethernet interfaces. This is how the I/O interfaces provided by the 

virtual NIC are managed by IOS.

The gethd process manages the interfaces on the CSR VM. It takes care of addition, 

removal, configuration, states, and statistics of the Ethernet interfaces on the CSR VM.

Figure 4-3 illustrates the CSR 1000V initialization sequence.
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Guest VM Boots Up
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Control Plane Programming
Complete

Figure 4-3 CSR 1000V Initialization Sequence

gethd is an important process that handles a variety of interface management functions, 

including interface removal/addition. It is an important part of   the virtualized I/O used 

in CSR.

CSR 1000V Data Plane Architecture

Originally  , IOS XE QFP data plane design consisted of four components: client, driver, 

QFP microcode (uCode), and crypto assist ASIC. Different ASR 1000 platforms pack-

age these components differently, but in general the four components are the same 

across platforms. CSR 1000V leverages the same client, driver, and uCode to support 

a multithread-capable packet processing data plane, with the exception of the crypto 

assist ASIC. 

Figure 4-4 illustrates the CSR 1000V data plane architecture. The HW threads men-

tioned in the figure are packet processing engine (PPE) threads. The terms HW and PPE 

can be used interchangeably.
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Figure 4-4 CSR 1000V Data Plane Architecture

The following is an overview of the three main components that make up the packet-

processing data plane for CSR:

■ Client—The Client  is software that ties together the control plane and the data 

plane. It is a collection of software modules that transform control   plane informa-

tion into various data plane forwarding databases and data structure updates. It is 

also responsible for updating the control plane with statistics from the data plane. 

It allocates and manages the resources of the uCode, including data structures in 

resource memory. The QFP Client is also responsible for restarting the QFP pro-

cess in the event of failure. The Client provides a platform API layer that logically 

sits between IOSd and the uCode implementing the corresponding features. The 

Client API is called from FMAN-FP and then communicates with the uCode via 

both Interprocess Communicator (IPC) and shared memory interfaces provided by 

the Driver. Within the Client, feature processing support can be broken down into 

functional blocks known as Execution Agents (EA) and Resource Managers (RM). 

RMs are responsible for managing physical and logical objects, which are shared 

resources. An example of a physical object manager is the TCAM-RM, which man-

ages allocation of TCAM resources, and an example of a logical object manager is 

the UIDB-RM, which manages the micro Interface Descriptor Block (uIDB) objects 
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used to represent various forms of interfaces. The data plane (uCode) uses uIDB 

objects to see the logical interfaces.

■ Driver—The Driver  is a software layer that enables software components to com-

municate with the hardware. It glues the software components to the hardware. The 

Driver is made up of libraries, processes, and infrastructure that are responsible for 

initialization, access, error detection, and error recovery. The Driver has hardware 

abstraction layering known as the Device Object (devobj) Model that allows it to 

support different QFP ASICs. Below the devobj API are implementations of various 

emulation and adaptation layers. In addition to the emulation and adaptation layers 

required to support the RMs listed in the Client section, the Driver is also respon-

sible for coordinating memory access and IPC messaging between various QFP con-

trol plane software components and the QFP data plane packet processing uCode. 

The driver is completely segregated from the IOS code in an XE architecture, and 

this makes XE a very robust and flexible software architecture that offers complete 

separation of the control and data planes.

■ QFP uCode (packet processing)  —The uCode  is where all the feature packet pro-

cessing occurs. The uCode runs as a single process in the same VM/container as the 

Client and the Driver processes. IOSd initiates a packet process request through 

FMAN-FP. This request is then driven by the Client and the Driver interacting with 

the uCode to control the PPE behavior. The QFP uCode is broken up into four 

main components: Feature Code, Infrastructure, Platform Abstraction Layer (PAL), 

and Hardware Abstraction Layer (HAL). The PAL and HAL are essentially glue for 

the portability of software features to different hardware platforms. Originally, the 

PAL and HAL were designed for Cisco forwarding ASICs, such as QFP. In order 

for uCode software to run on top of x86 in a Linux environment, a new PAL layer 

is needed to support the specifics of the CSR 1000V platform. In addition, a new 

HAL is introduced for running QFP software on top of x86 in a Linux environment.

The intention is for the CSR 1000V data plane to leverage as much of the existing QFP 

code base as possible to produce a full-featured software data plane capable of leverag-

ing the processing capacity and virtualization capabilities of modern multicore CPUs. 

One way to minimize changes to the existing QFP software code base is to emulate QFP 

hardware ASIC in such a way that the existing Client, Driver, and QFP uCode are not 

aware that they are running on a non-QFP platform. However, due to the complexity of 

QFP hardware and the differences in platform requirements, a pure emulation is imprac-

tical. There are some cases where we choose to emulate hardware because doing so is 

the straightforward approach for code leverage. In other cases, it is best to replace the 

corresponding functionality with an implementation that is compatible at an API level 

but may be a completely different   algorithmic implementation.
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CSR 1000V Software Crypto Engine

Cisco    router platforms are designed to run IOS with hardware acceleration for crypto 

operations. Like other ASR 1000 platforms, the ASR 1001 includes a crypto acceleration 

engine on board to deliver crypto offload and to increase encryption performance. In 

this environment, the main processor performing the data path processing is offloaded 

from the computing-intensive crypto operations. Once the crypto offload engine com-

pletes the encrypt/decrypt operation, it generates an interrupt to indicate that the packet 

should be reinserted back into the forwarding path.

The CSR 1000V runs completely on general-purpose CPUs without an offload engine; 

therefore, the software implementation of the IPsec/crypto feature path is needed to 

support the encryption function. To that end, the CSR 1000V includes a software crypto 

engine that uses low-level cryptographic operations for encrypting and decrypting traf-

fic. The software crypto engine is presented to the IOS as a slower crypto engine. One 

thing to note is the software crypto engine runs as an independent process within the 

CSR 1000V, and it therefore may run as a parallel process in a multicore environment. 

To improve the crypto performance of the CSR 1000V software router, the crypto data 

path is implemented to take advantage of the latest Advanced Encryption Standard 

(AES) crypto instruction set from Intel (AES-NI) for encryption/decryption operations.

The newer Intel processors, such as the Xeon Westmere-EP family and mobile Sandy 

Bridge family, provide instruction sets for enhancing Advanced Encryption Standard 

(AES-NI) cryptographic operations performance. These instructions are included in the 

CSR 1000V crypto library, along with other cryptographic and hash algorithms for low-

level crypto operations. The crypto library is used by the software crypto engine as well 

as by other subsystems within IOS that require cryptographic operations. The inclusion 

of Intel’s crypto instruction set allows the CSR 1000V to take advantage of the latest 

Intel CPUs for encryption and decryption    operations in the data path.

Life of a Packet on a CSR 1000V: The Data Plane
Before    we get into the details of packet flow for the CSR 1000V, it is important to 

understand the drivers that make it possible for the CSR VM to talk to physical devices 

and other software modules. These drivers act as software glue, relaying a packet to and 

from the physical wire. We have touched on the different hypervisors that enable the 

CSR VM to work on various x86 architectures. Here we discuss packet flow to and from 

a CSR VM.

Figure 4-5 shows the virtualization layers of a CSR 1000V   VM.
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Figure 4-5 CSR VM Layers

From Figure 4-5, you can see that the hypervisor presents a virtual NIC to its guest 

VM by using a driver. This driver can either be a para-virtualized driver (for example, 

VMXNET3) or a real/emulated driver (for example, e1000). Para-virtualized drivers are 

native to hypervisors and perform much better than emulated drivers such as the e1000. 

Hypervisors support emulated drivers because they are required for full virtualization. 

Recall from Chapter 1, “Introduction to Cloud,” that in full virtualization, guest operat-

ing systems do not require any support from the hypervisor kernel and run as though on 

real hardware. Therefore, support for emulated drivers is required. However   , the perfor-

mance of emulated drivers is much lower than that of para-virtualized drivers. The CSR 

VM supports para-virtualized drivers only.

Netmap I/O

Netmap     is an open-source I/O infrastructure package that enables the CSR VM to get 

rid of the multiple software layers in the traditional Linux networking stack I/O model. 

This results in faster I/O. Understanding the Netmap I/O model will help you better 

understand packet flow to and from a CSR VM. This section provides an overview of 

the Netmap I/O model and compares it with a Linux I/O model. It is important to under-

stand the I/O model before drilling down to packet flow.
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Netmap is designed to strip down software layers and get the frame from the wire to the 

data plane process in user space as quickly as possible. Netmap achieves this through the 

four building blocks of its I/O architecture:

■ Thin I/O stack—Netmap  bypasses the Linux networking stack to reduce overhead. 

Since the CSR data plane runs in the user space, when it wants an I/O architecture to 

deliver receive (Rx) frames from the NIC to the user space (data plane) and transmit 

(Tx) frames from the data plane to the NIC, it leverages Netmap’s thin I/O stack.

■ Zero copy—Netmap  maps all memory from rings (pool of memory buffers) in a 

way that makes them directly accessible in the data plane (user space). Hence there 

is no copy involved in getting the information to the user space. Preventing a copy 

operation saves a lot of time in an I/O model, and Netmap’s zero-copy model is 

very effective at increasing performance compared to a traditional Linux I/O model.

■ Simple synchronization—The synchronization  mechanism in Netmap is extremely 

simple. When you have the Rx packets on the ring, Netmap updates the count 

of new frames on the ring and wakes up threads that are sleeping to process the 

frames. On the Tx side, the write cursor is updated as a signal to announce the arriv-

al of new frames on the Tx ring. Netmap then flushes the Tx ring.

■ Minimal ring manipulation—In  the Netmap I/O architecture, the ring is sized such 

that the producer accesses the ring from the head end, while the consumer accesses 

it from the tail. (Producer and consumer are terms associated with the process that 

tries to initiate the I/O process [producer] and a process that gets affected in trying 

to serve the producer [consumer].) The access to the ring is allowed simultaneously 

for the producer and the consumer. In a regular Linux I/O scenario, you would 

have to wait for the host to fill up the ring with pointers to buffers. When the ring 

is being serviced, Linux detaches the buffers from the ring and then replenishes the 

ring with new pointers.

An over    view of the layers of software involved in building a CSR 1000V VM is illustrat-

ed previously in Figure 4-5. Figure 4-6 compares the Linux I/O model with   the Netmap 

I/O model.
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Packet Flow

There    are three major data plane components:

■ Rx thread

■ Tx thread

■ HQF (Hierarchical Queuing Framework) thread

All these components run on a single process within the QFP process umbrella. Multiple 

PPE threads serve requests within this QFP process. The following sections discuss the 

flow.

Device Initialization Flow 

The     following events take place to get the NIC (or vNIC, in a para-virtualized environ-

ment) ready for operation:
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1. During boot-up, the platform code within IOSd discovers all Linux network 

interfaces. The platform code then maps these Linux interfaces—eth0, eth1, and 

so on—to Gig0, Gig1, and so on. After talking to the kernel, platform code sets 

up the interface state (up or down), sets the MTU, sets the ring size, and sets the 

MAC address.

2. The FMAN process creates the FMAN interfaces and then reaches out to the QFP 

client process to initialize the data-plane interface.

3. After the QFP process receives the initialization message from the Client process 

to create an interface, the QFP process then initializes an interface called micro-

interface descriptor block (uIDB) in the data plane.  

4. After the uIDB is created in the QFP process, the FMAN process binds this uIDB to 

the network interface name. 

5. The component of the data-plane process responsible for interacting with the kernel 

now has to make sure that the interface created with the QFP process is registered 

and enabled within the Netmap component of the kernel.

6. With the new interfaces registered, the Netmap component communicates with the 

virtual NIC driver to initialize the physical NIC.

7. The     vNIC driver opens the NIC, initiates the rings, and makes the NIC ready for 

operation.

TX Flow

The     following events take place when there is a packet to be transmitted (Tx) by the CSR 

onto the wire:

1. The HQF thread detects that there are packets to be sent.

2. The HQF thread checks congestion on the transmit interface and checks the inter-

face states.

3. If the transmit interface is not congested, HQF sends the frame. HQF can also 

wait to accumulate more frames, batch them, and then send them out.

4. The platform code locates the next available slot in the Tx ring and copies the 

frame from the source buffer into the Netmap buffer for transmission.

5. The platform code flushes the Tx ring.

6. Netmap forwards the flushed frames to the vNIC driver.

7. The vNIC driver initializes the NIC Tx slots.

8. The vNIC driver writes onto the Tx registers.

9. The vNIC driver cleans up the Tx ring of done slots.

10. The vNIC sends the frame on the wire and generates     a notification on completion.
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RX Flow

The     following events occur whenever a CSR receives a packet to be processed:

1. The Rx thread (the thread that receives frames from the QFP process) issues a poll 

system call to wait for the new Rx frames.

2. When a new frame arrives, the NIC (or vNIC, in this case) accesses the vNIC Rx ring 

to get a pointer to the next Netmap buffers.

3. The vNIC puts the frame onto the next Netmap buffers.

4. The vNIC generates an Rx interrupt.

5. The Netmap Rx interrupt service routine runs the Rx threads.

6. The vNIC driver finds the new frame and creates memory buffers for it.

7. The Rx thread pushes the frame to the PPE thread for processing.

Figure 4-7 illustrates packet     flow between different XE processes.

IOSd Process FMAN
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QFP Client
Process

Kernel

QFP Process

PPE ThreadsPPE Threads

HQF Thread

Rx Thread

Figure 4-7 Flowchart for Packet Flow
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Unicast Traffic Packet Flow

The     Tx and Rx flows in Figure 4-7 detail how a packet is transmitted from the NIC (or 

vNIC, in a para-virtualized driver) to the QFP process. Now we can look at how the QFP 

process handles the packet after it gets it. The following steps examine a unicast IPv4 

packet flow:

1. The QFP process receives the frame from the Netmap Rx and stores it in Global 

Packet Memory (GPM).

2. The Dispatcher copies the packet header from the GPM and looks for free PPE to 

assign. The packet remains in the GPM while it is being processed by the PPEs.

3. The Dispatcher assigns a free PPE thread to process the feature on the packet.

4. PPE threads process the packet and gather the packets. The gather process copies 

the packets into B4Q memory and sends the HQF thread a notification that there is 

a new packet in the B4Q memory.

5. HQF sends the packet by copying it from B4Q into the Netmap Tx ring, and then 

releases the B4Q buffer.

6. The Ethernet driver sends the frame and frees the Tx ring once the packet has been 

sent out.

7. Multicast IPsec packets are recycled from the HQF thread back to the in/out pro-

cessing of the PPE threads.

Figure 4-8     illustrates the packet flow in the QFP process.
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Installing the CSR 1000V on a VMware Hypervisor
The process     for installing the CSR 1000V on a VMware hypervisor has two phases:

1. Bring up the VM with the CSR 1000V on ESXi.

2. Connect the VNIC with the CSR 1000V.

These phases can be subdivided into the step-by-step procedures described in the fol-

lowing sections. To learn about automated provisioning using the BDEO (build, deploy, 

execute OVF), see Chapter 7, “CSR in the SDN Framework.”

The following steps assume ESXi is already installed. Please refer to the VMware ESXi 

installation guide for setting up the ESXi if it is not already installed.

Bringing Up the VM with the CSR 1000V on ESXi

Assuming ESXi is     already installed, you can now follow   these steps in the first phase of 

installing the CSR 1000V:

Step 1. Deploy the OVF template:

1. Download the OVF template from software.cisco.com and select CSR 

1000V software.

2. Log on to the vSphere client, as shown in Figure 4-9.

Figure 4-9 Installing the OVF Template for the CSR 1000V
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3. Upload   the CSR OVF file you downloaded from cisco.com as shown in 

Figure 4-9.

4. Select File, Deploy OVF Template, as shown in Figure 4-9.

Step 2. Upload the CSR OVF file     as shown in Figure 4-10.

Figure 4-10 Deploying the OVF Template: Selecting the Source

Step 3. When       the OVA upload is done, verify the OVF template details on the 

screen shown in Figure 4-11.
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Figure 4-11 Deploying the OVF Template: Verifying the Template Details

The release information, product, size, and so on are received from the meta-

data. Follow the directions for creating the VM.

Complete the following deployment configuration, disk formatting, and net-

work mapping screens, as shown in Figures 4-12 through 4-16:

1. As   shown in Figure 4-12, select the hardware profile: Small, Medium, or 

Large vCPU and RAM, based     on the deployment considerations. Refer 

to the hypervisor documentation for the exact small, medium, and large 

VM configurations. (You can change this configuration for memory 

even after the CSR 1000V is brought up.)
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Figure 4-12 Deploying the OVF Template: Selecting the System Memory Profile for 
CSR 1000V

2. Select the appropriate type of disk formatting (see Figure 4-13), and 

then click Next:

■  Thick Provision Lazy Zeroed—With this option, a virtual disk is cre-

ated with the amount of disk   space it has asked for. However, the disk 

is not cleaned during virtual disk creation. It is cleaned only when you 

create the first VM on it.

■  Thick Provision Eager Zeroed—With this option, a virtual disk is cre-

ated with the amount of disk space it has asked for. However, the     disk 

is cleaned during virtual disk creation.

■  Thin Provision—Choose this option to save space. Initially, the space 

allocated to a thin disk is less. However, the virtual disk keeps growing 

as memory requirements grow.
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Figure 4-13 Deploying the OVF Template: Choosing the Disk Provisioning Format

Note The OVF used here   is for version 3.13. You might see variations in the default 

settings with later versions. Please refer to Cisco release documentation.

3. On the screen shown in Figure 4-14, specify network mapping of the 

source networks (GigabitEthernet) to the destination networks (VM 

Network by default) mapping allocation.
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Figure 4-14 Deploying the OVF Template: Network Mapping

4. Look over the     summary of the deployed CSR 1000V configuration, as 

shown in Figure 4-15, and click Finish.
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Figure 4-15 Deploying the OVF Template: Checking the Settings

Step 4. When   the deployment of the CSR 1000V is complete, boot the router by 

selecting the VGA console from the GRUB menu on the Console tab shown 

in Figure 4-16. 
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Figure 4-16 CSR 1000V Console Tab

Step 5. At the   router prompt, enter platform console serial, as shown in Figure 

4-17. (This command causes the VM to send console information on the 

serial port from ESXi in the later steps.)

Figure 4-17 CSR 1000V Command Prompt
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Step 6. To add the serial port for console access, access the vCenter web client 

and select Virtual Hardware, Network Adaptor, Serial Port, as shown in 

Figure 4-18.

Figure 4-18 VM Access from the vCenter Web Client 

Step 7. Shut     down the guest OS as shown in Figure 4-19. (Note that this serial port 

will be used   for terminal access to the CSR.)



Installing the CSR 1000V on a VMware Hypervisor   119

Figure 4-19 Configuring the Serial Interface: Shutting Down the Router

Step 8. Select Add New Device, New Serial Port and provide the IP address and ter-

minal port details to access the CSR, as shown in Figure 4-20.
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Figure 4-20 Configuring the Serial Interface: Setting the Telnet Address

Step 9. Go to   vCenter and select Setting, Security Profile. Edit security configuration 

ports 23 and 1024 as shown in Figure 4-21. This is needed because by default 

ESXi blocks console access.
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Figure 4-21 Configuring the Serial Interface: Firewall Settings

Step 10. Enable ports 23 and 1024 as shown in Figure 4-22.

Figure 4-22 Configuring the Serial Interface: Security Profile Detail

Step 11. Use   Telnet to verify the access from the PC. (It’s a good practice to use SSH 

for accessing the CSR VM; however, for     the sake of simplicity, this example 

shows Telnet access setup.) The EXSi hypervisor defaults the network 

connections to the VM Network virtual switch connection. The network 
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adapters are mapped to CSR interfaces. For example, GigabitEthernet1 is 

mapped to Network adapter 1, and so on. You can verify this by comparing 

the MAC address as illustrated in Figure 4-23.

Figure 4-23 CSR 1000V Telnet Access Screen

Step 12. To remap the network adapters to corresponding vNICs, you should perform 

the following steps. From the vSphere client in     the Edit Settings window, select 

New Device Add, Networking and add vNICs to the CSR as assigned inter-

faces (from the vCenter web client), as shown in Figures 4-24 through 4-27. 

(Allow all VLANs and create a bridgeForVNIC1 label for this connection.) 

Figure 4-24 vNICs and the CSR 1000V: Selecting the Connection Type 
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1. Select   the new vNIC, as shown in Figure 4-25, to create a new standard 

switch name.

Figure 4-25 vNICs and the CSR 1000V: Creating a Standard Switch

2. Add VLANs and the network label assigned for the vNIC, as shown in 

Figure 4-26.

Figure 4-26 vNICs and the CSR 1000V: Setting the Connection Settings
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3. Complete   the configuration of the vNIC with a VLAN and label attach-

ment that can be referenced in a vSwitch. Click Finish to complete this 

step, as shown in Figure 4-27.

Figure 4-27 vNICs and the CSR 1000V: Completing the Configuration 

Step 13. Go to the vSphere web client and select Virtual Machine, Network Adapter. 

In the Networking tab, look for the   new bridgeForVNIC1 label you     created 

earlier, as shown in Figure 4-28. You should note that this label acts as map-

ping between the CSR interface and the vNIC.  

Repeat Steps 12 and 13 to remap additional network adapters to vNICs avail-

able to the CSR.
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Figure 4-28 vNICs and the CSR 1000V: Editing the Settings

To map the     network adapter to the vNIC created, select the vNIC label cre-

ated in the previous step  . The CSR 1000V is now configured and connected 

to the physical NIC, as shown in Figure 4-29.
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Figure 4-29 vNICs and the CSR 1000V: Interface Summary Screen

Installing the CSR 1000V on a KVM Hypervisor
The     process for installing the CSR 1000V on a KVM hypervisor has two phases:

1. Bring up the VM with the CSR 1000V on ESXi.

2. Connect the vNIC with the CSR 1000V.

Bring Up the CSR 1000V as a Guest

Follow these steps  to update essential packages on a Linux managed server so it can 

work as a type 1 hypervisor and run a CSR 1000V VM    :

Step 1. Install the VM packages virt-manager, qemu-kvm, and bridge-utils like 

this:

apt-get install virt-manager

apt-get install qemu-kvm

apt-get install bridge-utils

or like this:

yum install virt-manager

yum install qemu-kvm

yum install bridge-utils

Figure 4-30 shows the installation of packages required for CSR creation.
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Figure 4-30 Package Installation on a KVM Hypervisor

Step 2. Launch  Virtual Machine Manager, which is the front end to KVM/QEMU 

that allows installation and management of CSR VMs, by selecting 

Application, System, Virtual Machine Manager.

Note Virtual Machine Manager  could also be on a different path for your Linux server. 

Figure 4-31 shows the launch of the virtual machine     from QEMU. Make sure you have 

XDesktop installed. Also note that VMM is not a mandatory requirement for using 

KVM/QEMU, especially when a graphical user interface is not present on a desktop.

Click the Create a New Virtual Machine icon, and the dialog shown in Figure 

4-31 appears. Click the Forward button.
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Figure 4-31 Creating a Guest VM 

Step 3. Load the ISO image (which you download from software.cisco.com) for the 

CSR 1000V, as shown in Figure 4-32. Click the Forward button.

Figure 4-32 ISO Image Bootup for the CSR 1000V
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Note Download     the ISO CSR 1000V  image to your local hard disk. When you 

download it, it is named csr1000v-universalk9.<version>.std.iso, but the file is renamed 

ultra.iso in the example shown.

Step 4. Allocate hardware resources for the guest VM as shown in Figure 4-33. 

(Refer to Table 2-2 in Chapter 2 for further allocation information.) Click 

Forward.

Figure 4-33 Choosing Memory and CPU Settings

Step 5. Select hardware resources, as shown in Figure 4-34, and click Forward. 

Figure 4-34 Selecting Hardware Resources 
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Note If you do not check Allocate Entire Disk Now, only a small portion of memory 

asked for will be allocated. It will keep growing as memory     requirements increase. 

Checking Allocate Entire Disk Now guarantees that much storage.

Step 6. Look over the hardware resources summary (see Figure 4-35) and make any 

changes needed. Click Finish.

Figure 4-35 Resources Summary Snapshot

Step 7. To apply changes for the  guest VM, select Application, System, Virtual 

Machine Manager  and highlight     the CSR installed in the VMM. Then click 

the Show Virtual Hardware Details tab and click the Add Hardware button, 

as shown in Figure 4-36.
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Figure 4-36 Applying Hardware VM Changes

Step 8. To create serial connection access for console access, select Serial, and then 

select TCP for Device Type and provide the telnet information, as shown in 

Figure 4-37.

Figure 4-37 Creating the Serial Interface
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Step 9. In the     Virtual Machine Manager , highlight the guest VM and shut it down (if 

it is not down already). (See Figure 4-38.)

Figure 4-38 Shutting Down the Guest VM

The guest VM goes down, as shown in Figure 4-39.

Figure 4-39 Shutdown of the Guest VM

Step 10. Access the router from the console, as shown in Figure 4-40. Make sure the 

VM is powered up before you try to access it.
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Figure 4-40 Console Access to the KVM

Step 11. Use the     serial interface command  for telnet access: platform console 

serial and write mem, as shown in Figure 4-41.

Figure 4-41 Router Console for Telnet Access

Step 12. Access the CSR 1000V via the telnet, as shown in Figure 4-42.
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Figure 4-42 Telnet Connection to the CSR 1000V

Step 13. Ensure that     your virtual machine is shut down, and then start vNIC 

provisioning by selecting Show Virtual Hardware Details, NIC, as shown in 

Figure 4-43.

Figure 4-43 Accessing CSR 1000V Network Settings

Step 14. In the Virtual Machine Manager , select virtio as the device model (see Figure 

4-44) because it is the para-virtualized driver in Linux. Using virtio is the best 

way to exploit the underlying kernel for I/O virtualization. It provides an 

efficient abstraction for hypervisors and a common set of I/O drivers.
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Figure 4-44 Selecting CSR 1000V Network Settings

Select the     virtual network with NAT to tie all VMs in the  same bridge 

domain and NAT it to the outgoing physical interface (see Figure 4-45). 

Attach the other NIC to the bridge tap.

Figure 4-45 CSR 1000V NIC Settings

In KVM, macvtap is a combination of the macvlan driver and a Tap device. 

Here the function of the macvlan driver is to create virtual interfaces and 

map virtual interfaces to physical network interfaces. A unique MAC address 

identifies each virtual interface to the physical interface. A TAP interface     is a 

software only interface that exists only in the kernel. You use Tap interfaces to  
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enable user-space networking and allow passing of datagrams directly between 

VMs instead of sending datagrams to and from a physical interface. The 

macvtap interface combines these two functions together (see Figure 4-46).

Tap 0 Tap 1

Eth0 on Host Machine

VM-A

eth0

VM-B

eth0

Figure 4-46 macvtap Diagram

Step 15. Configure the mapping of the vNIC to the physical interface:

1. Access     the directory /etc/network/interfaces/ifcfg-br0 on the 

Ubuntu host and view the bridge type (see Figure 4-47).

Figure 4-47 Bridge Configuration File Output
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2. Access the directory /etc/network/interfaces/ifcfg-eth4 and con-

figure the vNIC to be in the same bridge type, BR0 (see Figure 4-48).

Figure 4-48 Interface Configuration File Output

To configure the spanning tree mode to promiscuous, use this:

auto eth4 

iface eth4 inet manual 

up ip address add 0/0 dev $IFACE 

up ip link set $IFACE up 

up ip link set $IFACE promisc on

Alternatively, access the file /etc/network/interfaces/ifcfg-eth4 and 

type this:

PROMISC=yes

This method provides persistent configuration settings for ifcfg-eth4.

Step 16. In the Virtual Machine      Manager, select Show Virtual Hardware Details.

Performance Tuning of the CSR 1000V
To   improve performance of a guest VM in a hypervisor environment, you improve 

availability of the I/O and other hardware resources through para-virtualization. Para-

virtualization allows for a kernel to present a software interface to a guest VM that 

is similar but not identical to that of the underlying hardware, thereby improving the 

VM performance. If you want to tune the performance further, you need to look at 

two components:
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■ Hypervisor scheduling

■ CPU pining

This section reviews the common tuning practices for an ESXi host. The scheduler for 

ESXi is responsible for vCPU, IRQ (interrupt requests), and I/O threads. To provide 

equal treatment to all guest VMs, the scheduler provides allocation of equal resources of 

vCPU threads for scheduling. Note that you can relax coscheduling of threads to avoid 

synchronization latency.

To tweak the scheduling and resource allocation details, you must access the VM setting 

using vSphere client and follow these steps:

1. In the vSphere client inventory, right-click the virtual machine and select Edit 

Settings.

2. Click the Resources tab and select CPU.

3. Allocate the CPU capacity for this virtual machine.

The Processor Affinity setting (CPU   pining) restricts VMs to a particular set of cores 

by defining the affinity set. The scheduling algorithm aligns with process affinity for 

assigning the resources used for the tasks. Figure 4-49 assumes two tasks: Task 1 and 

Task 2. Task 1 has affinity to processor 1 and is using it. When Task 2 needs a resource, 

the scheduler uses a second processor. Task 2 then acquires   affinity with the second 

processor.

pCPU 0 pCPU 1

pCPU 2 pCPU 3

Core 1

pCPU 0 pCPU 1

pCPU 2 pCPU 3

Core 2

vCPU TASK1

vCPU
V
M

vCPU TASK2

vCPU
V
M

Figure 4-49 CPU Pining
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To tweak these settings, access the vSphere client and follow these steps:

1. In the vSphere client inventory panel, select a virtual machine and select Edit 

Settings.

2. Select the Resources tab and select Advanced CPU.

3. Click the Run on Processor(s) button.

You achieve CPU pining in KVM by issuing the following command:

sudo virsh vcpupin test 0 6

Hyperthreading by definition allows a single physical core to have two logical cores; that 

is, a single core can execute two threads at a given time. Each process from the guest 

VM can be split into multiple threads to a logical CPU, and the CPU can handle multiple 

threads of independent tasks. The main function of hyperthreading is to increase the 

number of tasks in the pipeline by creating parallel pipelines. By tweaking the process 

affinity option, you can restrict   VMs to a particular set of cores and unhook the VM 

from processor scheduling. Most of the hypervisors use BIOS settings to modify the 

hyperthreading feature.

For predictable performance, the following best practices are recommended:

■ Ensure that hyperthreading is turned off.

■ Use CPU pining to allow the guest VMs to dedicate one or more physical hardware 

CPUs for processing.

■ For CSR 1000V performance optimization, it is important to understand the 

concept of DirectPath I/O and SR-IOV (single root I/O virtualization). These are 

driver virtualization and are beneficial for achieving very high packet rates with low 

latency. In DirectPath I/O, you can map only one physical function to one virtual 

machine. SR-IOV allows an admin to share a single physical device, so that multiple 

virtual machines can connect directly to the physical function.

These features are supported in all hypervisors, and it is important to understand the 

settings on the hypervisor deployed   in order to optimize guest VM performance with 

features used on the hypervisor.

Summary
Now that you’ve read this chapter, you should have an understanding of the CSR 1000V 

data plane architecture, as well as packet flow. You should also have an understanding of  

the steps for bringing up a CSR 1000V on ESXi and KVM hypervisors.
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Linux
memory management, 69

caching, 71
overcommitment, 69-70
swap space, 69-71

versus Netmap I/O, 105

LISP (Location/ID Separation Protocol), 
168-169, 175, 190

control plane, 171-175
CSR 1000V, 54
data plane, 171
ETR (egress tunnel router), 169-170
IP mobility, 175
IPv6 migration, 175
ITR (ingress tunnel router), 169-170
MR (MAP Resolver), 170
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