
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9781587144943
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9781587144943
https://plusone.google.com/share?url=http://www.informit.com/title/9781587144943
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9781587144943
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9781587144943/Free-Sample-Chapter

Cisco Press
800 East 96th Street

Indianapolis, IN 46240 USA

Virtual Routing
in the Cloud

Arvind Durai, CCIE No. 7016

Stephen Lynn, CCIE No. 5507 & CCDE No. 20130056

Amit Srivastava

Virtual Routing in the Cloud
Arvind Durai, CCIE No. 7016
Stephen Lynn, CCIE No. 5507 & CCDE No. 20130056
Amit Srivastava

Copyright© 2016 Cisco Systems, Inc.

Published by:
Cisco Press
800 East 96th Street
Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval
system, without written permission from the publisher, except for the inclusion of brief quotations in a
review.

Printed in the United States of America

First Printing April 2016

Library of Congress Control Number: 2016934921

ISBN-13: 978-1-58714-494-3

ISBN-10: 1-58714-494-8

Warning and Disclaimer
This book is designed to provide information about CSR 1000V router and adoption of NFV technology
in the cloud environment. Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc. shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book or from the use of the discs or programs that may
accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco
Systems, Inc.

Trademark Acknowledgments
All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

ii Virtual Routing in the Cloud

Feedback Information
At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book
is crafted with care and precision, undergoing rigorous development that involves the unique expertise
of members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we
could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us
through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your
message.

We greatly appreciate your assistance.

Publisher Paul Boger

Associate Publisher Dave Dusthimer

Business Operation Manager, Cisco Press Jan Cornelssen

Executive Editor Brett Bartow

Managing Editor Sandra Schroeder

Development Editor Ellie Bru

Senior Project Editor Tonya Simpson

Copy Editor Kitty Wilson

Technical Editor(s) Matt Bollick, Ray Wong

Editorial Assistant Vanessa Evans

Cover Designer Mark Shirar

Composition Mary Sudul

Indexer Brad Herriman

Proofreader The Wordsmithery LLC

iii

About the Authors
Arvind Durai, CCIE No. 7016, is an advanced services principal architect for Cisco

Systems. His primary responsibility in the past 17 years has been in supporting major

Cisco customers in the enterprise sector, including financial, retail, manufacturing,

e-commerce, state government, utility (smart grid networks), and health-care sectors.

Some of his focuses have been on security, multicast, network virtualization, and

data center, and he has authored several white papers and design guides on various

technologies. He has also been involved in data center design for more than 10 years and

has designed many enterprise private cloud data center environments.

Arvind maintains two CCIE certifications: Routing and Switching, and Security. He holds

a Bachelor of Science degree in Electronics and Communication, a Master’s degree in

Electrical Engineering (MS), and a Master’s degree in Business Administration (MBA).

He is a coauthor of two Cisco press books, Cisco Secure Firewall Services Module and

TcL Scripting for Cisco IOS.

He has coauthored IEEE WAN smart grid architecture and has been a panel member for

IEEE publications. Arvind also has presented in many industry forums, such as IEEE and

Cisco LIVE.

Stephen Lynn, CCIE No. 5507 (Routing & Switching/WAN/Security) and CCDE No.

20130056, is an architect at Cisco Systems in the U.S. federal area. He has been with

Cisco for more than 16 years and is a subject matter expert on enterprise network

architecture. His focus is on large-scale network designs, including campus, WAN,

and data center. As a recognized expert within Cisco and in the industry, Stephen

has been working on large-scale, complex wide-area network designs in an enterprise

environment. Stephen’s focus has been on architectural designs involving 1,000 nodes

to more than 10,000 nodes, leveraging technologies such as DMVPN, GET VPN, and

FlexVPN to provide transport encryption and network segmentation over IP transport

such as MPLS/Ethernet. Other areas of focus include high availability and convergence,

QoS, Performance Routing (PfR), and network virtualization.

Stephen is a well-known speaker who has presented at several conferences and seminars

worldwide. He holds a Bachelor of Science in Electrical Engineering from the University

of Virginia. Stephen is based out of the Cisco office in Washington, DC.

Amit Srivastava is a senior manager with Equinix, Inc. At Equinix his team is responsible

for global network and product fulfillment for Equinix’s Cloud Exchange platform.

Amit formerly worked as a technical leader with Cisco Systems, Inc. He has developed,

tested, and enhanced network software for nearly 14 years. Before joining Cisco, he held

positions in software application development, management, and testing.

Amit was involved in developing embedded applications for mobile devices in his

engagement with Hughes Networks prior to joining Cisco.

Amit has been involved in the development cycles of new operating systems such as IOS

XR and IOS XE and delivering features such as MPLS-based Layer 2 and 3 VPNs and

traffic engineering. With IOS XE, Amit has worked with platforms such as ASR 1000

and CSR 1000V right from their inception, delivering enterprise-level features like IPsec,

NAT, firewalls, NetFlow, AVC, and QoS. Amit holds a Bachelor of Science degree in

Electrical Engineering.

iv Virtual Routing in the Cloud

About the Technical Reviewers
Ray Wong is a technical marketing engineer (TME) for Cisco Systems. In his more than

eight years with Cisco, he has worked in multiple roles, from system testing, to solution

design and validation, to technical marketing. He was a major contributor in the Cisco

Virtual Office (CVO) solution. Together with his TME role for Cisco Cloud Services

Router (CSR 1000V), he is also a subject matter expert for IOS VPN, including DMVPN,

GET VPN, and FlexVPN.

Ray holds a Bachelor of Science degree in Computer Science and Mathematics from the

University of Wisconsin–Madison. He is also a frequent speaker at Cisco Live events.

Matt Bollick has worked in technical marketing at Cisco for the past 19 years, running

an obstacle course of technologies, including SNA, ATM and Ethernet switching, service

provider aggregation, metro Ethernet, network management, and enterprise branch

architectures. He has also worked on a variety of products, including the Cisco 7500,

7200, LS1010, 8540, 7300, and Cisco 10K before finally settling down for the past

several years as the platform architect for the ISR series of branch routers. In his spare

time, Matt is an avid SCUBA diver in North Carolina.

v

Dedications

From Arvind:

I am thankful to God for everything. I would like to dedicate this book to my wife,

Monica, and my son, Akhhill, who have been extremely patient and supportive during

my long working hours. I am grateful to my parents for their blessings and for providing

me with strong values.

I would also like to thank my parents-in-law, brother and family, and brother-in-law and

family for all their support and wishes.

From Stephen:

I would like to dedicate this book to my wonderful and beautiful wife, Angela, and to

my two incredible children, Christina and Ethan. Without your love, sacrifice, and sup-

port, this book would not have been possible. Thanks for putting up with the late nights

and weekends I had to spend behind the computer and on conference calls instead of

playing games, building Legos, and doing other fun family activities.

From Amit:

I would like to dedicate this book to my wife, Reshma, my daughter, Aarushi, and my

parents. Without their love and support, I would never have been able to work on this.

I would also like to thank my parents-in-law and my entire extended family. Their love

and support have always been unconditional.

vi Virtual Routing in the Cloud

Acknowledgments
Arvind Durai:

Thanks to my wife, Monica, for encouraging me to write my third book. She inspired

me and helped keep my spirits up all the time and provided her thoughts in multiple sec-

tions of this book. Thank you!!!

It was great working with Amit and Stephen. Their excellent technical knowledge and

passion for writing made this writing experience a pleasure. I am looking forward to

more years of working together as colleagues and friends.

Stephen Lynn:

A debt of gratitude goes to my coauthors, Arvind and Amit. Your knowledge and dedi-

cation to this project are appreciated more than you will ever know.

Acknowledgements for this book wouldn’t be complete without mentioning my wife,

Angela, who has endured and supported me through all my endeavors.

Amit Srivastava:

Special thanks to Arvind and Stephen, from whom I learned a lot while writing this book.

I look forward to their continued support.

Our Acknowledgement

Many people within Cisco have provided feedback and suggestions to make this a

great book. Thanks to all who have helped in the process, especially Ray Blair and Matt

Falkner, for providing insightful input during the proposal process. A special thank you

goes to our technical editors, Ray Wong and Matt Bollick, for your technical accuracy

and insight into the technologies. Special thanks to Dimitris Vlassopoulos for providing

his NSO lab setup and sharing his insights!

A big thank you goes out to the production team for this book, Brett Bartow, Ellie Bru,

and Tonya Simpson, who have been incredibly professional and a pleasure to work with,

and for making this book possible.

vii

Contents at a Glance

 Introduction xv

Chapter 1 Introduction to Cloud 1

Chapter 2 Software Evolution of the CSR 1000 37

Chapter 3 Hypervisor Considerations for the CSR 59

Chapter 4 CSR 1000V Software Architecture 95

Chapter 5 CSR 1000V Deployment Scenarios 141

Chapter 6 CSR Cloud Deployment Scenarios 185

Chapter 7 CSR in the SDN Framework 223

Chapter 8 CSR 1000V Automation, Orchestration, and Troubleshooting 247

Appendix A Sample Answer File for Packstack 293

 Index 319

Reader Services
Register your copy at www.ciscopress.com/title/9781587144943 for convenient access

to downloads, updates, and corrections as they become available. To start the registra-

tion process, go to www.ciscopress.com/register and log in or create an account*. Enter

the product ISBN 9781587144943 and click Submit. Once the process is complete, you

will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive

discounts on future editions of this product.

viii Virtual Routing in the Cloud

http://www.ciscopress.com/title/9781587144943
http://www.ciscopress.com/register

Contents
 Introduction xv

Chapter 1 Introduction to Cloud 1

Evolution of the Data Center 1

Data Center Architecture Building Blocks 2

Introduction to Virtualization in the Data Center 4

Evolution of Virtualization 5

Conceptual Architecture of Virtualization 5

Types of Virtualization Technologies 6

Server Virtualization 6

Types of Server Virtualization 8

Storage Virtualization 9

Types of Storage Virtualization 11

Network Virtualization 12

Network Virtualization Evolution 13

Types of Network Virtualization 14

Service Virtualization 15

Introduction to the Multitenant Data Center 16

Introduction to Cloud Services 18

Infrastructure as a Service (IaaS) 18

Platform as a Service (PaaS) 19

Software as a Service (SaaS) 20

Cloud Deployment Models 20

Cloud Design Considerations 21

Domain 1: Infrastructure and Environmental 22

Domain 2: Abstraction and Virtualization 23

Domain 3: Automation and Orchestration 23

Domain 4: Customer Interface 24

Domains 5 and 6: Service Catalog and Financials 24

Domains 7 and 8: Platform and Application 24

Domain 9: Security and Compliance 24

Domain 10: Organization, Governance, and Process 25

Enterprise Connectivity to the Cloud 26

Internet for Transport 26

Direct Connectivity to a Cloud Provider 28

Enterprise Cloud Adoption Challenges 29

ix

Software-Defined Networking 30

Open Networking Foundation 31

OpenDaylight Project 32

Network Function Virtualization 33

OpenStack 34

Summary 35

Chapter 2 Software Evolution of the CSR 1000 37

IOS Software Architecture 37

IOS XE Architecture 39

The IOS XE Kernel 40

The IOS Daemon 40

The Forwarding Manager 41

The Interface Manager 41

The Platform Manager 41

Cisco ASR 1000 System Architecture Overview 41

Route Processor 42

Embedded Service Processor 42

SPA Interface Processor 43

Cloud Service Router 1000V Overview 44

Deployment Requirements 45

Elastic Performance and Scaling 47

Rapid Deployment and Routing Flexibility in the Cloud 49

CSR 1000V Deployment Examples 50

Secure Cloud VPN Gateway 50

Network Extension from Premises to Cloud 51

Segmentation Within a Cloud 52

CSR 1000V Key Features 52

Summary 57

Chapter 3 Hypervisor Considerations for the CSR 59

Understanding Operating Systems 59

Operating System Design 60

Physical Resource Management 60

Software Access to Physical Resources 62

Kernels 63

Microkernels 63

x Virtual Routing in the Cloud

Hybrid Kernels 64

The Cisco IOS Kernel 64

The Boot Process 66

Linux Memory Management 69

Linux Swap Space and Memory Overcommit 69

Linux Caching 71

Understanding Hypervisors 71

How Does a Hypervisor Compare to an Operating System? 72

Type 1 Hypervisor Design 74

Monolithic Architecture 74

Microkernel Architecture 74

Core Partitioning 75

ESXi Hypervisor 75

Architectural Components of ESXi 75

The VMkernel 75

Components of the VMkernel 76

Processes Running on the VMkernel 77

Device Drivers 78

File Systems 79

Management 80

KVM 82

Architectural Components of KVM/QEMU 84

Guest Emulator (QEMU) 85

Management Daemon (Libvirt) 88

User Tools (virsh, virt-manager) 89

Hyper-V 91

Xen 92

Summary 94

Chapter 4 CSR 1000V Software Architecture 95

System Design 95

Virtualizing the ASR 1001 into the CSR 1000V 98

CSR 1000V Initialization Process 99

CSR 1000V Data Plane Architecture 100

CSR 1000V Software Crypto Engine 103

Life of a Packet on a CSR 1000V: The Data Plane 103

Netmap I/O 104

xi

Packet Flow 106

Device Initialization Flow 106

TX Flow 107

RX Flow 108

Unicast Traffic Packet Flow 109

Installing the CSR 1000V on a VMware Hypervisor 110

Bringing Up the VM with the CSR 1000V on ESXi 110

Installing the CSR 1000V on a KVM Hypervisor 126

Bring Up the CSR 1000V as a Guest 126

Performance Tuning of the CSR 1000V 137

Summary 139

Chapter 5 CSR 1000V Deployment Scenarios 141

VPN Services 141

Layer 2 VPNs 141

Layer 3 VPNs 142

Site-to-Site VPNs 143

Remote Access VPNs 147

Use Cases for the CSR 1000V as a VPN Service Gateway 148

Enterprise Data Center Network Extension 148

The CSR 1000V as a VPN Gateway 148

CSR for Secure Inter-Cloud Connectivity 152

Remote VPN Access into the Cloud 153

BGP Route Reflector Use Case for the CSR 155

The CSR 1000V in a Hierarchical Route Reflector Use Case 157

Planning for Future Branch Design with the CSR 1000V 162

Evolution of Branch Virtualization 164

LISP and CSR 168

LISP Terminology 169

The LISP Data Plane 171

The LISP Control Plane 171

Typical LISP Use Cases 175

IP Mobility 175

IPv6 Migration 175

Network-to-Network Connectivity 175

Network-to-Network Interconnection Topology and Configuration 176

Summary 183

xii Virtual Routing in the Cloud

Chapter 6 CSR Cloud Deployment Scenarios 185

CSR in a Multitenant Data Center 185

Cloudburst 190

Direct Access Model 191

Redirection Access Model 192

The Cisco Inter-Cloud Fabric 194

Private Cloud Deployment with CSR in OpenStack 195

Introduction to OpenStack 196

Primary Use Case for OpenStack 196

OpenStack Components 197

CSR Within OpenStack 206

CSR 1000V as a Neutron Router 206

CSR 1000V as a Tenant Router 209

CSR 1000V in a Public Cloud 211

Amazon Web Services Deployment for the CSR 211

Amazon Web Service Solutions 211

Routing in AWS Clouds 212

CSR 1000V Deployment in AWS 216

Instantiate a CSR in AWS 217

Summary 222

Chapter 7 CSR in the SDN Framework 223

Deploying OpenStack 225

CSR as an OpenStack Tenant Deployment 235

Instantiate CSR Plugin to OpenStack 242

Summary 245

Chapter 8 CSR 1000V Automation, Orchestration, and Troubleshooting 247

Automation 248

BDEO 248

NSO (Tail-f) 249

NSO Example for NFV Orchestration with OpenStack (Service

Chain) 252

Orchestration 267

Virtual Managed Services (VMS) 267

Cisco Prime Network Services Controller (PNSC) 269

CSR 1000V Troubleshooting 271

Architecture Overview 271

xiii

I/O Configuration 272

vSwitch 272

PCI Passthrough 274

SR-IOV (Single Root I/O Virtualization) 274

Host Configurations 275

Debugging Packet Loss 276

High-Level Packet Flow 276

ESXi Packet Debugging 289

Summary 292

Appendix A Sample Answer File for Packstack 293

Index 319

Command Syntax Conventions
The conventions used to present command syntax in this book are the same conventions

used in the IOS Command Reference. The Command Reference describes these

conventions as follows:

■ Boldface indicates commands and keywords that are entered literally as shown. In

actual configuration examples and output (not general command syntax), boldface

indicates commands that are manually input by the user (such as a show command).

■ Italic indicates arguments for which you supply actual values.

■ Vertical bars (|) separate alternative, mutually exclusive elements.

■ Square brackets ([]) indicate an optional element.

■ Braces ({ }) indicate a required choice.

■ Braces within brackets ([{ }]) indicate a required choice within an optional element.

xiv Virtual Routing in the Cloud

xv

Introduction
In today’s bus iness environment, enterprise customers are under more pressure than ever

to innovate and adapt to new challenges and market conditions. Enterprises want to

focus their investments on their core business while reducing IT spending.

The cloud offers enterprise customers many benefits, such as lower costs and flexibility.

The cloud’s elastic model enables a company to increase and decrease infrastructure

capacity on demand. The usage-based model offered by the cloud helps governments

and enterprises reduce costs while increasing business agility by moving applications to

the cloud and consuming infrastructure resources from the cloud. This leads to enter-

prises looking at consuming network and IT services from the cloud rather than investing

in in-house operations.

The enabling technology in unlocking the cloud is virtualization. Virtualization abstracts

and isolates the computing hardware and underlying infrastructure into a logical

resource pool, allowing key capabilities such as resource sharing, virtual machine (VM)

isolation, and load balancing. These capabilities provide the fundamental building blocks

for an agile and scalable cloud environment with rapid provisioning, workload sharing,

and increased availability.

The surge in applications and IT service consumption moving to the cloud highlights the

need for evolved technologies and network elements in the cloud that offer security

and visibility to help businesses with performance and compliance verification. Evolved

networks and network services enable the provider to offer cloud services with security,

performance, and availability. The Cisco Cloud Services Router 1000V (CSR 1000V) is a

fully virtualized software router that offers a platform for enterprises to extend the data

center to the cloud and to enforce their policies in the cloud.

The Cisco CSR 1000V provides a transparent solution for extending IT services into

provider-hosted clouds. The solution offers a rich set of features, including VPN, fire-

wall, Network Address Translation (NAT), application visibility, and WAN optimization.

These functions allow enterprise and cloud providers to build highly secure, scalable,

and extensible cloud networks. In addition, the Cisco CSR 1000V supports a rich set of

application programming interfaces (API), providing robust integration into software-

defined networking (SDN) for automated provisioning of these networks and network

services and allowing simplified management and orchestration, which help in driving

down costs further.

Networks inherently carry vast amounts of information, including user locations, device

capabilities, topologies, and end-to-end performance characteristics. When exposed

appropriately through well-defined APIs, such information can be consumed by cloud

applications to fine-tune and customize their efficient delivery. The future holds the

promise of increasingly rich application–network interactions.

The primary objective of this book is to simplify design aspects and architectural details

in a unified resource, augmenting Cisco’s existing collection of installation and configura-

tion guides for various cloud-related products and solutions. This book covers the key

xvi Virtual Routing in the Cloud

virtualization technologies used in the cloud; it provides a concise, accessible presenta-

tion of cloud network services and the different types of operational environments in the

cloud. Cloud networking service and delivery concepts are reinforced with illustrative

examples; architecture of SDN orchestration and its connection to Cisco CSR 1000V

network services are introduced and elaborated upon. In addition, the book reviews the

building blocks of the CSR 1000V, covering its architecture and software design.

This book also explains network design and deployment scenarios for the Cisco CSR

1000V, which influence its pivotal role in the cloud environment. Furthermore, the book

distills how intelligent networks help providers simplify cloud service management and

reduce costs through efficient scaling and optimized capacity utilization. This book

provides architectural knowledge that contextualizes the roles and capabilities of these

advanced networks and network services, along with discussions of design factors essen-

tial for their insertion into cloud services:

■ The book introduces the readers to the cloud and provides an overview to different

types of cloud operational environments, including a prelude to the evolution of

virtual routers.

■ Virtualization is introduced as a pivotal technology in cloud adoption.

■ The book covers the details of the operating systems and hypervisors on which vir-

tual routers run. It provides details pertaining to the operational aspects of virtual

routing.

■ The reader is introduced to the architecture and software design of the Cisco CSR

1000V virtual router. The reader is subsequently introduced to a comprehensive set

of APIs that can be leveraged by SDN.

■ The book focuses on different designs and use cases and configuration examples for

routing, secure extension of enterprises to the cloud, and VM mobility. It illustrates

how the CSR 1000V addresses the challenges that an architect faces in migrating

toward the cloud.

■ This book covers the different management techniques available to simplify opera-

tional and monitoring aspects of cloud services.

Who Should Read This Book?
This book is targeted for a technical audience responsible for architecture, design, and

deployment of data center and enterprise cloud services.

This book also caters to the next generation of cloud network operators to implement

enterprise features in the cloud, leveraging the CSR 1000V.

After reading this book, you will have a better understanding of the following:

■ Key virtualization concepts and cloud models

■ CSR 1000V software architecture and design

xvii

■ SDN and the CSR 1000V platform and API

■ Simplification of data center multitenant design with the CSR 1000V

■ Use cases for the CSR 1000V to simplify enterprise routing in the cloud

■ Operational visibility, management, and control of an enterprise network in the

cloud

How This Book Is Organized
This book is organized into the following chapters.

Chapter 1: Introduction to Cloud

This chapter introduces the concept of cloud computing. It describes the various

cloud models available and how virtualization enables the present-day transition to

the cloud. Multitenant data center designs are illustrated, and the concept of SDN is

introduced here.

Chapter 2: Software Evolution of the CSR 1000

This chapter introduces the software evolution of the Cisco Cloud Services Router

(CSR 1000V). It covers the infrastructure requirements and design considerations of a

CSR 1000V, and it discusses the features that a CSR 1000V brings to the virtual rout-

ing realm.

Chapter 3: Hypervisor Considerations for the CSR

This chapter describes the different hypervisor technologies available on servers to man-

age the hardware resources for virtual machines. Hypervisor technology selection is an

important consideration when deploying the CSR 1000V.

Chapter 4: CSR 1000V Software Architecture

This chapter describes the software design of the CSR 1000V. It details the control-

plane and data-plane design of the CSR 1000V. It also describes licensing requirements,

software implementation, and packet flow related to the CSR 1000V.

Chapter 5: CSR 1000V Deployment Scenarios

This chapter describes the common deployment scenarios for the CSR 1000V. It depicts

these scenarios using configuration examples.

xviii Virtual Routing in the Cloud

Chapter 6: CSR Cloud Deployment Scenarios

This chapter describes CSR 1000V deployments in the cloud and data center

environments.

Chapter 7: CSR in the SDN Framework

This chapter describes SDN components. It also provides an overview of the CSR 1000V

in the OpenStack framework. Case studies in this chapter aim to educate the reader on

using the APIs for user-defined outcomes.

Chapter 8: CSR 1000V Automation, Orchestration, and
Troubleshooting

This chapter provides an overview of CSR 1000V management tools for orchestration,

monitoring, and troubleshooting. It also illustrates the operation workflow for deploying

a CSR 1000V.

This chapter describes the software design of the CSR 1000V and details the data plane

design. It also illustrates the software implementation and packet flow within the CSR

1000V, as well as how to bring up the CSR 1000V.

System Design
CSR 1000V is a virtualized software router that runs the IOS XE operating system.

IOS XE uses Linux as the kernel, whereas the IOS daemon (IOSd) runs as a Linux

process providing the core set of IOS features and functionality. IOS XE provides a

native Linux infrastructure for distributing the control plane forwarding state into an

accelerated data path. The control and data planes in IOS XE are separated into differ-

ent processes, and the infrastructure to communicate between these processes supports

distribution and concurrent processing. In addition, IOS XE offers inherent multicore

capabilities, allowing you to increase performance by scaling the number of processors.

It also provides infrastructure services for hosting applications outside IOSd.

Originally , IOS XE was designed to run on a system with redundant hardware, which

supports physical separation of the control and data plane units. This design is imple-

mented in the ASR 1006 and ASR 1004 series routers. The original ASR 1000 family

hardware architecture consisted of the following main elements:

■ Chassis

■ Route processor (RP)

■ Embedded service processor (ESP)

■ SPA interface processors (SIP)

The RP is the control plane, whereas the ESP is the data plane. In an ASR 1006 and

ASR 1004, the RP and ESP processes have separate kernels and run on different sets of

hardware. ASR 1000 was designed for high availability (HA). The ASR 1006 is a fully

CSR 1000V Software
Architecture

Chapter 4

96 Chapter 4: CSR 1000V Software Architecture

hardware redundant version of the ASR, and its RP and ESP are physically backed up by

a standby unit. IOSd runs on the RP (as do the majority of the XE processes), and the

RP is backed up by another physical card with its own IOSd process. The ASR 1004 and

fixed ASR 1000s (ASR 1001-X and ASR 1002-X) do not have physical redundancy of

the RP and ESP.

In the hardware-based routing platform for IOS XE, the data plane processing runs out-

side the IOSd process in a separate data plane engine via custom ASIC: QuantumFlow

Processor (QFP). This architecture creates an important framework for the software

design. Because these cards each have independent processors, the system disperses

many elements of software and runs them independently on the different processors.

Tip The ASR 1000 platform first introduced IOS XE . Multiple products run IOS XE,

including the following:

ASR 1000 family:

■ ASR 1001-X

■ ASR 1002-X

■ ASR 1004

■ ASR 1006

■ ASR 1006-X

■ ASR 1009-X

■ ASR 1013

ASR 900 family:

■ ASR 903

ISR family:

■ ISR 4321

■ ISR 4331

■ ISR 4351

■ ISR 4431

■ ISR 4451-X

IOS XE retains the look and feel of IOS. However, because IOS runs as a Linux process,

it enables the platform-independent code to reside inside the IOSd process running on

the Linux kernel. By moving the platform-dependent code (drivers) outside the IOSd

process, it makes IOS XE a very efficient software delivery model. Different platforms

write their drivers and leverage the existing feature-rich control plane code from IOSd.

Multiple platforms run IOS XE. However, when understanding CSR 1000V architecture

in this chapter, ASR 1000 is used as a hardware example because it was the first platform

to run IOS XE.

System Design 97

As the need for smaller form factor ASRs arose, a one rack unit (RU) ASR 1000 was con-

ceptualized and developed: ASR 1001 . The ASR 1001 is a 64-bit architecture in which all

processes (RP, SIP, and ESP) are controlled by a single CPU. The SPA interface complex,

forwarding engine complex, and IOS XE middleware all access the same Linux kernel.

This is achieved by mapping the RP, ESP, and SIP domains into logical process groups.

The RP’s process domain includes IOSd, a chassis manager process and forwarding man-

ager. The ESP process domain includes the chassis manager process, QFP client/driver

process, and forwarding manager.

The architecture diagram in Figure 4-1 provides a high-level overview of the major

components.

IOSd Active IOSd Standby

RP

Linux Kernel

SPA ESP

Chassis Manager

SPA Driver

Chassis
Manager

Interface
Manager

ESP

QFP Client/Driver

Forwarding
Manager

Chassis
Manager

Forwarding Manager

Figure 4-1 ASR 1001 Platform Logical Architecture

The details on grouping of the components are as follows:

■ RP—RP mainly contains the IOS daemon (IOSd), the forwarding manager for RP

(FMAN-RP), the chassis manager for RP (CMAN-RP), the kernel, and bootstrap

utilities.

98 Chapter 4: CSR 1000V Software Architecture

■ ESP (forwarding plane)—ESP contains FMAN-FP and CMAN-FP, as well as QFP

microcode and data plane drivers and crypto offload ASIC for handling hardware

assist encryption.

■ SIP/SPA—SIP/SPA houses the I/O interface for the chassis. It has its own CMAN

and kernel process to handle the discovery , bootstrapping, and initialization of the

physical interfaces.

Virtualizing the ASR 1001 into the CSR 1000V

There are a lot of commonalities between the system architectures of the CSR 1000V

and the ASR 1001, and there are some differences as well. The CSR 1000V is essentially

an ASR 1001 without the hardware. The following measures brought the ASR 1001 into

the software-based design of the CSR 1000V:

■ All the inter-unit communication with the SIP/CC was removed.

■ The entire SIP/SPA interface complex was eliminated.

■ The kernel utilities have been shared across the RP and ESP software complexes.

■ The kernel utilities use the virtualized resources presented to it by the hypervisor.

The CSR is basically the ASR 1000 design stripped of its hardware components. When

you compare the two designs, you find that the data path implementation is very differ-

ent. This is because the ASR 1001 has a physical processor (the QFP) for running data

path forwarding. In a CSR, the IOS XE data path is implemented as a Linux process.

The CSR 1000V is meant to leverage as much of the ASR 1001 architecture as possible.

There are places in the CSR 1000V system where software emulation for hardware-

specific requirements is needed. In general, the software architecture is kept the same,

using the same grouping approach as for the hardware components. One of the major

engineering efforts has been focused on migrating the QFP custom ASIC network pro-

cessor capabilities onto general-purpose x86 CPU architectures and providing the dis-

tributed data path implementation for IOS XE. This effort creates a unique opportunity

for Cisco to package this high-performance and feature-rich technology into the CSR

1000V. Figure 4-2 shows the high-level architecture of the CSR 1000V .

System Design 99

CSR 1000V

RP Complex

I/O Complex

DP Complex
Ke

rn
el

Hypervisor—VMware ESXi, KVM, Xen, Hyper-V vNIC

IOSd

Gethd Driver

IO

FP Complex

FMAN-FP

Client

Driver

FMAN-RP

Zero Copy Network Interface DataNetwork Interface Control

PPE

PPE

PPE

PPE

PPE

PPE

Packet Processing

Figure 4-2 CSR 1000V High-Level Architecture

CSR 1000V Initialization Process

This section examines the initialization of a CSR 1000V running on a type 1 hypervisor.

Refer to Chapter 2, “Software Evolution of the CSR 1000,” for details on the IOSd pro-

cess running on the control plane.

When a CSR boots up as a virtual machine, interfaces are discovered by parsing the con-

tents of /proc/net/dev on the Linux kernel. The gethd (Guest Ethernet Management

Daemon) process performs the port enumeration at startup and then passes the interface

inventory to the guest Ethernet driver within the IOS complex. The IOSd gethd driver

then instantiates the Ethernet interfaces. This is how the I/O interfaces provided by the

virtual NIC are managed by IOS.

The gethd process manages the interfaces on the CSR VM. It takes care of addition,

removal, configuration, states, and statistics of the Ethernet interfaces on the CSR VM.

Figure 4-3 illustrates the CSR 1000V initialization sequence.

100 Chapter 4: CSR 1000V Software Architecture

Guest VM Boots Up

Gethd Discovers Interfaces

Gethd Driver Within IOS
Receives Interface Info

Instantiate Interfaces on IOSd

Control Plane Programming
Complete

Figure 4-3 CSR 1000V Initialization Sequence

gethd is an important process that handles a variety of interface management functions,

including interface removal/addition. It is an important part of the virtualized I/O used

in CSR.

CSR 1000V Data Plane Architecture

Originally , IOS XE QFP data plane design consisted of four components: client, driver,

QFP microcode (uCode), and crypto assist ASIC. Different ASR 1000 platforms pack-

age these components differently, but in general the four components are the same

across platforms. CSR 1000V leverages the same client, driver, and uCode to support

a multithread-capable packet processing data plane, with the exception of the crypto

assist ASIC.

Figure 4-4 illustrates the CSR 1000V data plane architecture. The HW threads men-

tioned in the figure are packet processing engine (PPE) threads. The terms HW and PPE

can be used interchangeably.

System Design 101

CSR 1000V

RP Complex

I/O Complex

Ke
rn

el

Hypervisor—VMware ESXi, KVM, Xen, Hyper-V vNIC

IOSd

IO

FP Complex

FMAN-FP

Client

Driver

FMAN-RP

Zero Copy Network Interface DataNetwork Interface Control

Data Plane Complex

HW Thread

HW Thread

HW Thread

HW Thread

HW Thread

HW Thread

Packet Processing

CSR 1000V

RP Complex

I/O Complex

Ke
rn

el

Hypervisor—VMware ESXi, KVM, Xen, Hyper-V vNIC

IOSd

IO

FMAN-RP

Zero Copy Network Interface DataNetwork Interface Control

Figure 4-4 CSR 1000V Data Plane Architecture

The following is an overview of the three main components that make up the packet-

processing data plane for CSR:

■ Client—The Client is software that ties together the control plane and the data

plane. It is a collection of software modules that transform control plane informa-

tion into various data plane forwarding databases and data structure updates. It is

also responsible for updating the control plane with statistics from the data plane.

It allocates and manages the resources of the uCode, including data structures in

resource memory. The QFP Client is also responsible for restarting the QFP pro-

cess in the event of failure. The Client provides a platform API layer that logically

sits between IOSd and the uCode implementing the corresponding features. The

Client API is called from FMAN-FP and then communicates with the uCode via

both Interprocess Communicator (IPC) and shared memory interfaces provided by

the Driver. Within the Client, feature processing support can be broken down into

functional blocks known as Execution Agents (EA) and Resource Managers (RM).

RMs are responsible for managing physical and logical objects, which are shared

resources. An example of a physical object manager is the TCAM-RM, which man-

ages allocation of TCAM resources, and an example of a logical object manager is

the UIDB-RM, which manages the micro Interface Descriptor Block (uIDB) objects

102 Chapter 4: CSR 1000V Software Architecture

used to represent various forms of interfaces. The data plane (uCode) uses uIDB

objects to see the logical interfaces.

■ Driver—The Driver is a software layer that enables software components to com-

municate with the hardware. It glues the software components to the hardware. The

Driver is made up of libraries, processes, and infrastructure that are responsible for

initialization, access, error detection, and error recovery. The Driver has hardware

abstraction layering known as the Device Object (devobj) Model that allows it to

support different QFP ASICs. Below the devobj API are implementations of various

emulation and adaptation layers. In addition to the emulation and adaptation layers

required to support the RMs listed in the Client section, the Driver is also respon-

sible for coordinating memory access and IPC messaging between various QFP con-

trol plane software components and the QFP data plane packet processing uCode.

The driver is completely segregated from the IOS code in an XE architecture, and

this makes XE a very robust and flexible software architecture that offers complete

separation of the control and data planes.

■ QFP uCode (packet processing) —The uCode is where all the feature packet pro-

cessing occurs. The uCode runs as a single process in the same VM/container as the

Client and the Driver processes. IOSd initiates a packet process request through

FMAN-FP. This request is then driven by the Client and the Driver interacting with

the uCode to control the PPE behavior. The QFP uCode is broken up into four

main components: Feature Code, Infrastructure, Platform Abstraction Layer (PAL),

and Hardware Abstraction Layer (HAL). The PAL and HAL are essentially glue for

the portability of software features to different hardware platforms. Originally, the

PAL and HAL were designed for Cisco forwarding ASICs, such as QFP. In order

for uCode software to run on top of x86 in a Linux environment, a new PAL layer

is needed to support the specifics of the CSR 1000V platform. In addition, a new

HAL is introduced for running QFP software on top of x86 in a Linux environment.

The intention is for the CSR 1000V data plane to leverage as much of the existing QFP

code base as possible to produce a full-featured software data plane capable of leverag-

ing the processing capacity and virtualization capabilities of modern multicore CPUs.

One way to minimize changes to the existing QFP software code base is to emulate QFP

hardware ASIC in such a way that the existing Client, Driver, and QFP uCode are not

aware that they are running on a non-QFP platform. However, due to the complexity of

QFP hardware and the differences in platform requirements, a pure emulation is imprac-

tical. There are some cases where we choose to emulate hardware because doing so is

the straightforward approach for code leverage. In other cases, it is best to replace the

corresponding functionality with an implementation that is compatible at an API level

but may be a completely different algorithmic implementation.

Life of a Packet on a CSR 1000V: The Data Plane 103

CSR 1000V Software Crypto Engine

Cisco router platforms are designed to run IOS with hardware acceleration for crypto

operations. Like other ASR 1000 platforms, the ASR 1001 includes a crypto acceleration

engine on board to deliver crypto offload and to increase encryption performance. In

this environment, the main processor performing the data path processing is offloaded

from the computing-intensive crypto operations. Once the crypto offload engine com-

pletes the encrypt/decrypt operation, it generates an interrupt to indicate that the packet

should be reinserted back into the forwarding path.

The CSR 1000V runs completely on general-purpose CPUs without an offload engine;

therefore, the software implementation of the IPsec/crypto feature path is needed to

support the encryption function. To that end, the CSR 1000V includes a software crypto

engine that uses low-level cryptographic operations for encrypting and decrypting traf-

fic. The software crypto engine is presented to the IOS as a slower crypto engine. One

thing to note is the software crypto engine runs as an independent process within the

CSR 1000V, and it therefore may run as a parallel process in a multicore environment.

To improve the crypto performance of the CSR 1000V software router, the crypto data

path is implemented to take advantage of the latest Advanced Encryption Standard

(AES) crypto instruction set from Intel (AES-NI) for encryption/decryption operations.

The newer Intel processors, such as the Xeon Westmere-EP family and mobile Sandy

Bridge family, provide instruction sets for enhancing Advanced Encryption Standard

(AES-NI) cryptographic operations performance. These instructions are included in the

CSR 1000V crypto library, along with other cryptographic and hash algorithms for low-

level crypto operations. The crypto library is used by the software crypto engine as well

as by other subsystems within IOS that require cryptographic operations. The inclusion

of Intel’s crypto instruction set allows the CSR 1000V to take advantage of the latest

Intel CPUs for encryption and decryption operations in the data path.

Life of a Packet on a CSR 1000V: The Data Plane
Before we get into the details of packet flow for the CSR 1000V, it is important to

understand the drivers that make it possible for the CSR VM to talk to physical devices

and other software modules. These drivers act as software glue, relaying a packet to and

from the physical wire. We have touched on the different hypervisors that enable the

CSR VM to work on various x86 architectures. Here we discuss packet flow to and from

a CSR VM.

Figure 4-5 shows the virtualization layers of a CSR 1000V VM.

104 Chapter 4: CSR 1000V Software Architecture

QFP Data Plane

System Call

Netmap Kernel

Virtual NIC Driver

Virtual NIC (VMXNET3)

Software Switch

Physical NIC Driver

Physical NIC

Hy
pe

rv
is

or
CS

R
VM

User
Space

Figure 4-5 CSR VM Layers

From Figure 4-5, you can see that the hypervisor presents a virtual NIC to its guest

VM by using a driver. This driver can either be a para-virtualized driver (for example,

VMXNET3) or a real/emulated driver (for example, e1000). Para-virtualized drivers are

native to hypervisors and perform much better than emulated drivers such as the e1000.

Hypervisors support emulated drivers because they are required for full virtualization.

Recall from Chapter 1, “Introduction to Cloud,” that in full virtualization, guest operat-

ing systems do not require any support from the hypervisor kernel and run as though on

real hardware. Therefore, support for emulated drivers is required. However , the perfor-

mance of emulated drivers is much lower than that of para-virtualized drivers. The CSR

VM supports para-virtualized drivers only.

Netmap I/O

Netmap is an open-source I/O infrastructure package that enables the CSR VM to get

rid of the multiple software layers in the traditional Linux networking stack I/O model.

This results in faster I/O. Understanding the Netmap I/O model will help you better

understand packet flow to and from a CSR VM. This section provides an overview of

the Netmap I/O model and compares it with a Linux I/O model. It is important to under-

stand the I/O model before drilling down to packet flow.

Life of a Packet on a CSR 1000V: The Data Plane 105

Netmap is designed to strip down software layers and get the frame from the wire to the

data plane process in user space as quickly as possible. Netmap achieves this through the

four building blocks of its I/O architecture:

■ Thin I/O stack—Netmap bypasses the Linux networking stack to reduce overhead.

Since the CSR data plane runs in the user space, when it wants an I/O architecture to

deliver receive (Rx) frames from the NIC to the user space (data plane) and transmit

(Tx) frames from the data plane to the NIC, it leverages Netmap’s thin I/O stack.

■ Zero copy—Netmap maps all memory from rings (pool of memory buffers) in a

way that makes them directly accessible in the data plane (user space). Hence there

is no copy involved in getting the information to the user space. Preventing a copy

operation saves a lot of time in an I/O model, and Netmap’s zero-copy model is

very effective at increasing performance compared to a traditional Linux I/O model.

■ Simple synchronization—The synchronization mechanism in Netmap is extremely

simple. When you have the Rx packets on the ring, Netmap updates the count

of new frames on the ring and wakes up threads that are sleeping to process the

frames. On the Tx side, the write cursor is updated as a signal to announce the arriv-

al of new frames on the Tx ring. Netmap then flushes the Tx ring.

■ Minimal ring manipulation—In the Netmap I/O architecture, the ring is sized such

that the producer accesses the ring from the head end, while the consumer accesses

it from the tail. (Producer and consumer are terms associated with the process that

tries to initiate the I/O process [producer] and a process that gets affected in trying

to serve the producer [consumer].) The access to the ring is allowed simultaneously

for the producer and the consumer. In a regular Linux I/O scenario, you would

have to wait for the host to fill up the ring with pointers to buffers. When the ring

is being serviced, Linux detaches the buffers from the ring and then replenishes the

ring with new pointers.

An over view of the layers of software involved in building a CSR 1000V VM is illustrat-

ed previously in Figure 4-5. Figure 4-6 compares the Linux I/O model with the Netmap

I/O model.

106 Chapter 4: CSR 1000V Software Architecture

System Call

Socket Layer

Network Protocol

Interface INET/Device

NIC Driver

Physical NIC

System Call

User Space

Linux I/O Architecture Netmap I/O Architecture

System Call

Buffer

Buffer

Buffer

Sh
ar

ed
 M

em
or

y

Ring Ring

NIC Driver

Physical NIC

Ring N

Ring A

Netmap Kernel

Figure 4-6 Linux Versus Netmap I/O Comparison

Packet Flow

There are three major data plane components:

■ Rx thread

■ Tx thread

■ HQF (Hierarchical Queuing Framework) thread

All these components run on a single process within the QFP process umbrella. Multiple

PPE threads serve requests within this QFP process. The following sections discuss the

flow.

Device Initialization Flow

The following events take place to get the NIC (or vNIC, in a para-virtualized environ-

ment) ready for operation:

Life of a Packet on a CSR 1000V: The Data Plane 107

1. During boot-up, the platform code within IOSd discovers all Linux network

interfaces. The platform code then maps these Linux interfaces—eth0, eth1, and

so on—to Gig0, Gig1, and so on. After talking to the kernel, platform code sets

up the interface state (up or down), sets the MTU, sets the ring size, and sets the

MAC address.

2. The FMAN process creates the FMAN interfaces and then reaches out to the QFP

client process to initialize the data-plane interface.

3. After the QFP process receives the initialization message from the Client process

to create an interface, the QFP process then initializes an interface called micro-

interface descriptor block (uIDB) in the data plane.

4. After the uIDB is created in the QFP process, the FMAN process binds this uIDB to

the network interface name.

5. The component of the data-plane process responsible for interacting with the kernel

now has to make sure that the interface created with the QFP process is registered

and enabled within the Netmap component of the kernel.

6. With the new interfaces registered, the Netmap component communicates with the

virtual NIC driver to initialize the physical NIC.

7. The vNIC driver opens the NIC, initiates the rings, and makes the NIC ready for

operation.

TX Flow

The following events take place when there is a packet to be transmitted (Tx) by the CSR

onto the wire:

1. The HQF thread detects that there are packets to be sent.

2. The HQF thread checks congestion on the transmit interface and checks the inter-

face states.

3. If the transmit interface is not congested, HQF sends the frame. HQF can also

wait to accumulate more frames, batch them, and then send them out.

4. The platform code locates the next available slot in the Tx ring and copies the

frame from the source buffer into the Netmap buffer for transmission.

5. The platform code flushes the Tx ring.

6. Netmap forwards the flushed frames to the vNIC driver.

7. The vNIC driver initializes the NIC Tx slots.

8. The vNIC driver writes onto the Tx registers.

9. The vNIC driver cleans up the Tx ring of done slots.

10. The vNIC sends the frame on the wire and generates a notification on completion.

108 Chapter 4: CSR 1000V Software Architecture

RX Flow

The following events occur whenever a CSR receives a packet to be processed:

1. The Rx thread (the thread that receives frames from the QFP process) issues a poll

system call to wait for the new Rx frames.

2. When a new frame arrives, the NIC (or vNIC, in this case) accesses the vNIC Rx ring

to get a pointer to the next Netmap buffers.

3. The vNIC puts the frame onto the next Netmap buffers.

4. The vNIC generates an Rx interrupt.

5. The Netmap Rx interrupt service routine runs the Rx threads.

6. The vNIC driver finds the new frame and creates memory buffers for it.

7. The Rx thread pushes the frame to the PPE thread for processing.

Figure 4-7 illustrates packet flow between different XE processes.

IOSd Process FMAN
Process

QFP Client
Process

Kernel

QFP Process

PPE ThreadsPPE Threads

HQF Thread

Rx Thread

Figure 4-7 Flowchart for Packet Flow

Life of a Packet on a CSR 1000V: The Data Plane 109

Unicast Traffic Packet Flow

The Tx and Rx flows in Figure 4-7 detail how a packet is transmitted from the NIC (or

vNIC, in a para-virtualized driver) to the QFP process. Now we can look at how the QFP

process handles the packet after it gets it. The following steps examine a unicast IPv4

packet flow:

1. The QFP process receives the frame from the Netmap Rx and stores it in Global

Packet Memory (GPM).

2. The Dispatcher copies the packet header from the GPM and looks for free PPE to

assign. The packet remains in the GPM while it is being processed by the PPEs.

3. The Dispatcher assigns a free PPE thread to process the feature on the packet.

4. PPE threads process the packet and gather the packets. The gather process copies

the packets into B4Q memory and sends the HQF thread a notification that there is

a new packet in the B4Q memory.

5. HQF sends the packet by copying it from B4Q into the Netmap Tx ring, and then

releases the B4Q buffer.

6. The Ethernet driver sends the frame and frees the Tx ring once the packet has been

sent out.

7. Multicast IPsec packets are recycled from the HQF thread back to the in/out pro-

cessing of the PPE threads.

Figure 4-8 illustrates the packet flow in the QFP process.

GPM B4Q
Tx

Netmap

Tx

IPC

Rx

Netmap

Rx

IPC
DST

QQ

QQ

Recycled Packet

Packet Output

PPE
ThreadPPE

ThreadPPE
Thread

HQF
Thread

DST Credit Return

Figure 4-8 CSR 1000V Packet Flow in the QFP Process

110 Chapter 4: CSR 1000V Software Architecture

Installing the CSR 1000V on a VMware Hypervisor
The process for installing the CSR 1000V on a VMware hypervisor has two phases:

1. Bring up the VM with the CSR 1000V on ESXi.

2. Connect the VNIC with the CSR 1000V.

These phases can be subdivided into the step-by-step procedures described in the fol-

lowing sections. To learn about automated provisioning using the BDEO (build, deploy,

execute OVF), see Chapter 7, “CSR in the SDN Framework.”

The following steps assume ESXi is already installed. Please refer to the VMware ESXi

installation guide for setting up the ESXi if it is not already installed.

Bringing Up the VM with the CSR 1000V on ESXi

Assuming ESXi is already installed, you can now follow these steps in the first phase of

installing the CSR 1000V:

Step 1. Deploy the OVF template:

1. Download the OVF template from software.cisco.com and select CSR

1000V software.

2. Log on to the vSphere client, as shown in Figure 4-9.

Figure 4-9 Installing the OVF Template for the CSR 1000V

Installing the CSR 1000V on a VMware Hypervisor 111

3. Upload the CSR OVF file you downloaded from cisco.com as shown in

Figure 4-9.

4. Select File, Deploy OVF Template, as shown in Figure 4-9.

Step 2. Upload the CSR OVF file as shown in Figure 4-10.

Figure 4-10 Deploying the OVF Template: Selecting the Source

Step 3. When the OVA upload is done, verify the OVF template details on the

screen shown in Figure 4-11.

112 Chapter 4: CSR 1000V Software Architecture

Figure 4-11 Deploying the OVF Template: Verifying the Template Details

The release information, product, size, and so on are received from the meta-

data. Follow the directions for creating the VM.

Complete the following deployment configuration, disk formatting, and net-

work mapping screens, as shown in Figures 4-12 through 4-16:

1. As shown in Figure 4-12, select the hardware profile: Small, Medium, or

Large vCPU and RAM, based on the deployment considerations. Refer

to the hypervisor documentation for the exact small, medium, and large

VM configurations. (You can change this configuration for memory

even after the CSR 1000V is brought up.)

Installing the CSR 1000V on a VMware Hypervisor 113

Figure 4-12 Deploying the OVF Template: Selecting the System Memory Profile for
CSR 1000V

2. Select the appropriate type of disk formatting (see Figure 4-13), and

then click Next:

■ Thick Provision Lazy Zeroed—With this option, a virtual disk is cre-

ated with the amount of disk space it has asked for. However, the disk

is not cleaned during virtual disk creation. It is cleaned only when you

create the first VM on it.

■ Thick Provision Eager Zeroed—With this option, a virtual disk is cre-

ated with the amount of disk space it has asked for. However, the disk

is cleaned during virtual disk creation.

■ Thin Provision—Choose this option to save space. Initially, the space

allocated to a thin disk is less. However, the virtual disk keeps growing

as memory requirements grow.

114 Chapter 4: CSR 1000V Software Architecture

Figure 4-13 Deploying the OVF Template: Choosing the Disk Provisioning Format

Note The OVF used here is for version 3.13. You might see variations in the default

settings with later versions. Please refer to Cisco release documentation.

3. On the screen shown in Figure 4-14, specify network mapping of the

source networks (GigabitEthernet) to the destination networks (VM

Network by default) mapping allocation.

Installing the CSR 1000V on a VMware Hypervisor 115

Figure 4-14 Deploying the OVF Template: Network Mapping

4. Look over the summary of the deployed CSR 1000V configuration, as

shown in Figure 4-15, and click Finish.

116 Chapter 4: CSR 1000V Software Architecture

Figure 4-15 Deploying the OVF Template: Checking the Settings

Step 4. When the deployment of the CSR 1000V is complete, boot the router by

selecting the VGA console from the GRUB menu on the Console tab shown

in Figure 4-16.

Installing the CSR 1000V on a VMware Hypervisor 117

Figure 4-16 CSR 1000V Console Tab

Step 5. At the router prompt, enter platform console serial, as shown in Figure

4-17. (This command causes the VM to send console information on the

serial port from ESXi in the later steps.)

Figure 4-17 CSR 1000V Command Prompt

118 Chapter 4: CSR 1000V Software Architecture

Step 6. To add the serial port for console access, access the vCenter web client

and select Virtual Hardware, Network Adaptor, Serial Port, as shown in

Figure 4-18.

Figure 4-18 VM Access from the vCenter Web Client

Step 7. Shut down the guest OS as shown in Figure 4-19. (Note that this serial port

will be used for terminal access to the CSR.)

Installing the CSR 1000V on a VMware Hypervisor 119

Figure 4-19 Configuring the Serial Interface: Shutting Down the Router

Step 8. Select Add New Device, New Serial Port and provide the IP address and ter-

minal port details to access the CSR, as shown in Figure 4-20.

120 Chapter 4: CSR 1000V Software Architecture

Figure 4-20 Configuring the Serial Interface: Setting the Telnet Address

Step 9. Go to vCenter and select Setting, Security Profile. Edit security configuration

ports 23 and 1024 as shown in Figure 4-21. This is needed because by default

ESXi blocks console access.

Installing the CSR 1000V on a VMware Hypervisor 121

Figure 4-21 Configuring the Serial Interface: Firewall Settings

Step 10. Enable ports 23 and 1024 as shown in Figure 4-22.

Figure 4-22 Configuring the Serial Interface: Security Profile Detail

Step 11. Use Telnet to verify the access from the PC. (It’s a good practice to use SSH

for accessing the CSR VM; however, for the sake of simplicity, this example

shows Telnet access setup.) The EXSi hypervisor defaults the network

connections to the VM Network virtual switch connection. The network

122 Chapter 4: CSR 1000V Software Architecture

adapters are mapped to CSR interfaces. For example, GigabitEthernet1 is

mapped to Network adapter 1, and so on. You can verify this by comparing

the MAC address as illustrated in Figure 4-23.

Figure 4-23 CSR 1000V Telnet Access Screen

Step 12. To remap the network adapters to corresponding vNICs, you should perform

the following steps. From the vSphere client in the Edit Settings window, select

New Device Add, Networking and add vNICs to the CSR as assigned inter-

faces (from the vCenter web client), as shown in Figures 4-24 through 4-27.

(Allow all VLANs and create a bridgeForVNIC1 label for this connection.)

Figure 4-24 vNICs and the CSR 1000V: Selecting the Connection Type

Installing the CSR 1000V on a VMware Hypervisor 123

1. Select the new vNIC, as shown in Figure 4-25, to create a new standard

switch name.

Figure 4-25 vNICs and the CSR 1000V: Creating a Standard Switch

2. Add VLANs and the network label assigned for the vNIC, as shown in

Figure 4-26.

Figure 4-26 vNICs and the CSR 1000V: Setting the Connection Settings

124 Chapter 4: CSR 1000V Software Architecture

3. Complete the configuration of the vNIC with a VLAN and label attach-

ment that can be referenced in a vSwitch. Click Finish to complete this

step, as shown in Figure 4-27.

Figure 4-27 vNICs and the CSR 1000V: Completing the Configuration

Step 13. Go to the vSphere web client and select Virtual Machine, Network Adapter.

In the Networking tab, look for the new bridgeForVNIC1 label you created

earlier, as shown in Figure 4-28. You should note that this label acts as map-

ping between the CSR interface and the vNIC.

Repeat Steps 12 and 13 to remap additional network adapters to vNICs avail-

able to the CSR.

Installing the CSR 1000V on a VMware Hypervisor 125

Figure 4-28 vNICs and the CSR 1000V: Editing the Settings

To map the network adapter to the vNIC created, select the vNIC label cre-

ated in the previous step . The CSR 1000V is now configured and connected

to the physical NIC, as shown in Figure 4-29.

126 Chapter 4: CSR 1000V Software Architecture

Figure 4-29 vNICs and the CSR 1000V: Interface Summary Screen

Installing the CSR 1000V on a KVM Hypervisor
The process for installing the CSR 1000V on a KVM hypervisor has two phases:

1. Bring up the VM with the CSR 1000V on ESXi.

2. Connect the vNIC with the CSR 1000V.

Bring Up the CSR 1000V as a Guest

Follow these steps to update essential packages on a Linux managed server so it can

work as a type 1 hypervisor and run a CSR 1000V VM :

Step 1. Install the VM packages virt-manager, qemu-kvm, and bridge-utils like

this:

apt-get install virt-manager

apt-get install qemu-kvm

apt-get install bridge-utils

or like this:

yum install virt-manager

yum install qemu-kvm

yum install bridge-utils

Figure 4-30 shows the installation of packages required for CSR creation.

Installing the CSR 1000V on a KVM Hypervisor 127

Figure 4-30 Package Installation on a KVM Hypervisor

Step 2. Launch Virtual Machine Manager, which is the front end to KVM/QEMU

that allows installation and management of CSR VMs, by selecting

Application, System, Virtual Machine Manager.

Note Virtual Machine Manager could also be on a different path for your Linux server.

Figure 4-31 shows the launch of the virtual machine from QEMU. Make sure you have

XDesktop installed. Also note that VMM is not a mandatory requirement for using

KVM/QEMU, especially when a graphical user interface is not present on a desktop.

Click the Create a New Virtual Machine icon, and the dialog shown in Figure

4-31 appears. Click the Forward button.

128 Chapter 4: CSR 1000V Software Architecture

Figure 4-31 Creating a Guest VM

Step 3. Load the ISO image (which you download from software.cisco.com) for the

CSR 1000V, as shown in Figure 4-32. Click the Forward button.

Figure 4-32 ISO Image Bootup for the CSR 1000V

Installing the CSR 1000V on a KVM Hypervisor 129

Note Download the ISO CSR 1000V image to your local hard disk. When you

download it, it is named csr1000v-universalk9.<version>.std.iso, but the file is renamed

ultra.iso in the example shown.

Step 4. Allocate hardware resources for the guest VM as shown in Figure 4-33.

(Refer to Table 2-2 in Chapter 2 for further allocation information.) Click

Forward.

Figure 4-33 Choosing Memory and CPU Settings

Step 5. Select hardware resources, as shown in Figure 4-34, and click Forward.

Figure 4-34 Selecting Hardware Resources

130 Chapter 4: CSR 1000V Software Architecture

Note If you do not check Allocate Entire Disk Now, only a small portion of memory

asked for will be allocated. It will keep growing as memory requirements increase.

Checking Allocate Entire Disk Now guarantees that much storage.

Step 6. Look over the hardware resources summary (see Figure 4-35) and make any

changes needed. Click Finish.

Figure 4-35 Resources Summary Snapshot

Step 7. To apply changes for the guest VM, select Application, System, Virtual

Machine Manager and highlight the CSR installed in the VMM. Then click

the Show Virtual Hardware Details tab and click the Add Hardware button,

as shown in Figure 4-36.

Installing the CSR 1000V on a KVM Hypervisor 131

Figure 4-36 Applying Hardware VM Changes

Step 8. To create serial connection access for console access, select Serial, and then

select TCP for Device Type and provide the telnet information, as shown in

Figure 4-37.

Figure 4-37 Creating the Serial Interface

132 Chapter 4: CSR 1000V Software Architecture

Step 9. In the Virtual Machine Manager , highlight the guest VM and shut it down (if

it is not down already). (See Figure 4-38.)

Figure 4-38 Shutting Down the Guest VM

The guest VM goes down, as shown in Figure 4-39.

Figure 4-39 Shutdown of the Guest VM

Step 10. Access the router from the console, as shown in Figure 4-40. Make sure the

VM is powered up before you try to access it.

Installing the CSR 1000V on a KVM Hypervisor 133

Figure 4-40 Console Access to the KVM

Step 11. Use the serial interface command for telnet access: platform console

serial and write mem, as shown in Figure 4-41.

Figure 4-41 Router Console for Telnet Access

Step 12. Access the CSR 1000V via the telnet, as shown in Figure 4-42.

134 Chapter 4: CSR 1000V Software Architecture

Figure 4-42 Telnet Connection to the CSR 1000V

Step 13. Ensure that your virtual machine is shut down, and then start vNIC

provisioning by selecting Show Virtual Hardware Details, NIC, as shown in

Figure 4-43.

Figure 4-43 Accessing CSR 1000V Network Settings

Step 14. In the Virtual Machine Manager , select virtio as the device model (see Figure

4-44) because it is the para-virtualized driver in Linux. Using virtio is the best

way to exploit the underlying kernel for I/O virtualization. It provides an

efficient abstraction for hypervisors and a common set of I/O drivers.

Installing the CSR 1000V on a KVM Hypervisor 135

Figure 4-44 Selecting CSR 1000V Network Settings

Select the virtual network with NAT to tie all VMs in the same bridge

domain and NAT it to the outgoing physical interface (see Figure 4-45).

Attach the other NIC to the bridge tap.

Figure 4-45 CSR 1000V NIC Settings

In KVM, macvtap is a combination of the macvlan driver and a Tap device.

Here the function of the macvlan driver is to create virtual interfaces and

map virtual interfaces to physical network interfaces. A unique MAC address

identifies each virtual interface to the physical interface. A TAP interface is a

software only interface that exists only in the kernel. You use Tap interfaces to

136 Chapter 4: CSR 1000V Software Architecture

enable user-space networking and allow passing of datagrams directly between

VMs instead of sending datagrams to and from a physical interface. The

macvtap interface combines these two functions together (see Figure 4-46).

Tap 0 Tap 1

Eth0 on Host Machine

VM-A

eth0

VM-B

eth0

Figure 4-46 macvtap Diagram

Step 15. Configure the mapping of the vNIC to the physical interface:

1. Access the directory /etc/network/interfaces/ifcfg-br0 on the

Ubuntu host and view the bridge type (see Figure 4-47).

Figure 4-47 Bridge Configuration File Output

Performance Tuning of the CSR 1000V 137

2. Access the directory /etc/network/interfaces/ifcfg-eth4 and con-

figure the vNIC to be in the same bridge type, BR0 (see Figure 4-48).

Figure 4-48 Interface Configuration File Output

To configure the spanning tree mode to promiscuous, use this:

auto eth4

iface eth4 inet manual

up ip address add 0/0 dev $IFACE

up ip link set $IFACE up

up ip link set $IFACE promisc on

Alternatively, access the file /etc/network/interfaces/ifcfg-eth4 and

type this:

PROMISC=yes

This method provides persistent configuration settings for ifcfg-eth4.

Step 16. In the Virtual Machine Manager, select Show Virtual Hardware Details.

Performance Tuning of the CSR 1000V
To improve performance of a guest VM in a hypervisor environment, you improve

availability of the I/O and other hardware resources through para-virtualization. Para-

virtualization allows for a kernel to present a software interface to a guest VM that

is similar but not identical to that of the underlying hardware, thereby improving the

VM performance. If you want to tune the performance further, you need to look at

two components:

138 Chapter 4: CSR 1000V Software Architecture

■ Hypervisor scheduling

■ CPU pining

This section reviews the common tuning practices for an ESXi host. The scheduler for

ESXi is responsible for vCPU, IRQ (interrupt requests), and I/O threads. To provide

equal treatment to all guest VMs, the scheduler provides allocation of equal resources of

vCPU threads for scheduling. Note that you can relax coscheduling of threads to avoid

synchronization latency.

To tweak the scheduling and resource allocation details, you must access the VM setting

using vSphere client and follow these steps:

1. In the vSphere client inventory, right-click the virtual machine and select Edit

Settings.

2. Click the Resources tab and select CPU.

3. Allocate the CPU capacity for this virtual machine.

The Processor Affinity setting (CPU pining) restricts VMs to a particular set of cores

by defining the affinity set. The scheduling algorithm aligns with process affinity for

assigning the resources used for the tasks. Figure 4-49 assumes two tasks: Task 1 and

Task 2. Task 1 has affinity to processor 1 and is using it. When Task 2 needs a resource,

the scheduler uses a second processor. Task 2 then acquires affinity with the second

processor.

pCPU 0 pCPU 1

pCPU 2 pCPU 3

Core 1

pCPU 0 pCPU 1

pCPU 2 pCPU 3

Core 2

vCPU TASK1

vCPU
V
M

vCPU TASK2

vCPU
V
M

Figure 4-49 CPU Pining

Summary 139

To tweak these settings, access the vSphere client and follow these steps:

1. In the vSphere client inventory panel, select a virtual machine and select Edit

Settings.

2. Select the Resources tab and select Advanced CPU.

3. Click the Run on Processor(s) button.

You achieve CPU pining in KVM by issuing the following command:

sudo virsh vcpupin test 0 6

Hyperthreading by definition allows a single physical core to have two logical cores; that

is, a single core can execute two threads at a given time. Each process from the guest

VM can be split into multiple threads to a logical CPU, and the CPU can handle multiple

threads of independent tasks. The main function of hyperthreading is to increase the

number of tasks in the pipeline by creating parallel pipelines. By tweaking the process

affinity option, you can restrict VMs to a particular set of cores and unhook the VM

from processor scheduling. Most of the hypervisors use BIOS settings to modify the

hyperthreading feature.

For predictable performance, the following best practices are recommended:

■ Ensure that hyperthreading is turned off.

■ Use CPU pining to allow the guest VMs to dedicate one or more physical hardware

CPUs for processing.

■ For CSR 1000V performance optimization, it is important to understand the

concept of DirectPath I/O and SR-IOV (single root I/O virtualization). These are

driver virtualization and are beneficial for achieving very high packet rates with low

latency. In DirectPath I/O, you can map only one physical function to one virtual

machine. SR-IOV allows an admin to share a single physical device, so that multiple

virtual machines can connect directly to the physical function.

These features are supported in all hypervisors, and it is important to understand the

settings on the hypervisor deployed in order to optimize guest VM performance with

features used on the hypervisor.

Summary
Now that you’ve read this chapter, you should have an understanding of the CSR 1000V

data plane architecture, as well as packet flow. You should also have an understanding of

the steps for bringing up a CSR 1000V on ESXi and KVM hypervisors.

This page intentionally left blank

Index

A
A9 processor, 1

active/active flow distribution to
cloudburst, redirection access
model, 193

adoption, Enterprise cloud, 29-30

algorithms, scheduling, 60-62

Amazon web services deployment, CSR,
211-215

Amazon web services deployment, CSR
1000V, 216-222

application-centric infrastructure
(SDN), 224

Application Virtual Switch (AVS), 270

architecture, CSR 1000V, troubleshooting,
271-272

ASR (Aggregation Service Router) 1000
router, 41, 96-97

architectural elements, 95
ESPs (embedded service processors),

42-43
RP (route processor), 42
SIP (SPA interface processor), 43

ASR (Aggregation Service Router)
1001, 97

logical architecture, 97
virtualizing into CSR 1000V, 98

ATM (Asynchronous Transfer Mode), 13

attach-device command (virsh), 90

attach-disk command (virsh), 90

attach-interface command (virsh), 90

automation, 247-248
BDEO tool, 248-249
management, 247
NSO tool, 249-251

NFV orchestration with OpenStack,
252-253, 260-261, 264-266

versus orchestration, 247
provisioning, 247

availability zones, VPC, 214

AVC (Application Visibility and Control),
CSR 1000V, 52-53

AVS (Application Virtual Switch), 270

AWS (Amazon web services) deployment
CSR, 211-215
CSR 1000V, 216-222

B
BadUidbSubIdx drop type (IOS), 285

Basic Input/Output System (BIOS), 67

BDEO tool, 248-249

BIOS (Basic Input/Output System), 67

BIOS settings, hosts, 276

block-based storage, 3

boot process (IOS), 66-67

BPG route reflector, CSR, 155-157
hierarchical use, 157-162

BqsOor drop type (IOS), 285

branch design, CSR 1000V, planning,
162-168

C
caching memory, Linux, 71

Ceilometer project, OpenStack, 205

chunk manager (memory manager), 66

CIM (Common Information Model) system
processes, VMkernel, 77-78

Cinder component (OpenStack), 34

Cinder project, OpenStack, 204

Cisco Domain 10 framework, 22
abstraction and virtualization, 23
automation and orchestration, 23
customer interface, 24
infrastructure and environmental, 22-23
organization, governance, and process,

25-26
platform and application, 24
security and compliance, 24-25
service catalog and financials, 24

Cisco inter-cloud fabric, CSR 1000V
cloudburst, 194-195

CLI (command-line interface)
control-processor output, 282
show interfaces command output, 282
sw-nic output, 288

Client, CSR data plane, 101

clientless mode (SSL VPNs), 147

cloud computing, 1
design, 21-23

on-demand service, 21
Enterprise

adoption challenges, 29-30
connectivity, 26-28

cloud deployment models, 20-21

cloud services
IaaS (Infrastructure as a Service), 18-19
PaaS (Platform as a Service), 19
SaaS (Software as a Service), 20

cloudburst, CSR 1000V, 190
Cisco inter-cloud fabric, 194-195
data synchronization, 191
direct access model, 191-192
network connectivity, 190
redirection access model, 192-193
workload migration, 191

code listings
Changing the Speed of the Interface, 279

Configuration Script Sample, 240
Control-Processor CLI Output, 282
CSR 1000V as a DMVPN Hub, 149-150
CSR as a Remote Access VPN Server with

an AnyConnect Client, 153-155
ESXi NIC Stats, 290
ESXi Port Stats, 292
Example of Using the glance CLI to Add

a CSR 1000V Image, 236
How to Check Throughput Levels and

License Details, 277
Interface Controller Output, 283-285
Interface show Command, 280
ISR as a DMVPN Spoke, 150-152
Kernel Images Available to GRUB Are

Listed in menu.lst, 67-68
LMGW Configuration, 177-179
MS/MR Configuration, 179-181
Programs That Are Executed on the Full-

Multiuser Run Level, 69
QFP Feature Debugging Options,

286-288
R1 Configuration, 159
R2 Configuration, 159
R3 Configuration, 161
R4 Configuration, 161
R5-1 Configuration, 160
R5-2 Configuration, 160
RR1 Configuration, 158
RR2 Configuration, 158
RR-3 Configuration, 160
RR-4 Configuration, 161
Sample Answer File for Packstack,

231-233
Sample Definition of VNF Descriptors,

261-264
Sample NSO Initiation to Understand

Input to Be Used in Service and
Device Model Framework, 253-260

Sample of Installed NED Verification, 260
Sample VNF Instantiation, 264
show Commands, 182
show interfaces CLI Output, 283
Snapshot of BGP Update at R4, 162
sw-nic CLI Output, 288
VM List on an ESXi Host, 289

commands
show, 181-182, 278
show interface, 279

320 caching memory, Linux

show interface controller, 283
show interfaces, 282
speed, 278
statistics drop, 285

computation, data centers, 3

conceptual architecture, data center
virtualization, 5-6

configuration
CPU usage, 281-282
hardware and software speed, 278-279
hosts, 275-276
interface-to-NIC mapping, 281
memory usage, 282-288

connectivity, Enterprise cloud, 26-28

containers, 8

control planes, LISP, 171-175

controlled resources, 83

core partitioning, hypervisors, 75

CPUs
pining, 138
settings, hosts, 275
scheduling algorithms, 60-62
usage configuration, 281-282

CPU scheduler, VMkernel, 76

create command (virsh), 89

Create Router dialog (OpenStack), 238

critical priority, ready queue, 65

Critical queue (IOS scheduler), 38

crypto engine, CSR 1000V, 103

crypto maps, IPsec VPNs, 143-144

CSR (cloud service router)
BPG route reflector, 155-157

hierarchical use, 157-162
host configuration, 275-276
hypervisors, 59
LISP (Locator/ID Separation Protocol),

168-169, 175
control plane, 171-175
data plane, 171
ETR (egress tunnel router), 169-170
IP mobility, 175
IPv6 migration, 175
ITR (ingress tunnel router), 169-170
MR (MAP Resolver), 170
network-to-network connectivity,

175-176
network-to-network interconnection

configuration, 176-182

PETR (proxy egress tunnel router),
170-171

PITR (proxy ingress tunnel
router), 170

OpenStack
instantiating Neutron plugin,

242-245
tenant deployment, 235-242

public cloud deployment, Amazon web
services, 211-215

as Remote Access VPN server, 153-155
remote VPN access into Cloud, 153-155
secure inter-cloud connectivity, 152

CSR 1000V, 37, 95
AVC (Application Visibility and Control),

52-53
branch design planning, 162-164

virtualization, 164-168
cloudburst, 190

Cisco inter-cloud fabric, 194-195
data synchronization, 191
direct access model, 191-192
network connectivity, 190
redirection access model, 192-193
workload migration, 191

data plane, 103-104
architecture, 100-102
Netmap I/O, 104-105
packet flow, 106-109

DMVPN (Dynamic Multipoint VPN), 53
EEM (Embedded Event Manager), 54
initiation process, 99-100
installing

KVM hypervisor, 126-137
VMware hypervisor, 110-125

IP SLA (IP Service Level Agreement), 54
LISP (Location/ID Separation

Protocol), 54
MPLS (Multiprotocol Label Switching)

VPN, 54-55
multitenant data center, 185-190

zone connectivity, 188
as Neutron router, 206-209
OTV (Overlay Transport

Virtualization), 55
performance tuning, 137-139
PfR (Performance Routing), 55
private cloud deployment in OpenStack,

195-211

CSR 1000V 321

public cloud deployment, 211
Amazon web services, 216-222

Radio Aware Routing, 56
Redundancy Group Infrastructure, 56
software crypto engine, 103
system design, 95-98
as tenant router, 209-211
troubleshooting, 271

architecture overview, 271-272
debugging packet loss, 276-292
I/O configuration, 272-276

virtualizing ASR 1001 into, 98
VM (virtual machine), 271

layers, 103
VPLS (Virtual Private LAN Services), 55
VPN service gateway, 148-153
VPN services, 141

L2VPNs, 141
L3VPNs, 142-148

VXLAN (Virtual Extensible LAN), 56
ZBFW (Zone Based Firewall), 56-57

CSR 1000V routers, 44-45
deployment requirements, 45-47
elastic performance and scaling, 47-48
network extension from premises to

cloud, 51
rapid deployment, 49
routing flexibility, 49
secure cloud VPN gateway, 50-51
segmentation within cloud, 52

CSRV, bringing up as guest, 126-137

D
daemon (IOSd), 40-41

DAL (Database Abstraction Layer), 202

data, unstructured, 4

data centers, 1-2
computation, 3
distributed servers, 2
evolution, 2
facilities, 3
multitenant, 16-18

CSR 1000V, 185-190
logical diagram, 185
virtual service block design, 186

network fabric, 3
physical hardware, 1
SDN, 224-225

service blocks
deployment, 188
placement, 186

services, 3
storage, 3
utilization, 2
virtualization, 2-5

conceptual architecture, 5-6
evolution, 5
network, 12-14
server, 6-8
service, 15-16
storage, 9-12

data plane (CSR 1000V), 103-104
architecture, 100-102
LISP, 171
Netmap I/O, 104-105
packet flow, 106

device initialization, 106-107
Rx, 108
Tx, 107
unicast traffic, 109

data synchronization, CSR 1000V
cloudburst, 191

Database Abstraction Layer (DAL), 202

DCUI (Direct Console User Interface)
processes, VMkernel, 77

dead queue (IOS scheduler), 65

debugging packet loss, 276
CPU usage, 281-282
ESXi, 289-292
hardware and software configurations,

278-279
high-level packet flow, 276-277
interface-to-NIC mapping, 281
L2 MTU, 280
memory usage, 282-288
throughput license, 277-278
vSwitch packet drops, 289

define command (virsh), 89

deploying OpenStack, 225-233
CSR tenant, 235-242

deployment models, cloud, 20-21

deployment requirements, CSR 1000V
routers, 45-47

descriptors, VNF, definition, 261-264

design
CSR 1000V, 95-98

branch design, 162-168

322 CSR 1000V

hypervisors
core partitioning, 75
microkernel architecture, 74
monolithic architecture, 74

operating systems, 60
physical resource management,

60-62
software access to resources, 62

design, cloud, 21-23
on-demand service, 21

destroy command (virsh), 89

detach-device command (virsh), 90

detach-disk command (virsh), 90

detach-interface command (virsh), 90

device-based network virtualization, 14-15

device-based storage virtualization, 11

device drivers
ESXi hypervisor, 78-79
legacy versus native, 79

device initialization packet flow, CSR
1000V data plane, 106-107

direct access model, CSR 1000V
cloudburst, 191-192

Direct Connect, VPC, 214

Disabled drop type (IOS), 285

disaster recovery using cloudburst,
redirection access model, 193

DMVPNs (Dynamic Multipoint VPNs),
144-145

CSR 1000V, 53
overlays, 190

DNS (domain name service), diagram, 168

Domain 0 (Xen), 93

Domain 10 framework
abstraction and virtualization, 23
automation and orchestration, 23
customer interface, 24
infrastructure and environment, 22-23
organization, governance, and process,

25-26
platform and application, 24
security and compliance, 24-25
service catalog and financials, 24

domain controllers, Glance, 202

Domain U (XEN), 93

Domain U PV (XEN), 93

domains, 201

domblkstat command (virsh), 90

domid command (virsh), 89

domifstat command (virsh), 90

dominfo command (virsh), 90

domname command (virsh), 90

domstate command (virsh), 90

domuuid command (virsh), 89

DR (disaster recovery) using cloudburst,
redirection access model, 193

Driver, CSR data plane, 102

dumpxml command (virsh), 89

Dynamic Multipoint VPN (DMVPN), 53,
144-145

E
EC2 (Elastic Compute Cloud),

Amazon, 211

EEM (Embedded Event Manager), CSR
1000V, 54

Elastic Compute Cloud (EC2),
Amazon, 211

elastic IP, VPC, 213

elastic performance, CSR 1000V routers,
47-48

elasticity, cloud, 21

embedded service processors (ESPs), ASR
(Aggregation Service Router), 42-43

encapsulation, GRE (Generic Routing
Encapsulation), 142

enlightened guests, 8

Enterprise cloud
adoption challenges, 29-30
connectivity, 26-28

ESPs (embedded service processors)
ASR (Aggregation Service Router), 42-43
processes, 98

ESXi
bringing up VM with CSR 1000V,

110-125
mapping, 281
NIC stats, 290
opening screen, 80
packet debugging, 289-292
port stats, 292
VM list, 289

ESXi 323

ESXi hypervisor, 75
device drivers, 78-79
file systems, 79-80
management, 80-81
VMkernel, 75-76

CIM processes, 77-78
CPU scheduler, 76
DCUI processes, 77
memory management, 76
VMM processes, 77
VMX processes, 77

ETR (egress tunnel router), 169-170

examples
Changing the Speed of the Interface, 279
Configuration Script Sample, 240
Control-Processor CLI Output, 282
CSR 1000V as a DMVPN Hub, 149-150
CSR as a Remote Access VPN Server with

an AnyConnect Client, 153-155
ESXi NIC Stats, 290
ESXi Port Stats, 292
Example of Using the glance CLI to Add

a CSR 1000V Image, 236
How to Check Throughput Levels and

License Details, 277
Interface Controller Output, 283-285
Interface show Command, 280
ISR as a DMVPN Spoke, 150-152
Kernel Images Available to GRUB Are

Listed in menu.lst, 67-68
LMGW Configuration, 177-179
MS/MR Configuration, 179-181
Programs That Are Executed on the Full-

Multiuser Run Level, 69
QFP Feature Debugging Options,

286-288
R1 Configuration, 159
R2 Configuration, 159
R3 Configuration, 161
R4 Configuration, 161
R5-1 Configuration, 160
R5-2 Configuration, 160
RR1 Configuration, 158
RR2 Configuration, 158
RR-3 Configuration, 160
RR-4 Configuration, 161
Sample Answer File for Packstack,

231-233
Sample Definition of VNF Descriptors,

261-264

Sample of Installed NED Verification, 260
Sample NSO Initiation to Understand

Input to Be Used in Service and
Device Model Framework, 253-260

Sample VNF Instantiation, 264
show Commands, 182
show interfaces CLI Output, 283
Snapshot of BGP Update at R4, 162
sw-nic CLI Output, 288
VM List on an ESXi Host, 289

Extensible Messaging and Presence
Protocol (XMPP), 32

F
facilities, data centers, 3

FIFO (first in, first out) scheduling
algorithm, 60

file systems, VMFS, 79-80

firewalls, ZBFW (Zone Based Firewall), 56

first in, first out (FIFO) scheduling
algorithm, 60

Forwarding Manager (IOSd), 41

full server virtualization, 8

functions
malloc(), 69
vPATH, 270

G
Generic Routing Encapsulation (GRE)

tunnels, 142

GET VPNs (Group Encrypted Transport
VPN), 145-147

Glance component (OpenStack), 34

Glance project, OpenStack, 201-202

GM (Group Member) device, 146

GNU Grand Unified Boot Loader (GRUB),
66-68

GRE (Generic Routing Encapsulation)
tunnels, 142

Group Encrypted Transport VPNs (GET
VPNs), 145-147

Group Member (GM) devices, 146

groups, 201

GRUB (GNU Grand Unified Boot Loader),
66-68

324 ESXi hypervisor

guest emulator (QEMU), 85-87

guest mode, Linux kernel, 83

H
hair pinning of traffic, 27

hardware, speed configuration, 278-279

hardware hub VPN access, 27

hardware VPN access, 26

Heat project, OpenStack, 205

help command (virsh), 89

high-level packet flow, debugging,
276-277

high priority, ready queue, 65

High queue (IOS scheduler), 38

Horizon component (OpenStack), 34

Horizon project, OpenStack, 205

host-based storage virtualization, 11

host machines, 272

hosts, configurations, 275-276

hybrid cloud, 20

hybrid kernels, 64

Hyper-V, 91-92

hypercalls, 72-73

hyperthreading setting, BIOS, 276

hypervisors, 59, 71-72, 94
design, 74

core partitioning, 75
microkernel architecture, 74
monolithic architecture, 74

ESXi, 75
device drivers, 78-79
file systems, 79-80
management, 80-81
VMkernel, 75-78

Hyper-V, 91-92
KVM, 82-83

architectural components, 84-85
guest emulator, 85-87
installing CSR 1000V on, 126-137
Libvirt, 88-91

PCI passthrough mode, 274
software, 272
versus operating systems, 72-73
VMware, installing CSR 1000V on,

110-125
Xen, 92-93

I
IaaS (Infrastructure as a Service), 2, 18-19

idle queue (IOS scheduler), 65

Infrastructure as a Service (IaaS). See IaaS
(Infrastructure as a Service)

initiation process, CSR 1000V, 99-100

installation
CSR 1000V on KVM hypervisor, 126-137
CSR 1000V on VMware hypervisor,

110-125

instantiation (VNF), 264-265

inter-cloud fabric, CSR 1000V cloudburst,
194-195

interface, changing speed, 278-279

Interface Manager (IOSd), 41

interface-to-NIC mapping,
configuration, 281

Internet for transport, Enterprise cloud
connectivity, 26-28

Internet gateway (VPC), 213

Internetworking Operating System (IOS).
See IOS (Internetworking Operating
System)

I/O configuration, CSR 1000V,
troubleshooting, 272-276

I/O stack, Netmap, 105

IOS (Internetworking Operating System),
37-39

boot process, 66-67
IOSd (IOS daemon), 40-41
kernel, 64

scheduler, 65-66
scheduler, 37
XE architecture, 39

kernel, 40
XE drop types, 285

IOSd (IOS daemon), 95

IOS XE, 96
versus IOS, 96-98

IOS XE operating system, 95

IP mobility, LISP, 175

IP SLA (IP Service Level Agreement), CSR
1000V, 54

IPsec VPNs, 142
with crypto maps, 143-144
offloading, 3

IPsec VPNs 325

326 Ipsilon Networks

Ipsilon Networks, 13

Ipv4NoAdj drop type (IOS), 286

Ipv4NoRoute drop type (IOS), 286

IPv6 migration, LISP, 175

ITR (ingress tunnel router), 169-170

K
Kernel-based Virtual Machine (KVM). See

KVM (Kernel-based Virtual Machine)

kernels, 63
ESXi hypervisor, VMkernel, 75-78
hybrid, 64
IOS, 64

memory manager, 65-66
scheduler, 65

IOS XE, 40
KVM (Kernel-based Virtual Machine),

82-83
architectural components, 84-85
guest emulator, 85-87

Linux, memory management, 69-71
microkernels, 63

hypervisor architecture, 74

Key Server (KS), 146

Keystone component (OpenStack), 34

Keystone project, OpenStack, 199-201

KS (Key Server), 146

KVM (Kernel-based Virtual Machine),
82-83

architectural components, 84-85
guest emulator, 85-87
hypervisor

installing CSR 1000V on, 126-137
Libvirt, 88-91

L
L2 MTU, configuration, 280

L2VPNs (Layer 2 VPNs), 141

L3VPNs (Layer 3 VPNs), 141-143
DMVPNs (Dynamic Multipoint VPNs),

144-145
GET VPNs (Group Encrypted Transport

VPN), 145-147
GRE tunnels, 142
IPsec VPNs, 142
IPsec VPNs with crypto maps, 143-144

MPLS VPNs, 142
site-to-site VPNs, 143
SSL VPNs, 147-148

legacy drivers versus native drivers, 79

Libvirt
management daemon, 88
user tools, 89-91
virsh, 89-91

Linux
memory management, 69

caching, 71
overcommitment, 69-70
swap space, 69-71

versus Netmap I/O, 105

LISP (Location/ID Separation Protocol),
168-169, 175, 190

control plane, 171-175
CSR 1000V, 54
data plane, 171
ETR (egress tunnel router), 169-170
IP mobility, 175
IPv6 migration, 175
ITR (ingress tunnel router), 169-170
MR (MAP Resolver), 170
network-to-network connectivity,

175-176
network-to-network interconnection

configuration, 176, 179-182
packet header, 172
PETR (proxy egress tunnel router),

170-171
PITR (proxy ingress tunnel router), 170

LISP-to-MPLS Gateway (LMGW),
176, 179

list command (virsh), 89

LMGW (LISP-to-MPLS Gateway),
176, 179

Locator/ID Separation Protocol (LISP).
See LISP (Locator/ID Separation
Protocol)

low priority, ready queue, 65

Low queue (IOS scheduler), 38

M
mainframes, virtualization, 17

malloc() function, 69

management, automation, 247

networks 327

management daemon (Libvirt), 88
user tools, 89-91

map resolver (MR), 176

map server (MS), 176

MBR (Master Boot Record), 67

measured services, cloud, 21

medium priority, ready queue, 65

Medium queue (IOS scheduler), 38

memory, physical, 76

memory management
Linux

caching, 71
over commitment, 69-70
swap space, 69-71

VMkernel, 76

memory manager (IOS), 65-66

memory usage, configuration, 282-288

microkernel architecture, hypervisors, 74

microkernels, 63

migrate command (virsh), 90

modes of operation (KVM), 83

monolithic architecture, hypervisors, 74

MPLS (Multiprotocol Label Switching), 14
VPNs (virtual private networks),

54-55, 142

MPLS over GRE, 190

MR (MAP Resolver), 170

MTUs (maximum transmission units)
L2, configuration, 280

multipoint L2VPNs, 141

Multiprotocol Label Switching (MPLS). See
MPLS (Multiprotocol Label Switching)

multitenancy, 21, 185

multitenant data center, 16-18
CSR, 185-190

zone connectivity, 188
logical diagram, 185
virtual service block design, 186

N
NAS (network-attached storage), 3

native drivers versus legacy drivers, 79

NBAR2 (Network Based Application
Recognition), 52

NEDs, installation verification, 260-261

NETCONF, 166-168

Netmap I/O
CSR 1000V data plane, 104-105
versus Linux, 105

network-attached storage (NAS), 3

Network Based Application Recognition
(NBAR2), 52

network-based storage virtualization, 11

Network Configuration Protocol
(NetConf), 32

network connectivity, CSR 1000V
cloudburst, 190

network data centers, virtualization, 15

network extension from premises
deployment, CSR 1000V routers, 51

network fabric, data centers, 3

Network Functions Virtualization (NFV),
15, 33, 156, 223

network-level hypervisor, virtualization, 15

network-to-network connectivity, LISP,
175-176

network-to-network interconnection
configuration, LISP, 176-182

network virtualization, 12-13
device-based, 14-15
evolution, 13-14
protocol-based, 14

networking
NFV (network function virtualization), 33
OpenStack, 34
SDN (software-defined networking),

30-31
ONF (Open Networking

Foundation), 31-32
OpenDaylight, 32-33

networks
orchestrating solutions, 247
VPNs (virtual private networks), 141

DMVPNs (Dynamic Multipoint
VPNs), 144-145

GET VPNs (Group Encrypted
Transport VPN), 145-147

IPsec, 142
IPsec with crypto maps, 143-144
L2VPNs, 141
L3VPNs, 142-148
remote access into cloud, 153-155
service gateway, 148-153
site-to-site, 143
SSL VPNs (Secure Sockets Layer

VPN), 147-148

328 Neutron component (OpenStack)

Neutron component (OpenStack), 34

Neutron plugin, instantiating CSR to
OpenStack, 242-245

Neutron project, OpenStack, 202-203

Neutron routers, CSR 1000V, 206-209

NFV (Network Functions Virtualization),
15, 156, 223

NSO orchestration with OpenStack,
252-253, 260-266

NFV MANO, 268

NFV Orchestrator, 268

Nova component (OpenStack), 34

Nova project, OpenStack, 198-199

NSO tool, 249-251
initiation in service and device model

framework, 253, 260
installed NED verification, 260-261
NFV orchestration with OpenStack,

252-253, 260-261, 264-266
VNF (virtual network function)

descriptor definition, 261, 264
instantiation, 264-265

NVF (network function virtualization), 33

O
on-demand service, cloud, 21

ONF (Open Networking Foundation),
31-32

OpenDaylight, 32-33

OpenFlow protocol, 31-32

OpenStack, 34, 196, 225
Create Network submenu, 237-238
Create Router dialog, 238
CSR, instantiating Neutron plugin to,

242-245
dashboard login, 235
deploying, 225-233

CSR tenant, 235-242
network subnet menu, 238
private cloud deployment, CSR 1000V,

195-211
projects, 197

Ceilometer, 205
Cinder, 204
Glance, 201-202
Heat, 205
Horizon, 205

Keystone, 199-201
Neutron, 202-203
Nova, 198-199
Sahara, 205
Swift, 205
Trove, 205

tenants, 265-266
VM image creation, 235

operating systems, 59
boot process, 66-67
design, 60

physical resource management,
60-62

software access to resources, 62
IOS XE, 95-96

versus IOS, 96-98
kernels, 63

hybrid, 64
IOS, 64-66
microkernels, 63

Linux, memory management, 69-71
shared resource access, 72
versus hypervisors, 72-73
virtualization, 8

orchestration, 267
network solutions, 247
NFV MANO, 268
PNSC (Prime Network Services

Controller), 269-270
versus automation, 247
VMS (Virtual Managed Services), 267-268

OTV (Overlay Transport
Virtualization), 190

CSR 1000V, 55

overcommitment, memory, Linux, 69-70

Overlay Transport Virtualization
(OTV). See OTV (Overlay Transport
Virtualization)

overlays, SDN, 224

P
PaaS (Platform as a Service), 2, 18-19

packet flow, CSR 1000V data plane, 103
device initialization, 106-107
Netmap I/O, 104-105
Rx, 108
Tx, 107
unicast traffic, 109

public cloud deployment 329

packet loss, debugging, 276
CPU usage, 281-282
ESXi, 289-292
hardware and software configurations,

278-279
high-level packet flow, 276-277
interface-to-NIC mapping, 281
L2 MTU, 280
memory usage, 282-288
throughput license, 277-278
vSwitch packet drops, 289

packets, LISP, 172

Packstack, deploying OpenStack, 225-233

paged memory, 61

para-virtualization, server, 8

partitioning, core, hypervisors, 75

pay-as-you-use service, 21

PCI passthrough mode, hypervisor
software, 274

Performance Routing (PfR), 55

performance tuning, CSR 1000V, 137-139

PETR (proxy egress tunnel router),
170-171

PfR (Performance Routing), 55

physical infrastructure, network
virtualization, 15

physical memory, 76

physical resource management, operating
systems, 60-62

pining, CPUs, 138

PITR (proxy ingress tunnel router), 170

Platform as a Service (PaaS). See PaaS
(Platform as a Service)

Platform Manager (IOSd), 41

PNSC (Prime Network Services
Controller), 248

orchestration, 269-270

point-to-point L2VPNs, 141

policy IPsec VPNs, 143

pool manager (memory manager), 65

Power setting, BIOS, 276

preemption scheduling algorithm, 61

Prime Network Services Controller
(PNSC). See PNSC (Prime Network
Services Controller)

priority scheduling algorithm, 61

private cloud, 20

private cloud deployment in OpenStack,
CSR 1000V, 195-211

processes
ESP, 98
RP, 97
SIP/SPA, 98
VMkernel, 77-78

programmable fabric, SDN, 224

projects, OpenStack, 197
Ceilometer, 205
Cinder, 204
Glance, 201-202
Heat, 205
Horizon, 205
Keystone, 199-201
Neutron, 202-203
Nova, 198-199
Sahara, 205
Swift, 205
Trove, 205

protocol-based network protocol, 14

protocols
LISP (Location/ID Separation Protocol),

54, 168-169, 175
control plane, 171-175
data plane, 171
ETR (egress tunnel router), 169-170
IP mobility, 175
IPv6 migration, 175
ITR (ingress tunnel router), 169-170
MR (MAP Resolver), 170
network-to-network connectivity,

175-176
network-to-network interconnection

configuration, 176, 179-182
PETR (proxy egress tunnel router),

170-171
PITR (proxy ingress tunnel

router), 170
OpenFlow, 31-32

provisioning, automation, 247

public cloud, 20

public cloud deployment
CSR, Amazon web services, 211-215
CSR 1000V, 211

Amazon web services, 216-222

330 QEMU (Quick Emulator)

Q
QEMU (Quick Emulator)

architectural components, 84-85
guest emulator, 85-87
KVM architecture, 87

QFP (QuantumFlow Processor), 43
debugging options, 286-288

QFP uCode (packet processing), CSR data
plane, 102

quit command (virsh), 90

R
Radio Aware Routing, CSR 1000V, 56

rapid deployment, CSR 1000V routers, 49

ready queue (IOS scheduler), 65

reboot command (virsh), 90

redirection access model, CSR 1000V
cloudburst, 192-193

Redundancy Group Infrastructure, CSR
1000V, 56

region manager (memory manager), 65

regions, VPC, 214

resource pooling, 21

REST API, 202

restore command (virsh), 90

resume command (virsh), 90

ring manipulation, Netmap I/O, 105

RLOC (Routing Locator), 170

round-robin scheduling algorithm, 60

route reflector (RR), 176

routers. See also CSR (cloud service router)
ASR 1000, 41

ESPs (embedded service processors),
42-43

RP (route processor), 42
SIP (SPA interface processor), 43

CSR (cloud service router)
BPG route reflector, 155-162
host configuration, 275-276
hypervisors, 59
LISP (Locator/ID Separation

Protocol), 168-182
OpenStack, 235-242
public cloud deployment, Amazon

web services, 211-215

as Remote Access VPN server,
153-155

remote VPN access into Cloud,
153-155

secure inter-cloud connectivity, 152
CSR 1000V, 44-45

deployment requirements, 45-47
elastic performance and scaling,

47-48
network extension from premises to

cloud, 51
rapid deployment, 49
routing flexibility, 49
secure cloud VPN gateway, 50-51
segmentation within cloud, 52

ETR (Egress Tunnel Router), 169-170
ITR (Ingress Tunnel Router), 169-170
Neutron, CSR 1000V, 206-209
PETR, 170-171
PITR, 170
software, 16
tenant, CSR 1000V, 209-211

routing
flexibility, 49
PfR (Performance Routing), 55
Radio Aware Routing, 56
tables, 213

RP (route processor)
ASR (Aggregation Service Router), 42
processes, 97

Rx packet flow, CSR 1000V data
plane, 108

S
S3 (Simple Storage Service), Amazon, 212

SaaS (Software as a Service), 2, 18-20

Sahara project, OpenStack, 205

SAN (storage-area network), 3

save command (virsh), 90

scaling CSR 1000V routers, 47-48

scheduler (IOS), 37, 65

scheduling algorithms, 60-62

SDN (software-defined networking), 1,
30-31, 223

abstract layer creation, 223
application-centric infrastructure, 224
data center, 224-225

swap files 331

framework, 223
ONF (Open Networking Foundation),

31-32
OpenDaylight, 32-33
overlays, 224
programmable fabric, 224

secure cloud VPN gateway deployment,
CSR 1000V routers, 50-51

secure inter-cloud connectivity, CSR, 152

Secure Sockets Layer (SSL), 3
VPNs (SSL VPNs), 147-148

security groups, VPC, 213

segmentation within cloud, CSR 1000V
routers, 52

segmented memory allocation, 61

server virtualization, 6-7
full, 8
OS (operating system), 8
para-, 8
storage, 10

service blocks, data centers
deployment, 188
placement, 186

service virtualization, 15-16

services
data centers, 3
IaaS (Infrastructure as a Service), 18-19
PaaS (Platform as a Service), 19
SaaS (Software as a Service), 20

Setmaxmem command (virsh), 90

Setmem command (virsh), 90

Setvcpus command (virsh), 90

shared resources, access, operating
systems, 72

Shortest Process Next (SPN) scheduling
algorithm, 60

Shortest Remaining Time (SRT)
algorithm, 61

show commands, 181-182

show interface command, 278-279

show interface controller command, 283

show interfaces command, 282

shutdown command (virsh), 90

Simple Storage Service (S3), Amazon, 212

Single Root I/O Virtualization (SR-IOV),
274-275

SIP (SPA interface processor), ASR
(Aggregation Service Router), 43

SIP/SPA processes, 98

site-to-site VPNs, 143

SNIA (Storage Networking Industry
Association), 10

sockets settings, hosts, 275

software
access to physical resources, operating

systems, 62
speed configuration, 278-279

Software as a Service (SaaS). See SaaS
(Software as a Service)

software crypto engine, CSR 1000V, 103

software-defined networking (SDN). See
SDN (software-defined networking)

software router, 16

software VPN access, 27

SPA interface processor (SIP), 43

speed command, 278

SpeedStep setting, BIOS, 276

SPN (Shortest Process Next) scheduling
algorithm, 60

SR-IOV (Single Root I/O Virtualization),
274-275

SRT (Shortest Remaining Time)
algorithm, 61

SSL (Secure Sockets Layer), 3
VPNs (Secure Sockets Layer VPNs),

147-148

start command (virsh), 89

static routing VPNs, 143

statistics drop command, 285

storage, 3

storage-area network (SAN), 3

Storage Networking Industry Association
(SNIA), 10

storage virtualization, 9-11
device-based, 11
hidden complexity, 12
host-based, 11
network-based, 11
performance, 12
thin provisioning, 12

subnets, VPC, 212

supervisors, 72

suspend command (virsh), 90

swap caches, 71

swap files, 71

332 swapping memory, Linux

swapping memory, Linux, 69-71

Swift component (OpenStack), 34

Swift project, OpenStack, 205

switches, vSwitch, 272-273
packet drops, 289

synchronization, Netmap, 105

system design, CSR 1000V, 95-98

T
Tail-f framework, 166

Tail-f tool, 249, 251
NFV orchestration with OpenStack,

252-253, 260-261, 264-266

TailDrop drop type (IOS), 286

tenant deployment, OpenStack, CSR,
235-240, 242

tenant routers
CSR 1000V, 209-211

tenants, 201
OpenStack, 265-266

thin client mode (SSL VPNs), 147

thrashing, 71

throughput, appropriate license, 277-278

Tiny Code Generator (TCG), 87

traffic, hair pinning, 27

troubleshooting, CSR 1000V
architecture overview, 271-272
I/O configuration, 272-276

Trove project, OpenStack, 205

tunnel mode (SSL VPNs), 147

Tx packet flow, CSR 1000V data
plane, 107

U
uCode, CSR data plane, 102

UnconfiguredIpv4Fia drop type (IOS), 286

UnconfiguredIpv6Fia drop type (IOS), 286

undefine command (virsh), 90

unicast traffic packet flow, CSR 1000V
data plane, 109

UNIVAC-I mainframe computer, 1

unstructured data, 4

user tools, Libvit, 89-91

utilization, data centers, 2

V
vCenter, 81

Vcpuinfo command (virsh), 90

Vcpupin command (virsh), 90

VIM (Virtualized Infrastructure
Manager), 268

virsh command-line tool, 89-91

Virtual Extensible LAN (VxLAN), 56, 190

Virtual Machine File System (VMFS),
79-80

Virtual Machine Manager, 71, 127,
130-134. See also hypervisors

virtual machines, KVM (Kernel-based
Virtual Machine), 82-83

architectural components, 84-85
guest emulator, 85-87

Virtual Managed Services (VMS). See VMS
(Virtual Managed Services)

Virtual Private Cloud (VPC), Amazon, 211

Virtual Private LAN Services (VPLS), 55

virtual private networks (VPNs). See VPNs
(virtual private networks)

virtual routing and forwarding (VRF), 14

virtual service block design, multitenant
data centers, 186

virtual switches, vSwitch, 272-273

virtualization, 71
ASR 1001 into CSR 1000V, 98
branch, 164-168
data centers, 2-4

conceptual architecture, 5-6
evolution, 5

mainframes, 17
network, 12-13

device-based, 14
evolution, 13-14
protocol-based, 14

NFV (Network Functions Virtualization),
33, 156, 223

OTV (Overlay Transport Virtualization),
CSR 1000V, 55

server, 6-8
storage, 11

service, 15-16
SR-IOV (Single Root I/O Virtualization),

274-275

zones, connectivity, multitenant data center with CSR 1000V 333

storage, 9-10
device-based, 11
hidden complexity, 12
host-based, 11
network-based, 11
thin provisioning, 12

Virtualized Infrastructure Manager
(VIM), 268

VMs (virtual machines)
bringing up on ESXi with CSR 1000V,

110-125
layers, CSR, 103

VMFS (virtual machine file system), 79-80

VMkernel, ESXi hypervisor, 75-76
CIM processes, 77-78
CPU scheduler, 76
DCUI processes, 77
memory management, 76
VMM processes, 77
VMX processes, 77

VMM (virtual machine manager). See
hypervisors

VMS (Virtual Managed Services), 248
orchestration, 267-268

VMware hypervisor, installing CSR 1000V
on, 110-125

VMX processes, VMkernel, 77

VNF
descriptor definition, 261, 264
instantiation, 264-265
Manager, 268

vPATH function, 270

VPC (Virtual Private Cloud), 212
Amazon, 211
availability zones, 214
Direct Connect, 214
elastic IP, 213
Internet gateway, 213
regions, 214
routing tables, 213
security groups, 213
subnets, 212

VPLS (Virtual Private LAN Services), CSR
1000V, 55

VPNs (virtual private machines), 141
DMVPNs (Dynamic Multipoint VPNs),

53, 144-145
GET VPNs (Group Encrypted Transport

VPN), 145-147

IPsec, 142
IPsec with crypto maps, 143-144
L2VPNs, 141
L3VPNs, 142-143

DMVPNs, 144-145
GET VPNs, 145-147
GRE tunnels, 142
IPsec VPNs, 142-144
MPLS VPNs, 142
site-to-site VPNs, 143
SSL VPNs, 147-148

MPLS (Multiprotocol Label
Switching), 54

remote access into cloud, 153-155
service gateway, 148-153
site-to-site, 143
SSL VPNs (Secure Sockets Layer VPN),

147-148

VRF (virtual routing and forwarding), 14

vSwitch, 272-273
packet drops, troubleshooting, 289

VxLAN (Virtual Extensible LAN), 190
CSR 1000V, 56

W-X
Windows Server Virtualization, 91

workload migration, CSR 1000V
cloudburst, 191

XE architecture, IOS, 39
kernel, 40

Xen hypervisor, 92-93

XMPP (Extensible Messaging and
Presence Protocol), 32

Y-Z
YANG, 166-168

ZBFW (Zone Based Firewall), CSR 1000V,
56-57

zero-copy model, Netmap, 105

Zone Based Firewall (ZBFW), 56

zones, connectivity, multitenant data
center with CSR 1000V, 188

	Cover
	Title Page
	Copyright Page
	About the Authors
	Acknowledgments
	Contents
	Introduction
	Chapter 4 CSR 1000V Software Architecture
	System Design
	Virtualizing the ASR 1001 into the CSR 1000V
	CSR 1000V Initialization Process
	CSR 1000V Data Plane Architecture
	CSR 1000V Software Crypto Engine

	Life of a Packet on a CSR 1000V: The Data Plane
	Netmap I/O
	Packet Flow
	Device Initialization Flow
	TX Flow
	RX Flow
	Unicast Traffic Packet Flow

	Installing the CSR 1000V on a VMware Hypervisor
	Bringing Up the VM with the CSR 1000V on ESXi

	Installing the CSR 1000V on a KVM Hypervisor
	Bring Up the CSR 1000V as a Guest

	Performance Tuning of the CSR 1000V
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

