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xix

  Command Syntax Conventions  

 The conventions used to present command syntax in this book are the same conventions 
used in Cisco’s Command Reference. The Command Reference describes these conven-
tions as follows:  

      Boldface  indicates commands and keywords that are entered literally as shown. In 
actual configuration examples and output (not general command syntax), boldface 
indicates commands that are manually input by the user (such as a  show  command).   

     Italics  indicate arguments for which you supply actual values.   

    Vertical bars (|) separate alternative, mutually exclusive elements.   

    Square brackets [ ] indicate optional elements.   

    Braces { } indicate a required choice.   

    Braces within brackets [{ }] indicate a required choice within an optional element.    

  Note     This book covers multiple operating systems, and different icons and router 
names are used to indicate the appropriate OS that is being referenced. Cisco IOS and 
IOS XE use router names such as R1 and R2 and are referenced by the IOS router icon. 
Cisco IOS XR routers use router names such as XR1 and XR2 and are referenced by the 
IOS XR router icon.    
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  Foreword  

 Looking at the history of network control, one can wonder why so much complexity 
emerged out of so simple concepts. Network management systems have traditionally 
focused on control of features, without thinking of networks as systems. Any network 
control scheme, at the heart, aims to solve two things: control of endpoint behaviors, 
where regulations are imposed on what sets of endpoints can communicate or not, also 
known as access control, and path optimization problems instrumented through manage-
ment of numerous network control plane protocols. Unfortunately, this natural separa-
tion has rarely been honored, resulting in the control models that are both difficult to  
consume and operationally fragile.  

 IT does not exist for the benefit of itself. The purpose of any IT organization is to run 
business applications. The application owner, architect, and developer all have intimate 
understanding of their applications. They have a complete picture of the application’s 
infrastructure requirements and full understanding of other application components 
necessary for communication. However, once it comes to deployment, all this knowl-
edge, the original intent, is forever lost in the implementation detail of the translation 
between the application requirements and the actual configuration of the infrastructure. 
The unfortunate consequence of this is that there’s no easy way to map resources  and 
configurations back to the application. Now, what if we need to expand the app, add 
more components, or simply retire it from the data center? What happens to the residual 
configuration?  

 When we started Insieme, one of the chief goals was to bring networking into the reach 
of those who don’t need to understand it: an application guy who needs to identify how 
his application interacts with other application components in the data center, an ops 
guy who needs to configure cluster expansion, a compliance guy who needs to ensure 
that no enterprise-wide business rules are violated. We felt that the way operational 
teams interact with the network needed to change in order for networking to enter the 
next logical step in the evolution.  

 Lucien and Maurizio explain the new Policy Driven Data Center and its associated oper-
ational model. This book focuses, on one hand, on the architecture, concept, and meth-
odology to build a modern data center solving this paradigm; while also, on the other 
hand, detailing the Cisco ACI solution.  

 Mike Dvorkin  

 Distinguished Cisco Engineer, Chief Scientist, and Co-founder of Insieme Networks   
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  Introduction  

 Welcome to the Policy Driven Data Center with Application Centric Infrastructure 
(ACI). You are embarking on a journey to understand the latest Cisco data center fabric 
and the many innovations that are part of it.  

 The objective of this book is to explain the architecture design principles, the concepts, 
and the methodology to build new data center fabrics. Several key concepts in this 
book, such as the policy data model, programming, and automation, have a domain of 
applicability that goes beyond the ACI technology itself and forms a core skillset of net-
work engineers and architects.  

 Cisco Application Centric Infrastructure (ACI) is a data center fabric that enables you to 
integrate virtual and physical workloads in a highly programmable multi-hypervisor envi-
ronment that is designed for any multi-service or cloud data center.  

 To fully appreciate the ACI innovations, one has to understand the key new industry 
trends in the networking field.  

  Industry Trends  

 At the time of this writing, the network industry is experiencing the emergence of new 
operational models. Many of these changes are influenced by innovations and method-
ology that have happened in the server world or in the application world.  

 The following list provides a nonexhaustive collection of trends currently influencing 
new data center designs:  

     Adoption of cloud services.   

    New methodology of provisioning network connectivity (namely self-service 
catalogs).   

    Ability to put new applications into production more quickly and to do A/B testing. 
This concept relates to the ability to shorten the time necessary to provision a com-
plete network infrastructure for a given application.   

    Ability to “fail fast”; that is, being able to put a new version of an application into 
production for a limited time and then to decommission it quickly should bugs arise 
during the testing.   

    Ability to use the same tools that manage servers (such as Puppet, Chef, CFengines, 
etc.) to manage networking equipment.   

    The need for better interaction between server and application teams and operation 
teams (DevOps).   

    Ability to deal with “elephant flows”; that is, the ability to have backups or com-
monly bulk transfers without affecting the rest of the traffic.   

    Ability to automate network configuration with a more systematic and less prone to 
error programmatic way using scripts.   
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    Adoption of software development methodologies such as Agile and Continuous 
Integration.    

 Some of these trends are collectively summarized as “application velocity,” which refers 
to the ability to shorten the time to bring an application from development to produc-
tion (and back to testing, if needed) by spawning new servers and network connectivity 
in a much faster way than before.   

  What Is an “Application”?  

 The meaning of “application” varies depending on the context or job role of the per-
son that is using this term. For a networking professional, an application may be a DNS 
server, a virtualized server, a web server, and so on. For a developer of an online order-
ing tool, the application is the ordering tool itself, which comprises various servers: 
presentation servers, databases, and so on. For a middleware professional, an application 
may be the IBM WebSphere environment, SAP, and so on.  

 For the purpose of this book, in the context of Cisco ACI, an application refers to a 
set of networking components that provides connectivity for a given set of workloads. 
These workloads’ relationship is what ACI calls an “application,” and the relationship is 
expressed by what ACI calls an application network profile, explained after  Figure   1   .  

  Figure   1    provides an example illustrating an application that is accessible from a com-
pany intranet and that is connected to an external company that provides some business 
function. This could be, for instance, a travel reservation system, an ordering tool, a bill-
ing tool, and so on.  
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 This relationship can be expressed in ACI by using the concept of  application network 

profile  (ANP), which abstracts the specific VLANs or subnets that the building blocks 
reside on. The configuration of network connectivity is expressed in terms of  policies , 
which define which endpoints consume (or provide) services provided by (consumed by) 
other endpoints.  

 Using ACI doesn’t require deep understanding of these application relationships. These 
often are implicit in existing networking configurations by means of VLANs and access 
control lists. Hence, one can just use ANPs and associated policies as containers of 
existing configurations without the need to map exact server-to-server communication 
patterns.  

 The value proposition of using ANPs is that it enables network administrators to express 
network configurations in a more abstract manner that can be more closely mapped to 
the building blocks of a business application such as an ordering tool, a travel reserva-
tion system, and so on. After the applications are defined, they can be validated in a test 
environment and immediately moved to a production environment.   

  The Need for Abstraction  

 Applications already run in data centers today even without ACI. Network administra-
tors create the connectivity between building blocks by using VLANs, IP addresses, 
routing, and ACLs by translating the requirements of the IT organization to support a 
given tool. However, without ACI, administrators have no way to really express such 
configurations directly in a format that can be mapped to the network, leaving admin-
istrators with no choice but to focus primarily on expressing a very open connectivity 
policy to ensure that servers can talk to each other if they are internal to the company 
and can talk to the outside  if they are on the DMZ or extranet. This requires administra-
tors to harden ACLs and put firewalls to restrict the scope of which service clients and 
other servers can use from a given set of servers.  

 This approach results in configurations that are not very portable. They are very much 
hard-coded in the specific data center environment where they are implemented. If the 
same environment must be built in a different data center, somebody must perform the 
tedious job of reconfiguring IP addresses and VLANs and deciphering ACLs.  

 ACI is revolutionizing this process by introducing the ability to create an application 
network profile, a configuration template to express relationships between compute seg-
ments. ACI then translates those relationships into networking constructs that routers 
and switches can implement (i.e., in VLANs, VXLANs, VRFs, IP addresses, and so on).   
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  What Is Cisco ACI  

 The Cisco ACI fabric consists of discrete components that operate as routers and 
switches but are provisioned and monitored as a single entity. The operation is like a 
distributed switch and router configuration that provides advanced traffic optimization, 
security, and telemetry functions, stitching together virtual and physical workloads. The 
controller, called the Application Policy Infrastructure Controller (APIC), is the central 
point of management of the fabric. This is the device that distributes ANP policies to the 
devices that are part of the fabric.  

 The Cisco ACI Fabric OS runs on the building blocks of the fabric, which are, at time of 
writing, the Cisco Nexus 9000 Series nodes. The Cisco ACI Fabric OS is object-oriented 
and enables programming of objects for each configurable element of the system. The 
ACI Fabric OS renders policies (such as the ANP and its relationships) from the control-
ler into a concrete model that runs in the physical infrastructure. The concrete model is 
analogous to compiled software; it is the form of the model that the switch operating 
system can execute.  

 Cisco ACI is designed for many types of deployments, including public and private 
clouds, big data environments, and hosting of virtualized and physical workloads. It pro-
vides the ability to instantiate new networks almost instantaneously and to remove them 
just as quickly. ACI is designed to simplify automation and can be easily integrated into 
the workflow of common orchestration tools.  

  Figure   2    illustrates the ACI fabric with the spine-leaf architecture and controllers. 
Physical and virtual servers can be connected to the ACI fabric and also receive connec-
tivity to the external network.  
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  Cisco ACI Innovations  

 Cisco ACI introduces many innovations:  

     The whole fabric is managed as a single entity but without a centralized control 
plane.   

    The fabric is managed via an object tree with methods and classes that are accessible 
with REST calls.   

    It introduces a new management model based on a declarative approach instead of 
an imperative approach.   

    It allows a clear mapping of application relationships to the network infrastructure.   

    It is designed for multi-tenancy.   

    It is multi-hypervisor capable.   

    It allows the definition of abstract configurations (or templates) that make configu-
rations portable.   

    It changes the way that networking configurations are expressed, from VLAN and 
IP addresses to policies.   

    It revolutionizes equal-cost multipathing and quality of service (QoS) with flowlet 
load balancing, dynamic flow prioritization, and congestion management.   

    It introduces new concepts for telemetry, such as the concept of health scores and 
atomic counters.     

  Book Structure  

  Chapter   1   : Data Center Architecture Considerations  

 The goal of this chapter is to describe the network requirements of different server envi-
ronments and how to meet them in terms of network design.  

  Chapter   2   : Building Blocks for Cloud Architectures  

 At the time of this writing, most large-scale data center deployments are designed with 
the principles of cloud computing. This is equally true for data centers that are built 
by providers or by large enterprises. This chapter illustrates the design and technology 
requirements of building a cloud.  

  Chapter   3   : The Policy Data Center  

 The goal of this chapter is to elucidate the Cisco ACI approach to modeling business 
applications. This approach provides a unique blend of mapping hardware and software 
capabilities to the deployment of applications either graphically through the Cisco 
Application Policy Infrastructure Controller (APIC) GUI or programmatically through 
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the Cisco APIC API model. The APIC concepts and principles are explained in detail in 
this chapter. Finally, the ACI fabric is not only for greenfield deployment. Many users 
will consider how to deploy an ACI fabric into an existing environment. Therefore, 
the last part of this chapter explains how to integrate the  ACI fabric with an existing 
network.  

  Chapter   4   : Operational Model  

 Command-line interfaces (CLI) are great tools for interactive changes to the configura-
tion, but they are not designed for automation, nor for ease of parsing (CLI scraping is 
neither efficient nor practical) or customization. Furthermore, CLIs don’t have the ability 
to compete with the power of parsing, string manipulation, or the advanced logic that 
sophisticated scripting languages like Python can offer. This chapter covers the key tech-
nologies and tools that new administrators and operators must be familiar with, and it 
explains how they are used in an ACI-based data center.  

  Chapter   5   : Data Center Design with Hypervisors  

 This chapter describes the networking requirements and design considerations when 
using hypervisors in the data center.  

  Chapter   6   : OpenStack  

 This chapter explains in detail OpenStack and its relation to Cisco ACI. The goal of this 
chapter is to explain what OpenStack is and present the details of the Cisco ACI APIC 
OpenStack driver architecture.  

  Chapter   7   : ACI Fabric Design Methodology  

 This chapter describes the topology of an ACI fabric and how to configure it both as 
an infrastructure administrator and as a tenant administrator. The chapter covers the 
configuration of physical interfaces, PortChannels, virtual PortChannels, and VLAN 
namespaces as part of the infrastructure configurations. The chapter also covers the 
topics of segmentation, multi-tenancy, connectivity to physical and virtual servers, and 
external connectivity as part of the tenant configuration.  

  Chapter   8   : Service Insertion with ACI  

 Cisco ACI technology provides the capability to insert Layer 4 through Layer 7 func-
tions using an approach called a service graph. The industry normally refers to the capa-
bility to add Layer 4 through Layer 7 devices in the path between endpoints as service 
insertion. The Cisco ACI service graph technology can be considered a superset of 
service insertion. This chapter describes the service graph concept and how to design for 
service insertion with the service graph.  

  Chapter   9   : Advanced Telemetry  

 The goal of this chapter is to explain the centralized troubleshooting techniques that 
ACI offers for isolating problems. It includes topics such as atomic counters and 
health scores.  
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  Chapter   10   : Data Center Switch Architecture  

 The goal of this chapter is to provide a clear explanation of the data center switching 
architecture. It is divided into three sections: the hardware switch architecture, the fun-
damental principles of switching, and the quality of service in the data center.   

  Terminology  

 Node: Physical network device.  

 Spine node: Network device placed in the core part of the data center. Typically it’s a 
device with high port density and higher speed.  

 Leaf node: Network device placed at the access of the data center. It is the first tier of 
network equipment defining the data center network fabric.  

 Fabric: A group of leaf and spine nodes defining the data center network physical 
topology.  

 Workload: A virtual machine defining a single virtual entity.  

 Two-tier topology: Typically defined by a spine-leaf fabric topology.  

 Three-tier topology: A network topology with access, aggregation, and core tiers.  

 Services: Category defined by the following (nonexhaustive) group of appliances: load 
balancers, security devices, content accelerators, network monitoring devices, network 
management devices, traffic analyzers, automation and scripting servers, etc.  

 ULL: Ultra-low latency. Characterizes network equipment in which the latency is under a 
microsecond. Current technology is nanosecond level.  

 HPC: High-performance compute. Applications using structured data schemes (database) 
or unstructured data (NoSQL) where performance is important at predictable and low 
latency and with the capability to scale. The traffic patterns are east-west.  

 HFT: High-frequency trading. Typically occurs in a financial trading environment, where 
the latency needs to be minimal on the data center fabric to provide as close as possible 
to real time information to the end users. Traffic is mainly north-south  

 Clos: Multistage switching network, sometimes called “fat tree,” based on a 1985 article 
by Charles Leiserson. The idea of Clos is to build a very high-speed, nonblocking switch-
ing fabric.     
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    At the time of this writing, most large-scale data center deployments are designed with 
the principles of cloud computing at the forefront. This is equally true for data centers 
that are built by providers or by large enterprises. This chapter illustrates the design and 
technology requirements for building a cloud.   

     Introduction to Cloud Architectures  

 The National Institute of Technology and Standards (NIST) defines cloud computing as 
“a model for enabling convenient, on-demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers, storage, applications, and services) 
that can be rapidly provisioned and released with minimal management effort or service 
provider interaction.” (See  http://csrc.nist.gov/groups/SNS/cloud-computing .)  

 Data center resources, such as individual servers or applications, are offered as  elastic  
services, which means that capacity is added on demand, and when the compute or 
application is not needed, the resources providing it can be decommissioned. Amazon 
Web Services (AWS) is often regarded as the pioneer of this concept and many similar 
services that exist today.  

 Cloud computing services are often classified according to two different categories:  

      Cloud delivery model:       Public cloud, private cloud, or hybrid cloud   

     Service delivery model:       Infrastructure as a Service, Platform as a Service, or 
Software as a Service    

 Building Blocks for Cloud 
Architectures  

  Chapter 2 

http://csrc.nist.gov/groups/SNS/cloud-computing
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 The cloud delivery model indicates where the compute is provisioned. The following 

terminology is often used:  

   ■    Private cloud:       A service on the premises of an enterprise. A data center designed as 

a private cloud offers shared resources to internal users. A private cloud is shared by 

tenants, where each tenant is, for instance, a business unit.   

  ■    Public cloud:       A service offered by a service provider or cloud provider such as 

Amazon, Rackspace, Google, or Microsoft. A public cloud is typically shared by 

multiple  tenants , where each tenant is, for instance, an enterprise.   

  ■    Hybrid cloud:       Offers some resources for workloads through a private cloud and 

other resources through a public cloud. The ability to move some compute to the 

public cloud is sometimes referred to as  cloud burst .    

 The service delivery model indicates what the user employs from the cloud service:  

   ■    Infrastructure as a Service (IaaS):       A user requests a dedicated machine (a virtual 

machine) on which they install applications, some storage, and networking infra-

structure. Examples include Amazon AWS, VMware vCloud Express, and so on.   

  ■    Platform as a Service (PaaS):       A user requests a database, web server environment, 

and so on. Examples include Google App Engine and Microsoft Azure.   

  ■    Software as a Service (SaaS) or Application as a Service (AaaS):       A user runs appli-

cations such as Microsoft Office, Salesforce, or Cisco WebEx on the cloud instead 

of on their own premises.    

 The cloud model of consumption of IT services, and in particular for IaaS, is based on 

the concept that the user relies on a self-service portal to provide services from a catalog 

and the provisioning workflow is completely automated. This ensures that the user of 

the service doesn’t need to wait for IT personnel to allocate VLANs, stitch load balanc-

ers or firewalls, and so on. The key benefit is that the fulfillment of the user’s request is 

quasi-instantaneous.  

 Until recently, configurations were performed via the CLI to manipulate on a box-by-

box basis. Now, ACI offers the ability to instantiate “virtual” networks of a very large 

scale with a very compact description using Extensible Markup Language (XML) or 

JavaScript Object Notation (JSON).  

 Tools such as Cisco UCS Director (UCSD) and Cisco Intelligent Automation for Cloud 

(CIAC) orchestrate the ACI services together with compute provisioning (such as via 

Cisco UCS Manager, VMware vCenter, or OpenStack) to provide a fast provisioning 

service for the entire infrastructure (which the industry terms a  virtual private cloud , a 

 virtual data center , or a  container ).  

 The components of the cloud infrastructure are represented at a very high level in  Figure 

  2-1   . The user (a) of the cloud service (b) orders a self-contained environment (c) repre-

sented by the container with firewall load balancing and virtual machines (VM). CIAC 
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provides the service catalog function, while UCSD and OpenStack operate as the ele-
ment managers.  
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 Figure 2-1   Building Blocks of a Cloud Infrastructure         

 This request is serviced by the service catalog and portal via the orchestration layer (d). 
The orchestration layer can be composed of several components. Cisco, for instance, 
offers CIAC, which interacts with various element managers to provision compute, net-
work, and storage resources.  

  Figure   2-1    also explains where Application Centric Infrastructure (ACI) and, more pre-
cisely, the Cisco Application Policy Infrastructure Controller (APIC), fit in the cloud 
architecture.   

  Network Requirements of Clouds and the ACI Solution  

 The network infrastructure that provides support for cloud deployments must meet 
 several requirements, such as:  

     Scale for a very large number of virtual machines   

    Support Layer 2 adjacency between workloads   

    Support multi-tenancy   
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    Be highly programmable   

    Support the insertion of load balancers and firewalls   

    Support the insertion of virtual load balancers and virtual firewalls    

 The first and second requirements are almost incompatible because if the data center 
were built with traditional spanning-tree technologies, it would incur two problems:  

     Spanning-tree scalability limits on the control plane   

    Exhaustion of the MAC address tables    

 To address these requirements, the ACI fabric is built based on a VXLAN overlay, which 
allows switches to maintain perceived Layer 2 adjacency on top of a Layer 3 network, 
thus removing the control plane load associated with spanning tree from the switching 
infrastructure. To address the mobility requirements over a Layer 3 infrastructure, the 
forwarding is based on host-based forwarding of full /32 addresses combined with the 
mapping database.  

 This overlay, like most, requires the data path at the edge of the network to map from 
the tenant end point address in the packet, a.k.a. its  identifier , to the location of the 
endpoint, a.k.a. its  locator . This mapping occurs in a function called a  tunnel endpoint  
(TEP). The challenge with this mapping is having to scale for very large data centers, 
because the mapping state must exist in many network devices.  

 The second problem with scale is that when an endpoint moves (that is, its locator 
changes), the mapping state must be updated across the network in all TEPs that have 
that mapping.  

 The ACI solution addresses these problems by using a combination of a centralized 
database of the mappings implemented in the packet data path, at line rate, and a cach-
ing mechanism, again in the data path, at the TEP. ( Chapter   7   , “ACI Fabric Design 
Methodology,” explains the traffic forwarding in ACI in detail.)  

 The other key requirement of building a cloud solution is to be able to instantiate net-
works in a programmatic way. If the network is managed box by box, link by link, the 
script or the automation tool must access individual boxes and trace where a workload is 
in order to enable VLAN trunking on a number of links. It must also ensure that the end-
to-end path is provisioned according to the abstraction model. ACI solves this issue by 
providing a centralized configuration point, the APIC controller, while still maintaining 
individual control plane capabilities on each node in the fabric. The  controller exposes 
the entire network as a hierarchy of objects in a tree. It describes network properties 
related to workloads as logical properties instead of physical properties. So, to define 
connectivity requirements for workloads, you don’t have to express which physical inter-
face a particular workload is on.  

 Furthermore, the fabric exposes the networking properties of all the switches so that 
they can all be configured and managed via Representational State Transfer (REST) calls 
as a single giant switch/router. The APIC REST API accepts and returns HTTP or HTTPS 
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messages that contain JSON or XML documents. Orchestration tools can easily pro-
gram the network infrastructure by using REST calls. ( Chapter   4   , “Operational Model,” 
illustrates this new model and how to automate configurations with REST calls and 
scripting.)  

 Multi-tenancy is conveyed in the management information model by expressing all con-
figurations of bridge domains, VRF contexts, and application network profile as children 
of an object of type fvTenant. The segmentation on the network transport is guaranteed 
by the use of different VXLAN VNIDs.  

 Insertion of firewall and load balancers is also automated to simplify the creation of 
virtual containers comprising physical or virtual firewall and load balancing services. 
( Chapter   8   , “Service Insertion with ACI,” illustrates in more detail the modeling of ser-
vices and how they are added to the fabric.)   

  Amazon Web Services Model  

 This section describes some of the services offered by Amazon Web Services and some 
of the AWS naming conventions. AWS offers a very wide variety of services, and the 
purpose of this section is not to describe all of them. Rather, this section is useful to the 
network administrator for two reasons:  

     As a reference for a popular IaaS service   

    The potential need to extend a private cloud into the Amazon Virtual Private Cloud     

 The following list provides some key AWS terminology:  

      Availability Zone:       A distinct location within a region that is insulated from failures 
in other Availability Zones, and provides inexpensive, low-latency network connec-
tivity to other Availability Zones in the same region.   

     Region:       A collection of Availability Zones, such as us-west, us-east-1a, eu-west, etc., 
in the same geographical region   

     Access credentials:       A public key that is used to access AWS resources allocated to 
a given user   

     Amazon Machine Image (AMI):       The image of a given virtual machine (which 
Amazon calls an  instance )   

     Instance:       A virtual machine that is running a given AMI image   

     Elastic IP address:       A static address associated with an instance    

 Amazon Elastic Compute Cloud (EC2) services enable you to launch an AMI in a 
region of the user’s choice and in an Availability Zone of the user’s choice. Instances 
are protected by a firewall. The instance also gets an IP address and a DNS entry. The 
EC2 services can also be accompanied by the Elastic Load Balancing, which distributes 
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traffic across EC2 compute instances. Auto Scaling helps with provisioning enough EC2 
instances based on the utilization. Amazon CloudWatch provides information about 
CPU load, disk I/O rate, and network I/O rate of each EC2 instance.  

  Note     More information can be found at:

    http://docs.aws.amazon.com/general/latest/gr/glos-chap.html   

  http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
Using_Query_API.html    

 Amazon Simple Storage Service (S3) is accessed via web services API based on SOAP or 
with the HTTP API that uses the standard HTTP verbs (GET, PUT, HEAD, and DELETE). 
The objects are identified by using the protocol name, the S3 endpoint (s3.amazonaws.
com), the object key, and what is called the  bucket name .  

 All resources can be created and manipulated by using Amazon SDKs available for vari-
ous programming languages, such as the Python and PHP SDKs available at the following 
respective URLs:  

    http://aws.amazon.com/sdk-for-python/    

   http://aws.amazon.com/sdk-for-php/     

 With this approach, you can fully automate tasks such as the following:  

     Locating the server resources   

    Attaching storage   

    Providing Internet connectivity   

    Setting up switching and routing   

    Booting the server   

    Installing the OS   

    Configuring applications   

    Assigning IP addresses   

    Configuring firewalling   

    Scaling up the infrastructure    

  Note     For more information, please refer to the book  Host Your Web Site in the 

Cloud: Amazon Web Services Made Easy , by Jeff Barr (SitePoint, 2010).   

 You can access the AWS-hosted Amazon Virtual Private Cloud (VPC) in multiple ways. 
One way is to set a jumphost to which you log in over SSH with the public key that 

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/Using_Query_API.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/Using_Query_API.html
http://aws.amazon.com/sdk-for-python/
http://aws.amazon.com/sdk-for-php/
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AWS generates. Another approach is to connect the enterprise network to the Amazon 
VPC via VPNs.   

  Automating Server Provisioning  

 In large-scale cloud deployments with thousands of physical and virtual servers, adminis-
trators must be able to provision servers in a consistent and timely manner.  

 This section is of interest to the network administrator for several reasons:  

     Some of these technologies can also be used to maintain network equipment 
designs.   

    Cisco ACI reuses some of the concepts from these technologies that have proven to 
be effective to the task of maintaining network configurations.   

    A complete design of ACI must include support for these technologies because the 
compute attached to ACI will use them.    

 The high-level approach to automating server provisioning consists of performing the 
following:  

     PXE booting a server (physical or virtual)   

    Deploying the OS or customized OS on the server with Puppet/Chef/CFEngine 
agents    

 Because of the above reasons, a typical setup for a cloud deployment requires the 
following components:  

     A DHCP server   

    A TFTP server   

    An NFS/HTTP or FTP server to deliver the kickstart files   

    A master for Puppet or Chef or similar tools    

  PXE Booting  

 In modern data centers, administrators rarely install new software via removable media 
such as DVDs. Instead, administrators rely on PXE (Preboot eXecution Environment) 
booting to image servers.  

 The booting process occurs in the following sequence:   

  1.   The host boots up and sends a DHCP request.   

  2.   The DHCP server provides the IP address and the location of the PXE/TFTP 
server.   

  3.   The host sends a TFTP request for pxelinux.0 to the TFTP server.   
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  4.   The TFTP server provides pxelinux.0.   

  5.   The host runs the PXE code and requests the kernel (vmlinuz).   

  6.   The TFTP server provides vmlinuz code and provides the location of the kickstart 
configuration files (NFS/HTTP/FTP and so on).   

  7.   The host requests the kickstart configuration from the server.   

  8.   The HTTP/NFS/FTP server provides the kickstart configuration.   

  9.   The host requests to install packages such as the RPMs.   

  10.   The HTTP/NFS/FTP server provides the RPMs.   

  11.   The host runs Anaconda, which is the post-installation scripts.   

  12.   The HTTP/NFS/FTP server provides the scripts and the Puppet/Chef installation 
information.     

  Deploying the OS with Chef, Puppet, CFengine, or Similar Tools  

 One of the important tasks that administrators have to deal with in large-scale data cen-
ters is maintaining up-to-date compute nodes with the necessary level of patches, the lat-
est packages, and with the intended services enabled.  

 You can maintain configurations by creating VM templates or a golden image and 
instantiating many of them, but this process produces a monolithic image, and replicat-
ing this process every time a change is required is a lengthy task. It is also difficult, if 
not impossible, to propagate updates to the configuration or libraries to all the servers 
generated from the template. The better approach consists of using a tool such as Chef, 
Puppet, or CFengine. With these tools, you create a bare-bones golden image or VM 
template and you push servers day-2.  

 These tools offer the capability to define the node end state with a language that is 
abstracted from the underlying OS. For instance, you don’t need to know whether to 
install a package with “yum” or “apt”; simply define that a given package is needed. You 
don’t have to use different commands on different machines to set up users, packages, 
services, and so on.  

 If you need to create a web server configuration, define it with a high-level language. 
Then, the tool creates the necessary directories, installs the required packages, and starts 
the processes listening on the ports specified by the end user.  

 Some of the key characteristics of these tools are that they are based on principles such 
as a “declarative” model (in that they define the desired end state) and idempotent con-
figurations (in that you can rerun the same configuration multiple times and it always 
yields the same result). The policy model relies on the declarative approach. (You can 
find more details about the declarative model in  Chapter   3   , “The Policy Data Center.”)  

 With these automation tools, you can also simulate the result of a given operation 
before it is actually executed, implement the change, and prevent configuration drifting.  
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  Chef  

 The following list provides a reference for some key terminology used by Chef:  

      Node:       The server (but could be a network device).   

     Attributes:       The configuration of a node.   

     Resources:       Packages, services, files, users, software, networks, and routes.   

     Recipe:       The intended end state of a collection of resources. It is defined in Ruby.   

     Cookbook:       The collection of recipes, files, and so on for a particular configuration 
need. A cookbook is based on a particular application deployment and defines all 
the components necessary for that application deployment.   

     Templates:       Configuration files or fragments with embedded Ruby code (.erb) that is 
resolved at run time.   

     Run list:       The list of recipes that a particular node should run.   

     Knife:       The command line for Chef.   

     Chef client:       The agent that runs on a node.    

 Normally the administrator performs configurations from “Knife” from a Chef worksta-
tion, which has a local repository of the configurations. The cookbooks are saved on the 
Chef server, which pushes them to the nodes, as shown in  Figure   2-2   .  
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 Figure 2-2   Chef Process and Interactions         
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 The recipe that is relevant to the action to be performed on the device is configured on 
the Chef workstation and uploaded to the Chef server.   

  Puppet  

  Figure   2-3    illustrates how Puppet operates. With the Puppet language, you define the 
desired state of resources (users, packages, services, and so on), simulate the deployment 
of the desired end state as defined in the manifest file, and then apply the manifest file 
to the infrastructure. Finally, it is possible to track the components deployed, track the 
changes, and correct configurations from drifting from the intended state.  
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 Figure 2-3   Puppet         

 The following is a list of some key terminology used in Puppet:  

      Nodes:       The servers, or network devices   

     Resource:       The object of configuration: packages, files, users, groups, services, and 
custom server configuration.   

     Manifest:       A source file written using Puppet language (.pp)   

     Class:       A named block of Puppet code   

     Module:       A collection of classes, resource types, files, and templates, organized 
around a particular purpose   
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     Catalog:       Compiled collection of all resources to be applied to a specific node, 
including relationships between those resources       

  Orchestrators for Infrastructure as a Service  

 Amazon EC2, VMware vCloud Director, OpenStack, and Cisco UCS Director are IaaS 
orchestrators that unify the provisioning of virtual machines, physical machines, storage, 
and networking and can power up the entire infrastructure for a given user environment 
(called a  container ,  virtual data center , or  tenant ).  

 The following common operations are enabled by these tools:  

     Creating a VM   

    Powering up a VM   

    Powering down a VM   

    Power cycling a VM   

    Changing ownership of a server   

    Taking a snapshot of an image    

  vCloud Director  

 VMware supports the implementation of clouds with the use of vCloud Director. 
vCloud Director builds on top of vCenter, which in turn coordinates VMs across a 
number of hosts that are running vSphere.  Figure   2-4    illustrates the features of vCloud 
Director, which provides tenant abstraction and resource abstraction and a vApp Catalog 
for users of the cloud computing service.  
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 Figure 2-4   vCloud Director Components         

  Figure   2-5    shows how vCloud Director organizes resources in a different way and 
provides them as part of a hierarchy where the Organization is at the top. Inside the 
Organization there are multiple vDCs.  
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  OpenStack  

  Chapter   6   , “OpenStack,” covers the details of OpenStack as it relates to ACI. The pur-
pose of this section is to explain how OpenStack fits in cloud architectures.  

  Project and Releases  

 Each functional area of OpenStack is a separate project. For the purpose of cloud 
deployments, you don’t have to use the entire OpenStack set of capabilities; you can, 
for instance, just leverage the APIs of a particular project.  

 The list of projects is as follows:  

     Nova for compute   

    Glance, Swift, and Cinder for image management, object storage, and block storage, 
respectively   

    Horizon for the dashboard, self-service portal, and GUI   

    Neutron for networking and IP address management   

    Telemetry for metering   

    Heat for orchestration    

 The release naming is very important because different releases may have significant 
changes in capabilities. At the time of this writing, you may encounter the following 
releases:  
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     Folsom (September 27, 2012)   

    Grizzly (April 4, 2013)   

    Havana (October 17, 2013)   

    Icehouse (April 17, 2014)   

    Juno (October 2014)   

    Kilo (April 2015)    

  Note     You can find the list of releases at:    

http://docs.openstack.org/training-guides/content/
associate-getting-started.html#associate-core-projects    

 The releases of particular interest currently for the network administrator are Folsom, 
because it introduced the Quantum component to manage networking, and Havana, 
which replaced the Quantum component with Neutron. Neutron gives more flexibility 
to manage multiple network components simultaneously, especially with the ML2 archi-
tecture, and is explained in detail in  Chapter   6   .  

 The concept of the plug-in for Neutron is significant. It is how networking vendors 
plug into the OpenStack architecture. Neutron provides a plug-in that can be used by 
OpenStack to configure their specific networking devices through a common API.   

  Multi-Hypervisor Support  

 OpenStack manages compute via the Nova component, which controls a variety of com-
pute instances, such as the following:  

     Kernel-based Virtual Machine (KVM)   

    Linux Containers (LXC), through libvirt   

    Quick EMUlator (QEMU)   

    User Mode Linux (UML)   

    VMware vSphere 4.1 update 1 and newer   

    Xen, Citrix XenServer, and Xen Cloud Platform (XCP)   

    Hyper-V   

    Baremetal, which provisions physical hardware via pluggable subdrivers     

  Installers  

 The installation of OpenStack is a big topic because installing OpenStack has been com-
plicated historically. In fact, Cisco took the initiative to provide an OpenStack rapid 
scripted installation to facilitate the adoption of OpenStack. At this time many other 
installers exist.  

http://docs.openstack.org/training-guides/content/associate-getting-started.html#associate-core-projects
http://docs.openstack.org/training-guides/content/associate-getting-started.html#associate-core-projects
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 When installing OpenStack for proof-of-concept purposes, you often hear the following 
terminology:  

      All-in-one installation:       Places the OpenStack controller and nodes’ components all 
on the same machine   

     Two-roles installation:       Places the OpenStack controller on one machine and a com-
pute on another machine    

 To get started with OpenStack, you typically download a devstack distribution that 
provides an all-in-one, latest-and-greatest version. Devstack is a means for developers 
to quickly “stack” and “unstack” an OpenStack full environment, which allows them to 
develop and test their code. The scale of devstack is limited, naturally.  

 If you want to perform an all-in-one installation of a particular release, you may use the 
Cisco installer for Havana by following the instructions at  http://docwiki.cisco.com/wiki/
OpenStack:Havana:All-in-One , which use the git repo with the code at  https://github.
com/CiscoSystems/puppet_openstack_builder .  Chapter   6    provides additional informa-
tion regarding the install process.  

 There are several rapid installers currently available, such as these:  

     Red Hat OpenStack provides PackStack and Foreman   

    Canonical/Ubuntu provides Metal as a Service (MaaS) and JuJu   

    SUSE provides SUSE Cloud   

    Mirantis provides Fuel   

    Piston Cloud provides one     

  Architecture Models  

 When deploying OpenStack in a data center, you need to consider the following 
components:  

     A PXE server/Cobbler server (Quoting from Fedora: “Cobbler is a Linux installa-
tion server that allows for rapid setup of network installation environments. It glues 
together and automates many associated Linux tasks so you do not have to hop 
between lots of various commands and applications when rolling out new systems, 
and, in some cases, changing existing ones.”)   

    A Puppet server to provide image management for the compute nodes and poten-
tially to image the very controller node of OpenStack   

    A node or more for OpenStack controllers running keystone, Nova (api, cert, com-
mon, conductor, scheduler, and console), Glance, Cinder, Dashboard, and Quantum 
with Open vSwitch   

http://docwiki.cisco.com/wiki/OpenStack:Havana:All-in-One
http://docwiki.cisco.com/wiki/OpenStack:Havana:All-in-One
https://github.com/CiscoSystems/puppet_openstack_builder
https://github.com/CiscoSystems/puppet_openstack_builder
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  ■   The nodes running the virtual machines with Nova (common and compute) and 

Quantum with Open vSwitch   

  ■   The nodes providing the proxy to the storage infrastructure     

  Networking Considerations  

 Cisco products provide plug-ins for the provisioning of network functionalities to be 

part of the OpenStack orchestration.  Figure   2-6    illustrates the architecture of the net-

working infrastructure in OpenStack.  
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 Figure 2-6   OpenStack Networking Plug-ins         

 Networks in OpenStack represent an isolated Layer 2 segment, analogous to VLAN in 

the physical networking world. They can be mapped to VLANs or VXLANs and become 

part of the ACI End Point Groups (EPGs) and Application Network Policies (ANP). As 

 Figure   2-6    illustrates, the core plug-ins infrastructure offers the option to have vendor 

plug-ins. This topic is described in  Chapter   6   .  

  Note     For more information about OpenStack, visit  http://www.openstack.org .     

  UCS Director  

 UCS Director is an automation tool that allows you to abstract the provisioning from 

the use of the element managers and configure compute, storage, and ACI networking 

as part of an automated workflow in order to provision applications. The workflow pro-

vided by UCS Director is such that the administrator defines server policies, application 

network policies, storage policies, and virtualization policies, and UCSD applies these 

policies across the data center as shown in  Figure   2-7   .  

http://www.openstack.org
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 Figure 2-7   UCS Director         

 The workflow can be defined in a very intuitive way via the graphical workflow designer.  

 UCSD has both a northbound API and a southbound API. The southbound API allows 
UCSD to be an extensible platform.  

  Note     For additional information on UCS Director, visit:     https://developer.cisco.com/
site/data-center/converged-infrastructure/ucs-director/overview/     

  Cisco Intelligent Automation for Cloud  

 Cisco Intelligent Automation for Cloud is a tool that enables a self-service portal and is 
powered by an orchestration engine to automate the provisioning of virtual and physical 
servers. Although there are some blurred lines between UCSD and CIAC, CIAC uses the 
UCSD northbound interface and complements the orchestration with the ability to stan-
dardize operations such as offering a self-service portal, opening a ticket, doing charge-
back, and so on. CIAC orchestrates across UCSD, OpenStack, and Amazon EC2, and 
integrates with Puppet/Chef. It also provides measurement of the utilization of resources 
for the purpose of pricing. Resources being monitored include vNIC,  hard drive usage, 
and so on.  

  Figure   2-8    illustrates the operations performed by CIAC for PaaS via the use of Puppet.  

https://developer.cisco.com/site/data-center/converged-infrastructure/ucs-director/overview/
https://developer.cisco.com/site/data-center/converged-infrastructure/ucs-director/overview/
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 Figure 2-8   CIAC Operations         

  Figure   2-9    illustrates more details of the provisioning part of the process.  
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 Figure 2-9   CIAC Workflow         

 CIAC organizes the data center resources with the following hierarchy:  

     Tenants   

    Organization within tenants   

    Virtual data centers   

    Resources    
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  Figure   2-10    illustrates the hierarchy used by CIAC.  
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 The user is offered a complete self-service catalog that includes different options with 
the classic Bronze, Silver, and Gold “containers” or data centers to choose from, as illus-
trated in  Figure   2-11   .  
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  Conciliating Different Abstraction Models  

 One of the tasks of an administrator is to create a cloud infrastructure that maps the 
abstraction model of the service being offered to the abstractions of the components 
that make the cloud.  

 A typical offering may consist of a mix of VMware-based workloads, OpenStack/
KVM-based workloads with an ACI network, and UCSD/CIAC orchestration. Each tech-
nology has its own way of creating hierarchy and virtualizing the compute and network.  

  Table   2-1    provides a comparison between the different environments.  

  Table 2-1   Differences Among VMware vCenter Server, VMware vCloud Director, 
OpenStack, Amazon EC2, UCS Director, CIAC, and ACI  

  Platform 

Type/

Property   

  VMware 

vCenter 

Server   

  VMware 

vCloud 

Director   

  OpenStack 

(Essex)   

  Amazon 

AWS (EC2)   

  UCS 

Director     CIAC     ACI   

  Compute 

POD   

 Data center   Organization   OpenStack 

PE ID  

 Account   Account   Server   N/A  

  Tenant    Folder   Organization   N/A   Account   N/A   Tenant   Security 

domain  

  Organization    Folder   N/A   N/A   N/A   Group   Organization   Tenant  

  VDC    Resource 

pool  

 Organization 

VDC  

 Project   Account   VDC   VDC   Tenant  
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  Platform 

Type/

Property   

  VMware 

vCenter 

Server   

  VMware 

vCloud 

Director   

  OpenStack 

(Essex)   

  Amazon 

AWS (EC2)   

  UCS 

Director     CIAC     ACI   

  VLAN 

Instance   

 vCenter 

network  

 Org network/

network pool  

 Network ID   Network ID   Network 

policy  

 Network   Subnet  

  VM Template    Full path   VM template 

HREF  

 Image ID   AMI ID   Catalog   Server 

template  

 N/A  

 In ACI the network is divided into tenants, and the administration of the tenants is orga-
nized with the concept of a security domain. Different administrators are associated with 
one or more security domains and, similarly, each tenant network can be associated with 
one or more security domains. The result is a many-to-many mapping, which allows cre-
ating sophisticated hierarchies. Furthermore, if two tenant networks represent the same 
“tenant” in CIAC but two different organizations within the same “tenant,” it is possible 
to share resources and enable the communication between them.               

 In CIAC, a tenant can contain different organizations (e.g., departments) and each orga-
nization can own one or more virtual data centers (aggregates of physical and virtual 
resources). Network and other resources can be either shared or segregated, and the API 
exposed by the ACI controller (APIC) to the orchestrator makes it very easy.  

  Note     For more information regarding Cisco’s development in the OpenStack area, visit 
these links:  

    http://www.cisco.com/web/solutions/openstack    

   http://docwiki.cisco.com/wiki/OpenStack         

     Summary  

 This chapter described the components of a cloud infrastructure and how ACI pro-
vides network automation for the cloud. It explained the Amazon Web Services 
approach. This chapter also described the role of the various orchestration tools, such 
as OpenStack, Cisco UCS Director, and Cisco Intelligent Automation for Cloud. It also 
introduced some key concepts regarding how to automate the provisioning of servers 
and how to get started with OpenStack. It explained the OpenStack modeling of the 
cloud infrastructure and compared it to similar modeling by CIAC and ACI. It also dis-
cussed the administrator’s task of mapping the  requirements of IaaS services onto the 
models of these technologies.     

http://www.cisco.com/web/solutions/openstack
http://docwiki.cisco.com/wiki/OpenStack
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