
http://www.facebook.com/share.php?u=http://www.ciscopress.com/title/9781587144905
http://twitter.com/?status=RT: download a free sample chapter http://www.ciscopress.com/title/9781587144905
https://plusone.google.com/share?url=http://www.ciscopress.com/title/9781587144905
http://www.linkedin.com/shareArticle?mini=true&url=http://www.ciscopress.com.com/title/9781587144905
http://www.stumbleupon.com/submit?url=http://www.ciscopress.com/title/9781587144905/Free-Sample-Chapter

Cisco Press

800 East 96th Street

Indianapolis, IN 46240

 The Policy Driven
Data Center with ACI:
Architecture, Concepts,
and Methodology

 Lucien Avramov, CCIE No. 19945

 Maurizio Portolani

ii The Policy Driven Data Center with ACI: Architecture, Concepts, and Methodology

 The Policy Driven Data Center with ACI:
 Architecture, Concepts, and Methodology
 Lucien Avramov and Maurizio Portolani

 Copyright © 2015 Cisco Systems, Inc.

 Cisco Press logo is a trademark of Cisco Systems, Inc.

 Published by:
 Cisco Press
 800 East 96th Street
 Indianapolis, IN 46240 USA

 All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval
system, without written permission from the publisher, except for the inclusion of brief quotations in a
review.

 Printed in the United States of America

 Third Printing: February 2015

 Library of Congress Control Number: 2014955987

 ISBN-13: 978-1-58714-490-5

 ISBN-10: 1-58714-490-5

 Warning and Disclaimer
 This book is designed to provide information about Cisco ACI. Every effort has been made to make this
book as complete and as accurate as possible, but no warranty or fitness is implied.

 The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc. shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book or from the use of the discs or programs that may
accompany it.

 The opinions expressed in this book belong to the author and are not necessarily those of Cisco Systems,
Inc.

iii

 Feedback Information

 At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book
is crafted with care and precision, undergoing rigorous development that involves the unique expertise
of members from the professional technical community.

 Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we
could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us
through email at feedback@ciscopress.com . Please make sure to include the book title and ISBN in your
message.

 We greatly appreciate your assistance.

 Trademark Acknowledgments

 All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. Cisco Press or Cisco Systems, Inc. cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

 Publisher: Paul Boger

 Associate Publisher: Dave Dusthimer

 Business Operation Manager, Cisco Press: Jan Cornelssen

 Executive Editor : Brett Bartow

 Managing Editor: Sandra Schroeder

 Development Editor : Marianne Bartow

 Project Editor : Mandie Frank

 Copy Editor : Bill McManus

 Technical Editors: Tom Edsall, Mike Cohen, Krishna Doddapaneni

 Editorial Assistant: Vanessa Evans

 Designer: Mark Shirar

 Composition: Bumpy Design

 Indexer: Cheryl Lenser

 Proofreader: Debbie Williams

iv The Policy Driven Data Center with ACI: Architecture, Concepts, and Methodology

 About the Authors

 Lucien Avramov , CCIE 19945, is a Senior Technical Marketing Engineer at Cisco.
Lucien specializes in the Nexus data center portfolio and the ACI. Lucien designs data-
center networks worldwide and has wide experience in switch architectures, QoS, ultra-
low latency networks, high-performance computing designs, and OpenStack. Lucien is a
distinguished Cisco Live speaker and former TAC technical leader, he has several indus-
try certifications, authors RFCs at IETF, and owns an active patent. Lucien holds a mas-
ter’s degree in Computer Science and a bachelor’s degree in General Engineering from
Ecole des Mines d’Ales, France. In his spare time, Lucien can be found hiking, biking,
running marathons around the world, and on Twitter: @flying91.

 Maurizio Portolani , Distinguished Technical Marketing Engineer at Cisco Systems,
focuses on the design of data center networks. He coauthored Data Center

Fundamentals for Cisco Press, and holds several patents on current data center technol-
ogies. He attended the Politecnico of Torino (“Laurea in Ingegneria”) and Ecole Centrale
Paris (“Diplôme d’Ingénieur”) where he majored in Electronics.

v

 About the Technical Reviewers

 Tom Edsall is the Chief Technology Officer of Cisco’s Insieme Business Unit, a Cisco
Fellow, and a co-founder of Insieme Networks, a developer of application-centric
infrastructure products, where he is responsible for system architecture and product
evangelism. Insieme Networks was described in Network World as “one of the most
anticipated events in the networking industry over the past 18 months or so, ever since
word leaked that Cisco was funding the spin-in as its response to the software-defined
networking trend.” At Insieme (recently spun back into Cisco), Edsall has led the devel-
opment of the Application Centric Infrastructure (ACI), which includes a new line of
Nexus 9000 switches that form an application-aware switching fabric along with a cen-
tralized controller that manages both virtual and physical network infrastructures.

 Tom has been with Cisco since 1993, except for a stint as CTO and co-founder of spin-
in Andiamo Systems (building SAN switches). One of Cisco’s leading switch architects,
he has been responsible for the MDS, Nexus 7000, and Catalyst 5000 and 6000 product
lines. Two of his products, the Catalyst 6000 and Nexus 7000, have been the recipients
of the prestigious Cisco Pioneer Award. During this time he has been awarded more
than 70 patents in the networking industry and was recently an author of “CONGA:
Distributed Congestion-Aware Load Balancing for Data Centers,” which won the presti-
gious SIGCOMM 2014 best paper award.

 Before joining Cisco, Tom was a co-founder and a member of the senior engineering
management team at Crescendo Communications, Cisco’s first acquisition. Edsall holds
BSEE and MSEE degrees from Stanford, where he has also been a Visiting Scholar and
occasional lecturer.

 Mike Cohen is Director of Product Management at Cisco Systems. Mike began his
career as an early engineer on VMware’s hypervisor team and subsequently worked in
infrastructure product management on Google and Big Switch Networks. Mike holds
a BSE in Electrical Engineering from Princeton University and an MBA from Harvard
Business School.

 Krishna Doddapaneni is responsible for the switching infrastructure and iNXOS part
of ACI. Previously, he served as Director in SAVBU (Cisco) (part of the acquisition
of Nuova Systems). In Nuova Systems, he was responsible for the delivery of the first
FCoE switch. He was responsible for multiple generations of Nexus 5k/2k product lines.
Before Nuova, he was the first employee of Greenfield Networks (acquired by Cisco).
He holds an MS degree in Computer Engineering from Texas A&M University. He holds
numerous patents in the networking field.

vi The Policy Driven Data Center with ACI: Architecture, Concepts, and Methodology

 Dedications

 Lucien Avramov:

 For Regina and Michel, my precious parents who made lifetime sacrifices to give me a
better future.

 Maurizio Portolani:

 This book is dedicated to my friends and my family.

vii

 Acknowledgments

 We would like to thank Mike Dvorkin, Tom Edsall, and Praveen Jain for founding ACI.

 Lucien Avramov:

 First, I would like to thank my family, friends, colleagues, customers, and mentors for
supporting me during this journey, you know who you are. It means a lot to me. Thank
you Mike Dvorkin for sharing your knowledge, philosophy, and friendship. Mike
Cohen, thank you for always being available and willing to work hard on the reviews,
your opinions, and being a great friend. Tom Edsall, thank you for the quality feedback
and time you gave us in this project. Takashi Oikawa, thank you for your kindness and
wisdom. Along this journey I made friends and shared incredible memories. Writing a
book is a journey mainly with yourself, with a reward comparable to reaching a summit.
This journey is stronger when shared with a co-author: I am fortunate to have made a
great friend along the way, Maurizio Portolani.

 Second, I thank Ron Fuller for introducing me to the pleasure of going into a book
project. Thank you to my Cisco colleagues who supported me along the way: Francois
Couderc for the great knowledge sharing, time spent thinking about the structure of
this book, your advice and reviews; Chih-Tsung Huang, Garry Lemasa, Arkadiy Shapiro,
Mike Pavlovich, Jonathan Cornell, and Aleksandr Oysgelt for your encouragement,
reviews, and support along the way. A profound acknowledgement and thanks to the
Cisco Press team: Brett Bartow, your kindness, availability, and patience have meant a
lot to me. Thank you for the opportunity to develop this content and for giving me a
chance. Marianne Bartow, thank you for spending so much time with quality reviews.
Bill McManus, thank you for the editing. Chris Cleveland, thank you for your support
along the way. Mandie Frank, thank you for all the efforts, including keeping this proj-
ect on time; and Mark Shirar, for design help.

 Finally, I thank the people who gave me a chance in my professional career, starting with
Jean-Louis Delhaye mentoring me for years at Airbus and being my friend ever since,
Didier Fernandes for introducing me and mentoring me in Cisco, Erin Foster for giving
me a chance to join Cisco and relocating me to the United States, Ed Swenson and Ali
Ali for giving me a full time job in Cisco TAC, John Bunney for taking me along to build
the TAC Data Center team and mentoring me. Thank you Yousuf Khan for giving me a
chance to join Technical Marketing first, in the Nexus Team, and later in the ACI team,
and for coaching me along the way; Jacob Rapp, Pramod Srivatsa, and Tuqiang Cao for
your leadership and developing my career.

 Maurizio Portolani:

 I would personally like to acknowledge many people who opened my eyes to modern
software development methodology and technology that I could relate to the changes
that ACI is bringing to networking. A special acknowledgment goes to Marco Molteni
for his in-depth philosophical views on XML versus JSON and Yaml and for enlighten-
ing me on GitHub and Python. I would also like to acknowledge Amine Choukir in par-
ticular for his insights on continuous integration, and Luca Relandini for his expertise on
automation.

viii The Policy Driven Data Center with ACI: Architecture, Concepts, and Methodology

 Contents at a Glance

 Foreword xx

 Introduction xxi

 Chapter 1 Data Center Architecture Considerations 1

 Chapter 2 Building Blocks for Cloud Architectures 37

 Chapter 3 The Policy Data Center 57

 Chapter 4 Operational Model 91

 Chapter 5 Data Center Design with Hypervisors 127

 Chapter 6 OpenStack 167

 Chapter 7 ACI Fabric Design Methodology 193

 Chapter 8 Service Insertion with ACI 243

 Chapter 9 Advanced Telemetry 267

 Chapter 10 Data Center Switch Architecture 285

 Conclusion 329

 Index 331

ix

Contents

 Foreword xx

 Introduction xxi

Chapter 1 Data Center Architecture Considerations 1

Application and Storage 1

Virtualized Data Center 2

Introduction 2

Definition and Virtualization Concepts 3

Network and Design Requirements 6

Storage Requirements 7

Big Data 7

Definition 7

Network Requirements 9

Cluster Design with the Hadoop Building Blocks: the POD 10

Storage Requirements 11

Design Considerations 11

High-Performance Compute 14

Definition 14

Network Requirements 14

Storage Requirements 14

Design Considerations 14

Design Topologies 15

Ultra-Low Latency 16

Definition 16

Network Requirements 17

Storage Requirements 18

Design Considerations 18

Design Topologies 19

Massively Scalable Data Center 21

Definition 21

Network Requirements 23

Storage Requirements 24

Design Considerations 24

Design Topologies 25

Design Topologies Examples 25

x The Policy Driven Data Center with ACI: Architecture, Concepts, and Methodology

The POD-based Designs 26

The POD Model or the Data Model for Shared Infrastructure
and Cloud Computing 26

The FlexPod Design 28

Data Center Designs 29

End of Row 29

Middle of Row 30

Top of Rack: The Modern Data Center Approach 30

Single-Homed Servers Design 32

Logical Data Center Design with the Spine-Leaf ACI
Foundation Architecture 33

Summary 35

Chapter 2 Building Blocks for Cloud Architectures 37

Introduction to Cloud Architectures 37

Network Requirements of Clouds and the ACI Solution 39

Amazon Web Services Model 41

Automating Server Provisioning 43

PXE Booting 43

Deploying the OS with Chef, Puppet, CFengine, or Similar Tools 44

Chef 45

Puppet 46

Orchestrators for Infrastructure as a Service 47

vCloud Director 47

OpenStack 48

Project and Releases 48

Multi-Hypervisor Support 49

Installers 49

Architecture Models 50

Networking Considerations 51

UCS Director 51

Cisco Intelligent Automation for Cloud 52

Conciliating Different Abstraction Models 55

Summary 56

xi

Chapter 3 The Policy Data Center 57

Why the Need for the Policy-Based Model? 57

The Policy Theory 59

Cisco APIC Policy Object Model 61

Endpoint Groups 63

Cisco APIC Policy Enforcement 66

Unicast Policy Enforcement 66

Multicast Policy Enforcement 69

Application Network Profiles 70

Contracts 71

Understanding Cisco APIC 79

Cisco ACI Operating System (Cisco ACI Fabric OS) 79

Architecture: Components and Functions of the Cisco APIC 80

Policy Manager 81

Topology Manager 81

Observer 82

Boot Director 82

Appliance Director 83

VMM Manager 83

Event Manager 83

Appliance Element 84

Architecture: Data Management with Sharding 84

Effect of Replication on Reliability 84

Effect of Sharding on Reliability 85

Sharding Technology 86

User Interface: Graphical User Interface 87

User Interface: Command-Line Interface 87

User Interface: RESTful API 88

System Access: Authentication, Authorization, and RBAC 88

Summary 89

Chapter 4 Operational Model 91

Introduction to Key Technologies and Tools for Modern Data Centers 92

Network Management Options 92

REST Protocol 93

XML, JSON, and YAML 94

xii The Policy Driven Data Center with ACI: Architecture, Concepts, and Methodology

Python 96

Python Basics 96

Where Is the main() Function? 97

Functions Definition 97

Useful Data Structures 98

Parsing Files 99

Verifying Python Scripts 101

Where to Run Python 101

Pip, EasyInstall, and Setup Tools 101

Which Packages Do I Need? 101

virtualenv 102

Git and GitHub 103

Basic Concepts of Version Control 103

Centralized Versus Distributed 104

Overview of Basic Operations with Git 104

Installing/Setting Up Git 105

Key Commands in Git 105

Operations with the Cisco APIC 106

Object Tree 108

Classes, Objects, and Relations 109

Naming Conventions 113

Object Store 114

Using REST to Program the Network 114

Tools to Send REST Calls 115

REST Syntax in Cisco ACI 117

Modeling Tenants in XML 119

Defining the Relationship Among EPGs (Providers

and Consumers) 120

A Simple Any-to-Any Policy 121

ACI SDK 122

ACI Python Egg 122

How to Develop Python Scripts for ACI 123

Where to Find Python Scripts for ACI 124

For Additional Information 124

Summary 125

xiii

Chapter 5 Data Center Design with Hypervisors 127

Virtualized Server Networking 128

Why Have a Software Switching Component on the Server? 129

Overview of Networking Components 132

Virtual Network Adapters 132

Virtual Switching 133

Endpoint Groups 133

Distributed Switching 133

Hot Migration of Virtual Machines 134

Segmentation Options 134

VLANs 134

VXLANs 134

VXLAN Packet Format 135

VXLAN Packet Forwarding 136

VXLANs Without Multicast 137

Microsoft Hyper-V Networking 137

Linux KVM and Networking 141

Linux Bridging 142

Open vSwitch 143

OVS Architecture 143

Example Topology 145

Open vSwitch with OpenStack 146

OpenFlow 147

VMware ESX/ESXi Networking 149

VMware vSwitch and Distributed Virtual Switch 150

VMware ESXi Server Traffic Requirements 151

VXLAN Tagging with vShield 151

vCloud Director and vApps 152

vCloud Networks 153

Cisco Nexus 1000V 155

Port Extension with VN-TAG 158

Cisco ACI Modeling of Virtual Server Connectivity 160

Overlay Normalization 160

VMM Domain 161

Endpoint Discovery 162

Policy Resolution Immediacy 162

xiv The Policy Driven Data Center with ACI: Architecture, Concepts, and Methodology

Cisco ACI Integration with Hyper-V 162

Cisco ACI Integration with KVM 163

Cisco ACI Integration with VMware ESX 164

Summary 165

Chapter 6 OpenStack 167

What Is OpenStack? 167

Nova 168

Neutron 169

Swift 173

Cinder 173

Horizon 174

Heat 174

Ironic 174

OpenStack Deployments in the Enterprise 176

Benefits of Cisco ACI and OpenStack 177

Cisco ACI Policy Model 178

Physical and Virtual Integration 179

Fabric Tunnels 179

Service Chaining 179

Telemetry 179

OpenStack APIC Driver Architecture and Operations 180

How Integration Works 180

Deployment Example 182

Installation of Icehouse 183

Configuration of the Cisco APIC Driver 185

Neutron.conf File 186

ML2_conf.ini File 186

ML2_cisco_conf.ini File 186

Configuration Parameters 187

Host-Port Connectivity 188

External Networks 188

PortChannel Configuration 188

Troubleshooting 188

The Group Based Policy Project at OpenStack 190

Summary 191

xv

Chapter 7 ACI Fabric Design Methodology 193

Summary of ACI Fabric Key Functionalities 194

ACI Forwarding Behavior 194

Prescriptive Topology 194

Overlay Frame Format 196

VXLAN Forwarding 197

Pervasive Gateway 198

Outside Versus Inside 199

Packet Walk 201

Segmentation with Endpoint Groups 202

Management Model 204

Hardware and Software 207

Physical Topology 208

Cisco APIC Design Considerations 210

Spine Design Considerations 211

Leaf Design Considerations 212

Unknown Unicast and Broadcast 213

Use of VLANs as a Segmentation Mechanism 214

VLANs and VXLANs Namespaces 215

Concept of Domain 216

Concept of Attach Entity Profile 217

Multi-tenancy Considerations 218

Initial Configuration Steps 219

Zero-Touch Provisioning 220

Network Management 221

Policy-based Configuration of Access Ports 223

Configuring Switch Profiles for Each Leaf 228

Configuring Interface Policies 228

Interface Policy Groups and PortChannels 228

Interface Policy Groups 229

PortChannels 229

Virtual PortChannels 231

Virtual Machine Manager (VMM) Domains 233

VMM Domain 233

AEP for Virtualized Servers Connectivity 234

xvi The Policy Driven Data Center with ACI: Architecture, Concepts, and Methodology

Configuring a Virtual Topology 235

Bridge Domain 237

Hardware Proxy 237

Flooding Mode 238

fvCtx 238

Endpoint Connectivity 238

Connecting a Physical Server 239

Connecting a Virtual Server 239

External Connectivity 240

Summary 241

Chapter 8 Service Insertion with ACI 243

Overview of ACI Design with Layer 4 Through Layer 7 Services 244

Benefits 244

Connecting Endpoint Groups with a Service Graph 244

Extension to Virtualized Servers 245

Management Model 245

Service Graphs, Functions, and Rendering 246

Hardware and Software Support 247

Cisco ACI Modeling of Service Insertion 248

Service Graph Definition 249

Concrete Devices and Logical Devices 250

Logical Device Selector (or Context) 251

Splitting Bridge Domains 251

Configuration Steps 252

Definition of a Service Graph 253

Defining the Boundaries of the Service Graph 253

The Metadevice 254

Defining an Abstract Node’s Functions 255

Defining an Abstract Node’s Connectors 257

Abstract Node Elements Summary 258

Connecting Abstract Nodes to Create the Graph 258

Definition of Concrete Devices and Cluster of Concrete Devices 260

Configuration of the Logical Device and Concrete Device 261

Configuration of the Logical Device Context (Cluster Device

Selector) 264

Naming Summary 265

Summary 266

xvii

Chapter 9 Advanced Telemetry 267

Atomic Counters 267

The Principle 267

Further Explanation and Example 268

Atomic Counters and the APIC 270

Latency Metrics 271

ACI Health Monitoring 272

Statistics 273

Faults 274

Events, Logs, Diagnostics 279

Health Score 280

The Centralized show tech-support ACI Approach 281

Summary 282

Chapter 10 Data Center Switch Architecture 285

Data, Control, and Management Planes 285

Separation Between Data, Control, and Management Planes 286

Interaction Between Control, Data, and Management Planes 287

Protection of the Control Plane with CoPP 288

Control Plane Packet Types 288

CoPP Classification 290

CoPP Rate-Controlling Mechanisms 290

Data Center Switch Architecture 291

Cut-through Switching: Performance for the Data Center 292

Crossbar Switch Fabric Architecture 295

Unicast Switching over Crossbar Fabrics 297

Multicast Switching over Crossbar Fabrics 298

Overspeed in Crossbar Fabrics 298

Superframing in the Crossbar Fabric 299

The Scheduler 301

Crossbar Cut-through Architecture Summary 301

Output Queuing (Classic Crossbar) 302

Input Queuing (Ingress Crossbar) 303

Understanding HOLB 304

Overcoming HOLB with VoQ 304

Multistage Crossbar 305

Centralized Shared Memory (SoC) 306

xviii The Policy Driven Data Center with ACI: Architecture, Concepts, and Methodology

Multistage SoC 307

Crossbar Fabric with SoC 307

SoC Fabric 308

QoS Fundamentals 309

Data Center QoS Requirements 309

Data Center Requirements 311

Type of QoS Used in Different Data Center Use Cases 312

Trust, Classification, and Marking Boundaries 313

Data Center QoS Capabilities 315

Understanding Buffer Utilization 315

The Buffer Bloat 317

Priority Flow Control 318

Enhanced Transmission Selection 319

Data Center Bridging Exchange 320

ECN and DCTCP 320

Priority Queue 321

Flowlet Switching: Nexus 9000 Fabric Load Balancing 322

Nexus QoS Implementation: The MQC Model 324

Summary 326

 Conclusion 329

 Index 331

xix

 Command Syntax Conventions

 The conventions used to present command syntax in this book are the same conventions
used in Cisco’s Command Reference. The Command Reference describes these conven-
tions as follows:

 Boldface indicates commands and keywords that are entered literally as shown. In
actual configuration examples and output (not general command syntax), boldface
indicates commands that are manually input by the user (such as a show command).

 Italics indicate arguments for which you supply actual values.

 Vertical bars (|) separate alternative, mutually exclusive elements.

 Square brackets [] indicate optional elements.

 Braces { } indicate a required choice.

 Braces within brackets [{ }] indicate a required choice within an optional element.

 Note This book covers multiple operating systems, and different icons and router
names are used to indicate the appropriate OS that is being referenced. Cisco IOS and
IOS XE use router names such as R1 and R2 and are referenced by the IOS router icon.
Cisco IOS XR routers use router names such as XR1 and XR2 and are referenced by the
IOS XR router icon.

xx The Policy Driven Data Center with ACI: Architecture, Concepts, and Methodology

 Foreword

 Looking at the history of network control, one can wonder why so much complexity
emerged out of so simple concepts. Network management systems have traditionally
focused on control of features, without thinking of networks as systems. Any network
control scheme, at the heart, aims to solve two things: control of endpoint behaviors,
where regulations are imposed on what sets of endpoints can communicate or not, also
known as access control, and path optimization problems instrumented through manage-
ment of numerous network control plane protocols. Unfortunately, this natural separa-
tion has rarely been honored, resulting in the control models that are both difficult to
consume and operationally fragile.

 IT does not exist for the benefit of itself. The purpose of any IT organization is to run
business applications. The application owner, architect, and developer all have intimate
understanding of their applications. They have a complete picture of the application’s
infrastructure requirements and full understanding of other application components
necessary for communication. However, once it comes to deployment, all this knowl-
edge, the original intent, is forever lost in the implementation detail of the translation
between the application requirements and the actual configuration of the infrastructure.
The unfortunate consequence of this is that there’s no easy way to map resources and
configurations back to the application. Now, what if we need to expand the app, add
more components, or simply retire it from the data center? What happens to the residual
configuration?

 When we started Insieme, one of the chief goals was to bring networking into the reach
of those who don’t need to understand it: an application guy who needs to identify how
his application interacts with other application components in the data center, an ops
guy who needs to configure cluster expansion, a compliance guy who needs to ensure
that no enterprise-wide business rules are violated. We felt that the way operational
teams interact with the network needed to change in order for networking to enter the
next logical step in the evolution.

 Lucien and Maurizio explain the new Policy Driven Data Center and its associated oper-
ational model. This book focuses, on one hand, on the architecture, concept, and meth-
odology to build a modern data center solving this paradigm; while also, on the other
hand, detailing the Cisco ACI solution.

 Mike Dvorkin

 Distinguished Cisco Engineer, Chief Scientist, and Co-founder of Insieme Networks

xxi

 Introduction

 Welcome to the Policy Driven Data Center with Application Centric Infrastructure
(ACI). You are embarking on a journey to understand the latest Cisco data center fabric
and the many innovations that are part of it.

 The objective of this book is to explain the architecture design principles, the concepts,
and the methodology to build new data center fabrics. Several key concepts in this
book, such as the policy data model, programming, and automation, have a domain of
applicability that goes beyond the ACI technology itself and forms a core skillset of net-
work engineers and architects.

 Cisco Application Centric Infrastructure (ACI) is a data center fabric that enables you to
integrate virtual and physical workloads in a highly programmable multi-hypervisor envi-
ronment that is designed for any multi-service or cloud data center.

 To fully appreciate the ACI innovations, one has to understand the key new industry
trends in the networking field.

 Industry Trends

 At the time of this writing, the network industry is experiencing the emergence of new
operational models. Many of these changes are influenced by innovations and method-
ology that have happened in the server world or in the application world.

 The following list provides a nonexhaustive collection of trends currently influencing
new data center designs:

 Adoption of cloud services.

 New methodology of provisioning network connectivity (namely self-service
catalogs).

 Ability to put new applications into production more quickly and to do A/B testing.
This concept relates to the ability to shorten the time necessary to provision a com-
plete network infrastructure for a given application.

 Ability to “fail fast”; that is, being able to put a new version of an application into
production for a limited time and then to decommission it quickly should bugs arise
during the testing.

 Ability to use the same tools that manage servers (such as Puppet, Chef, CFengines,
etc.) to manage networking equipment.

 The need for better interaction between server and application teams and operation
teams (DevOps).

 Ability to deal with “elephant flows”; that is, the ability to have backups or com-
monly bulk transfers without affecting the rest of the traffic.

 Ability to automate network configuration with a more systematic and less prone to
error programmatic way using scripts.

xxii The Policy Driven Data Center with ACI: Architecture, Concepts, and Methodology

 Adoption of software development methodologies such as Agile and Continuous
Integration.

 Some of these trends are collectively summarized as “application velocity,” which refers
to the ability to shorten the time to bring an application from development to produc-
tion (and back to testing, if needed) by spawning new servers and network connectivity
in a much faster way than before.

 What Is an “Application”?

 The meaning of “application” varies depending on the context or job role of the per-
son that is using this term. For a networking professional, an application may be a DNS
server, a virtualized server, a web server, and so on. For a developer of an online order-
ing tool, the application is the ordering tool itself, which comprises various servers:
presentation servers, databases, and so on. For a middleware professional, an application
may be the IBM WebSphere environment, SAP, and so on.

 For the purpose of this book, in the context of Cisco ACI, an application refers to a
set of networking components that provides connectivity for a given set of workloads.
These workloads’ relationship is what ACI calls an “application,” and the relationship is
expressed by what ACI calls an application network profile, explained after Figure 1 .

 Figure 1 provides an example illustrating an application that is accessible from a com-
pany intranet and that is connected to an external company that provides some business
function. This could be, for instance, a travel reservation system, an ordering tool, a bill-
ing tool, and so on.

Application Tier

AD

VMs

DB

VMs

Other

Bare Metal

Time
&

Lab

Extranet

App

SSO

Web

Intranet

Bare Metal

VMs VMware

 Figure 1 Example of an “Application”

xxiii

 This relationship can be expressed in ACI by using the concept of application network

profile (ANP), which abstracts the specific VLANs or subnets that the building blocks
reside on. The configuration of network connectivity is expressed in terms of policies ,
which define which endpoints consume (or provide) services provided by (consumed by)
other endpoints.

 Using ACI doesn’t require deep understanding of these application relationships. These
often are implicit in existing networking configurations by means of VLANs and access
control lists. Hence, one can just use ANPs and associated policies as containers of
existing configurations without the need to map exact server-to-server communication
patterns.

 The value proposition of using ANPs is that it enables network administrators to express
network configurations in a more abstract manner that can be more closely mapped to
the building blocks of a business application such as an ordering tool, a travel reserva-
tion system, and so on. After the applications are defined, they can be validated in a test
environment and immediately moved to a production environment.

 The Need for Abstraction

 Applications already run in data centers today even without ACI. Network administra-
tors create the connectivity between building blocks by using VLANs, IP addresses,
routing, and ACLs by translating the requirements of the IT organization to support a
given tool. However, without ACI, administrators have no way to really express such
configurations directly in a format that can be mapped to the network, leaving admin-
istrators with no choice but to focus primarily on expressing a very open connectivity
policy to ensure that servers can talk to each other if they are internal to the company
and can talk to the outside if they are on the DMZ or extranet. This requires administra-
tors to harden ACLs and put firewalls to restrict the scope of which service clients and
other servers can use from a given set of servers.

 This approach results in configurations that are not very portable. They are very much
hard-coded in the specific data center environment where they are implemented. If the
same environment must be built in a different data center, somebody must perform the
tedious job of reconfiguring IP addresses and VLANs and deciphering ACLs.

 ACI is revolutionizing this process by introducing the ability to create an application
network profile, a configuration template to express relationships between compute seg-
ments. ACI then translates those relationships into networking constructs that routers
and switches can implement (i.e., in VLANs, VXLANs, VRFs, IP addresses, and so on).

xxiv The Policy Driven Data Center with ACI: Architecture, Concepts, and Methodology

 What Is Cisco ACI

 The Cisco ACI fabric consists of discrete components that operate as routers and
switches but are provisioned and monitored as a single entity. The operation is like a
distributed switch and router configuration that provides advanced traffic optimization,
security, and telemetry functions, stitching together virtual and physical workloads. The
controller, called the Application Policy Infrastructure Controller (APIC), is the central
point of management of the fabric. This is the device that distributes ANP policies to the
devices that are part of the fabric.

 The Cisco ACI Fabric OS runs on the building blocks of the fabric, which are, at time of
writing, the Cisco Nexus 9000 Series nodes. The Cisco ACI Fabric OS is object-oriented
and enables programming of objects for each configurable element of the system. The
ACI Fabric OS renders policies (such as the ANP and its relationships) from the control-
ler into a concrete model that runs in the physical infrastructure. The concrete model is
analogous to compiled software; it is the form of the model that the switch operating
system can execute.

 Cisco ACI is designed for many types of deployments, including public and private
clouds, big data environments, and hosting of virtualized and physical workloads. It pro-
vides the ability to instantiate new networks almost instantaneously and to remove them
just as quickly. ACI is designed to simplify automation and can be easily integrated into
the workflow of common orchestration tools.

 Figure 2 illustrates the ACI fabric with the spine-leaf architecture and controllers.
Physical and virtual servers can be connected to the ACI fabric and also receive connec-
tivity to the external network.

VM VMVM

Leaf Switches
Border Leaf

Switches

VMVMVM

Controllers

Physical and Virtualized Servers

Spine
Switches

 Figure 2 ACI Fabric

xxv

 Cisco ACI Innovations

 Cisco ACI introduces many innovations:

 The whole fabric is managed as a single entity but without a centralized control
plane.

 The fabric is managed via an object tree with methods and classes that are accessible
with REST calls.

 It introduces a new management model based on a declarative approach instead of
an imperative approach.

 It allows a clear mapping of application relationships to the network infrastructure.

 It is designed for multi-tenancy.

 It is multi-hypervisor capable.

 It allows the definition of abstract configurations (or templates) that make configu-
rations portable.

 It changes the way that networking configurations are expressed, from VLAN and
IP addresses to policies.

 It revolutionizes equal-cost multipathing and quality of service (QoS) with flowlet
load balancing, dynamic flow prioritization, and congestion management.

 It introduces new concepts for telemetry, such as the concept of health scores and
atomic counters.

 Book Structure

 Chapter 1 : Data Center Architecture Considerations

 The goal of this chapter is to describe the network requirements of different server envi-
ronments and how to meet them in terms of network design.

 Chapter 2 : Building Blocks for Cloud Architectures

 At the time of this writing, most large-scale data center deployments are designed with
the principles of cloud computing. This is equally true for data centers that are built
by providers or by large enterprises. This chapter illustrates the design and technology
requirements of building a cloud.

 Chapter 3 : The Policy Data Center

 The goal of this chapter is to elucidate the Cisco ACI approach to modeling business
applications. This approach provides a unique blend of mapping hardware and software
capabilities to the deployment of applications either graphically through the Cisco
Application Policy Infrastructure Controller (APIC) GUI or programmatically through

xxvi The Policy Driven Data Center with ACI: Architecture, Concepts, and Methodology

the Cisco APIC API model. The APIC concepts and principles are explained in detail in
this chapter. Finally, the ACI fabric is not only for greenfield deployment. Many users
will consider how to deploy an ACI fabric into an existing environment. Therefore,
the last part of this chapter explains how to integrate the ACI fabric with an existing
network.

 Chapter 4 : Operational Model

 Command-line interfaces (CLI) are great tools for interactive changes to the configura-
tion, but they are not designed for automation, nor for ease of parsing (CLI scraping is
neither efficient nor practical) or customization. Furthermore, CLIs don’t have the ability
to compete with the power of parsing, string manipulation, or the advanced logic that
sophisticated scripting languages like Python can offer. This chapter covers the key tech-
nologies and tools that new administrators and operators must be familiar with, and it
explains how they are used in an ACI-based data center.

 Chapter 5 : Data Center Design with Hypervisors

 This chapter describes the networking requirements and design considerations when
using hypervisors in the data center.

 Chapter 6 : OpenStack

 This chapter explains in detail OpenStack and its relation to Cisco ACI. The goal of this
chapter is to explain what OpenStack is and present the details of the Cisco ACI APIC
OpenStack driver architecture.

 Chapter 7 : ACI Fabric Design Methodology

 This chapter describes the topology of an ACI fabric and how to configure it both as
an infrastructure administrator and as a tenant administrator. The chapter covers the
configuration of physical interfaces, PortChannels, virtual PortChannels, and VLAN
namespaces as part of the infrastructure configurations. The chapter also covers the
topics of segmentation, multi-tenancy, connectivity to physical and virtual servers, and
external connectivity as part of the tenant configuration.

 Chapter 8 : Service Insertion with ACI

 Cisco ACI technology provides the capability to insert Layer 4 through Layer 7 func-
tions using an approach called a service graph. The industry normally refers to the capa-
bility to add Layer 4 through Layer 7 devices in the path between endpoints as service
insertion. The Cisco ACI service graph technology can be considered a superset of
service insertion. This chapter describes the service graph concept and how to design for
service insertion with the service graph.

 Chapter 9 : Advanced Telemetry

 The goal of this chapter is to explain the centralized troubleshooting techniques that
ACI offers for isolating problems. It includes topics such as atomic counters and
health scores.

xxvii

 Chapter 10 : Data Center Switch Architecture

 The goal of this chapter is to provide a clear explanation of the data center switching
architecture. It is divided into three sections: the hardware switch architecture, the fun-
damental principles of switching, and the quality of service in the data center.

 Terminology

 Node: Physical network device.

 Spine node: Network device placed in the core part of the data center. Typically it’s a
device with high port density and higher speed.

 Leaf node: Network device placed at the access of the data center. It is the first tier of
network equipment defining the data center network fabric.

 Fabric: A group of leaf and spine nodes defining the data center network physical
topology.

 Workload: A virtual machine defining a single virtual entity.

 Two-tier topology: Typically defined by a spine-leaf fabric topology.

 Three-tier topology: A network topology with access, aggregation, and core tiers.

 Services: Category defined by the following (nonexhaustive) group of appliances: load
balancers, security devices, content accelerators, network monitoring devices, network
management devices, traffic analyzers, automation and scripting servers, etc.

 ULL: Ultra-low latency. Characterizes network equipment in which the latency is under a
microsecond. Current technology is nanosecond level.

 HPC: High-performance compute. Applications using structured data schemes (database)
or unstructured data (NoSQL) where performance is important at predictable and low
latency and with the capability to scale. The traffic patterns are east-west.

 HFT: High-frequency trading. Typically occurs in a financial trading environment, where
the latency needs to be minimal on the data center fabric to provide as close as possible
to real time information to the end users. Traffic is mainly north-south

 Clos: Multistage switching network, sometimes called “fat tree,” based on a 1985 article
by Charles Leiserson. The idea of Clos is to build a very high-speed, nonblocking switch-
ing fabric.

This page intentionally left blank

 At the time of this writing, most large-scale data center deployments are designed with
the principles of cloud computing at the forefront. This is equally true for data centers
that are built by providers or by large enterprises. This chapter illustrates the design and
technology requirements for building a cloud.

 Introduction to Cloud Architectures

 The National Institute of Technology and Standards (NIST) defines cloud computing as
“a model for enabling convenient, on-demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or service
provider interaction.” (See http://csrc.nist.gov/groups/SNS/cloud-computing .)

 Data center resources, such as individual servers or applications, are offered as elastic
services, which means that capacity is added on demand, and when the compute or
application is not needed, the resources providing it can be decommissioned. Amazon
Web Services (AWS) is often regarded as the pioneer of this concept and many similar
services that exist today.

 Cloud computing services are often classified according to two different categories:

 Cloud delivery model: Public cloud, private cloud, or hybrid cloud

 Service delivery model: Infrastructure as a Service, Platform as a Service, or
Software as a Service

 Building Blocks for Cloud
Architectures

 Chapter 2

http://csrc.nist.gov/groups/SNS/cloud-computing

38 Chapter 2: Building Blocks for Cloud Architectures

 The cloud delivery model indicates where the compute is provisioned. The following

terminology is often used:

 ■ Private cloud: A service on the premises of an enterprise. A data center designed as

a private cloud offers shared resources to internal users. A private cloud is shared by

tenants, where each tenant is, for instance, a business unit.

 ■ Public cloud: A service offered by a service provider or cloud provider such as

Amazon, Rackspace, Google, or Microsoft. A public cloud is typically shared by

multiple tenants , where each tenant is, for instance, an enterprise.

 ■ Hybrid cloud: Offers some resources for workloads through a private cloud and

other resources through a public cloud. The ability to move some compute to the

public cloud is sometimes referred to as cloud burst .

 The service delivery model indicates what the user employs from the cloud service:

 ■ Infrastructure as a Service (IaaS): A user requests a dedicated machine (a virtual

machine) on which they install applications, some storage, and networking infra-

structure. Examples include Amazon AWS, VMware vCloud Express, and so on.

 ■ Platform as a Service (PaaS): A user requests a database, web server environment,

and so on. Examples include Google App Engine and Microsoft Azure.

 ■ Software as a Service (SaaS) or Application as a Service (AaaS): A user runs appli-

cations such as Microsoft Office, Salesforce, or Cisco WebEx on the cloud instead

of on their own premises.

 The cloud model of consumption of IT services, and in particular for IaaS, is based on

the concept that the user relies on a self-service portal to provide services from a catalog

and the provisioning workflow is completely automated. This ensures that the user of

the service doesn’t need to wait for IT personnel to allocate VLANs, stitch load balanc-

ers or firewalls, and so on. The key benefit is that the fulfillment of the user’s request is

quasi-instantaneous.

 Until recently, configurations were performed via the CLI to manipulate on a box-by-

box basis. Now, ACI offers the ability to instantiate “virtual” networks of a very large

scale with a very compact description using Extensible Markup Language (XML) or

JavaScript Object Notation (JSON).

 Tools such as Cisco UCS Director (UCSD) and Cisco Intelligent Automation for Cloud

(CIAC) orchestrate the ACI services together with compute provisioning (such as via

Cisco UCS Manager, VMware vCenter, or OpenStack) to provide a fast provisioning

service for the entire infrastructure (which the industry terms a virtual private cloud , a

 virtual data center , or a container).

 The components of the cloud infrastructure are represented at a very high level in Figure

 2-1 . The user (a) of the cloud service (b) orders a self-contained environment (c) repre-

sented by the container with firewall load balancing and virtual machines (VM). CIAC

Network Requirements of Clouds and the ACI Solution 39

provides the service catalog function, while UCSD and OpenStack operate as the ele-
ment managers.

(c)

(b)

(a)

0
V
M

V
M

V
M

Orchestration Layer

Domain
Managers

Catalog, Order, Offer,
Metering, Billing,

Chargeback

(d)
Orchestration Layer

IT Service Catalog and Portal

CIAC + UCSD Billing/
Chargeback

LDAP/Active
Directory

Email

Service
Desk/CMDB

Monitoring

Image/
Config Mgmt

Puppet,
Chef,

CFengines
UCS

Manager

OS
images

UCS
Blades

VMs

vCD,
vCenter

Compute Automation Network Automation Storage AutomationNetwork Automation

Cloud Service
Providers

openstack

 Figure 2-1 Building Blocks of a Cloud Infrastructure

 This request is serviced by the service catalog and portal via the orchestration layer (d).
The orchestration layer can be composed of several components. Cisco, for instance,
offers CIAC, which interacts with various element managers to provision compute, net-
work, and storage resources.

 Figure 2-1 also explains where Application Centric Infrastructure (ACI) and, more pre-
cisely, the Cisco Application Policy Infrastructure Controller (APIC), fit in the cloud
architecture.

 Network Requirements of Clouds and the ACI Solution

 The network infrastructure that provides support for cloud deployments must meet
 several requirements, such as:

 Scale for a very large number of virtual machines

 Support Layer 2 adjacency between workloads

 Support multi-tenancy

40 Chapter 2: Building Blocks for Cloud Architectures

 Be highly programmable

 Support the insertion of load balancers and firewalls

 Support the insertion of virtual load balancers and virtual firewalls

 The first and second requirements are almost incompatible because if the data center
were built with traditional spanning-tree technologies, it would incur two problems:

 Spanning-tree scalability limits on the control plane

 Exhaustion of the MAC address tables

 To address these requirements, the ACI fabric is built based on a VXLAN overlay, which
allows switches to maintain perceived Layer 2 adjacency on top of a Layer 3 network,
thus removing the control plane load associated with spanning tree from the switching
infrastructure. To address the mobility requirements over a Layer 3 infrastructure, the
forwarding is based on host-based forwarding of full /32 addresses combined with the
mapping database.

 This overlay, like most, requires the data path at the edge of the network to map from
the tenant end point address in the packet, a.k.a. its identifier , to the location of the
endpoint, a.k.a. its locator . This mapping occurs in a function called a tunnel endpoint
(TEP). The challenge with this mapping is having to scale for very large data centers,
because the mapping state must exist in many network devices.

 The second problem with scale is that when an endpoint moves (that is, its locator
changes), the mapping state must be updated across the network in all TEPs that have
that mapping.

 The ACI solution addresses these problems by using a combination of a centralized
database of the mappings implemented in the packet data path, at line rate, and a cach-
ing mechanism, again in the data path, at the TEP. (Chapter 7 , “ACI Fabric Design
Methodology,” explains the traffic forwarding in ACI in detail.)

 The other key requirement of building a cloud solution is to be able to instantiate net-
works in a programmatic way. If the network is managed box by box, link by link, the
script or the automation tool must access individual boxes and trace where a workload is
in order to enable VLAN trunking on a number of links. It must also ensure that the end-
to-end path is provisioned according to the abstraction model. ACI solves this issue by
providing a centralized configuration point, the APIC controller, while still maintaining
individual control plane capabilities on each node in the fabric. The controller exposes
the entire network as a hierarchy of objects in a tree. It describes network properties
related to workloads as logical properties instead of physical properties. So, to define
connectivity requirements for workloads, you don’t have to express which physical inter-
face a particular workload is on.

 Furthermore, the fabric exposes the networking properties of all the switches so that
they can all be configured and managed via Representational State Transfer (REST) calls
as a single giant switch/router. The APIC REST API accepts and returns HTTP or HTTPS

Amazon Web Services Model 41

messages that contain JSON or XML documents. Orchestration tools can easily pro-
gram the network infrastructure by using REST calls. (Chapter 4 , “Operational Model,”
illustrates this new model and how to automate configurations with REST calls and
scripting.)

 Multi-tenancy is conveyed in the management information model by expressing all con-
figurations of bridge domains, VRF contexts, and application network profile as children
of an object of type fvTenant. The segmentation on the network transport is guaranteed
by the use of different VXLAN VNIDs.

 Insertion of firewall and load balancers is also automated to simplify the creation of
virtual containers comprising physical or virtual firewall and load balancing services.
(Chapter 8 , “Service Insertion with ACI,” illustrates in more detail the modeling of ser-
vices and how they are added to the fabric.)

 Amazon Web Services Model

 This section describes some of the services offered by Amazon Web Services and some
of the AWS naming conventions. AWS offers a very wide variety of services, and the
purpose of this section is not to describe all of them. Rather, this section is useful to the
network administrator for two reasons:

 As a reference for a popular IaaS service

 The potential need to extend a private cloud into the Amazon Virtual Private Cloud

 The following list provides some key AWS terminology:

 Availability Zone: A distinct location within a region that is insulated from failures
in other Availability Zones, and provides inexpensive, low-latency network connec-
tivity to other Availability Zones in the same region.

 Region: A collection of Availability Zones, such as us-west, us-east-1a, eu-west, etc.,
in the same geographical region

 Access credentials: A public key that is used to access AWS resources allocated to
a given user

 Amazon Machine Image (AMI): The image of a given virtual machine (which
Amazon calls an instance)

 Instance: A virtual machine that is running a given AMI image

 Elastic IP address: A static address associated with an instance

 Amazon Elastic Compute Cloud (EC2) services enable you to launch an AMI in a
region of the user’s choice and in an Availability Zone of the user’s choice. Instances
are protected by a firewall. The instance also gets an IP address and a DNS entry. The
EC2 services can also be accompanied by the Elastic Load Balancing, which distributes

42 Chapter 2: Building Blocks for Cloud Architectures

traffic across EC2 compute instances. Auto Scaling helps with provisioning enough EC2
instances based on the utilization. Amazon CloudWatch provides information about
CPU load, disk I/O rate, and network I/O rate of each EC2 instance.

 Note More information can be found at:

 http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

 http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
Using_Query_API.html

 Amazon Simple Storage Service (S3) is accessed via web services API based on SOAP or
with the HTTP API that uses the standard HTTP verbs (GET, PUT, HEAD, and DELETE).
The objects are identified by using the protocol name, the S3 endpoint (s3.amazonaws.
com), the object key, and what is called the bucket name .

 All resources can be created and manipulated by using Amazon SDKs available for vari-
ous programming languages, such as the Python and PHP SDKs available at the following
respective URLs:

 http://aws.amazon.com/sdk-for-python/

 http://aws.amazon.com/sdk-for-php/

 With this approach, you can fully automate tasks such as the following:

 Locating the server resources

 Attaching storage

 Providing Internet connectivity

 Setting up switching and routing

 Booting the server

 Installing the OS

 Configuring applications

 Assigning IP addresses

 Configuring firewalling

 Scaling up the infrastructure

 Note For more information, please refer to the book Host Your Web Site in the

Cloud: Amazon Web Services Made Easy , by Jeff Barr (SitePoint, 2010).

 You can access the AWS-hosted Amazon Virtual Private Cloud (VPC) in multiple ways.
One way is to set a jumphost to which you log in over SSH with the public key that

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/Using_Query_API.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/Using_Query_API.html
http://aws.amazon.com/sdk-for-python/
http://aws.amazon.com/sdk-for-php/

Automating Server Provisioning 43

AWS generates. Another approach is to connect the enterprise network to the Amazon
VPC via VPNs.

 Automating Server Provisioning

 In large-scale cloud deployments with thousands of physical and virtual servers, adminis-
trators must be able to provision servers in a consistent and timely manner.

 This section is of interest to the network administrator for several reasons:

 Some of these technologies can also be used to maintain network equipment
designs.

 Cisco ACI reuses some of the concepts from these technologies that have proven to
be effective to the task of maintaining network configurations.

 A complete design of ACI must include support for these technologies because the
compute attached to ACI will use them.

 The high-level approach to automating server provisioning consists of performing the
following:

 PXE booting a server (physical or virtual)

 Deploying the OS or customized OS on the server with Puppet/Chef/CFEngine
agents

 Because of the above reasons, a typical setup for a cloud deployment requires the
following components:

 A DHCP server

 A TFTP server

 An NFS/HTTP or FTP server to deliver the kickstart files

 A master for Puppet or Chef or similar tools

 PXE Booting

 In modern data centers, administrators rarely install new software via removable media
such as DVDs. Instead, administrators rely on PXE (Preboot eXecution Environment)
booting to image servers.

 The booting process occurs in the following sequence:

 1. The host boots up and sends a DHCP request.

 2. The DHCP server provides the IP address and the location of the PXE/TFTP
server.

 3. The host sends a TFTP request for pxelinux.0 to the TFTP server.

44 Chapter 2: Building Blocks for Cloud Architectures

 4. The TFTP server provides pxelinux.0.

 5. The host runs the PXE code and requests the kernel (vmlinuz).

 6. The TFTP server provides vmlinuz code and provides the location of the kickstart
configuration files (NFS/HTTP/FTP and so on).

 7. The host requests the kickstart configuration from the server.

 8. The HTTP/NFS/FTP server provides the kickstart configuration.

 9. The host requests to install packages such as the RPMs.

 10. The HTTP/NFS/FTP server provides the RPMs.

 11. The host runs Anaconda, which is the post-installation scripts.

 12. The HTTP/NFS/FTP server provides the scripts and the Puppet/Chef installation
information.

 Deploying the OS with Chef, Puppet, CFengine, or Similar Tools

 One of the important tasks that administrators have to deal with in large-scale data cen-
ters is maintaining up-to-date compute nodes with the necessary level of patches, the lat-
est packages, and with the intended services enabled.

 You can maintain configurations by creating VM templates or a golden image and
instantiating many of them, but this process produces a monolithic image, and replicat-
ing this process every time a change is required is a lengthy task. It is also difficult, if
not impossible, to propagate updates to the configuration or libraries to all the servers
generated from the template. The better approach consists of using a tool such as Chef,
Puppet, or CFengine. With these tools, you create a bare-bones golden image or VM
template and you push servers day-2.

 These tools offer the capability to define the node end state with a language that is
abstracted from the underlying OS. For instance, you don’t need to know whether to
install a package with “yum” or “apt”; simply define that a given package is needed. You
don’t have to use different commands on different machines to set up users, packages,
services, and so on.

 If you need to create a web server configuration, define it with a high-level language.
Then, the tool creates the necessary directories, installs the required packages, and starts
the processes listening on the ports specified by the end user.

 Some of the key characteristics of these tools are that they are based on principles such
as a “declarative” model (in that they define the desired end state) and idempotent con-
figurations (in that you can rerun the same configuration multiple times and it always
yields the same result). The policy model relies on the declarative approach. (You can
find more details about the declarative model in Chapter 3 , “The Policy Data Center.”)

 With these automation tools, you can also simulate the result of a given operation
before it is actually executed, implement the change, and prevent configuration drifting.

Automating Server Provisioning 45

 Chef

 The following list provides a reference for some key terminology used by Chef:

 Node: The server (but could be a network device).

 Attributes: The configuration of a node.

 Resources: Packages, services, files, users, software, networks, and routes.

 Recipe: The intended end state of a collection of resources. It is defined in Ruby.

 Cookbook: The collection of recipes, files, and so on for a particular configuration
need. A cookbook is based on a particular application deployment and defines all
the components necessary for that application deployment.

 Templates: Configuration files or fragments with embedded Ruby code (.erb) that is
resolved at run time.

 Run list: The list of recipes that a particular node should run.

 Knife: The command line for Chef.

 Chef client: The agent that runs on a node.

 Normally the administrator performs configurations from “Knife” from a Chef worksta-
tion, which has a local repository of the configurations. The cookbooks are saved on the
Chef server, which pushes them to the nodes, as shown in Figure 2-2 .

Cookbooks

Upload

Deploy
Download

Request Chef
Workstation

Chef Server

Node

Chef Client

 Figure 2-2 Chef Process and Interactions

46 Chapter 2: Building Blocks for Cloud Architectures

 The recipe that is relevant to the action to be performed on the device is configured on
the Chef workstation and uploaded to the Chef server.

 Puppet

 Figure 2-3 illustrates how Puppet operates. With the Puppet language, you define the
desired state of resources (users, packages, services, and so on), simulate the deployment
of the desired end state as defined in the manifest file, and then apply the manifest file
to the infrastructure. Finally, it is possible to track the components deployed, track the
changes, and correct configurations from drifting from the intended state.

Define: With Puppet’s declarative
language you design a graph of
relationships between resources within
reusable modules. These modules define
your infrastructure in its desired state.

Simulate: With this resource
graph, Puppet is unique in its
ability to simulate deployments,
enabling you to test changes without
disruption to your infrastructure.

Enforce: Puppet compares your
system to the desired state as you
define it, and automatically enforces it
to the desired state ensuring your system
is in compliance.DESIRED

STATE

CURRENT
STATE

Report: Puppet Dashboard reports
track relationships between
componenets and all changes,
allowing you to keep up with security
and compliance mandates. And with
the open API you can integrate Puppet
with third party monitoring tools.

3

IT
ER

AT
E
A
N
D
IN
CR
EA
SE
CO

VE
RA
GE

1

2

3

4

 Figure 2-3 Puppet

 The following is a list of some key terminology used in Puppet:

 Nodes: The servers, or network devices

 Resource: The object of configuration: packages, files, users, groups, services, and
custom server configuration.

 Manifest: A source file written using Puppet language (.pp)

 Class: A named block of Puppet code

 Module: A collection of classes, resource types, files, and templates, organized
around a particular purpose

Orchestrators for Infrastructure as a Service 47

 Catalog: Compiled collection of all resources to be applied to a specific node,
including relationships between those resources

 Orchestrators for Infrastructure as a Service

 Amazon EC2, VMware vCloud Director, OpenStack, and Cisco UCS Director are IaaS
orchestrators that unify the provisioning of virtual machines, physical machines, storage,
and networking and can power up the entire infrastructure for a given user environment
(called a container , virtual data center , or tenant).

 The following common operations are enabled by these tools:

 Creating a VM

 Powering up a VM

 Powering down a VM

 Power cycling a VM

 Changing ownership of a server

 Taking a snapshot of an image

 vCloud Director

 VMware supports the implementation of clouds with the use of vCloud Director.
vCloud Director builds on top of vCenter, which in turn coordinates VMs across a
number of hosts that are running vSphere. Figure 2-4 illustrates the features of vCloud
Director, which provides tenant abstraction and resource abstraction and a vApp Catalog
for users of the cloud computing service.

vSphere

Tenant
Abstraction

Cloud
Computing

Media &
vApp

Catalog

Resource
Abstraction

vCloud
API

Interface

Billing/Chargeback

User Interface

vCloud
Admin UI

U
se

r
R

ig
ht

s
&

 P
ro

fil
es

Organization
Admin UI

Self-
Service

UI

 Figure 2-4 vCloud Director Components

 Figure 2-5 shows how vCloud Director organizes resources in a different way and
provides them as part of a hierarchy where the Organization is at the top. Inside the
Organization there are multiple vDCs.

48 Chapter 2: Building Blocks for Cloud Architectures

Physical vSphere

Host Resource Pool

SAN Datastore

Network Port Group

Groupings

Group
Resources

into

“Offerings”
with Specific

Costs

Provider vDC

Provider vDC

Org: Coke

Provisioning Policies

Access Control

vDCs

Catalogs

Org: Pepsi

Provisioning Policies

Access Control

vDCs

Catalogs

 Figure 2-5 vCloud Director Organization of Resources

 OpenStack

 Chapter 6 , “OpenStack,” covers the details of OpenStack as it relates to ACI. The pur-
pose of this section is to explain how OpenStack fits in cloud architectures.

 Project and Releases

 Each functional area of OpenStack is a separate project. For the purpose of cloud
deployments, you don’t have to use the entire OpenStack set of capabilities; you can,
for instance, just leverage the APIs of a particular project.

 The list of projects is as follows:

 Nova for compute

 Glance, Swift, and Cinder for image management, object storage, and block storage,
respectively

 Horizon for the dashboard, self-service portal, and GUI

 Neutron for networking and IP address management

 Telemetry for metering

 Heat for orchestration

 The release naming is very important because different releases may have significant
changes in capabilities. At the time of this writing, you may encounter the following
releases:

Orchestrators for Infrastructure as a Service 49

 Folsom (September 27, 2012)

 Grizzly (April 4, 2013)

 Havana (October 17, 2013)

 Icehouse (April 17, 2014)

 Juno (October 2014)

 Kilo (April 2015)

 Note You can find the list of releases at:

http://docs.openstack.org/training-guides/content/
associate-getting-started.html#associate-core-projects

 The releases of particular interest currently for the network administrator are Folsom,
because it introduced the Quantum component to manage networking, and Havana,
which replaced the Quantum component with Neutron. Neutron gives more flexibility
to manage multiple network components simultaneously, especially with the ML2 archi-
tecture, and is explained in detail in Chapter 6 .

 The concept of the plug-in for Neutron is significant. It is how networking vendors
plug into the OpenStack architecture. Neutron provides a plug-in that can be used by
OpenStack to configure their specific networking devices through a common API.

 Multi-Hypervisor Support

 OpenStack manages compute via the Nova component, which controls a variety of com-
pute instances, such as the following:

 Kernel-based Virtual Machine (KVM)

 Linux Containers (LXC), through libvirt

 Quick EMUlator (QEMU)

 User Mode Linux (UML)

 VMware vSphere 4.1 update 1 and newer

 Xen, Citrix XenServer, and Xen Cloud Platform (XCP)

 Hyper-V

 Baremetal, which provisions physical hardware via pluggable subdrivers

 Installers

 The installation of OpenStack is a big topic because installing OpenStack has been com-
plicated historically. In fact, Cisco took the initiative to provide an OpenStack rapid
scripted installation to facilitate the adoption of OpenStack. At this time many other
installers exist.

http://docs.openstack.org/training-guides/content/associate-getting-started.html#associate-core-projects
http://docs.openstack.org/training-guides/content/associate-getting-started.html#associate-core-projects

50 Chapter 2: Building Blocks for Cloud Architectures

 When installing OpenStack for proof-of-concept purposes, you often hear the following
terminology:

 All-in-one installation: Places the OpenStack controller and nodes’ components all
on the same machine

 Two-roles installation: Places the OpenStack controller on one machine and a com-
pute on another machine

 To get started with OpenStack, you typically download a devstack distribution that
provides an all-in-one, latest-and-greatest version. Devstack is a means for developers
to quickly “stack” and “unstack” an OpenStack full environment, which allows them to
develop and test their code. The scale of devstack is limited, naturally.

 If you want to perform an all-in-one installation of a particular release, you may use the
Cisco installer for Havana by following the instructions at http://docwiki.cisco.com/wiki/
OpenStack:Havana:All-in-One , which use the git repo with the code at https://github.
com/CiscoSystems/puppet_openstack_builder . Chapter 6 provides additional informa-
tion regarding the install process.

 There are several rapid installers currently available, such as these:

 Red Hat OpenStack provides PackStack and Foreman

 Canonical/Ubuntu provides Metal as a Service (MaaS) and JuJu

 SUSE provides SUSE Cloud

 Mirantis provides Fuel

 Piston Cloud provides one

 Architecture Models

 When deploying OpenStack in a data center, you need to consider the following
components:

 A PXE server/Cobbler server (Quoting from Fedora: “Cobbler is a Linux installa-
tion server that allows for rapid setup of network installation environments. It glues
together and automates many associated Linux tasks so you do not have to hop
between lots of various commands and applications when rolling out new systems,
and, in some cases, changing existing ones.”)

 A Puppet server to provide image management for the compute nodes and poten-
tially to image the very controller node of OpenStack

 A node or more for OpenStack controllers running keystone, Nova (api, cert, com-
mon, conductor, scheduler, and console), Glance, Cinder, Dashboard, and Quantum
with Open vSwitch

http://docwiki.cisco.com/wiki/OpenStack:Havana:All-in-One
http://docwiki.cisco.com/wiki/OpenStack:Havana:All-in-One
https://github.com/CiscoSystems/puppet_openstack_builder
https://github.com/CiscoSystems/puppet_openstack_builder

Orchestrators for Infrastructure as a Service 51

 ■ The nodes running the virtual machines with Nova (common and compute) and

Quantum with Open vSwitch

 ■ The nodes providing the proxy to the storage infrastructure

 Networking Considerations

 Cisco products provide plug-ins for the provisioning of network functionalities to be

part of the OpenStack orchestration. Figure 2-6 illustrates the architecture of the net-

working infrastructure in OpenStack.

Core API

REST API

Resource and Attribute Extension API
ProviderNetwork PortBinding Router Quotas SecurityGroups AgentScheduler LBaaS FWaaS VPNaaS

Core + Extension REST APIs

DHCP Agent
Neutron Server

Neutron Service
plug-ins

L3 Agent

Message queue for communicating with
Neutron agents

Core and service plug-ins

Different vendor core plug-ins

Different network technology support

ML2 plug-in with Type and Mechanism
drivers

Service plug-ins with backend drivers

PortNetwork Subnet

IPTables on
Network

Node

L2 Agent
OVS on
Compute

Node

Message
Queue

M
L2

Lo
ad

 B
al

an
ce

r

F
ire

w
al

l

V
P

N

L3
 S

er
vi

ce
s

H
A

 P
ro

xy

IP
T

ab
le

s

O
pe

nS
w

an

F
ut

ur
es

O
V

S

C
is

co
 (

N
ex

us
,

N
1K

v)
M

or
e

ve
nd

or
pl

ug
-in

s

Mechanism DriversType Drivers

O
V

S

C
is

co
 N

ex
us

O
pe

nD
ay

Li
gh

t

A
P

IC

V
LA

N

G
R

E

V
X

LA
N

M
or

e
ve

nd
or

dr
iv

er
s

Neutron Core
plug-ins

 Figure 2-6 OpenStack Networking Plug-ins

 Networks in OpenStack represent an isolated Layer 2 segment, analogous to VLAN in

the physical networking world. They can be mapped to VLANs or VXLANs and become

part of the ACI End Point Groups (EPGs) and Application Network Policies (ANP). As

 Figure 2-6 illustrates, the core plug-ins infrastructure offers the option to have vendor

plug-ins. This topic is described in Chapter 6 .

 Note For more information about OpenStack, visit http://www.openstack.org .

 UCS Director

 UCS Director is an automation tool that allows you to abstract the provisioning from

the use of the element managers and configure compute, storage, and ACI networking

as part of an automated workflow in order to provision applications. The workflow pro-

vided by UCS Director is such that the administrator defines server policies, application

network policies, storage policies, and virtualization policies, and UCSD applies these

policies across the data center as shown in Figure 2-7 .

http://www.openstack.org

52 Chapter 2: Building Blocks for Cloud Architectures

Secure Cloud
Container

Network Compute VMs Storage

On-Demand
Automated Delivery Domain

Managers

Policy-Driven
Provisioning

OS and
Virtual

Machines
Virtualized and Bare-Metal

Compute and Hypervisor

Network and Services

Tenant Tenant Tenant
A B C

Compute

Network

Storage

VM VM
Bare
Metal

UCS Director

S
in

gl
e

P
an

e
of

 G
la

ss

E
nd

-t
o-

E
nd

 A
ut

om
at

io
n

an
d

Li
fe

cy
cl

e
M

an
ag

em
en

t

 Figure 2-7 UCS Director

 The workflow can be defined in a very intuitive way via the graphical workflow designer.

 UCSD has both a northbound API and a southbound API. The southbound API allows
UCSD to be an extensible platform.

 Note For additional information on UCS Director, visit: https://developer.cisco.com/
site/data-center/converged-infrastructure/ucs-director/overview/

 Cisco Intelligent Automation for Cloud

 Cisco Intelligent Automation for Cloud is a tool that enables a self-service portal and is
powered by an orchestration engine to automate the provisioning of virtual and physical
servers. Although there are some blurred lines between UCSD and CIAC, CIAC uses the
UCSD northbound interface and complements the orchestration with the ability to stan-
dardize operations such as offering a self-service portal, opening a ticket, doing charge-
back, and so on. CIAC orchestrates across UCSD, OpenStack, and Amazon EC2, and
integrates with Puppet/Chef. It also provides measurement of the utilization of resources
for the purpose of pricing. Resources being monitored include vNIC, hard drive usage,
and so on.

 Figure 2-8 illustrates the operations performed by CIAC for PaaS via the use of Puppet.

https://developer.cisco.com/site/data-center/converged-infrastructure/ucs-director/overview/
https://developer.cisco.com/site/data-center/converged-infrastructure/ucs-director/overview/

Orchestrators for Infrastructure as a Service 53

Cisco Process
Orchestrator

Repository deploys the
middleware and application

components

Deploys VM
with Chef or

Puppet agent

Running System

OS
VM

Running System

Chef/Puppet
Repository and Engine OS

VM

Apps
Middleware

Service Catalog

C
lo

ud
S

yn
c

Service
Components

Stack Model

OS
VM

Apps
Middleware

 Figure 2-8 CIAC Operations

 Figure 2-9 illustrates more details of the provisioning part of the process.

Self-service Portal

Service Catalog

Orchestration
Layer

Service request submitted to
orchestration engine

Configure & add Bare-metal

servers to end-point groups

Fulfill any storage

requirements for DB server

Create Application Policies

Create VMs & assign to end-

point groups

WEB

L4-7

L4-7

APP

DB

vCenter

Compute: Virtualized

Compute: Bare-metal

Network

Storage

UCSM

Storage
Manager

APIC
Load

Balancer

APP

OS

APP

OS

APP

OSOS OS OS

A B C
O O O

1

4

3

2

5

 Figure 2-9 CIAC Workflow

 CIAC organizes the data center resources with the following hierarchy:

 Tenants

 Organization within tenants

 Virtual data centers

 Resources

54 Chapter 2: Building Blocks for Cloud Architectures

 Figure 2-10 illustrates the hierarchy used by CIAC.

Cloud Provider
Technical
Administrator
Cloud Provider

Tenant Technical
Administrator
Tenant Business
Administrator

Organization
Technical

Administrator

Cloud Provider

Tenant

TTA TBA

OTA OTAOTA

User
Organization

Cloud
End-User

Resources

Business Administrator

Cloud Provider (IAC Customer)

$

$

Tenant BTenant A

$

HR SalesLegal Marketing

 Figure 2-10 Hierarchy in CIAC

 The user is offered a complete self-service catalog that includes different options with
the classic Bronze, Silver, and Gold “containers” or data centers to choose from, as illus-
trated in Figure 2-11 .

Orchestrators for Infrastructure as a Service 55

Bronze

Public or Private Zone
Compute Firewall
Unlimited VLANs per Zone

Load Balancing
Compute Firewall
Public or Private Zone
Unlimited VLANs per Zone

Load Balancing
Perimeter Firewall
Compute Firewall
Public or Private Protected Zone
Unlimited VLANs per Zone

Silver Gold

 Figure 2-11 Containers

 Conciliating Different Abstraction Models

 One of the tasks of an administrator is to create a cloud infrastructure that maps the
abstraction model of the service being offered to the abstractions of the components
that make the cloud.

 A typical offering may consist of a mix of VMware-based workloads, OpenStack/
KVM-based workloads with an ACI network, and UCSD/CIAC orchestration. Each tech-
nology has its own way of creating hierarchy and virtualizing the compute and network.

 Table 2-1 provides a comparison between the different environments.

 Table 2-1 Differences Among VMware vCenter Server, VMware vCloud Director,
OpenStack, Amazon EC2, UCS Director, CIAC, and ACI

 Platform

Type/

Property

 VMware

vCenter

Server

 VMware

vCloud

Director

 OpenStack

(Essex)

 Amazon

AWS (EC2)

 UCS

Director CIAC ACI

 Compute

POD

 Data center Organization OpenStack

PE ID

 Account Account Server N/A

 Tenant Folder Organization N/A Account N/A Tenant Security

domain

 Organization Folder N/A N/A N/A Group Organization Tenant

 VDC Resource

pool

 Organization

VDC

 Project Account VDC VDC Tenant

56 Chapter 2: Building Blocks for Cloud Architectures

 Platform

Type/

Property

 VMware

vCenter

Server

 VMware

vCloud

Director

 OpenStack

(Essex)

 Amazon

AWS (EC2)

 UCS

Director CIAC ACI

 VLAN

Instance

 vCenter

network

 Org network/

network pool

 Network ID Network ID Network

policy

 Network Subnet

 VM Template Full path VM template

HREF

 Image ID AMI ID Catalog Server

template

 N/A

 In ACI the network is divided into tenants, and the administration of the tenants is orga-
nized with the concept of a security domain. Different administrators are associated with
one or more security domains and, similarly, each tenant network can be associated with
one or more security domains. The result is a many-to-many mapping, which allows cre-
ating sophisticated hierarchies. Furthermore, if two tenant networks represent the same
“tenant” in CIAC but two different organizations within the same “tenant,” it is possible
to share resources and enable the communication between them.

 In CIAC, a tenant can contain different organizations (e.g., departments) and each orga-
nization can own one or more virtual data centers (aggregates of physical and virtual
resources). Network and other resources can be either shared or segregated, and the API
exposed by the ACI controller (APIC) to the orchestrator makes it very easy.

 Note For more information regarding Cisco’s development in the OpenStack area, visit
these links:

 http://www.cisco.com/web/solutions/openstack

 http://docwiki.cisco.com/wiki/OpenStack

 Summary

 This chapter described the components of a cloud infrastructure and how ACI pro-
vides network automation for the cloud. It explained the Amazon Web Services
approach. This chapter also described the role of the various orchestration tools, such
as OpenStack, Cisco UCS Director, and Cisco Intelligent Automation for Cloud. It also
introduced some key concepts regarding how to automate the provisioning of servers
and how to get started with OpenStack. It explained the OpenStack modeling of the
cloud infrastructure and compared it to similar modeling by CIAC and ACI. It also dis-
cussed the administrator’s task of mapping the requirements of IaaS services onto the
models of these technologies.

http://www.cisco.com/web/solutions/openstack
http://docwiki.cisco.com/wiki/OpenStack

Index

 Numbers

 10-Gigabit Ethernet cabling, 208

 40-Gigabit Ethernet cabling, 208

 A

 AaaS (Application as a Service), 38

 abstract nodes

 connecting, 258 - 260

 connector definition, 257 - 258

 elements, 258

 function definition, 255 - 257

 access control for APIC policy
model, 88 - 89

 access credentials, 41

 access ports, configuring, 223 - 228

 ACI (Application Centric
Infrastructure) . See also APIC
(Application Policy Infrastructure
Controller) model

 in cloud computing, network
requirements, 39 - 41

 design, 59 - 61

 benefits, 193

 configuring, 219 - 235

 forwarding, 194 - 202

 hardware and software
requirements, 207 - 208

 management model, 204 - 207

 multitenancy, 218 - 219

 physical topology, 208 - 218

 segmentation with endpoint
groups, 202 - 204

 virtual topology configuration,
 235 - 241

 goals of, 248 - 249

 health monitoring, 272 - 281

 events and logs, 279 - 280

 faults, 274 - 279

 health score, 280 - 281

 statistics, 273 - 274

 OpenStack and

 benefits, 177 - 180

 features and capabilities, 191

 integration, 180 - 181

332 ACI (Application Centric Infrastructure)

 operational model, 91

 additional resources, 124

 APIC interfaces, 106 - 108

 Git/GitHub, 103 - 106

 JSON, 94 - 95

 network management options,
 92 - 93

 object tree, 108 - 114

 Python, 96 - 103

 Python SDK for ACI, 122 - 124

 REST calls, 114 - 122

 REST protocol, 93 - 94

 XML, 94

 YAML, 95 - 96

 service insertion, 243

 benefits, 244

 concrete and logical devices,
 250 - 251

 configuring, 252 - 266

 connecting EPGs with service
graph, 244 - 245

 defining service graph,
 249 - 250

 hardware and software
requirements, 247 - 248

 logical device selectors, 251

 management model, 245

 rendering service graph,
 246 - 249

 splitting bridge domains, 251

 for virtualized servers, 245

 telemetry. See telemetry

 virtual server connectivity, 160 - 165

 endpoint discovery, 162

 Hyper-V integration, 162 - 163

 KVM integration, 163 - 164

 overlay normalization,
 160 - 161

 policy resolution immediacy,
 162

 VMM domain, 161 - 162

 VMware ESX/ESXi
integration, 164 - 165

 virtualized data centers, advantages
of, 128

 ACI Fabric OS, 79 - 80

 actions (APIC model), 75

 AEP (attach entity profile), 217 - 218 ,
 234 - 235

 Amazon Elastic Compute Cloud
(EC2) services, 41 - 42

 Amazon Machine Image (AMI), 41

 Amazon Simple Storage Service (S3),
 42

 Amazon Virtual Private Cloud
(VPC), 43

 Amazon Web Services (AWS) model,
 41 - 43

 AMI (Amazon Machine Image), 41

 ANPs (application network profiles),
 70 - 71 , 118

 any-to-any policy, 121 - 122

 APIC (Application Policy
Infrastructure Controller) model,
 57 , 207

 access control, 88 - 89

 ACI Fabric OS, 79 - 80

 ANPs (application network profiles),
 70 - 71

 atomic counters, 270

 benefits, 178

 component architecture, 80

 Appliance Director, 83

 Appliance Element, 84

AWS (Amazon Web Services) model 333

 Boot Director, 82 - 83

 Event Manager, 83

 Observer, 82

 Policy Manager, 81

 Topology Manager, 81 - 82

 VMM Manager, 83

 contracts, 71 - 79

 design considerations, 210 - 211

 EPGs (endpoint groups), 62 - 65

 logical object model, 61 - 63

 OpenStack driver, 181

 configuring, 185 - 188

 features and capabilities, 191

 installing, 183 - 185

 OpenStack integration, 180 - 181

 policy enforcement

 multicast, 69 - 70

 unicast, 66 - 68

 promise theory, 59 - 61

 sharding, 84 - 87

 subjects, 73

 taboos, 74 - 75

 user interface

 CLI (command-line interface),
 87

 GUI (graphical user interface),
 87

 RESTful API, 88

 strengths and weaknesses,
 106 - 108

 Appliance Director, 83

 Appliance Element, 84

 application and storage designs (data
center architectures), 1 - 2

 big data data centers, 7 - 13

 high-performance compute data
centers (HPC), 14 - 15

 massively scalable data centers
(MSDC), 21 - 25

 ultra-low latency data centers (ULL),
 16 - 20

 virtualized data centers, 2 - 7

 Application as a Service (AaaS), 38

 Application Centric Infrastructure.
 See ACI (Application Centric
Infrastructure)

 application deployment in Policy
Driven Data Center model, need
for, 57 - 59

 application network profiles (ANPs),
 70 - 71 , 118

 Application Policy Infrastructure
Controller (APIC). See APIC
(Application Policy Infrastructure
Controller) model

 atomic counters, 267 - 270

 attach entity profile (AEP), 217 - 218 ,
 234 - 235

 attacks, preventing with CoPP
(Control Plane Policing), 288 - 291

 audit logs, 280

 authentication for APIC policy
model, 88 - 89

 authorization for APIC policy model,
 88 - 89

 automating

 policies,

 server provisioning, 43

 OS deployment, 44 - 47

 PXE booting, 43 - 44

 availability, big data data centers, 12

 Availability Zones, 41

 AWS (Amazon Web Services) model,
 41 - 43

334 Bare Metal Service

 B

 Bare Metal Service, 174 - 175

 big data data centers, 7 - 13

 cluster design, 10

 components, 8

 design requirements, 11 - 13

 availability and resiliency, 12

 burst handling and queue
depth, 12 - 13

 data node network speed, 13

 network latency, 13

 oversubscription ratio, 13

 in enterprise data models, 8

 network requirements, 9

 QoS (quality of service), 312

 storage requirements, 11

 blacklist model (taboos), 74 - 75

 Boot Director, 82 - 83

 boot process, PXE booting, 43 - 44

 brctl command, 142 - 143

 bridge domain, 237 - 238 , 251

 bridging, Linux KVM, 142 - 143

 broadcast traffic, forwarding,
 213 - 214

 buffer bloat, 317 - 318

 buffer strategies

 big data data centers, 12 - 13

 QoS (quality of service), 315 - 317

 bundles (APIC model), 78

 burst handling, big data data centers,
 12 - 13

 C

 centralized repositories, 104

 centralized shared memory (SoC),
 306 - 309

 Chef, 45 - 46

 CIAC (Cisco Intelligent Automation
for Cloud), 52 - 54

 Cinder, 173

 Cisco ACI. See ACI (Application
Centric Infrastructure)

 Cisco APIC. See APIC (Application
Policy Infrastructure Controller)
model

 Cisco Intelligent Automation for
Cloud (CIAC), 52 - 54

 Cisco Nexus switches

 flowlet switching, 322 - 323

 Nexus 1000V, 155 - 158

 Nexus 9000 series, 208

 QoS (quality of service)
implementation, 324 - 326

 switch architectures by model, 326

 classes (ACI), 109 - 113

 classification boundaries, 313 - 314

 CLI (command-line interface)

 for APIC policy model, 87

 MQC (Modular QoS CLI) model,
 324 - 326

 cloud computing

 Amazon Web Services (AWS)
model, 41 - 43

 automating server provisioning, 43

 OS deployment, 44 - 47

 PXE booting, 43 - 44

 explained, 37 - 39

control planes 335

 IaaS orchestrators, 47 - 56

 Cisco Intelligent Automation
for Cloud (CIAC), 52 - 54

 comparison of models, 55 - 56

 OpenStack, 48 - 51 . See also
OpenStack

 UCS Director, 51 - 52

 vCloud Director, 47

 network requirements, 39 - 41

 POD model, 26 - 28

 cloud delivery model, 37

 cloud orchestration, 128

 cluster design, big data data
centers, 10

 code listings. See examples

 CodeTalker, 101

 collision model, 301

 command-line interface (CLI)

 for APIC policy model, 87

 MQC (Modular QoS CLI) model,
 324 - 326

 commands, Git/GitHub, 105 - 106

 concrete devices, 250 - 251 , 260 - 266

 configuring

 APIC driver, 185 - 188

 Cisco ACI fabric, 219 - 235

 interface policy groups, 229

 network management, 221 - 223

 policy-based configuration of
access ports, 223 - 228

 PortChannels, 229 - 231

 requirements, 219 - 220

 virtual PortChannels (vPCs),
 231 - 232

 VMM domains, 233 - 235

 zero-touch provisioning,
 220 - 221

 interface policies, 228

 logical device selectors, 264 - 265

 policy groups, 229

 PortChannel, 188 , 229 - 231

 service insertion, 252 - 266

 abstract node connectors,
 257 - 258

 abstract node elements, 258

 abstract node functions,
 255 - 257

 concrete and logical device
definition, 260 - 266

 connecting abstract nodes,
 258 - 260

 metadevices, 254 - 255

 naming conventions, 265 - 266

 service graph boundaries, 253

 switch profiles, 228

 virtual topology, 235 - 241

 bridge domain, 237 - 238

 endpoint connectivity, 238 - 240

 external connectivity, 240 - 241

 vPCs (virtual PortChannels), 231 - 232

 contexts (APIC model), 62 - 63

 contracts (APIC model), 71 - 79 ,
 120 - 121 , 244 - 245

 Control Plane Policing (CoPP),
 288 - 291

 control planes

 CoPP (Control Plane Policing),
 288 - 291

 interaction between data and
management planes, 287 - 288

 packet classification, 290

 packet types, 288 - 290

 rate-controlling mechanisms,
 290 - 291

 separation between data and
management planes, 286

336 control traffic

 control traffic, 155

 Controlling Bridge, 158 - 160

 CoPP (Control Plane Policing),
 288 - 291

 credit model, 301

 crossbar switch fabric architecture,
 295 - 306

 benefits, 297

 cut-through switching, 301 - 302

 HOLB (head-of-line blocking), 304

 input queuing, 303 - 304

 multicast switching, 298

 multistage crossbar fabrics, 305 - 306

 output queuing, 302 - 303

 overspeed, 298

 scheduler, 301

 with SoC, 306 - 309

 superframing, 299 - 301

 unicast switching, 297

 VoQ (virtual output queuing), 304

 cURL, 117

 cut-through switching, 292 - 295 ,
 301 - 302

 D

 data center architectures

 application and storage designs, 1 - 2

 big data data centers, 7 - 13

 high-performance compute data
centers (HPC), 14 - 15

 massively scalable data centers
(MSDC), 21 - 25

 ultra-low latency data centers
(ULL), 16 - 20

 virtualized data centers, 2 - 7

 cloud computing. See cloud
computing

 designs

 end of row (EoR) model, 29 - 30

 middle of row (MoR) model, 30

 project requirements, 29

 spine-leaf model, 33 - 35

 top of rack (ToR) model, 30 - 32

 FlexPod model, 28

 POD model, 26 - 28

 Policy Driven Data Center

 need for, 57 - 59

 switch architecture

 centralized shared memory
(SoC), 306 - 309

 by Cisco Nexus model, 326

 CoPP (Control Plane Policing),
 288 - 291

 crossbar switch fabric
architecture, 295 - 306

 cut-through switching, 292 - 295

 data, control, management
plane interaction, 287 - 288

 data, control, management
plane separation, 286

 requirements, 291

 summary of, 291

 Data Center Bridging Exchange
(DCBX), 320

 Data Center TCP (DCTCP), 320 - 321

 data node network speed, big data
data centers, 13

 data planes, 286 - 288

 data structures, Python, 98 - 99

 DCBX (Data Center Bridging
Exchange), 320

 DCTCP (Data Center TCP), 320 - 321

end of row (EoR) model 337

 declarative management model in
ACI fabric, 204 - 207

 defining

 abstract node connectors, 257 - 258

 abstract node functions, 255 - 257

 concrete devices, 260 - 266

 logical devices, 260 - 266

 service graph, 249 - 250

 service graph boundaries, 253

 denial of service (DoS) attacks,
 289 - 290

 dEPG (destination EPGs), 66

 deployment, OpenStack, 176 - 177

 configuring APIC driver, 185 - 188

 example, 182 - 189

 installing Icehouse, 183 - 185

 troubleshooting, 188 - 189

 design requirements

 big data data centers, 11 - 13

 availability and resiliency, 12

 burst handling and queue
depth, 12 - 13

 data node network speed, 13

 network latency, 13

 oversubscription ratio, 13

 high-performance compute data
centers (HPC), 14 - 15

 massively scalable data centers
(MSDC), 24

 ultra-low latency data centers (ULL),
 18 - 19

 virtualized data centers, 6

 design topologies

 high-performance compute data
centers (HPC), 15

 massively scalable data centers
(MSDC), 25

 summary of, 25

 ultra-low latency data centers (ULL),
 19 - 20

 designs

 ACI (Application Centric
Infrastructure), 59 - 61 . See also
fabric design (ACI)

 data center architectures

 end of row (EoR) model, 29 - 30

 middle of row (MoR) model, 30

 project requirements, 29

 spine-leaf model, 33 - 35

 top of rack (ToR) model, 30 - 32

 FlexPod model, 28

 destination EPGs (dEPG), 66

 dictionaries (Python), 98

 distributed repositories, 104

 distributed switching, 133

 Distributed Virtual Switch, 149 - 151

 domains, 216 - 217

 bridge domain, 237 - 238 , 251

 VMM domains, 233 - 235

 DoS (denial of service) attacks,
 289 - 290

 dvPort group, 149

 E

 easy_install, 101

 EC2 (Amazon Elastic Compute
Cloud) services, 41 - 42

 ECN (Early Congestion Notification),
 320 - 321

 eggs (Python). See packages (Python)

 egress leaf, policy enforcement, 68

 elastic IP addresses, 41

 end of row (EoR) model, 29 - 30

338 endpoint discovery

 endpoint discovery, 162

 Enhanced Transmission Selection
(ETS), 319

 enterprise data models, big data data
centers in, 8

 EoR (end of row) model, 29 - 30

 EPGs (endpoint groups), 62 - 65 , 160

 adding, 118

 any-to-any policy, 121 - 122

 connecting with service graph,
 244 - 245

 contracts, 71 - 79 , 120 - 121

 endpoint connectivity, 238 - 240

 segmentation with, 202 - 204

 in server virtualization, 128 , 133

 errors in Python scripts, 101

 ESX/ESXi, 149 - 154

 ACI integration, 164 - 165

 traffic requirements, 151 - 152

 vCloud Director and vApp, 152 - 154

 vSwitch and distributed virtual
switches, 150 - 151

 Eth0 interface, 287 - 288

 Eth1 interface, 288

 Eth3 interface, 287

 Eth4 interface, 287

 ETS (Enhanced Transmission
Selection), 319

 event logs, 280

 Event Manager, 83

 events, health monitoring, 279 - 280

 examples

 Association of Ports with the vPC
Channel Group, 232

 Configuration of a PortChannel, 230

 Configuration of a vPC Channel
Group, 232

 Configuration of Concrete Device
that Is a Physical Appliance, 263

 Configuration of Concrete Device
that Is a Virtual Appliance, 263

 Configuration of Connectivity to a
Physical Server, 239

 Configuration of Connectivity to a
Virtualized Server, 240

 Configuration of External
Connectivity, 240

 Configuration of the vPC Protection
Group, 231

 Configuring an OVS Switch, 146

 Connecting the Node to the
Boundary of the Graph, 259

 Connecting Two vnsAbsNodes
Together, 259

 Contract that Connects Two EPGs
Has a Reference to a Graph, 254

 Creating a Virtual Environment for
Cobra, 123

 cURL to Send REST Calls, 117

 Defining a Function (Python), 97

 Definition of a Contract, 121

 Definition of a Logical Device, 262

 Definition of an Any-to-Any
Policy, 121

 Definition of an EPG, 121

 Definition of the Boundary of the
Service Graph, 253

 Definition of the Connectors of the
Abstract Node, 257 - 258

 Deleting Objects with REST Calls,
 115

 Fabric Discovery, 124

 Importing a Module (Python), 98

 JSON-Formatted Files, 100

 List (Python), 98

fabric design (ACI) 339

 Load-Balancing Configuration, 256

 Logging In to the Fabric with the
SDK, 123

 Logical Device Context Base
Configuration, 264 - 265

 Mapping Virtualized Servers
Mobility Domain to the
Fabric, 217

 ML2_cisco_conf.ini Parameters to
Configure, 186

 ML2_conf.ini Parameters to
Configure, 186

 Neutron Network API Options, 170

 Neutron Subnet API Options, 170

 Object NodeP in XML Format, 112

 Port Profile in Cisco Nexus 1000V,
 157

 Python Script to Send REST Calls,
 116

 Querying with Cobra, 124

 REST Call to Add an EPG, 118

 REST Call to Create an Application
Network Profile, 118

 Service Graph Example, 259

 Set (Python), 99

 String (Python), 99

 Tenant Configuration—Complete,
 120

 Tenant Configuration in Cisco ACI
Formatted in JSON, 94

 Tenant Configuration in Cisco ACI
Formatted in XML, 94

 Tenant Creation, 218

 Tenant mgmt Configuration for
In-band Management, 222

 Uplink Port Profile in Nexus
1000V, 156

 Virtual Environment Creation, 102

 XML Format, 111

 YAML Format for Configuration
Files, 95

 YAML Libraries, 100

 exception packets, 288

 external networks, connecting to,
 188 , 240 - 241

 F

 fabric design (ACI)

 benefits, 193

 configuring, 219 - 235

 interface policy groups, 229

 network management, 221 - 223

 policy-based configuration of
access ports, 223 - 228

 PortChannels, 229 - 231

 requirements, 219 - 220

 virtual PortChannels (vPCs),
 231 - 232

 VMM domains, 233 - 235

 zero-touch provisioning,
 220 - 221

 forwarding, 194 - 202

 inside versus outside networks,
 199 - 200

 overlay frame format, 196

 packet walk, 201 - 202

 pervasive gateway, 198 - 199

 prescriptive topology, 194 - 195

 VXLAN forwarding, 197 - 198

 hardware and software requirements,
 207 - 208

 management model, 204 - 207

 multitenancy, 218 - 219

340 fabric design (ACI)

 physical topology, 208 - 218

 APIC design considerations,
 210 - 211

 leaf design considerations,
 212 - 218

 spine design considerations,
 211 - 212

 segmentation with endpoint groups,
 202 - 204

 virtual topology configuration,
 235 - 241

 bridge domain, 237 - 238

 endpoint connectivity, 238 - 240

 external connectivity, 240 - 241

 faults, 274 - 279

 feed replication, 19

 filters (APIC model), 67 , 75

 FlexPod model

 design, 28

 Vblock model versus, 27

 flooding mode, 238

 flowlet switching, 322 - 323

 40-Gigabit Ethernet cabling, 208

 forwarding extension, 139

 forwarding in ACI fabric, 194 - 202

 inside versus outside networks,
 199 - 200

 overlay frame format, 196

 packet walk, 201 - 202

 pervasive gateway, 198 - 199

 prescriptive topology, 194 - 195

 unknown unicast and broadcast
traffic, 213 - 214

 VXLAN forwarding, 197 - 198

 function definition, Python, 97 - 98

 functions

 abstract node functions, defining,
 255 - 257

 in service graph, 249 - 250

 fvCtx (private networks), 238

 G

 Git/GitHub, 92 , 103 - 106

 additional resources, 124

 centralized versus distributed
repositories, 104

 commands in, 105 - 106

 installing, 105

 operations in, 104 - 105

 version control terminology,
 103 - 104

 glean packets, 289

 goals of ACI (Application Centric
Infrastructure), 248 - 249

 goodput, 311

 graphical user interface (GUI) for
APIC policy model, 87

 Group Based Policy, 190 - 191

 GUI (graphical user interface) for
APIC policy model, 87

 H

 Hadoop, 8

 availability and resiliency, 12

 burst handling and queue depth,
 12 - 13

 cluster design, 10

 hardware proxy, 213 , 237 - 238

 hardware requirements

 in ACI fabric, 207 - 208

 service insertion, 247 - 248

Ironic 341

 head-of-line blocking (HOLB), 304

 health monitoring, 272 - 281

 events and logs, 279 - 280

 faults, 274 - 279

 health score, 280 - 281

 statistics, 273 - 274

 health score, 280 - 281

 health score logs, 280

 Heat, 174

 HFT (high frequency trading)
topologies, 20

 HOLB (head-of-line blocking), 304

 Homebrew, 101

 Horizon, 174

 horizontal partitioning, sharding
versus, 84

 host-port connectivity (APIC driver),
 188

 hot migration, 134

 HPC (high-performance compute
data centers), 14 - 15

 design requirements, 14 - 15

 design topologies, 15

 network requirements, 14

 QoS (quality of service), 312

 storage requirements, 14

 hybrid clouds, 38

 Hyper-V, 137 - 141 , 162 - 163

 Hyper-V Switch, 138

 hypervisors, 128

 benefits, 179

 Cisco Nexus 1000V, 155 - 158

 Linux KVM, 141 - 149

 Microsoft Hyper-V, 137 - 141

 port extension with VN-TAG,
 158 - 160

 VMware ESX/ESXi, 149 - 154

 I

 IaaS (Infrastructure as a Service), 38

 orchestrators, 47 - 56

 Cisco Intelligent Automation
for Cloud (CIAC), 52 - 54

 comparison of models, 55 - 56

 OpenStack, 48 - 51 . See also
OpenStack

 UCS Director, 51 - 52

 vCloud Director, 47

 Icehouse, installing, 183 - 185

 imperative control models, 59

 importing modules, Python, 98

 infrastructure statistics, 273

 ingress leaf, policy enforcement, 67

 input queuing in crossbar fabrics,
 303 - 304

 inside networks, outside networks
versus, 199 - 200

 installers, OpenStack, 49 - 50

 installing

 Git/GitHub, 105

 Icehouse, 183 - 185

 Python packages, 101

 Python SDK for ACI, 122 - 123

 instances (AWS), 41

 interface policies, configuring, 228

 interface policy groups, configuring,
 229

 interface profiles, creating, 226

 investment protection,

 Ironic, 174 - 175

342 JSON

 J

 JSON, 94 - 95 , 100

 K

 KVM (Kernel-based Virtual
Machine), 141 - 149

 ACI integration, 163 - 164

 bridging, 142 - 143

 OVS (Open vSwitch), 143 - 149

 server virtualization components,
 128

 L

 labels (APIC model), 75 , 78 - 79

 latency

 big data data centers, 13

 metrics, 271 - 272

 spine-leaf model, 35

 ultra-low latency data centers (ULL),
 16 - 20

 Layer 3 networks, 61 - 62

 Layer 4 through Layer 7 services.
 See service insertion

 leaf switches, 207

 Cisco Nexus switches,

 configuring switch profiles, 228

 design considerations, 212 - 218

 libraries (Python), 102

 libvirt, 141 - 142

 lifecycle of fault monitoring, 277

 Linux KVM (Kernel-based Virtual
Machine), 141 - 149

 ACI integration, 163 - 164

 bridging, 142 - 143

 OVS (Open vSwitch), 143 - 149

 server virtualization components,
 128

 listings. See examples

 lists (Python), 98

 LND (Logical Network Definition),
 140

 logical device selectors, 251 ,
 264 - 265

 logical devices, 250 - 251 , 260 - 266

 logical interfaces, naming, 250 - 251

 Logical Network Definition (LND),
 140

 logical networks, 140

 logical switches, 140

 logs, health monitoring, 279 - 280

 M

 main() function, Python, 97

 management model

 in ACI fabric, 204 - 207

 for service insertion, 245

 management planes, 286 - 288

 marking boundaries, 313 - 314

 massively scalable data centers
(MSDC). See MSDC (massively
scalable data centers)

 memory, centralized shared memory
(SoC), 306 - 309

 metadevices, 254 - 255

 Microsoft

 Hyper-V, 137 - 141 , 162 - 163

 server virtualization components,
 128

 middle of row (MoR) model, 30

Open vSwitch Database (OVSDB) 343

 ML2 (Modular Layer 2) plug-in,
 180 - 181

 ml2_cisco_conf.ini file, 186 - 187

 ml2_conf.ini file, 186

 modeling tenants in XML, 119 - 120

 Modular Layer 2 (ML2) plug-in,
 180 - 181

 modules, importing, Python, 98

 MoR (middle of row) model, 30

 MQC (Modular QoS CLI) model,
 324 - 326

 MSDC (massively scalable data
centers), 21 - 25

 design requirements, 24

 design topologies, 25

 network requirements, 23 - 24

 QoS (quality of service), 312

 storage requirements, 24

 system characteristics, 22

 multicast, VXLANs without, 137

 multicast policy enforcement, 69 - 70

 multicast switching over crossbar
fabrics, 298

 multi-hypervisor support
(OpenStack), 49

 multistage crossbar fabrics, 305 - 306

 multistage SoC (centralized shared
memory), 306 - 309

 multitenancy in ACI fabric, 218 - 219

 N

 namespaces, 215 - 216

 naming conventions

ACI, 113

 logical interfaces, 250 - 251

 service insertion configuration,
 265 - 266

 NETCONF (Network Configuration
Protocol), REST and SNMP
versus, 92

 network interface cards (NICs),
virtual network adapters, 132

 network latency, big data data
centers, 13

 network management options, 92 - 93 ,
 221 - 223

 network requirements

 big data data centers, 9

 cloud computing, 39 - 41

 high-performance compute data
centers (HPC), 14

 massively scalable data centers
(MSDC), 23 - 24

 ultra-low latency data centers (ULL),
 17 - 18

 virtualized data centers, 6

 network sites, 140

 network virtualization, 5

 Neutron, 169 - 172

 neutron.conf file, 186

 NIC teaming, 150

 NICs (network interface cards),
virtual network adapters, 132

 NoSQL, 8 - 9

 Nova, 168 - 169

 O

 object store (ACI), 114

 object tree (ACI), 108 - 114

 classes and relationships, 109 - 113

 naming conventions, 113

 object store, 114

 Observer, 82

 Open vSwitch Database (OVSDB),
 149

344 Open vSwitch (OVS)

 Open vSwitch (OVS), 143 - 149

 architecture, 143 - 145

 example topology, 145 - 146

 OpenFlow, 147 - 149

 OpenStack, 146

 OpenStack driver, 180

 OVSDB (Open vSwitch Database),
 149

 OpenFlow, 147 - 149

 OpenStack, 48 - 51

 ACI (Application Centric
Infrastructure) and

 benefits, 177 - 180

 features and capabilities, 191

 integration, 180 - 181

 ACI integration, 163 - 164

 architecture models, 50 - 51

 components, 167 - 168

 Cinder, 173

 Heat, 174

 Horizon, 174

 Ironic, 174 - 175

 Neutron, 169 - 172

 Nova, 168 - 169

 Swift, 173

 deployment, 176 - 177

 configuring APIC driver,
 185 - 188

 example, 182 - 189

 installing Icehouse, 183 - 185

 troubleshooting, 188 - 189

 Group Based Policy, 190 - 191

 installers, 49 - 50

 multi-hypervisor support, 49

 networking considerations, 51

 OVS (Open vSwitch), 146

 projects and releases, 48 - 49

 operating systems, ACI Fabric OS,
 79 - 80

 operational model (ACI), 91

 additional resources, 124

 APIC interfaces, 106 - 108

 Git/GitHub, 103 - 106

 centralized versus distributed
repositories, 104

 commands in, 105 - 106

 installing, 105

 operations in, 104 - 105

 version control terminology,
 103 - 104

 JSON, 94 - 95

 network management options, 92 - 93

 object tree, 108 - 114

 classes and relationships,
 109 - 113

 naming conventions, 113

 object store, 114

 Python, 96 - 103

 characteristics of, 96 - 97

 data structures, 98 - 99

 function definition, 97 - 98

 installing packages, 101

 main() function, 97

 online tutorial, 96

 package requirements, 101 - 102

 parsing files, 99 - 100

 running, 101

 verifying scripts, 101

 virtual environments, 102 - 103

 Python SDK for ACI, 122 - 124

 developing Python scripts,
 123 - 124

 finding Python scripts, 124

 installing, 122 - 123

POD model 345

 REST calls, 114 - 122

 any-to-any policy, 121 - 122

 contracts, 120 - 121

 modeling tenants in XML,
 119 - 120

 sending, 115 - 117

 syntax, 117 - 119

 REST protocol, 93 - 94

 XML, 94

 YAML, 95 - 96

 orchestration, 5

 orchestrators (IaaS), 47 - 56

 Cisco Intelligent Automation for
Cloud (CIAC), 52 - 54

 comparison of models, 55 - 56

 OpenStack, 48 - 51

 UCS Director, 51 - 52

 vCloud Director, 47

 OS deployment, 44 - 47

 output queuing in crossbar fabrics,
 302 - 303

 outside networks, inside networks
versus, 199 - 200

 overlay frame format in ACI fabric,
 196

 overlay normalization, 160 - 161

 overspeed in crossbar fabrics, 298

 oversubscription ratio, big data data
centers, 13

 OVS (Open vSwitch), 143 - 149

 architecture, 143 - 145

 example topology, 145 - 146

 OpenFlow, 147 - 149

 OpenStack, 146

 OpenStack driver, 180

 OVSDB (Open vSwitch Database),
 149

 OVSDB (Open vSwitch Database),
 149

 P

 PaaS (Platform as a Service), 38

 packages (Python)

 for ACI SDK, installing, 122 - 123

 installing, 101

 requirements, 101 - 102

 packet forwarding, VXLANs,
 136 - 137

 packet traffic, 155 , 201 - 202

 packets

 classification, 290

 rate-controlling mechanisms,
 290 - 291

 types of, 288 - 290

 paravirtualization, 138

 parsing files, Python, 99 - 100

 partitioning, sharding versus, 84

 path statistics, 273

 performance, spine-leaf model, 35

 pervasive gateway in ACI fabric,
 198 - 199

 PFC (priority flow control), 318 - 319

 physical domains, 216

 physical servers, connecting to, 239

 physical topology

 ACI as,

 in ACI fabric, 208 - 218

 APIC design considerations,
 210 - 211

 leaf design considerations,
 212 - 218

 spine design considerations,
 211 - 212

 pip, 101

 Platform as a Service (PaaS), 38

 POD model, 26 - 28

346 Policy Driven Data Center

 Policy Driven Data Center

 need for, 57 - 59

 promise theory, 59 - 61

 policy groups, configuring, 229

 Policy Manager, 81

 policy models. See APIC (Application
Policy Infrastructure Controller)
model

 policy resolution immediacy, 162

 port extension with VN-TAG,
 158 - 160

 port profiles, 156 - 158

 PortChannel, configuring, 188 ,
 229 - 231

 ports, configuring, 223 - 228

 Postman, 94 , 115

 Precision Time Protocol (PTP),
 271 - 272

 prescriptive topology in ACI fabric,
 194 - 195

 preventing attacks, CoPP (Control
Plane Policing), 288 - 291

 priority flow control (PFC), 318 - 319

 priority queues, 321 - 322

 private clouds, 38

 private Layer 3 networks, 61 - 62

 project requirements, data center
architecture designs, 29

 projects (OpenStack), 48 - 49

 promise theory, 59 - 61

 PTP (Precision Time Protocol),
 271 - 272

 public clouds, 38

 Puppet, 46 - 47

 PXE booting, 43 - 44

 Python, 92 , 96 - 103

 additional resources, 124

 characteristics of, 96 - 97

 data structures, 98 - 99

 function definition, 97 - 98

 installing packages, 101

 main() function, 97

 online tutorial, 96

 package requirements, 101 - 102

 parsing files, 99 - 100

 running, 101

 sending REST calls, 115 - 116

 verifying scripts, 101

 virtual environments, 102 - 103

 Python SDK for ACI, 122 - 124

 developing Python scripts, 123 - 124

 finding Python scripts, 124

 installing, 122 - 123

 Q

 qemu, 141

 QoS (quality of service), 309

 buffer bloat, 317 - 318

 buffering, explained, 315 - 317

 Data Center Bridging Exchange
(DCBX), 320

 Data Center TCP (DCTCP), 320 - 321

 Early Congestion Notification
(ECN), 320 - 321

 Enhanced Transmission Selection
(ETS), 319

 flowlet switching, 322 - 323

 implementation in Cisco Nexus
switches, 324 - 326

 priority flow control (PFC), 318 - 319

 priority queues, 321 - 322

 requirements, 309 - 314

 Quantum. See Neutron

 queue depth, big data data centers,
 12 - 13

 RESTful API 347

 R

 raised (fault monitoring lifecycle),
 278

 raised-clearing (fault monitoring
lifecycle), 279

 rate-controlling mechanisms for
packets, 290 - 291

 RBAC (role-based administrative
control) for APIC policy model,
 88 - 89

 receive packets, 288

 redirected packets, 289

 redundancy, spine-leaf model, 34 - 35

 regions (AWS), 41

 relationships (ACI), 109 - 113

 releases (OpenStack), 48 - 49

 reliability

 replication and, 84

 sharding and, 85

 rendering service graph, 246 - 249

 replication, reliability and, 84

 requirements

 configuring Cisco ACI fabric,
 219 - 220

 design requirements

 big data data centers, 11 - 13

 high-performance compute data
centers (HPC), 14 - 15

 massively scalable data centers
(MSDC), 24

 ultra-low latency data centers
(ULL), 18 - 19

 virtualized data centers, 6

 hardware and software requirements

 in ACI fabric, 207 - 208

 service insertion, 247 - 248

 network requirements

 big data data centers, 9

 cloud computing, 39 - 41

 high-performance compute
data centers (HPC), 14

 massively scalable data centers
(MSDC), 23 - 24

 ultra-low latency data centers
(ULL), 17 - 18

 virtualized data centers, 6

 packages (Python), 101 - 102

 project requirements, data center
architecture designs, 29

 QoS (quality of service), 309 - 314

 storage requirements

 big data data centers, 11

 high-performance compute
data centers (HPC), 14

 massively scalable data centers
(MSDC), 24

 ultra-low latency data centers
(ULL), 18

 virtualized data centers, 7

 switch architecture, 291

 traffic requirements, VMware
ESX/ESXi, 151 - 152

 resiliency, big data data centers, 12

 REST calls, 114 - 122

 any-to-any policy, 121 - 122

 contracts, 120 - 121

 modeling tenants in XML, 119 - 120

 sending, 115 - 117

 syntax, 117 - 119

 RESTful API

 for APIC policy model, 88

 defined, 92

 implementation, 93 - 94

 NETCONF and SNMP versus, 92

348 retaining (fault monitoring lifecycle)

 retaining (fault monitoring lifecycle),
 279

 RFC 3535, 91 , 124

 RFC 4594, 310

 role-based administrative control
(RBAC) for APIC policy model,
 88 - 89

 running Python, 101

 S

 S3 (Amazon Simple Storage Service),
 42

 SaaS (Software as a Service), 38

 scalability, spine-leaf model, 35

 scheduler in crossbar fabrics, 301

 SCVMM (System Center Virtual
Machine Manager), 138

 SCVMM Server Console, 138

 segmentation

 with endpoint groups, 202 - 204

 in virtualized data centers

 VLANs, 134 , 214 - 215

 VXLANs, 134 - 137

 sending REST calls, 115 - 117

 sEPG (source EPGs), 66

 servers

 physical servers, connecting to, 239

 provisioning, automating, 43

 OS deployment, 44 - 47

 PXE booting, 43 - 44

 virtual servers, connecting to,
 239 - 240

 virtualization, 3

 ACI (Application Centric
Infrastructure) modeling of,
 160 - 165

 components, 128

 distributed switching, 133

 EPGs (endpoint groups), 133

 hot migration, 134

 service insertion, 245

 virtual network adapters, 132

 virtual software switches,
 129 - 133

 service chaining, 179

 service delivery model, 37

 service graph, 243

 configuring, 252 - 266

 abstract node connectors,
 257 - 258

 abstract node elements, 258

 abstract node functions,
 255 - 257

 concrete and logical device
definition, 260 - 266

 connecting abstract nodes,
 258 - 260

 metadevices, 254 - 255

 naming conventions, 265 - 266

 service graph boundaries, 253

 connecting EPGs with, 244 - 245

 defining, 249 - 250

 defining configuration, 245

 rendering, 246 - 249

 service insertion, 243

 benefits, 244

 concrete and logical devices,
 250 - 251

 configuring, 252 - 266

 abstract node connectors,
 257 - 258

 abstract node elements, 258

 abstract node functions,
 255 - 257

Swift 349

 concrete and logical device
definition, 260 - 266

 connecting abstract nodes,
 258 - 260

 metadevices, 254 - 255

 naming conventions, 265 - 266

 service graph boundaries, 253

 connecting EPGs with service graph,
 244 - 245

 defining service graph, 249 - 250

 hardware and software requirements,
 247 - 248

 logical device selectors, 251

 management model, 245

 rendering service graph, 246 - 249

 splitting bridge domains, 251

 for virtualized servers, 245

 services virtualization, 5

 sets (Python), 98 - 99

 setup tools (Python), 101

 sharding, 84 - 87

 horizontal partitioning versus, 84

 reliability and, 85

 technology, 86 - 87

 shared infrastructure, POD model,
 26 - 28

 show-tech output, 281

 single-homed servers design, 32

 SNMP (Simple Network Management
Protocol), REST and NETCONF
versus, 92

 soaking (fault monitoring lifecycle),
 278

 soaking-clearing (fault monitoring
lifecycle), 278

 SoC (centralized shared memory),
 306 - 309

 Software as a Service (SaaS), 38

 software requirements

 in ACI fabric, 207 - 208

 service insertion, 247 - 248

 source EPGs (sEPG), 66

 spine switches, 207

 design considerations, 211 - 212

 spine-leaf model, 33 - 35

 in ACI fabric, 208 - 218

 APIC design considerations,
 210 - 211

 leaf design considerations,
 212 - 218

 spine design considerations,
 211 - 212

 redundancy, 34 - 35

 scalability and performance, 35

 splitting bridge domains, 251

 SQL database farm example (APIC
model), 76 - 79

 statistics, health monitoring, 273 - 274

 storage requirements

 big data data centers, 11

 high-performance compute data
centers (HPC), 14

 massively scalable data centers
(MSDC), 24

 ultra-low latency data centers
(ULL), 18

 virtualized data centers, 7

 storage virtualization, 4 - 5

 store-and-forward switching,
cut-through switching versus,
 292 - 295

 strings (Python), 98 - 99

 subjects (APIC model), 73 - 75

 superframing in crossbar fabrics,
 299 - 301

 Swift, 173

350 switch architecture

 switch architecture

 centralized shared memory (SoC),
 306 - 309

 by Cisco Nexus model, 326

 CoPP (Control Plane Policing),
 288 - 291

 crossbar switch fabric architecture,
 295 - 306

 benefits, 297

 cut-through switching, 301 - 302

 HOLB (head-of-line blocking),
 304

 input queuing, 303 - 304

 multicast switching, 298

 multistage crossbar fabrics,
 305 - 306

 output queuing, 302 - 303

 overspeed, 298

 scheduler, 301

 superframing, 299 - 301

 unicast switching, 297

 VoQ (virtual output queuing),
 304

 cut-through switching, 292 - 295

 data, control, management planes

 interaction, 287 - 288

 separation, 286

 requirements, 291

 summary of, 291

 switch profiles, configuring, 228

 System Center Virtual Machine
Manager (SCVMM), 138

 T

 taboos (APIC model), 74 - 75

 TCAM (ternary content-addressable
memory), 65

 telemetry, 179 - 180 , 267

 atomic counters, 267 - 270

 health monitoring, 272 - 281

 events and logs, 279 - 280

 faults, 274 - 279

 health score, 280 - 281

 statistics, 273 - 274

 latency metrics, 271 - 272

 show-tech output, 281

 Tenant ID, 138

 tenants (APIC model), 61 - 63

 modeling in XML, 119 - 120

 multitenancy, 218 - 219

 statistics, 273

 10-Gigabit Ethernet cabling, 208

 ternary content-addressable memory
(TCAM), 65

 three-tier topology, 1 - 2

 time to live (TTL) attacks, 289 - 290

 top of rack (ToR) model, 30 - 32

 topologies

 high-performance compute data
centers (HPC), 15

 massively scalable data centers
(MSDC), 25

 physical topology in ACI fabric,
 208 - 218

 prescriptive topology in ACI fabric,
 194 - 195

 summary of, 25

 ultra-low latency data centers (ULL),
 19 - 20

 virtual topology, configuring,
 235 - 241

 Topology Manager, 81 - 82

 ToR (top of rack) model, 30 - 32

 traffic requirements, VMware
ESX/ESXi, 151 - 152

virtual topology, configuring 351

 troubleshooting . See also telemetry

 levels of, 274

 OpenStack deployment, 188 - 189

 trust boundaries, 313 - 314

 TTL (time to live) attacks, 289 - 290

 tunneling, 179

 tuples (Python), 98

 U

 UCS Director, 51 - 52

 ULL (ultra-low latency data centers),
 16 - 20

 design requirements, 18 - 19

 design topologies, 19 - 20

 network requirements, 17 - 18

 QoS (quality of service), 312

 storage requirements, 18

 unicast policy enforcement, 66 - 68

 unicast switching over crossbar
fabrics, 297

 unknown unicast traffic, forwarding,
 213 - 214

 user interface for APIC policy model

 CLI (command-line interface), 87

 GUI (graphical user interface), 87

 RESTful API, 88

 strengths and weaknesses, 106 - 108

 V

 vApp, 150 - 154

 Vblock model, FlexPod model versus,
 27

 vCenter, 149

 vCloud Director, 47 , 149 , 152 - 154

 verifying Python scripts, 101

 version control, Git/GitHub, 103 - 106

 centralized versus distributed
repositories, 104

 commands in, 105 - 106

 installing, 105

 operations in, 104 - 105

 version control terminology,
 103 - 104

 video, QoS (quality of service),
 309 - 310

 virt-install, 142

 virt-manager, 142

 virtual domains, 216 - 217

 Virtual Env, 102 - 103

 virtual environments, 102 - 103 , 123

 Virtual Machine Management Service
(VMMS), 138

 Virtual Machine Manager (VMM)
domains, 161 - 162 , 233 - 235

 virtual machine managers, 128

 virtual network adapters, 132

 virtual output queuing (VoQ), 304

 virtual PortChannels (vPCs),
configuring, 231 - 232

 virtual servers, connecting to,
 239 - 240

 virtual software switches, 128 , 133

 Cisco Nexus 1000V, 155 - 158

 OVS (Open vSwitch), 143 - 149

 reasons for, 129 - 131

 vSwitch and distributed virtual
switches, 150 - 151

 Virtual Subnet Identifier (VSID), 138

 virtual topology, configuring,
 235 - 241

 bridge domain, 237 - 238

 endpoint connectivity, 238 - 240

 external connectivity, 240 - 241

352 virtualized data centers

 virtualized data centers, 2 - 7

 challenges, 127

 hypervisors

 benefits, 179

 Cisco Nexus 1000V, 155 - 158

 Linux KVM, 141 - 149

 Microsoft Hyper-V, 137 - 141

 port extension with VN-TAG,
 158 - 160

 VMware ESX/ESXi, 149 - 154

 integration approaches, 127

 network and design requirements, 6

 network virtualization, 5

 orchestration, 5

 QoS (quality of service), 312

 segmentation

 VLANs, 134

 VXLANs, 134 - 137

 server virtualization, 3

 ACI (Application Centric
Infrastructure) modeling of,
 160 - 165

 components, 128

 distributed switching, 133

 EPGs (endpoint groups), 133

 hot migration, 134

 service insertion, 245

 virtual network adapters, 132

 virtual software switches,
 129 - 133

 services virtualization, 5

 storage requirements, 7

 storage virtualization, 4 - 5

 virt-viewer, 142

 Visore, 108

 VLANs

 EPGs (endpoint groups) versus, 65

 namespaces, 215 - 216

 segmentation, 134 , 214 - 215

 VMM (Virtual Machine Manager)
domains, 161 - 162 , 233 - 235

 VMM Manager, 83

 VMMS (Virtual Machine
Management Service), 138

 VMware

 ESX/ESXi, 149 - 154

 ACI integration, 164 - 165

 traffic requirements, 151 - 152

 vCloud Director and vApp,
 152 - 154

 vSwitch and distributed virtual
switches, 150 - 151

 server virtualization components,
 128

 VN networks, 140

 vNetwork Distributed Switch, 149

 VN-TAG, 158 - 160

 voice, QoS (quality of service),
 309 - 310

 VoQ (virtual output queuing), 304

 VPC (Amazon Virtual Private Cloud),
 43

 vPCs (virtual PortChannels),
configuring, 231 - 232

 vShield Manager, 149 - 152

 VSID (Virtual Subnet Identifier), 138

 vSphere ESXi, 149

 vSwitches, 150 - 151

 VXLANs

 forwarding, 197 - 198

 namespaces, 215 - 216

 overlay frame format, 196

zero-touch provisioning 353

 packet format, 135

 packet forwarding, 136 - 137

 segmentation, 134 - 137

 vShield Manager, 151 - 152

 without multicast, 137

 W

 Websockets, 101

 whitelist model (taboos), 75

 Windows Azure Pack, 162 - 163

 WMI (Windows Management
Instrumentation), 138

 WNV (Windows Network
Virtualization), 138

 X

 Xcode, 101

 XEN, 128

 XML, 94 , 119 - 120

 Y

 YAML, 95 - 96 , 99 - 100

 Z

 zero-touch provisioning, 220 - 221

This page intentionally left blank

Visit pearsonITcertification.com today to f ind:

 IT CERTIFICATION EXAM information and guidance for

 Pearson is the off icial publisher of Cisco Press, IBM Press,

VMware Press and is a Platinum CompTIA Publishing Partner—

CompTIA’s highest partnership accreditation

 EXAM TIPS AND TRICKS from Pearson IT Certif ication’s

expert authors and industry experts, such as

 • Mark Edward Soper – CompTIA

 • David Prowse – CompTIA

 • Wendell Odom – Cisco

 • Kevin Wallace – Cisco and CompTIA

 • Shon Harris – Security

 • Thomas Erl – SOACP

SPECIAL OFFERS – pearsonITcertification.com/promotions

 REGISTER your Pearson IT Certif ication products to access

additional online material and receive a coupon to be used

on your next purchase

Mobile Apps

Articles & Chapters

Blogs

Books

eBooks

Software Downloads

Cert Flash Cards Online

Newsletters

Podcasts

Question of the Day

Rough Cuts

Short Cuts

Videos

CONNECT WITH PEARSON

IT CERTIFICATION

Be sure to create an account on

pearsonITcertification.com
and receive members-only

offers and benef its

Pearson IT Certification
THE LEADER IN IT CERTIFICATION LEARNING TOOLS

	Contents
	Foreword
	Introduction
	Chapter 2 Building Blocks for Cloud Architectures
	Introduction to Cloud Architectures
	Network Requirements of Clouds and the ACI Solution
	Amazon Web Services Model
	Automating Server Provisioning
	PXE Booting
	Deploying the OS with Chef, Puppet, CFengine, or Similar Tools
	Chef
	Puppet

	Orchestrators for Infrastructure as a Service
	vCloud Director
	OpenStack
	Project and Releases
	Multi-Hypervisor Support
	Installers
	Architecture Models
	Networking Considerations
	UCS Director
	Cisco Intelligent Automation for Cloud
	Conciliating Different Abstraction Models

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

