
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9781587144653
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9781587144653
https://plusone.google.com/share?url=http://www.informit.com/title/9781587144653
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9781587144653
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9781587144653/Free-Sample-Chapter

Programming and
Automating Cisco
Networks

Ryan Tischer, CCIE No. 11459

Jason Gooley, CCIE No. 38759 (R&S & SP)

Cisco Press
800 East 96th Street

Indianapolis, Indiana 46240 USA

ii Programming and Automating Cisco Networks

Programming and Automating Cisco Networks
Ryan Tischer
Jason Gooley

Copyright © 2017 Cisco Systems, Inc.

Published by:
Cisco Press
800 East 96th Street
Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval
system, without written permission from the publisher, except for the inclusion of brief quotations in a
review.

Printed in the United States of America

First Printing August 2016

Library of Congress Control Number: 2016942372

ISBN-13: 978-1-58714-465-3

ISBN-10: 1-58714-465-4

Warning and Disclaimer
This book is designed to provide information about network programmability and automation of Cisco
Data Center, Campus, and WAN networks. Every effort has been made to make this book as complete
and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc. shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book or from the use of the discs or programs that may
 accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco
Systems, Inc.

Trademark Acknowledgments
All terms mentioned in this book that are known to be trademarks or service marks have been
 appropriately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this
 information. Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

iii

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at corpsales@
pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Feedback Information
At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book
is crafted with care and precision, undergoing rigorous development that involves the unique expertise of
members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we
could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us
through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your
message.

We greatly appreciate your assistance.

Editor-in-Chief: Mark Taub

Product Line Manager: Brett Bartow

Alliances Manager, Cisco Press: Ronald Fligge

Managing Editor: Sandra Schroeder

Development Editor: Ellie C. Bru

Project Editor: Mandie Frank

Copy Editor: Lori Martinsek

Technical Editor(s): Joe Clarke, Omar Sultan

Editorial Assistant: Vanessa Evans

Cover Designer: Chuti Prasertsith

Composition: codeMantra

Indexer: Erika Millen

Proofreader: Kamalakannan

iv Programming and Automating Cisco Networks

About the Authors
Ryan Tischer, CCIE No. 11459 is a Technical Solution Architect at Cisco where
he focuses on SDN, Cloud, and network programmability. He has worked in IT for
20 years, specifically focused on design, deployment, and operations of networking
technologies. Ryan holds a BA in Information Technology from the University of
Massachusetts, Lowell and a MS in Network Engineering from Depaul University.
Ryan lives with his wife and children in the Milwaukee, WI area. Ryan blogs at
http://Policyetc.com.

Jason Gooley, CCIE No. 38759 (R&S & SP), is a very enthusiastic engineer that is
 passionate about helping others in the industry succeed. Jason has more than 20 years
of experience in the Information Technology and Telecommunications industry.
Jason currently works at Cisco as a Strategic Systems Engineer where he specializes
in SD-WAN, campus, and data center network design. In addition, Jason works with
Learning@Cisco on certification development, mentoring, and training. Jason is also a
Program Committee member and organizer for the Chicago Network Operators Group
(CHINOG). Jason lives in Illinois with his wife Jamie and their daughter Kaleigh.

http://Policyetc.com

v

About the Technical Reviewers
Joe Clarke, CCIE No. 5384 is a Global TAC engineer. He has contributed to network
management products and technologies by finding and fixing bugs, as well as
 implementing maintenance and troubleshooting components in Cisco Prime.

Joe helps to support and enhance the embedded automation and programmability
technologies, such as the Embedded Event Manager, Tcl, NETCONF/RESTCONF, and
ONE Platform Kit (onePK). Joe is a top-rated speaker at Cisco’s annual user conference,
CiscoLive!, as well as certified as a Cisco Certified Internetworking Expert, Certified
Java Programmer, and VMware Certified Professional. Joe provides network consulting
and design support for the Internet Engineering Task Force (IETF) conference network
infrastructure deployments. He has authored numerous technical documents on Cisco
network management, automation, and programmability products and technologies. Joe
is co-author of more than 20 Cisco patents. He is an alumnus of the University of Miami
and holds a Bachelor of Science degree in computer science. Outside of Cisco, Joe is a
member of the FreeBSD project. He is a committer in the project focusing mainly on the
GNOME Desktop. He also maintains the FreeBSD ports Tinderbox application, which
facilitates the automated packaging and testing of FreeBSD third-party ports.

Omar Sultan currently leads a team of sales managers and product managers focused
on Cisco’s web and cloud customers. At Cisco since 1999, Omar has focused on helping
the company successfully enter new markets and is currently focused on the software
and hardware technologies that underpin web-scale infrastructure. A geek at heart, Omar
has been involved with IT since VAXes roamed the earth. Omar has been involved in
every aspect of IT from cabling to coding to systems and networking, which has left him
the perspective that data centers should really be viewed as their own class of quirky
 complex life forms.

vi Programming and Automating Cisco Networks

Dedications

Ryan Tischer:

This book is dedicated to my wife Jennifer and my children Madeline, Alexander, and
Elaina. When the road gets rough, you are the reason I do not give up. When scary
arrives, you are the source for my courage. When good enough is reached, you make me
push for better. When things don’t go my way, you make me substitute my cuss words.

ILMF4EVER

Special thank you to my parents—Stop saying I turned out all right; there’s still time.

To my friends—I know the best place for chili.

A message to my children—

Whatever your life has in store for you, be …

curious

passionate

thoughtful

Break ground and glass

Be anything but boring.

—Ryan

Jason Gooley:

I would like to dedicate this book to my family. To my wife Jamie for being so endlessly
supportive of me with my various “projects.” Without you, I would not have been
able to make it this far. To my daughter Kaleigh, who at the time of this writing is just
15 months old: It is extremely difficult to leave your side when all I want to do is spend
time with you. I feel like I have already missed so much just writing this paragraph!
To my father and brother for always having my back and believing in me. To my late
 mother, you have been the guiding light that has kept me on the right path.

vii

Acknowledgments

Ryan Tischer:

I’d like to give special recognition to the amazing engineers, managers, sales teams,
and customers I have the privilege of working with. I am humbled to be a part of
this community, and I fully recognize that without your inspiration, encouragement,
and knowledge, this book would not be possible. I have been truly blessed to have
 managers and co-workers who believe in me, told me when I screwed up, and gave me
the opportunity of a lifetime. Special thank you to INSBU for building wickedly-cool
 products and letting me play.

A big thank you to Joe Clark, Omar Sultan, Brett Bartow, and Eleanor Bru for their
 amazing work on this book.

Finally, I’d like to thank my co-author Jason Gooley. I approached him with this project
at the very last minute, and he’s worked very hard to keep the book on time, while not
 sacrificing technical depth or content.

Jason Gooley:

First, thank you to Brett Bartow, Eleanor Bru, and the rest of the Cisco Press team for
all of the support during creation of this book. It was a pleasure to work with such an
 amazing group of professionals.

I would like to thank the entire Cisco Commercial Midwest Select Operation for
 supporting me during this process. Thank you to my manager and all of my teammates
on the Illinois Select team for the continued reinforcement of this project.

A special thanks to Anthony Sequeira, Keith Barker, Andre Laurent, and Luke Kaelin for
all the mentoring and words of encouragement. I can’t thank you enough for all of your
support over the years.

Thank you, Ryan, for giving me the opportunity to write this book with you. It has been
an absolute blast, and I am honored to be a part of it.

Finally, I would like to thank all my friends and family who have patiently waited for me
to finish this project, so I would be able to go outside and play. You know who you are!

viii Programming and Automating Cisco Networks

Contents at a Glance

 Introduction xviii

Section I Getting Started with Network Programmability

Chapter 1 Introduction: Why Network Programmability 1

Chapter 2 Foundational Skills 13

Section II Cisco Programmable Data Center

Chapter 3 Next-Generation Cisco Data Center Networking 67

Chapter 4 On-Box Programmability and Automation with Cisco Nexus NX-OS 83

Chapter 5 Off-Box Programmability and Automation with Cisco Nexus NX-OS 125

Chapter 6 Network Programmability with Cisco ACI 159

Section III Cisco Programmable Campus and WAN

Chapter 7 On-Box Automation and Operations Tools 215

Chapter 8 Network Automation Tools for Campus Environments 255

Chapter 9 Piecing It All Together 303

 Index 307

ix

Contents
Introduction xviii

Section I Getting Started with Network Programmability

Chapter 1 Introduction: Why Network Programmability 1

What Is Network Programmability 3

Network Programmability Benefits 4

Simplified Networking 4

Network Innovation with Programmability 4

Cloud, SDN, and Network Programmability 6

SDN 8

Is Programmability a New Idea? 9

Network Automation 10

Automation Example 11

Summary 11

Chapter 2 Foundational Skills 13

Introduction to Software Development 13

Common Constructs—Variables, Flow Control, Functions,
and Objects 15

Variables 15

Flow Control—Conditions 17

Flow Control—Loops 18

Functions 18

Objects 19

A Basic Introduction to Python 20

More on Strings 22

Help! 23

Flow Control 24

Python Conditions 24

Python Loops 25

While Loop 26

Python Functions 28

Python Files 29

Importing Libraries 30

Installing Python Libraries 30

Using PIP 31

x Programming and Automating Cisco Networks

Using Common Python Libraries 31

APIs and SDKs 37

Web Technologies 37

Web Technologies—Data Formatting 38

XML 38

JSON 39

Google Postman 40

Using Postman 40

Using JSON in Python 43

Basic Introduction to Version Control, Git, and GitHub 45

Git—Add a File 47

Creating and Editing Source Code 49

Getting Started with PyCharm 50

Writing Code in PyCharm—Get the Weather 53

Debugging in PyCharm 54

Introduction to Linux 55

Working in Linux 56

Linux Architecture 58

Display Linux Process 59

Using Systemd 61

Linux File System and Permissions 63

Linux Directories 64

Installing Applications on Linux 64

Where to Go for Help 65

Summary 66

Section II Cisco Programmable Data Center

Chapter 3 Next-Generation Cisco Data Center Networking 67

Cisco Application-Centric Infrastructure (ACI) 70

Nexus Data Broker 74

Use Case—Nexus Data Broker 75

Evolution of Data Center Network Architecture 76

Cisco Data Center Network Controllers 80

Nexus Fabric Manager 80

Virtual Topology System (VTS) 81

Cisco ACI 81

Summary 82

Contents xi

Chapter 4 On-Box Programmability and Automation
with Cisco Nexus NX-OS 83

Open NX-OS Automation—Bootstrap and Provisioning 83

Cisco POAP 83

Cisco Ignite 87

Using Ignite 87

NX-OS iPXE 88

Bash 88

Bash Scripting 89

Bash Variables, Conditions, and Loops 89

Bash Arithmetic 90

Bash Conditions and Flow Control 91

Bash Redirection and Pipes 94

Working with Text in Bash 96

Awk 98

Bash on Nexus 9000 99

ifconfig 101

Tcpdump 101

ethtool 103

Run a Bash Script at Startup 103

Bash Example—Configure NTP Servers at boot 106

Linux Containers (LXC) 106

Network Access in Guestshell 109

Installing Applications in Guestshell 110

Puppet Agent Installation in Guestshell 111

NMap Installation in Guestshell 111

Embedded Nexus Data Broker 111

Nexus Embedded Event Manager 112

EEM Variables 113

On-box Python Scripting 113

Using the NX-OS Python CLI Library 115

Using NX-OS Cisco Python Library 116

Non-Interactive Python 118

Cisco or CLI Package? 118

On-Box Python—Use Cases and Examples 118

EEM Neighbor Discovery 121

Summary 124

xii Programming and Automating Cisco Networks

Chapter 5 Off-Box Programmability and Automation with
Cisco Nexus NX-OS 125

Nexus NX-API 125

NX-API Transport 125

NX-API Message Format 126

NX-API Security 126

NX-API Sandbox 127

Using NX-API in Python 129

Configuring an IP Address with Python and NX-API 130

NX-API REST: An Object-Oriented Data Model 131

NX-API REST Object Model Data 133

Authenticating to NX-API (nxapi_auth cookie) 136

Changing NX-API Objects Data via Postman 138

Modifying NX-API Objects Data via Python 140

NX-API Event Subscription 143

NXTool Kit 146

Using NXTool Kit 146

NXTool Kit BGP Configuration 148

Automation and DevOps Tools 151

Puppet 152

Using Puppet 153

Puppet and Nexus 9000 154

Ansible and Nexus 9000 157

Summary 158

Resources 158

Chapter 6 Network Programmability with Cisco ACI 159

Cisco ACI Automation 160

ACI Policy Instantiation 161

A Bit More Python 162

Virtualenv 162

Virtualenv in PyCharm 166

Python Exceptions Handling 166

ACI Fundamentals 169

ACI Management Information Model 169

ACI Object Naming 170

Fault Severity 173

ACI Health Scores 174

Contents xiii

ACI Programmability 174

Invoking the API 176

GUI 178

APIC Object Save-as 178

APIC API Inspector 179

APIC Object Store Browser (Visore) 182

APIC API Authentication 185

Using Python to Authenticate to APIC 186

Using Postman to Automate APIC Configurations 188

Using Postman 188

Creating New Postman Calls 189

Programmability Using the APIC RESTful API 192

ACI Event Subscription 196

Cobra SDK 198

Using APIC Cobra 200

Working with Objects 202

Example Cobra SDK—Creating a Complete

Tenant Configuration 204

APIC REST Python Adapter (Arya) 207

Using AryaLogger 208

APIC Automation with UCS Director 211

Summary 213

Section III Cisco Programmable Campus and WAN

Chapter 7 On-Box Automation and Operations Tools 215

Automated Port Profiling 216

AutoSmart Ports 216

Enabling AutoSmart Ports on a Cisco Catalyst Switch 217

AutoConf 220

Enabling AutoConf on a Cisco Catalyst Switch 222

Modifying a Built-in Template 224

Auto Security 227

Enabling Auto Security on a Cisco Catalyst Switch 228

Quality of Service for Campus Architectures 230

AutoQoS on Campus LAN Devices 230

Enabling AutoQoS on a Cisco Catalyst Switch 231

xiv Programming and Automating Cisco Networks

AutoQoS on Campus WAN Devices 233

Enabling AutoQoS on a Cisco ISR Router 234

Automating Management and Monitoring Tasks 236

Smart Call Home 236

Enabling Smart Call Home on an Cisco Catalyst Switch 237

Tcl Shell 243

Embedded Event Manager (EEM) 246

EEM Applets 246

EEM and Tcl Scripts 251

EEM Summary 253

Summary 253

Chapter 8 Network Automation Tools for Campus Environments 255

Data Models and Supporting Protocols 256

YANG Data Models 256

NETCONF 258

ConfD 259

Application Policy Infrastructure Controller Enterprise Module
(APIC-EM) 263

APIC-EM Architecture 263

APIC-EM Applications 264

Intelligent WAN (IWAN) Application 264

Plug and Play (PnP) Application 269

Path Trace Application 276

Additional APIC-EM Features 279

Topology 279

Device Inventory 281

Easy Quality of Service (Easy QoS) 283

Dynamic QoS 285

Policy Application 286

APIC-EM Programmability Examples Using Postman 288

Ticket API 288

Host API 291

Contents xv

Network Device API 292

User API 294

Available APIC-EM APIs 296

APIC-EM Programmability Examples Using Python 297

Ticket API 297

Host API 299

Summary 302

Chapter 9 Piecing It All Together 303

 Index 307

xvi Programming and Automating Cisco Networks

Reader Services
Register your copy at www.ciscopress.com/title/ISBN for convenient access to
 downloads, updates, and corrections as they become available. To start the registration
process, go to www.ciscopress.com/register and log in or create an account.* Enter the
product ISBN 9781587144653 and click Submit. Once the process is complete, you will
find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive
 discounts on future editions of this product.

http://www.ciscopress.com/title/ISBN
http://www.ciscopress.com/register

xvii

Icons Used in This Book

Sun
Workstation

Macintosh

File
Server

Ciscoworks
Workstation

Printer Laptop Front End
Processor

Cluster
Controller

Modem

DSU/CSU

Router Bridge Hub DSU/CSU Catalyst
Switch

Multilayer
Switch

ATM
Switch

ISDN/Frame Relay
Switch

Communication
Server

Gateway

Access
Server

Network Cloud

Token
Ring

Token Ring

Line: Ethernet

FDDI

FDDI

Line: Serial Line: Switched Serial
Cisco ASA

PC PC with
Software

Terminal Web
Server

IBM
Mainframe

Command Syntax Conventions
The conventions used to present command syntax in this book are the same conventions
used in the IOS Command Reference. The Command Reference describes these
 conventions as follows:

 ■ Boldface indicates commands and keywords that are entered literally as shown.
In actual configuration examples and output (not general command syntax), boldface
indicates commands that are manually input by the user (such as a show command).

 ■ Italic indicates arguments for which you supply actual values.

 ■ Vertical bars (|) separate alternative, mutually exclusive elements.

 ■ Square brackets ([]) indicate an optional element.

 ■ Braces ({ }) indicate a required choice.

 ■ Braces within brackets ([{ }]) indicate a required choice within an optional element.

xviii Programming and Automating Cisco Networks

Introduction
This book was designed with the focus on utilizing Cisco ACI Cisco Nexus 9000, Cisco
UCS Director, Cisco (JSON), Python, Linux, Cisco APIC-EM, ConfD, and Data Models
in a production environment as effectively as possible. Industry leaders were consulted
for technical accuracy throughout this book.

Who Should Read This Book?
This book is designed for those network engineers and operators who want to
 implement, manage, and maintain Cisco networking solutions in modern environments.
This book discusses automation and programming tools and techniques across the Cisco
data center, campus, and LAN and WAN technologies.

How This Book Is Organized
Chapter 1, “Introduction: Why Network Programmability:” Network
 programmability can solve business problems, reduce operating expenses and increase
business agility. Current network management is slow and prone to errors because it’s a
closed, box-by-box, CLI-driven system that requires constant and expensive attention.
Network programmability serves as a tool kit to automate network configurations and
troubleshooting, significantly reducing nonoperational states. Additionally network
programmability allows the network to participate or add value to dynamic application
environments, that is, DevOps, web, security, by facilitating a tight bond between
 applications and infrastructure.

Chapter 2, “Foundational Skills:” A basic introduction into software engineering and
DEVOPS.

Chapter 3, “Next-Generation Cisco Data Center Networking:” This chapter discusses
Cisco portfolio and where the reader could possibly implement network programmability
and automation.

Chapter 4, “On-Box Programmability and Automation with Cisco Nexus NX-OS:”
This chapter discusses writing software designed to run on the Nexus switch.

Chapter 5, “Off-Box Programmability and Automation with Cisco Nexus NX-OS:”
This chapter discusses writing software to run on other systems and access Nexus
switches remotely.

Chapter 6, “Network Programmability with Cisco ACI:” Chapter 6 discusses writing
software to interact and enhance Cisco ACI.

Introduction xix

Chapter 7, “On-Box Automation and Operations Tools:” This chapter discusses some of
the automation and operations tools that are available on many Cisco platforms.

Chapter 8, “Network Automation Tools for Campus Environments:” Automation tools
can be off-box as well as on-box. This chapter covers some of the tools available for
Cisco campus networks including SDN, controllers, and more.

Chapter 9, “Piecing It All Together:” This chapter summarizes the contents of this book
by giving our perspective on the many tools that are available to interact with Cisco
 networks.

This page intentionally left blank

Automation for daily tasks is something that most network engineers rely on to handle
their daily workload. However, there are many network engineers under the impression
that new software or management tools with a steep learning curve must be purchased in
order to accomplish such automation. This leads to automation tools often times getting
overlooked or put aside. Other common drivers for not using automation tools are due
to budget restraints, varying skill sets, and unfamiliarity with the different tools that are
available. The good news is that there are many automation tools natively available on
most Cisco IOS platforms. For instance, on most Cisco Catalyst switches, there are tools
built into the operating system’s command line interface (CLI) that allow the programma-
bility of these devices automatically. This allows for the automation of large number of
common tasks. For example, a network engineer could build a set of custom templates or
macros that would apply various configuration parameters to particular ports on a switch,
based on the types of devices that are connected to those specific ports. This chapter
will cover the following on-box automation tools in greater detail:

 ■ Auto SmartPorts

 ■ AutoConf

 ■ Auto Security

 ■ AutoQoS

 ■ Smart Call Home

 ■ Tcl Shell

 ■ Embedded Event Manager (EEM)

Note For brevity, all configuration examples and outputs in this chapter are displayed in
IOS only. IOS XE and IOS XR outputs are not included in this chapter.

On-Box Automation
and Operations Tools

Chapter 7

216 Chapter 7: On-Box Automation and Operations Tools

Automated Port Profiling
These types of automation tools are especially important when it comes to scale. Imagine
a network team that handles an entire enterprise campus LAN. Commonly, there are only a
select few network engineers who have access to the network switches and are authorized
to make any configuration changes. These engineers are usually very busy and have a finite
amount of time to work on daily moves, additions, and changes (MACs). From a business
perspective, this greatly hinders the capability of being able to fluidly and dynamically
move users around an office environment. For example, a user moves from one department
to another and takes their IP phone with them. This would result in a network engineer
having to get involved and reprogram the switch port that the user is going to be connect-
ing to. Often, these users are moved by a help desk team without notifying the network
engineering team of the move. If the new port wasn’t properly provisioned prior to the user
moving, then the user may not be able to connect to the network and perform their job.

There are many settings that need to be applied to a switch port in order for an IP phone
to operate properly. Some of the more common switch port settings for an IP phone are:

 ■ Power over Ethernet (PoE) settings

 ■ Voice VLAN configuration

 ■ Quality of Service (QoS) settings

 ■ Data VLAN configuration

 ■ Speed/Duplex settings

The following sections of this chapter will cover some of the simple, yet powerful tools
that are included within most of the Cisco Catalyst switches. These are tools, available
today, that can automate many configuration tasks, reduce downtime, and increase agility.

AutoSmart Ports
AutoSmart Ports (ASP) are an IOS tool that allows you to consolidate many of the
necessary port settings for various device types into an automated process that can
be applied to a single port or a series of ports. AutoSmart ports use a macro-based
mechanism that commonly uses CDP and LLDP to discover the physical device type that
is connected to a switch port. Once the device type is determined, the switch will then
check to see if a corresponding macro is defined that matches the specific device type
that was connected. If the device type is known and there is a macro definition for it, the
switch will then automatically provision the port, based on the settings defined in the
macro. This will significantly reduce the amount of time needed to establish connectivity
to users who move around the environment or for new users who are being brought on
board for the first time. Figure 7-1 outlines the process for what happens when a Cisco
IP phone device is connected to a Catalyst switch while AutoSmart Ports are enabled.

Note AutoSmart Ports are available in IOS 12.2(55)SE or later.

AutoSmart Ports 217

1. Device connected to
switch

2. CDP/LLDP exchanged

SwitchIP Phone

3. Switch iden�fies
device type

4. Switch applies macro to port
power inline auto

switchport voice vlan 13
...

Figure 7-1 AutoSmart Port discovery process for Cisco IP phone

One of the main advantages of AutoSmart ports is that the switches contain predefined
macros that can be modified to suit your environment. In addition, you can also custom-
ize those predefined macros to include all the necessary parameters for your specific
environment. Table 7-1 shows a list of some of the predefined device-specific macros that
are available in most Cisco Catalyst switches.

Table 7-1 Device Specific Macros and Descriptions

Macro Name Macro Description

access-point Auto configuration information for the autonomous access point

ip-camera Auto configuration information for the video surveillance camera

lightweight-ap Auto configuration information for the lightweight access point

media-player Auto configuration information for the digital media player

Phone Auto configuration information for the phone device

Router Auto configuration information for the router device

Switch Auto configuration information for the switch device

Enabling AutoSmart Ports on a Cisco Catalyst Switch

In order to enable AutoSmart Ports on a Cisco Catalyst switch, you must follow the steps
illustrated in the following example. Another key advantage of this specific automation
tool is that it takes a single command to enable to macro functionality.

Switch> enable

Switch# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)# macro auto global processing

Switch(config)# end

Switch#

218 Chapter 7: On-Box Automation and Operations Tools

Occasionally, predefined macros contain most of the desired settings that are needed
without requiring any modification to the macro. In some cases, however, customiz-
ing a macro to fit your needs is a better alternative. Customized macros are commonly
deployed when more granular configurations are required. For example, a customized
macro may be one that not only changes voice and data VLANs, but can also be used
to configure quality of service (QoS) settings and other various options. The following
example lists the default settings of the Cisco IP phone macro. This can be seen with the
show macro auto device phone command.

Switch# show macro auto device phone

Device:phone

Default Macro:CISCO_PHONE_AUTO_SMARTPORT

Current Macro:CISCO_PHONE_AUTO_SMARTPORT

Configurable Parameters:ACCESS_VLAN VOICE_VLAN

Defaults Parameters:ACCESS_VLAN=1 VOICE_VLAN=2

Current Parameters:ACCESS_VLAN=1 VOICE_VLAN=2

Note To view the entire list of predefined macros that are available in a Cisco Catalyst
switch, issue the show shell functions command.

The following output illustrates the configuration steps that are necessary to customize
and trigger a predefined macro. In this example, the macro, when applied, will change the
voice and data VLANs for a port when Cisco IP phone is connected.

Switch# configure terminal

Switch(config)# macro auto execute CISCO_PHONE_EVENT builtin CISCO_PHONE_AUTO_
SMARTPORT ACCESS_VLAN=11 VOICE_VLAN=13

Switch(config)# macro auto global processing

Switch(config)# exit

To verify this macro is properly modified with the new VLAN assignments, issue the
show shell triggers command from the EXEC prompt of the CLI. The following snippet
shows the output from the show shell triggers command.

Switch# show shell triggers

User defined triggers

Built-in triggers

Trigger Id: CISCO_PHONE_EVENT

Trigger description: Event for ip-phone macro

Trigger environment: ACCESS_VLAN=11 VOICE_VLAN=13

Trigger mapping function: CISCO_PHONE_AUTO_SMARTPORT

AutoSmart Ports 219

Other common event triggers that can be viewed and modified are:

Trigger Id: CISCO_ROUTER_EVENT

Trigger Id: CISCO_SWITCH_EVENT

Trigger Id: CISCO_WIRELESS_AP_EVENT

Trigger Id: CISCO_WIRELESS_LIGHTWEIGHT_AP_EVENT

In certain cases, the device you connect to the switch may not be able to use CDP or
LLDP to identify itself to the switch. In these instances, you can create a custom macro
that uses a BASH-like language syntax. Another interesting use case utilizes the MAC
address OUI to identify and properly configure various devices on the switch. The
 following example shows a custom macro for a printer, using the MAC address OUI as a
classifier.

Switch(config)# macro auto mac-address-group OUI_PRINTER_PORT

 oui list 0000AA

 exit

Switch(config)# macro auto execute OUI_PRINTER_PORT {

 if [[$LINKUP -eq YES]]

 then conf t

 interface $INTERFACE

 description OUI_PRINTER_PORT macro

 switchport

 switchport mode access

 switchport access vlan data_vlan

 power inline never

 spanning-tree portfast

 exit

 end

 fi

 if [[$LINKUP -eq NO]]

 then conf t

 interface $INTERFACE

 switchport access vlan data_vlan

 no spanning-tree portfast

 no description

 exit

 end

 fi

}

AutoSmart Ports are a great start to automating specific tasks when it comes to managing
your campus LAN. It should be noted that even though AutoSmart Ports are not the most
granular way to automate port configurations based on device, it is still a very powerful
solution to help reduce some of the more arduous tasks that relate to day-to-day moves,
additions, and changes (MACs).

220 Chapter 7: On-Box Automation and Operations Tools

Note For more information on AutoSmart Ports, please visit the following link:
www.cisco.com/go/SmartOperations/

AutoConf
Similar to AutoSmart Ports, AutoConf is used to automate various functions within a
Cisco Catalyst switch. However, unlike AutoSmart Ports, AutoConf is a template-based
 solution that is more granular and user friendly. Although these features accomplish similar
 outcomes, the configurations are applied in a different manner. Interface templates are con-
figured and applied to a specific port or range of ports much like AutoSmart Ports. Table 7-2
lists some of the available predefined interface templates within a Cisco Catalyst switch.

Note AutoConf is available in IOS 15.2(2)E and IOS-XE 3.6 or later.

Table 7-2 AutoConf Interface Templates and Descriptions

Template Name Template Description

AP_INTERFACE_TEMPLATE Wireless access point interface template

DMP_INTERFACE_TEMPLATE Digital media player interface template

IP_CAMERA_INTERFACE_TEMPLATE IP camera interface template

IP_PHONE_INTERFACE_TEMPLATE IP phone interface template

LAP_INTERFACE_TEMPLATE Lightweight access point interface template

MSP_CAMERA_INTERFACE_TEMPLATE Multiservices platform camera interface template

MSP_VC_INTERFACE_TEMPLATE Multiservices platform VC interface template

PRINTER_INTERFACE_TEMPLATE Printer interface template

ROUTER_INTERFACE_TEMPLATE Router interface template

SWITCH_INTERFACE_TEMPLATE Switch interface template

TP_INTERFACE_TEMPLATE Telepresence interface template

Some of the key benefits of using templates are as follows:

 ■ Simpler configuration and management than AutoSmart Port macros.

 ■ All interface templates are customizable.

 ■ Templates take up less room in the configuration file than AutoSmart Port macros.

 ■ Template updates apply to all interfaces subscribing to the template.

 ■ Templates can be per session or per port.

http://www.cisco.com/go/SmartOperations/
http://www.cisco.com/go/SmartOperations/

AutoConf 221

The following output shows an example of the built-in IP Phone template by issuing the
show template interface source built-in IP_PHONE_INTERFACE_TEMPLATE command.

Switch# show template interface source built-in IP_PHONE_INTERFACE_TEMPLATE

Template Name : IP_PHONE_INTERFACE_TEMPLATE

Modified : No

Template Definition :

 spanning-tree portfast

 spanning-tree bpduguard enable

 switchport mode access

 switchport block unicast

 switchport port-security maximum 3

 switchport port-security maximum 2 vlan access

 switchport port-security violation restrict

 switchport port-security aging time 2

 switchport port-security aging type inactivity

 switchport port-security

 storm-control broadcast level pps 1k

 storm-control multicast level pps 2k

 storm-control action trap

 mls qos trust cos

 service-policy input AUTOCONF-SRND4-CISCOPHONE-POLICY

 ip dhcp snooping limit rate 15

 load-interval 30

 srr-queue bandwidth share 1 30 35 5

 priority-queue out

Note To see a list of all the built-in interface templates, issue the show template interface
source built-in all command.

Below is a list of some of the common key points to keep in mind about AutoConf
Templates:

 ■ By default, all templates automatically use VLAN 1. This includes any access VLAN,
voice VLAN, and native VLAN in regard to trunk ports.

 ■ Templates applied to interfaces are not shown in running configuration. In order
to see the configuration applied to an interface, issue the show derived-config
 interface <interface> command.

 ■ EtherChannel interfaces do not support AutoConf interface templates.

 ■ Once AutoConf is enabled globally, it is applied to all interfaces by default. To
 disable AutoConf on a per-interface basis, issue the access-session inherit disable
autoconf command.

222 Chapter 7: On-Box Automation and Operations Tools

 ■ The template configuration itself does not show up in the running configuration
unless the template is modified. For example, the access VLAN is changed from the
default value of VLAN 1.

 ■ All template configuration settings applied to an interface are removed once the
device is disconnected from the switch port.

Enabling AutoConf on a Cisco Catalyst Switch

To enable AutoConf, the autoconf enable command must be issued from the global
 configuration mode. The following example illustrates the steps on how to enable
AutoConf globally on a Cisco Catalyst Switch.

Switch> enable

Switch# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)# autoconf enable

Switch(config)# end

Switch#

AutoConf is now enabled globally on the Catalyst Switch. To verify AutoConf is working
properly, a Cisco IP phone is connected into interface GigabitEthernet0/1 on the Catalyst
switch. As displayed in the following output, once the phone is connected, AutoConf will
apply the IP_PHONE_INTERFACE_TEMPLATE to the interface.

Switch# show template binding target gigabitEthernet0/1

Interface Templates

===================

Interface: Gi0/1

Method Source Template-Name

------ ------ -------------

dynamic Built-in IP_PHONE_INTERFACE_TEMPLATE

Service Templates

=================

Interface: Gi0/1

Session Source Template-Name

------- ------ -------------

Based on the previous output, the IP_PHONE_INTERFACE_TEMPLATE was
 successfully applied to the GigabitEthernet0/1 interface.

AutoConf 223

Note In general, to see the details of what settings are applied to an interface once a
device is connected, issue the show derived-config interface <interface_name> command.

Notice that the applied template does not show up in the running configuration of the
Catalyst switch. The following snippet shows the output of the show running-config
interface gigabitEthernet0/1 command, illustrating that the interface template is hidden
in the running configuration.

Switch# show running-config interface gigabitEthernet0/1

Building configuration...

Current configuration : 36 bytes

!

interface GigabitEthernet0/1

end

To see the details of what settings were applied to the GigabitEthernet0/1 interface
when the Cisco IP phone was connected, issue the show derived-config interface
 gigabitEthernet0/1 command as shown in the following output.

Switch# show derived-config interface gigabitEthernet0/1

Building configuration...

Derived configuration : 669 bytes

!

interface GigabitEthernet0/1

 switchport mode access

 switchport block unicast

 switchport port-security maximum 3

 switchport port-security maximum 2 vlan access

 switchport port-security violation restrict

 switchport port-security aging time 2

 switchport port-security aging type inactivity

 switchport port-security

 load-interval 30

 srr-queue bandwidth share 1 30 35 5

 priority-queue out

 mls qos trust cos

 storm-control broadcast level pps 1k

 storm-control multicast level pps 2k

 storm-control action trap

 spanning-tree portfast

 spanning-tree bpduguard enable

224 Chapter 7: On-Box Automation and Operations Tools

 service-policy input AUTOCONF-SRND4-CISCOPHONE-POLICY

 ip dhcp snooping limit rate 15

Switch#

Modifying a Built-in Template

Commonly, built-in templates need to be modified to fit the desired configuration
model of the environment. Modification of a built-in template allows for the flexibility
of having a customized template, based on settings that align with the business needs.
The following example lists the steps necessary to modify the built-in IP_PHONE_
INTERFACE_TEMPLATE. These configuration steps will change the voice and data
VLANs from the default of VLAN 1 to VLANs 11 and 13, respectively, and will add a
custom description to the template.

Switch> enable

Switch# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)# template IP_PHONE_INTERFACE_TEMPLATE

Switch(config-template)# switchport access vlan 11

Switch(config-template)# switchport voice vlan 13

Switch(config-template)# description CUSTOM_IP_PHONE_INTERFACE_TEMPLATE

Switch(config-template)# end

Switch#

To display the configuration changes made to the template, issue the show template
interface source built-in IP_PHONE_INTERFACE_TEMPLATE command as shown in
the following output.

Switch# show template interface source built-in IP_PHONE_INTERFACE_TEMPLATE

Building configuration...

Template Name : IP_PHONE_INTERFACE_TEMPLATE

Modified : Yes

Template Definition :

 spanning-tree portfast

 spanning-tree bpduguard enable

 switchport access vlan 11

 switchport mode access

 switchport block unicast

 switchport voice vlan 13

 switchport port-security maximum 3

 switchport port-security maximum 2 vlan access

 switchport port-security violation restrict

 switchport port-security aging time 2

 switchport port-security aging type inactivity

AutoConf 225

 switchport port-security

 storm-control broadcast level pps 1k

 storm-control multicast level pps 2k

 storm-control action trap

 mls qos trust cos

 service-policy input AUTOCONF-SRND4-CISCOPHONE-POLICY

 ip dhcp snooping limit rate 15

 load-interval 30

 description CUSTOM_IP_PHONE_INTERFACE_TEMPLATE

 srr-queue bandwidth share 1 30 35 5

 priority-queue out

!

end

Switch#

Once an AutoConf template has been modified, the template will now be visible in the
running configuration of the Catalyst switch. The following snippet illustrates that the
template is now present in the output of the show running-config command.

Switch# show running-config

Building configuration...

! Output omitted for brevity

!

autoconf enable

!

template IP_PHONE_INTERFACE_TEMPLATE

 spanning-tree portfast

 spanning-tree bpduguard enable

 switchport access vlan 11

 switchport mode access

 switchport block unicast

 switchport voice vlan 13

 switchport port-security maximum 3

 switchport port-security maximum 2 vlan access

 switchport port-security violation restrict

 switchport port-security aging time 2

 switchport port-security aging type inactivity

 switchport port-security

 storm-control broadcast level pps 1k

 storm-control multicast level pps 2k

 storm-control action trap

 mls qos trust cos

 service-policy input AUTOCONF-SRND4-CISCOPHONE-POLICY

 ip dhcp snooping limit rate 15

 load-interval 30

226 Chapter 7: On-Box Automation and Operations Tools

 description CUSTOM_IP_PHONE_INTERFACE_TEMPLATE

 srr-queue bandwidth share 1 30 35 5

 priority-queue out

!

! Output omitted for brevity

Note Even though the template is now visible in the running-config, it still does not list
the configuration under the interface(s) that it is applied to.

Although the IP_PHONE_INTERFACE_TEMPLATE is modified and applied, the
configuration is still hidden from the interface in the running-config. In order to see
the customized configuration that is applied to the interface, the show derived-config
interface gigabitEthernet0/1 command must be used again. The following output shows
the modified template that is applied to the gigabitEthernet0/1 interface.

Switch# show derived-config interface gigabitEthernet0/1

Building configuration...

!

interface GigabitEthernet0/1

 description CUSTOM_IP_PHONE_INTERFACE_TEMPLATE

 switchport access vlan 11

 switchport mode access

 switchport block unicast

 switchport voice vlan 13

 switchport port-security maximum 3

 switchport port-security maximum 2 vlan access

 switchport port-security violation restrict

 switchport port-security aging time 2

 switchport port-security aging type inactivity

 switchport port-security

 load-interval 30

 srr-queue bandwidth share 1 30 35 5

 priority-queue out

 mls qos trust cos

 storm-control broadcast level pps 1k

 storm-control multicast level pps 2k

 storm-control action trap

 spanning-tree portfast

 spanning-tree bpduguard enable

 service-policy input AUTOCONF-SRND4-CISCOPHONE-POLICY

 ip dhcp snooping limit rate 15

end

Switch#

Auto Security 227

AutoConf is a feature that not only eases the burden of device management and
 configuration, it also allows for a zero-touch deployment model of commonly con-
nected devices. AutoConf is often used in campus LANs as well as remote branch office
 deployments. Most organizations enforce a standard when it comes to the type of devices
in their environment. Even though make, model, and form factors may differ, AutoConf can
assist in reducing the manual configuration tasks needed to deploy different device types
such as computers, printers, IP phones, IP cameras, and so forth. If a device supports both
AutoConf and AutoSmart ports, it is recommended to use AutoConf first, then AutoSmart
ports. However, using both features together could cause undesired results.

Note For more information on AutoConf templates, please visit: http://www.cisco.com/
c/en/us/td/docs/ios-xml/ios/ibns/configuration/15-e/ibns-15-e-book/ibns-autoconf.html

Auto Security
Cisco Auto Security is a feature that, when applied, automatically configures some of
the most common baseline campus switching security features. Some of these features
include:

 ■ DHCP snooping

 ■ Dynamic ARP inspection (DAI)

 ■ Port Security

DHCP Snooping is a security feature that is designed to protect internally trusted DHCP
servers and clients in your environment. DHCP Snooping works by verifying DHCP
 messages are received from only trusted DHCP servers within your campus environment.
All messages from untrusted devices can be filtered or rate-limited, based on the desired
configuration parameters. This security mechanism is to keep untrusted hosts from
 generating DHCP messages that could negatively impact your network. These DHCP
messages can be malicious in nature or simply be the product of a misconfiguration. For
example, a host computer has a DHCP server feature inadvertently turned on and is pro-
viding an unrouteable, incorrect IP address range to various devices in the environment.
This will result in end hosts not being able to talk to the rest of the network. However,
receiving a DHCP lease from any rogue server could be very problematic even if the
IP address ranges are valid in your environment.

When enabled, the DHCP snooping feature keeps track of all devices sending and receiving
DHCP messages. This information is stored in a table called the DHCP binding database.
When DHCP messages are determined to be legitimate, they are processed normally. If for
some reason the intercepted DHCP messages do not meet the proper criteria, the packets
are discarded. This helps to protect your environment from DHCP snooping attacks.

Dynamic ARP inspection (DAI) is a feature that is used to prevent address resolution
protocol (ARP) spoofing attacks. An ARP spoofing attack is when someone maliciously

http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ibns/configuration/15-e/ibns-15-e-book/ibns-autoconf.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ibns/configuration/15-e/ibns-15-e-book/ibns-autoconf.html

228 Chapter 7: On-Box Automation and Operations Tools

injects a duplicate MAC address onto a LAN in an attempt to redirect traffic to an
 alternate destination. DAI uses the DHCP binding database to verify that there is a valid
layer 2 MAC address to layer 3 IP address binding before allowing any traffic to be
 forwarded on the segment. If it is determined that there is not such a valid mapping, the
invalid ARP packets are discarded.

Port Security is a security feature that protects the network by setting dynamic or hard
MAC address limits on specific switch ports. For example, the following list provides
some of the Port Security features that are available in Catalyst switches.

 ■ Secure ports, based on statically assigned MAC addresses

 ■ Secure ports, based on dynamically learned MAC addresses

 ■ Limit dynamically learned MAC addresses—helps prevent CAM table flooding
attacks

 ■ Shut down port when violation occurs

 ■ Restrict port and send SNMP trap when violation occurs

Enabling Auto Security on a Cisco Catalyst Switch

The following example illustrates how to enable Auto Security on a Catalyst switch with
a single command.

Switch> enable

Switch# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)# auto security

Switch(config)# end

To verify what interfaces the Auto Security configuration has been applied to, issue the
show auto security command shown in the following output.

Switch# show auto security

Auto Security is Enabled globally

AutoSecurity is Enabled on below interface(s):

--

 GigabitEthernet0/1

Switch#

Because GigabitEthernet0/1 is configured as an access port, the following snippet illustrates
the configuration that is visible in the running-config under that specific interface.

Switch# show running-config interface GigabitEthernet0/1

Building configuration...

Auto Security 229

Current configuration : 85 bytes

!

interface GigabitEthernet0/1

 auto security-port host

 spanning-tree portfast

end

Switch#

In order to see the specific configuration that has been automatically applied to the
Catalyst switch the show auto security configuration command must be issued. The
 following output depicts the steps necessary to verify the Auto Security configuration.

Switch# show auto security configuration

%AutoSecurity provides a single CLI config 'auto security'

 to enable Base-line security Features like

 DHCP snooping, ARP inspection and Port-Security

Auto Security CLIs applied globally:

ip dhcp snooping

ip dhcp snooping vlan 2-1005

no ip dhcp snooping information option

ip arp inspection vlan 2-1005

ip arp inspection validate src-mac dst-mac ip

Auto Security CLIs applied on Access Port:

--

switchport port-security maximum 2

switchport port-security maximum 1 vlan access

switchport port-security maximum 1 vlan voice

switchport port-security violation restrict

switchport port-security aging time 2

switchport port-security aging type inactivity

switchport port-security

ip arp inspection limit rate 100

ip dhcp snooping limit rate 100

Auto Security CLIs applied on Trunk Port:

ip dhcp snooping trust

ip arp inspection trust

switchport port-security maximum 100

230 Chapter 7: On-Box Automation and Operations Tools

switchport port-security violation restrict

switchport port-security

Switch#

As seen from the above configuration, Auto Security enables an entire baseline of
 security features on the Catalyst switch. All of these security features and settings
have been streamlined into a single command. This automates the deployment of these
 features, which makes it easier to secure the campus LAN environment.

Note Although many First-Hop Security features have been available in various IOS
versions for some time, the Auto Security feature is available in IOS XE 3.6.0E and IOS
15.2(2)E and later.

For more information on Auto Security, please visit: http://www.cisco.com/c/en/us/td/
docs/switches/lan/catalyst4500/XE3-6-0E/15-22E/configuration/guide/xe-360-config/
auto_sec.pdf

Quality of Service for Campus Architectures
Quality of Service (QoS) is an integral part of any campus environment. QoS allows for
the prioritization of specific traffic flows as they traverse over the campus network. For
example, it may be desirable to allow voice and video traffic to have priority over bulk
FTP traffic during a time of network congestion. One of the most common reasons that
QoS is not deployed is due to its complexity. This section will discuss some different
ways to automate the deployment of QoS for LAN devices.

Note A base understanding of QoS is assumed. QoS fundamentals are not covered in
this chapter. To become more familiar with QoS and its components, please visit:
www.cisco.com/go/qos

AutoQoS on Campus LAN Devices

As campus networks continue to grow, more emphasis is being put on the LAN. Today, it
is becoming even more important to capitalize on the available LAN bandwidth as much
as possible. Often, campus networks are designed with a specific set of goals in mind.
For example, the following list are some of the more common business drivers and use
cases that put demand on the campus LAN infrastructure:

 ■ Gigabit Ethernet to the desktop

 ■ Campus video communications

 ■ Voice and IP phones

http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/XE3-6-0E/15-22E/configuration/guide/xe-360-config/auto_sec.pdf
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/XE3-6-0E/15-22E/configuration/guide/xe-360-config/auto_sec.pdf
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/XE3-6-0E/15-22E/configuration/guide/xe-360-config/auto_sec.pdf
http://www.cisco.com/go/qos

Quality of Service for Campus Architectures 231

Alternatively, there are some other use cases that are beginning to be more prevalent in
enterprise networks. These different, but not uncommon use cases are increasing the
demand for connectivity in the LAN:

 ■ Wayfinding devices

 ■ Digital signage

 ■ HVAC systems

 ■ Manufacturing/industrial networks

 ■ Building lighting

All of the above use cases are putting increased demand on the network and, by default,
demand on the network engineering team.

Enabling AutoQoS on a Cisco Catalyst Switch

To enable AutoQoS, the following configuration steps must be followed:

Step 1. Enable AutoQoS globally

Step 2. Enable AutoQoS settings under interface

AutoQoS is enabled globally in the following example on the Catalyst switch by issuing
the auto qos global compact command from the global configuration prompt. Once the
feature is enabled globally, it can be verified with the show auto qos command.

Switch# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)# auto qos global compact

Switch(config)# end

Switch# show auto qos

AutoQoS not enabled on any interface

Switch#

As you can see from the output of the show auto qos command in the following code
snippet, there are no interfaces currently configured with any AutoQoS parameters. Once
AutoQoS is enabled globally, you must then specify the interface configuration settings.
For example, see the following output that illustrates how to enable the AutoQoS
 settings under a Gigabit Ethernet interface of a Catalyst switch. The configuration shown
is for a Cisco IP phone.

Switch# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)# interface GigabitEthernet0/1

232 Chapter 7: On-Box Automation and Operations Tools

Switch(config-if)# auto qos voip cisco-phone

Switch(config-if)# end

Switch#

Now that AutoQoS is enabled globally and there is an interface with AutoQoS settings
applied to it, the show auto qos command is re-issued to verify the configuration as
shown in the following snippet. Based on the output of the show auto qos command, we
see that there is a difference in the information displayed as opposed to output shown
previously. When AutoQoS is enabled under the GigabitEthernet0/1 interface, it now
includes the interface configuration in the show command.

Switch# show auto qos

GigabitEthernet0/1

auto qos voip cisco-phone

Switch#

In order to display the actual QoS settings that get applied to the GigabitEthernet0/1
interface when a Cisco IP phone is connected, the show auto qos interface
GigabitEthernet0/1 configuration command must be issued. The following
 snippet shows that based on the output of this command, there is an ingress policy
named AUTOQOS-PPM-SRND4-CISCOPHONE-POLICY that is applied to the
GigabitEthernet0/1 interface. The output also shows that the outbound egress priority
queue is enabled and that the interface has been set to automatically trust the DSCP
markings from the Cisco IP phone.

Switch# show auto qos interface GigabitEthernet0/1 configuration

GigabitEthernet0/1

auto qos voip cisco-phone

Ingress Policy: AUTOQOS-PPM-SRND4-CISCOPHONE-POLICY

Egress Priority Queue: enabled

The port is mapped to qset : 1

Trust device: cisco-phone

Next, to further validate the settings within the AUTOQOS-PPM-SRND4-
CISCOPHONE-POLICY that is applied to the GigabitEthernet0/1 interface, we issue the
show policy-map AUTOQOS-PPM-SRND4-CISCOPHONE-POLICY command as shown
in the following output.

Switch# show policy-map AUTOQOS-PPM-SRND4-CISCOPHONE-POLICY

 Policy Map AUTOQOS-PPM-SRND4-CISCOPHONE-POLICY

 Class AUTOQOS_PPM_VOIP_DATA_CLASS

 set dscp ef

 police 128000 8000 exceed-action policed-dscp-transmit

 Class AUTOQOS_PPM_VOIP_SIGNAL_CLASS

 set dscp cs3

 police 32000 8000 exceed-action policed-dscp-transmit

Quality of Service for Campus Architectures 233

 Class AUTOQOS_PPM_DEFAULT_CLASS

 set dscp default

 police 10000000 8000 exceed-action policed-dscp-transmit

Switch#

Based on the previous output, we can see that the following parameters have been set in
the QoS policy-map applied to the GigabitEthernet0/1 interface on the Catalyst switch:

 ■ Voice data packets are being marked with the DSCP value of EF (46)

 ■ Policing of the VOIP_DATA_CLASS is set to 128Kbps

 ■ Call signaling packets are being marked with the DSCP value of CS3

 ■ Policing of the VOIP_SIGNAL_CLASS is set to 32Kbps

 ■ All other packets are being marked with DSCP value of DEFAULT (0)

 ■ Policing of the DEFAULT_CLASS is set to 10Mbps

The following snippet illustrates the output of the show auto qos voip cisco-phone
 configuration command, which is an alternate way of displaying the AutoQoS
 configuration that will be applied to an interface when a Cisco IP phone is connected.
This command will also display the DSCP/CoS markings, queuing strategy, and
 associated thresholds settings that will be applied.

Switch# show auto qos cisco-phone configuration

Traffic(DSCP / COS) IngressQ-Threshold EgressQ-Threshold

VoIP(46/5) N/A - N/A 01 - 01

Signaling(24/3) N/A - N/A 03 - 01

Best-Effort(00/0) N/A - N/A 02 - 01

All of the QoS settings mentioned above were deployed by issuing only two commands:
the auto qos global compact global command and the auto qos voip cisco-phone
 interface command. We can begin to see how powerful tools like AutoQoS can be in a
campus environment, eEspecially with hundreds to thousands of connected host devices.
The following section of this chapter will cover deploying AutoQoS in the campus WAN
environment.

AutoQoS on Campus WAN Devices

The best practice in general from a QoS perspective is to mark the traffic closest to the
source and carry those markings across your LAN and WAN end-to-end. The biggest
reason for this is so that end users and applications have a consistent experience. Marking
and prioritizing traffic on the LAN is just one step in a bigger QoS design. Using
AutoQoS for the WAN, you can simplify the steps needed to achieve that end-to-end
user and application experience. Figure 7-2 illustrates the high level end-to-end QoS
design model from an IP phone in one location to an IP phone in another location.

234 Chapter 7: On-Box Automation and Operations Tools

Note Although we will not discuss AutoQoS for WAN in depth in this chapter, the
purpose of this section is to inform the readers that there are tools for AutoQoS on Cisco
routers.

Phone-1 marks voice traffic DSCP EF (46) and
forwards traffic to SW-1

WAN-RTR-1 priori�zes received voice traffic marked DSCP EF (46)
and forwards traffic across WAN to WAN-RTR-2

SW-2 priori�zes voice traffic marked DSCP EF (46) and
forwards traffic to Phone-2

SW-1 priori�zes received voice traffic marked DSCP EF (46) and
forwards traffic to WAN-RTR-1

WAN-RTR-2 priori�zes received voice traffic
marked DSCP EF (46) and forwards traffic to SW-2

Packet flow direc�on

SW-1 SW-2Phone-1 Phone-2WAN-RTR-1 WAN-RTR-2

WAN

Figure 7-2 End-to-end QoS example

As you can see based on Figure 7-2, the QoS markings are kept intact from source to
destination across the campus LAN and WAN networks. In this specific case, voice data
traffic from Phone-1 to Phone-2 is marked with DSCP EF (46), and those markings are
honored on a hop-by-hop basis across the entire network. This is called per-hop behavior
(PHB).

Enabling AutoQoS on a Cisco ISR Router

The following example lists the steps that are necessary to enable AutoQoS for the WAN
on a Cisco ISR router.

Router# configure terminal

Router(config)# interface FastEthernet0/1

Router(config-if)# auto qos voip

Router(config-if)# end

Router#

One of the convenient things about AutoQoS for the WAN is that by enabling it on one
of the interfaces of the router, it automatically enables the feature globally. Furthermore,
it applies all the QoS policy-maps and other settings automatically. The following
 snippet illustrates an example output of the show auto qos command from a Cisco ISR
router, illustrating what features AutoQoS will automatically activate when the feature is
enabled.

Router# show auto qos

 !

 policy-map AutoQoS-Policy-UnTrust

 class AutoQoS-VoIP-RTP-UnTrust

 priority percent 70

 set dscp ef

 class AutoQoS-VoIP-Control-UnTrust

 bandwidth percent 5

Quality of Service for Campus Architectures 235

 set dscp af31

 class AutoQoS-VoIP-Remark

 set dscp default

 class class-default

 fair-queue

 !

 class-map match-any AutoQoS-VoIP-Remark

 match ip dscp ef

 match ip dscp cs3

 match ip dscp af31

 !

 class-map match-any AutoQoS-VoIP-Control-UnTrust

 match access-group name AutoQoS-VoIP-Control

 !

 class-map match-any AutoQoS-VoIP-RTP-UnTrust

 match protocol rtp audio

 match access-group name AutoQoS-VoIP-RTCP

 !

 ip access-list extended AutoQoS-VoIP-RTCP

 permit udp any any range 16384 32767 (6 matches)

 !

 ip access-list extended AutoQoS-VoIP-Control

 permit tcp any any eq 1720

 permit tcp any any range 11000 11999

 permit udp any any eq 2427

 permit tcp any any eq 2428

 permit tcp any any range 2000 2002

 permit udp any any eq 1719

 permit udp any any eq 5060

 !

 rmon event 33333 log trap AutoQoS description "AutoQoS SNMP traps for Voice
Drops" owner AutoQoS

 rmon alarm 33333 cbQosCMDropBitRate.34.14175073 30 absolute rising-threshold
1 33333 falling-threshold 0 owner AutoQoS

FastEthernet0/1 -

 !

 interface FastEthernet0/1

 service-policy output AutoQoS-Policy-UnTrust

Note AutoQoS for the WAN is platform dependent. To learn more about AutoQoS for
WAN and what platforms the feature is supported on, please visit: http://www.cisco.com/c/
en/us/products/ios-nx-os-software/autoqos/index.html

http://www.cisco.com/c/en/us/products/ios-nx-os-software/autoqos/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/autoqos/index.html

236 Chapter 7: On-Box Automation and Operations Tools

AutoQoS, in conjunction with some of the other automation mechanisms discussed
 earlier in the Automatic Port Profiling section of this chapter, can start to build a
very robust and powerful tool set. This tool set can help network engineers ease the
 operational complexity of managing a constantly changing campus network environment.
Chapter 8 “Network Automation Tools for Campus Environments” will highlight another
tool set known as the application policy infrastructure controller enterprise module
(APIC-EM). APIC-EM offers a wide variety of features that include tools to assist in
 configuring and automating quality of service in campus environments. We will also
 discuss some future APIC-EM applications.

Automating Management and Monitoring Tasks
This section will discuss a very robust set of tools that are built-in to many Cisco devices
such as:

 ■ Smart Call Home

 ■ Tcl Shell

 ■ Embedded Event Manager (EEM)

These tools are designed to make life a bit easier for the network operations staff by
leveraging on-box automation.

Smart Call Home

Cisco’s Smart Call Home is a feature that is built into a large number of Cisco devices
that allows the devices to automatically reach out to Cisco TAC when there is an issue in
your campus environment. Smart Call Home can report a wide variety of different events.
For example:

 ■ Generic online diagnostics (GOLD)

 ■ Syslog events

 ■ Environment events and alarms

 ■ Inventory and configuration

 ■ Field notices

 ■ Product security incident response team (PSIRT) notifications

There are three primary ways that Smart Call Home can collect this information from
the IOS: Alert Groups and Profiles, collecting show commands, and interaction with the
CLI. This information is sent via one of three different transport modes: HTTP(S) direct,
HTTP(S) via a transport gateway, or via email through a transport gateway. A transport
gateway is a device that securely forwards Call Home messages that are sourced from
devices within the network. The information that is gathered and sent to Cisco TAC is
then stored in a database within Cisco’s data centers. Once the information is collected

Automating Management and Monitoring Tasks 237

and stored in the database, you will be able to view the information from a web portal
where you can manage all your devices. Smart Call Home allows TAC to do multiple
things with the collected information:

 ■ Automatically create TAC service requests, based on issues with the device(s)

 ■ Notify the Cisco partner should they need to be contacted

 ■ Notify the device owner that there is something going on with the device(s)

This helps make your business more proactive, rather than reactive. An example of Smart
Call Home would be if you have a Catalyst 4500 series switch and one of the power
supplies failed in the middle of the night. Instead of having to wake up, open a TAC
case, and upload the serial number of the switch and the configuration and go through
troubleshooting steps, the switch would have used Smart Call Home to contact TAC and
upload all the necessary information and a TAC case would have already been opened
automatically. In turn, an RMA could be issued automatically for the failed part. This
drastically reduces the amount of time and effort engineers have to spend, going through
the motions of all the steps mentioned above in order to get a replacement power supply
and bring the network back to 100 percent. In addition to this, there is an anonymous
reporting feature that allows Cisco to receive minimal error and health information from
various devices.

There are six basic steps to enable Cisco’s Smart Call Home feature. Those steps are as
follows:

 ■ Enable Call Home

 ■ Configure contact email address

 ■ Activate CiscoTAC-1 profile

 ■ Set transport mode

 ■ Install security certificate

 ■ Send a Call Home inventory to start the registration process

Enabling Smart Call Home on an Cisco Catalyst Switch

The following example depicts the process for setting up Smart Call Home on a Catalyst
switch.

Switch# configure terminal

Switch(config)# service call-home

Switch(config)# call-home

Switch(cfg-call-home)# contact-email-addr neteng@yourcompany.com

Switch(cfg-call-home)# profile CiscoTAC-1

Switch(cfg-call-home-profile)# active

Switch(cfg-call-home-profile)# destination transport-method http

Switch(cfg-call-home-profile)# exit

238 Chapter 7: On-Box Automation and Operations Tools

Switch(cfg-call-home)# exit

Switch(config)# crypto pki trustpoint cisco

Switch(ca-trustpoint)# enrollment terminal

Switch(ca-trustpoint)# revocation-check crl none

Switch(ca-trustpoint)# exit

Switch(config)# crypto pki authenticate cisco

Enter the base 64 encoded CA certificate.

End with a blank line or the word "quit" on a line by itself

-----BEGIN CERTIFICATE-----

MIICPDCCAaUCEDyRMcsf9tAbDpq40ES/Er4wDQYJKoZIhvcNAQEFBQAwXzELMAkG

A1UEBhMCVVMxFzAVBgNVBAoTDlZlcmlTaWduLCBJbmMuMTcwNQYDVQQLEy5DbGFz

cyAzIFB1YmxpYyBQcmltYXJ5IENlcnRpZmljYXRpb24gQXV0aG9yaXR5MB4XDTk2

MDEyOTAwMDAwMFoXDTI4MDgwMjIzNTk1OVowXzELMAkGA1UEBhMCVVMxFzAVBgNV

BAoTDlZlcmlTaWduLCBJbmMuMTcwNQYDVQQLEy5DbGFzcyAzIFB1YmxpYyBQcmlt

YXJ5IENlcnRpZmljYXRpb24gQXV0aG9yaXR5MIGfMA0GCSqGSIb3DQEBAQUAA4GN

ADCBiQKBgQDJXFme8huKARS0EN8EQNvjV69qRUCPhAwL0TPZ2RHP7gJYHyX3KqhE

BarsAx94f56TuZoAqiN91qyFomNFx3InzPRMxnVx0jnvT0Lwdd8KkMaOIG+YD/is

I19wKTakyYbnsZogy1Olhec9vn2a/iRFM9x2Fe0PonFkTGUugWhFpwIDAQABMA0G

CSqGSIb3DQEBBQUAA4GBABByUqkFFBkyCEHwxWsKzH4PIRnN5GfcX6kb5sroc50i

2JhucwNhkcV8sEVAbkSdjbCxlnRhLQ2pRdKkkirWmnWXbj9T/UWZYB2oK0z5XqcJ

2HUw19JlYD1n1khVdWk/kfVIC0dpImmClr7JyDiGSnoscxlIaU5rfGW/D/xwzoiQ

-----END CERTIFICATE---

-----BEGIN CERTIFICATE-----

MIIE0DCCBDmgAwIBAgIQJQzo4DBhLp8rifcFTXz4/TANBgkqhkiG9w0BAQUFADBfMQswCQ

YDVQQGEwJVUzEXMBUGA1UEChMOVmVyaVNpZ24sIEluYy4xNzA1BgNVBAsTLkNsYXNzID

Mg

UHVibGljIFByaW1hcnkgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkwHhcNMDYxMTA4MDAwMD

AwWhcNMjExMTA3MjM1OTU5WjCByjELMAkGA1UEBhMCVVMxFzAVBgNVBAoTDlZlcmlTa

Wdu

LCBJbmMuMR8wHQYDVQQLExZWZXJpU2lnbiBUcnVzdCBOZXR3b3JrMTowOAYDVQQLEzEo

Yy

kgMjAwNiBWZXJpU2lnbiwgSW5jLiAtIEZvciBhdXRob3JpemVkIHVzZSBvbmx5MUUwQwYD

VQQDEzxWZXJpU2lnbiBDbGFzcyAzIFB1YmxpYyBQcmltYXJ5IENlcnRpZmljYXRpb24gQX

V0aG9yaXR5IC0gRzUwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCvJAgIKXo1

nmAMqudLO07cfLw8RRy7K+D+KQL5VwijZIUVJ/XxrcgxiV0i6CqqpkKzj/i5Vbext0uz/o

9+B1fs70PbZmIVYc9gDaTY3vjgw2IIPVQT60nKWVSFJuUrjxuf6/WhkcIzSdhDY2pSS9KP

6HBRTdGJaXvHcPaz3BJ023tdS1bTlr8Vd6Gw9KIl8q8ckmcY5fQGBO+QueQA5N06tRn/Ar

r0PO7gi+s3i+z016zy9vA9r911kTMZHRxAy3QkGSGT2RT+rCpSx4/VBEnkjWNHiDxpg8v+

R70rfk/Fla4OndTRQ8Bnc+MUCH7lP59zuDMKz10/NIeWiu5T6CUVAgMBAAGjggGbMIIBlz

APBgNVHRMBAf8EBTADAQH/MDEGA1UdHwQqMCgwJqAkoCKGIGh0dHA6Ly9jcmwudmVya

XNp

Z24uY29tL3BjYTMuY3JsMA4GA1UdDwEB/wQEAwIBBjA9BgNVHSAENjA0MDIGBFUdIAAwKj

AoBggrBgEFBQcCARYcaHR0cHM6Ly93d3cudmVyaXNpZ24uY29tL2NwczAdBgNVHQ4EFgQU

f9Nlp8Ld7LvwMAnzQzn6Aq8zMTMwbQYIKwYBBQUHAQwEYTBfoV2gWzBZMFcwVRYJaW1h

Automating Management and Monitoring Tasks 239

Z2

UvZ2lmMCEwHzAHBgUrDgMCGgQUj+XTGoasjY5rw8+AatRIGCx7GS4wJRYjaHR0cDovL2xv

Z28udmVyaXNpZ24uY29tL3ZzbG9nby5naWYwNAYIKwYBBQUHAQEEKDAmMCQGCCsGAQU

FBz

ABhhhodHRwOi8vb2NzcC52ZXJpc2lnbi5jb20wPgYDVR0lBDcwNQYIKwYBBQUHAwEGCCsG

AQUFBwMCBggrBgEFBQcDAwYJYIZIAYb4QgQBBgpghkgBhvhFAQgBMA0GCSqGSIb3DQEBB

Q

UAA4GBABMC3fjohgDyWvj4IAxZiGIHzs73Tvm7WaGY5eE43U68ZhjTresY8g3JbT5KlCDD

PLq9ZVTGr0SzEK0saz6r1we2uIFjxfleLuUqZ87NMwwq14lWAyMfs77oOghZtOxFNfeKW/

9mz1Cvxm1XjRl4t7mi0VfqH5pLr7rJjhJ+xr3/

<snip> <Full certificate is issued from link in the Smart Call Home Quick Start
Guide> <snip>

quit

Certificate has the following attributes:

 Fingerprint MD5: EF5AF133 EFF1CDBB 5102EE12 144B96C4

 Fingerprint SHA1: A1DB6393 916F17E4 18550940 0415C702 40B0AE6B

% Do you accept this certificate? [yes/no]: yes

Trustpoint CA certificate accepted.

% Certificate successfully imported

Switch(config)# end

Switch# copy running-config startup-config

Note To obtain the proper certificate to paste into the call configuration, please visit the
following link to get the Smart Call Home user guide for your model of equipment:
http://www.cisco.com/en/US/docs/switches/lan/smart_call_home/user_guides/
SCH_Ch6.pdf#G1039385

Once you complete the certificate import process, you must then initiate a call home to
begin the registration process for the device. Before we begin the call home process, we
will enable the debug event manager action cli command as the following snippet depicts.
This will show the steps that the call-home feature is taking. It is important to remember
that call-home uses embedded event manager (EEM) to function. The following example
also shows the call-home command that is used to initiate the call-home and registration
process on a Cisco Catalyst switch.

Switch# debug event manager action cli

Debug EEM action cli debugging is on

Switch# call-home send alert-group inventory profile CiscoTAC-1

Sending inventory info call-home message ...

Please wait. This may take some time ...

http://www.cisco.com/en/US/docs/switches/lan/smart_call_home/user_guides/SCH_Ch6.pdf#G1039385
http://www.cisco.com/en/US/docs/switches/lan/smart_call_home/user_guides/SCH_Ch6.pdf#G1039385

240 Chapter 7: On-Box Automation and Operations Tools

Switch#

Dec 7 22:48:38.089: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : CTL : cli_open
called.

Dec 7 22:48:38.089: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Switch>

Dec 7 22:48:38.089: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : IN :
Switch>enable

Dec 7 22:48:38.099: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Switch#

Dec 7 22:48:38.099: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : IN : Switch#show
version

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Cisco IOS
Software, C3560CX Software (C3560CX-UNIVERSALK9-M), Version 15.2(3)E, RELEASE
SOFTWARE (fc4)

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Technical
Support: http://www.cisco.com/techsupport

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :
Copyright (c) 1986-2014 by Cisco Systems, Inc.

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Compiled
Sun 07-Dec-14 13:15 by prod_rel_team

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(c

Translating "tools.cisco.com"… domain server (X.X.X.X)li_lib) : : OUT :

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : ROM:
Bootstrap program is C2960X boot loader

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : BOOTLDR:
C3560CX Boot Loader (C3560CX-HBOOT-M) Version 15.2(3r)E1, RELEASE SOFTWARE (fc1)

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Switch
uptime is 1 day, 6 hours, 9 minutes

Dec 7 22:48:38.120 [OK]

i: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : System returned to ROM by
power-on

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : System
restarted at 16:38:44 UTC Sun Dec 6 2015

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : System
image file is "flash:/c3560cx-universalk9-mz.152-3.E/c3560cx-universalk9-mz
.152-3.E.bin"

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Last reload
reason: power-on

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : This
 product contains cryptographic features and is subject to United

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : States and
local country laws governing import, export, transfer and

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : use.
Delivery of Cisco cryptographic products does not imply

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : third-party
authority to import, export, distribute or use encryption.

Dec 7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : CTL : 20+ lines
read from cli, debug output truncated

Automating Management and Monitoring Tasks 241

Dec 7 22:48:38.620: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : IN : Switch#show
inventory oid

Dec 7 22:48:38.634: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : NAME: "1",
DESCR: "WS-C3560CX-8PC-S"

Dec 7 22:48:38.638: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : PID:
WS-C3560CX-8PC-S , VID: V01 , SN: XXXXXXXXXXX

Dec 7 22:48:38.638: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : OID:
1.3.6.1.4.1.9.12.3.1.3.1593

Dec 7 22:48:38.638: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :

Dec 7 22:48:38.638: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :

Dec 7 22:48:38.638: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Switch#

Dec 7 22:48:39.137: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : IN : Switch#show
env power

Dec 7 22:48:39.155: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : SW PID
Serial# Status Sys Pwr PoE Pwr Watts

Dec 7 22:48:39.155: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : -- -------
----------- ---------- --------------- ------- ------- -----

Dec 7 22:48:39.155: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : 1
Built-in Good

Dec 7 22:48:39.155: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :

Dec 7 22:48:39.155: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Switch#

Dec 7 22:48:39.658: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : CTL : cli_close
called.

Dec 7 22:48:39.658:

Dec 7 22:48:39.658: tty is now going through its death sequence

Switch#

Now that this step is complete, an email will be sent to the email address used in
the CiscoTAC-1 profile as shown in Figure 7-3. In this case, that email address is
neteng@yourcompany.com. Once that email is received, to complete the registration
 process you must follow the directions in the email. You must also have a valid contract
associated to the device you are trying to register to the Smart Call Home portal.
Following the link will redirect you to the Smart Call Home Web Portal as shown in
Figure 7-4. Once logged into the portal, the device registration process can be completed.

Figure 7-3 Email from Cisco Smart Call Home Tool

242 Chapter 7: On-Box Automation and Operations Tools

Figure 7-4 Smart Call Home Web Portal

To verify that Smart Call Home is running on your device, issue the show call-home
command from the privileged exec prompt. The following snippet displays the output
from the show call-home command on a Cisco Catalyst Switch. There are many different
options that can be configured with Smart Call Home. The following alert groups are
enabled automatically when configuring Smart Call Home with the call-home send
 alert-group inventory profile CiscoTAC-1 command:

 ■ Configuration

 ■ Diagnostic

 ■ Environment

 ■ Inventory

 ■ Syslog

Switch# show call-home

Current call home settings:

 call home feature : enable

 call home message's from address: Not yet set up

 call home message's reply-to address: Not yet set up

 vrf for call-home messages: Not yet set up

 contact person's email address: neteng@yourcompany.com

 contact person's phone number: Not yet set up

 street address: Not yet set up

 customer ID: Not yet set up

 contract ID: Not yet set up

 site ID: Not yet set up

Automating Management and Monitoring Tasks 243

 source ip address: Not yet set up

 source interface: Not yet set up

 Mail-server: Not yet set up

 Rate-limit: 20 message(s) per minute

Available alert groups:

 Keyword State Description

 ------------------------ ------- -------------------------------

 configuration Enable configuration info

 diagnostic Enable diagnostic info

 environment Enable environmental info

 inventory Enable inventory info

 syslog Enable syslog info

Profiles:

 Profile Name: CiscoTAC-1

Switch#

Note For more information on Smart Call Home, please visit: https://supportforums
.cisco.com/community/4816/smart-call-home

Tcl Shell

Tcl Shell is a feature that is built into Cisco routers and switches that allows engineers
to interact directly with the device by using various Tcl scripts. Tcl scripting has
been around for quite some time and is a very useful scripting language. Tcl provides
many ways to streamline different tasks that can help with day-to-day operations and
 monitoring of a network. Some of the following are tasks that can be automated by using
these scripts:

 ■ Verify IP and IPv6 reachability, using ping

 ■ Verify IP and IPv6 reachability, using Traceroute

 ■ Check interface statistics

 ■ Retrieve SNMP information by accessing MIBs

 ■ Send email messages containing CLI outputs from Tcl scripts

Most often, basic Tcl scripts are entered line by line within the Tcl shell, although, for
some of the more advanced scripting methods, you can load the script into the flash of
the device you are working on and execute the script from there. These scripts have to
be in a specific Tcl format as shown in the following examples. The following example
 illustrates how to enter the Tcl shell on a Cisco router and execute a simple ping script.

https://supportforums.cisco.com/community/4816/smart-call-home
https://supportforums.cisco.com/community/4816/smart-call-home

244 Chapter 7: On-Box Automation and Operations Tools

Router# tclsh

Router(tcl)# foreach address {

+>(tcl)# 192.168.0.2

>(tcl)# 192.168.0.3

+>(tcl)# 192.168.0.4

+>(tcl)# 192.168.0.5

+>(tcl)# 192.168.0.6

+>(tcl)# } { ping $address

+>(tcl)# }

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.2, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.3, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.4, timeout is 2 seconds:

….

Success rate is 0 percent (0/5)

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.5, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.6, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/3/4 ms

Router(tcl)# tclquit

Router#

An alternate to entering the DNS node names or IP addresses in a line-by-line fashion,
you can also enter some of the script commands on a single line within the Tcl shell.
For instance, the following example shows a similar ping script to the one entered before,
but now it is executed on the same line within the Tcl shell.

Router# tclsh

Router(tcl)# foreach address {192.168.0.2 192.168.0.3 192.168.0.4} {ping $address}

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.2, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

Type escape sequence to abort.

Automating Management and Monitoring Tasks 245

Sending 5, 64-byte ICMP Echos to 192.168.0.3, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.4, timeout is 2 seconds:

…..

Success rate is 0 percent (0/5)

Router(tcl)# tclquit

Router#

Note To abort a ping that is timing out while running a script, press and hold the
CTRL+Shift keys and press the 6 key for each failing ping, then release all keys. This
speeds up the script to keep processing past the node(s) that are not responding and does
not stop the script from running.

To execute Tcl Scripts from the local flash memory, you would need to store the script
in flash and then call the script by file name. Scripts can be stored on the device’s local
flash, USB flash, or compact flash. Tcl scripts can be transferred into the IOS File System
(IFS) by using SCP, TFTP, FTP, or RCP. From a security perspective, SCP is preferred due
to its use of SSH. To execute a locally stored script, the source command from within the
Tcl shell prompt can be used. The following example illustrates the steps to call a script
named ping.tcl from the local flash on a device. This script is an example of the same
ping script that was shown earlier in this chapter.

Note The scripts that are stored locally to the device should be named in the following
manner: filename.tcl

Router# tclsh

Router(tcl)# source flash:ping.tcl

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.2, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.3, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.4, timeout is 2 seconds:

…..

Success rate is 0 percent (0/5)

Router(tcl)# tclquit

Router#

246 Chapter 7: On-Box Automation and Operations Tools

Note The previous script that is stored locally in flash can also be executed by simply
issuing the “tclsh flash:ping.tcl command.

Embedded Event Manager (EEM)

Embedded Event Manager (EEM) is a very flexible and powerful tool within Cisco IOS.
EEM allows engineers to build software applets that can automate many tasks. EEM
also derives some of its power from the fact that you can build custom scripts using Tcl
so that they automatically execute, based on the output of an action or an event on a
device. One of the main benefits of EEM is that it is all contained within the local device.
There is no need to rely on an external scripting engine or monitoring device in most
cases. Figure 7-5 illustrates some of the event detectors and how they interact with the
IOS subsystem.

Cisco IOS EEM Applet Policy
Subscribes to Receive Events
and Implement Policy Ac�ons

Cisco IOS EEM TCL Policy
Subscribes to Receive Events
and Implement Policy Ac�ons

Policy Director

SNMP Agent
CPU

Cisco IOS Interface
Descriptor Blocks (IDBs)

Counters
Memory

Event Detectors

Cisco IOS CLI
Diagnos�cs

OIR
Cisco IOS Processes

Syslog HA

Cisco IOS EEM Server

N
on

e

Sy
slo

g

SN
M

P

Ti
m

er

Co
un

te
r

In
te

rf
ac

e

CL
I

O
IR RF

IO
SW

DS
YS

M
O

N

GO
LD

AP
PL

Pr
oc

es
s

W
DS

YS
M

O
N

SN
M

P-
N

o�
fic

a�
on

RP
C

Tr
ac

k

Figure 7-5 EEM Event Detectors

EEM Applets

EEM applets are comprised of multiple building blocks. In this chapter, we will focus
on the two of the primary building blocks that make up EEM applets. Those building
blocks are called events and actions. These EEM applets use a similar logic to the if-then
statements found in some of the more common programming languages. For instance,
if an event happens, then an action is taken. In the following example, we illustrate a
very common EEM applet that is monitoring syslog messages on a router. This particular

Automating Management and Monitoring Tasks 247

applet is looking for a specific syslog message, stating that the Loopback0 interface went
down. The specific syslog message is matched using regular expressions. This is a very
powerful and granular way of matching patterns. If this specific syslog pattern is matched
(an event) at least once, then the following actions will be taken:

 ■ The Loopback0 interface will be shutdown and brought back up (shutdown, then no
shutdown)

 ■ The router will generate a syslog message that says “I’ve fallen, and I can’t get up!”

 ■ An email message will be sent to the network administrator that includes the output
of the show interface loopback0 command.

event manager applet LOOP0

 event syslog pattern "Interface Loopback0.* down" period 1

 action 1.0 cli command "enable"

 action 2.0 cli command "config terminal"

 action 3.0 cli command "interface loopback0"

 action 4.0 cli command "shutdown"

 action 5.0 cli command "no shutdown"

 action 5.5 cli command "show interface loopback0"

 action 6.0 syslog msg "I've fallen, and I can't get up!"

 action 7.0 mail server 10.0.0.25 to neteng@yourcompany.com from

 no-reply@yourcompany.com subject "Loopback0 Issues!" body "The Loopback0
 interface was

 bounced. Please monitor accordingly. "$_cli_result"

Note Remember to include the enable and configure terminal commands at the
 beginning of actions within your applet. This is necessary as the applet assumes you are
in exec mode, not privileged exec or config mode. In addition, if you are using AAA
 command authorization, you will want to include the event manager session cli username
username command. Otherwise, the CLI commands in the applet will fail. It is also good
practice to use decimal labels similar to 1.0, 2.0, and so forth when building applets. This
allows you to insert and action between other actions in the future. For example, 1.5 will
allow you to insert an action between 1.0 and 2.0. Remember that labels are parsed as
strings, which means 10.0 would come after 1.0, not 9.0.

Based on the output from the debug event manager action cli, you can see the actual
actions taking place when the applet is running. The following example shows the applet
being engaged when we issue the shutdown command on the Loopback0 interface. It also
shows that there was an error when trying to connect to the SMTP server to send the email
to the administrator. This is because the actual SMTP server we are using for this test is not
configured. Notice that because we used the $_cli_result keyword in the configuration, it
will include the output of any CLI commands that were issued in the applet. In this case,
the output of the show interface Loopback0 command will be included in the debug and
the mail message.

248 Chapter 7: On-Box Automation and Operations Tools

Switch#

Switch# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)# interface loopback0

Switch(config-if)# shutdown

Switch(config-if)#

Dec 6 17:21:59.214: %LINK-5-CHANGED: Interface Loopback0, changed state to
 administratively down

Dec 6 17:21:59.217: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : CTL : cli_open
called.

Dec 6 17:21:59.221: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Switch>

Dec 6 17:21:59.221: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : IN : Switch>enable

Dec 6 17:21:59.231: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Switch#

Dec 6 17:21:59.231: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : IN : Switch#show
interface loopback0

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Loopback0 is
administratively down, line protocol is down

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Hardware is
Loopback

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : MTU 1514
bytes, BW 8000000 Kbit/sec, DLY 5000 usec,

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :
 reliability 255/255, txload 1/255, rxload 1/255

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :
Encapsulation LOOPBACK, loopback not set

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Keepalive
set (10 sec)

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Last input
never, output never, output hang never

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Last
 clearing of "show interface" counters never

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Input queue:
0/75/0/0 (size/max/drops/flushes); Total output drops: 0

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Queueing
strategy: fifo

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Output
queue: 0/0 (size/max)

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : 5 minute
input rate 0 bits/sec, 0 packets/sec

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : 5 minute
output rate 0 bits/sec, 0 packets/sec

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : 0 packets
input, 0 bytes, 0 no buffer

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :
Received 0 broadcasts (0 IP multicasts)

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :
0 runts, 0 giants, 0 throttles

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : 0 input
errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : 0 packets
output, 0 bytes, 0 underruns

Automating Management and Monitoring Tasks 249

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : 0 output
errors, 0 collisions, 0 interface resets

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : 0 unknown
protocol drops

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : CTL : 20+ lines read
from cli, debug output truncated

Dec 6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : IN : Switch#config
terminal

Dec 6 17:21:59.266: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Enter
 configuration commands, one per line. End with CNTL/Z.

Dec 6 17:21:59.266: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :
Switch(config)#

Dec 6 17:21:59.266: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : IN :
Switch(config)#interface loopback0

Dec 6 17:21:59.277: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :
Switch(config-if)#

Dec 6 17:21:59.277: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : IN :
 Switch(config-if)#shutdown

Dec 6 17:21:59.287: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :
Switch(config-if)#

Dec 6 17:21:59.287: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : IN :
 Switch(config-if)#no shutdown

Dec 6 17:21:59.298: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :
Switch(config-if)#

Dec 6 17:21:59.298: %HA_EM-6-LOG: LOOP0: I've fallen and I can't get up!

Dec 6 17:22:01.293: %LINK-3-UPDOWN: Interface Loopback0, changed state to up

Dec 6 17:22:11.314: %HA_EM-3-FMPD_SMTP: Error occurred when sending mail to SMTP
server: 10.0.0.25 : error in connecting to SMTP server

Dec 6 17:22:11.314: %HA_EM-3-FMPD_ERROR: Error executing applet LOOP0 statement
7.0

Dec 6 17:22:11.314: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : CTL : cli_close
called.

Note For troubleshooting purposes, using the debug event manager all command will
show all the outputs for the configured actions while the applet is being executed. For
instance, it will show the same output as shown above but will include more details on
all the other actions. To specifically troubleshoot the mail configuration and related error
messages in an EEM Applet, the debug event manager action mail command is most
useful as it filters out all the other unnecessary debug messages while you are trying to
troubleshoot the mail configuration. This will allow you to focus on SMTP errors as shown
in the previous example.

Another very useful aspect of EEM applets is that CLI patterns can be matched as an
event. This means that when certain commands are entered into the router via CLI, they
can trigger an EEM event within an applet. Then the configured actions will take place as
a result of the CLI pattern being matched. The following example uses another common

250 Chapter 7: On-Box Automation and Operations Tools

EEM applet to match the CLI pattern “wr mem”. Once the applet is triggered, the
 following actions will be invoked:

 ■ The router will generate a syslog message that says “Configuration File Changed!”

 ■ The startup-config will be copied to a TFTP server.

 ■ Generate a syslog message stating that the configuration has been successfully saved.

event manager environment filename Router.cfg

event manager environment tftpserver tftp://10.1.200.29/

event manager applet BACKUP-CONFIG

 event cli pattern "write mem.*" sync yes

 action 1.0 cli command "enable"

 action 2.0 cli command "configure terminal"

 action 3.0 cli command "file prompt quiet"

 action 4.0 cli command "end"

 action 5.0 cli command "copy start $tftpserver$filename"

 action 6.0 cli command "configure terminal"

 action 7.0 cli command "no file prompt quiet"

 action 8.0 syslog priority informational msg "Configuration File Changed! TFTP
backup successful."

Note The file prompt quiet command disables the IOS confirmation mechanism that
asks you to confirm your actions.

Note The priority and facility of the Syslog messages can be changed to fit your
 environment’s alerting structure. For example, we used informational in the previous
 example.

As seen in the previous examples there are multiple ways to call out specific EEM
environment values. The first example illustrated that you can use a single line to
configure the mail environment and send messages with CLI output results. Using the
event manager environment variables shown in the second example, you can statically
set different settings that you can call on from multiple actions instead of calling them
out individually on a single line. Although you can create custom names and values
that are arbitrary and can be set to anything, it is good practice to use common and
descriptive variables. Table 7-3 lists some of the most commonly used email variables
in EEM.

Automating Management and Monitoring Tasks 251

Table 7-3 Common EEM Email Variables

EEM Variable Description Example

_email_server SMTP server IP address or DNS name 10.0.0.25 or MAILSVR01

_email_to Email address to send email to neteng@yourcompany.com

_email_from Email address of sending party no-reply@yourcompany.com

_email_cc Email address of additional email receivers helpdesk@yourcompany.com

EEM and Tcl Scripts

Using an EEM applet to call Tcl scripts is another very powerful aspect of EEM. We
have covered multiple ways to use EEM applets. In this section, we will discuss how to
call a Tcl script from an EEM applet. The previous sections on EEM showed multiple
ways of executing actions, based on the automatic detection of specific events when
they are happening. This example shows how to manually execute an EEM applet that
will, in turn, execute a Tcl script that is locally stored in the device’s flash memory.
It is important to understand that there are many different ways to use EEM and that
manually triggered applets are also a very useful tool. The following example depicts an
EEM script that is configured with the event none command. This means that there is no
automatic event that the applet is monitoring and that this applet will only run when it is
triggered manually. To manually run an EEM applet, the event manager run command
must be used as illustrated in second output.

event manager applet Ping

 event none

 action 1.0 cli command "enable"

 action 1.1 cli command "tclsh flash:/ping.tcl"

Router# event manager run Ping

Router#

Dec 6 19:32:16.564: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : CTL : cli_open
called.

Dec 6 19:32:16.564: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Router>

Dec 6 19:32:16.568: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : IN : Router>enable

Dec 6 19:32:16.578: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Router#

Dec 6 19:32:16.578: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : IN : Router#tclsh
flash:/ping.tcl

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Type escape
sequence to abort.

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Sending 5,
 100-byte ICMP Echos to 192.168.0.2, timeout is 2 seconds:

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : !!!!!

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Success rate is
100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Type escape
sequence to abort.

252 Chapter 7: On-Box Automation and Operations Tools

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Sending 5,
 100-byte ICMP Echos to 192.168.0.3, timeout is 2 seconds:

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : !!!!!

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Success rate is
100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Type escape
sequence to abort.

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Sending 5,
 100-byte ICMP Echos to 192.168.0.4, timeout is 2 seconds:

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : !!!!!

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Success rate is
100 percent (5/5), round-trip min/avg/max = 1/1/3 ms

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Type escape
sequence to abort.

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Sending 5,
 100-byte ICMP Echos to 192.168.0.5, timeout is 2 seconds:

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : !!!!!

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Success rate is
100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Type escape
sequence to abort.

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Sending 5,
 100-byte ICMP Echos to 192.168.0.6, timeout is 2 seconds:

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : !!!!!

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Success rate is
100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : CTL : 20+ lines read
from cli, debug output truncated

Dec 6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : CTL : cli_close called.

For reference, see the following snippet for the exact content of the ping.tcl script used in
the manually triggered EEM applet in the previous example. To see the contents of a TCL
script that resides in flash, issue the more command followed by the file location and
filename. The more command can be used to view all other text based files stored in the
local flash as well.

Router# more flash:ping.tcl

foreach address {

192.168.0.2

192.168.0.3

192.168.0.4

192.168.0.5

192.168.0.6

} { ping $address}

Summary 253

EEM Summary

There are many ways to utilize EEM. From applets to scripting, the possibly use cases
can only be limited by the engineer’s imagination. EEM provides on-box monitoring of
various different components based on a series of events. Once an event is detected, an
action can take place. This helps make some of the network monitoring more proactive,
rather than reactive. This can also reduce the load on the network and improve efficiency
from the monitoring system because now the devices can simply report when there is
something wrong instead of continually asking the devices if there is anything wrong.

Note For information on EEM and its robust features, please visit http://www.cisco.com/c/
en/us/products/ios-nx-os-software/ios-embedded-event-manager-eem/index.html

Summary
By automating daily configuration tasks, you gain some of the following benefits:

 ■ Increased agility

 ■ Reduced Opex

 ■ Lower overall TCO

 ■ Streamlined management

 ■ Reduction of human error

 ■ Increased visibility

Keeping the above in mind, then adding the fact that many organizations are dealing with
lean IT problems and high turnover, network engineers are being asked to do more with
less. Utilizing some of the tools that were covered in this chapter can help alleviate some
of the pressure put on IT staff by offloading some of the more tedious, time-consuming,
and repetitious tasks. This will allow the network engineer to focus more on critical
 mission responsibilities like network design and growth planning.

http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-embedded-event-manager-eem/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-embedded-event-manager-eem/index.html

This page intentionally left blank

Index

Symbols
* (asterisk), 32

\ (backslash), 90

^ (caret), 32

./ construct (bash), 90

$ (dollar sign), 32

= (equal sign), 92

< (left arrow), 92

. (period), 32, 33

+ (plus sign), 32

(pound sign), 29

>> redirector, 94

> (right arrow), 92

[] (square brackets), 32, 33

16 nanometer ASIC, 68

A
aaaLogin method, 185

aaaLogout method, 186

aaaRefresh method, 185

aborting pings, 245

Access Control Lists (ACLs)

APIC-EM Policy application,
286–287

overview, 79

Access module (Cobra SDK), 200

accessing

dictionaries, 28

lists, 27

virtual environments, 163–164

ACI (Application Centric
Infrastructure). See Cisco
ACI (Application Centric
Infrastructure)

ACLs (Access Control Lists)

APIC-EM Policy application,
286–287

benefits of, 79

actions (EEM), 112–113

activate command, 163–164

addresses (IP), 130–131

ALE (application leaf engine), 67

ANPs (application network
profiles), 72

Ansible

Nexus 9000, 157–158

overview, 156–157

308 AP_INTERFACE_TEMPLATE

AP_INTERFACE_TEMPLATE, 220

API inspector (APIC), 179–182

APIC REST Python Adapter (Arya)

AryaLogger, 207–208

installing, 207–208

WebArya, 211

APIC RESTful API

API inspector, 179–182

APIC automation with UCS
Director, 211

APIC configuration automation,
188–191

atomic mode, 174–175

authentication

authentication methods,
185–186

overview, 182–186

with Python, 186–188

Cobra SDK

Arya (APIC REST Python
Adapter), 207–211

authentication, 201

documentation, 198

installing, 199–200

libraries, 200–201

modules, 200

objects, 202–204

tenant configuration example,
204–207

components, 175–176

event subscription, 196–198

forgiving mode, 174–175

GUI, 178

invoking, 176–178

object save-as, 178–179

programmability, 192–196

read operations, 176

Visore, 182–185

write operations, 177

APIC-EM (application policy
infrastructure controller enterprise
module)

APIC-EM Path Trace application,
276–278

APIC-EM Plug and Play (PnP)

Configuration Upload
page, 275

dashboard, 271–272

Device History, 273

overview, 269–278

Pending status information
page, 274

project details, 272–273

Software Images tab, 274–275

Unplanned Devices screen,
275–276

authentication via Python

Host API, 299–301

Ticket API, 297–299

Device Inventory application,
281–282

Dynamic QoS (Quality of Service),
285–286

Easy QoS (Quality of Service),
283–285

IWAN (Intelligent WAN), 264–269

network devices, listing, 292–293

overview, 70, 263

Policy application, 286–287

Postman APIs

available APIs, 296

DevNet APIC-EM sandbox,
288

Host API, 291–292

Network Device API, 292–293

Application Spine Engine (ASE) 309

Ticket API, 288–291

User API, 294–296

Topology application, 279–281

users, viewing, 294–296

APIC-EM-AUTH.py script, 297–299

APIC-EM-SHOW-HOST.py script,
299–301

APIs (application programming
interfaces)

APIC RESTful API. See also
Cobra SDK

API inspector, 179–182

APIC automation with UCS
Director, 211

APIC configuration
 automation, 188–191

atomic mode, 174–175

authentication, 185–188

components, 175–176

event subscription, 196–198

forgiving mode, 174–175

GUI, 178

invoking, 176–178

object save-as, 178–179

programmability, 192–196

read operations, 176

Visore, 182–185

write operations, 177

CLI APIs, 115–116

ConfD, 261

event subscription, 196–198

Host API

Postman API, 291–292

Python script, 299–301

NX-API

authentication, 136–138

automation tools, 151

CLI mode, 129–130

DevOps tools, 151

event subscription, 143–146

IP address configuration,
130–131

message format, 126

NX-API REST, 131–136

NXTool Kit, 146–151

object modification via
Postman, 138–140

object modification via Python,
140–143

overview, 125

sandbox, 127–129

security, 126

transport, 125–126

Visore, 134–136

Open Weather Map API, 40–43

Postman, 292–293, 294–296

Python, 37

Ticket API

Postman, 288–291

Python script, 297–299

applets (EEM), 246–251

Application Centric Infrastructure
(ACI). See Cisco ACI (Application
Centric Infrastructure)

application leaf engine (ALE), 67

application network profiles
(ANPs), 72

application policy infrastructure
controller enterprise module.
See APIC-EM (application policy
infrastructure controller enterprise
module)

application programming interfaces.
See APIs (application programming
interfaces)

Application Spine Engine (ASE), 67

310 Application-Centric Infrastructure (ACI)

Application-Centric Infrastructure
(ACI)

EPGs (end point groups), 72–73

overview, 70–72

policy instantiation, 73–74

application-level health scores, 174

applications

installing

in Guestshell, 110

on Linux, 64–65

open-source applications, 64

Apt, 65

architecture

Cisco ACI (Application Centric
Infrastructure), 169

Cisco data center, 76–80

Linux, 58

NDB (Nexus Data Broker), 74–76

arithmetic (Bash), 90–91

Arya (APIC REST Python Adapter)

AryaLogger, 207–208

installing, 207–208

WebArya, 211

AryaLogger

installing, 207–208

program example, 207–208

ASE (Application Spine Engine), 67

ASICs, 67–68

ASP (AutoSmart Ports)

availability, 216

device-specific macros and
 descriptions, 217

enabling on Cisco Catalyst Switch,
217–219

overview, 216–217

website, 220

asterisk (*), 32

atomic mode (ACI API), 174–175

audit trailing (ConfD), 262

authentication

APIC RESTful API

authentication methods,
185–186

overview, 182–186

with Python, 186–188

APIC-EM authentication

Host API, 291–292, 299–301

Ticket API, 288–291,
297–299

Cobra SDK, 201

NX-API, 136–138

auto qos global compact command,
231, 233

auto qos voip cisco-phone command,
233

Auto Security

availability, 230

enabling on Cisco Catalyst Switch,
228–230

overview, 227–228

AutoConf

availability, 220

enabling on Cisco Catalyst Switch,
222–224

interface templates and descriptions,
220–222

template modification, 224–227

website, 227

autoconf enable command, 222

automated management and
monitoring

EEM (Embedded Event Manager)

EEM applets, 246–251

email variables, 251

overview, 246

summary, 253

automation tools 311

Tcl scripts, 251–252

website, 253

Smart Call Home

enabling on Cisco Catalyst
Switch, 237–243

overview, 236–237

website, 239, 243

Tcl Shell, 243–246

automated port profiling

ASP (AutoSmart Ports)

device-specific macros and
descriptions, 217

enabling on Cisco Catalyst
Switch, 217–219

overview, 216–217

website, 220

Auto Security

availability, 230

enabling on Cisco Catalyst
Switch, 228–230

overview, 227–228

AutoConf

availability, 220

enabling on Cisco Catalyst
Switch, 222–224

interface templates and
 descriptions, 220–222

template modification,
 224–227

website, 227

AutoSmart Ports, 216

overview, 216

automation tools. See also Cisco
ACI (Application Centric
Infrastructure); off-box
programmability (NX-OS); on-box
programmability (NX-OS)

Ansible

Nexus 9000, 157–158

overview, 156–157

APIC-EM (application policy
 infrastructure controller
 enterprise module)

APIC-EM Plug and Play (PnP),
269–278

authentication via Python,
297–301

Device Inventory application,
281–282

Dynamic QoS (Quality of
Service), 285–286

Easy QoS (Quality of Service),
283–285

IWAN (Intelligent WAN),
264–269

network devices, listing,
292–293

overview, 263

Path Trace application,
276–278

Policy application, 286–287

Postman APIs, 288–296

Topology application, 279–281

users, viewing, 292–293

ASP (AutoSmart Ports)

device-specific macros and
descriptions, 217

enabling on Cisco Catalyst
Switch, 217–219

overview, 216–217

website, 220

Auto Security

availability, 230

enabling on Cisco Catalyst
Switch, 228–230

overview, 227–228

AutoConf

availability, 220

enabling on Cisco Catalyst
Switch, 222–224

312 automation tools

interface templates and
 descriptions, 220–222

template modification,
224–227

website, 227

automation example, 11

AutoQoS on LAN devices

enabling on Cisco Catalyst
Switch, 231–233

overview, 230–231

AutoQoS on WAN devices

enabling on Cisco ISR routers,
234–236

overview, 233–234

AutoSmart Ports, 216

ConfD, 259–263

DevOps, 304

EEM (Embedded Event Manager)

EEM applets, 246–251

email variables, 251

overview, 246

summary, 253

Tcl scripts, 251–252

website, 253

importance of, 303

NETCONF (network configuration
protocol), 258–259

NX-OS support for, 151

overview, 255–256

Puppet

ciscopuppet, 154–156

Nexus 9000, 154–157

overview, 152–153

Smart Call Home

enabling on Cisco Catalyst
Switch, 237–243

overview, 236–237

website, 239, 243

Tcl Shell, 243–246

when to use, 10

YANG (yet another next generation)
data models, 256–258

automation versus orchestration, 6

AutoSmart Ports. See ASP
(AutoSmart Ports)

Awk, 98–99

B
backslash (\), 90

bandwidth allocation, 285

Bash scripts

arithmetic, 90–91

Awk, 98–99

commands

boot_config.sh, 106

chkconfig, 105–106

man, 99–100

conditions, 91–94

ethtool, 103

flow control, 91–94

ifconfig, 101

loops, 93–94

Nexus 9000, 99–100

NTP server configuration, 106

operators, 91–92

overview, 56, 88–89

redirection, 94–96

running at startup, 103–106

Sed text editor, 96–98

tcpdump, 101–103

variables, 89–90

BGP configuration with NXTool Kit,
148–151

/bin directory, 64

CI/CD (continuous integration/continuous deployment) 313

boot, configuring NTP servers at, 106

/boot directory, 64

boot order pxe bootflash
command, 88

boot_config.sh command, 106

/bootflash directory, 118

BPDUs (bridge protocol data
units), 78

bridge protocol data units
(BPDUs), 78

Broadcom, NFE (network forwarding
engine), 67

browsers, Visore, 134–136

BUM traffic, 80

C
call-home command, 239–241

call-home send alert-group inventory
profile CiscoTAC-1 command,
242–243

calling functions, 29

calls (Postman), creating, 189–191

campus environments, automation
tools for

APIC-EM (application policy
 infrastructure controller
 enterprise module)

APIC-EM Plug and Play (PnP),
269–278

authentication via Python,
297–301

Device Inventory application,
281–282

Dynamic QoS (Quality of
Service), 285–286

Easy QoS (Quality of Service),
283–285

IWAN (Intelligent WAN),
264–269

network devices, listing,
292–293

overview, 263

Path Trace application,
276–278

Policy application, 286–287

Postman APIs, 288–296

Topology application,
279–281

users, viewing, 292–293

ConfD, 259–263

NETCONF (network configuration
protocol), 258–259

overview, 255–256

YANG (yet another next generation)
data models, 256–258

capturing IP packet headers,
101–103

caret (∂), 32

case sensitivity (Cisco ACI API), 177

case statement, 92–93

cat command, 57

catalogs, Cisco Prime Service
Catalog, 213

Catalyst Switch. See Cisco
Catalyst Switch, enabling
automation tools on

cd command, 57

CDB Database (ConfD), 261

cdp_neighbor.py, 121–123

changing dictionary data, 28

Chef, 151

chkconfig, 105–106

chmod command, 29, 57, 64

chown command, 57

chvrf command, 109

CI/CD (continuous integration/
continuous deployment), 2

314 Cisco ACI (Application Centric Infrastructure)

Cisco ACI (Application Centric
Infrastructure)

advantages of, 304

APIC RESTful API

API inspector, 179–182

APIC automation with UCS
Director, 211

APIC configuration
 automation, 188–191

atomic mode, 174–175

authentication, 185–188

components, 175–176

event subscription, 196–198

forgiving mode, 174–175

GUI, 178

invoking, 176–178

object save-as, 178–179

programmability, 192–196

read operations, 176

Visore, 182–185

write operations, 177

architecture, 169

automation, 160–161

Cobra SDK

Arya (APIC REST Python
Adapter), 207–211

authentication, 201

documentation, 198

installing, 199–200

libraries, 200–201

modules, 200

objects, 202–204

tenant configuration example,
204–207

EPGs (end point groups), 72–73

event subscription, 196–198

management information model

fault lifecycle, 171–173

fault severity, 173–174

health scores, 174

MIT (management information
tree), 169–170

MOs (managed objects),
169–170

object names, 170

overview, 8–9, 70–72, 81, 159

policy instantiation, 73–74, 161–162

Python exception handling

definition of, 162

examples, 166–168

virtual environments, 163–165

virtualenv installation,
162–163

Cisco APIC Python SDK (Cobra)

Arya (APIC REST Python Adapter)

installing, 207–211

WebArya, 211

authentication, 201

documentation, 198

installing, 199–200

libraries, 200–201

modules, 200

objects, 202–204

tenant configuration example,
204–207

Cisco Application Spine Engine
(ASE), 67

Cisco Auto Security

availability, 230

enabling on Cisco Catalyst Switch,
228–230

overview, 227–228

Cisco Catalyst Switch, enabling
automation tools on

Cisco Nexus NX-OS 315

ASP (AutoSmart Ports), 217–219

Auto Security, 228–230

AutoConf, 222–224

AutoQoS on LAN devices, 231–233

Smart Call Home, 237–243

Cisco Data Center (GitHub), 123, 207

Cisco data center networking

ACI (Application Centric
Infrastructure). See Cisco
ACI (Application Centric
Infrastructure)

Cisco Nexus Fabric Manager, 80–81

Cisco VTS (Virtual Topology
System), 81

network architecture, 76–80

Nexus 9000, 67–70

Nexus Data Broker (NDB)

architecture, 74–76

RESTful API, 75

use case, 75–76

NX-OS. See Cisco Nexus NX-OS

Cisco DevNet

APIC-EM sandbox, 288

website, 204

Cisco Ignite, 87–88

Cisco ISR routers, enabling AutoQoS
on, 234–236

Cisco IWAN (Intelligent WAN),
264–269

Cisco Merchant + strategy, 67

Cisco Netflow Generation
Appliance, 75

Cisco Nexus Fabric Manager, 80–81

Cisco Nexus NX-OS

Ansible

Nexus 9000, 157–158

overview, 156–157

Bash scripts

arithmetic, 90–91

Awk, 98–99

conditions, 91–94

ethtool, 103

flow control, 91–94

ifconfig, 101

loops, 93–94

Nexus 9000, 99–100

NTP server configuration, 106

operators, 91–92

overview, 88–89

redirection, 94–96

running at startup, 103–106

Sed text editor, 96–98

tcpdump, 101–103

variables, 89–90

Cisco Ignite, 87–88

Cisco libraries, importing, 113–115

EEM (Embedded Event Manager)

actions, 112–113

leveraging Python scripts from,
121–123

neighbor discovery, 121–123

system events, 112

variables, 113

Guestshell

application installation, 110

network access, 109–110

NMap installation, 111

overview, 108–109

Puppet agent installation, 111

iPXE, 88

LXC (LinuX Containers), 106–107

NDB (Nexus Data Broker), 111–112

NX-API

authentication, 136–138

316 Cisco Nexus NX-OS

automation tools, 151

CLI mode, 129–130

DevOps tools, 151

event subscription, 143–146

IP address configuration,
129–130

message format, 126

NX-API REST, 131–136

NXTool Kit, 146–151

object modification via
Postman, 138–140

object modification via Python,
140–143

overview, 125

sandbox, 127–129

security, 126

transport, 125–126

Visore, 134–136

overview, 69, 83

POAP (power-on auto provisioning),
83–87

Puppet

Nexus 9000, 154–157

overview, 152–153

Python scripts

Cisco Python package,
116–117

CLI APIs, 115–116

leveraging from EEM syslog
event, 121–123

non-interactive Python, 118

Reload_in Pseudocode,
118–121

Cisco POAP (power-on auto
provisioning), 83–87

Cisco Prime Service Catalog, 213

Cisco Python package, 116–117

Cisco Smart Call Home

enabling on Cisco Catalyst Switch,
237–243

overview, 236–237

website, 239, 243

Cisco Smart Install (SMI) Proxy, 271

Cisco Switched Port Analyzer
(SPAN), 74

Cisco UCS (Unified Computing
System) Manager, 7

Cisco Validated Designs (CVDs), 266

Cisco VTS (Virtual Topology
System), 81

ciscopuppet

documentation, 156

installing, 154

NX-OS configurations, 155–156

verifying, 154

cisco.vrf module, 116–117

clear command, 57

cleared faults, 174

cli(), 115

CLI APIs, 115–116

CLI mode (NX-API), 129–130

$_cli_result keyword, 247

clid(), 115

clip(), 115

Cliqr, 7

cloning Git repositories, 44–47

cloud operational models

network programmability, 304

overview, 6–8

cmd dictionary value, 129

Cobra SDK

Arya (APIC REST Python Adapter)

installing, 207–211

WebArya, 211

authentication, 201

debug event manager all command 317

documentation, 198

installing, 199–200

libraries, 200–201

modules, 200

objects, 202–204

tenant configuration example,
204–207

cobra.mit library, 201

cobra.model library, 201

collections, 188

comments (Python), 29

committing files to GitHub, 48

concatenating strings, 23

conditions

Bash scripting, 91–94

explained, 17

Python conditions, 24–25

conf command, 130

ConfD, 259–263

config false command, 258

ConfigRequest(), 202

configuration

ACI tenant configuration with Cobra,
204–207

APIC configuration automation,
188–191

BGP configuration with NXTool Kit,
148–151

IP addresses, 130–131

NTP server, 106

POAP (power-on auto provisioning),
83–87

Puppet, 155

Configuration Upload page
(APIC-EM PnP), 275

configure terminal command,
218, 247

consumption model (DevOps), 304

continuous integration/continuous
deployment (CI/CD), 2

converting variables to strings, 23

cookies, nxapi_auth, 126, 136–138

Core Engine (ConfD), 261

cp command, 57

critical faults, 173

custom tags, 170

customized virtual environments, 163

CVDs (Cisco Validated Designs), 266

D
DAI (Dynamic ARP inspection),

227–228

dashboard (APIC-EM PnP), 271–272

data center networking. See Nexus
data center networking

data management engine (DME),
133, 174

data models, YANG (yet another next
generation), 256–258

Data Provider API, 261

data types, 15–16, 27–28

data-encoding formats

JSON (Javascript Object Notation),
39–45

XML (Extensible Markup Language),
38–39

datetime library, 30, 35–36

deactivate command, 163–164

debug event manager action cli
command, 239–241, 247

debug event manager action mail
command, 249

debug event manager all command,
249

318 debugging

debugging

HTML APIC GUI, 178

PyCharm, 54–55

deep packet inspection (DPI) tool, 4

def keyword, 29

defining

functions, 29

variables, 15–16

DELETE method, 37

development. See software
development

Device History (APIC-EM PnP), 273

Device Inventory application
(APIC-EM), 281–282

DevNet

APIC-EM sandbox, 288

website, 66

DevOps

network consumption model, 304

NX-OS support for, 151

df command, 57

DHCP (Dynamic Host Configuration
Protocol)

DHCP Snooping, 227

POAP configuration, 84–85

dictionaries, 28

dir command, 147–148

directories

/bin, 64

/boot, 64

/bootflash, 118

/etc, 64

/etc/passwd, 57

/home, 64

overview, 64, 118

/sbin, 64

/usr, 64

/var/log, 64

discovery

EEM (Embedded Event Manager),
121–123

MOs (managed objects), 178

displaying

APIC-EM users, 294–296

Linux processes, 59–61

distinguished names (DNs), 133, 170

DME (data management engine),
133, 174

DMP_INTERFACE_TEMPLATE, 220

DNs (distinguished names),
133, 170

documentation

ciscopuppet, 156

Cobra SDK, 198

man documentation, 99

NFM (Nexus Fabric Manager), 82

Python, 24

VTS (Virtual Topology System), 82

dohost command, 109

dollar sign ($), 32

downloading Git, 45

DPI (deep packet inspection) tool, 4

Dynamic ARP inspection (DAI),
227–228

Dynamic Host Configuration
Protocol. See DHCP (Dynamic
Host Configuration Protocol)

Dynamic QoS (Quality of Service),
285–286

E
Easy QoS (Quality of Service),

283–285

ECMP (Equal Cost Multiple Path), 77

exception handling 319

editing

JSON editor, 178

source code, 49–50

text in Bash

Awk, 98–99

Sed text editor, 96–98

editors

JSON editor, 178, 191

Sed, 96–98

EEM (Embedded Event Manager)

actions, 112–113

EEM applets, 246–251

email variables, 251

leveraging Python scripts from,
121–123

neighbor discovery, 121–123

overview, 246

summary, 253

system events, 112

Tcl scripts, 251–252

variables, 113

website, 253

.egg files, 198

else statements

overview, 17

Python, 24–25

email variables (EEM), 251

Embedded Event Manager. See EEM
(Embedded Event Manager)

enable command

Auto Security, 228

AutoConf, 224

AutoSmart Ports, 217

EEM applets, 247

enabling

ASP (AutoSmart Ports), 217–219

Auto Security, 228–230

AutoConf, 222–224

AutoQoS on LAN devices, 231–233

AutoQoS on WAN devices, 234–236

Smart Call Home, 237–243

end point groups (EPGs)

assigning interfaces to, 193–196

definition of, 72–74, 161–162

environments. See campus
environments, automation tools
for; virtual environments

EPGs (end point groups)

assigning interfaces to, 193–196

definition of, 72–74, 161–162

eq operator, 91

Equal Cost Multiple Path (ECMP), 77

equal sign (=), 92

errors. See exception handling

/etc directory, 64

/etc/passwd file, 57

Ethernet VPNs (EVPNs), 80–81

ethtool, 103

event manager run command,
251–252

event manager session cli username
command, 247

event none command, 251–252

events

Cisco ACI event subscription,
196–198

EEM (Embedded Event
Manager), 112

NX-API event subscription,
143–146

eVPN, 80

EVPNs (Ethernet VPNs), 80–81

exception handling

definition of, 162

examples, 166–168

320 exception handling

virtual environments, 163–165

virtualenv installation, 162–163

exiting virtual environments,
163–164

expressions, regular

Python, 31–37

Sed support for, 96

Extensible Markup Language (XML),
38–39

F
Fabric Manager, 80–81

faults

lifecycle, 171–173

severity, 173–174

states, 172–173

fields (Path Trace), 277

FIFO (first-in, first-out), 176

file prompt quiet command, 250

file system, 63–64

files

.egg files, 198

adding to GitHub, 47–48

.py files, 29

Python files, 29

filters, tcpdump, 102

find method, 22

first-in, first-out (FIFO), 176

flow control

Bash scripting, 91–94

conditions

explained, 17

Python conditions, 24–25

loops

explained, 18

Python loops, 25–28

forgiving mode (ACI API), 174–175

formatted data. See data-encoding
formats

formatting tools (JSON), 178, 191

freezing virtual environments,
164–165

functions

calling, 29

defining, 29

overview, 18–19, 28–29

G
gateways, transport, 236–237

General Public License (GPL), 56

GET method, 37

Git

commands, 49

downloading, 45

files, adding to repositories, 47–48

overview, 45

resources, 49

git add command, 47–48, 49

git clone command, 44–47, 49

git commit command, 48, 49

git pull command, 49

git push command, 48, 49

git status command, 47

GitHub

Cisco Data Center page, 123, 207

overview, 45

repository creation, 45–47

repository updates, 47–48

resources, 49

Google Postman, 40–43

GPL (General Public License), 56

grep command, 57

installation 321

gt operator, 91

Guestshell

application installation, 110

network access, 109–110

NMap installation, 111

overview, 108–109

Puppet agent installation, 111

GUI (APIC), 178

H
handling exceptions. See exception

handling

hashes, 17

health scores, 174

hello_world (Bash), 104–105

help

help command, 147–148

help method, 23

Linux, 65–66

Python, 23–24, 116–117

help command, 147–148

help method, 23

/home directory, 64

$HOME variable, 89

Host API

Postman API, 291–292

Python script, 299–301

human language versus machine
language, 8–9

I
IaaS (infrastructure as a service), 6–7

if statements

Bash scripting, 91–92

if-else, 17, 24–25

if-then, 246–247

overview, 17

Python, 24–25

ifconfig, 101

if-else statements, 17, 24–25

if-then statements, 246–247

Ignite, 87–88

import command, 30

imports

Cisco libraries, 113–115

Cobra SDK libraries, 200–201

NXTool Kit, 146

Python libraries, 30

info faults, 174

information technology as a service
(ITaaS), 213

infrastructure as a service (IaaS), 6–7

innovation (network), 4–6

installation

applications

in Guestshell, 110

on Linux, 64–65

Arya (APIC REST Python Adapter),
207–208

AryaLogger, 207–208

ciscopuppet, 154

Cobra SDK, 200

libraries into virtual environments,
164

NDB (Nexus Data Broker), 111–112

NMap in Guestshell, 111

NXTool Kit, 146

Puppet agents in Guestshell, 111

Python, 20

Python libraries, 30–31

virtualenv, 162–163

322 instantiation

instantiation

ACI (Application Centric
Infrastructure) policy, 73–74,
161–162

objects, 20

Intelligent WAN (IWAN), 264–269

interface command, 130

interface status, checking, 101

interfaces

assigning to EPGs (end point groups),
193–196

AutoConf interface templates,
220–222

invoking APIC RESTful API, 176–178

IP address configuration, 130–131

IP packet headers, capturing, 101–103

IP phone port profiling. See port
profiling

IP_CAMERA_INTERFACE_
TEMPLATE, 220

IP_PHONE_INTERFACE_
TEMPLATE, 220

iPXE, 88

ISR routers, enabling AutoQoS on,
234–236

ITaaS (information technology as a
service), 213

IWAN (Intelligent WAN), 264–269

J
Javascript Object Notation. See JSON

(Javascript Object Notation)

JSON (Javascript Object Notation)

formatting tools, 178, 191

JSON-RPC, 126

overview, 39–45

json library, 30, 44–45

jsoneditoronline.org, 139

K
keywords. See also statements

$_cli_result, 247

def, 29

kill command, 57

L
L2-based network architecture,

77–79

LANs, AutoQoS on LAN devices

enabling on Cisco Catalyst Switch,
231–233

overview, 230–231

LAP_INTERFACE_TEMPLATE, 220

layer 2-based network architecture,
77–79

Lean IT, 303

less command, 57

libraries

Cisco libraries, importing, 113–115

Cobra SDK, 200–201

installing into virtual environments,
164

Python libraries

datetime, 35–36

importing, 30

installing, 30–31

json, 44–45

requests, 43–44

sys, 34–35

lifecycle of faults, 171–173

Linux

architecture, 58

bash, 56

commands

management information model (Cisco ACI) 323

chmod, 64

command summary, 56–58

ls, 63

systemd, 61–62

top, 61

directories, 64

file system, 63–64

GPL (General Public License), 56

help, 65–66

installing applications on, 64–65

LXC (LinuX Containers), 62

overview, 55–56

permissions, 63–64

processes, displaying, 59–61

ps tool, 59

resources, 65–66

systemd, 61–62

yum tool, 65

LinuX Containers (LXC), 62,
106–107. See also Guestshell

list command, 107

lists

list command, 107

overview, 16

in Python, 27

lookupByClass method, 202–203

lookupByDN method, 202–204

for loops

Bash scripting, 93

overview, 18

in Python, 25–26

loops

Bash scripting, 93–94

explained, 18, 93–94

looping through dictionaries, 28

for loops

Bash scripting, 93

overview, 18

Python loops, 25–26

while loops

Bash scripting, 94

overview, 18

Python loops, 26–27

ls command, 57, 63

lt operator, 91

LXC (LinuX Containers), 62,
106–107. See also Guestshell

M
M2M (machine-to-machine

interactions), 9–10

machine language versus human
language, 8–9

machine-to-machine interactions
(M2M), 9–10

MACs (moves, additions, and
changes), 216

major faults, 173

man command, 57, 99

man documentation, 99

Managed Object API, 261

Managed Object module (Cobra
SDK), 200

managed objects (MOs)

Cobra SDK Managed Object
module, 200

definition of, 133, 169–170

discovering, 178

health scores, 174

Managed Object API, 261

management information model
(Cisco ACI)

fault lifecycle, 171–173

324 management information model (Cisco ACI)

fault severity, 173–174

health scores, 174

MIT (management information tree),
169–170

MOs (managed objects),
169–170

object names, 170

management information tree (MIT),
169–170

management tasks

EEM (Embedded Event Manager)

EEM applets, 246–251

email variables, 251

overview, 246

summary, 253

Tcl scripts, 251–252

website, 253

Smart Call Home

enabling on Cisco Catalyst
Switch, 237–243

overview, 236–237, 243

website, 239

Tcl Shell, 243–246

MD5 hash, 86

Merchant + strategy (Cisco), 67

message format (NX-API),
125–126

methods

aaaLogin, 185

aaaLogout, 186

aaaRefresh, 185

APIC authentication methods,
185–186

ConfigRequest(), 202

find, 22

help, 23

lookupByClass, 202–203

lookupByDN, 202–204

re.findall, 32

re.match, 33

re.search, 33–34

re.sub, 34

split, 22

minor faults, 173

MIT (management information tree),
169–170

mkdir command, 57

models, YANG (yet another next
generation), 256–258

modification

NX-API objects

via Postman, 138–140

via Python, 140–143

modifying AutoConf templates,
224–227

modules (Cobra SDK), 200

monitoring tasks

EEM (Embedded Event Manager)

EEM applets, 246–251

email variables, 251

overview, 246

summary, 253

Tcl scripts, 251–252

website, 253

Smart Call Home

enabling on Cisco Catalyst
Switch, 237–243

overview, 236–237

website, 239, 243

Tcl Shell, 243–246

more command, 252

MOs (managed objects)

Cobra SDK Managed Object
 module, 200

network engineers, skill set needed by 325

definition of, 133, 169–170

discovering, 178

health scores, 174

Managed Object API, 261

moves, additions, and changes
(MACs), 216

MSP_CAMERA_INTERFACE_
TEMPLATE, 220

MSP_VC_INTERFACE_TEMPLATE,
220

mutability of data in Python, 27

mv command, 57

N
names

object names, 170

variables, 15–16

Naming module (Cobra SDK), 200

NDB (Nexus Data Broker)

architecture, 74–76

overview, 111–112

RESTful API, 75

use case, 75–76

ne operator, 91

neighbor discovery (EEM), 121–123

NETCONF (network configuration
protocol), 258–259

Netflow Generation Appliance, 75

network automation tools

APIC-EM (application policy
 infrastructure controller
 enterprise module)

APIC-EM Plug and Play (PnP),
269–278

authentication via Python,
297–301

Device Inventory application,
281–282

Dynamic QoS (Quality of
Service), 285–286

Easy QoS (Quality of Service),
283–285

IWAN (Intelligent WAN),
264–269

network devices, listing,
292–293

overview, 263

Path Trace application,
 276–278

Policy application, 286–287

Postman APIs, 288–296

Topology application, 279–281

users, viewing, 292–293

automation example, 11

ConfD, 259–263

DevOps, 304

importance of, 303

NETCONF (network configuration
protocol), 258–259

overview, 255–256

when to use, 10

YANG (yet another next generation)
data models, 256–258

network configuration protocol
(NETCONF), 258–259

network consumption model
(DevOps), 304

network controllers. See also
Cisco ACI (Application Centric
Infrastructure)

Cisco Nexus Fabric Manager, 80–81

Cisco VTS (Virtual Topology
System), 81

Network Device API, 292–293

network devices (APIC-EM), listing,
292–293

network engineers, skill set needed
by, 303–304

326 network forwarding engine (NFE)

network forwarding engine (NFE), 67

network innovation, 4–6

network programmability

automation tools. See network
 automation tools

benefits of

network innovation, 4–6

simplified networking, 4

Cisco ACI (Application Centric
Infrastructure). See Cisco
ACI (Application Centric
Infrastructure)

cloud operational models, 6–8, 304

definition of, 3

importance of, 303–305

off-box programmability (NX-OS).
See off-box programmability
(NX-OS)

on-box automation tools. See on-box
programmability (NX-OS)

origin of, 9–10

overview, 1–2

SDN (software-defined networking),
8–9

network programmability user group
(NPUG), 66

Nexus 9000

Ansible, 157–158

Bash scripting, 99–100

network architecture, 76–80

overview, 67–70

Puppet, 154–157

Nexus 9200K, 68

Nexus 9300EX, 68

Nexus Data Broker (NDB)

architecture, 74–76

overview, 111–112

RESTful API, 75

use case, 75–76

Nexus data center networking.
See also Cisco ACI (Application
Centric Infrastructure)

Cisco Nexus Fabric Manager, 80–81

Cisco VTS (Virtual Topology
System), 81

network architecture, 76–80

Nexus 9000, 67–70

Nexus Data Broker (NDB)

architecture, 74–76

RESTful API, 75

use case, 75–76

NX-OS. See Cisco Nexus NX-OS

Nexus Fabric Manager, 80–81

Nexus NX-OS. See Cisco Nexus
NX-OS

NFE (network forwarding engine), 67

NFM (Nexus Fabric Manager), 80–81

NMap agent installation, 111

no shutdown command, 247

non-interactive Python, 118

NPUG (network programmability
user group), 66

NTP server configuration, 106

NX-API

Ansible, 156–157

authentication, 136–138

automation tools, 151

CLI mode, 129–130

DevOps tools, 151

event subscription, 143–146

IP address configuration, 129–130

message format, 126

NX-API REST

CLI versus object model,
131–132

logical hierarchy, 132–133

overview, 131–136

off-box programmability (NX-OS) 327

NXTool Kit

BGP configuration, 148–151

importing, 146

installing, 146

usage example, 146–148

object modification via Postman,
138–140

object modification via Python,
140–143

overview, 69, 125

sandbox, 127–129

security, 126

transport, 125–126

Visore, 134–136

NX-API REST

CLI versus object model, 131–132

logical hierarchy, 132–133

overview, 131–136

nxapi_auth cookie, 126, 136–138

NX-OS. See Cisco Nexus NX-OS

NXTool Kit

BGP configuration, 148–151

importing, 146

installing, 146

usage example, 146–148

O
Object Identifiers (OIDs), 258

object modification (NX-API)

via Postman, 138–140

via Python, 140–143

object save-as (APIC), 178–179

object store browser (APIC),
182–185

object-oriented data models

CLI versus object model, 131–132

logical hierarchy, 132–133

overview, 131–136

objects

Cobra SDK, 202–204

instantiating, 20

MOs (managed objects)

definition of, 133, 169–170

discovering, 178

health scores, 174

names, 170

overview, 19–20

off-box programmability (NX-OS)

Ansible

Nexus 9000, 157–158

overview, 156–157

definition of, 125

NX-API

authentication, 136–138

automation tools, 151

CLI mode, 129–130

DevOps tools, 151

event subscription, 143–146

IP address configuration,
129–130

message format, 126

NX-API REST, 131–136

NXTool Kit, 146–151

object modification via
Postman, 138–140

object modification via Python,
140–143

overview, 125

sandbox, 127–129

security, 126

transport, 125–126

Visore, 134–136

Puppet, 152–157

328 OIDs (Object Identifiers)

OIDs (Object Identifiers), 258

on-box automation tools

ASP (AutoSmart Ports)

device-specific macros and
descriptions, 217

enabling on Cisco Catalyst
Switch, 217–219

overview, 216–217

website, 220

Auto Security

availability, 230

enabling on Cisco Catalyst
Switch, 228–230

overview, 227–228

AutoConf

availability, 220

enabling on Cisco Catalyst
Switch, 222–224

interface templates and
descriptions, 220–222

template modification, 224–227

website, 227

AutoQoS on LAN devices

enabling on Cisco Catalyst
Switch, 231–233

overview, 230–231

AutoQoS on WAN devices

enabling on Cisco ISR routers,
234–236

overview, 233–234

AutoSmart Ports, 216

EEM (Embedded Event Manager)

EEM applets, 246–251

email variables, 251

overview, 246

summary, 253

Tcl scripts, 251–252

website, 253

overview, 215

Smart Call Home

enabling on Cisco Catalyst
Switch, 237–243

overview, 236–237

website, 239, 243

Tcl Shell, 243–246

on-box programmability (NX-OS)

Bash scripts

arithmetic, 90–91

Awk, 98–99

conditions, 91–94

ethtool, 103

flow control, 91–94

ifconfig, 101

loops, 93–94

Nexus 9000, 99–100

NTP server configuration, 106

operators, 91–92

overview, 88–89

redirection, 94–96

running at startup, 103–106

Sed text editor, 96–98

tcpdump, 101–103

variables, 89–90

Cisco Ignite, 87–88

EEM (Embedded Event Manager)

actions, 112–113

leveraging Python scripts from,
121–123

neighbor discovery, 121–123

system events, 112

variables, 113

Guestshell

application installation, 110

network access, 109–110

NMap installation, 111

Plug and Play (PnP) 329

overview, 108–109

Puppet agent installation, 111

iPXE, 88

LXC (LinuX Containers), 106–107

NDB (Nexus Data Broker),
111–112

overview, 83

POAP (power-on auto provisioning),
83–87

Python scripts

Cisco libraries, importing,
113–115

Cisco Python package,
116–117

CLI APIs, 115–116

leveraging from EEM syslog
event, 121–123

non-interactive Python, 118

Reload_in Pseudocode,
118–121

online resources

ciscopuppet, 156

Git, 49

Linux, 65–66

Python, 36–37

Open NX-OS, 6

Open Weather Map API example,
40–43

open-source applications, 64

operators

Bash, 91–92

Python, 25

orchestration, 6

os library, 30

P
PaaS (platform as a service), 6–7

package management tool. See PIP
(package management tool)

packets

IP packet headers, capturing,
101–103

VXLAN packets, 79–80

Path Trace application (APIC-EM),
276–278

path traces, 276–278

$PATH variable, 89

Pending status information page
(APIC-EM PnP), 274

per-hop behaviors (PHBs), 285

period (.), 32, 33

permissions (Linux), 63–64

PHBs (per-hop behaviors), 285

pings, aborting, 245

PIP (package management tool)

overview, 30–31

virtual environments

freezing, 164–165

installing, 164

recreating, 165

sharing, 165

pip freeze command, 165

pip install command, 31, 165, 208

pip list command, 165

pip search command, 31

pip show command, 31

platform as a service (PaaS), 6–7

Plug and Play (PnP)

APIC-EM Plug and Play (PnP)

Configuration Upload page,
275

dashboard, 271–272

overview, 269–271,
269–278

330 Plug and Play (PnP)

Pending status information
page, 274

project details, 272–273

Software Images tab,
274–275

Unplanned Devices screen,
275–276

Device History, 273

plus sign (+), 32

PnP (Plug and Play)

APIC-EM Plug and Play (PnP)

Configuration Upload page, 275

dashboard, 271–272

Device History, 273

overview, 269–271, 269–278

Pending status information
page, 274

project details, 272–273

Software Images tab, 274–275

Unplanned Devices screen,
275–276

POAP (power-on auto provisioning),
83–87

Policy application (APIC-EM),
286–287

policy instantiation

ACI (Application Centric
Infrastructure), 73–74

Cisco ACI (Application Centric
Infrastructure), 161–162

port profiling

ASP (AutoSmart Ports)

device-specific macros and
descriptions, 217

enabling on Cisco Catalyst
Switch, 217–219

overview, 216–217

Auto Security

availability, 230

enabling on Cisco Catalyst
Switch, 228–230

overview, 227–228

AutoConf

enabling on Cisco Catalyst
Switch, 222–224

interface templates and
 descriptions, 220–222

template modification, 224–227

overview, 216

Port Security, 228

POST method, 37

Postman

APIC configuration automation,
188–191

APIC-EM APIs

available APIs, 296

DevNet APIC-EM sandbox,
288

Host API, 291–292

Network Device API, 292–293

Ticket API, 288–291

User API, 294–296

calls, creating, 189–191

collections, 188

NX-API object modification,
138–140

Open Weather Map API example,
40–43

pound sign (#), 29

power-on auto provisioning. See
POAP (power-on auto provisioning)

Prime Service Catalog, 213

print command, 21, 128–129

PRINTER_INTERFACE_TEMPLATE,
220

processes (Linux), displaying, 59–61

profiling ports. See port profiling

Python 331

programmability. See network
programmability; off-box
programmability (NX-OS); on-box
programmability (NX-OS)

project details (APIC-EM PnP),
272–273

provisioning. See POAP (power-on
auto provisioning)

ps tool, 59

pseudocode, 14

Puppet

agent installation in Guestshell, 111

ciscopuppet

documentation, 156

installing, 154

NX-OS configurations,
155–156

verifying, 154

Nexus 9000, 154–157

overview, 152–153

PUT method, 37

pwd command, 57

$PWD variable, 89

.py filename extension, 29

PyCharm

debugging, 54–55

interface, 50–53

virtualenv, 166

writing code in, 53

Python

APIC authentication, 186–188

APIC-EM authentication

Host API, 299–301

Ticket API, 297–299

APIs (application programming
 interfaces), 37

commands

chmod, 29

dir, 147–148

help, 147–148

import, 30

pip install, 31

pip search, 31

pip show, 31

print, 21

str, 23

comments, 29

conditions, 24–25

dictionaries, 28

documentation, 24

exception handling

definition of, 162

examples, 166–168

virtualenv, 162–166

files, 29

functions, 28–29

help, 23–24, 116–117

installing, 20

libraries

Cisco libraries, importing,
113–115

Cisco Python package,
116–117

CLI APIs, 115–116

datetime, 35–36

importing, 30

installing, 30–31

json, 44–45

requests, 43–44

sys, 34–35

lists, 27

loops

for loop, 25–26

while loop, 26–27

332 Python

methods

find, 22

help, 23

re.findall, 32

re.match, 33

re.search, 33–34

re.sub, 34

split, 22

non-interactive Python, 118

NX-API in

authentication, 136–138

CLI mode, 129–130

event subscription, 143–146

IP address configuration,
130–131

object modification, 140–143

online resources, 36–37

operators, 25

overview, 20–21

PIP (package management tool),
30–31

PyCharm

debugging, 54–55

interface, 50–53

writing code in, 53

regular expressions, 31–37

scripts

cdp_neighbor.py, 121–123

leveraging from EEM syslog
event, 121–123

Reload_in Pseudocode,
118–121

scheduling, 57

SimpleMath.py example, 36

WebSoc.py, 144–145

SDKs (software development kits), 37

tuples, 27

variables

converting to strings, 23

overview, 20–21

strings, 22–23

web technologies

Google Postman, 40–43

JSON (Javascript Object
Notation), 39–45

REST (Representational State
Transfer), 37–38

XML (Extensible Markup
Language), 38–39

python command, 20

Q
QoS (Quality of Service)

AutoQoS on LAN devices

enabling on Cisco Catalyst
Switch, 231–233

overview, 230–231

AutoQoS on WAN devices

enabling on Cisco ISR routers,
234–236

overview, 233–234

on box-by-box basis, 259–260

Dynamic QoS (Quality of Service),
285–286

Easy QoS (Quality of Service),
283–285

network programmability and, 4

website, 230

Quality of Service. See QoS (Quality
of Service)

R
raised state (faults), 172

scrapy library 333

raised-clearing state (faults), 173

$RANDOM variable, 89

re library, 30

read operations (Cisco ACI), 176

recreating virtual environments, 165

Redhat Package Manager (RPM), 64

redirection (Bash), 94–96

re.findall method, 32

registering your book, A00.0102

regular expressions

Python, 31–37

Sed support for, 96

relative names (RNs), 170

reload in command, 118–121

Reload_in Pseudocode, 118–121

re.match method, 33

Remote Procedure Call (RPC),
JSON-RPC, 126

repositories (GitHub)

cloning, 44–47

creating, 45–47

updating, 47–48

Representational State Transfer.
See REST (Representational State
Transfer)

Request module (Cobra SDK), 200

requests library, 30, 43–44

re.search method, 33–34

resources

ciscopuppet, 156

Git, 49

Linux, 65–66

Python, 36–37

software development, 65–66

REST (Representational State
Transfer). See also APIC RESTful
API; NX-API

Google Postman, 40–43

JSON (Javascript Object Notation),
39–45

overview, 37–38

XML (Extensible Markup Language),
38–39

re.sub method, 34

retaining state (faults), 173

return on investment (ROI) for
software development, 13–14

reverse path traces, 278

rm command, 57

RNs (relative names), 170

ROI (return on investment) for
software development, 13–14

roles (ConfD), 262

rollback management (ConfD), 262

ROUTER_INTERFACE_TEMPLATE,
220

routers, enabling AutoQoS on,
234–236

RPC (Remote Procedure Call),
JSON-RPC, 126

RPM (Redhat Package Manager), 64

run guestshell command, 108

running

Bash scripts at startup, 103–106

Python files, 29

S
SaaS (software as a service), 6–7

SaltStack, 151

sandbox (NX-API), 127–129

/sbin directory, 64

scheduling Python scripts, 57

scores (health), 174

scrapy library, 30

334 scripts

scripts

Bash

arithmetic, 90–91

Awk, 98–99

conditions, 91–94

ethtool, 103

flow control, 91–94

ifconfig, 101

loops, 93–94

Nexus 9000, 99–100

NTP server configuration, 106

operators, 91–92

overview, 88–89

redirection, 94–96

running at startup, 103–106

Sed text editor, 96–98

tcpdump, 101–103

variables, 89–90

Python

APIC-EM-AUTH.py, 297–299

APIC-EM-SHOW-HOST.py,
299–301

cdp_neighbor.py, 121–123

Cisco libraries, importing,
113–115

Cisco Python package,
116–117

CLI APIs, 115–116

leveraging from EEM syslog
event, 121–123

non-interactive Python, 118

Reload_in Pseudocode,
118–121

scheduling, 57

WebSoc.py, 144–145

SDKs (software development kits)

Cobra SDK

Arya (APIC REST Python
Adapter), 207–211

authentication, 201

documentation, 198

installing, 200

libraries, 200–201

modules, 200

objects, 202–204

tenant configuration example,
204–207

Python, 37

SDN (software-defined networking),
8–9, 304

SD-WAN (software-defined WAN),
264–269

searching, strings, 22

secure unique device identification
(SUDI), 270

security

Auto Security

availability, 230

enabling on Cisco Catalyst
Switch, 228–230

overview, 227–228

NX-API, 126

Sed text editor, 96–98

Services module (Cobra SDK), 200

Session module (Cobra SDK), 200

set command, 89

severity of faults, 173–174

sharing virtual environments, 165

shells, Tcl Shell, 243–246

show auto qos command, 231–232,
234–235

show auto qos voip cisco-phone
configuration command, 233

show auto security command, 228

Software Images tab (APIC-EM PnP) 335

show auto security configuration
command, 229–230

show call-home command, 242–243

show derived-config interface
command, 221, 223–225, 226

show interface command, 128, 247

show log command, 273

show macro auto device phone
command, 218

Show Reverse button (Path Trace
application), 278

show running-config command,
225–226, 273

show running-config interface
command, 223

show shell functions command, 218

show shell triggers command,
218–219

show template interface source built-
in all command, 221

show template interface source
built-in IP_PHONE_INTERFACE_
TEMPLATE command, 221

shutdown command, 247

silicon transistors, 68

SimpleAciUiLogServer, 208

SimpleMath.py, 36

simplified networking, 4

Smart Call Home

enabling on Cisco Catalyst Switch,
237–243

overview, 236–237

website, 239, 243

SMI (Cisco Smart Install) Proxy, 271

SMPs (symmetric multiprocessors),
NX-OS support for, 69

SNMP (Simple Network Management
Protocol), 258

soaking state (faults), 172

soaking-clearing state (faults), 172

software as a service (SaaS), 6–7

software development

common constructs

conditions, 17

functions, 18–19

loops, 18

objects, 19–20

variables, 15–17

Linux

architecture, 58

commands, 56–58

directories, 64

file system, 63–64

installing applications on, 64

overview, 55–56

permissions, 63–64

processes, displaying, 59–61

systemd, 61–62

overview, 13–15

pseudocode, 14

with Python. See Python

resources, 65–66

return on investment (ROI), 13–14

source code, editing

overview, 49–50

PyCharm, 50–55

version control with Git/GitHub

Git commands, 49

overview, 45

repository creation, 45–47

repository updates, 47–48

software development kits
(SDKs), 37

Software Images tab (APIC-EM PnP),
274–275

336 software-defined networking (SDN)

software-defined networking (SDN),
8–9, 304

software-defined WAN (SD-WAN),
264–269

source code, editing

overview, 49–50

PyCharm

debugging, 54–55

interface, 50–53

writing code in, 53

source command, 245

SPAN (Switched Port Analyzer), 74

spanning tree protocol (STP), 78

spine/leaf architecture, 76–77

split method, 22

splitting strings, 22

square brackets ([]), 32, 33

startup, running Bash scripts at,
103–106

stateless access control lists (ACLs),
79

statements

case, 92–93

else, 17, 24–25

if

Bash scripting, 91–92

overview, 17

Python, 24–25

if-else

overview, 17

Python, 24–25

traceback statements, 167

states (faults), 171–173

status of interfaces, checking, 101

STP (spanning tree protocol), 78

str command, 23

stream editor (Sed), 96–98

strings

concatenating, 23

converting variables to, 23

overview, 16

Python, 22–23

searching, 22

splitting, 22

su command, 57

subscriptions

Cisco ACI event subscription,
196–198

NX-API event subscription,
143–146

SUDI (secure unique device
identification), 270

SWITCH_INTERFACE_TEMPLATE,
220

Switched Port Analyzer (SPAN), 74

switches. See Cisco Catalyst Switch,
enabling automation tools on

symmetric multiprocessors (SMPs),
NX-OS support for, 69

sys library, 30, 34–35

system events, 112

systemd, 61–62

system-wide health scores, 174

T
T2 network forwarding engine, 67

tail command, 57, 58

tar command, 57

Tcl scripts, EEM (Embedded Event
Manager) and, 251–252

Tcl Shell, 243–246

tcpdump, 101–103

templates, AutoConf

top of rack (TOR) switches 337

interface templates and descriptions,
220–222

template modification, 224–227

tenant configuration (ACI),
204–207

tenant health scores, 174

testing POAP (power-on auto
provisioning) files, 87

text, editing in Bash

Awk, 98–99

Sed, 96–98

Ticket API

Postman API, 288–291

Python script, 297–299

tools (automation)

APIC-EM (application policy
 infrastructure controller
 enterprise module)

APIC-EM Plug and Play (PnP),
269–278

APIC-EM Topology
 application, 279–281

authentication via Python,
297–301

Device Inventory application,
281–282

Dynamic QoS (Quality of
Service), 285–286

Easy QoS (Quality of Service),
283–285

IWAN (Intelligent WAN),
264–269

network devices, listing,
292–293

overview, 263

Path Trace application,
276–278

Policy application,
286–287

Postman APIs, 288–296

users, viewing, 292–293

ASP (AutoSmart Ports)

availability, 216

enabling on Cisco Catalyst
Switch, 217–219

Auto Security

availability, 230

enabling on Cisco Catalyst
Switch, 228–230

overview, 227–228

AutoConf

availability, 220

enabling on Cisco Catalyst
Switch, 222–224

interface templates and
 descriptions, 220–222

template modification,
 224–227

website, 227

AutoQoS on LAN devices

enabling on Cisco Catalyst
Switch, 231–233

overview, 230–231

AutoQoS on WAN devices

enabling on Cisco ISR routers,
234–236

overview, 230–231, 233–234

ConfD, 259–263

device-specific macros and
 descriptions, 217

NETCONF (network configuration
protocol), 258–259

overview, 216–217, 255–256

YANG (yet another next generation)
data models, 256–258

top command, 61

top of rack (TOR) switches, 75

338 Topology application (APIC-EM)

Topology application (APIC-EM),
279–281

TOR (top of rack) switches, 75

touch command, 47, 57

TP_INTERFACE_TEMPLATE, 220

traceback statements, 167

tracing path, 276–278

traffic classification, 285

transactions (NETCONF), 259

transistors, 68

transport gateways, 236–237

Trident 2 network forwarding engine
(NFE), 67

tuples, 27

types, 15–16, 27–28

U
UCS (Unified Computing System)

Manager, 7

UCS Director (UCS-D), 211

UCS-D (UCS Director), 211

Unicode, 44

Unified Computing System (UCS)
Manager, 7

Unplanned Devices screen (APIC-EM
PnP), 275–276

updating GitHub repositories, 47–48

USC-Director, 7

use cases (NDB), 75–76

User API

available APIs, 296

Postman API, 294–296

users, viewing, 294–296

/usr directory, 64

V
validation (ConfD), 262

variables

Bash scripting, 89–90

EEM (Embedded Event Manager), 113

Python variables

converting to strings, 23

defining, 15–16

explained, 20–21

hashes, 17

lists, 16

names, 16

passing to functions, 19

strings, 16, 22–23

/var/log directory, 64

varying cash flows, 251

verifying ciscopuppet, 154

version control with Git/GitHub

Git commands, 49

overview, 45

repository creation, 45–47

repository updates, 47–48

View Small button (Path Trace
application), 278

viewing

APIC-EM users,
294–296

Linux processes, 59–61

virtual environments

accessing, 163–164

creating, 163

customizing, 163

exiting, 163–164

freezing, 164–165

installing libraries into, 164

overview, 163–165

in PyCharm, 166

yum tool 339

recreating, 165

sharing, 165

Virtual Extensible LANs (VXLANs),
79–80

Virtual Topology System (VTS), 81

virtualenv

installing, 162–163

in PyCharm, 166

virtual environments, 163–165

virtual-service commands, 107

Visore, 134–136, 182–185

vsh command, 99–100

VTS (Virtual Topology System), 81

VXLANs (Virtual Extensible LANs),
79–80

W
WAN, IWAN (Intelligent WAN),

264–269

WANs, AutoQoS on WAN devices

enabling on Cisco ISR routers,
234–236

overview, 233–234

warning faults, 173

weather, checking, 53

web technologies

Google Postman, 40–43

JSON (Javascript Object Notation),
39–45

REST (Representational State
Transfer), 37–38

XML (Extensible Markup Language),
38–39

WebArya, 211

websites

APIC-EM (application policy
 infrastructure controller
 enterprise module), 278

ASP (AutoSmart Ports), 220

AutoConf, 227

Cisco DevNet, 204

Cisco IWAN (Intelligent WAN), 269

EEM (Embedded Event Manager),
253

jsoneditoronline.org, 139

NFM (Nexus Fabric Manager), 82

QoS (Quality of Service), 230

RESTful API, 75

Smart Call Home, 239, 243

VTS (Virtual Topology System), 82

WebSoc.py, 144–145

while loops

Bash scripting, 94

overview, 18, 27–28

in Python, 26–27

Wind River, 69

wireless LAN controller (WLC), 277

WLC (wireless LAN controller), 277

write operations (Cisco ACI), 177

X-Y-Z
XML (Extensible Markup Language),

38–39

YAML (yet another mark-up
language), 156

YANG (yet another next generation)
data models, 256–258

yet another mark-up language
(YAML), 156

yet another next generation (YANG)
data models, 256–258

Yocto project, 69

yum tool, 65

	Cover
	Title Page
	Copyright Page
	About the Authors
	Acknowledgments
	Contents
	Introduction
	Section III: Cisco Programmable Campus and WAN
	Chapter 7 On-Box Automation and Operations Tools
	Automated Port Profiling
	AutoSmart Ports
	Enabling AutoSmart Ports on a Cisco Catalyst Switch

	AutoConf
	Enabling AutoConf on a Cisco Catalyst Switch
	Modifying a Built-in Template

	Auto Security
	Enabling Auto Security on a Cisco Catalyst Switch

	Quality of Service for Campus Architectures
	AutoQoS on Campus LAN Devices
	Enabling AutoQoS on a Cisco Catalyst Switch
	AutoQoS on Campus WAN Devices
	Enabling AutoQoS on a Cisco ISR Router

	Automating Management and Monitoring Tasks
	Smart Call Home
	Enabling Smart Call Home on an Cisco Catalyst Switch
	Tcl Shell
	Embedded Event Manager (EEM)
	EEM Applets
	EEM and Tcl Scripts
	EEM Summary

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

