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Command Syntax Conventions
The conventions used to present command syntax in this book are the same  conventions 
used in the IOS Command Reference. The Command Reference describes these 
 conventions as follows:

 ■ Boldface indicates commands and keywords that are entered literally as shown. 
In actual configuration examples and output (not general command syntax), boldface 
indicates commands that are manually input by the user (such as a show command).

 ■ Italic indicates arguments for which you supply actual values.

 ■ Vertical bars (|) separate alternative, mutually exclusive elements.

 ■ Square brackets ([ ]) indicate an optional element.

 ■ Braces ({ }) indicate a required choice.

 ■ Braces within brackets ([{ }]) indicate a required choice within an optional element.
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Introduction
This book was designed with the focus on utilizing Cisco ACI Cisco Nexus 9000, Cisco 
UCS Director, Cisco (JSON), Python, Linux, Cisco APIC-EM, ConfD, and Data Models 
in a production environment as effectively as possible. Industry leaders were consulted 
for technical accuracy throughout this book.

Who Should Read This Book?
This book is designed for those network engineers and operators who want to 
 implement, manage, and maintain Cisco networking solutions in modern environments. 
This book discusses automation and programming tools and techniques across the Cisco 
data center, campus, and LAN and WAN technologies.

How This Book Is Organized
Chapter 1, “Introduction: Why Network Programmability:” Network 
 programmability can solve business problems, reduce operating expenses and increase 
business agility. Current network management is slow and prone to errors because it’s a 
closed, box-by-box, CLI-driven system that requires constant and expensive attention. 
Network programmability serves as a tool kit to automate network configurations and 
troubleshooting, significantly reducing nonoperational states. Additionally network 
programmability allows the network to participate or add value to dynamic  application 
environments, that is, DevOps, web, security, by facilitating a tight bond between 
 applications and infrastructure.

Chapter 2, “Foundational Skills:” A basic introduction into software engineering and 
DEVOPS.

Chapter 3, “Next-Generation Cisco Data Center Networking:” This chapter discusses 
Cisco portfolio and where the reader could possibly implement network programmability 
and automation.

Chapter 4, “On-Box Programmability and Automation with Cisco Nexus NX-OS:” 
This chapter discusses writing software designed to run on the Nexus switch.

Chapter 5, “Off-Box Programmability and Automation with Cisco Nexus NX-OS:” 
This chapter discusses writing software to run on other systems and access Nexus 
switches remotely.

Chapter 6, “Network Programmability with Cisco ACI:” Chapter 6 discusses writing 
software to interact and enhance Cisco ACI.
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Chapter 7, “On-Box Automation and Operations Tools:” This chapter discusses some of 
the automation and operations tools that are available on many Cisco platforms.

Chapter 8, “Network Automation Tools for Campus Environments:” Automation tools 
can be off-box as well as on-box. This chapter covers some of the tools available for 
Cisco campus networks including SDN, controllers, and more.

Chapter 9, “Piecing It All Together:” This chapter summarizes the contents of this book 
by giving our perspective on the many tools that are available to interact with Cisco 
 networks.
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Automation for daily tasks is something that most network engineers rely on to handle 
their daily workload. However, there are many network engineers under the impression 
that new software or management tools with a steep learning curve must be purchased in 
order to accomplish such automation. This leads to automation tools often times getting 
overlooked or put aside. Other common drivers for not using automation tools are due 
to budget restraints, varying skill sets, and unfamiliarity with the different tools that are 
available. The good news is that there are many automation tools natively available on 
most Cisco IOS platforms. For instance, on most Cisco Catalyst switches, there are tools 
built into the operating system’s command line interface (CLI) that allow the programma-
bility of these devices automatically. This allows for the automation of large number of 
common tasks. For example, a network engineer could build a set of custom templates or 
macros that would apply various configuration parameters to particular ports on a switch, 
based on the types of devices that are connected to those specific ports. This chapter 
will cover the following on-box automation tools in greater detail:

 ■ Auto SmartPorts

 ■ AutoConf

 ■ Auto Security

 ■ AutoQoS

 ■ Smart Call Home

 ■ Tcl Shell

 ■ Embedded Event Manager (EEM)

 

Note For brevity, all configuration examples and outputs in this chapter are displayed in 
IOS only. IOS XE and IOS XR outputs are not included in this chapter.

 

On-Box Automation 
and Operations Tools

Chapter 7
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Automated Port Profiling
These types of automation tools are especially important when it comes to scale. Imagine 
a network team that handles an entire enterprise campus LAN. Commonly, there are only a 
select few network engineers who have access to the network switches and are authorized 
to make any configuration changes. These engineers are usually very busy and have a finite 
amount of time to work on daily moves, additions, and changes (MACs). From a business 
perspective, this greatly hinders the capability of being able to fluidly and dynamically 
move users around an office environment. For example, a user moves from one department 
to another and takes their IP phone with them. This would result in a network engineer 
having to get involved and reprogram the switch port that the user is going to be connect-
ing to. Often, these users are moved by a help desk team without notifying the network 
engineering team of the move. If the new port wasn’t properly provisioned prior to the user 
moving, then the user may not be able to connect to the network and perform their job. 

There are many settings that need to be applied to a switch port in order for an IP phone 
to operate properly. Some of the more common switch port settings for an IP phone are:

 ■ Power over Ethernet (PoE) settings

 ■ Voice VLAN configuration

 ■ Quality of Service (QoS) settings

 ■ Data VLAN configuration

 ■ Speed/Duplex settings

The following sections of this chapter will cover some of the simple, yet powerful tools 
that are included within most of the Cisco Catalyst switches. These are tools,  available 
today, that can automate many configuration tasks, reduce downtime, and increase agility.

AutoSmart Ports
AutoSmart Ports (ASP) are an IOS tool that allows you to consolidate many of the 
necessary port settings for various device types into an automated process that can 
be applied to a single port or a series of ports. AutoSmart ports use a macro-based 
mechanism that commonly uses CDP and LLDP to discover the physical device type that 
is connected to a switch port. Once the device type is determined, the switch will then 
check to see if a corresponding macro is defined that matches the specific device type 
that was connected. If the device type is known and there is a macro definition for it, the 
switch will then automatically provision the port, based on the settings defined in the 
macro. This will significantly reduce the amount of time needed to establish connectivity 
to users who move around the environment or for new users who are being brought on 
board for the first time. Figure 7-1 outlines the process for what happens when a Cisco 
IP phone device is connected to a Catalyst switch while AutoSmart Ports are enabled.

 
Note AutoSmart Ports are available in IOS 12.2(55)SE or later.
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1. Device connected to
switch

2. CDP/LLDP exchanged

SwitchIP Phone

3. Switch iden�fies
device type

4. Switch applies macro to port
power inline auto

switchport voice vlan 13
...

Figure 7-1 AutoSmart Port discovery process for Cisco IP phone

One of the main advantages of AutoSmart ports is that the switches contain predefined 
macros that can be modified to suit your environment. In addition, you can also custom-
ize those predefined macros to include all the necessary parameters for your specific 
environment. Table 7-1 shows a list of some of the predefined device-specific macros that 
are available in most Cisco Catalyst switches.

Table 7-1 Device Specific Macros and Descriptions

Macro Name Macro Description

access-point Auto configuration information for the autonomous access point

ip-camera Auto configuration information for the video surveillance camera

lightweight-ap Auto configuration information for the lightweight access point

media-player Auto configuration information for the digital media player

Phone Auto configuration information for the phone device

Router Auto configuration information for the router device

Switch Auto configuration information for the switch device

Enabling AutoSmart Ports on a Cisco Catalyst Switch

In order to enable AutoSmart Ports on a Cisco Catalyst switch, you must follow the steps 
illustrated in the following example. Another key advantage of this specific automation 
tool is that it takes a single command to enable to macro functionality.

Switch> enable

Switch# configure terminal

Enter configuration commands, one per line.  End with CNTL/Z.

Switch(config)# macro auto global processing

Switch(config)# end

Switch#
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Occasionally, predefined macros contain most of the desired settings that are needed 
without requiring any modification to the macro. In some cases, however, customiz-
ing a macro to fit your needs is a better alternative. Customized macros are commonly 
deployed when more granular configurations are required. For example, a customized 
macro may be one that not only changes voice and data VLANs, but can also be used 
to configure quality of service (QoS) settings and other various options. The following 
example lists the default settings of the Cisco IP phone macro. This can be seen with the 
show macro auto device phone command.

Switch# show macro auto device phone

Device:phone

Default Macro:CISCO_PHONE_AUTO_SMARTPORT

Current Macro:CISCO_PHONE_AUTO_SMARTPORT

Configurable Parameters:ACCESS_VLAN VOICE_VLAN

Defaults Parameters:ACCESS_VLAN=1 VOICE_VLAN=2

Current Parameters:ACCESS_VLAN=1 VOICE_VLAN=2

 

Note To view the entire list of predefined macros that are available in a Cisco Catalyst 
switch, issue the show shell functions command.

 

The following output illustrates the configuration steps that are necessary to customize 
and trigger a predefined macro. In this example, the macro, when applied, will change the 
voice and data VLANs for a port when Cisco IP phone is connected.

Switch# configure terminal

Switch(config)# macro auto execute CISCO_PHONE_EVENT builtin CISCO_PHONE_AUTO_
SMARTPORT ACCESS_VLAN=11 VOICE_VLAN=13

Switch(config)# macro auto global processing

Switch(config)# exit

To verify this macro is properly modified with the new VLAN assignments, issue the 
show shell triggers command from the EXEC prompt of the CLI. The following snippet 
shows the output from the show shell triggers command.

Switch# show shell triggers

 

User defined triggers

---------------------

Built-in triggers

-----------------

Trigger Id: CISCO_PHONE_EVENT

Trigger description: Event for ip-phone macro

Trigger environment: ACCESS_VLAN=11 VOICE_VLAN=13

Trigger mapping function: CISCO_PHONE_AUTO_SMARTPORT
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Other common event triggers that can be viewed and modified are:

Trigger Id: CISCO_ROUTER_EVENT

Trigger Id: CISCO_SWITCH_EVENT

Trigger Id: CISCO_WIRELESS_AP_EVENT

Trigger Id: CISCO_WIRELESS_LIGHTWEIGHT_AP_EVENT

In certain cases, the device you connect to the switch may not be able to use CDP or 
LLDP to identify itself to the switch. In these instances, you can create a custom macro 
that uses a BASH-like language syntax. Another interesting use case utilizes the MAC 
address OUI to identify and properly configure various devices on the switch. The 
 following example shows a custom macro for a printer, using the MAC address OUI as a 
classifier.

Switch(config)# macro auto mac-address-group OUI_PRINTER_PORT

 oui list 0000AA

 exit

 

Switch(config)# macro auto execute OUI_PRINTER_PORT  {

 if [[ $LINKUP -eq YES ]]

  then conf t

  interface $INTERFACE

  description OUI_PRINTER_PORT macro

  switchport

  switchport mode access

  switchport access vlan data_vlan

  power inline never

  spanning-tree portfast

  exit

  end

 fi

 if [[ $LINKUP -eq NO ]]

  then conf t

  interface $INTERFACE

   switchport access vlan data_vlan

   no spanning-tree portfast

   no description

   exit

  end

 fi

}

AutoSmart Ports are a great start to automating specific tasks when it comes to  managing 
your campus LAN. It should be noted that even though AutoSmart Ports are not the most 
granular way to automate port configurations based on device, it is still a very  powerful 
solution to help reduce some of the more arduous tasks that relate to day-to-day moves, 
additions, and changes (MACs).
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Note For more information on AutoSmart Ports, please visit the following link: 
www.cisco.com/go/SmartOperations/ 

 

AutoConf
Similar to AutoSmart Ports, AutoConf is used to automate various functions within a 
Cisco Catalyst switch. However, unlike AutoSmart Ports, AutoConf is a template-based 
 solution that is more granular and user friendly. Although these features accomplish  similar 
 outcomes, the configurations are applied in a different manner. Interface templates are con-
figured and applied to a specific port or range of ports much like AutoSmart Ports. Table 7-2 
lists some of the available predefined interface templates within a Cisco Catalyst switch.

 
Note AutoConf is available in IOS 15.2(2)E and IOS-XE 3.6 or later.

 

Table 7-2 AutoConf Interface Templates and Descriptions

Template Name Template Description

AP_INTERFACE_TEMPLATE           Wireless access point interface template

DMP_INTERFACE_TEMPLATE          Digital media player interface template

IP_CAMERA_INTERFACE_TEMPLATE IP camera interface template

IP_PHONE_INTERFACE_TEMPLATE IP phone interface template

LAP_INTERFACE_TEMPLATE Lightweight access point interface template

MSP_CAMERA_INTERFACE_TEMPLATE Multiservices platform camera interface template

MSP_VC_INTERFACE_TEMPLATE Multiservices platform VC interface template 

PRINTER_INTERFACE_TEMPLATE Printer interface template

ROUTER_INTERFACE_TEMPLATE Router interface template

SWITCH_INTERFACE_TEMPLATE Switch interface template

TP_INTERFACE_TEMPLATE           Telepresence interface template

Some of the key benefits of using templates are as follows:

 ■ Simpler configuration and management than AutoSmart Port macros.

 ■ All interface templates are customizable.

 ■ Templates take up less room in the configuration file than AutoSmart Port macros.

 ■ Template updates apply to all interfaces subscribing to the template.

 ■ Templates can be per session or per port.

http://www.cisco.com/go/SmartOperations/
http://www.cisco.com/go/SmartOperations/
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The following output shows an example of the built-in IP Phone template by issuing the 
show template interface source built-in IP_PHONE_INTERFACE_TEMPLATE command. 

Switch# show template interface source built-in IP_PHONE_INTERFACE_TEMPLATE

 

Template Name       : IP_PHONE_INTERFACE_TEMPLATE

Modified            : No

Template Definition :

 spanning-tree portfast

 spanning-tree bpduguard enable

 switchport mode access

 switchport block unicast

 switchport port-security maximum 3

 switchport port-security maximum 2 vlan access

 switchport port-security violation restrict

 switchport port-security aging time 2

 switchport port-security aging type inactivity

 switchport port-security

 storm-control broadcast level pps 1k

 storm-control multicast level pps 2k

 storm-control action trap

 mls qos trust cos

 service-policy input AUTOCONF-SRND4-CISCOPHONE-POLICY

 ip dhcp snooping limit rate 15

 load-interval 30

 srr-queue bandwidth share 1 30 35 5

 priority-queue out

 

Note To see a list of all the built-in interface templates, issue the show template interface 
source built-in all command.

 

Below is a list of some of the common key points to keep in mind about AutoConf 
Templates:

 ■ By default, all templates automatically use VLAN 1. This includes any access VLAN, 
voice VLAN, and native VLAN in regard to trunk ports.

 ■ Templates applied to interfaces are not shown in running configuration. In order 
to see the configuration applied to an interface, issue the show derived-config 
 interface <interface> command. 

 ■ EtherChannel interfaces do not support AutoConf interface templates.

 ■ Once AutoConf is enabled globally, it is applied to all interfaces by default. To 
 disable AutoConf on a per-interface basis, issue the access-session inherit disable 
autoconf command.
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 ■ The template configuration itself does not show up in the running configuration 
unless the template is modified. For example, the access VLAN is changed from the 
default value of VLAN 1.

 ■ All template configuration settings applied to an interface are removed once the 
device is disconnected from the switch port.

Enabling AutoConf on a Cisco Catalyst Switch

To enable AutoConf, the autoconf enable command must be issued from the global 
 configuration mode. The following example illustrates the steps on how to enable 
AutoConf globally on a Cisco Catalyst Switch.

Switch> enable

Switch# configure terminal

Enter configuration commands, one per line.  End with CNTL/Z.

Switch(config)# autoconf enable

Switch(config)# end

Switch#

AutoConf is now enabled globally on the Catalyst Switch. To verify AutoConf is working 
properly, a Cisco IP phone is connected into interface GigabitEthernet0/1 on the Catalyst 
switch. As displayed in the following output, once the phone is connected, AutoConf will 
apply the IP_PHONE_INTERFACE_TEMPLATE to the interface. 

Switch# show template binding target gigabitEthernet0/1

 

Interface Templates

===================

Interface: Gi0/1

 

Method              Source            Template-Name

------                    ------                 -------------

dynamic             Built-in            IP_PHONE_INTERFACE_TEMPLATE

 

 

Service Templates

=================

Interface: Gi0/1

 

Session             Source            Template-Name

-------                 ------                -------------

Based on the previous output, the IP_PHONE_INTERFACE_TEMPLATE was 
 successfully applied to the GigabitEthernet0/1 interface. 
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Note In general, to see the details of what settings are applied to an interface once a 
device is connected, issue the show derived-config interface <interface_name> command.

 

Notice that the applied template does not show up in the running configuration of the 
Catalyst switch. The following snippet shows the output of the show running-config 
interface gigabitEthernet0/1 command, illustrating that the interface template is hidden 
in the running configuration.

Switch# show running-config interface gigabitEthernet0/1

Building configuration...

 

Current configuration : 36 bytes

!

interface GigabitEthernet0/1

end

To see the details of what settings were applied to the GigabitEthernet0/1 interface 
when the Cisco IP phone was connected, issue the show derived-config interface 
 gigabitEthernet0/1 command as shown in the following output.

Switch# show derived-config interface gigabitEthernet0/1

Building configuration...

 

Derived configuration : 669 bytes

!

interface GigabitEthernet0/1

 switchport mode access

 switchport block unicast

 switchport port-security maximum 3

 switchport port-security maximum 2 vlan access

 switchport port-security violation restrict

 switchport port-security aging time 2

 switchport port-security aging type inactivity

 switchport port-security

 load-interval 30

 srr-queue bandwidth share 1 30 35 5

 priority-queue out

 mls qos trust cos

 storm-control broadcast level pps 1k

 storm-control multicast level pps 2k

 storm-control action trap

 spanning-tree portfast

 spanning-tree bpduguard enable
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 service-policy input AUTOCONF-SRND4-CISCOPHONE-POLICY

 ip dhcp snooping limit rate 15

 

Switch#

Modifying a Built-in Template

Commonly, built-in templates need to be modified to fit the desired configuration 
model of the environment. Modification of a built-in template allows for the flexibility 
of  having a customized template, based on settings that align with the business needs. 
The  following example lists the steps necessary to modify the built-in IP_PHONE_
INTERFACE_TEMPLATE. These configuration steps will change the voice and data 
VLANs from the default of VLAN 1 to VLANs 11 and 13, respectively, and will add a 
custom description to the template.

Switch> enable

Switch# configure terminal

Enter configuration commands, one per line.  End with CNTL/Z.

Switch(config)# template IP_PHONE_INTERFACE_TEMPLATE

Switch(config-template)# switchport access vlan 11

Switch(config-template)# switchport voice vlan 13

Switch(config-template)# description CUSTOM_IP_PHONE_INTERFACE_TEMPLATE

Switch(config-template)# end

Switch#

To display the configuration changes made to the template, issue the show template 
interface source built-in IP_PHONE_INTERFACE_TEMPLATE command as shown in 
the following output.

Switch# show template interface source built-in IP_PHONE_INTERFACE_TEMPLATE

Building configuration...

 

Template Name       : IP_PHONE_INTERFACE_TEMPLATE

Modified            : Yes

Template Definition :

 spanning-tree portfast

 spanning-tree bpduguard enable

 switchport access vlan 11

 switchport mode access

 switchport block unicast

 switchport voice vlan 13

 switchport port-security maximum 3

 switchport port-security maximum 2 vlan access

 switchport port-security violation restrict

 switchport port-security aging time 2

 switchport port-security aging type inactivity



AutoConf   225

 switchport port-security

 storm-control broadcast level pps 1k

 storm-control multicast level pps 2k

 storm-control action trap

 mls qos trust cos

 service-policy input AUTOCONF-SRND4-CISCOPHONE-POLICY

 ip dhcp snooping limit rate 15

 load-interval 30

 description CUSTOM_IP_PHONE_INTERFACE_TEMPLATE

 srr-queue bandwidth share 1 30 35 5

 priority-queue out

!

end

 

Switch#

Once an AutoConf template has been modified, the template will now be visible in the 
running configuration of the Catalyst switch. The following snippet illustrates that the 
template is now present in the output of the show running-config command.

Switch# show running-config

Building configuration...

! Output omitted for brevity

!

autoconf enable

!

template IP_PHONE_INTERFACE_TEMPLATE

 spanning-tree portfast

 spanning-tree bpduguard enable

 switchport access vlan 11

 switchport mode access

 switchport block unicast

 switchport voice vlan 13

 switchport port-security maximum 3

 switchport port-security maximum 2 vlan access

 switchport port-security violation restrict

 switchport port-security aging time 2

 switchport port-security aging type inactivity

 switchport port-security

 storm-control broadcast level pps 1k

 storm-control multicast level pps 2k

 storm-control action trap

 mls qos trust cos

 service-policy input AUTOCONF-SRND4-CISCOPHONE-POLICY

 ip dhcp snooping limit rate 15

 load-interval 30
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 description CUSTOM_IP_PHONE_INTERFACE_TEMPLATE

 srr-queue bandwidth share 1 30 35 5

 priority-queue out

!

! Output omitted for brevity

 

Note Even though the template is now visible in the running-config, it still does not list 
the configuration under the interface(s) that it is applied to.

 

Although the IP_PHONE_INTERFACE_TEMPLATE is modified and applied, the 
configuration is still hidden from the interface in the running-config. In order to see 
the customized configuration that is applied to the interface, the show derived-config 
interface gigabitEthernet0/1 command must be used again. The following output shows 
the modified template that is applied to the gigabitEthernet0/1 interface.

Switch# show derived-config interface gigabitEthernet0/1

Building configuration...

 

!

interface GigabitEthernet0/1

 description CUSTOM_IP_PHONE_INTERFACE_TEMPLATE

 switchport access vlan 11

 switchport mode access

 switchport block unicast

 switchport voice vlan 13

 switchport port-security maximum 3

 switchport port-security maximum 2 vlan access

 switchport port-security violation restrict

 switchport port-security aging time 2

 switchport port-security aging type inactivity

 switchport port-security

 load-interval 30

 srr-queue bandwidth share 1 30 35 5

 priority-queue out

 mls qos trust cos

 storm-control broadcast level pps 1k

 storm-control multicast level pps 2k

 storm-control action trap

 spanning-tree portfast

 spanning-tree bpduguard enable

 service-policy input AUTOCONF-SRND4-CISCOPHONE-POLICY

 ip dhcp snooping limit rate 15

end

 

Switch#
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AutoConf is a feature that not only eases the burden of device management and 
 configuration, it also allows for a zero-touch deployment model of commonly con-
nected devices. AutoConf is often used in campus LANs as well as remote branch office 
 deployments. Most organizations enforce a standard when it comes to the type of devices 
in their environment. Even though make, model, and form factors may differ, AutoConf can 
assist in reducing the manual configuration tasks needed to deploy different device types 
such as computers, printers, IP phones, IP cameras, and so forth. If a device supports both 
AutoConf and AutoSmart ports, it is recommended to use AutoConf first, then AutoSmart 
ports. However, using both features together could cause undesired results. 

 

Note For more information on AutoConf templates, please visit: http://www.cisco.com/
c/en/us/td/docs/ios-xml/ios/ibns/configuration/15-e/ibns-15-e-book/ibns-autoconf.html

 

Auto Security
Cisco Auto Security is a feature that, when applied, automatically configures some of 
the most common baseline campus switching security features. Some of these features 
include:

 ■ DHCP snooping

 ■ Dynamic ARP inspection (DAI)

 ■ Port Security

DHCP Snooping is a security feature that is designed to protect internally trusted DHCP 
servers and clients in your environment. DHCP Snooping works by verifying DHCP 
 messages are received from only trusted DHCP servers within your campus environment. 
All messages from untrusted devices can be filtered or rate-limited, based on the desired 
configuration parameters. This security mechanism is to keep untrusted hosts from 
 generating DHCP messages that could negatively impact your network. These DHCP 
messages can be malicious in nature or simply be the product of a misconfiguration. For 
example, a host computer has a DHCP server feature inadvertently turned on and is pro-
viding an unrouteable, incorrect IP address range to various devices in the environment. 
This will result in end hosts not being able to talk to the rest of the network. However, 
receiving a DHCP lease from any rogue server could be very problematic even if the 
IP address ranges are valid in your environment.

When enabled, the DHCP snooping feature keeps track of all devices sending and receiving 
DHCP messages. This information is stored in a table called the DHCP binding database. 
When DHCP messages are determined to be legitimate, they are processed  normally. If for 
some reason the intercepted DHCP messages do not meet the proper criteria, the packets 
are discarded. This helps to protect your environment from DHCP snooping attacks.

Dynamic ARP inspection (DAI) is a feature that is used to prevent address resolution 
protocol (ARP) spoofing attacks. An ARP spoofing attack is when someone maliciously 

http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ibns/configuration/15-e/ibns-15-e-book/ibns-autoconf.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ibns/configuration/15-e/ibns-15-e-book/ibns-autoconf.html
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injects a duplicate MAC address onto a LAN in an attempt to redirect traffic to an 
 alternate destination. DAI uses the DHCP binding database to verify that there is a valid 
layer 2 MAC address to layer 3 IP address binding before allowing any traffic to be 
 forwarded on the segment. If it is determined that there is not such a valid mapping, the 
invalid ARP packets are discarded.

Port Security is a security feature that protects the network by setting dynamic or hard 
MAC address limits on specific switch ports. For example, the following list provides 
some of the Port Security features that are available in Catalyst switches.

 ■ Secure ports, based on statically assigned MAC addresses

 ■ Secure ports, based on dynamically learned MAC addresses 

 ■ Limit dynamically learned MAC addresses—helps prevent CAM table flooding 
attacks 

 ■ Shut down port when violation occurs

 ■ Restrict port and send SNMP trap when violation occurs

Enabling Auto Security on a Cisco Catalyst Switch

The following example illustrates how to enable Auto Security on a Catalyst switch with 
a single command. 

Switch> enable

Switch# configure terminal

Enter configuration commands, one per line.  End with CNTL/Z.

Switch(config)# auto security

Switch(config)# end

To verify what interfaces the Auto Security configuration has been applied to, issue the 
show auto security command shown in the following output.

Switch# show auto security

Auto Security is Enabled globally

 

AutoSecurity is Enabled on below interface(s):

--------------------------------------------

   GigabitEthernet0/1

 

Switch#

Because GigabitEthernet0/1 is configured as an access port, the following snippet  illustrates 
the configuration that is visible in the running-config under that specific  interface.

Switch# show running-config interface GigabitEthernet0/1

Building configuration...
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Current configuration : 85 bytes

!

interface GigabitEthernet0/1

 auto security-port host

 spanning-tree portfast

end

 

Switch#

In order to see the specific configuration that has been automatically applied to the 
Catalyst switch the show auto security configuration command must be issued. The 
 following output depicts the steps necessary to verify the Auto Security configuration.

Switch# show auto security configuration

%AutoSecurity provides a single CLI config 'auto security'

 to enable Base-line security Features like

 DHCP snooping, ARP inspection and  Port-Security

 

Auto Security CLIs applied globally:

---------------------------------

ip dhcp snooping

ip dhcp snooping vlan 2-1005

no ip dhcp snooping information option

ip arp inspection vlan 2-1005

ip arp inspection validate src-mac dst-mac ip

 

 

Auto Security CLIs applied on Access Port:

----------------------------------------

switchport port-security maximum 2

switchport port-security maximum 1 vlan access

switchport port-security maximum 1 vlan voice

switchport port-security violation restrict

switchport port-security aging time 2

switchport port-security aging type inactivity

switchport port-security

ip arp inspection limit rate 100

ip dhcp snooping limit rate 100

 

 

Auto Security CLIs applied on Trunk Port:

--------------------------------------

ip dhcp snooping trust

ip arp inspection trust

switchport port-security maximum 100
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switchport port-security violation restrict

switchport port-security

 

Switch#

As seen from the above configuration, Auto Security enables an entire baseline of 
 security features on the Catalyst switch. All of these security features and settings 
have been streamlined into a single command. This automates the deployment of these 
 features, which makes it easier to secure the campus LAN environment.

 

Note Although many First-Hop Security features have been available in various IOS 
versions for some time, the Auto Security feature is available in IOS XE 3.6.0E and IOS 
15.2(2)E and later.

For more information on Auto Security, please visit: http://www.cisco.com/c/en/us/td/
docs/switches/lan/catalyst4500/XE3-6-0E/15-22E/configuration/guide/xe-360-config/
auto_sec.pdf

 

Quality of Service for Campus Architectures
Quality of Service (QoS) is an integral part of any campus environment. QoS allows for 
the prioritization of specific traffic flows as they traverse over the campus network. For 
example, it may be desirable to allow voice and video traffic to have priority over bulk 
FTP traffic during a time of network congestion. One of the most common reasons that 
QoS is not deployed is due to its complexity. This section will discuss some different 
ways to automate the deployment of QoS for LAN devices. 

 

Note A base understanding of QoS is assumed. QoS fundamentals are not covered in 
this chapter. To become more familiar with QoS and its components, please visit: 
www.cisco.com/go/qos

 

AutoQoS on Campus LAN Devices

As campus networks continue to grow, more emphasis is being put on the LAN. Today, it 
is becoming even more important to capitalize on the available LAN bandwidth as much 
as possible. Often, campus networks are designed with a specific set of goals in mind. 
For example, the following list are some of the more common business drivers and use 
cases that put demand on the campus LAN infrastructure:

 ■ Gigabit Ethernet to the desktop

 ■ Campus video communications

 ■ Voice and IP phones

http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/XE3-6-0E/15-22E/configuration/guide/xe-360-config/auto_sec.pdf
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/XE3-6-0E/15-22E/configuration/guide/xe-360-config/auto_sec.pdf
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/XE3-6-0E/15-22E/configuration/guide/xe-360-config/auto_sec.pdf
http://www.cisco.com/go/qos
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Alternatively, there are some other use cases that are beginning to be more prevalent in 
enterprise networks. These different, but not uncommon use cases are increasing the 
demand for connectivity in the LAN:

 ■ Wayfinding devices

 ■ Digital signage

 ■ HVAC systems

 ■ Manufacturing/industrial networks

 ■ Building lighting

All of the above use cases are putting increased demand on the network and, by default, 
demand on the network engineering team.

Enabling AutoQoS on a Cisco Catalyst Switch

To enable AutoQoS, the following configuration steps must be followed:

Step 1. Enable AutoQoS globally

Step 2. Enable AutoQoS settings under interface

AutoQoS is enabled globally in the following example on the Catalyst switch by issuing 
the auto qos global compact command from the global configuration prompt. Once the 
feature is enabled globally, it can be verified with the show auto qos command.

Switch# configure terminal

Enter configuration commands, one per line.  End with CNTL/Z.

Switch(config)# auto qos global compact

Switch(config)# end

Switch# show auto qos

 

AutoQoS not enabled on any interface

 

Switch#

As you can see from the output of the show auto qos command in the following code 
snippet, there are no interfaces currently configured with any AutoQoS parameters. Once 
AutoQoS is enabled globally, you must then specify the interface configuration  settings. 
For example, see the following output that illustrates how to enable the AutoQoS 
 settings under a Gigabit Ethernet interface of a Catalyst switch. The configuration shown 
is for a Cisco IP phone.

Switch# configure terminal

Enter configuration commands, one per line.  End with CNTL/Z.

Switch(config)# interface GigabitEthernet0/1
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Switch(config-if)# auto qos voip cisco-phone 

Switch(config-if)# end

Switch#

Now that AutoQoS is enabled globally and there is an interface with AutoQoS settings 
applied to it, the show auto qos command is re-issued to verify the configuration as 
shown in the following snippet. Based on the output of the show auto qos command, we 
see that there is a difference in the information displayed as opposed to output shown 
previously. When AutoQoS is enabled under the GigabitEthernet0/1 interface, it now 
includes the interface configuration in the show command. 

Switch# show auto qos

GigabitEthernet0/1

auto qos voip cisco-phone

 

Switch#

In order to display the actual QoS settings that get applied to the GigabitEthernet0/1 
interface when a Cisco IP phone is connected, the show auto qos interface 
GigabitEthernet0/1 configuration command must be issued. The following 
 snippet shows that based on the output of this command, there is an ingress policy 
named AUTOQOS-PPM-SRND4-CISCOPHONE-POLICY that is applied to the 
GigabitEthernet0/1 interface. The output also shows that the outbound egress  priority 
queue is enabled and that the interface has been set to automatically trust the DSCP 
markings from the Cisco IP phone.

Switch# show auto qos interface GigabitEthernet0/1 configuration 

GigabitEthernet0/1

auto qos voip cisco-phone 

Ingress Policy: AUTOQOS-PPM-SRND4-CISCOPHONE-POLICY

Egress Priority Queue: enabled

The port is mapped to qset : 1 

Trust device: cisco-phone

Next, to further validate the settings within the AUTOQOS-PPM-SRND4-
CISCOPHONE-POLICY that is applied to the GigabitEthernet0/1 interface, we issue the 
show policy-map AUTOQOS-PPM-SRND4-CISCOPHONE-POLICY command as shown 
in the following output.

Switch# show policy-map AUTOQOS-PPM-SRND4-CISCOPHONE-POLICY

  Policy Map AUTOQOS-PPM-SRND4-CISCOPHONE-POLICY

    Class AUTOQOS_PPM_VOIP_DATA_CLASS

      set dscp ef

      police 128000 8000 exceed-action policed-dscp-transmit

    Class AUTOQOS_PPM_VOIP_SIGNAL_CLASS

      set dscp cs3

      police 32000 8000 exceed-action policed-dscp-transmit
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    Class AUTOQOS_PPM_DEFAULT_CLASS

      set dscp default

      police 10000000 8000 exceed-action policed-dscp-transmit

Switch#

Based on the previous output, we can see that the following parameters have been set in 
the QoS policy-map applied to the GigabitEthernet0/1 interface on the Catalyst switch:

 ■ Voice data packets are being marked with the DSCP value of EF (46)

 ■ Policing of the VOIP_DATA_CLASS is set to 128Kbps

 ■ Call signaling packets are being marked with the DSCP value of CS3

 ■ Policing of the VOIP_SIGNAL_CLASS is set to 32Kbps

 ■ All other packets are being marked with DSCP value of DEFAULT (0)

 ■ Policing of the DEFAULT_CLASS is set to 10Mbps

The following snippet illustrates the output of the show auto qos voip cisco-phone 
 configuration command, which is an alternate way of displaying the AutoQoS 
 configuration that will be applied to an interface when a Cisco IP phone is  connected. 
This command will also display the DSCP/CoS markings, queuing strategy, and 
 associated thresholds settings that will be applied. 

Switch# show auto qos cisco-phone configuration 

Traffic(DSCP / COS)         IngressQ-Threshold    EgressQ-Threshold

---------------------------------------------------------------------

VoIP(46/5)                         N/A - N/A             01 - 01 

Signaling(24/3)                    N/A - N/A             03 - 01 

Best-Effort(00/0)                  N/A - N/A             02 - 01

All of the QoS settings mentioned above were deployed by issuing only two commands: 
the auto qos global compact global command and the auto qos voip cisco-phone 
 interface command. We can begin to see how powerful tools like AutoQoS can be in a 
campus environment, eEspecially with hundreds to thousands of connected host devices. 
The following section of this chapter will cover deploying AutoQoS in the campus WAN 
environment.

AutoQoS on Campus WAN Devices

The best practice in general from a QoS perspective is to mark the traffic closest to the 
source and carry those markings across your LAN and WAN end-to-end. The  biggest 
reason for this is so that end users and applications have a consistent experience. Marking 
and prioritizing traffic on the LAN is just one step in a bigger QoS design. Using 
AutoQoS for the WAN, you can simplify the steps needed to achieve that end-to-end 
user and application experience. Figure 7-2 illustrates the high level end-to-end QoS 
design model from an IP phone in one location to an IP phone in another location.  
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Note Although we will not discuss AutoQoS for WAN in depth in this chapter, the 
purpose of this section is to inform the readers that there are tools for AutoQoS on Cisco 
routers. 

 

Phone-1 marks voice traffic DSCP EF (46) and
forwards traffic to SW-1

WAN-RTR-1 priori�zes received voice traffic marked DSCP EF (46)
and forwards traffic across WAN to WAN-RTR-2

SW-2 priori�zes voice traffic marked DSCP EF (46) and
forwards traffic to Phone-2

SW-1 priori�zes received voice traffic marked DSCP EF (46) and
forwards traffic to WAN-RTR-1

WAN-RTR-2 priori�zes received voice traffic
marked DSCP EF (46) and forwards traffic to SW-2

Packet flow direc�on

SW-1 SW-2Phone-1 Phone-2WAN-RTR-1 WAN-RTR-2

WAN

Figure 7-2 End-to-end QoS example

As you can see based on Figure 7-2, the QoS markings are kept intact from source to 
destination across the campus LAN and WAN networks. In this specific case, voice data 
traffic from Phone-1 to Phone-2 is marked with DSCP EF (46), and those markings are 
honored on a hop-by-hop basis across the entire network. This is called per-hop behavior 
(PHB). 

Enabling AutoQoS on a Cisco ISR Router

The following example lists the steps that are necessary to enable AutoQoS for the WAN 
on a Cisco ISR router.

Router# configure terminal

Router(config)# interface FastEthernet0/1

Router(config-if)# auto qos voip

Router(config-if)# end

Router# 

One of the convenient things about AutoQoS for the WAN is that by enabling it on one 
of the interfaces of the router, it automatically enables the feature globally. Furthermore, 
it applies all the QoS policy-maps and other settings automatically. The following 
 snippet illustrates an example output of the show auto qos command from a Cisco ISR 
router, illustrating what features AutoQoS will automatically activate when the feature is 
enabled.

Router# show auto qos 

 !

 policy-map AutoQoS-Policy-UnTrust 

  class AutoQoS-VoIP-RTP-UnTrust 

   priority percent 70 

   set dscp ef 

  class AutoQoS-VoIP-Control-UnTrust 

   bandwidth percent 5 
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   set dscp af31 

  class AutoQoS-VoIP-Remark 

   set dscp default 

  class class-default 

   fair-queue 

 !

 class-map match-any AutoQoS-VoIP-Remark 

  match ip dscp ef  

  match ip dscp cs3  

  match ip dscp af31  

 !

 class-map match-any AutoQoS-VoIP-Control-UnTrust 

  match access-group name AutoQoS-VoIP-Control 

 !

 class-map match-any AutoQoS-VoIP-RTP-UnTrust 

  match protocol rtp audio  

  match access-group name AutoQoS-VoIP-RTCP 

 !

 ip access-list extended AutoQoS-VoIP-RTCP

  permit udp any any range 16384 32767 (6 matches)

 !

 ip access-list extended AutoQoS-VoIP-Control

  permit tcp any any eq 1720 

  permit tcp any any range 11000 11999 

  permit udp any any eq 2427 

  permit tcp any any eq 2428 

  permit tcp any any range 2000 2002 

  permit udp any any eq 1719 

  permit udp any any eq 5060

 !

 rmon event 33333 log trap AutoQoS description "AutoQoS SNMP traps for Voice 
Drops" owner AutoQoS 

 rmon alarm 33333 cbQosCMDropBitRate.34.14175073 30 absolute rising-threshold 
1 33333 falling-threshold 0 owner AutoQoS 

 

FastEthernet0/1 -

 !

 interface FastEthernet0/1 

  service-policy output AutoQoS-Policy-UnTrust

 

Note AutoQoS for the WAN is platform dependent. To learn more about AutoQoS for 
WAN and what platforms the feature is supported on, please visit: http://www.cisco.com/c/
en/us/products/ios-nx-os-software/autoqos/index.html

 

http://www.cisco.com/c/en/us/products/ios-nx-os-software/autoqos/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/autoqos/index.html


236  Chapter 7: On-Box Automation and Operations Tools

AutoQoS, in conjunction with some of the other automation mechanisms discussed 
 earlier in the Automatic Port Profiling section of this chapter, can start to build a 
very robust and powerful tool set. This tool set can help network engineers ease the 
 operational complexity of managing a constantly changing campus network  environment. 
Chapter 8 “Network Automation Tools for Campus Environments” will highlight another 
tool set known as the application policy infrastructure controller enterprise module 
(APIC-EM). APIC-EM offers a wide variety of features that include tools to assist in 
 configuring and automating quality of service in campus environments. We will also 
 discuss some future APIC-EM applications.

Automating Management and Monitoring Tasks
This section will discuss a very robust set of tools that are built-in to many Cisco devices 
such as:

 ■ Smart Call Home

 ■ Tcl Shell

 ■ Embedded Event Manager (EEM)

These tools are designed to make life a bit easier for the network operations staff by 
leveraging on-box automation.

Smart Call Home

Cisco’s Smart Call Home is a feature that is built into a large number of Cisco devices 
that allows the devices to automatically reach out to Cisco TAC when there is an issue in 
your campus environment. Smart Call Home can report a wide variety of different events. 
For example:

 ■ Generic online diagnostics (GOLD)

 ■ Syslog events

 ■ Environment events and alarms

 ■ Inventory and configuration

 ■ Field notices

 ■ Product security incident response team (PSIRT) notifications

There are three primary ways that Smart Call Home can collect this information from 
the IOS: Alert Groups and Profiles, collecting show commands, and interaction with the 
CLI. This information is sent via one of three different transport modes: HTTP(S) direct, 
HTTP(S) via a transport gateway, or via email through a transport gateway. A transport 
gateway is a device that securely forwards Call Home messages that are sourced from 
devices within the network. The information that is gathered and sent to Cisco TAC is 
then stored in a database within Cisco’s data centers. Once the information is collected 
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and stored in the database, you will be able to view the information from a web portal 
where you can manage all your devices. Smart Call Home allows TAC to do multiple 
things with the collected information:

 ■ Automatically create TAC service requests, based on issues with the device(s)

 ■ Notify the Cisco partner should they need to be contacted

 ■ Notify the device owner that there is something going on with the device(s)

This helps make your business more proactive, rather than reactive. An example of Smart 
Call Home would be if you have a Catalyst 4500 series switch and one of the power 
supplies failed in the middle of the night. Instead of having to wake up, open a TAC 
case, and upload the serial number of the switch and the configuration and go through 
troubleshooting steps, the switch would have used Smart Call Home to contact TAC and 
upload all the necessary information and a TAC case would have already been opened 
automatically. In turn, an RMA could be issued automatically for the failed part. This 
drastically reduces the amount of time and effort engineers have to spend, going through 
the motions of all the steps mentioned above in order to get a replacement power supply 
and bring the network back to 100 percent. In addition to this, there is an anonymous 
reporting feature that allows Cisco to receive minimal error and health information from 
various devices.

There are six basic steps to enable Cisco’s Smart Call Home feature. Those steps are as 
follows:

 ■ Enable Call Home

 ■ Configure contact email address

 ■ Activate CiscoTAC-1 profile 

 ■ Set transport mode

 ■ Install security certificate

 ■ Send a Call Home inventory to start the registration process

Enabling Smart Call Home on an Cisco Catalyst Switch

The following example depicts the process for setting up Smart Call Home on a Catalyst 
switch.

Switch# configure terminal

Switch(config)# service call-home

Switch(config)# call-home

Switch(cfg-call-home)# contact-email-addr neteng@yourcompany.com

Switch(cfg-call-home)# profile CiscoTAC-1

Switch(cfg-call-home-profile)# active

Switch(cfg-call-home-profile)# destination transport-method http

Switch(cfg-call-home-profile)# exit
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Switch(cfg-call-home)# exit

Switch(config)# crypto pki trustpoint cisco

Switch(ca-trustpoint)# enrollment terminal

Switch(ca-trustpoint)# revocation-check crl none

Switch(ca-trustpoint)# exit

Switch(config)# crypto pki authenticate cisco

 

Enter the base 64 encoded CA certificate.

End with a blank line or the word "quit" on a line by itself

 

-----BEGIN CERTIFICATE-----

MIICPDCCAaUCEDyRMcsf9tAbDpq40ES/Er4wDQYJKoZIhvcNAQEFBQAwXzELMAkG

A1UEBhMCVVMxFzAVBgNVBAoTDlZlcmlTaWduLCBJbmMuMTcwNQYDVQQLEy5DbGFz

cyAzIFB1YmxpYyBQcmltYXJ5IENlcnRpZmljYXRpb24gQXV0aG9yaXR5MB4XDTk2

MDEyOTAwMDAwMFoXDTI4MDgwMjIzNTk1OVowXzELMAkGA1UEBhMCVVMxFzAVBgNV

BAoTDlZlcmlTaWduLCBJbmMuMTcwNQYDVQQLEy5DbGFzcyAzIFB1YmxpYyBQcmlt

YXJ5IENlcnRpZmljYXRpb24gQXV0aG9yaXR5MIGfMA0GCSqGSIb3DQEBAQUAA4GN

ADCBiQKBgQDJXFme8huKARS0EN8EQNvjV69qRUCPhAwL0TPZ2RHP7gJYHyX3KqhE

BarsAx94f56TuZoAqiN91qyFomNFx3InzPRMxnVx0jnvT0Lwdd8KkMaOIG+YD/is

I19wKTakyYbnsZogy1Olhec9vn2a/iRFM9x2Fe0PonFkTGUugWhFpwIDAQABMA0G

CSqGSIb3DQEBBQUAA4GBABByUqkFFBkyCEHwxWsKzH4PIRnN5GfcX6kb5sroc50i

2JhucwNhkcV8sEVAbkSdjbCxlnRhLQ2pRdKkkirWmnWXbj9T/UWZYB2oK0z5XqcJ

2HUw19JlYD1n1khVdWk/kfVIC0dpImmClr7JyDiGSnoscxlIaU5rfGW/D/xwzoiQ

-----END CERTIFICATE---

-----BEGIN CERTIFICATE-----

MIIE0DCCBDmgAwIBAgIQJQzo4DBhLp8rifcFTXz4/TANBgkqhkiG9w0BAQUFADBfMQswCQ

YDVQQGEwJVUzEXMBUGA1UEChMOVmVyaVNpZ24sIEluYy4xNzA1BgNVBAsTLkNsYXNzID

Mg

UHVibGljIFByaW1hcnkgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkwHhcNMDYxMTA4MDAwMD

AwWhcNMjExMTA3MjM1OTU5WjCByjELMAkGA1UEBhMCVVMxFzAVBgNVBAoTDlZlcmlTa

Wdu

LCBJbmMuMR8wHQYDVQQLExZWZXJpU2lnbiBUcnVzdCBOZXR3b3JrMTowOAYDVQQLEzEo

Yy

kgMjAwNiBWZXJpU2lnbiwgSW5jLiAtIEZvciBhdXRob3JpemVkIHVzZSBvbmx5MUUwQwYD

VQQDEzxWZXJpU2lnbiBDbGFzcyAzIFB1YmxpYyBQcmltYXJ5IENlcnRpZmljYXRpb24gQX

V0aG9yaXR5IC0gRzUwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCvJAgIKXo1

nmAMqudLO07cfLw8RRy7K+D+KQL5VwijZIUVJ/XxrcgxiV0i6CqqpkKzj/i5Vbext0uz/o

9+B1fs70PbZmIVYc9gDaTY3vjgw2IIPVQT60nKWVSFJuUrjxuf6/WhkcIzSdhDY2pSS9KP

6HBRTdGJaXvHcPaz3BJ023tdS1bTlr8Vd6Gw9KIl8q8ckmcY5fQGBO+QueQA5N06tRn/Ar

r0PO7gi+s3i+z016zy9vA9r911kTMZHRxAy3QkGSGT2RT+rCpSx4/VBEnkjWNHiDxpg8v+

R70rfk/Fla4OndTRQ8Bnc+MUCH7lP59zuDMKz10/NIeWiu5T6CUVAgMBAAGjggGbMIIBlz

APBgNVHRMBAf8EBTADAQH/MDEGA1UdHwQqMCgwJqAkoCKGIGh0dHA6Ly9jcmwudmVya

XNp

Z24uY29tL3BjYTMuY3JsMA4GA1UdDwEB/wQEAwIBBjA9BgNVHSAENjA0MDIGBFUdIAAwKj

AoBggrBgEFBQcCARYcaHR0cHM6Ly93d3cudmVyaXNpZ24uY29tL2NwczAdBgNVHQ4EFgQU

f9Nlp8Ld7LvwMAnzQzn6Aq8zMTMwbQYIKwYBBQUHAQwEYTBfoV2gWzBZMFcwVRYJaW1h
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Z2

UvZ2lmMCEwHzAHBgUrDgMCGgQUj+XTGoasjY5rw8+AatRIGCx7GS4wJRYjaHR0cDovL2xv

Z28udmVyaXNpZ24uY29tL3ZzbG9nby5naWYwNAYIKwYBBQUHAQEEKDAmMCQGCCsGAQU

FBz

ABhhhodHRwOi8vb2NzcC52ZXJpc2lnbi5jb20wPgYDVR0lBDcwNQYIKwYBBQUHAwEGCCsG

AQUFBwMCBggrBgEFBQcDAwYJYIZIAYb4QgQBBgpghkgBhvhFAQgBMA0GCSqGSIb3DQEBB

Q

UAA4GBABMC3fjohgDyWvj4IAxZiGIHzs73Tvm7WaGY5eE43U68ZhjTresY8g3JbT5KlCDD

PLq9ZVTGr0SzEK0saz6r1we2uIFjxfleLuUqZ87NMwwq14lWAyMfs77oOghZtOxFNfeKW/

9mz1Cvxm1XjRl4t7mi0VfqH5pLr7rJjhJ+xr3/

 

<snip> <Full certificate is issued from link in the Smart Call Home Quick Start 
Guide> <snip>

 

quit

Certificate has the following attributes:

       Fingerprint MD5: EF5AF133 EFF1CDBB 5102EE12 144B96C4

      Fingerprint SHA1: A1DB6393 916F17E4 18550940 0415C702 40B0AE6B

 

% Do you accept this certificate? [yes/no]: yes

Trustpoint CA certificate accepted.

% Certificate successfully imported

 

Switch(config)# end

Switch# copy running-config startup-config

 

Note To obtain the proper certificate to paste into the call configuration, please visit the 
following link to get the Smart Call Home user guide for your model of equipment: 
http://www.cisco.com/en/US/docs/switches/lan/smart_call_home/user_guides/
SCH_Ch6.pdf#G1039385

 

Once you complete the certificate import process, you must then initiate a call home to 
begin the registration process for the device. Before we begin the call home process, we 
will enable the debug event manager action cli command as the following snippet depicts. 
This will show the steps that the call-home feature is taking. It is important to remember 
that call-home uses embedded event manager (EEM) to function. The following example 
also shows the call-home command that is used to initiate the call-home and registration 
process on a Cisco Catalyst switch. 

Switch# debug event manager action cli

Debug EEM action cli debugging is on

Switch# call-home send alert-group inventory profile CiscoTAC-1

Sending inventory info call-home message ...

Please wait. This may take some time ...

http://www.cisco.com/en/US/docs/switches/lan/smart_call_home/user_guides/SCH_Ch6.pdf#G1039385
http://www.cisco.com/en/US/docs/switches/lan/smart_call_home/user_guides/SCH_Ch6.pdf#G1039385
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Switch#

Dec  7 22:48:38.089: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : CTL : cli_open 
called.

Dec  7 22:48:38.089: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Switch>

Dec  7 22:48:38.089: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : IN  : 
Switch>enable

Dec  7 22:48:38.099: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Switch#

Dec  7 22:48:38.099: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : IN  : Switch#show 
version

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Cisco IOS 
Software, C3560CX Software (C3560CX-UNIVERSALK9-M), Version 15.2(3)E, RELEASE 
SOFTWARE (fc4)

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Technical 
Support: http://www.cisco.com/techsupport

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : 
Copyright (c) 1986-2014 by Cisco Systems, Inc.

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Compiled 
Sun 07-Dec-14 13:15 by prod_rel_team

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(c

Translating "tools.cisco.com"… domain server (X.X.X.X)li_lib) : : OUT :

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : ROM: 
Bootstrap program is C2960X boot loader

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : BOOTLDR: 
C3560CX Boot Loader (C3560CX-HBOOT-M) Version 15.2(3r)E1, RELEASE SOFTWARE (fc1)

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Switch 
uptime is 1 day, 6 hours, 9 minutes

Dec  7 22:48:38.120 [OK]

i: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : System returned to ROM by 
power-on

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : System 
restarted at 16:38:44 UTC Sun Dec 6 2015

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : System 
image file is "flash:/c3560cx-universalk9-mz.152-3.E/c3560cx-universalk9-mz
.152-3.E.bin"

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Last reload 
reason: power-on

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : This 
 product contains cryptographic features and is subject to United

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : States and 
local country laws governing import, export, transfer and

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : use. 
Delivery of Cisco cryptographic products does not imply

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : third-party 
authority to import, export, distribute or use encryption.

Dec  7 22:48:38.120: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : CTL : 20+ lines 
read from cli, debug output truncated
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Dec  7 22:48:38.620: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : IN  : Switch#show 
inventory oid

Dec  7 22:48:38.634: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : NAME: "1", 
DESCR: "WS-C3560CX-8PC-S"

Dec  7 22:48:38.638: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : PID: 
WS-C3560CX-8PC-S  , VID: V01  , SN: XXXXXXXXXXX

Dec  7 22:48:38.638: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : OID: 
1.3.6.1.4.1.9.12.3.1.3.1593

Dec  7 22:48:38.638: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :

Dec  7 22:48:38.638: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :

Dec  7 22:48:38.638: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Switch#

Dec  7 22:48:39.137: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : IN  : Switch#show 
env power

Dec  7 22:48:39.155: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : SW  PID                 
Serial#     Status           Sys Pwr  PoE Pwr  Watts

Dec  7 22:48:39.155: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : --  -------
-----------  ----------  ---------------  -------  -------  -----

Dec  7 22:48:39.155: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :  1  
Built-in                                         Good

Dec  7 22:48:39.155: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT :

Dec  7 22:48:39.155: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : OUT : Switch#

Dec  7 22:48:39.658: %HA_EM-6-LOG: callhome : DEBUG(cli_lib) : : CTL : cli_close 
called.

Dec  7 22:48:39.658:

Dec  7 22:48:39.658: tty is now going through its death sequence

Switch#

Now that this step is complete, an email will be sent to the email address used in 
the CiscoTAC-1 profile as shown in Figure 7-3. In this case, that email address is 
neteng@yourcompany.com. Once that email is received, to complete the registration 
 process you must follow the directions in the email. You must also have a valid  contract 
associated to the device you are trying to register to the Smart Call Home portal. 
Following the link will redirect you to the Smart Call Home Web Portal as shown in 
Figure 7-4. Once logged into the portal, the device registration process can be completed.

Figure 7-3 Email from Cisco Smart Call Home Tool



242  Chapter 7: On-Box Automation and Operations Tools

Figure 7-4 Smart Call Home Web Portal

To verify that Smart Call Home is running on your device, issue the show call-home 
command from the privileged exec prompt. The following snippet displays the output 
from the show call-home command on a Cisco Catalyst Switch. There are many  different 
options that can be configured with Smart Call Home. The following alert groups are 
enabled automatically when configuring Smart Call Home with the call-home send 
 alert-group inventory profile CiscoTAC-1 command:

 ■ Configuration 

 ■ Diagnostic 

 ■ Environment 

 ■ Inventory 

 ■ Syslog 

Switch# show call-home

Current call home settings:

    call home feature : enable

    call home message's from address: Not yet set up

    call home message's reply-to address: Not yet set up

 

    vrf for call-home messages: Not yet set up

 

    contact person's email address: neteng@yourcompany.com

 

    contact person's phone number: Not yet set up

    street address: Not yet set up

    customer ID: Not yet set up

    contract ID: Not yet set up

    site ID: Not yet set up
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    source ip address: Not yet set up

    source interface: Not yet set up

    Mail-server: Not yet set up

    Rate-limit: 20 message(s) per minute

 

Available alert groups:

    Keyword                  State   Description

    ------------------------ ------- -------------------------------

    configuration            Enable  configuration info

    diagnostic               Enable  diagnostic info

    environment              Enable  environmental info

    inventory                Enable  inventory info

    syslog                   Enable  syslog info

 

Profiles:

    Profile Name: CiscoTAC-1

 

Switch#

 

Note For more information on Smart Call Home, please visit: https://supportforums
.cisco.com/community/4816/smart-call-home

 

Tcl Shell

Tcl Shell is a feature that is built into Cisco routers and switches that allows  engineers 
to interact directly with the device by using various Tcl scripts. Tcl scripting has 
been around for quite some time and is a very useful scripting language. Tcl provides 
many ways to streamline different tasks that can help with day-to-day operations and 
 monitoring of a network. Some of the following are tasks that can be automated by using 
these scripts:

 ■ Verify IP and IPv6 reachability, using ping

 ■ Verify IP and IPv6 reachability, using Traceroute

 ■ Check interface statistics

 ■ Retrieve SNMP information by accessing MIBs

 ■ Send email messages containing CLI outputs from Tcl scripts

Most often, basic Tcl scripts are entered line by line within the Tcl shell, although, for 
some of the more advanced scripting methods, you can load the script into the flash of 
the device you are working on and execute the script from there. These scripts have to 
be in a specific Tcl format as shown in the following examples. The following example 
 illustrates how to enter the Tcl shell on a Cisco router and execute a simple ping script.

https://supportforums.cisco.com/community/4816/smart-call-home
https://supportforums.cisco.com/community/4816/smart-call-home
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Router# tclsh

Router(tcl)# foreach address {

+>(tcl)# 192.168.0.2

>(tcl)# 192.168.0.3

+>(tcl)# 192.168.0.4

+>(tcl)# 192.168.0.5

+>(tcl)# 192.168.0.6

+>(tcl)# } { ping $address

+>(tcl)# }

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.2, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.3, timeout is 2 seconds:

 

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.4, timeout is 2 seconds:

….

Success rate is 0 percent (0/5)

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.5, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.6, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/3/4 ms

Router(tcl)# tclquit

Router#

An alternate to entering the DNS node names or IP addresses in a line-by-line fashion, 
you can also enter some of the script commands on a single line within the Tcl shell. 
For instance, the following example shows a similar ping script to the one entered before, 
but now it is executed on the same line within the Tcl shell.

Router# tclsh

Router(tcl)# foreach address {192.168.0.2 192.168.0.3 192.168.0.4} {ping $address}

 

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.2, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

Type escape sequence to abort.
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Sending 5, 64-byte ICMP Echos to 192.168.0.3, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.4, timeout is 2 seconds:

…..

Success rate is 0 percent (0/5)

Router(tcl)# tclquit

Router#

 

Note To abort a ping that is timing out while running a script, press and hold the 
CTRL+Shift keys and press the 6 key for each failing ping, then release all keys. This 
speeds up the script to keep processing past the node(s) that are not responding and does 
not stop the script from running.

 

To execute Tcl Scripts from the local flash memory, you would need to store the script 
in flash and then call the script by file name. Scripts can be stored on the device’s local 
flash, USB flash, or compact flash. Tcl scripts can be transferred into the IOS File System 
(IFS) by using SCP, TFTP, FTP, or RCP. From a security perspective, SCP is preferred due 
to its use of SSH. To execute a locally stored script, the source command from within the 
Tcl shell prompt can be used. The following example illustrates the steps to call a script 
named ping.tcl from the local flash on a device. This script is an example of the same 
ping script that was shown earlier in this chapter.

 

Note The scripts that are stored locally to the device should be named in the following 
manner: filename.tcl 

 

Router# tclsh

Router(tcl)# source flash:ping.tcl

 

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.2, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.3, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms

Type escape sequence to abort.

Sending 5, 64-byte ICMP Echos to 192.168.0.4, timeout is 2 seconds:

…..

Success rate is 0 percent (0/5)

Router(tcl)# tclquit

Router#
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Note The previous script that is stored locally in flash can also be executed by simply 
issuing the “tclsh flash:ping.tcl command. 

 

Embedded Event Manager (EEM)

Embedded Event Manager (EEM) is a very flexible and powerful tool within Cisco IOS. 
EEM allows engineers to build software applets that can automate many tasks. EEM 
also derives some of its power from the fact that you can build custom scripts using Tcl 
so that they automatically execute, based on the output of an action or an event on a 
device. One of the main benefits of EEM is that it is all contained within the local device. 
There is no need to rely on an external scripting engine or monitoring device in most 
cases. Figure 7-5 illustrates some of the event detectors and how they interact with the 
IOS subsystem.
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Figure 7-5 EEM Event Detectors

EEM Applets

EEM applets are comprised of multiple building blocks. In this chapter, we will focus 
on the two of the primary building blocks that make up EEM applets. Those building 
blocks are called events and actions. These EEM applets use a similar logic to the if-then 
statements found in some of the more common programming languages. For instance, 
if an event happens, then an action is taken. In the following example, we illustrate a 
very common EEM applet that is monitoring syslog messages on a router. This particular 
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applet is looking for a specific syslog message, stating that the Loopback0 interface went 
down. The specific syslog message is matched using regular expressions. This is a very 
powerful and granular way of matching patterns. If this specific syslog pattern is matched 
(an event) at least once, then the following actions will be taken:

 ■ The Loopback0 interface will be shutdown and brought back up (shutdown, then no 
shutdown)

 ■ The router will generate a syslog message that says “I’ve fallen, and I can’t get up!”

 ■ An email message will be sent to the network administrator that includes the output 
of the show interface loopback0 command.

event manager applet LOOP0

 event syslog pattern "Interface Loopback0.* down" period 1

 action 1.0 cli command "enable"

 action 2.0 cli command "config terminal"

 action 3.0 cli command "interface loopback0"

 action 4.0 cli command "shutdown"

 action 5.0 cli command "no shutdown"

 action 5.5 cli command "show interface loopback0"

 action 6.0 syslog msg "I've fallen, and I can't get up!"

 action 7.0 mail server 10.0.0.25 to neteng@yourcompany.com from 

 no-reply@yourcompany.com subject "Loopback0 Issues!" body "The Loopback0 
 interface was 

 bounced. Please monitor accordingly. "$_cli_result"

 

Note Remember to include the enable and configure terminal commands at the 
 beginning of actions within your applet. This is necessary as the applet assumes you are 
in exec mode, not privileged exec or config mode. In addition, if you are using AAA 
 command authorization, you will want to include the event manager session cli username 
username command. Otherwise, the CLI commands in the applet will fail. It is also good 
practice to use decimal labels similar to 1.0, 2.0, and so forth when building applets. This 
allows you to insert and action between other actions in the future. For example, 1.5 will 
allow you to insert an action between 1.0 and 2.0. Remember that labels are parsed as 
strings, which means 10.0 would come after 1.0, not 9.0.

 

Based on the output from the debug event manager action cli, you can see the actual 
actions taking place when the applet is running. The following example shows the applet 
being engaged when we issue the shutdown command on the Loopback0 interface. It also 
shows that there was an error when trying to connect to the SMTP server to send the email 
to the administrator. This is because the actual SMTP server we are using for this test is not 
configured. Notice that because we used the $_cli_result keyword in the  configuration, it 
will include the output of any CLI commands that were issued in the applet. In this case, 
the output of the show interface Loopback0 command will be included in the debug and 
the mail message.
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Switch#

Switch# configure terminal

Enter configuration commands, one per line.  End with CNTL/Z.

Switch(config)# interface loopback0

Switch(config-if)# shutdown

Switch(config-if)#

Dec  6 17:21:59.214: %LINK-5-CHANGED: Interface Loopback0, changed state to 
 administratively down

Dec  6 17:21:59.217: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : CTL : cli_open 
called.

Dec  6 17:21:59.221: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Switch>

Dec  6 17:21:59.221: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : IN  : Switch>enable

Dec  6 17:21:59.231: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Switch#

Dec  6 17:21:59.231: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : IN  : Switch#show 
interface loopback0

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Loopback0 is 
administratively down, line protocol is down

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :   Hardware is 
Loopback

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :   MTU 1514 
bytes, BW 8000000 Kbit/sec, DLY 5000 usec,

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :      
 reliability 255/255, txload 1/255, rxload 1/255

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :   
Encapsulation LOOPBACK, loopback not set

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :   Keepalive 
set (10 sec)

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :   Last input 
never, output never, output hang never

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :   Last 
 clearing of "show interface" counters never

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :   Input queue: 
0/75/0/0 (size/max/drops/flushes); Total output drops: 0

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :   Queueing 
strategy: fifo

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :   Output 
queue: 0/0 (size/max)

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :   5 minute 
input rate 0 bits/sec, 0 packets/sec

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :   5 minute 
output rate 0 bits/sec, 0 packets/sec

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :      0 packets 
input, 0 bytes, 0 no buffer

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :      
Received 0 broadcasts (0 IP multicasts)

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :      
0 runts, 0 giants, 0 throttles

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :      0 input 
errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :      0 packets 
output, 0 bytes, 0 underruns
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Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :      0 output 
errors, 0 collisions, 0 interface resets

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT :      0 unknown 
protocol drops

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : CTL : 20+ lines read 
from cli, debug output truncated

Dec  6 17:21:59.252: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : IN  : Switch#config 
terminal

Dec  6 17:21:59.266: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : Enter 
 configuration commands, one per line.  End with CNTL/Z.

Dec  6 17:21:59.266: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : 
Switch(config)#

Dec  6 17:21:59.266: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : IN  : 
Switch(config)#interface loopback0

Dec  6 17:21:59.277: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : 
Switch(config-if)#

Dec  6 17:21:59.277: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : IN  : 
 Switch(config-if)#shutdown

Dec  6 17:21:59.287: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : 
Switch(config-if)#

Dec  6 17:21:59.287: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : IN  : 
 Switch(config-if)#no shutdown

Dec  6 17:21:59.298: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : OUT : 
Switch(config-if)#

Dec  6 17:21:59.298: %HA_EM-6-LOG: LOOP0: I've fallen and I can't get up!

Dec  6 17:22:01.293: %LINK-3-UPDOWN: Interface Loopback0, changed state to up

Dec  6 17:22:11.314: %HA_EM-3-FMPD_SMTP: Error occurred when sending mail to SMTP 
server: 10.0.0.25 : error in connecting to SMTP server

Dec  6 17:22:11.314: %HA_EM-3-FMPD_ERROR: Error executing applet LOOP0 statement 
7.0

Dec  6 17:22:11.314: %HA_EM-6-LOG: LOOP0 : DEBUG(cli_lib) : : CTL : cli_close 
called.

 

Note For troubleshooting purposes, using the debug event manager all command will 
show all the outputs for the configured actions while the applet is being executed. For 
instance, it will show the same output as shown above but will include more details on 
all the other actions. To specifically troubleshoot the mail configuration and related error 
messages in an EEM Applet, the debug event manager action mail command is most 
useful as it filters out all the other unnecessary debug messages while you are trying to 
troubleshoot the mail configuration. This will allow you to focus on SMTP errors as shown 
in the previous example.

 

Another very useful aspect of EEM applets is that CLI patterns can be matched as an 
event. This means that when certain commands are entered into the router via CLI, they 
can trigger an EEM event within an applet. Then the configured actions will take place as 
a result of the CLI pattern being matched. The following example uses another  common 
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EEM applet to match the CLI pattern “wr mem”. Once the applet is triggered, the 
 following actions will be invoked:

 ■ The router will generate a syslog message that says “Configuration File Changed!”

 ■ The startup-config will be copied to a TFTP server.

 ■ Generate a syslog message stating that the configuration has been successfully saved.

event manager environment filename Router.cfg

event manager environment tftpserver tftp://10.1.200.29/

event manager applet BACKUP-CONFIG

 event cli pattern "write mem.*" sync yes 

 action 1.0 cli command "enable"

 action 2.0 cli command "configure terminal"

 action 3.0 cli command "file prompt quiet"

 action 4.0 cli command "end"

 action 5.0 cli command "copy start $tftpserver$filename"

 action 6.0 cli command "configure terminal"

 action 7.0 cli command "no file prompt quiet"

 action 8.0 syslog priority informational msg "Configuration File Changed! TFTP 
backup successful."

 

Note The file prompt quiet command disables the IOS confirmation mechanism that 
asks you to confirm your actions.

 

 

Note The priority and facility of the Syslog messages can be changed to fit your 
 environment’s alerting structure. For example, we used informational in the previous 
 example.

 

As seen in the previous examples there are multiple ways to call out specific EEM 
environment values. The first example illustrated that you can use a single line to 
configure the mail environment and send messages with CLI output results. Using the 
event manager environment variables shown in the second example, you can statically 
set different settings that you can call on from multiple actions instead of calling them 
out individually on a single line. Although you can create custom names and values 
that are arbitrary and can be set to anything, it is good practice to use common and 
descriptive variables. Table 7-3 lists some of the most commonly used email variables 
in EEM.
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Table 7-3 Common EEM Email Variables 

EEM Variable Description Example

_email_server SMTP server IP address or DNS name 10.0.0.25 or MAILSVR01

_email_to Email address to send email to neteng@yourcompany.com

_email_from Email address of sending party no-reply@yourcompany.com

_email_cc Email address of additional email receivers helpdesk@yourcompany.com

EEM and Tcl Scripts

Using an EEM applet to call Tcl scripts is another very powerful aspect of EEM. We 
have covered multiple ways to use EEM applets. In this section, we will discuss how to 
call a Tcl script from an EEM applet. The previous sections on EEM showed multiple 
ways of executing actions, based on the automatic detection of specific events when 
they are happening. This example shows how to manually execute an EEM applet that 
will, in turn, execute a Tcl script that is locally stored in the device’s flash memory. 
It is important to understand that there are many different ways to use EEM and that 
manually triggered applets are also a very useful tool. The following example depicts an 
EEM script that is configured with the event none command. This means that there is no 
automatic event that the applet is monitoring and that this applet will only run when it is 
triggered manually. To manually run an EEM applet, the event manager run command 
must be used as illustrated in second output.

event manager applet Ping

 event none

 action 1.0 cli command "enable"

 action 1.1 cli command "tclsh flash:/ping.tcl"

Router# event manager run Ping

Router#

Dec  6 19:32:16.564: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : CTL : cli_open 
called.

Dec  6 19:32:16.564: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Router>

Dec  6 19:32:16.568: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : IN  : Router>enable

Dec  6 19:32:16.578: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Router#

Dec  6 19:32:16.578: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : IN  : Router#tclsh 
flash:/ping.tcl

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Type escape 
sequence to abort.

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Sending 5, 
 100-byte ICMP Echos to 192.168.0.2, timeout is 2 seconds:

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : !!!!!

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Success rate is 
100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Type escape 
sequence to abort.
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Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Sending 5, 
 100-byte ICMP Echos to 192.168.0.3, timeout is 2 seconds:

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : !!!!!

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Success rate is 
100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Type escape 
sequence to abort.

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Sending 5, 
 100-byte ICMP Echos to 192.168.0.4, timeout is 2 seconds:

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : !!!!!

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Success rate is 
100 percent (5/5), round-trip min/avg/max = 1/1/3 ms

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Type escape 
sequence to abort.

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Sending 5, 
 100-byte ICMP Echos to 192.168.0.5, timeout is 2 seconds:

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : !!!!!

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Success rate is 
100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Type escape 
sequence to abort.

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Sending 5, 
 100-byte ICMP Echos to 192.168.0.6, timeout is 2 seconds:

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : !!!!!

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : OUT : Success rate is 
100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : CTL : 20+ lines read 
from cli, debug output truncated

Dec  6 19:32:16.711: %HA_EM-6-LOG: Ping : DEBUG(cli_lib) : : CTL : cli_close called.

For reference, see the following snippet for the exact content of the ping.tcl script used in 
the manually triggered EEM applet in the previous example. To see the contents of a TCL 
script that resides in flash, issue the more command followed by the file location and 
filename. The more command can be used to view all other text based files stored in the 
local flash as well.

Router# more flash:ping.tcl

foreach address {

192.168.0.2

192.168.0.3

192.168.0.4

192.168.0.5

192.168.0.6

} { ping $address}
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EEM Summary

There are many ways to utilize EEM. From applets to scripting, the possibly use cases 
can only be limited by the engineer’s imagination. EEM provides on-box monitoring of 
various different components based on a series of events. Once an event is detected, an 
action can take place. This helps make some of the network monitoring more proactive, 
rather than reactive. This can also reduce the load on the network and improve efficiency 
from the monitoring system because now the devices can simply report when there is 
something wrong instead of continually asking the devices if there is anything wrong.

 

Note For information on EEM and its robust features, please visit http://www.cisco.com/c/
en/us/products/ios-nx-os-software/ios-embedded-event-manager-eem/index.html

 

Summary
By automating daily configuration tasks, you gain some of the following benefits:

 ■ Increased agility

 ■ Reduced Opex

 ■ Lower overall TCO

 ■ Streamlined management

 ■ Reduction of human error

 ■ Increased visibility

Keeping the above in mind, then adding the fact that many organizations are dealing with 
lean IT problems and high turnover, network engineers are being asked to do more with 
less. Utilizing some of the tools that were covered in this chapter can help alleviate some 
of the pressure put on IT staff by offloading some of the more tedious, time-consuming, 
and repetitious tasks. This will allow the network engineer to focus more on critical 
 mission responsibilities like network design and growth planning. 

http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-embedded-event-manager-eem/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-embedded-event-manager-eem/index.html
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