


Here is Edward Bear, coming downstairs now, bump, bump, bump on the
back of his head, behind Christopher Robin.

It is, as far as he knows, the only way of coming downstairs,
but sometimes he feels that there really is another way,

if only he could stop bumping for a moment and think of it.
And then he feels that perhaps there isn’t.
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PRELIMINARY
SURVIVAL BRIEFING

bout two million people are working on about 300,000 softwareAprojects in the United States at this time.1 Between one third and two
thirds of those projects will exceed their schedule and budget targets before
they are delivered. Of the most expensive software projects, about half will
eventually be canceled for being out of control. Many more are canceled in
subtle ways—they are left to wither on the vine, or their sponsors simply
declare victory and leave the battlefield without any new software to show
for their trouble. Whether you’re a senior manager, an executive, a software
client, a user representative, or a project leader, this book explains how to
prevent your project from suffering these consequences.

Software projects fail for one of two general reasons: the project team
lacks the knowledge to conduct a software project successfully, or the project
team lacks the resolve to conduct a project effectively. This book cannot do
much about the lack of resolve, but it does contain much of the knowledge
needed to conduct a software project successfully.

The factors that make a software project successful are not especially
technical. Software projects are sometimes viewed as mysterious entities that
survive or perish based on the developers’ success in chanting magic tech-
nical incantations. When asked why they delivered a component two weeks
late, developers say things like, “We had to implement a 32-bit thunking
layer to interface with our OCX interface.” Faced with explanations like that,
it is no wonder that people without deep technical expertise feel powerless
to influence a software project’s success.

1. Source citations and notes about related topics can be found in the “Notes” section at the
end of the book.
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The message of the Software Project Survival Guide is that software
projects survive not because of detailed technical considerations like
“thunking layers” but for much more mundane reasons. Software projects
succeed or fail based on how carefully they are planned and how deliber-
ately they are executed. The vast majority of software projects can be run in
a deterministic way that virtually assures success. If a project’s stakehold-
ers understand the major issues that determine project success, they can
ensure that their project reaches a successful conclusion. The person who
keeps a software project headed in the right direction can be a technical
manager or an individual software developer—it can also be a top manager,
a client, an investor, an end-user representative, or any other concerned
party.

WHO SHOULD READ THIS BOOK

This book is for anyone who has a stake in a software project’s outcome.

TOP MANAGERS, EXECUTIVES, CLIENTS,
INVESTORS, AND END-USER REPRESENTATIVES

Nonsoftware people are commonly given responsibility for overseeing the
development of a software product. These people have backgrounds in sales,
accounting, finance, law, engineering, or some other field. They might not
have any formal authority to direct the project, but they will still be held
accountable for seeing that the project goes smoothly. At a minimum, they
are expected to sound an alarm if the project begins to go awry.

If you’re in this group, this book will provide you with a short, easily
readable description of what a successful project looks like. It will give you
many ways to tell in advance whether the project is headed for failure or
success. It will also describe how to tell when no news is good news, when
good news is bad news, or when good news really is good news.

PROJECT MANAGERS

Many software project managers are thrust into management positions with-
out any training specific to managing software projects. If you’re in this
group, this book will help you master the key technical management skills
of requirements management, software project planning, project tracking,
quality assurance, and change control.
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TECHNICAL LEADERS, PROFESSIONAL

DEVELOPERS, AND SELF-TAUGHT PROGRAMMERS

If you’re an expert in technical details, you might not have had much exposure
to the big-picture issues that project leaders need to focus on. In that case, you
can think of this book as an annotated project plan. By providing an overview
of a successful software project, this book will help you make the transition
from expert technician to effective project leader. You can use the plan described
in this book as a starting point, and you can tailor its strategies to the needs
of your specific projects. If you’ve read Rapid Development, the first part of this
book will be about half review for you. You might want to skim Chapters 1
through 5, read the end of Chapter 5 carefully, skim Chapter 6, and then begin
reading carefully again starting with Chapter 7.

KINDS OF PROJECTS THIS BOOK COVERS

The plan will work for business systems, broad-distribution shrink-wrap
software, vertical market systems, scientific systems, and similar programs.
It is designed for use on desktop client/server projects using modern develop-
ment practices such as object-oriented design and programming. It can easily
be adapted for projects using traditional development practices and main-
frame computers. The plan has been designed with project team sizes of
3 to 25 team members and schedules of 3 to 18 months in mind. These are
considered to be medium-sized projects. If your project is smaller you can
scale back some of this book’s recommended practices. (Throughout the book,
I point out places you can do that.)

This book is primarily intended for projects that are currently in the
planning stages. If you’re at the beginning of the project, you can use the
approach as the basis for your project plan. If you’re in the middle of a project,
the Survival Test in Chapter 2 and the Survival Checks at the end of each
chapter will help you determine your project’s chance of success.

By itself, this book’s plan is not formal or rigorous enough to support
life-critical or safety-critical systems. It is appropriate for commercial appli-
cations and business software, and it is a marked improvement over many
of the plans currently in use on multimillion-dollar projects.

A NOTE TO ADVANCED TECHNICAL READERS

The Software Project Survival Guide describes one effective way to conduct a
software project. It is not the only effective way to run a project, and for any
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specific project it might not be the optimum way. The extremely knowledge-
able technical leader will usually be able to come up with a better, fuller,
more customized development plan than the generic one described here. But
the plan described here will work much better than a hastily thrown together
plan or no plan at all, and no plan at all is the most common alternative.

The plan described in the following chapters has been crafted to address
the most common weaknesses that software projects face. It is loosely based
on the “key process areas” identified by the Software Engineering Institute
(SEI) in Level 2 of the SEI Capability Maturity Model. The SEI has identified
these key processes as the critical factors that enable organizations to meet
their schedule, budget, quality, and other targets. About 85 percent of all
organizations perform below Level 2, and this plan will support dramatic
improvements in those organizations. The SEI has defined the key process
areas of Level 2 as follows:

0 Project planning

0 Requirements management

0 Project tracking and oversight

0 Configuration management

0 Quality assurance

0 Subcontract management

This book addresses all of these areas except subcontract management.

THIS BOOK’S FOUNDATION

In writing this book, I have kept three primary references at my elbow that
have been invaluable resources, in addition to the many other resources I’ve
drawn from. I’ve tried to condense the contents of these three references and
present them in the most useful way that I can.

The first reference is the Software Engineering Institute’s Key Practices
of the Capability Maturity Model, Version 1.1. This book is a gold mine of hard-
won industry experience in prioritizing implementation of new develop-
ment practices. At almost 500 pages it is somewhat long, and even at that
length the information is still dense. It is not a tutorial and so is not intended
for the novice reader. But for someone who has a basic understanding of the
practices it describes, the summary and structure that Key Practices provides
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is a godsend. This book is available free on the Internet at http://
www.sei.cmu.edu/ or from the National Technical Information Service (NTIS)
branch of the U.S. Department of Commerce in Springfield, Virginia.

The second reference is the NASA Software Engineering Laboratory’s
(SEL’s) Recommended Approach to Software Development, Revision 3. The SEL
was the first organization to receive the IEEE Computer Society’s Process
Achievement Award. Many keys to the success of its process are described
in the Recommended Approach. Whereas the SEI’s document describes a set
of practices without showing how to apply them to a specific project, the
Recommended Approach describes a structured sequence of practices. The two
volumes together form a complementary set. This book is also available free
on the Internet at http://fdd.gsfc.nasa.gov/seltext.html.

The final “book” at my elbow has been my own experience. I am writ-
ing not as an academician who wants to create a perfect theoretical frame-
work, but as a practitioner who wants to create a practical reference that
will aid me in my work and my clients in theirs. The information drawn
together here will make it easier for me to plan and conduct my next project
and easier to explain its critical success factors to my clients. I hope it does
the same for you.

Steve McConnell
Bellevue, Washington

August 1997







Survival Concepts

Well-defined development processes are important and neces-

sary elements of software project survival. With well-defined

processes, software personnel can spend most of their time on

productive work that moves the project steadily toward comple-

tion. With poorly planned processes, developers spend a lot of

their time correcting mistakes. Much of the leverage for project

success is contained in upstream activities, and knowledgeable

software stakeholders ensure that projects focus enough atten-

tion on upstream activities to minimize problems downstream.
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efore you begin a mission, you are briefed about its most importantB characteristics. This chapter describes the critical factors that contribute
to software mission success.

THE POWER OF “PROCESS”
This book is about using effective software development processes. The
phrase “software processes” can mean a lot of different things. Here are some
examples of what I mean by “software processes:”

0 Committing all requirements to writing.

0 Using a systematic procedure to control additions and changes
to the software’s requirements.

0 Conducting systematic technical reviews of all requirements, de-
signs, and source code.

0 Developing a systematic Quality Assurance Plan in the very early
stages of the project that includes a test plan, review plan, and
defect tracking plan.

0 Creating an implementation plan that defines the order in which
the software’s functional components will be developed and
integrated.

0 Using automated source code control.

0 Revising cost and schedule estimates as each major milestone is
achieved. Milestones include the completion of requirements
analysis, architecture, and detailed design as well as the comple-
tion of each implementation stage.

These processes are beneficial in ways that will shortly become apparent.

NEGATIVE VIEW OF PROCESS

The word “process” is viewed as a four-letter word by some people in the
software development community. These people see “software processes”
as rigid, restrictive, and inefficient. They think that the best way to run a
project is to hire the best people you can, give them all the resources they ask
for, and turn them loose to let them do what they’re best at. According to this
view, projects that run without any attention to process can run extremely
efficiently. People who hold this view imagine that the relationship between
work and productivity over the course of a project looks like the chart shown
in Figure 3-1 on the facing page.
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People who hold this view acknowledge that some amount of “thrash-
ing,” or unproductive work, will take place. Developers will make mistakes,
they agree, but they will be able to correct them quickly and efficiently—
certainly at less overall cost than the cost of “process.”

0%

Percent
of Effort

Time

100% Thrashing

Beginning
of Project

End of
Project

Productive Work

FIGURE 3-1 Mistaken perception that ignoring process increases the proportion of pro-
ductive work on projects.

Adding process, then, is thought to be pure overhead and simply takes
time away from productive work, as shown in Figure 3-2.

0%

Percent
of Effort

Time

100% Thrashing

Beginning
of Project

End of
Project

Process

Productive Work

FIGURE 3-2 Mistaken perception that an attention to process will decrease the propor-
tion of productive work. (Process is seen as pure overhead.)
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This point of view has intuitive appeal. At the beginning of a project
(shown by the darker shaded areas), a focus on process certainly does take
time away from productive work. If that trend continued throughout a
project (shown by the lighter shaded areas), it wouldn’t make sense to spend
much time on process.

Software industry experience with medium-size projects, however, has
revealed that the trend shown in Figure 3-2 does not continue throughout
the project. Projects that don’t pay attention to establishing effective pro-
cesses early on are forced to slap them together later, when slapping them
together takes more time and does less good. Here are some scenarios that
illustrate why earlier is better:

0 Change control. In the middle of the project, team members infor-
mally agree to implement a wide variety of changes that are di-
rectly proposed to them by their manager or customer. They don’t
begin controlling changes systematically until late in the project.
By that time, the scope of the product has expanded by 25 to 50
percent or more, and the budget and the schedule have expanded
accordingly.

0 Quality assurance. Projects that don’t set up processes to eliminate
defects in early stages fall into extended test-debug-reimplement-
retest cycles that seem interminable. So many defects are reported
by testing that by the end of the project, the “change control board”
or “feature team” may be meeting as often as every day to priori-
tize defect corrections. Because of the vast number of defects, the
software has to be released with many known (albeit low priority)
defects. In the worst case, the software might never reach a level
of quality high enough for it to be released.

0 Uncontrolled revisions. Major defects discovered late in the project
can cause the software to be redesigned and rewritten during test-
ing. Since no one planned to rewrite the software during testing,
the project deviates so far from its plans that it essentially runs
without any planning or control.
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0 Defect tracking. Defect tracking isn’t set up until late in the project.
Some reported defects are not fixed simply because they are for-
gotten, and the software is released with these defects even
though they would have been easy to fix.

0 System integration. Components developed by different develop-
ers are not integrated with one another until the end of the project.
By the time the components are integrated, the interfaces between
components are out of synch and much work must be done to
bring them back into alignment.

0 Automated source code control. Source code revision control isn’t
established until late in the project, after developers have begun
to lose work by accidentally overwriting the master copies of
their own or one another’s source code files.

0 Scheduling. On projects that are behind schedule, developers are
asked to reestimate their remaining work as often as once a week
or more, taking time away from their development work.

When a project has paid too little early attention to the processes it will
use, by the end of a project developers feel that they are spending all of their
time sitting in meetings and correcting defects and little or no time extend-
ing the software. They know the project is thrashing. When developers see
they are not meeting their deadlines, their survival impulses kick in and they
retreat to “solo development mode,” focusing exclusively on their personal
deadlines. They withdraw from interactions with managers, customers,
testers, technical writers, and the rest of the development team, and project
coordination unravels.

Far from a steady level of productive work suggested by Figure 3-1,
the medium-size project conducted without much attention to develop-
ment processes typically experiences the pattern shown in Figure 3-3 on
the next page.
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0%
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Beginning
of Project

End of
Project

Productive Work

FIGURE 3-3 Real experience of projects that pay little attention to process. As the project
environment becomes increasingly complicated, thrashing and process both increase.

In this pattern, projects experience a steady increase in thrashing over
the course of a project. By the middle of the project, the team realizes that it
is spending a lot of time thrashing and that some attention to process would
be beneficial. But by then much of the damage has been done. The project
team tries to increase the effectiveness of its process, but its efforts hold the
level of thrashing steady, at best. In some cases, the late attempt to improve
the project’s processes actually makes the thrashing worse.

The lucky projects release their software while they are still eking out
a small amount of productive work. The unlucky projects can’t complete
their software before reaching a point at which 100 percent of their time is
spent on process and thrashing. After spending several weeks or months in
this condition, such a project is typically canceled when management or the
customer realizes that the project is no longer moving forward. If you think
that attention to process is needless overhead, consider that the overhead of
a canceled project is 100 percent.

PROCESS TO THE RESCUE

Fortunately, there are a variety of alternatives to this dismal scenario, and
the best do not rely at all on rigid, inefficient processes (also known as R.I.P.).
Some processes certainly are rigid and inefficient, but I don’t recommend
that projects use them. The approach described in this book requires use of
processes that increase the project’s flexibility and efficiency.
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When these kinds of processes are used, the project profile looks like
the one shown in Figure 3-4.

Time

Beginning
of Project

End of
Project

Productive Work
Percent
of Effort

Thrashing

Process

100%

0%

FIGURE 3-4 Experience of projects that focus early attention on process. As the team
gains experience with its processes and fine tunes them to the working environment, the
time spent on process and thrashing both diminish.

During the first few weeks of the project, the process-oriented team will
seem less productive than the process-phobic team because the level of
thrashing will be the same on both projects, and the process-oriented team
will be spending a significant amount of its time on processes.

By the middle of the project, the team that focused on process early will
have reduced the level of thrashing compared to the beginning of the project,
and will have streamlined its processes. At that point, the process-phobic
team will be just beginning to realize that thrashing is a significant problem
and just beginning to institute some processes of its own.

By the end of the project, the process-oriented team will be operating at
a high-speed hum, with little thrashing, and it will be performing its processes
with little conscious effort. This team tolerates a small amount of thrashing
because eliminating the last bit of thrashing would cost more in overhead than
would be saved. When all is said and done, the overall effort on the project
will be considerably lower than the effort of the process-phobic team.
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An investment made in process at the beginning
of the project produces large returns

later in the project.

Organizations that have explicitly focused on improving their devel-
opment processes have, over several years, cut their time-to-market by about
one-half and reduced their costs and defects by factors of 3 to 10. Over a 5-
year period, Lockheed cut its development costs by 75 percent, reduced its
time-to-market by 40 percent, and reduced its defects by 90 percent. Over a
6.5-year period, Raytheon tripled its productivity and realized a return on
investment (ROI) in process improvement of almost 8 to 1. Bull HN realized
an ROI of 4 to 1 after 4 years of software process improvement efforts, and
Schlumberger realized an ROI of almost 9 to 1 after 3.5 years of software
process improvement. NASA’s Software Engineering Laboratory cut its
average cost per mission by 50 percent and its defect rate by 75 percent over
an 8-year period while dramatically increasing the complexity of software
used on each mission. Similar results have been reported at Hughes, Loral,
Motorola, Xerox and other companies that have focused on systematically
improving their software processes.

Here’s the best news: Can you guess the average cost of these improve-
ments in productivity, quality, and schedule performance? It’s about 2 percent
of total development costs—typically about $1,500 per developer per year.

PROCESS VS. CREATIVITY AND MORALE

One of the common objections to putting systematic processes in place is that
they will limit programmers’ creativity. Programmers do indeed have a high
need to be creative. Managers and project sponsors also have a need for
projects to be predictable, to provide progress visibility, and to meet sched-
ule, budget, and other targets.

The criticism that systematic processes limit developers’ creativity is
based on the mistaken idea that there is some inherent contradiction between
developers’ creativity and the satisfaction of management objectives. It is
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certainly possible to create an oppressive environment in which program-
mer creativity and management goals are placed at odds, and many com-
panies have done that, but it is just as possible to set up an environment in
which those goals are in harmony and can be achieved simultaneously.

Companies that have focused on process have found that effective pro-
cesses support creativity and morale. In a survey of about 50 companies, only
20 percent of the people in the least process-oriented companies rated their
staff morale as “good” or “excellent.” In organizations that paid more atten-
tion to their software processes, about 50 percent of the people rated their staff
morale as good or excellent. And in the most process-sophisticated organiza-
tions, 60 percent of the people rated their morale as good or excellent.

Programmers feel best when they’re most productive. Good project
leadership establishes a clear vision and then puts a process framework into
place that allows programmers to feel incredibly productive. Programmers
dislike weak leadership that provides too little structure because they end
up working at cross purposes and, inevitably, are forced to throw away huge
chunks of their work. Programmers appreciate enlightened leadership that
emphasizes predictability, visibility, and control.

The appropriate response to the so-called contradiction between pro-
cess and creativity is that none of the processes described in this book will
limit programmers’ creativity in any way that matters. Most provide a sup-
porting structure that will free programmers to be more creative about the
technical work that matters and free them from the distractions that typically
consume their attention on poorly run projects.

TRANSITIONING TO A SYSTEMATIC PROCESS

If a project team isn’t currently using a systematic process, one of the easi-
est ways to transition to one is to map out the current software development
process, identify the parts of that process that aren’t working, and then try
to fix those parts. Although project teams will sometimes claim that they
don’t currently have a process, every project team has a process of some
kind. (If they claim not to have one, they probably just don’t have a very
good one.)
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The least sophisticated process typically looks like this:

1. Discuss the software that needs to be written.

2. Write some code.

3. Test the code to identify the defects.

4. Debug to find root causes of defects.

5. Fix the defects.

6. If the project isn’t done yet, return to step 1.

This book describes a more sophisticated and more effective software process.
One obstacle to creating a systematic software process is that project

teams are afraid they will err on the side of having too much process—that
their process will be overly bureaucratic and create too much overhead for
the project. This is typically not a significant risk for several reasons:

0 A project that uses the approach described in this book will have
a fairly sophisticated process without incurring much overhead.

0 Software projects are often larger than they at first appear. Far
more projects err on the side of too little process than too much.

0 Starting with too much process and loosening some of the pro-
cesses later on, if needed, is easier than starting with too little
process and trying to add additional processes once a project is
under way.

0 The cost and schedule penalty for having too much process is far
smaller than the penalty for having too little process, for reasons
I will explain next.

UPSTREAM, DOWNSTREAM

Good software processes are designed to root out problems early in the
project. This concept is important enough to discuss in some detail.

You’ll sometimes hear experienced software developers talk about the
“upstream” and “downstream” parts of a software project. The word “up-
stream” simply refers to the early parts of a project such as requirements
development and architecture, and “downstream” refers to the later parts
such as construction and system testing.
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I have found that this distinction between “upstream” and “down-
stream” is a fundamentally useful way to think about a software project. The
work developers do early in the project is placed into a stream and has to be
fished back out later in the project. If the early work is done well, the work
that’s fished out later is healthy and contributes to project success. If the early
work is done poorly, the work that’s fished out later can severely impair the
project. In extreme circumstances, it can prevent the project from ever get-
ting finished.

Researchers have found that an error inserted into the project stream
early—for example, an error in requirements specification or architecture—
tends to cost 50 to 200 times as much to correct late in the project as it does
to correct close to the point where it was originally put into the stream. Fig-
ure 3-5 illustrates this effect.

Phase That a
Defect Is Created

Phase That a Defect Is Corrected

Requirements Architecture Detailed
design

Construction Maintenance

Requirements

Architecture

Detailed design

Construction

Cost to
Correct

FIGURE 3-5 Increase in defect cost as time between defect creation and defect correction
increases. Effective projects practice “phase containment”—the detection and correction
of defects in the same phase in which they are created.
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One sentence in a requirements specification can easily turn into sev-
eral design diagrams. Later in the project, those diagrams can turn into
hundreds of lines of source code, dozens of test cases, many pages of end-
user documentation, help screens, instructions for technical support person-
nel, and so on.

If the project team has an opportunity to correct a mistake at require-
ments time when the only work that has been done is the creation of a one-
sentence requirements statement, it makes good sense for the team to correct
that statement rather than to correct all the various manifestations of the
inadequate requirements statement downstream. This idea is sometimes
called “phase containment,” and refers to the detection and correction of
defects in the same phase in which the defects are introduced.

Successful project teams create their own
opportunities to correct upstream problems
by conducting thorough, careful reviews of

requirements and architecture.

Because no code is generated while the upstream activities are con-
ducted, these activities might seem as though they are delaying “the real
work” of the project. In reality, they are doing just the opposite. They are
laying the groundwork for the project’s success.

Erring on the side of too much process will marginally increase the
project’s overhead, but erring on the side of too little allows defects to slip
through that must be corrected at 50 to 200 times the efficient cost of correct-
ing them. For this reason, the smart money errs on the side of too much
process rather than on the side of too little.

CONE OF UNCERTAINTY

One of the reasons that mistakes made early in a project cost 50 to 200 times
as much to correct downstream as upstream is that the upstream decisions
tend to be farther reaching than the downstream decisions.
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Early in the project, a project team addresses the large issues like whether
to support Windows NT and the Macintosh or just Windows NT, and
whether to provide fully customizable reports or fixed format reports. In the
middle of the project, a project team addresses medium-size issues, such as
how many subsystems to have, how in general to handle error-processing, and
how to adapt a printing routine from an old project to the current project. Late
in the project, a project team addresses small issues, such as which technical
algorithm to use and whether to allow the user to cancel an operation when
it’s partway complete. As the cone of uncertainty in Figure 3-6 suggests, soft-
ware development is a process of continuous refinement, which proceeds from
large grain to small grain, from large decisions to small decisions. The time
burned on a software project is the time required to think through and make
these decisions. Decisions made at one stage of the project affect the next set
of decisions.

Initial product
definition

Approved product
definition

Requirements
development

Architecture

Detailed
design

Product
complete

Size
Estimate
Growth
(in lines
of source
code)

-50%

-25%

0%

-75%

-100%

75%

100%

50%

25%

FIGURE 3-6 Cone of uncertainty. Decision-making on a software project progresses
from large grain to small grain. The project team can’t know much about the decisions to
be made in a specific phase until it has completed most of the work for the phase that im-
mediately precedes it.
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Before the project team has actually made the first set of decisions, it
can only make the most general educated guess about the decisions that will
be made later in the project. After the set of decisions at one level of granu-
larity have been made, a team can make pretty accurate estimates of the
kinds of decisions that will need to be made at the next level of granularity.
The project team makes the best decisions it can at the large-grain level, but
sometimes unforeseen (and unforeseeable) issues at the fine-grain level
percolate back up to a larger context, and the need to cancel an operation
when it’s partway complete means that the project team has to redesign a
routine, a module, or a subsystem.

If you want to understand what software development is all about, you
need to understand that the project team has to think through and make all
the decisions in one stage before it can know enough about the next stage
even to estimate the work involved in it.

IMPLICATIONS FOR PROJECT ESTIMATION

The cone of uncertainty has strong implications for software project estima-
tion. It implies that it is not only difficult to estimate a project accurately in
the early stages, it is theoretically impossible. At the end of the requirements
development phase, the scope of the project will be determined by myriad
decisions yet to be made during architecture, detailed design, and construc-
tion. The person who claims to be able to estimate the impact of those myriad
decisions before they are actually made is either a prophet or not very well
informed about the intrinsic nature of software development.

On the other hand, the person who seeks to control the way those de-
cisions are made in order to meet the project’s schedule or budget targets is
operating sensibly. You can set firm schedule and budget targets early in the
project as long as you’re willing to be ruthless about cutting planned func-
tionality to meet those targets. Keys to success in meeting targets in this way
include setting crystal clear and non-conflicting goals at the beginning of the
project, keeping the product concept very flexible, and then actively track-
ing and controlling development work throughout the rest of the project.



33

3 Survival Concepts

Early in the project you can have
firm cost and schedule targets

or a firm feature set, but not both.

Survival Check

T Project leadership understands the critical role of well-defined
processes and supports them.

T The project’s processes are generally oriented toward detecting
as many problems upstream as possible.

T Project leadership recognizes that estimates made during the first
half of the project are inherently imprecise and will need to be
refined as the project progresses.
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when to begin work, 144–45

archiving project media, 242–43
automated revision control, 77–78

B
baseline, 121–22, 273
beta testing, 136–38, 136
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Page numbers in italics refer to tables, figures, or illustrations.
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E
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basis for, 229–30
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tasks, time-accounting list, 107,

108–9. See also miniature
milestones

teams. See project teams
technical reviews

defined, 130, 281
for detailed design, 192–95
as element of Quality

Assurance Plan, 128
keys to success, 132–33
in miniature milestone process,

181–82
overview, 130–32
and project objectives, 195
for source code, 201
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tool smith, role of, 105
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117–23
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V
version control, 75, 77–78
visibility, 42–43, 92–93, 209, 282
vision statement

defined, 88, 282
rationale for, 86–88
revising, 168

W
walkthrough, defined, 282
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Survival Guide site, 260
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World Wide Web. See Web sites
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