

Here is Edward Bear, coming downstairs now, bump, bump, bump on the
back of his head, behind Christopher Robin.

It is, as far as he knows, the only way of coming downstairs,
but sometimes he feels that there really is another way,

if only he could stop bumping for a moment and think of it.
And then he feels that perhaps there isn’t.

SOFTWARE
PROJECT

SURVIVAL
GUIDE

BY

STEVE MCCONNELL

Software Project Survival Guide

Published by Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1998 by Steve McConnell

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
McConnell, Steve.

Software Project Survival Guide : how to be sure your first important project isn’t your
last / Steve McConnell.

p. cm.
Includes index.
ISBN
1. Computer software--Development--Management. I. Title.

QA76.76.D47M394 1997
005.1'068'4--dc21 97-37923

CIP

Printed and bound in the United States of America.

16 17 18 19 20 QWE 7 6 5 4 3 2

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For
further information about international editions, contact your local Microsoft Corporation
office or contact Microsoft Press International directly at fax (425) 936-7329. Visit our Web
site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Visual Basic, Visual C++, Windows, and Windows NT are
registered trademarks of Microsoft Corporation. Java is a trademark of Sun
Microsystems, Inc. Other product and company names mentioned herein may be the
trademarks of their respective owners.

Frontispiece from WINNIE-THE-POOH by A.A. Milne, illustrated by E.H. Shepard.
Copyright 1926 by E.P. Dutton, renewed 1954 by A.A. Milne. Used by permission of
Dutton Children’s Books, a division of Penguin Books USA Inc.

Acquisitions Editor: David Clark
Project Editor: Victoria Thulman

Part No. 097-0008675

978-0-735-69148-3

CONTENTS

Acknowledgments vi
Preliminary Survival Briefing vii

I THE SURVIVAL MIND-SET

1 Welcome to Software Project Survival Training 3
2 Software Project Survival Test 11
3 Survival Concepts 19
4 Survival Skills 35
5 The Successful Project at a Glance 51

II SURVIVAL PREPARATIONS

6 Hitting a Moving Target 73
7 Preliminary Planning 85
8 Requirements Development 113
9 Quality Assurance 125

10 Architecture 143
11 Final Preparations 155

III SUCCEEDING BY STAGES

12 Beginning-of-Stage Planning 173
13 Detailed Design 187
14 Construction 199
15 System Testing 215
16 Software Release 221
17 End-of-Stage Wrap-Up 237

IV MISSION ACCOMPLISHED

18 Project History 247
19 Survival Crib Notes 253

Epilogue 261
Notes 263
Glossary 273
Index 283

vi

Acknowledgments

As an experiment, I posted draft chapters of this book on my Internet Web
site and invited readers to comment on them. Many people downloaded the
chapters, and they contributed literally thousands of insightful review com-
ments. The diversity of viewpoints was tremendous (bordering on over-
whelming), and the book is more readable, cohesive, practical, and useful
as a result.

Thanks first to the people who reviewed the whole manuscript. These
people include Robert C. Burns (The Boeing Company), Lawrence Casey,
Alan Brice Corwin (Process Builder), Thomas Duff, Mike Cargal, Pat Forman
(Lynden), Manny Gatlin, Marc Gunter, Tom Hill, William Horn, Greg
Hitchcock, Grant McLaughlin, Mike Morton, Matt Peloquin, David Roe,
Steve Rinn, André Sintzoff, Matthew J. Slattery, and Beth Weiss.

I am also grateful to the people who commented on significant sections
of the book, including Ray Bernard (Ray Bernard Consulting and Design),
Steven Black, Robert Brown, Jacob L. Cybulski, Tom Gilb, Dick Holland,
Gerard Kilgallon, Art Kilner, Steve Kobb, Robert E. Lee, Pete Magsig, Hank
Meuret (Meuret Consulting), Al Noel, Karsten M. Self, Rob Thomsett, and
Gregory V. Wilson.

Other people commented on one or more details of the manuscript,
and I’ve listed those people where appropriate in the “Notes” section at the
end of the book.

It was a pleasure to see the staff at Microsoft Press transform the raw
material of my manuscript into finished form. Special thanks to Victoria
Thulman, project editor, for her wonderful forbearance and resiliency in
accommodating an author who has opinions about every facet of book pro-
duction. Thanks to Kim Eggleston for the book’s spare, elegant design, and
to the rest of the Microsoft Press staff, including David Clark, Abby Hall,
Cheryl Penner, and Michael Victor.

Thanks finally to my wife, Tammy, for her unmatchable moral support
and trademark good humor. (This is number three, so now you have to think
of a new joke. Fa!)

vii

PRELIMINARY
SURVIVAL BRIEFING

bout two million people are working on about 300,000 softwareAprojects in the United States at this time.1 Between one third and two
thirds of those projects will exceed their schedule and budget targets before
they are delivered. Of the most expensive software projects, about half will
eventually be canceled for being out of control. Many more are canceled in
subtle ways—they are left to wither on the vine, or their sponsors simply
declare victory and leave the battlefield without any new software to show
for their trouble. Whether you’re a senior manager, an executive, a software
client, a user representative, or a project leader, this book explains how to
prevent your project from suffering these consequences.

Software projects fail for one of two general reasons: the project team
lacks the knowledge to conduct a software project successfully, or the project
team lacks the resolve to conduct a project effectively. This book cannot do
much about the lack of resolve, but it does contain much of the knowledge
needed to conduct a software project successfully.

The factors that make a software project successful are not especially
technical. Software projects are sometimes viewed as mysterious entities that
survive or perish based on the developers’ success in chanting magic tech-
nical incantations. When asked why they delivered a component two weeks
late, developers say things like, “We had to implement a 32-bit thunking
layer to interface with our OCX interface.” Faced with explanations like that,
it is no wonder that people without deep technical expertise feel powerless
to influence a software project’s success.

1. Source citations and notes about related topics can be found in the “Notes” section at the
end of the book.

viii

Preliminary Survival Briefing

The message of the Software Project Survival Guide is that software
projects survive not because of detailed technical considerations like
“thunking layers” but for much more mundane reasons. Software projects
succeed or fail based on how carefully they are planned and how deliber-
ately they are executed. The vast majority of software projects can be run in
a deterministic way that virtually assures success. If a project’s stakehold-
ers understand the major issues that determine project success, they can
ensure that their project reaches a successful conclusion. The person who
keeps a software project headed in the right direction can be a technical
manager or an individual software developer—it can also be a top manager,
a client, an investor, an end-user representative, or any other concerned
party.

WHO SHOULD READ THIS BOOK

This book is for anyone who has a stake in a software project’s outcome.

TOP MANAGERS, EXECUTIVES, CLIENTS,
INVESTORS, AND END-USER REPRESENTATIVES

Nonsoftware people are commonly given responsibility for overseeing the
development of a software product. These people have backgrounds in sales,
accounting, finance, law, engineering, or some other field. They might not
have any formal authority to direct the project, but they will still be held
accountable for seeing that the project goes smoothly. At a minimum, they
are expected to sound an alarm if the project begins to go awry.

If you’re in this group, this book will provide you with a short, easily
readable description of what a successful project looks like. It will give you
many ways to tell in advance whether the project is headed for failure or
success. It will also describe how to tell when no news is good news, when
good news is bad news, or when good news really is good news.

PROJECT MANAGERS

Many software project managers are thrust into management positions with-
out any training specific to managing software projects. If you’re in this
group, this book will help you master the key technical management skills
of requirements management, software project planning, project tracking,
quality assurance, and change control.

ix

Preliminary Survival Briefing

TECHNICAL LEADERS, PROFESSIONAL

DEVELOPERS, AND SELF-TAUGHT PROGRAMMERS

If you’re an expert in technical details, you might not have had much exposure
to the big-picture issues that project leaders need to focus on. In that case, you
can think of this book as an annotated project plan. By providing an overview
of a successful software project, this book will help you make the transition
from expert technician to effective project leader. You can use the plan described
in this book as a starting point, and you can tailor its strategies to the needs
of your specific projects. If you’ve read Rapid Development, the first part of this
book will be about half review for you. You might want to skim Chapters 1
through 5, read the end of Chapter 5 carefully, skim Chapter 6, and then begin
reading carefully again starting with Chapter 7.

KINDS OF PROJECTS THIS BOOK COVERS

The plan will work for business systems, broad-distribution shrink-wrap
software, vertical market systems, scientific systems, and similar programs.
It is designed for use on desktop client/server projects using modern develop-
ment practices such as object-oriented design and programming. It can easily
be adapted for projects using traditional development practices and main-
frame computers. The plan has been designed with project team sizes of
3 to 25 team members and schedules of 3 to 18 months in mind. These are
considered to be medium-sized projects. If your project is smaller you can
scale back some of this book’s recommended practices. (Throughout the book,
I point out places you can do that.)

This book is primarily intended for projects that are currently in the
planning stages. If you’re at the beginning of the project, you can use the
approach as the basis for your project plan. If you’re in the middle of a project,
the Survival Test in Chapter 2 and the Survival Checks at the end of each
chapter will help you determine your project’s chance of success.

By itself, this book’s plan is not formal or rigorous enough to support
life-critical or safety-critical systems. It is appropriate for commercial appli-
cations and business software, and it is a marked improvement over many
of the plans currently in use on multimillion-dollar projects.

A NOTE TO ADVANCED TECHNICAL READERS

The Software Project Survival Guide describes one effective way to conduct a
software project. It is not the only effective way to run a project, and for any

x

Preliminary Survival Briefing

specific project it might not be the optimum way. The extremely knowledge-
able technical leader will usually be able to come up with a better, fuller,
more customized development plan than the generic one described here. But
the plan described here will work much better than a hastily thrown together
plan or no plan at all, and no plan at all is the most common alternative.

The plan described in the following chapters has been crafted to address
the most common weaknesses that software projects face. It is loosely based
on the “key process areas” identified by the Software Engineering Institute
(SEI) in Level 2 of the SEI Capability Maturity Model. The SEI has identified
these key processes as the critical factors that enable organizations to meet
their schedule, budget, quality, and other targets. About 85 percent of all
organizations perform below Level 2, and this plan will support dramatic
improvements in those organizations. The SEI has defined the key process
areas of Level 2 as follows:

0 Project planning

0 Requirements management

0 Project tracking and oversight

0 Configuration management

0 Quality assurance

0 Subcontract management

This book addresses all of these areas except subcontract management.

THIS BOOK’S FOUNDATION

In writing this book, I have kept three primary references at my elbow that
have been invaluable resources, in addition to the many other resources I’ve
drawn from. I’ve tried to condense the contents of these three references and
present them in the most useful way that I can.

The first reference is the Software Engineering Institute’s Key Practices
of the Capability Maturity Model, Version 1.1. This book is a gold mine of hard-
won industry experience in prioritizing implementation of new develop-
ment practices. At almost 500 pages it is somewhat long, and even at that
length the information is still dense. It is not a tutorial and so is not intended
for the novice reader. But for someone who has a basic understanding of the
practices it describes, the summary and structure that Key Practices provides

xi

Preliminary Survival Briefing

is a godsend. This book is available free on the Internet at http://
www.sei.cmu.edu/ or from the National Technical Information Service (NTIS)
branch of the U.S. Department of Commerce in Springfield, Virginia.

The second reference is the NASA Software Engineering Laboratory’s
(SEL’s) Recommended Approach to Software Development, Revision 3. The SEL
was the first organization to receive the IEEE Computer Society’s Process
Achievement Award. Many keys to the success of its process are described
in the Recommended Approach. Whereas the SEI’s document describes a set
of practices without showing how to apply them to a specific project, the
Recommended Approach describes a structured sequence of practices. The two
volumes together form a complementary set. This book is also available free
on the Internet at http://fdd.gsfc.nasa.gov/seltext.html.

The final “book” at my elbow has been my own experience. I am writ-
ing not as an academician who wants to create a perfect theoretical frame-
work, but as a practitioner who wants to create a practical reference that
will aid me in my work and my clients in theirs. The information drawn
together here will make it easier for me to plan and conduct my next project
and easier to explain its critical success factors to my clients. I hope it does
the same for you.

Steve McConnell
Bellevue, Washington

August 1997

Survival Concepts

Well-defined development processes are important and neces-

sary elements of software project survival. With well-defined

processes, software personnel can spend most of their time on

productive work that moves the project steadily toward comple-

tion. With poorly planned processes, developers spend a lot of

their time correcting mistakes. Much of the leverage for project

success is contained in upstream activities, and knowledgeable

software stakeholders ensure that projects focus enough atten-

tion on upstream activities to minimize problems downstream.

20

I The Survival Mind-Set

efore you begin a mission, you are briefed about its most importantB characteristics. This chapter describes the critical factors that contribute
to software mission success.

THE POWER OF “PROCESS”
This book is about using effective software development processes. The
phrase “software processes” can mean a lot of different things. Here are some
examples of what I mean by “software processes:”

0 Committing all requirements to writing.

0 Using a systematic procedure to control additions and changes
to the software’s requirements.

0 Conducting systematic technical reviews of all requirements, de-
signs, and source code.

0 Developing a systematic Quality Assurance Plan in the very early
stages of the project that includes a test plan, review plan, and
defect tracking plan.

0 Creating an implementation plan that defines the order in which
the software’s functional components will be developed and
integrated.

0 Using automated source code control.

0 Revising cost and schedule estimates as each major milestone is
achieved. Milestones include the completion of requirements
analysis, architecture, and detailed design as well as the comple-
tion of each implementation stage.

These processes are beneficial in ways that will shortly become apparent.

NEGATIVE VIEW OF PROCESS

The word “process” is viewed as a four-letter word by some people in the
software development community. These people see “software processes”
as rigid, restrictive, and inefficient. They think that the best way to run a
project is to hire the best people you can, give them all the resources they ask
for, and turn them loose to let them do what they’re best at. According to this
view, projects that run without any attention to process can run extremely
efficiently. People who hold this view imagine that the relationship between
work and productivity over the course of a project looks like the chart shown
in Figure 3-1 on the facing page.

21

3 Survival Concepts

People who hold this view acknowledge that some amount of “thrash-
ing,” or unproductive work, will take place. Developers will make mistakes,
they agree, but they will be able to correct them quickly and efficiently—
certainly at less overall cost than the cost of “process.”

0%

Percent
of Effort

Time

100% Thrashing

Beginning
of Project

End of
Project

Productive Work

FIGURE 3-1 Mistaken perception that ignoring process increases the proportion of pro-
ductive work on projects.

Adding process, then, is thought to be pure overhead and simply takes
time away from productive work, as shown in Figure 3-2.

0%

Percent
of Effort

Time

100% Thrashing

Beginning
of Project

End of
Project

Process

Productive Work

FIGURE 3-2 Mistaken perception that an attention to process will decrease the propor-
tion of productive work. (Process is seen as pure overhead.)

22

I The Survival Mind-Set

This point of view has intuitive appeal. At the beginning of a project
(shown by the darker shaded areas), a focus on process certainly does take
time away from productive work. If that trend continued throughout a
project (shown by the lighter shaded areas), it wouldn’t make sense to spend
much time on process.

Software industry experience with medium-size projects, however, has
revealed that the trend shown in Figure 3-2 does not continue throughout
the project. Projects that don’t pay attention to establishing effective pro-
cesses early on are forced to slap them together later, when slapping them
together takes more time and does less good. Here are some scenarios that
illustrate why earlier is better:

0 Change control. In the middle of the project, team members infor-
mally agree to implement a wide variety of changes that are di-
rectly proposed to them by their manager or customer. They don’t
begin controlling changes systematically until late in the project.
By that time, the scope of the product has expanded by 25 to 50
percent or more, and the budget and the schedule have expanded
accordingly.

0 Quality assurance. Projects that don’t set up processes to eliminate
defects in early stages fall into extended test-debug-reimplement-
retest cycles that seem interminable. So many defects are reported
by testing that by the end of the project, the “change control board”
or “feature team” may be meeting as often as every day to priori-
tize defect corrections. Because of the vast number of defects, the
software has to be released with many known (albeit low priority)
defects. In the worst case, the software might never reach a level
of quality high enough for it to be released.

0 Uncontrolled revisions. Major defects discovered late in the project
can cause the software to be redesigned and rewritten during test-
ing. Since no one planned to rewrite the software during testing,
the project deviates so far from its plans that it essentially runs
without any planning or control.

23

3 Survival Concepts

0 Defect tracking. Defect tracking isn’t set up until late in the project.
Some reported defects are not fixed simply because they are for-
gotten, and the software is released with these defects even
though they would have been easy to fix.

0 System integration. Components developed by different develop-
ers are not integrated with one another until the end of the project.
By the time the components are integrated, the interfaces between
components are out of synch and much work must be done to
bring them back into alignment.

0 Automated source code control. Source code revision control isn’t
established until late in the project, after developers have begun
to lose work by accidentally overwriting the master copies of
their own or one another’s source code files.

0 Scheduling. On projects that are behind schedule, developers are
asked to reestimate their remaining work as often as once a week
or more, taking time away from their development work.

When a project has paid too little early attention to the processes it will
use, by the end of a project developers feel that they are spending all of their
time sitting in meetings and correcting defects and little or no time extend-
ing the software. They know the project is thrashing. When developers see
they are not meeting their deadlines, their survival impulses kick in and they
retreat to “solo development mode,” focusing exclusively on their personal
deadlines. They withdraw from interactions with managers, customers,
testers, technical writers, and the rest of the development team, and project
coordination unravels.

Far from a steady level of productive work suggested by Figure 3-1,
the medium-size project conducted without much attention to develop-
ment processes typically experiences the pattern shown in Figure 3-3 on
the next page.

24

I The Survival Mind-Set

0%

Percent
of Effort

100%

Thrashing

Process

Time

Beginning
of Project

End of
Project

Productive Work

FIGURE 3-3 Real experience of projects that pay little attention to process. As the project
environment becomes increasingly complicated, thrashing and process both increase.

In this pattern, projects experience a steady increase in thrashing over
the course of a project. By the middle of the project, the team realizes that it
is spending a lot of time thrashing and that some attention to process would
be beneficial. But by then much of the damage has been done. The project
team tries to increase the effectiveness of its process, but its efforts hold the
level of thrashing steady, at best. In some cases, the late attempt to improve
the project’s processes actually makes the thrashing worse.

The lucky projects release their software while they are still eking out
a small amount of productive work. The unlucky projects can’t complete
their software before reaching a point at which 100 percent of their time is
spent on process and thrashing. After spending several weeks or months in
this condition, such a project is typically canceled when management or the
customer realizes that the project is no longer moving forward. If you think
that attention to process is needless overhead, consider that the overhead of
a canceled project is 100 percent.

PROCESS TO THE RESCUE

Fortunately, there are a variety of alternatives to this dismal scenario, and
the best do not rely at all on rigid, inefficient processes (also known as R.I.P.).
Some processes certainly are rigid and inefficient, but I don’t recommend
that projects use them. The approach described in this book requires use of
processes that increase the project’s flexibility and efficiency.

25

3 Survival Concepts

When these kinds of processes are used, the project profile looks like
the one shown in Figure 3-4.

Time

Beginning
of Project

End of
Project

Productive Work
Percent
of Effort

Thrashing

Process

100%

0%

FIGURE 3-4 Experience of projects that focus early attention on process. As the team
gains experience with its processes and fine tunes them to the working environment, the
time spent on process and thrashing both diminish.

During the first few weeks of the project, the process-oriented team will
seem less productive than the process-phobic team because the level of
thrashing will be the same on both projects, and the process-oriented team
will be spending a significant amount of its time on processes.

By the middle of the project, the team that focused on process early will
have reduced the level of thrashing compared to the beginning of the project,
and will have streamlined its processes. At that point, the process-phobic
team will be just beginning to realize that thrashing is a significant problem
and just beginning to institute some processes of its own.

By the end of the project, the process-oriented team will be operating at
a high-speed hum, with little thrashing, and it will be performing its processes
with little conscious effort. This team tolerates a small amount of thrashing
because eliminating the last bit of thrashing would cost more in overhead than
would be saved. When all is said and done, the overall effort on the project
will be considerably lower than the effort of the process-phobic team.

26

I The Survival Mind-Set

An investment made in process at the beginning
of the project produces large returns

later in the project.

Organizations that have explicitly focused on improving their devel-
opment processes have, over several years, cut their time-to-market by about
one-half and reduced their costs and defects by factors of 3 to 10. Over a 5-
year period, Lockheed cut its development costs by 75 percent, reduced its
time-to-market by 40 percent, and reduced its defects by 90 percent. Over a
6.5-year period, Raytheon tripled its productivity and realized a return on
investment (ROI) in process improvement of almost 8 to 1. Bull HN realized
an ROI of 4 to 1 after 4 years of software process improvement efforts, and
Schlumberger realized an ROI of almost 9 to 1 after 3.5 years of software
process improvement. NASA’s Software Engineering Laboratory cut its
average cost per mission by 50 percent and its defect rate by 75 percent over
an 8-year period while dramatically increasing the complexity of software
used on each mission. Similar results have been reported at Hughes, Loral,
Motorola, Xerox and other companies that have focused on systematically
improving their software processes.

Here’s the best news: Can you guess the average cost of these improve-
ments in productivity, quality, and schedule performance? It’s about 2 percent
of total development costs—typically about $1,500 per developer per year.

PROCESS VS. CREATIVITY AND MORALE

One of the common objections to putting systematic processes in place is that
they will limit programmers’ creativity. Programmers do indeed have a high
need to be creative. Managers and project sponsors also have a need for
projects to be predictable, to provide progress visibility, and to meet sched-
ule, budget, and other targets.

The criticism that systematic processes limit developers’ creativity is
based on the mistaken idea that there is some inherent contradiction between
developers’ creativity and the satisfaction of management objectives. It is

27

3 Survival Concepts

certainly possible to create an oppressive environment in which program-
mer creativity and management goals are placed at odds, and many com-
panies have done that, but it is just as possible to set up an environment in
which those goals are in harmony and can be achieved simultaneously.

Companies that have focused on process have found that effective pro-
cesses support creativity and morale. In a survey of about 50 companies, only
20 percent of the people in the least process-oriented companies rated their
staff morale as “good” or “excellent.” In organizations that paid more atten-
tion to their software processes, about 50 percent of the people rated their staff
morale as good or excellent. And in the most process-sophisticated organiza-
tions, 60 percent of the people rated their morale as good or excellent.

Programmers feel best when they’re most productive. Good project
leadership establishes a clear vision and then puts a process framework into
place that allows programmers to feel incredibly productive. Programmers
dislike weak leadership that provides too little structure because they end
up working at cross purposes and, inevitably, are forced to throw away huge
chunks of their work. Programmers appreciate enlightened leadership that
emphasizes predictability, visibility, and control.

The appropriate response to the so-called contradiction between pro-
cess and creativity is that none of the processes described in this book will
limit programmers’ creativity in any way that matters. Most provide a sup-
porting structure that will free programmers to be more creative about the
technical work that matters and free them from the distractions that typically
consume their attention on poorly run projects.

TRANSITIONING TO A SYSTEMATIC PROCESS

If a project team isn’t currently using a systematic process, one of the easi-
est ways to transition to one is to map out the current software development
process, identify the parts of that process that aren’t working, and then try
to fix those parts. Although project teams will sometimes claim that they
don’t currently have a process, every project team has a process of some
kind. (If they claim not to have one, they probably just don’t have a very
good one.)

28

I The Survival Mind-Set

The least sophisticated process typically looks like this:

1. Discuss the software that needs to be written.

2. Write some code.

3. Test the code to identify the defects.

4. Debug to find root causes of defects.

5. Fix the defects.

6. If the project isn’t done yet, return to step 1.

This book describes a more sophisticated and more effective software process.
One obstacle to creating a systematic software process is that project

teams are afraid they will err on the side of having too much process—that
their process will be overly bureaucratic and create too much overhead for
the project. This is typically not a significant risk for several reasons:

0 A project that uses the approach described in this book will have
a fairly sophisticated process without incurring much overhead.

0 Software projects are often larger than they at first appear. Far
more projects err on the side of too little process than too much.

0 Starting with too much process and loosening some of the pro-
cesses later on, if needed, is easier than starting with too little
process and trying to add additional processes once a project is
under way.

0 The cost and schedule penalty for having too much process is far
smaller than the penalty for having too little process, for reasons
I will explain next.

UPSTREAM, DOWNSTREAM

Good software processes are designed to root out problems early in the
project. This concept is important enough to discuss in some detail.

You’ll sometimes hear experienced software developers talk about the
“upstream” and “downstream” parts of a software project. The word “up-
stream” simply refers to the early parts of a project such as requirements
development and architecture, and “downstream” refers to the later parts
such as construction and system testing.

29

3 Survival Concepts

I have found that this distinction between “upstream” and “down-
stream” is a fundamentally useful way to think about a software project. The
work developers do early in the project is placed into a stream and has to be
fished back out later in the project. If the early work is done well, the work
that’s fished out later is healthy and contributes to project success. If the early
work is done poorly, the work that’s fished out later can severely impair the
project. In extreme circumstances, it can prevent the project from ever get-
ting finished.

Researchers have found that an error inserted into the project stream
early—for example, an error in requirements specification or architecture—
tends to cost 50 to 200 times as much to correct late in the project as it does
to correct close to the point where it was originally put into the stream. Fig-
ure 3-5 illustrates this effect.

Phase That a
Defect Is Created

Phase That a Defect Is Corrected

Requirements Architecture Detailed
design

Construction Maintenance

Requirements

Architecture

Detailed design

Construction

Cost to
Correct

FIGURE 3-5 Increase in defect cost as time between defect creation and defect correction
increases. Effective projects practice “phase containment”—the detection and correction
of defects in the same phase in which they are created.

30

I The Survival Mind-Set

One sentence in a requirements specification can easily turn into sev-
eral design diagrams. Later in the project, those diagrams can turn into
hundreds of lines of source code, dozens of test cases, many pages of end-
user documentation, help screens, instructions for technical support person-
nel, and so on.

If the project team has an opportunity to correct a mistake at require-
ments time when the only work that has been done is the creation of a one-
sentence requirements statement, it makes good sense for the team to correct
that statement rather than to correct all the various manifestations of the
inadequate requirements statement downstream. This idea is sometimes
called “phase containment,” and refers to the detection and correction of
defects in the same phase in which the defects are introduced.

Successful project teams create their own
opportunities to correct upstream problems
by conducting thorough, careful reviews of

requirements and architecture.

Because no code is generated while the upstream activities are con-
ducted, these activities might seem as though they are delaying “the real
work” of the project. In reality, they are doing just the opposite. They are
laying the groundwork for the project’s success.

Erring on the side of too much process will marginally increase the
project’s overhead, but erring on the side of too little allows defects to slip
through that must be corrected at 50 to 200 times the efficient cost of correct-
ing them. For this reason, the smart money errs on the side of too much
process rather than on the side of too little.

CONE OF UNCERTAINTY

One of the reasons that mistakes made early in a project cost 50 to 200 times
as much to correct downstream as upstream is that the upstream decisions
tend to be farther reaching than the downstream decisions.

31

3 Survival Concepts

Early in the project, a project team addresses the large issues like whether
to support Windows NT and the Macintosh or just Windows NT, and
whether to provide fully customizable reports or fixed format reports. In the
middle of the project, a project team addresses medium-size issues, such as
how many subsystems to have, how in general to handle error-processing, and
how to adapt a printing routine from an old project to the current project. Late
in the project, a project team addresses small issues, such as which technical
algorithm to use and whether to allow the user to cancel an operation when
it’s partway complete. As the cone of uncertainty in Figure 3-6 suggests, soft-
ware development is a process of continuous refinement, which proceeds from
large grain to small grain, from large decisions to small decisions. The time
burned on a software project is the time required to think through and make
these decisions. Decisions made at one stage of the project affect the next set
of decisions.

Initial product
definition

Approved product
definition

Requirements
development

Architecture

Detailed
design

Product
complete

Size
Estimate
Growth
(in lines
of source
code)

-50%

-25%

0%

-75%

-100%

75%

100%

50%

25%

FIGURE 3-6 Cone of uncertainty. Decision-making on a software project progresses
from large grain to small grain. The project team can’t know much about the decisions to
be made in a specific phase until it has completed most of the work for the phase that im-
mediately precedes it.

32

I The Survival Mind-Set

Before the project team has actually made the first set of decisions, it
can only make the most general educated guess about the decisions that will
be made later in the project. After the set of decisions at one level of granu-
larity have been made, a team can make pretty accurate estimates of the
kinds of decisions that will need to be made at the next level of granularity.
The project team makes the best decisions it can at the large-grain level, but
sometimes unforeseen (and unforeseeable) issues at the fine-grain level
percolate back up to a larger context, and the need to cancel an operation
when it’s partway complete means that the project team has to redesign a
routine, a module, or a subsystem.

If you want to understand what software development is all about, you
need to understand that the project team has to think through and make all
the decisions in one stage before it can know enough about the next stage
even to estimate the work involved in it.

IMPLICATIONS FOR PROJECT ESTIMATION

The cone of uncertainty has strong implications for software project estima-
tion. It implies that it is not only difficult to estimate a project accurately in
the early stages, it is theoretically impossible. At the end of the requirements
development phase, the scope of the project will be determined by myriad
decisions yet to be made during architecture, detailed design, and construc-
tion. The person who claims to be able to estimate the impact of those myriad
decisions before they are actually made is either a prophet or not very well
informed about the intrinsic nature of software development.

On the other hand, the person who seeks to control the way those de-
cisions are made in order to meet the project’s schedule or budget targets is
operating sensibly. You can set firm schedule and budget targets early in the
project as long as you’re willing to be ruthless about cutting planned func-
tionality to meet those targets. Keys to success in meeting targets in this way
include setting crystal clear and non-conflicting goals at the beginning of the
project, keeping the product concept very flexible, and then actively track-
ing and controlling development work throughout the rest of the project.

33

3 Survival Concepts

Early in the project you can have
firm cost and schedule targets

or a firm feature set, but not both.

Survival Check

T Project leadership understands the critical role of well-defined
processes and supports them.

T The project’s processes are generally oriented toward detecting
as many problems upstream as possible.

T Project leadership recognizes that estimates made during the first
half of the project are inherently imprecise and will need to be
refined as the project progresses.

283

INDEX

A
ACM, defined, 273
applications programs, defined,

273. See also software
architecture

building construction vs.
software development, 144

buy vs. build decisions, 149
characteristics of, 145–52
completion of, 152–53
correcting defects, 189
dealing with changes, 148–49
vs. detailed design, 188–89
defined, 273
functional considerations,

149–50
notation, 147
as planning activity, 37
and requirements traceability,

151
reuse analysis, 149, 188
simplifying, 145–46
Software Architecture docu-

ment, 153
Stage 1 considerations, 196–97
and Staged Delivery Plan,

151–52
subsystems in, 146–47, 146, 147
system overview, 145
when to begin work, 144–45

archiving project media, 242–43
automated revision control, 77–78

B
baseline, 121–22, 273
beta testing, 136–38, 136
bills of rights, 7–8
books, 258–60
budget, developing initial target,

89–91. See also estimating
builds

daily build and smoke test,
205–6, 205

defined, 273
integrating new source code,

203–4
role of coordinator, 105

C
change boards

and Change Proposals, 75–76,
274

control issues, 78–82
defined, 74–75, 274
importance during construc-

tion, 211
post-release meeting, 238

change control
benefits, 76–78
committing to, 82
common issues, 78–82
during construction, 210–11
defined, 74, 274

change control, continued
and Detailed Design Docu-

ments, 196
and estimating, 161
list of work products, 80–82, 81
and quality assurance, 139
small changes, 79
timing issues, 79
version control, 75, 77–78

Change Control Plan, 82, 274
Change Proposal, 75–76, 274
code reading, defined, 274
code reviews. See technical

reviews
coding. See construction; source

code
Coding Standard, 200–201, 274
compatibility testing, 137–38
complexity, 202, 274
cone of uncertainty, 30–33, 31, 274
construction

Coding Standard, 200–201, 274
daily build and smoke test,

205–6, 205
defined, 274
developing plan, 189
integrating code into builds,

203–4
progress tracking, 208–10
and project goals, 202
role in software development

process, 212
and simplicity, 202

Page numbers in italics refer to tables, figures, or illustrations.

284

Index

construction, continued
Stage 1 considerations,

207–8, 207
and stage planning, 176

control, project, 41–42, 274.
See also change control

costs. See also estimating
developing initial target, 89–91
and Planning Checkpoint

Review, 38–40
upstream vs. downstream,

 29–30, 29, 36
creativity vs. process, 26–27
cross-training, 195
customers, 7–8, 210, 275.

See also end users
Cutover Handbook, defined, 275

D
daily build and smoke test

defined, 275
overview, 205–6
role in system testing, 217–18
steps in process, 205

decision making
as ongoing activity, 168
upstream vs. downstream,

30–32, 36
defects

correcting architecture, 189
cost to correct, 29–30, 29, 36
counting, 224–25, 224
defined, 275
in detailed design, 189, 192–93
measuring density, 225–26
modeling, 229
pooling reports, 226–27, 227
in requirements, 193–94
seeded, 227–29, 228
and stage planning, 177
tracking, 128, 129–30, 130, 230,

275
upstream vs. downstream,

29–30, 36
deliverables, 63–64, 65–68, 275.

See also work products
delivery, defined, 275. See also

releases; staged delivery

Deployment Document,
defined, 275

design, defined, 275. See also
detailed design; prototypes

design reviews, 192–95, 275.
See also technical reviews

detailed design
vs. architecture, 188–89
correcting defects, 189, 192–93
defined, 188, 265
formality in, 189–91, 190
Stage 1 considerations, 196–97
and stage planning, 176
technical reviews for, 192–95

Detailed Design Document, 196,
276

developers. See also project teams
creativity vs. process, 26–27
and design formality, 189–91,

190
and estimating, 160
role of, 105
support for system testing, 218

documentation, end-user, 122–23
documents

Change Control Plan, 82, 274
Change Proposal, 75–76, 274
Coding Standard, 200–201, 274
Detailed Design Document,

196, 276
downloading examples, 260
estimation procedures, 157
Individual Stage Plan, 175, 276
nonuser-interface requirements,

123
Quality Assurance Plan, 37,

127–29, 138–39, 278
Release Checklist, 230–31,

232–33, 278
Release Sign-off Form, 233–34,

234, 279
risk-management plan, 100, 100
Software Architecture

Document, 153, 279
Software Construction Plan,

189, 280
Software Development Plan, 37,

96, 110, 161, 169, 254, 280
Software Integration Procedure,

203–4, 204, 280

documents, continued
Software Project History, 249,

250–51, 252, 280
Software Project Log, 243–44,

280
Staged Delivery Plan, 37,

151–52, 167, 281
Top 10 Risks List, 97, 98–99, 281
User Interface Prototype,

117–19, 282
User Interface Style Guide, 119,

282
User Manual/Requirements

Specification, 122–23, 176,
282

vision statement, 86–88, 168,
282

downstream vs. upstream, 28–30,
36, 276

E
end users

defined, 276
involving in software

development, 46–47, 116
role of liaison, 105
writing documentation for,

122–23
errors. See defects
estimating

and change control, 161
and cone of uncertainty, 32
list of activities, 157–59, 158
NASA example, 90–91, 90,

254–57
nontechnical considerations,

161–62
and overtime, 159
pressures on, 161–62
procedure guidelines, 157–61
revising, 90, 90, 160, 239–41,

255
role in planning, 37
rules of thumb, 156
vs. slips, 241
and time accounting, 107,

108–9, 209
using software tools, 159

executive sponsors, 88–89

285

Index

F
flow, project, 53–57
functionality

architectural considerations,
149–50

Stage 1 considerations,
207–8, 207

unrequired, 193
funding, and Planning Check-

point Review, 38–40

G
go/no-go decision, 38, 276

H
hands-off vs. hands-on manage-

ment style, 184–85
hierarchy of needs, 4–7, 5, 6
high level design, defined, 276
history, project, 248–52

I
IEEE, defined, 276
implementation, defined, 276.

See also construction
Individual Stage Plan, 175, 276
information systems (IS), defined,

276
inspections, 195, 276.

See also technical reviews
install programs, 178, 276
integration, 23, 277
integration procedure, 203–4, 204
integration testing, 128, 277
Internet resources, 260

L
lines of code, 225–26, 277.

See also source code
low level, defined, 277

M
maintainability, defined, 277
make files. See software build

instructions (make files)
Maslow, Abraham, 4–5
micromanagement, 183
milestones

and change control, 76–77
creating list, 180–81
miniature, 179–84
role of estimates, 161
sample list, 65–68
short-term vs. long-term, 180
and Software Development

Plan, 161
top-level, 63–69, 64, 65–68

miniature milestones
creating list, 180–81
defined, 277
how often to define, 182
missing, 184
political considerations, 183
purpose of, 179–80
and small projects, 182–83
tools for tracking, 208–9

minimalism, 48
morale vs. process, 26–27

N
NASA

Software Engineering
Laboratory, 90–91, 254–57

useful books available, 258
notation, 147

O
object-oriented design, 191, 277
object-oriented programming,

191, 277
office space, 44–46
overhead, and risk management,

94–95, 94
overtime, 159

P
paper storyboards, 118
people-aware management

accountability, 101–7, 277
peopleware, 43–46
personnel. See also project teams

assessing, 168–69
organizing teams, 104–7
peopleware, 43–46
project survival test, 15
staffing, 102–4

phases. See also stages
conceptual, 52–53, 52
defined, 277
distribution of activity, 57–61,

58, 60, 61
managing transitions, 255
in staged delivery projects, 59,

63–64, 64, 65–68
planning. See also staged delivery

Change Control Plan, 82, 274
cost savings of, 29–30, 36
developing vision statement,

86–88
distribution of activity, 57–61,

58, 60, 61
examples, 37
final preparations, 156–67
importance of, 36
NASA example, 90–91, 90,

254–57
ongoing activities, 167–69
Planning Checkpoint Review,

38–40
publicizing, 91–93
Quality Assurance Plan, 37,

127–29, 138–39, 278
risk management, 41, 100
Software Development Plan, 37,

96, 110, 161, 169, 254, 280
Staged Delivery Plan, 37,

151–52, 167, 281
Planning Checkpoint Review,

38–40, 277
postmortems, 248–49, 278

286

Index

processes, software
benefits of, 24–26
defined, 20
example, 28
negative view, 20–24
uses for, 22–23

productivity
vs. process, 20–30
reestimating at end of each

stage, 239–40
and technical reviews, 195

product manager, role of, 105
products vs. projects, 4.

See also work products
programmers. See developers
programming, defined, 278.

See also source code
project manager, role of, 104
projects. See also software

bill of rights, 7–8
breaking into stages,

163–64, 163
change control, 22, 74–82
code growth curve, 61–63, 62
collecting history, 248–52
controlling, 13–14, 41–42, 74–82,

274
determining status, 42–43
developing initial targets, 89–91
distribution of activity, 57–61,

58, 60, 61
estimating, 32, 156–62
executive sponsorship, 88–89
funding approach, 38–40
hierarchy of needs, 4–7, 5, 6
milestones, 63–69, 64, 65–68
personnel, 15, 43–46, 102–7,

168–69
phases, 52–53, 52, 57–64, 58, 60,

61, 64, 65–68
planning (see planning)
postmortem review, 248–49, 278
vs. products, 4
prototypes, 117–23
quality assurance, 22, 127–38

(see also quality assurance
(QA))

requirements development, 12,
114–23

risk management, 14, 41,
93–101

projects, continued
sample deliverables list, 63–64,

65–68
scheduling, 23, 89–91, 165
source code control, 23, 74–82,

280
standards for, 4, 200–201
survival issues, 7–8, 12–15
system integration, 23, 203–4
system testing, 216–19
tracking (see project tracking)
upstream vs. downstream

aspects, 28–30, 36
user involvement, 46–47, 116
visibility of, 42–43, 92–93, 209,

282
vision statement, 86–88

project teams. See also developers
assessing, 168–69
bill of rights, 8
dynamics of, 103–4
evaluating performance against

plans, 241–42
involving in planning, 91–93
managing, 43–46
office space for, 44–46
organizing, 104–7
people-aware management

accountability, 101–7, 277
role of risk officer, 96–97, 106
shipping focus of, 48–49
staff buildup, 102–4
tiger teams, 106–7
time accounting, 107, 108–9, 277

project tracking
during construction, 208–10
of defects, 128, 129–30, 130, 230,

275
defined, 278
miniature milestones, 179–84
of risks, 100
and stage planning, 178

prototypes
as baseline specification, 121–22
as basis for user documenta-

tion, 122–23
defined, 268
fully extending, 120–21
revising, 118–19
for user interface, 117–19

pseudocode, 191, 278

Q
Quality Assurance Plan

defined, 37, 278
elements of, 127–29
list of work products, 138–39,

138–39
quality assurance (QA)

beta testing, 136–38, 136
defect tracking, 128, 129–30,

130, 230, 275
defined, 278
in miniature milestone process,

181–82
need for process, 22
rationale for, 126–27
role of testers, 105
and software release, 140, 232
and stage planning, 177
strategic, 218–19
supporting activities, 140
system testing, 128, 133–35,

218–19
technical reviews, 128, 130–33

R
readability, defined, 278
real-time software, defined, 278
reestimating, 90, 90, 160, 239–41,

255
Release Checklist, 230–31, 232–33,

278
releases

basis for, 229–30
checklist of activities, 230–31,

232–33, 278
defined, 278
post-release activity, 238
sign-off form, 233–34, 234, 279
and staged delivery projects,

166–67, 178, 222–23
timing, 223–30

Release Sign-off Form, 233–34,
234, 279

requirements
defined, 279
detecting defects, 193–94
flow-down concept, 189
missing, 193

287

Index

requirements, continued
survival issues, 12
traceability, 134, 151, 189, 279
unrequired functionality, 193
unresolved, 188
updating, 176

requirements development
activities, 114–15
vs. architectural work, 144–45
change control, 74–82
defined, 269
involving end users, 116
list of steps in process, 115–16
nonuser-interface, 123
role in planning, 37
User Interface Prototype,

117–23
requirements specification,

defined, 279. See also User
Manual/Requirements
Specification

resources, 258–60
reusability, 149, 188, 279
reviews. See Planning Checkpoint

Review; technical reviews
revision control, 22, 75, 77–78, 279
risk, defined, 279
risk management

committing to, 95–96
listing risks, 97, 98–99
as ongoing activity, 167
and overhead, 94–95, 94
overview, 41
reporting risks anonymously,

101
role of risk officer, 96–97, 106
sample Top 10 Risks List, 98–99
and stage planning, 177
tracking risks, 100
writing plan, 100, 100

S
scheduling, 23, 89–91, 165, 241
seeded defects, 227–29, 228
shipping, focus on, 48–49.

See also releases
shrink-wrap software, defined,

279
sign-off forms, 233–34, 234

skeleton, system, 207–8, 207
slips, 241
smoke tests, 205–6, 205, 217–18
software. See also projects

architecture, 144–53
concept of process, 20–30
creativity vs. process, 26–27
daily build and smoke test,

205–6, 205
defining projects, 59
detailed design, 188–97
determining feature set, 89–91
integrating code into builds,

203–4
minimalism in, 48
product vs. project standards, 4
for project estimating, 159
quality assurance, 127–38

(see also quality assurance
(QA))

releasing, 140, 222–34
requirements development, 12,

114–23
system testing, 216–19
user documentation, 122–23
version control, 75, 77–78

Software Architecture Document,
153, 279

software build instructions (make
files), defined, 280

Software Construction Plan, 189,
280

Software Development Plan
creating, 110, 254
defined, 37, 254, 280
and milestones, 161
revising, 169
risk management in, 96

Software Engineering Laboratory,
NASA, 90–91, 254–57, 258

Software Integration Procedure,
203–4, 204, 280

Software Project History, 249,
250–51, 252, 280

Software Project Log, 243, 280
source code. See also construction

Coding Standard, 200–201, 274
controlling changes, 23, 74–82,

280
controlling quality, 200–202
debugging, 128

source code, continued
defined, 280
growth curve, 61–63, 62
integrating into builds, 203–4
need for process, 23
tracing, 128, 280

specifications, defined, 280. See
also requirements; User
Manual/Requirements
Specification

sponsors, executive, 88–89
staffing, 102–4. See also personnel;

project teams
staged delivery. See also Staged

Delivery Plan
activity overlap, 57–59, 58
activity percentages, 60–61, 60,

61
beginning-of-stage planning,

175–79
benefits, 55–56
construction considerations,

176, 207–8, 207
costs, 56–57
defined, 53, 281
detailed design considerations,

176, 196–97
end-of-stage wrap-up, 179
examples of schedules, 165
executing, 238
general phases, 59
illustrated, 54
list of stage activities, 175–79
management styles, 184–85
overview, 53–54, 162–63, 163
planning, 163–64
rationale for, 174–75
requirements updates, 176
role of percentage completion,

166
and software releases, 166–67,

178, 222–23
Stage 1 considerations, 196–97,

207, 207–8
themes for stages, 164–65

Staged Delivery Plan
and architecture, 151–52
defined, 37, 281
illustrated, 54, 163
overview, 162–67
revising, 167

288

Index

stages, 53–54, 280. See also staged
delivery

standards
Coding Standard, 200–201, 274
products vs. projects, 4

storyboards, 118
style guide, for user interface, 119
survival. See projects, survival

issues
system integration, 23, 203–4
systems, defined, 281
system skeleton, building, 207–8,

207
systems software, defined, 281
system tests

defined, 281
developing along with

software, 134
as element of Quality Assur-

ance Plan, 128
extent of, 217
keys to success, 133–35
quality assurance role, 216, 217
role of daily smoke test, 217–18
support for, 218

T
tasks, time-accounting list, 107,

108–9. See also miniature
milestones

teams. See project teams
technical reviews

defined, 130, 281
for detailed design, 192–95
as element of Quality

Assurance Plan, 128
keys to success, 132–33
in miniature milestone process,

181–82
overview, 130–32
and project objectives, 195
for source code, 201
and stage planning, 177

test cases, 176, 281
tests. See also system tests

defined, 281
project survival issues, 12–15
role of testers, 105

tests, continued
smoke tests, 205–6, 205, 217–18
unit tests, 128, 282

tiger teams, 106–7
time accounting, 107, 108–9, 209
tool smith, role of, 105
top level, 63–64, 64, 65–68, 281
Top 10 Risks List, 97, 98–99, 281
traceability, requirements, 134,

151, 189, 279
tracking. See project tracking

U
uncertainty, cone of, 30–33, 31
understandability, defined, 281
Unified Modeling Language

(UML), defined, 282
unit tests, 128, 282
upstream vs. downstream, 28–30,

36, 282
user documentation. See User

Manual/Requirements
Specification

user interface
defined, 282
developing prototype, 117–19
developing style guide, 119
requirements development,

117–23
role of designer, 105
Stage 1 development, 207, 207

User Interface Prototype, 117–19,
216, 282

User Interface Style Guide, 119,
282

User Manual/Requirements
Specification, 122–23, 176,
216, 282

users. See end users

V
version control, 75, 77–78
visibility, 42–43, 92–93, 209, 282
vision statement

defined, 88, 282
rationale for, 86–88
revising, 168

W
walkthrough, defined, 282
Web sites

for publicizing progress, 92, 93
Survival Guide site, 260

work products
controlling changes, 74–82
defined, 282
listing in Quality Assurance

Plan, 138–39, 138–39
sample list, 80–82, 81

World Wide Web. See Web sites

	Cover
	Copyright page

	Contents
	Acknowledgments
	Preliminary Survival Briefing
	Who Should Read This Book
	Kinds of Projects This Book Covers
	A Note to Advanced Technical Readers
	This Book's Foundation

	Chapter 3: Survival Concepts
	The Power of "Process"
	Negative View of Process
	Process to the Rescue
	Process vs. Creativity and Morale
	Transitioning to a Systematic Process

	Upstream, Downstream
	Cone of Uncertainty
	Implications for Project Estimation

	Index
	A, B, C
	D, E
	F, G, H, I, L, M, N, O, P
	Q, R
	S
	T, U, V, W

