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Preface

Preface

Software developers are caught on the horns of a dilemma. One horn of the
dilemma is that developers are working too hard to have time to learn about
effective practices that can solve most development-time problems; the other
horn is that they won’t get the time until they do learn more about rapid
development.

Other problems in our industry can wait. It’s hard to justify taking time to
learn more about quality when you’re under intense schedule pressure to
“just ship it.” It’s hard to learn more about usability when you’ve worked 20
days in a row and haven’t had time to see a movie, go shopping, work out,
read the paper, mow your lawn, or play with your kids. Until we as an in-
dustry learn to control our schedules and free up time for developers and
managers to learn more about their professions, we will never have enough
time to put the rest of our house in order.

The development-time problem is pervasive. Several surveys have found that
about two-thirds of all projects substantially overrun their estimates (Lederer
and Prasad 1992, Gibbs 1994, Standish Group 1994). The average large
project misses its planned delivery date by 25 to 50 percent, and the size of
the average schedule slip increases with the size of the project (Jones 1994).
Year after year, development-speed issues have appeared at the tops of lists
of the most critical issues facing the software-development community
(Symons 1991).

Although the slow-development problem is pervasive, some organizations
are developing rapidly. Researchers have found 10-to-1 differences in pro-
ductivity between companies within the same industries, and some research-
ers have found even greater variations (Jones 1994).

The purpose of this book is to provide the groups that are currently on the
“1” side of that 10-to-1 ratio with the information they need to move toward
the “10” side of the ratio. This book will help you bring your projects un-
der control. It will help you deliver more functionality to your users in less
time. You don’t have to read the whole book to learn something useful; no
matter what state your project is in, you will find practices that will enable
you to improve its condition.
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Who Should Read This Book?

Slow development affects everyone involved with software development,
including developers, managers, clients, and end-users—even their families
and friends. Each of these groups has a stake in solving the slow-develop-
ment problem, and there is something in this book for each of them.

This book is intended to help developers and managers know what’s pos-
sible, to help managers and clients know what’s realistic, and to serve as an
avenue of communication between developers, managers, and clients so that
they can tailor the best possible approach to meet their schedule, cost, qual-
ity, and other goals.

Technical Leads

This book is written primarily with technical leads or team leads in mind. If
that’s your role, you usually bear primary responsibility for increasing the
speed of software development, and this book explains how to do that.
It also describes the development-speed limits so that you’ll have a firm
foundation for distinguishing between realistic improvement programs and
wishful-thinking fantasies.

Some of the practices this book describes are wholly technical. As a tech-
nical lead, you should have no problem implementing those. Other practices
are more management oriented, and you might wonder why they are in-
cluded here. In writing the book, I have made the simplifying assumption
that you are Technical Super Lead—faster than a speeding hacker; more
powerful than a loco-manager; able to leap both technical problems and
management problems in a single bound. That is somewhat unrealistic, I
know, but it saves both of us from the distraction of my constantly saying,
“If you’re a manager, do this, and if you’re a developer, do that.” Moreover,
assuming that technical leads are responsible for both technical and man-
agement practices is not as far-fetched as it might sound. Technical leads are
often called upon to make recommendations to upper management about
technically oriented management issues, and this book will help prepare you
to do that.

Individual Programmers

Many software projects are run by individual programmers or self-managed
teams, and that puts individual technical participants into de facto techni-
cal-lead roles. If you’re in that role, this book will help you improve your
development speed for the same reasons that it will help bona fide tech-
nical leads.
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Managers

Managers sometimes think that achieving rapid software development is
primarily a technical job. If you’re a manager, however, you can usually do
as much to improve development speed as your developers can. This book
describes many management-level rapid-development practices. Of course,
you can also read the technically oriented practices to understand what your
developers can do at their level.

Key Benefits of This Book

I conceived of this book as a Common Sense for software developers. Like
Thomas Paine’s original Common Sense, which laid out in pragmatic terms
why America should secede from Mother England, this book lays out in
pragmatic terms why many of our most common views about rapid devel-
opment are fundamentally broken. These are the times that try developers’
souls, and, for that reason, this book advocates its own small revolution in
software-development practices.

My view of software development is that software projects can be optimized
for any of several goals—lowest defect rate, fastest execution speed, great-
est user acceptance, best maintainability, lowest cost, or shortest develop-
ment schedule. Part of an engineering approach to software is to balance
trade-offs: Can you optimize for development time by cutting quality? By
cutting usability? By requiring developers to work overtime? When crunch
time comes, how much schedule reduction can you ultimately achieve? This
book helps answer such key trade-off questions as well as other questions.

Improved development speed. You can use the strategy and best prac-
tices described in this book to achieve the maximum possible development
speed in your specific circumstances. Over time, most people can realize dra-
matic improvements in development speed by applying the strategies and
practices described in this book. Some best practices won’t work on some
kinds of projects, but for virtually any kind of project, you’ll find other best
practices that will. Depending on your circumstances, “maximum develop-
ment speed” might not be as fast as you’d like, but you’ll never be completely
out of luck just because you can’t use a rapid-development language, are
maintaining legacy code, or work in a noisy, unproductive environment.

Rapid-development slant on traditional topics. Some of the practices
described in this book aren’t typically thought of as rapid-development prac-
tices. Practices such as risk management, software-development fundamen-
tals, and lifecycle planning are more commonly thought of as “good
software-development practices” than as rapid-development methodologies.
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These practices, however, have profound development-speed implications
that in many cases dwarf those of the so-called rapid-development methods.
This book puts the development-speed benefits of these practices into con-
text with other practices.

Practical focus. To some people, “practical” means “code,” and to those
people I have to admit that this book might not seem very practical. I’ve
avoided code-focused practices for two reasons. First, I’ve already written
800 pages about effective coding practices in Code Complete (Microsoft Press,
1993). I don’t have much more to say about them. Second, it turns out that
many of the critical insights about rapid development are not code-focused;
they’re strategic and philosophical. Sometimes, there is nothing more prac-
tical than a good theory.

Quick-reading organization. I’ve done all I can to present this book’s
rapid-development information in the most practical way possible. The first
400 pages of the book (Parts I and II) describe a strategy and philosophy
of rapid development. About 50 pages of case studies are integrated into that
discussion so that you can see how the strategy and philosophy play out
in practice. If you don’t like case studies, they’ve been formatted so that
you can easily skip them. The rest of the book consists of a set of rapid-
development best practices. The practices are described in quick-reference
format so that you can skim to find the practices that will work best on your
projects. The book describes how to use each practice, how much sched-
ule reduction to expect, and what risks to watch out for.

The book also makes extensive use of marginal icons and text to help you
quickly find additional information related to the topic you’re reading about,
avoid classic mistakes, zero in on best practices, and find quantitative sup-
port for many of the claims made in this book.

A new way to think about the topic of rapid development. In no other
area of software development has there been as much disinformation as in
the area of rapid development. Nearly useless development practices have
been relentlessly hyped as “rapid-development practices,” which has caused
many developers to become cynical about claims made for any development
practices whatsoever. Other practices are genuinely useful, but they have
been hyped so far beyond their real capabilities that they too have contrib-
uted to developers’ cynicism.

Each tool vendor and each methodology vendor want to convince you that
their new silver bullet will be the answer to your development needs. In no
other software area do you have to work as hard to separate the wheat from
the chaff. This book provides guidelines for analyzing rapid-development
information and finding the few grains of truth.
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This book provides ready-made mental models that will allow you to assess
what the silver-bullet vendors tell you and will also allow you to incorpo-
rate new ideas of your own. When someone comes into your office and says,
“I just heard about a great new tool from the GigaCorp Silver Bullet Com-
pany that will cut our development time by 80 percent!” you will know how
to react. It doesn’t matter that I haven’t said anything specifically about the
GigaCorp Silver Bullet Company or their new tool. By the time you finish
this book, you’ll know what questions to ask, how seriously to take
GigaCorp’s claims, and how to incorporate their new tool into your devel-
opment environment, if you decide to do that.

Unlike other books on rapid development, I’m not asking you to put all of
your eggs into a single, one-size-fits-all basket. I recognize that different
projects have different needs, and that one magic method is usually not
enough to solve even one project’s schedule problems. I have tried to be
skeptical without being cynical—to be critical of practices’ effectiveness but
to stop short of assuming that they don’t work. I revisit those old, overhyped
practices and salvage some that are still genuinely useful—even if they aren’t
as useful as they were originally promised to be.

Why is this book about rapid development so big? Developers in the
IS, shrink-wrap, military, and software-engineering fields have all discovered
valuable rapid-development practices, but the people from these different
fields rarely talk to one another. This book collects the most valuable prac-
tices from each field, bringing together rapid-development information from
a wide variety of sources for the first time.

Does anyone who needs to know about rapid development really have time
to read 650 pages about it? Possibly not, but a book half as long would have
had to be oversimplified to the point of uselessness. To compensate, I’ve
organized the book so that it can be read quickly and selectively—you can
read short snippets while you’re traveling or waiting. Chapters 1 and 2 con-
tain the material that you must read to understand how to develop products
more quickly. After you read those chapters, you can read whatever inter-
ests you most.

Why This Book Was Written

Clients’ and managers’ first response to the problem of slow development
is usually to increase the amount of schedule pressure and overtime they
heap on developers. Excessive schedule pressure occurs in about 75 percent
of all large projects and in close to 100 percent of all very large projects
(Jones 1994). Nearly 60 percent of developers report that the level of stress
they feel is increasing (Glass 1994c). The average developer in the U.S. works
from 48 to 50 hours per week (Krantz 1995). Many work considerably more.
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In this environment, it isn’t surprising that general job satisfaction of software
developers has dropped significantly in the last 15 years (Zawacki 1993), and
at a time when the industry desperately needs to be recruiting additional
programmers to ease the schedule pressure, developers are spreading the
word to their younger sisters, brothers, and children that our field is no fun
anymore.

Clearly our field can be fun. Many of us got into it originally because we
couldn’t believe that people would actually pay us to write software. But
something not-so-funny happened on the way to the forum, and that some-
thing is intimately bound up with the topic of rapid development.

It’s time to start shoring up the dike that separates software developers from
the sea of scheduling madness. This book is my attempt to stick a few fin-
gers into that dike, holding the madness at bay long enough to get the job
started.
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3

Classic Mistakes

Contents
3.1 Case Study in Classic Mistakes
3.2 Effect of Mistakes on a Development Schedule
3.3 Classic Mistakes Enumerated
3.4 Escape from Gilligan’s Island

Related Topics
Risk management: Chapter 5
Rapid-development strategy: Chapter 2

SOFTWARE DEVELOPMENT IS A COMPLICATED ACTIVITY. A typical soft-
ware project can present more opportunities to learn from mistakes than
some people get in a lifetime. This chapter examines some of the classic mis-
takes that people make when they try to develop software rapidly.

3.1 Case Study in Classic Mistakes

The following case study is a little bit like the children’s picture puzzles in
which you try to find all the objects whose names begin with the letter “M”.
How many classic mistakes can you find in the following case study?

Case Study 3-1. Classic Mistakes

Mike, a technical lead for Giga Safe, was eating lunch in his office and look-
ing out his window on a bright April morning.

“Mike, you got the funding for the Giga-Quote program! Congratulations!” It
was Bill, Mike’s boss at Giga, a medical insurance company. “The executive
committee loved the idea of automating our medical insurance quotes. It also

(continued)
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loved the idea of uploading the day’s quotes to the head office every night
so that we always have the latest sales leads online. I’ve got a meeting now,
but we can discuss the details later. Good job on that proposal!”

Mike had written the proposal for the Giga-Quote program months earlier, but
his proposal had been for a stand-alone PC program without any ability to
communicate with the head office. Oh well. This would give him a chance
to lead a client-server project in a modern GUI environment—something he
had wanted to do. They had almost a year to do the project, and that should
give them plenty of time to add a new feature. Mike picked up the phone and
dialed his wife’s number. “Honey, let’s go out to dinner tonight to celebrate...”

The next morning, Mike met with Bill to discuss the project. “OK, Bill. What’s
up? This doesn’t sound like quite the same proposal I worked on.”

Bill felt uneasy. Mike hadn’t participated in the revisions to the proposal, but
there hadn’t been time to involve him. Once the executive committee heard
about the Giga-Quote program, they’d taken over. “The executive committee
loves the idea of building software to automate medical insurance quotes. But
they want to be able to transfer the field quotes into the mainframe computer
automatically. And they want to have the system done before our new rates
take effect January 1. They moved the software-complete date you proposed
up from March 1 to November 1, which shrinks your schedule to 6 months.”

Mike had estimated the job would take 12 months. He didn’t think they had
much chance of finishing in 6 months, and he told Bill so. “Let me get this
straight,” Mike said. “It sounds like you’re saying that the committee added a
big communications requirement and chopped the schedule from 12 months
to 6?”

Bill shrugged. “I know it will be a challenge, but you’re creative, and I think
you can pull it off. They approved the budget you wanted, and adding the
communications link can’t be that hard. You asked for 36 staff-months, and
you got it. You can recruit anyone you like to work on the project and increase
the team size, too.” Bill told him to go talk with some other developers and
figure out a way to deliver the software on time.

Mike got together with Carl, another technical lead, and they looked for ways
to shorten the schedule. “Why don’t you use C++ and object-oriented design?”
Carl asked. “You’ll be more productive than with C, and that should shave a
month or two off the schedule.” Mike thought that sounded good. Carl also
knew of a report-building tool that was supposed to cut development time
in half. The project had a lot of reports, so those two changes would get them
down to about 9 months. They were due for newer, faster hardware, too, and
that could shave off a couple weeks. If he could recruit really top-notch de-
velopers, that might bring them down to about 7 months. That should be close
enough. Mike took his findings back to Bill.

(continued)

Case Study 3-1. Classic Mistakes, continued
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“Look,” Bill said. “Getting the schedule down to 7 months is good, but it isn’t
good enough. The committee was very clear about the 6-month deadline. They
didn’t give me a choice. I can get you the new hardware you want, but you
and your team are going to have to find some way to get the schedule down
to 6 months or work some overtime to make up the difference.”

Mike considered the fact that his initial estimate had just been a ballpark guess
and thought maybe he could pull it off in 6 months. “OK, Bill. I’ll hire a couple
of sharp contractors for the project. Maybe we can find some people with
communications experience to help with uploading data from the PC to the
mainframe.”

By May 1, Mike had put a team together. Jill, Sue, and Tomas were solid, in-
house developers, and they happened to be unassigned. He rounded out the
team with Keiko and Chip, two contractors. Keiko had experience both on
PCs and the kind of mainframe they would interface with. Jill and Tomas had
interviewed Chip and recommended against hiring him, but Mike was im-
pressed. He had communications experience and was available immediately,
so Mike hired him anyway.

At the first team meeting, Bill told the team that the Giga-Quote program was
strategically important to the Giga Safe Corporation. Some of the top people
in the company would be watching them. If they succeeded, there would be
rewards all around. He said he was sure that they could pull it off.

After Bill’s pep talk, Mike sat down with the team and laid out the schedule.
The executive committee had more or less handed them a specification, and
they would spend the next 2 weeks filling in the gaps. Then they’d spend 6
weeks on design, which would leave them 4 months for construction and
testing. His seat-of-the-pants estimate was that the final product would con-
sist of about 30,000 lines of code in C++. Everyone around the table nodded
agreement. It was ambitious, but they’d known that when they signed up for
the project.

The next week, Mike met with Stacy, the testing lead. She explained that they
should begin handing product builds over to testing no later than September
1, and they should aim to hand over a feature-complete build by October 1.
Mike agreed.

The team finished the requirements specification quickly, and dove into design.
They came up with a design that seemed to make good use of C++’s features.

They finished the design by June 15, ahead of schedule, and began coding
like crazy to meet their goal of a first-release-to-testing by September 1. Work
on the project wasn’t entirely smooth. Neither Jill nor Tomas liked Chip, and
Sue had also complained that he wouldn’t let anyone near his code. Mike
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attributed the personality clashes to the long hours everyone was working.
Nevertheless, by early August, they reported that they were between 85-
percent and 90-percent done.

In mid-August, the actuarial department released the rates for the next year,
and the team discovered that they had to accommodate an entirely new rate
structure. The new rating method required them to ask questions about ex-
ercise habits, drinking habits, smoking habits, recreational activities, and other
factors that hadn’t been included in the rating formulas before. C++, they
thought, was supposed to shield them from the effects of such changes. They
had been counting on just plugging some new numbers into a ratings table.
But they had to change the input dialogs, database design, database access,
and communications objects to accommodate the new structure. As the team
scrambled to retrofit their design, Mike told Stacy that they might be a few
days late releasing the first build to testing.

The team didn’t have a build ready by September 1, and Mike assured Stacy
that the build was only a day or two away.

Days turned into weeks. The October 1 deadline for handing over the feature-
complete build to testing came and went. Development still hadn’t handed
over the first build to testing. Stacy called a meeting with Bill to discuss the
schedule. “We haven’t gotten a build from development yet,” she said. “We
were supposed to get our first build on September 1, and since we haven’t
gotten one yet, they’ve got to be at least a full month behind schedule. I think
they’re in trouble.”

“They’re in trouble, all right,” Bill said. “Let me talk to the team. I’ve prom-
ised 600 agents that they would have this program by November 1. We have
to get that program out in time for the rate change.”

Bill called a team meeting. “This is a fantastic team, and you should be meeting
your commitments,” he told them. “I don’t know what’s gone wrong here, but
I expect everyone to work hard and deliver this software on time. You can
still earn your bonuses, but now you’re going to have to work for them. As
of now, I’m putting all of you on a 6-day-per-week, 10-hour-per-day sched-
ule until this software is done.” After the meeting, Jill and Tomas grumbled
to Mike about not needing to be treated like children, but they agreed to work
the hours Bill wanted.

The team slipped the schedule two weeks, promising a feature-complete build
by November 15. That allowed for 6 weeks of testing before the new rates
went into effect in January.

The team released its first build to testing 4 weeks later on November 1 and
met to discuss a few remaining problem areas.
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Tomas was working on report generation and had run into a roadblock. “The
quote summary page includes a simple bar chart. I’m using a report genera-
tor that’s supposed to generate bar charts, but the only way it will generate
them is on pages by themselves. We have a requirement from the sales group
to put the text and bar charts on the same page. I’ve figured out that I can
hack up a report with a bar chart by passing in the report text as a legend to
the bar-chart object. It’s definitely a hack, but I can always go back and
reimplement it more cleanly after the first release.”

Mike responded, “I don’t see where the issue is. We have to get the product
out, and we don’t have time to make the code perfect. Bill has made it crys-
tal clear that there can’t be any more slips. Do the hack.”

Chip reported that his communications code was 95-percent done and that
it worked, but he still had a few more tests to run. Mike caught Jill and Tomas
rolling their eyes, but he decided to ignore it.

The team worked hard through November 15, including working almost all
the way through the nights of the 14th and 15th, but they still didn’t make their
November 15 release date. The team was exhausted, but on the morning of
the 16th, it was Bill who felt sick. Stacy had called to tell him that develop-
ment hadn’t released its feature-complete build the day before. Last week he
had told the executive committee that the project was on track. Another project
manager, Claire, had probed into the team’s progress, saying that she had
heard that they weren’t making their scheduled releases to testing. Bill thought
Claire was uptight, and he didn’t like her. He had assured her that his team
was definitely on track to make their scheduled releases.

Bill told Mike to get the team together, and when he did, they looked defeated.
A month and a half of 60-hour weeks had taken their toll. Mike asked what
time today they would have the build ready, but the only response he got was
silence. “What are you telling me?” he said. “We are going to have the feature-
complete build today, aren’t we?”

“Look, Mike,” Tomas said. “I can hand off my code today and call it ‘feature
complete’, but I’ve probably got 3 weeks of cleanup work to do once I hand
it off.” Mike asked what Tomas meant by “cleanup.” “I haven’t gotten the
company logo to show up on every page, and I haven’t gotten the agent’s
name and phone number to print on the bottom of every page. It’s little stuff
like that. All of the important stuff works fine. I’m 99-percent done.”

“I’m not exactly 100-percent done either,” Jill admitted. “My old group has
been calling me for technical support a lot, and I’ve been spending a couple
hours a day working for them. Plus, I had forgotten until just now that we were
supposed to give the agents the ability to put their names and phone num-
bers on the reports. I haven’t implemented the dialogs to input that data yet,
and I still have to do some of the other housekeeping dialogs, too. I didn’t
think we needed them to make our ‘feature-complete’ milestone.”
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Now Mike started to feel sick, too. “If I’m hearing what I think I’m hearing,
you’re telling me that we’re 3 weeks away from having feature-complete
software. Is that right?”

“Three weeks at least,” Jill said. The rest of the developers agreed. Mike went
around the table one by one and asked the developers if they could com-
pletely finish their assignments in 3 weeks. One by one, the developers said
that if they worked hard, they thought they could make it.

Later that day, after a long, uncomfortable discussion, Mike and Bill agreed
to slip the schedule 3 weeks to December 5, as long as the team promised to
work 12-hour days instead of 10. Bill said he needed to show his boss that
he was holding the development team’s feet to the fire. The revised sched-
ule meant that they would have to test the code and train the field agents
concurrently, but that was the only way they could hope to release the soft-
ware by January 1. Stacy complained that that wouldn’t give QA enough time
to test the software, but Bill overruled her.

On December 5, the Giga-Quote team handed off the feature-complete Giga-
Quote program to testing before noon and left work early to take a long-
awaited break. They had worked almost constantly since September 1.

Two days later, Stacy released the first bug list, and all hell broke loose. In
two days, the testing group had identified more than 200 defects in the Giga-
Quote program, including 23 that were classified as Severity 1—“ Must Fix”—
errors. “I don’t see any way that the software will be ready to release to the
field agents by January 1,” she said. “It will probably take the test group that
long just to write the regression test cases for the defects we’ve already dis-
covered, and we’re finding new defects every hour.”

Mike called a staff meeting for 8 o’clock the next morning. The developers
were touchy. They said that although there were a few serious problems, a
lot of the reported bugs weren’t really bugs at all but were misinterpretations
of how the program was supposed to operate. Tomas pointed to bug #143
as an example. “The test report for bug #143 says that on the quote summary
page, the bar chart is required to be on the right side of the page rather than
the left. That’s hardly a Sev-1 error. This is typical of the way that testing
overreacts to problems.”

Mike distributed copies of the bug reports. He tasked the developers to re-
view the bugs that testing had assigned to them and to estimate how much
time it would take to fix each one.

When the team met again that afternoon, the news wasn’t good. “Realistically,
I would estimate that I have 2 weeks’ worth of work just to fix the bugs that
have already been reported,” Sue said. “Plus I still have to finish the referen-
tial integrity checks in the database. I’ve got 4 weeks of work right now, total.”
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Tomas had assigned bug #143 back to testing, changing its priority from Sev-1
to Sev-3—“ Cosmetic Change.” Testing had responded that Giga-Quote’s sum-
mary reports had to match similar reports generated by the mainframe policy-
renewal program, which were also similar to preprinted marketing materials
that the company had used for many years. The company’s 600 agents were
accustomed to giving their sales pitches with the bar chart on the right, and it
had to stay on the right. The bug stayed at Sev-1, and that created a problem.

“Remember the hack I used to get the bar chart and the report to print on the
same page in the first place?” Tomas asked. “To put the bar chart on the right,
I will have to rewrite this particular report from scratch, which means that I
will have to write my own low-level code to do the report formatting and
graphics.” Mike cringed, and asked for a ballpark estimate of how long all that
would take. Tomas said it would take at least 10 days, but he would have to
look into it more before he would know for sure.

Before he went home for the day, Mike told Stacy and Bill that the team would
work through the holidays and have all the reported defects fixed by Janu-
ary 7. Bill said he had almost been expecting this one and approved a 4-week
schedule slip before leaving for a monthlong Caribbean cruise he had been
planning since the previous summer.

Mike spent the next month holding the troops together. For 4 months, they
had been working as hard as it was possible to work, and he didn’t think he
could push them any harder. They were at the office 12 hours a day, but they
were spending a lot of time reading magazines, paying bills, and talking on
the phone. They seemed to make a point of getting irritable whenever he
asked how long it would take to get the bug count down. For every bug they
fixed, testing discovered two new ones. Bugs that should have taken minutes
to fix had projectwide implications and took days instead. They soon realized
there was no way they could fix all the defects by January 7.

On January 7, Bill returned from his vacation, and Mike told him that the
development team would need another 4 weeks. “Get serious,” Bill said. “I’ve
got 600 field agents who are tired of getting jerked around by a bunch of
computer guys. The executive committee is talking about canceling the project.
You have to find a way to deliver the software within the next 2 weeks, no
matter what.”

Mike called a team meeting to discuss their options. He told them about Bill’s
ultimatum and asked for a ballpark estimate of when they could release the
product, first just in weeks, then in months. The team was silent. No one would
hazard a guess about when they might finally release the product. Mike didn’t
know what to tell Bill.
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After the meeting, Chip told Mike that he had accepted a contract with a dif-
ferent company that started February 3. Mike began to feel that it would be
a relief if the project were canceled.

Mike got Kip, the programmer who had been responsible for the mainframe
side of the PC-to-mainframe communications, reassigned to help out on the
project and assigned him to fix bugs in the PC communications code. After
struggling with Chip’s code for a week, Kip realized that it contained some
deep conceptual flaws that meant it could never work correctly. Kip was
forced to redesign and reimplement the PC side of the PC-to-mainframe com-
munications link.

As Bill rambled on at an executive meeting in the middle of February, Claire
finally decided that she had heard enough and called a “stop work” on the
Giga-Quote program. She met with Mike on Friday. “This project is out of
control,” she said. “I haven’t gotten a reliable schedule estimate from Bill for
months. This was a 6-month project, and it’s now more than 3 months late
with no end in sight. I’ve looked over the bug statistics, and the team isn’t
closing the gap. You’re all working such long hours that you’re not even
making progress anymore. I want you all to take the weekend off; then I want
you to develop a detailed, step-by-step report that includes everything—and
I do mean everything—that remains to be done on that project. I don’t want
you to force-fit the project into an artificial schedule. If it’s going to take an-
other 9 months, I want to know that. I want that report by end-of-work
Wednesday. It doesn’t have to be fancy, but it does have to be complete.”

The development team was glad to have the weekend off, and during the next
week they attacked the detailed report with renewed energy. It was on Claire’s
desk Wednesday. She had the report reviewed by Charles, a software engi-
neering consultant who also reviewed the project’s bug statistics. Charles rec-
ommended that the team focus its efforts on a handful of error-prone modules,
that it immediately institute design and code reviews for all bug fixes, and that
the team start working regular hours so that they could get an accurate mea-
sure of how much effort was being expended on the project and how much
would be needed to finish.

Three weeks later, in the first week in March, the open-bug count had ticked
down a notch for the first time. Team morale had ticked up a notch, and based
on the steady progress being made, the consultant projected that the software
could be delivered—fully tested and reliable—by May 15. Since Giga Safe’s
semi-annual rate increase would go into effect July 1, Claire set the official
launch date for June 1.

Epilogue
The Giga-Quote program was released to the field agents according to plan
on June 1. Giga Safe’s field agents greeted it with a warm if somewhat skep-
tical reception.
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The Giga Safe Corporation showed its appreciation for the development team’s
hard work by presenting each of the developers with a $250 bonus. A few
weeks later, Tomas asked for an extended leave of absence, and Jill went to
work for another company.

The final Giga-Quote product was delivered in 13 months rather than 6, a
schedule overrun of more than 100 percent. The developer effort, including
overtime, consisted of 98 staff-months, which was a 170-percent overrun of
the planned 36 staff-months.

The final product was determined to consist of about 40,000 nonblank,
noncomment lines of code in C++, which was about 33 percent more than
Mike’s seat-of-the-pants guess. As a product that was distributed to 600 in-
house sites, Giga-Quote was a hybrid between a business product and a
shrink-wrap product. A product of its size and type should normally have been
completed in 11.5 months with 71 staff-months of effort. The project had
overshot both of those nominals.

3.2 Effect of Mistakes on a Development Schedule

Michael Jackson (the singer, not the computer scientist) sang that “One bad
apple don’t spoil the whole bunch, baby.” That might be true for apples, but
it isn’t true for software. One bad apple can spoil your whole project.

A group of ITT researchers reviewed 44 projects in 9 countries to examine
the impact of 13 productivity factors on productivity (Vosburgh et al. 1984).
The factors included the use of modern programming practices, code diffi-
culty, performance requirements, level of client participation in requirements
specification, personnel experience, and several others. They divided each
of the factors into categories that you would expect to be associated with low,
medium, and high performance. For example, they divided the “modern
programming practices” factor into low use, medium use, and high use. Fig-
ure 3-1 on the next page shows what the researchers found for the “use of
modern programming practices” factor.

The longer you study Figure 3-1, the more interesting it becomes. The gen-
eral pattern it shows is representative of the findings for each of the produc-
tivity factors studied. The ITT researchers found that projects in the categories
that they expected to have poor productivity did in fact have poor produc-
tivity, such as the narrow range shown in the Low category in Figure 3-1. But
productivity in the high-performance categories varied greatly, such as the
wide range shown in the High category in Figure 3-1. Productivity of projects
in the High category varied from poor to excellent.
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(percentage of total system)

+200

+100

0 (average)

-100

Percent of
Nominal

Productivity
Low

(0–25%)
Medium
(26–75%)

High
(76–100%)

Legend

Maximum

75th percentile

Mean

25th percentile

Minimum

Figure 3-1. Findings for “Use of Modern Programming Practices” factor (Vosburgh
et al. 1984). Doing a few things right doesn’t guarantee rapid development. You
also have to avoid doing anything wrong.

That projects that were expected to have poor productivity do in fact have
poor productivity shouldn’t surprise you. But the finding that many of the
projects expected to have excellent productivity actually have poor produc-
tivity just might be a surprise. What this graph and other graphs like it
throughout the book show is that the use of any specific best practice is
necessary but not sufficient for achieving maximum development speed.
Even if you do a few things right, such as making high use of modern pro-
gramming practices, you might still make a mistake that nullifies your pro-
ductivity gains.

When thinking about rapid development, it’s tempting to think that all you
have to do is identify the root causes of slow development and eliminate
them—and then you’ll have rapid development. The problem is that there
aren’t just a handful of root causes of slow development, and in the end
trying to identify the root causes of slow development isn’t very useful. It’s
like asking, ‘What is the root cause of my not being able to run a 4-minute
mile?’ Well, I’m too old. I weigh too much. I’m too out of shape. I’m not
willing to train that hard. I don’t have a world-class coach or athletic facil-
ity. I wasn’t all that fast even when I was younger. The list goes on and on.

When you talk about exceptional achievements, the reasons that people don’t
rise to the top are simply too numerous to list. The Giga-Quote team in Case
Study 3-1 made many of the mistakes that have plagued software develop-
ers since the earliest days of computing. The software-development road is
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mined with potholes, and the potholes you fall into partially determine how
quickly or slowly you develop software.

In software, one bad apple can spoil the whole bunch, baby. To slip into
slow development, all you need to do is make one really big mistake; to
achieve rapid development you need to avoid making any big mistakes. The
next section lists the most common of those big mistakes.

3.3 Classic Mistakes Enumerated

CLASSIC MISTAKE

Some ineffective development practices have been chosen so often, by so
many people, with such predictable, bad results that they deserve to be called
“classic mistakes.” Most of the mistakes have a seductive appeal. Do you need
to rescue a project that’s behind schedule? Add more people! Do you want
to reduce your schedule? Schedule more aggressively! Is one of your key con-
tributors aggravating the rest of the team? Wait until the end of the project
to fire him! Do you have a rush project to complete? Take whatever devel-
opers are available right now and get started as soon as possible!

Figure 3-2. The software project was riddled with mistakes, and all the king’s
managers and technical leads couldn’t rescue the project for anyone’s sake.
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Developers, managers, and customers usually have good reasons for making
the decisions they do, and the seductive appeal of the classic mistakes is part
of the reason these mistakes have been made so often. But because they have
been made so many times, their consequences have become easy to predict.
And classic mistakes rarely produce the results that people hope for.

This section enumerates about two dozen classic mistakes. I have person-
ally seen each of these mistakes made at least once, and I’ve made more than
a few of them myself. Many of them crop up in Case Study 3-1. The com-
mon denominator of these mistakes is that you won’t necessarily get rapid
development if you avoid these mistakes, but you will definitely get slow de-
velopment if you don’t avoid them.

If some of these mistakes sound familiar, take heart—many other people have
made them too. Once you understand their effect on development speed you
can use this list to help with your project planning and risk management.

Some of the more significant mistakes are discussed in their own sections in
other parts of this book. Others are not discussed further. For ease of refer-
ence, the list has been divided along the development-speed dimensions of
people, process, product, and technology.

People

Here are some of the people-related classic mistakes.

1: Undermined motivation. Study after study has shown that motivation prob-
ably has a larger effect on productivity and quality than any other factor
(Boehm 1981). In Case Study 3-1, management took steps that undermined
morale throughout the project—from giving a hokey pep talk at the begin-
ning to requiring overtime in the middle, from going on a long vacation while
the team worked through the holidays to providing end-of-project bonuses
that worked out to less than a dollar per overtime hour at the end.

2: Weak personnel. After motivation, either the individual capabilities of the
team members or their relationship as a team probably has the greatest in-
fluence on productivity (Boehm 1981, Lakhanpal 1993). Hiring from the
bottom of the barrel will threaten a rapid-development effort. In the case
study, personnel selections were made with an eye toward who could be
hired fastest instead of who would get the most work done over the life of
the project. That practice gets the project off to a quick start but doesn’t set
it up for rapid completion.

3: Uncontrolled problem employees. Failure to deal with problem person-
nel also threatens development speed. This is a common problem and has
been well-understood at least since Gerald Weinberg published Psychology
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of  Computer Programming in 1971. Failure to take action to deal with a
problem employee is the most common complaint that team members have
about their leaders (Larson and LaFasto 1989). In Case Study 3-1, the team
knew that Chip was a bad apple, but the team lead didn’t do anything about
it. The result—redoing all of Chip’s work—was predictable.

4: Heroics. Some software developers place a high emphasis on project he-
roics (Bach 1995). But I think that they do more harm than good. In the case
study, mid-level management placed a higher premium on can-do attitudes
than on steady and consistent progress and meaningful progress reporting.
The result was a pattern of scheduling brinkmanship in which impending
schedule slips weren’t detected, acknowledged, or reported up the manage-
ment chain until the last minute. A small development team and its imme-
diate management held an entire company hostage because they wouldn’t
admit that they were having trouble meeting their schedule. An emphasis on
heroics encourages extreme risk taking and discourages cooperation among
the many stakeholders in the software-development process.

Some managers encourage heroic behavior when they focus too strongly on
can-do attitudes. By elevating can-do attitudes above accurate-and-some-
times-gloomy status reporting, such project managers undercut their ability
to take corrective action. They don’t even know they need to take correc-
tive action until the damage has been done. As Tom DeMarco says, can-do
attitudes escalate minor setbacks into true disasters (DeMarco 1995).

5: Adding people to a late project. This is perhaps the most classic of the clas-
sic mistakes. When a project is behind, adding people can take more pro-
ductivity away from existing team members than it adds through new ones.
Fred Brooks likened adding people to a late project to pouring gasoline on
a fire (Brooks 1975).

6: Noisy, crowded offices. Most developers rate their working conditions as
unsatisfactory. About 60 percent report that they are neither sufficiently quiet
nor sufficiently private (DeMarco and Lister 1987). Workers who occupy
quiet, private offices tend to perform significantly better than workers who
occupy noisy, crowded work bays or cubicles. Noisy, crowded work envi-
ronments lengthen development schedules.

7: Friction between developers and customers. Friction between develop-
ers and customers can arise in several ways. Customers may feel that develop-
ers are not cooperative when they refuse to sign up for the development
schedule that the customers want or when they fail to deliver on their prom-
ises. Developers may feel that customers are unreasonably insisting on un-
realistic schedules or requirements changes after the requirements have
been baselined. There might simply be personality conflicts between the
two groups.
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The primary effect of this friction is poor communication, and the second-
ary effects of poor communication include poorly understood requirements,
poor user-interface design, and, in the worst case, customers’ refusing to
accept the completed product. On average, friction between customers and
software developers becomes so severe that both parties consider canceling
the project (Jones 1994). Such friction is time-consuming to overcome, and
it distracts both customers and developers from the real work of the project.

8: Unrealistic expectations. One of the most common causes of friction be-
tween developers and their customers or managers is unrealistic expectations.
In Case Study 3-1, Bill had no sound reason to think that the Giga-Quote
program could be developed in 6 months, but that’s when the company’s
executive committee wanted it done. Mike’s inability to correct that unreal-
istic expectation was a major source of problems.

In other cases, project managers or developers ask for trouble by getting
funding based on overly optimistic schedule estimates. Sometimes they prom-
ise a pie-in-the-sky feature set.

Although unrealistic expectations do not in themselves lengthen develop-
ment schedules, they contribute to the perception that development sched-
ules are too long, and that can be almost as bad. A Standish Group survey
listed realistic expectations as one of the top five factors needed to ensure
the success of an in-house business-software project (Standish Group 1994).

9: Lack of effective project sponsorship. High-level project sponsorship is
necessary to support many aspects of rapid development, including realis-
tic planning, change control, and the introduction of new development prac-
tices. Without an effective executive sponsor, other high-level personnel in
your organization can force you to accept unrealistic deadlines or make
changes that undermine your project. Australian consultant Rob Thomsett
argues that lack of an effective executive sponsor virtually guarantees project
failure (Thomsett 1995).

10: Lack of stakeholder buy-in. All the major players in a software-develop-
ment effort must buy in to the project. That includes the executive sponsor,
team leader, team members, marketing staff, end-users, customers, and any-
one else who has a stake in it. The close cooperation that occurs only when
you have complete buy-in from all stakeholders allows for precise coordi-
nation of a rapid-development effort that is impossible to attain without good
buy-in.

11: Lack of user input. The Standish Group survey found that the number
one reason that IS projects succeed is because of user involvement (Standish
Group 1994). Projects without early end-user involvement risk misunderstand-
ing the projects’ requirements and are vulnerable to time-consuming feature
creep later in the project.
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12: Politics placed over substance. Larry Constantine reported on four teams
that had four different kinds of political orientations (Constantine 1995a).
“Politicians” specialized in “managing up,” concentrating on relationships
with their managers. “Researchers” concentrated on scouting out and gath-
ering information. “Isolationists” kept to themselves, creating project bound-
aries that they kept closed to non-team members. “Generalists” did a little
bit of everything: they tended their relationships with their managers, per-
formed research and scouting activities, and coordinated with other teams
through the course of their normal workflow. Constantine reported that ini-
tially the political and generalist teams were both well regarded by top
management. But after a year and a half, the political team was ranked dead
last. Putting politics over results is fatal to speed-oriented development.

13: Wishful thinking. I am amazed at how many problems in software de-
velopment boil down to wishful thinking. How many times have you heard
statements like these from different people:

“None of the team members really believed that they could complete
the project according to the schedule they were given, but they thought
that maybe if everyone worked hard, and nothing went wrong, and they
got a few lucky breaks, they just might be able to pull it off.”

“Our team hasn’t done very much work to coordinate the interfaces
among the different parts of the product, but we’ve all been in good
communication about other things, and the interfaces are relatively
simple, so it’ll probably take only a day or two to shake out the bugs.”

“We know that we went with the low-ball contractor on the database
subsystem, and it was hard to see how they were going to complete the
work with the staffing levels they specified in their proposal. They didn’t
have as much experience as some of the other contractors, but maybe
they can make up in energy what they lack in experience. They’ll prob-
ably deliver on time.”

“We don’t need to show the final round of changes to the prototype to
the customer. I’m sure we know what they want by now.”

“The team is saying that it will take an extraordinary effort to meet the
deadline, and they missed their first milestone by a few days, but I think
they can bring this one in on time.”

Wishful thinking isn’t just optimism. It’s closing your eyes and hoping some-
thing works when you have no reasonable basis for thinking it will. Wish-
ful thinking at the beginning of a project leads to big blowups at the end of
a project. It undermines meaningful planning and may be at the root of more
software problems than all other causes combined.

3.3 Classic Mistakes Enumerated
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Process

Process-related mistakes slow down projects because they squander people’s
talents and efforts. Here are some of the worst process-related mistakes.

14: Overly optimistic schedules. The challenges faced by someone building
a 3-month application are quite different from the challenges faced by some-
one building a 1-year application. Setting an overly optimistic schedule sets
a project up for failure by underscoping the project, undermining effective
planning, and abbreviating critical upstream development activities such as
requirements analysis and design. It also puts excessive pressure on devel-
opers, which hurts long-term developer morale and productivity. This was
a major source of problems in Case Study 3-1.

15: Insufficient risk management. Some mistakes are not common enough
to be considered classic. Those are called “risks.” As with the classic mistakes,
if you don’t actively manage risks, only one thing has to go wrong to change
your project from a rapid-development project to a slow-development one.
The failure to manage such unique risks is a classic mistake.

16: Contractor failure. Companies sometimes contract out pieces of a project
when they are too rushed to do the work in-house. But contractors frequently
deliver work that’s late, that’s of unacceptably low quality, or that fails to meet
specifications (Boehm 1989). Risks such as unstable requirements or ill-
defined interfaces can be magnified when you bring a contractor into the
picture. If the contractor relationship isn’t managed carefully, the use of con-
tractors can slow a project down rather than speed it up.

17: Insufficient planning. If you don’t plan to achieve rapid development,
you can’t expect to achieve it.

18: Abandonment of planning under pressure. Project teams make plans and
then routinely abandon them when they run into schedule trouble
(Humphrey 1989). The problem isn’t so much in abandoning the plan as in
failing to create a substitute, and then falling into code-and-fix mode instead.
In Case Study 3-1, the team abandoned its plan after it missed its first deliv-
ery, and that’s typical. The work after that point was uncoordinated and
awkward—to the point that Jill even started working on a project for her old
group part of the time and no one even knew it.

19: Wasted time during the fuzzy front end. The “fuzzy front end” is the time
before the project starts, the time normally spent in the approval and bud-
geting process. It’s not uncommon for a project to spend months or years
in the fuzzy front end and then to come out of the gates with an aggressive
schedule. It’s much easier and cheaper and less risky to save a few weeks
or months in the fuzzy front end than it is to compress a development sched-
ule by the same amount.
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20: Shortchanged upstream activities. Projects that are in a hurry try to cut
out nonessential activities, and since requirements analysis, architecture, and
design don’t directly produce code, they are easy targets. On one disastrous
project that I took over, I asked to see the design. The team lead told me,
“We didn’t have time to do a design.”

HARD DATA

The results of this mistake—also known as “jumping into coding”—are all
too predictable. In the case study, a design hack in the bar-chart report was
substituted for quality design work. Before the product could be released,
the hack work had to be thrown out and the higher-quality work had to be
done anyway. Projects that skimp on upstream activities typically have to do
the same work downstream at anywhere from 10 to 100 times the cost of
doing it properly in the first place (Fagan 1976; Boehm and Papaccio 1988).
If you can’t find the 5 hours to do the job right the first time, where are you
going to find the 50 hours to do it right later?

21: Inadequate design. A special case of shortchanging upstream activities
is inadequate design. Rush projects undermine design by not allocating
enough time for it and by creating a pressure cooker environment that makes
thoughtful consideration of design alternatives difficult. The design emphasis
is on expediency rather than quality, so you tend to need several ultimately
time-consuming design cycles before you can finally complete the system.

22: Shortchanged quality assurance. Projects that are in a hurry often cut
corners by eliminating design and code reviews, eliminating test planning,
and performing only perfunctory testing. In the case study, design reviews
and code reviews were given short shrift in order to achieve a perceived
schedule advantage. As it turned out, when the project reached its feature-
complete milestone it was still too buggy to release for 5 more months. This
result is typical. Shortcutting 1 day of QA activity early in the project is likely
to cost you from 3 to 10 days of activity downstream (Jones 1994). This short-
cut undermines development speed.

23: Insufficient management controls. In the case study, few management
controls were in place to provide timely warnings of impending schedule
slips, and the few controls that were in place at the beginning were aban-
doned once the project ran into trouble. Before you can keep a project on
track, you have to be able to tell whether it’s on track in the first place.

24: Premature or overly frequent convergence. Shortly before a product is
scheduled to be released, there is a push to prepare the product for release—
improve the product’s performance, print final documentation, incorporate
final help-system hooks, polish the installation program, stub out function-
ality that’s not going to be ready on time, and so on. On rush projects, there
is a tendency to force convergence early. Since it’s not possible to force the
product to converge when desired, some rapid-development projects try to

3.3 Classic Mistakes Enumerated
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force convergence a half dozen times or more before they finally succeed.
The extra convergence attempts don’t benefit the product. They just waste
time and prolong the schedule.

25: Omitting necessary tasks from estimates. If people don’t keep careful
records of previous projects, they forget about the less visible tasks, but those
tasks add up. Omitted effort often adds about 20 to 30 percent to a devel-
opment schedule (van Genuchten 1991).

26: Planning to catch up later. One kind of reestimation is responding inap-
propriately to a schedule slip. If you’re working on a 6-month project, and
it takes you 3 months to meet your 2-month milestone, what do you do?
Many projects simply plan to catch up later, but they never do. You learn
more about the product as you build it, including more about what it will take
to build it. That learning needs to be reflected in the reestimated schedule.

Another kind of reestimation mistake arises from product changes. If the
product you’re building changes, the amount of time you need to build it
changes too. In Case Study 3-1, major requirements changed between the
original proposal and the project start without any corresponding
reestimation of schedule or resources. Piling on new features without adjust-
ing the schedule guarantees that you will miss your deadline.

27: Code-like-hell programming. Some organizations think that fast, loose,
all-as-you-go coding is a route to rapid development. If the developers are
sufficiently motivated, they reason, they can overcome any obstacles. For
reasons that will become clear throughout this book, this is far from the truth.
This approach is sometimes presented as an “entrepreneurial” approach to
software development, but it is really just a cover for the old Code-and-Fix
paradigm combined with an ambitious schedule, and that combination al-
most never works. It’s an example of two wrongs not making a right.

Product

Here are classic mistakes related to the way the product is defined.

28: Requirements gold-plating. Some projects have more requirements than
they need, right from the beginning. Performance is stated as a requirement
more often than it needs to be, and that can unnecessarily lengthen a soft-
ware schedule. Users tend to be less interested in complex features than mar-
keting and development are, and complex features add disproportionately
to a development schedule.

29: Feature creep. Even if you’re successful at avoiding requirements gold-
plating, the average project experiences about a 25-percent change in re-
quirements over its lifetime (Jones 1994). Such a change can produce at least
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a 25-percent addition to the software schedule, which can be fatal to a rapid-
development project.

30: Developer gold-plating. Developers are fascinated by new technology
and are sometimes anxious to try out new features of their language or en-
vironment or to create their own implementation of a slick feature they saw
in another product—whether or not it’s required in their product. The effort
required to design, implement, test, document, and support features that are
not required lengthens the schedule.

31: Push-me, pull-me negotiation. One bizarre negotiating ploy occurs when
a manager approves a schedule slip on a project that’s progressing slower
than expected and then adds completely new tasks after the schedule
change. The underlying reason for this is hard to fathom, because the man-
ager who approves the schedule slip is implicitly acknowledging that the
schedule was in error. But once the schedule has been corrected, the same
person takes explicit action to make it wrong again. This can’t help but
undermine the schedule.

32: Research-oriented development. Seymour Cray, the designer of the Cray
supercomputers, says that he does not attempt to exceed engineering lim-
its in more than two areas at a time because the risk of failure is too high
(Gilb 1988). Many software projects could learn a lesson from Cray. If your
project strains the limits of computer science by requiring the creation of new
algorithms or new computing practices, you’re not doing software develop-
ment; you’re doing software research. Software-development schedules are
reasonably predictable; software research schedules are not even theoreti-
cally predictable.

If you have product goals that push the state of the art—algorithms, speed,
memory usage, and so on—you should assume that your scheduling is highly
speculative. If you’re pushing the state of the art and you have any other
weaknesses in your project—personnel shortages, personnel weaknesses,
vague requirements, unstable interfaces with outside contractors—you can
throw predictable scheduling out the window. If you want to advance the
state of the art, by all means, do it. But don’t expect to do it rapidly!

Technology

The remaining classic mistakes have to do with the use and misuse of modern
technology.

33: Silver-bullet syndrome. In the case study, there was too much reliance
on the advertised benefits of previously unused technologies (report genera-
tor, object-oriented design, and C++) and too little information about how

3.3 Classic Mistakes Enumerated
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well they would do in this particular development environment. When project
teams latch onto a single new practice, new technology, or rigid process and
expect it to solve their schedule problems, they are inevitably disappointed
(Jones 1994).

34: Overestimated savings from new tools or methods. Organizations seldom
improve their productivity in giant leaps, no matter how many new tools or
methods they adopt or how good they are. Benefits of new practices are par-
tially offset by the learning curves associated with them, and learning to use
new practices to their maximum advantage takes time. New practices also
entail new risks, which you’re likely to discover only by using them. You are
more likely to experience slow, steady improvement on the order of a few
percent per project than you are to experience dramatic gains. The team in
Case Study 3-1 should have planned on, at most, a 10-percent gain in pro-
ductivity from the use of the new technologies instead of assuming that they
would nearly double their productivity.

A special case of overestimated savings arises when projects reuse code from
previous projects. This kind of reuse can be a very effective approach, but
the time savings is rarely as dramatic as expected.

35: Switching tools in the middle of a project. This is an old standby that
hardly ever works. Sometimes it can make sense to upgrade incrementally
within the same product line, from version 3 to version 3.1 or sometimes even
to version 4. But the learning curve, rework, and inevitable mistakes made
with a totally new tool usually cancel out any benefit when you’re in the
middle of a project.

36: Lack of automated source-code control. Failure to use automated source-
code control exposes projects to needless risks. Without it, if two develop-
ers are working on the same part of the program, they have to coordinate
their work manually. They might agree to put the latest versions of each file
into a master directory and to check with each other before copying files into
that directory. But someone invariably overwrites someone else’s work.
People develop new code to out-of-date interfaces and then have to rede-
sign their code when they discover that they were using the wrong version
of the interface. Users report defects that you can’t reproduce because you
have no way to re-create the build they were using. On average, source code
changes at a rate of about 10 percent per month, and manual source-code
control can’t keep up (Jones 1994).

Table 3-1 contains a complete list of classic mistakes.
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3.4 Escape from Gilligan’s Island

Table 3-1. Summary of Classic Mistakes

People-Related Process-Related Product-Related Technology-Related
Mistakes Mistakes Mistakes Mistakes

3.4 Escape from Gilligan’s Island

A complete list of classic mistakes would go on for pages more, but those
presented are the most common and the most serious. As Seattle University’s
David Umphress points out, watching most organizations attempt to avoid
these classic mistakes seems like watching reruns of Gilligan’s Island. At the
beginning of each episode, Gilligan, the Skipper, or the Professor comes up
with a cockamamie scheme to get off the island. The scheme seems as
though it’s going to work for a while, but as the episode unfolds, something
goes wrong, and by the end of the episode the castaways find themselves
right back where they started—stuck on the island.

1. Undermined
motivation

2. Weak personnel

3. Uncontrolled
problem employees

4. Heroics

5. Adding people to
a late project

6. Noisy, crowded
offices

7. Friction between
developers and
customers

8. Unrealistic
expectations

9. Lack of effective
project sponsorship

10. Lack of stakeholder
buy-in

11. Lack of user input

12. Politics placed
over substance

13. Wishful thinking

14. Overly optimistic
schedules

15. Insufficient risk
management

16. Contractor failure

17. Insufficient
planning

18. Abandonment of
planning under
pressure

19. Wasted time during
the fuzzy front end

20. Shortchanged
upstream activities

21. Inadequate design

22. Shortchanged
quality assurance

23. Insufficient manage-
ment controls

24. Premature or overly
frequent convergence

25. Omitting necessary
tasks from estimates

26. Planning to catch
up later

27. Code-like-hell
programming

28. Requirements
gold-plating

29. Feature creep

30. Developer
gold-plating

31. Push-me, pull-me
negotiation

32. Research-oriented
development

33. Silver-bullet
syndrome

34. Overestimated
savings from
new tools or
methods

35. Switching tools
in the middle
of a project

36. Lack of
automated
source-code
control
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Similarly, most companies at the end of each project find that they have made
yet another classic mistake and that they have delivered yet another project
behind schedule or over budget or both.

Your Own List of Worst Practices

Be aware of the classic mistakes. Create lists of “worst practices” to avoid on
future projects. Start with the list in this chapter. Add to the list by conduct-
ing project postmortems to learn from your team’s mistakes. Encourage other
projects within your organization to conduct postmortems so that you can
learn from their mistakes. Exchange war stories with your colleagues in other
organizations, and learn from their experiences. Display your list of mistakes
prominently so that people will see it and learn not to make the same mis-
takes yet another time.

Further Reading

Although a few books discuss coding mistakes, there are no books that I
know of that describe classic mistakes related to development schedules.
Further reading on related topics is provided throughout the rest of this book.
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