

Critical acclaim for
Steve McConnell’s CODE COMPLETE

“Every half an age or so, you come across a book that short-circuits the
school of experience and saves you years of purgatory.... I cannot
adequately express how good this book really is. Code Complete is
a pretty lame title for a work of brilliance.”

PC Techniques

“Microsoft Press has published what I consider to be the definitive book
on software construction: Code Complete by Steve McConnell. This is a
book that belongs on every software developer’s shelf.”

Software Development

“Every programmer should read this outstanding book.”
Computer

“If you are or aspire to be a professional programmer, this may be the
wisest $35 investment you’ll ever make. Don’t stop to read the rest of
this review: just run out and buy it. McConnell’s stated purpose is to
narrow the gap between the knowledge of industry gurus and common
commercial practice.... The amazing thing is that he succeeds.”

IEEE Micro

“Code Complete should be required reading for anyone...in software
development.”

C Users Journal

“I’m encouraged to stick my neck out a bit further than usual and
recommend, without reservation, Steve McConnell’s Code Complete....
My copy has replaced my API reference manuals as the book that’s
closest to my keyboard while I work.”

Windows Tech Journal

“This well-written but massive tome is arguably the best single volume
ever written on the practical aspects of software implementation.”

Embedded Systems Programming

“This is the best book on software engineering that I have yet read.”

.EXE Magazine

“This book deserves to become a classic, and should be compulsory
reading for all developers, and those responsible for managing them.”

Program Now

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1996 by Steve McConnell

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
McConnell, Steve.

Rapid Development : Taming Wild Software Schedules / Steve
McConnell.

p. cm.
Includes index.

1. Computer software--Development. I. Title.
QA76.76.D47M393 1996
005.1'068--dc20 96-21517

CIP

Printed and bound in the United States of America.

14 15 16 17 18 19 MLML 06 05 04 03 02 01

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send
comments to mspinput@microsoft.com.

AT&T is a registered trademark of American Telephone and Telegraph Company. Apple and Macintosh are
registered trademarks of Apple Computer, Inc. Boeing is a registered trademark of The Boeing Company.
Borland and Delphi are registered trademarks of Borland International, Inc. FileMaker is a registered
trademark of Claris Corporation. Dupont is a registered trademark of E.I. Du Pont de Nemours and
Company. Gupta is a registered trademark of Gupta Corporation (a California Corporation). Hewlett-
Packard is a registered trademark of Hewlett-Packard Company. Intel is a registered trademark of Intel
Corporation. IBM is a registered trademark of International Business Machines Corporation. ITT is a
registered trademark of International Telephone and Telegraph Corporation. FoxPro, Microsoft, MS-DOS,
PowerPoint, Visual Basic, Windows, and Windows NT are registered trademarks and Visual FoxPro is a
trademark of Microsoft Corporation. Powersoft is a registered trademark and PowerBuilder is a trademark
of PowerSoft Corporation. Raytheon is a registered trademark of Raytheon Company. Other product and
company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: David J. Clark
Project Editor: Jack Litewka

ISBN 978-1-556-15900-8

v

Contents

Case Studies ix
Reference Tables x
Preface xiii

PART I EFFICIENT DEVELOPMENT

1 Welcome to Rapid Development 1
What Is Rapid Development? • Attaining Rapid Development

2 Rapid-Development Strategy 5
General Strategy for Rapid Development • Four Dimensions of
Development Speed • General Kinds of Fast Development • Which
Dimension Matters the Most? • An Alternative Rapid-Development
Strategy • Further Reading

3 Classic Mistakes 29
Case Study in Classic Mistakes • Effect of Mistakes on a Development
Schedule • Classic Mistakes Enumerated • Escape from Gilligan’s
Island • Further Reading

4 Software-Development Fundamentals 51
Management Fundamentals • Technical Fundamentals • Quality-
Assurance Fundamentals • Following the Instructions • Further
General Reading

5 Risk Management 81
Elements of Risk Management • Risk Identification • Risk Analysis •
Risk Prioritization • Risk Control • Risk, High Risk, and Gambling •
Further Reading

PART II RAPID DEVELOPMENT

6 Core Issues in Rapid Development 109
Does One Size Fit All? • What Kind of Rapid Development Do You
Need? • Odds of Completing on Time • Perception and Reality • Where
the Time Goes • Development-Speed Trade-Offs • Typical Schedule-
Improvement Pattern • Onward to Rapid Development • Further Reading

Contents

vi

7 Lifecycle Planning 133
Pure Waterfall • Code-and-Fix • Spiral • Modified Waterfalls • Evolution-
ary Prototyping • Staged Delivery • Design-to-Schedule • Evolutionary
Delivery • Design-to-Tools • Commercial Off-the-Shelf Software •
Choosing the Most Rapid Lifecycle for Your Project • Further Reading

8 Estimation 163
The Software-Estimation Story • Estimation-Process Overview • Size
Estimation • Effort Estimation • Schedule Estimation • Ballpark Schedule
Estimates • Estimate Refinement • Further Reading

9 Scheduling 205
Overly Optimistic Scheduling • Beating Schedule Pressure •
Further Reading

10 Customer-Oriented Development 233
Customers’ Importance to Rapid Development • Customer-Oriented
Practices • Managing Customer Expectations • Further Reading

11 Motivation 249
Typical Developer Motivations • Using the Top Five Motivation
Factors • Using Other Motivation Factors • Morale Killers •
Further Reading

12 Teamwork 273
Software Uses of Teamwork • Teamwork’s Importance to Rapid
Development • Creating a High-Performance Team • Why Teams
Fail • Long-Term Teambuilding • Summary of Teamwork
Guidelines • Further Reading

13 Team Structure 297
Team-Structure Considerations • Team Models • Managers and Technical
Leads • Further Reading

14 Feature-Set Control 319
Early Project: Feature-Set Reduction • Mid-Project: Feature-Creep
Control • Late Project: Feature Cuts • Further Reading

15 Productivity Tools 345
Role of Productivity Tools in Rapid Development • Productivity-Tool
Strategy • Productivity-Tool Acquisition • Productivity-Tool Use •
Silver-Bullet Syndrome • Further Reading

16 Project Recovery 371
General Recovery Options • Recovery Plan • Further Reading

vii

Contents

PART III BEST PRACTICES

Introduction to Best Practices 390
Organization of Best-Practice Chapters • Summary of Best-Practice
Candidates • Summary of Best-Practice Evaluations

17 Change Board 403

18 Daily Build and Smoke Test 405

19 Designing for Change 415

20 Evolutionary Delivery 425

21 Evolutionary Prototyping 433

22 Goal Setting 445

23 Inspections 447

24 Joint Application Development (JAD) 449

25 Lifecycle Model Selection 465

26 Measurement 467

27 Miniature Milestones 481

28 Outsourcing 491

29 Principled Negotiation 503

30 Productivity Environments 505

31 Rapid-Development Languages (RDLs) 515

32 Requirements Scrubbing 525

33 Reuse 527

34 Signing Up 539

35 Spiral Lifecycle Model 547

36 Staged Delivery 549

37 Theory-W Management 559

38 Throwaway Prototyping 569

39 Timebox Development 575

40 Tools Group 585

41 Top-10 Risks List 587

Contents

viii

42 User-Interface Prototyping 589

43 Voluntary Overtime 599

Bibliography 609
Index 625

ix

Case Studies

2-1. Rapid Development Without a Clear Strategy 6

2-2. Rapid Development with a Clear Strategy 25

3-1. Classic Mistakes 29

4-1. Lack of Fundamentals 52

5-1. Lack of Contractor Risk Management 82

5-2. Systematic Risk Management 103

6-1. Wandering in the Fuzzy Front End 124

7-1. Ineffective Lifecycle Model Selection 134

7-2. Effective Lifecycle Model Selection 159

8-1. Seat-of-the-Pants Project Estimation 164

8-2. Careful Project Estimation 200

9-1. A Successful Schedule Negotiation 229

10-1. The Requirements Club 234

10-2. The Requirements Club Revisited 246

11-1. A Disheartening Lunch with the Boss 250

11-2. A Highly Motivational Environment 270

12-1. You Call This a Team? 274

12-2. A High-Performance Team 277

12-3. Typical Team-Member Selection 282

12-4. A Second High-Performance Team 294

13-1. Mismatch Between Project Objectives and
Team Structure 297

13-2. Good Match Between Project Objectives and
Team Structure 315

14-1. Managing Change Effectively 342

15-1. Ineffective Tool Use 346

15-2. Effective Tool Use 368

16-1. An Unsuccessful Project Recovery 372

16-2. A Successful Project Recovery 385

x

Reference Tables

2-1. Characteristics of Standard Approaches to Schedule-
Oriented Development 18

2-2. Code-Like-Hell Approach Compared to This Book’s
Approach 24

3-1. Summary of Classic Mistakes 49

5-1. Levels of Risk Management 84

5-2. Most Common Schedule Risks 86

5-3. Potential Schedule Risks 87

5-4. Example of a Risk-Assessment Table 92

5-5. Example of a Prioritized Risk-Assessment Table 95

5-6. Means of Controlling the Most Common
Schedule Risks 98

5-7. Example of a “Top-10 Risks List” 101

6-1. Approximate Activity Breakdown by Size of Project 122

7-1. Lifecycle Model Strengths and Weaknesses 156

8-1. Estimate Multipliers by Project Phase 169

8-2. Function-Point Multipliers 176

8-3. Example of Computing the Number of Function Points 177

8-4. Example of a Risk-Quantification Estimate 180

8-5. Example of a Case-Based Estimate 181

8-6. Example of a Confidence-Factor Estimate 182

8-7. Exponents for Computing Schedules from Function Points 185

8-8. Shortest Possible Schedules 190

8-9. Efficient Schedules 194

8-10. Nominal Schedules 196

8-11. Example of a Single-Point–Estimation History 197

8-12. Example of a Range-Estimation History 198

9-1. Scheduling History of Word for Windows 1.0 208

11-1. Comparison of Motivators for Programmer Analysts vs.
Managers and the General Population 252

xi

Reference Tables

11-2. Team Performance Ranked Against Objectives That Teams
Were Told to Optimize 256

12-1. Practical Guidelines for Team Members and Leaders 295

13-1. Team Objectives and Team Structures 301

15-1. Example of Savings Realized by Switching from a 3GL to a 4GL
for 50 Percent of a 32,000 LOC Project 361

15-2. Example of Savings Realized by Switching from a 3GL to a 4GL
for 100 Percent of a 32,000 LOC Project 362

III-1. Summary of Best-Practice Candidates 396

III-2. Summary of Best-Practice Evaluations 400

26-1. Examples of Kinds of Measurement Data 470

26-2. Example of Time-Accounting Activities 472

28-1. Vendor-Evaluation Questionnaire 497

28-2. Contract Considerations 498

30-1. Differences in Office Environments Between Best and Worst
Performers in a Programming Competition 512

31-1. Approximate Function-Points to Lines-of-Code
Conversions 517

31-2. Approximate Language Levels 519

36-1. Example of a Staged-Delivery Schedule for a
Word Processor 552

37-1. Project Stakeholders and Their Objectives 560

37-2. Steps in Theory-W Project Management 562

xiii

Preface

Preface

Software developers are caught on the horns of a dilemma. One horn of the
dilemma is that developers are working too hard to have time to learn about
effective practices that can solve most development-time problems; the other
horn is that they won’t get the time until they do learn more about rapid
development.

Other problems in our industry can wait. It’s hard to justify taking time to
learn more about quality when you’re under intense schedule pressure to
“just ship it.” It’s hard to learn more about usability when you’ve worked 20
days in a row and haven’t had time to see a movie, go shopping, work out,
read the paper, mow your lawn, or play with your kids. Until we as an in-
dustry learn to control our schedules and free up time for developers and
managers to learn more about their professions, we will never have enough
time to put the rest of our house in order.

The development-time problem is pervasive. Several surveys have found that
about two-thirds of all projects substantially overrun their estimates (Lederer
and Prasad 1992, Gibbs 1994, Standish Group 1994). The average large
project misses its planned delivery date by 25 to 50 percent, and the size of
the average schedule slip increases with the size of the project (Jones 1994).
Year after year, development-speed issues have appeared at the tops of lists
of the most critical issues facing the software-development community
(Symons 1991).

Although the slow-development problem is pervasive, some organizations
are developing rapidly. Researchers have found 10-to-1 differences in pro-
ductivity between companies within the same industries, and some research-
ers have found even greater variations (Jones 1994).

The purpose of this book is to provide the groups that are currently on the
“1” side of that 10-to-1 ratio with the information they need to move toward
the “10” side of the ratio. This book will help you bring your projects un-
der control. It will help you deliver more functionality to your users in less
time. You don’t have to read the whole book to learn something useful; no
matter what state your project is in, you will find practices that will enable
you to improve its condition.

Preface

xiv

Who Should Read This Book?

Slow development affects everyone involved with software development,
including developers, managers, clients, and end-users—even their families
and friends. Each of these groups has a stake in solving the slow-develop-
ment problem, and there is something in this book for each of them.

This book is intended to help developers and managers know what’s pos-
sible, to help managers and clients know what’s realistic, and to serve as an
avenue of communication between developers, managers, and clients so that
they can tailor the best possible approach to meet their schedule, cost, qual-
ity, and other goals.

Technical Leads

This book is written primarily with technical leads or team leads in mind. If
that’s your role, you usually bear primary responsibility for increasing the
speed of software development, and this book explains how to do that.
It also describes the development-speed limits so that you’ll have a firm
foundation for distinguishing between realistic improvement programs and
wishful-thinking fantasies.

Some of the practices this book describes are wholly technical. As a tech-
nical lead, you should have no problem implementing those. Other practices
are more management oriented, and you might wonder why they are in-
cluded here. In writing the book, I have made the simplifying assumption
that you are Technical Super Lead—faster than a speeding hacker; more
powerful than a loco-manager; able to leap both technical problems and
management problems in a single bound. That is somewhat unrealistic, I
know, but it saves both of us from the distraction of my constantly saying,
“If you’re a manager, do this, and if you’re a developer, do that.” Moreover,
assuming that technical leads are responsible for both technical and man-
agement practices is not as far-fetched as it might sound. Technical leads are
often called upon to make recommendations to upper management about
technically oriented management issues, and this book will help prepare you
to do that.

Individual Programmers

Many software projects are run by individual programmers or self-managed
teams, and that puts individual technical participants into de facto techni-
cal-lead roles. If you’re in that role, this book will help you improve your
development speed for the same reasons that it will help bona fide tech-
nical leads.

xv

Preface

Managers

Managers sometimes think that achieving rapid software development is
primarily a technical job. If you’re a manager, however, you can usually do
as much to improve development speed as your developers can. This book
describes many management-level rapid-development practices. Of course,
you can also read the technically oriented practices to understand what your
developers can do at their level.

Key Benefits of This Book

I conceived of this book as a Common Sense for software developers. Like
Thomas Paine’s original Common Sense, which laid out in pragmatic terms
why America should secede from Mother England, this book lays out in
pragmatic terms why many of our most common views about rapid devel-
opment are fundamentally broken. These are the times that try developers’
souls, and, for that reason, this book advocates its own small revolution in
software-development practices.

My view of software development is that software projects can be optimized
for any of several goals—lowest defect rate, fastest execution speed, great-
est user acceptance, best maintainability, lowest cost, or shortest develop-
ment schedule. Part of an engineering approach to software is to balance
trade-offs: Can you optimize for development time by cutting quality? By
cutting usability? By requiring developers to work overtime? When crunch
time comes, how much schedule reduction can you ultimately achieve? This
book helps answer such key trade-off questions as well as other questions.

Improved development speed. You can use the strategy and best prac-
tices described in this book to achieve the maximum possible development
speed in your specific circumstances. Over time, most people can realize dra-
matic improvements in development speed by applying the strategies and
practices described in this book. Some best practices won’t work on some
kinds of projects, but for virtually any kind of project, you’ll find other best
practices that will. Depending on your circumstances, “maximum develop-
ment speed” might not be as fast as you’d like, but you’ll never be completely
out of luck just because you can’t use a rapid-development language, are
maintaining legacy code, or work in a noisy, unproductive environment.

Rapid-development slant on traditional topics. Some of the practices
described in this book aren’t typically thought of as rapid-development prac-
tices. Practices such as risk management, software-development fundamen-
tals, and lifecycle planning are more commonly thought of as “good
software-development practices” than as rapid-development methodologies.

Preface

xvi

These practices, however, have profound development-speed implications
that in many cases dwarf those of the so-called rapid-development methods.
This book puts the development-speed benefits of these practices into con-
text with other practices.

Practical focus. To some people, “practical” means “code,” and to those
people I have to admit that this book might not seem very practical. I’ve
avoided code-focused practices for two reasons. First, I’ve already written
800 pages about effective coding practices in Code Complete (Microsoft Press,
1993). I don’t have much more to say about them. Second, it turns out that
many of the critical insights about rapid development are not code-focused;
they’re strategic and philosophical. Sometimes, there is nothing more prac-
tical than a good theory.

Quick-reading organization. I’ve done all I can to present this book’s
rapid-development information in the most practical way possible. The first
400 pages of the book (Parts I and II) describe a strategy and philosophy
of rapid development. About 50 pages of case studies are integrated into that
discussion so that you can see how the strategy and philosophy play out
in practice. If you don’t like case studies, they’ve been formatted so that
you can easily skip them. The rest of the book consists of a set of rapid-
development best practices. The practices are described in quick-reference
format so that you can skim to find the practices that will work best on your
projects. The book describes how to use each practice, how much sched-
ule reduction to expect, and what risks to watch out for.

The book also makes extensive use of marginal icons and text to help you
quickly find additional information related to the topic you’re reading about,
avoid classic mistakes, zero in on best practices, and find quantitative sup-
port for many of the claims made in this book.

A new way to think about the topic of rapid development. In no other
area of software development has there been as much disinformation as in
the area of rapid development. Nearly useless development practices have
been relentlessly hyped as “rapid-development practices,” which has caused
many developers to become cynical about claims made for any development
practices whatsoever. Other practices are genuinely useful, but they have
been hyped so far beyond their real capabilities that they too have contrib-
uted to developers’ cynicism.

Each tool vendor and each methodology vendor want to convince you that
their new silver bullet will be the answer to your development needs. In no
other software area do you have to work as hard to separate the wheat from
the chaff. This book provides guidelines for analyzing rapid-development
information and finding the few grains of truth.

xvii

Preface

This book provides ready-made mental models that will allow you to assess
what the silver-bullet vendors tell you and will also allow you to incorpo-
rate new ideas of your own. When someone comes into your office and says,
“I just heard about a great new tool from the GigaCorp Silver Bullet Com-
pany that will cut our development time by 80 percent!” you will know how
to react. It doesn’t matter that I haven’t said anything specifically about the
GigaCorp Silver Bullet Company or their new tool. By the time you finish
this book, you’ll know what questions to ask, how seriously to take
GigaCorp’s claims, and how to incorporate their new tool into your devel-
opment environment, if you decide to do that.

Unlike other books on rapid development, I’m not asking you to put all of
your eggs into a single, one-size-fits-all basket. I recognize that different
projects have different needs, and that one magic method is usually not
enough to solve even one project’s schedule problems. I have tried to be
skeptical without being cynical—to be critical of practices’ effectiveness but
to stop short of assuming that they don’t work. I revisit those old, overhyped
practices and salvage some that are still genuinely useful—even if they aren’t
as useful as they were originally promised to be.

Why is this book about rapid development so big? Developers in the
IS, shrink-wrap, military, and software-engineering fields have all discovered
valuable rapid-development practices, but the people from these different
fields rarely talk to one another. This book collects the most valuable prac-
tices from each field, bringing together rapid-development information from
a wide variety of sources for the first time.

Does anyone who needs to know about rapid development really have time
to read 650 pages about it? Possibly not, but a book half as long would have
had to be oversimplified to the point of uselessness. To compensate, I’ve
organized the book so that it can be read quickly and selectively—you can
read short snippets while you’re traveling or waiting. Chapters 1 and 2 con-
tain the material that you must read to understand how to develop products
more quickly. After you read those chapters, you can read whatever inter-
ests you most.

Why This Book Was Written

Clients’ and managers’ first response to the problem of slow development
is usually to increase the amount of schedule pressure and overtime they
heap on developers. Excessive schedule pressure occurs in about 75 percent
of all large projects and in close to 100 percent of all very large projects
(Jones 1994). Nearly 60 percent of developers report that the level of stress
they feel is increasing (Glass 1994c). The average developer in the U.S. works
from 48 to 50 hours per week (Krantz 1995). Many work considerably more.

Preface

xviii

In this environment, it isn’t surprising that general job satisfaction of software
developers has dropped significantly in the last 15 years (Zawacki 1993), and
at a time when the industry desperately needs to be recruiting additional
programmers to ease the schedule pressure, developers are spreading the
word to their younger sisters, brothers, and children that our field is no fun
anymore.

Clearly our field can be fun. Many of us got into it originally because we
couldn’t believe that people would actually pay us to write software. But
something not-so-funny happened on the way to the forum, and that some-
thing is intimately bound up with the topic of rapid development.

It’s time to start shoring up the dike that separates software developers from
the sea of scheduling madness. This book is my attempt to stick a few fin-
gers into that dike, holding the madness at bay long enough to get the job
started.

Acknowledgments

Heartfelt thanks go first to Jack Litewka, the project editor, for making the
creation of this book a thoroughly constructive and enjoyable experience.
Thanks also go to Kim Eggleston for the book’s design, to Michael Victor for
the diagrams, and to Mark Monlux for the terrific illustrations. Sally
Brunsman, David Clark, Susanne Freet, Dean Holmes, Wendy Maier, and
Heidi Saastamoinen also helped this project go smoothly. Literally dozens
of other people contributed to this book in one way or another; I didn’t have
personal contact with any of them, but I appreciate their contributions, too.
(Chief among these, I am told, are layout artist Jeannie McGivern and pro-
duction manager Jean Trenary of ArtSource and Microsoft Press’s proof/copy-
edit platoon supervised by Brenda Morris: Richard Carey, Roger LeBlanc,
Patrick Forgette, Ron Drummond, Patricia Masserman, Paula Thurman,
Jocelyn Elliott, Deborah Long, and Devon Musgrave.)

Microsoft Corporation’s technical library provided invaluable aid in digging
up the hundreds of books and articles that laid the foundation for this book.
Keith Barland spearheaded that effort, making my research efforts much less
arduous and time-consuming than they otherwise might have been. Other
people at the library who helped included Janelle Jones, Christine Shannon,
Linda Shaw, Amy Victor, Kyle Wagner, Amy Westfall, and Eilidh Zuvich.

I expound on the virtue of reviews in several places in this book, and this
book has benefited greatly from extensive peer reviews. Al Corwin, Pat
Forman, Tony Garland, Hank Meuret, and Matt Peloquin stuck with the
project from beginning to end. Thanks to them for seeing that the book you

xix

Preface

hold in your hands doesn’t look very much like the book I originally set out
to write! I also received valuable comments from Wayne Beardsley, Duane
Bedard, Ray Bernard, Bob Glass, Sharon Graham, Greg Hitchcock, Dave
Moore, Tony Pisculli, Steve Rinn, and Bob Stacy—constructive critics, all.
David Sommer (age 11) came up with the idea for the last panel of Figure
14-3. Thanks, David. And, finally, I’d like to thank my wife, Tammy, for her
moral support and good humor. I have to start working on my third book
immediately so that she will stop elbowing me in the ribs and calling me a
Two-Time Author!

Bellevue, Washington
June 1996

29

3

Classic Mistakes

Contents
3.1 Case Study in Classic Mistakes
3.2 Effect of Mistakes on a Development Schedule
3.3 Classic Mistakes Enumerated
3.4 Escape from Gilligan’s Island

Related Topics
Risk management: Chapter 5
Rapid-development strategy: Chapter 2

SOFTWARE DEVELOPMENT IS A COMPLICATED ACTIVITY. A typical soft-
ware project can present more opportunities to learn from mistakes than
some people get in a lifetime. This chapter examines some of the classic mis-
takes that people make when they try to develop software rapidly.

3.1 Case Study in Classic Mistakes

The following case study is a little bit like the children’s picture puzzles in
which you try to find all the objects whose names begin with the letter “M”.
How many classic mistakes can you find in the following case study?

Case Study 3-1. Classic Mistakes

Mike, a technical lead for Giga Safe, was eating lunch in his office and look-
ing out his window on a bright April morning.

“Mike, you got the funding for the Giga-Quote program! Congratulations!” It
was Bill, Mike’s boss at Giga, a medical insurance company. “The executive
committee loved the idea of automating our medical insurance quotes. It also

(continued)

30

Chapter 3: Classic Mistakes

loved the idea of uploading the day’s quotes to the head office every night
so that we always have the latest sales leads online. I’ve got a meeting now,
but we can discuss the details later. Good job on that proposal!”

Mike had written the proposal for the Giga-Quote program months earlier, but
his proposal had been for a stand-alone PC program without any ability to
communicate with the head office. Oh well. This would give him a chance
to lead a client-server project in a modern GUI environment—something he
had wanted to do. They had almost a year to do the project, and that should
give them plenty of time to add a new feature. Mike picked up the phone and
dialed his wife’s number. “Honey, let’s go out to dinner tonight to celebrate...”

The next morning, Mike met with Bill to discuss the project. “OK, Bill. What’s
up? This doesn’t sound like quite the same proposal I worked on.”

Bill felt uneasy. Mike hadn’t participated in the revisions to the proposal, but
there hadn’t been time to involve him. Once the executive committee heard
about the Giga-Quote program, they’d taken over. “The executive committee
loves the idea of building software to automate medical insurance quotes. But
they want to be able to transfer the field quotes into the mainframe computer
automatically. And they want to have the system done before our new rates
take effect January 1. They moved the software-complete date you proposed
up from March 1 to November 1, which shrinks your schedule to 6 months.”

Mike had estimated the job would take 12 months. He didn’t think they had
much chance of finishing in 6 months, and he told Bill so. “Let me get this
straight,” Mike said. “It sounds like you’re saying that the committee added a
big communications requirement and chopped the schedule from 12 months
to 6?”

Bill shrugged. “I know it will be a challenge, but you’re creative, and I think
you can pull it off. They approved the budget you wanted, and adding the
communications link can’t be that hard. You asked for 36 staff-months, and
you got it. You can recruit anyone you like to work on the project and increase
the team size, too.” Bill told him to go talk with some other developers and
figure out a way to deliver the software on time.

Mike got together with Carl, another technical lead, and they looked for ways
to shorten the schedule. “Why don’t you use C++ and object-oriented design?”
Carl asked. “You’ll be more productive than with C, and that should shave a
month or two off the schedule.” Mike thought that sounded good. Carl also
knew of a report-building tool that was supposed to cut development time
in half. The project had a lot of reports, so those two changes would get them
down to about 9 months. They were due for newer, faster hardware, too, and
that could shave off a couple weeks. If he could recruit really top-notch de-
velopers, that might bring them down to about 7 months. That should be close
enough. Mike took his findings back to Bill.

(continued)

Case Study 3-1. Classic Mistakes, continued

31

“Look,” Bill said. “Getting the schedule down to 7 months is good, but it isn’t
good enough. The committee was very clear about the 6-month deadline. They
didn’t give me a choice. I can get you the new hardware you want, but you
and your team are going to have to find some way to get the schedule down
to 6 months or work some overtime to make up the difference.”

Mike considered the fact that his initial estimate had just been a ballpark guess
and thought maybe he could pull it off in 6 months. “OK, Bill. I’ll hire a couple
of sharp contractors for the project. Maybe we can find some people with
communications experience to help with uploading data from the PC to the
mainframe.”

By May 1, Mike had put a team together. Jill, Sue, and Tomas were solid, in-
house developers, and they happened to be unassigned. He rounded out the
team with Keiko and Chip, two contractors. Keiko had experience both on
PCs and the kind of mainframe they would interface with. Jill and Tomas had
interviewed Chip and recommended against hiring him, but Mike was im-
pressed. He had communications experience and was available immediately,
so Mike hired him anyway.

At the first team meeting, Bill told the team that the Giga-Quote program was
strategically important to the Giga Safe Corporation. Some of the top people
in the company would be watching them. If they succeeded, there would be
rewards all around. He said he was sure that they could pull it off.

After Bill’s pep talk, Mike sat down with the team and laid out the schedule.
The executive committee had more or less handed them a specification, and
they would spend the next 2 weeks filling in the gaps. Then they’d spend 6
weeks on design, which would leave them 4 months for construction and
testing. His seat-of-the-pants estimate was that the final product would con-
sist of about 30,000 lines of code in C++. Everyone around the table nodded
agreement. It was ambitious, but they’d known that when they signed up for
the project.

The next week, Mike met with Stacy, the testing lead. She explained that they
should begin handing product builds over to testing no later than September
1, and they should aim to hand over a feature-complete build by October 1.
Mike agreed.

The team finished the requirements specification quickly, and dove into design.
They came up with a design that seemed to make good use of C++’s features.

They finished the design by June 15, ahead of schedule, and began coding
like crazy to meet their goal of a first-release-to-testing by September 1. Work
on the project wasn’t entirely smooth. Neither Jill nor Tomas liked Chip, and
Sue had also complained that he wouldn’t let anyone near his code. Mike

Case Study 3-1. Classic Mistakes, continued

(continued)

32

Chapter 3: Classic Mistakes

attributed the personality clashes to the long hours everyone was working.
Nevertheless, by early August, they reported that they were between 85-
percent and 90-percent done.

In mid-August, the actuarial department released the rates for the next year,
and the team discovered that they had to accommodate an entirely new rate
structure. The new rating method required them to ask questions about ex-
ercise habits, drinking habits, smoking habits, recreational activities, and other
factors that hadn’t been included in the rating formulas before. C++, they
thought, was supposed to shield them from the effects of such changes. They
had been counting on just plugging some new numbers into a ratings table.
But they had to change the input dialogs, database design, database access,
and communications objects to accommodate the new structure. As the team
scrambled to retrofit their design, Mike told Stacy that they might be a few
days late releasing the first build to testing.

The team didn’t have a build ready by September 1, and Mike assured Stacy
that the build was only a day or two away.

Days turned into weeks. The October 1 deadline for handing over the feature-
complete build to testing came and went. Development still hadn’t handed
over the first build to testing. Stacy called a meeting with Bill to discuss the
schedule. “We haven’t gotten a build from development yet,” she said. “We
were supposed to get our first build on September 1, and since we haven’t
gotten one yet, they’ve got to be at least a full month behind schedule. I think
they’re in trouble.”

“They’re in trouble, all right,” Bill said. “Let me talk to the team. I’ve prom-
ised 600 agents that they would have this program by November 1. We have
to get that program out in time for the rate change.”

Bill called a team meeting. “This is a fantastic team, and you should be meeting
your commitments,” he told them. “I don’t know what’s gone wrong here, but
I expect everyone to work hard and deliver this software on time. You can
still earn your bonuses, but now you’re going to have to work for them. As
of now, I’m putting all of you on a 6-day-per-week, 10-hour-per-day sched-
ule until this software is done.” After the meeting, Jill and Tomas grumbled
to Mike about not needing to be treated like children, but they agreed to work
the hours Bill wanted.

The team slipped the schedule two weeks, promising a feature-complete build
by November 15. That allowed for 6 weeks of testing before the new rates
went into effect in January.

The team released its first build to testing 4 weeks later on November 1 and
met to discuss a few remaining problem areas.

Case Study 3-1. Classic Mistakes, continued

(continued)

33

Tomas was working on report generation and had run into a roadblock. “The
quote summary page includes a simple bar chart. I’m using a report genera-
tor that’s supposed to generate bar charts, but the only way it will generate
them is on pages by themselves. We have a requirement from the sales group
to put the text and bar charts on the same page. I’ve figured out that I can
hack up a report with a bar chart by passing in the report text as a legend to
the bar-chart object. It’s definitely a hack, but I can always go back and
reimplement it more cleanly after the first release.”

Mike responded, “I don’t see where the issue is. We have to get the product
out, and we don’t have time to make the code perfect. Bill has made it crys-
tal clear that there can’t be any more slips. Do the hack.”

Chip reported that his communications code was 95-percent done and that
it worked, but he still had a few more tests to run. Mike caught Jill and Tomas
rolling their eyes, but he decided to ignore it.

The team worked hard through November 15, including working almost all
the way through the nights of the 14th and 15th, but they still didn’t make their
November 15 release date. The team was exhausted, but on the morning of
the 16th, it was Bill who felt sick. Stacy had called to tell him that develop-
ment hadn’t released its feature-complete build the day before. Last week he
had told the executive committee that the project was on track. Another project
manager, Claire, had probed into the team’s progress, saying that she had
heard that they weren’t making their scheduled releases to testing. Bill thought
Claire was uptight, and he didn’t like her. He had assured her that his team
was definitely on track to make their scheduled releases.

Bill told Mike to get the team together, and when he did, they looked defeated.
A month and a half of 60-hour weeks had taken their toll. Mike asked what
time today they would have the build ready, but the only response he got was
silence. “What are you telling me?” he said. “We are going to have the feature-
complete build today, aren’t we?”

“Look, Mike,” Tomas said. “I can hand off my code today and call it ‘feature
complete’, but I’ve probably got 3 weeks of cleanup work to do once I hand
it off.” Mike asked what Tomas meant by “cleanup.” “I haven’t gotten the
company logo to show up on every page, and I haven’t gotten the agent’s
name and phone number to print on the bottom of every page. It’s little stuff
like that. All of the important stuff works fine. I’m 99-percent done.”

“I’m not exactly 100-percent done either,” Jill admitted. “My old group has
been calling me for technical support a lot, and I’ve been spending a couple
hours a day working for them. Plus, I had forgotten until just now that we were
supposed to give the agents the ability to put their names and phone num-
bers on the reports. I haven’t implemented the dialogs to input that data yet,
and I still have to do some of the other housekeeping dialogs, too. I didn’t
think we needed them to make our ‘feature-complete’ milestone.”

Case Study 3-1. Classic Mistakes, continued

(continued)

34

Chapter 3: Classic Mistakes

Now Mike started to feel sick, too. “If I’m hearing what I think I’m hearing,
you’re telling me that we’re 3 weeks away from having feature-complete
software. Is that right?”

“Three weeks at least,” Jill said. The rest of the developers agreed. Mike went
around the table one by one and asked the developers if they could com-
pletely finish their assignments in 3 weeks. One by one, the developers said
that if they worked hard, they thought they could make it.

Later that day, after a long, uncomfortable discussion, Mike and Bill agreed
to slip the schedule 3 weeks to December 5, as long as the team promised to
work 12-hour days instead of 10. Bill said he needed to show his boss that
he was holding the development team’s feet to the fire. The revised sched-
ule meant that they would have to test the code and train the field agents
concurrently, but that was the only way they could hope to release the soft-
ware by January 1. Stacy complained that that wouldn’t give QA enough time
to test the software, but Bill overruled her.

On December 5, the Giga-Quote team handed off the feature-complete Giga-
Quote program to testing before noon and left work early to take a long-
awaited break. They had worked almost constantly since September 1.

Two days later, Stacy released the first bug list, and all hell broke loose. In
two days, the testing group had identified more than 200 defects in the Giga-
Quote program, including 23 that were classified as Severity 1—“ Must Fix”—
errors. “I don’t see any way that the software will be ready to release to the
field agents by January 1,” she said. “It will probably take the test group that
long just to write the regression test cases for the defects we’ve already dis-
covered, and we’re finding new defects every hour.”

Mike called a staff meeting for 8 o’clock the next morning. The developers
were touchy. They said that although there were a few serious problems, a
lot of the reported bugs weren’t really bugs at all but were misinterpretations
of how the program was supposed to operate. Tomas pointed to bug #143
as an example. “The test report for bug #143 says that on the quote summary
page, the bar chart is required to be on the right side of the page rather than
the left. That’s hardly a Sev-1 error. This is typical of the way that testing
overreacts to problems.”

Mike distributed copies of the bug reports. He tasked the developers to re-
view the bugs that testing had assigned to them and to estimate how much
time it would take to fix each one.

When the team met again that afternoon, the news wasn’t good. “Realistically,
I would estimate that I have 2 weeks’ worth of work just to fix the bugs that
have already been reported,” Sue said. “Plus I still have to finish the referen-
tial integrity checks in the database. I’ve got 4 weeks of work right now, total.”

Case Study 3-1. Classic Mistakes, continued

(continued)

35

Tomas had assigned bug #143 back to testing, changing its priority from Sev-1
to Sev-3—“ Cosmetic Change.” Testing had responded that Giga-Quote’s sum-
mary reports had to match similar reports generated by the mainframe policy-
renewal program, which were also similar to preprinted marketing materials
that the company had used for many years. The company’s 600 agents were
accustomed to giving their sales pitches with the bar chart on the right, and it
had to stay on the right. The bug stayed at Sev-1, and that created a problem.

“Remember the hack I used to get the bar chart and the report to print on the
same page in the first place?” Tomas asked. “To put the bar chart on the right,
I will have to rewrite this particular report from scratch, which means that I
will have to write my own low-level code to do the report formatting and
graphics.” Mike cringed, and asked for a ballpark estimate of how long all that
would take. Tomas said it would take at least 10 days, but he would have to
look into it more before he would know for sure.

Before he went home for the day, Mike told Stacy and Bill that the team would
work through the holidays and have all the reported defects fixed by Janu-
ary 7. Bill said he had almost been expecting this one and approved a 4-week
schedule slip before leaving for a monthlong Caribbean cruise he had been
planning since the previous summer.

Mike spent the next month holding the troops together. For 4 months, they
had been working as hard as it was possible to work, and he didn’t think he
could push them any harder. They were at the office 12 hours a day, but they
were spending a lot of time reading magazines, paying bills, and talking on
the phone. They seemed to make a point of getting irritable whenever he
asked how long it would take to get the bug count down. For every bug they
fixed, testing discovered two new ones. Bugs that should have taken minutes
to fix had projectwide implications and took days instead. They soon realized
there was no way they could fix all the defects by January 7.

On January 7, Bill returned from his vacation, and Mike told him that the
development team would need another 4 weeks. “Get serious,” Bill said. “I’ve
got 600 field agents who are tired of getting jerked around by a bunch of
computer guys. The executive committee is talking about canceling the project.
You have to find a way to deliver the software within the next 2 weeks, no
matter what.”

Mike called a team meeting to discuss their options. He told them about Bill’s
ultimatum and asked for a ballpark estimate of when they could release the
product, first just in weeks, then in months. The team was silent. No one would
hazard a guess about when they might finally release the product. Mike didn’t
know what to tell Bill.

Case Study 3-1. Classic Mistakes, continued

(continued)

36

Chapter 3: Classic Mistakes

After the meeting, Chip told Mike that he had accepted a contract with a dif-
ferent company that started February 3. Mike began to feel that it would be
a relief if the project were canceled.

Mike got Kip, the programmer who had been responsible for the mainframe
side of the PC-to-mainframe communications, reassigned to help out on the
project and assigned him to fix bugs in the PC communications code. After
struggling with Chip’s code for a week, Kip realized that it contained some
deep conceptual flaws that meant it could never work correctly. Kip was
forced to redesign and reimplement the PC side of the PC-to-mainframe com-
munications link.

As Bill rambled on at an executive meeting in the middle of February, Claire
finally decided that she had heard enough and called a “stop work” on the
Giga-Quote program. She met with Mike on Friday. “This project is out of
control,” she said. “I haven’t gotten a reliable schedule estimate from Bill for
months. This was a 6-month project, and it’s now more than 3 months late
with no end in sight. I’ve looked over the bug statistics, and the team isn’t
closing the gap. You’re all working such long hours that you’re not even
making progress anymore. I want you all to take the weekend off; then I want
you to develop a detailed, step-by-step report that includes everything—and
I do mean everything—that remains to be done on that project. I don’t want
you to force-fit the project into an artificial schedule. If it’s going to take an-
other 9 months, I want to know that. I want that report by end-of-work
Wednesday. It doesn’t have to be fancy, but it does have to be complete.”

The development team was glad to have the weekend off, and during the next
week they attacked the detailed report with renewed energy. It was on Claire’s
desk Wednesday. She had the report reviewed by Charles, a software engi-
neering consultant who also reviewed the project’s bug statistics. Charles rec-
ommended that the team focus its efforts on a handful of error-prone modules,
that it immediately institute design and code reviews for all bug fixes, and that
the team start working regular hours so that they could get an accurate mea-
sure of how much effort was being expended on the project and how much
would be needed to finish.

Three weeks later, in the first week in March, the open-bug count had ticked
down a notch for the first time. Team morale had ticked up a notch, and based
on the steady progress being made, the consultant projected that the software
could be delivered—fully tested and reliable—by May 15. Since Giga Safe’s
semi-annual rate increase would go into effect July 1, Claire set the official
launch date for June 1.

Epilogue
The Giga-Quote program was released to the field agents according to plan
on June 1. Giga Safe’s field agents greeted it with a warm if somewhat skep-
tical reception.

Case Study 3-1. Classic Mistakes, continued

(continued)

37

3.2 Effect of Mistakes on a Development Schedule

The Giga Safe Corporation showed its appreciation for the development team’s
hard work by presenting each of the developers with a $250 bonus. A few
weeks later, Tomas asked for an extended leave of absence, and Jill went to
work for another company.

The final Giga-Quote product was delivered in 13 months rather than 6, a
schedule overrun of more than 100 percent. The developer effort, including
overtime, consisted of 98 staff-months, which was a 170-percent overrun of
the planned 36 staff-months.

The final product was determined to consist of about 40,000 nonblank,
noncomment lines of code in C++, which was about 33 percent more than
Mike’s seat-of-the-pants guess. As a product that was distributed to 600 in-
house sites, Giga-Quote was a hybrid between a business product and a
shrink-wrap product. A product of its size and type should normally have been
completed in 11.5 months with 71 staff-months of effort. The project had
overshot both of those nominals.

3.2 Effect of Mistakes on a Development Schedule

Michael Jackson (the singer, not the computer scientist) sang that “One bad
apple don’t spoil the whole bunch, baby.” That might be true for apples, but
it isn’t true for software. One bad apple can spoil your whole project.

A group of ITT researchers reviewed 44 projects in 9 countries to examine
the impact of 13 productivity factors on productivity (Vosburgh et al. 1984).
The factors included the use of modern programming practices, code diffi-
culty, performance requirements, level of client participation in requirements
specification, personnel experience, and several others. They divided each
of the factors into categories that you would expect to be associated with low,
medium, and high performance. For example, they divided the “modern
programming practices” factor into low use, medium use, and high use. Fig-
ure 3-1 on the next page shows what the researchers found for the “use of
modern programming practices” factor.

The longer you study Figure 3-1, the more interesting it becomes. The gen-
eral pattern it shows is representative of the findings for each of the produc-
tivity factors studied. The ITT researchers found that projects in the categories
that they expected to have poor productivity did in fact have poor produc-
tivity, such as the narrow range shown in the Low category in Figure 3-1. But
productivity in the high-performance categories varied greatly, such as the
wide range shown in the High category in Figure 3-1. Productivity of projects
in the High category varied from poor to excellent.

Case Study 3-1. Classic Mistakes, continued

CROSS-REFERENCE

For a table of ballpark
estimates such as these for

projects of various sizes, see
Section 8.6, “Ballpark
Schedule Estimates.”

38

Chapter 3: Classic Mistakes

Use of Modern Programming Practices
(percentage of total system)

+200

+100

0 (average)

-100

Percent of
Nominal

Productivity
Low

(0–25%)
Medium
(26–75%)

High
(76–100%)

Legend

Maximum

75th percentile

Mean

25th percentile

Minimum

Figure 3-1. Findings for “Use of Modern Programming Practices” factor (Vosburgh
et al. 1984). Doing a few things right doesn’t guarantee rapid development. You
also have to avoid doing anything wrong.

That projects that were expected to have poor productivity do in fact have
poor productivity shouldn’t surprise you. But the finding that many of the
projects expected to have excellent productivity actually have poor produc-
tivity just might be a surprise. What this graph and other graphs like it
throughout the book show is that the use of any specific best practice is
necessary but not sufficient for achieving maximum development speed.
Even if you do a few things right, such as making high use of modern pro-
gramming practices, you might still make a mistake that nullifies your pro-
ductivity gains.

When thinking about rapid development, it’s tempting to think that all you
have to do is identify the root causes of slow development and eliminate
them—and then you’ll have rapid development. The problem is that there
aren’t just a handful of root causes of slow development, and in the end
trying to identify the root causes of slow development isn’t very useful. It’s
like asking, ‘What is the root cause of my not being able to run a 4-minute
mile?’ Well, I’m too old. I weigh too much. I’m too out of shape. I’m not
willing to train that hard. I don’t have a world-class coach or athletic facil-
ity. I wasn’t all that fast even when I was younger. The list goes on and on.

When you talk about exceptional achievements, the reasons that people don’t
rise to the top are simply too numerous to list. The Giga-Quote team in Case
Study 3-1 made many of the mistakes that have plagued software develop-
ers since the earliest days of computing. The software-development road is

CROSS-REFERENCE

For more discussion of
this specific graph, see
Section 4.2, “Technical

Fundamentals.”

CROSS-REFERENCE

For more on the role that
mistakes play in rapid

development, see Section
2.1, “General Strategy for

Rapid Development.”

39

3.3 Classic Mistakes Enumerated

mined with potholes, and the potholes you fall into partially determine how
quickly or slowly you develop software.

In software, one bad apple can spoil the whole bunch, baby. To slip into
slow development, all you need to do is make one really big mistake; to
achieve rapid development you need to avoid making any big mistakes. The
next section lists the most common of those big mistakes.

3.3 Classic Mistakes Enumerated

CLASSIC MISTAKE

Some ineffective development practices have been chosen so often, by so
many people, with such predictable, bad results that they deserve to be called
“classic mistakes.” Most of the mistakes have a seductive appeal. Do you need
to rescue a project that’s behind schedule? Add more people! Do you want
to reduce your schedule? Schedule more aggressively! Is one of your key con-
tributors aggravating the rest of the team? Wait until the end of the project
to fire him! Do you have a rush project to complete? Take whatever devel-
opers are available right now and get started as soon as possible!

Figure 3-2. The software project was riddled with mistakes, and all the king’s
managers and technical leads couldn’t rescue the project for anyone’s sake.

40

Chapter 3: Classic Mistakes

Developers, managers, and customers usually have good reasons for making
the decisions they do, and the seductive appeal of the classic mistakes is part
of the reason these mistakes have been made so often. But because they have
been made so many times, their consequences have become easy to predict.
And classic mistakes rarely produce the results that people hope for.

This section enumerates about two dozen classic mistakes. I have person-
ally seen each of these mistakes made at least once, and I’ve made more than
a few of them myself. Many of them crop up in Case Study 3-1. The com-
mon denominator of these mistakes is that you won’t necessarily get rapid
development if you avoid these mistakes, but you will definitely get slow de-
velopment if you don’t avoid them.

If some of these mistakes sound familiar, take heart—many other people have
made them too. Once you understand their effect on development speed you
can use this list to help with your project planning and risk management.

Some of the more significant mistakes are discussed in their own sections in
other parts of this book. Others are not discussed further. For ease of refer-
ence, the list has been divided along the development-speed dimensions of
people, process, product, and technology.

People

Here are some of the people-related classic mistakes.

1: Undermined motivation. Study after study has shown that motivation prob-
ably has a larger effect on productivity and quality than any other factor
(Boehm 1981). In Case Study 3-1, management took steps that undermined
morale throughout the project—from giving a hokey pep talk at the begin-
ning to requiring overtime in the middle, from going on a long vacation while
the team worked through the holidays to providing end-of-project bonuses
that worked out to less than a dollar per overtime hour at the end.

2: Weak personnel. After motivation, either the individual capabilities of the
team members or their relationship as a team probably has the greatest in-
fluence on productivity (Boehm 1981, Lakhanpal 1993). Hiring from the
bottom of the barrel will threaten a rapid-development effort. In the case
study, personnel selections were made with an eye toward who could be
hired fastest instead of who would get the most work done over the life of
the project. That practice gets the project off to a quick start but doesn’t set
it up for rapid completion.

3: Uncontrolled problem employees. Failure to deal with problem person-
nel also threatens development speed. This is a common problem and has
been well-understood at least since Gerald Weinberg published Psychology

CROSS-REFERENCE

For more on the uses and
misuses of motivation, see

Chapter 11, “Motivation.”

CROSS-REFERENCE

For more on creating
effective teams, see

Chapter 12, “Teamwork.”

41

3.3 Classic Mistakes Enumerated

of Computer Programming in 1971. Failure to take action to deal with a
problem employee is the most common complaint that team members have
about their leaders (Larson and LaFasto 1989). In Case Study 3-1, the team
knew that Chip was a bad apple, but the team lead didn’t do anything about
it. The result—redoing all of Chip’s work—was predictable.

4: Heroics. Some software developers place a high emphasis on project he-
roics (Bach 1995). But I think that they do more harm than good. In the case
study, mid-level management placed a higher premium on can-do attitudes
than on steady and consistent progress and meaningful progress reporting.
The result was a pattern of scheduling brinkmanship in which impending
schedule slips weren’t detected, acknowledged, or reported up the manage-
ment chain until the last minute. A small development team and its imme-
diate management held an entire company hostage because they wouldn’t
admit that they were having trouble meeting their schedule. An emphasis on
heroics encourages extreme risk taking and discourages cooperation among
the many stakeholders in the software-development process.

Some managers encourage heroic behavior when they focus too strongly on
can-do attitudes. By elevating can-do attitudes above accurate-and-some-
times-gloomy status reporting, such project managers undercut their ability
to take corrective action. They don’t even know they need to take correc-
tive action until the damage has been done. As Tom DeMarco says, can-do
attitudes escalate minor setbacks into true disasters (DeMarco 1995).

5: Adding people to a late project. This is perhaps the most classic of the clas-
sic mistakes. When a project is behind, adding people can take more pro-
ductivity away from existing team members than it adds through new ones.
Fred Brooks likened adding people to a late project to pouring gasoline on
a fire (Brooks 1975).

6: Noisy, crowded offices. Most developers rate their working conditions as
unsatisfactory. About 60 percent report that they are neither sufficiently quiet
nor sufficiently private (DeMarco and Lister 1987). Workers who occupy
quiet, private offices tend to perform significantly better than workers who
occupy noisy, crowded work bays or cubicles. Noisy, crowded work envi-
ronments lengthen development schedules.

7: Friction between developers and customers. Friction between develop-
ers and customers can arise in several ways. Customers may feel that develop-
ers are not cooperative when they refuse to sign up for the development
schedule that the customers want or when they fail to deliver on their prom-
ises. Developers may feel that customers are unreasonably insisting on un-
realistic schedules or requirements changes after the requirements have
been baselined. There might simply be personality conflicts between the
two groups.

CROSS-REFERENCE

For more on heroics
and commitment-based

projects, see Section 2.5,
“An Alternative Rapid-

Development Strategy,”
“Commitment-Based

Scheduling” in Section
8.5, and Chapter 34,

“Signing Up.”

CROSS-REFERENCE

For alternative means of
rescuing a late project,

see Chapter 16,
“Project Recovery.”

CROSS-REFERENCE

For more on the effects of the
physical environment on

productivity, see Chapter 30,
“Productivity Environments.”

CROSS-REFERENCE

For more on effective
customer relations, see
Chapter 10, “Customer-
Oriented Development.”

42

Chapter 3: Classic Mistakes

The primary effect of this friction is poor communication, and the second-
ary effects of poor communication include poorly understood requirements,
poor user-interface design, and, in the worst case, customers’ refusing to
accept the completed product. On average, friction between customers and
software developers becomes so severe that both parties consider canceling
the project (Jones 1994). Such friction is time-consuming to overcome, and
it distracts both customers and developers from the real work of the project.

8: Unrealistic expectations. One of the most common causes of friction be-
tween developers and their customers or managers is unrealistic expectations.
In Case Study 3-1, Bill had no sound reason to think that the Giga-Quote
program could be developed in 6 months, but that’s when the company’s
executive committee wanted it done. Mike’s inability to correct that unreal-
istic expectation was a major source of problems.

In other cases, project managers or developers ask for trouble by getting
funding based on overly optimistic schedule estimates. Sometimes they prom-
ise a pie-in-the-sky feature set.

Although unrealistic expectations do not in themselves lengthen develop-
ment schedules, they contribute to the perception that development sched-
ules are too long, and that can be almost as bad. A Standish Group survey
listed realistic expectations as one of the top five factors needed to ensure
the success of an in-house business-software project (Standish Group 1994).

9: Lack of effective project sponsorship. High-level project sponsorship is
necessary to support many aspects of rapid development, including realis-
tic planning, change control, and the introduction of new development prac-
tices. Without an effective executive sponsor, other high-level personnel in
your organization can force you to accept unrealistic deadlines or make
changes that undermine your project. Australian consultant Rob Thomsett
argues that lack of an effective executive sponsor virtually guarantees project
failure (Thomsett 1995).

10: Lack of stakeholder buy-in. All the major players in a software-develop-
ment effort must buy in to the project. That includes the executive sponsor,
team leader, team members, marketing staff, end-users, customers, and any-
one else who has a stake in it. The close cooperation that occurs only when
you have complete buy-in from all stakeholders allows for precise coordi-
nation of a rapid-development effort that is impossible to attain without good
buy-in.

11: Lack of user input. The Standish Group survey found that the number
one reason that IS projects succeed is because of user involvement (Standish
Group 1994). Projects without early end-user involvement risk misunderstand-
ing the projects’ requirements and are vulnerable to time-consuming feature
creep later in the project.

CROSS-REFERENCE

For more on setting
expectations, see

Section 10.3, “Managing
Customer Expectations.”

43

12: Politics placed over substance. Larry Constantine reported on four teams
that had four different kinds of political orientations (Constantine 1995a).
“Politicians” specialized in “managing up,” concentrating on relationships
with their managers. “Researchers” concentrated on scouting out and gath-
ering information. “Isolationists” kept to themselves, creating project bound-
aries that they kept closed to non-team members. “Generalists” did a little
bit of everything: they tended their relationships with their managers, per-
formed research and scouting activities, and coordinated with other teams
through the course of their normal workflow. Constantine reported that ini-
tially the political and generalist teams were both well regarded by top
management. But after a year and a half, the political team was ranked dead
last. Putting politics over results is fatal to speed-oriented development.

13: Wishful thinking. I am amazed at how many problems in software de-
velopment boil down to wishful thinking. How many times have you heard
statements like these from different people:

“None of the team members really believed that they could complete
the project according to the schedule they were given, but they thought
that maybe if everyone worked hard, and nothing went wrong, and they
got a few lucky breaks, they just might be able to pull it off.”

“Our team hasn’t done very much work to coordinate the interfaces
among the different parts of the product, but we’ve all been in good
communication about other things, and the interfaces are relatively
simple, so it’ll probably take only a day or two to shake out the bugs.”

“We know that we went with the low-ball contractor on the database
subsystem, and it was hard to see how they were going to complete the
work with the staffing levels they specified in their proposal. They didn’t
have as much experience as some of the other contractors, but maybe
they can make up in energy what they lack in experience. They’ll prob-
ably deliver on time.”

“We don’t need to show the final round of changes to the prototype to
the customer. I’m sure we know what they want by now.”

“The team is saying that it will take an extraordinary effort to meet the
deadline, and they missed their first milestone by a few days, but I think
they can bring this one in on time.”

Wishful thinking isn’t just optimism. It’s closing your eyes and hoping some-
thing works when you have no reasonable basis for thinking it will. Wish-
ful thinking at the beginning of a project leads to big blowups at the end of
a project. It undermines meaningful planning and may be at the root of more
software problems than all other causes combined.

3.3 Classic Mistakes Enumerated

CROSS-REFERENCE

For more on healthy politics,
see Section 10.3, “Managing

Customer Expectations.”

44

Chapter 3: Classic Mistakes

Process

Process-related mistakes slow down projects because they squander people’s
talents and efforts. Here are some of the worst process-related mistakes.

14: Overly optimistic schedules. The challenges faced by someone building
a 3-month application are quite different from the challenges faced by some-
one building a 1-year application. Setting an overly optimistic schedule sets
a project up for failure by underscoping the project, undermining effective
planning, and abbreviating critical upstream development activities such as
requirements analysis and design. It also puts excessive pressure on devel-
opers, which hurts long-term developer morale and productivity. This was
a major source of problems in Case Study 3-1.

15: Insufficient risk management. Some mistakes are not common enough
to be considered classic. Those are called “risks.” As with the classic mistakes,
if you don’t actively manage risks, only one thing has to go wrong to change
your project from a rapid-development project to a slow-development one.
The failure to manage such unique risks is a classic mistake.

16: Contractor failure. Companies sometimes contract out pieces of a project
when they are too rushed to do the work in-house. But contractors frequently
deliver work that’s late, that’s of unacceptably low quality, or that fails to meet
specifications (Boehm 1989). Risks such as unstable requirements or ill-
defined interfaces can be magnified when you bring a contractor into the
picture. If the contractor relationship isn’t managed carefully, the use of con-
tractors can slow a project down rather than speed it up.

17: Insufficient planning. If you don’t plan to achieve rapid development,
you can’t expect to achieve it.

18: Abandonment of planning under pressure. Project teams make plans and
then routinely abandon them when they run into schedule trouble
(Humphrey 1989). The problem isn’t so much in abandoning the plan as in
failing to create a substitute, and then falling into code-and-fix mode instead.
In Case Study 3-1, the team abandoned its plan after it missed its first deliv-
ery, and that’s typical. The work after that point was uncoordinated and
awkward—to the point that Jill even started working on a project for her old
group part of the time and no one even knew it.

19: Wasted time during the fuzzy front end. The “fuzzy front end” is the time
before the project starts, the time normally spent in the approval and bud-
geting process. It’s not uncommon for a project to spend months or years
in the fuzzy front end and then to come out of the gates with an aggressive
schedule. It’s much easier and cheaper and less risky to save a few weeks
or months in the fuzzy front end than it is to compress a development sched-
ule by the same amount.

CROSS-REFERENCE

For more on planning, see
“Planning” in Section 4.1.

CROSS-REFERENCE

For more on planning under
pressure, see Section 9.2,

“Beating Schedule Pressure,”
and Chapter 16, “Project

Recovery.”

CROSS-REFERENCE

For more on unrealistic
schedules, see Section 9.1,

“Overly Optimistic
Scheduling.”

CROSS-REFERENCE

For more on risk manage-
ment, see Chapter 5, “Risk

Management.”

CROSS-REFERENCE

For more on contractors, see
Chapter 28, “Outsourcing.”

45

20: Shortchanged upstream activities. Projects that are in a hurry try to cut
out nonessential activities, and since requirements analysis, architecture, and
design don’t directly produce code, they are easy targets. On one disastrous
project that I took over, I asked to see the design. The team lead told me,
“We didn’t have time to do a design.”

HARD DATA

The results of this mistake—also known as “jumping into coding”—are all
too predictable. In the case study, a design hack in the bar-chart report was
substituted for quality design work. Before the product could be released,
the hack work had to be thrown out and the higher-quality work had to be
done anyway. Projects that skimp on upstream activities typically have to do
the same work downstream at anywhere from 10 to 100 times the cost of
doing it properly in the first place (Fagan 1976; Boehm and Papaccio 1988).
If you can’t find the 5 hours to do the job right the first time, where are you
going to find the 50 hours to do it right later?

21: Inadequate design. A special case of shortchanging upstream activities
is inadequate design. Rush projects undermine design by not allocating
enough time for it and by creating a pressure cooker environment that makes
thoughtful consideration of design alternatives difficult. The design emphasis
is on expediency rather than quality, so you tend to need several ultimately
time-consuming design cycles before you can finally complete the system.

22: Shortchanged quality assurance. Projects that are in a hurry often cut
corners by eliminating design and code reviews, eliminating test planning,
and performing only perfunctory testing. In the case study, design reviews
and code reviews were given short shrift in order to achieve a perceived
schedule advantage. As it turned out, when the project reached its feature-
complete milestone it was still too buggy to release for 5 more months. This
result is typical. Shortcutting 1 day of QA activity early in the project is likely
to cost you from 3 to 10 days of activity downstream (Jones 1994). This short-
cut undermines development speed.

23: Insufficient management controls. In the case study, few management
controls were in place to provide timely warnings of impending schedule
slips, and the few controls that were in place at the beginning were aban-
doned once the project ran into trouble. Before you can keep a project on
track, you have to be able to tell whether it’s on track in the first place.

24: Premature or overly frequent convergence. Shortly before a product is
scheduled to be released, there is a push to prepare the product for release—
improve the product’s performance, print final documentation, incorporate
final help-system hooks, polish the installation program, stub out function-
ality that’s not going to be ready on time, and so on. On rush projects, there
is a tendency to force convergence early. Since it’s not possible to force the
product to converge when desired, some rapid-development projects try to

3.3 Classic Mistakes Enumerated

CROSS-REFERENCE

For more on shortchanging
upstream activities, see

“Effects of Overly Optimistic
Schedules” in Section 9.1.

CROSS-REFERENCE

For more on management
controls, see “Tracking” in

Section 4.1 and Chapter 27,
“Miniature Milestones.”

CROSS-REFERENCE

For more on premature
convergence, see

“Premature convergence”
in Section 9.1.

CROSS-REFERENCE

For more on quality
assurance, see Section 4.3,

“Quality-Assurance
Fundamentals.”

HARD DATA

46

Chapter 3: Classic Mistakes

force convergence a half dozen times or more before they finally succeed.
The extra convergence attempts don’t benefit the product. They just waste
time and prolong the schedule.

25: Omitting necessary tasks from estimates. If people don’t keep careful
records of previous projects, they forget about the less visible tasks, but those
tasks add up. Omitted effort often adds about 20 to 30 percent to a devel-
opment schedule (van Genuchten 1991).

26: Planning to catch up later. One kind of reestimation is responding inap-
propriately to a schedule slip. If you’re working on a 6-month project, and
it takes you 3 months to meet your 2-month milestone, what do you do?
Many projects simply plan to catch up later, but they never do. You learn
more about the product as you build it, including more about what it will take
to build it. That learning needs to be reflected in the reestimated schedule.

Another kind of reestimation mistake arises from product changes. If the
product you’re building changes, the amount of time you need to build it
changes too. In Case Study 3-1, major requirements changed between the
original proposal and the project start without any corresponding
reestimation of schedule or resources. Piling on new features without adjust-
ing the schedule guarantees that you will miss your deadline.

27: Code-like-hell programming. Some organizations think that fast, loose,
all-as-you-go coding is a route to rapid development. If the developers are
sufficiently motivated, they reason, they can overcome any obstacles. For
reasons that will become clear throughout this book, this is far from the truth.
This approach is sometimes presented as an “entrepreneurial” approach to
software development, but it is really just a cover for the old Code-and-Fix
paradigm combined with an ambitious schedule, and that combination al-
most never works. It’s an example of two wrongs not making a right.

Product

Here are classic mistakes related to the way the product is defined.

28: Requirements gold-plating. Some projects have more requirements than
they need, right from the beginning. Performance is stated as a requirement
more often than it needs to be, and that can unnecessarily lengthen a soft-
ware schedule. Users tend to be less interested in complex features than mar-
keting and development are, and complex features add disproportionately
to a development schedule.

29: Feature creep. Even if you’re successful at avoiding requirements gold-
plating, the average project experiences about a 25-percent change in re-
quirements over its lifetime (Jones 1994). Such a change can produce at least

CROSS-REFERENCE

For more on the Code-and-
Fix approach, see Section

7.2, “Code-and-Fix.”

CROSS-REFERENCE

For more on feature creep,
see Chapter 14,

“Feature-Set Control.”

CROSS-REFERENCE

For a list of commonly
omitted tasks, see “Don’t

omit common tasks”
in Section 8.3.

CROSS-REFERENCE

For more on reestimation,
see “Recalibration”

in Section 8.7.

47

a 25-percent addition to the software schedule, which can be fatal to a rapid-
development project.

30: Developer gold-plating. Developers are fascinated by new technology
and are sometimes anxious to try out new features of their language or en-
vironment or to create their own implementation of a slick feature they saw
in another product—whether or not it’s required in their product. The effort
required to design, implement, test, document, and support features that are
not required lengthens the schedule.

31: Push-me, pull-me negotiation. One bizarre negotiating ploy occurs when
a manager approves a schedule slip on a project that’s progressing slower
than expected and then adds completely new tasks after the schedule
change. The underlying reason for this is hard to fathom, because the man-
ager who approves the schedule slip is implicitly acknowledging that the
schedule was in error. But once the schedule has been corrected, the same
person takes explicit action to make it wrong again. This can’t help but
undermine the schedule.

32: Research-oriented development. Seymour Cray, the designer of the Cray
supercomputers, says that he does not attempt to exceed engineering lim-
its in more than two areas at a time because the risk of failure is too high
(Gilb 1988). Many software projects could learn a lesson from Cray. If your
project strains the limits of computer science by requiring the creation of new
algorithms or new computing practices, you’re not doing software develop-
ment; you’re doing software research. Software-development schedules are
reasonably predictable; software research schedules are not even theoreti-
cally predictable.

If you have product goals that push the state of the art—algorithms, speed,
memory usage, and so on—you should assume that your scheduling is highly
speculative. If you’re pushing the state of the art and you have any other
weaknesses in your project—personnel shortages, personnel weaknesses,
vague requirements, unstable interfaces with outside contractors—you can
throw predictable scheduling out the window. If you want to advance the
state of the art, by all means, do it. But don’t expect to do it rapidly!

Technology

The remaining classic mistakes have to do with the use and misuse of modern
technology.

33: Silver-bullet syndrome. In the case study, there was too much reliance
on the advertised benefits of previously unused technologies (report genera-
tor, object-oriented design, and C++) and too little information about how

3.3 Classic Mistakes Enumerated

CROSS-REFERENCE

For an example of the way
that developer gold-plating

can occur even accidentally,
see “Unclear or Impossible

Goals” in Section 14.2.

CROSS-REFERENCE

For more on the silver-bullet
syndrome, see Section 15.5,

“Silver-Bullet Syndrome.”

48

Chapter 3: Classic Mistakes

well they would do in this particular development environment. When project
teams latch onto a single new practice, new technology, or rigid process and
expect it to solve their schedule problems, they are inevitably disappointed
(Jones 1994).

34: Overestimated savings from new tools or methods. Organizations seldom
improve their productivity in giant leaps, no matter how many new tools or
methods they adopt or how good they are. Benefits of new practices are par-
tially offset by the learning curves associated with them, and learning to use
new practices to their maximum advantage takes time. New practices also
entail new risks, which you’re likely to discover only by using them. You are
more likely to experience slow, steady improvement on the order of a few
percent per project than you are to experience dramatic gains. The team in
Case Study 3-1 should have planned on, at most, a 10-percent gain in pro-
ductivity from the use of the new technologies instead of assuming that they
would nearly double their productivity.

A special case of overestimated savings arises when projects reuse code from
previous projects. This kind of reuse can be a very effective approach, but
the time savings is rarely as dramatic as expected.

35: Switching tools in the middle of a project. This is an old standby that
hardly ever works. Sometimes it can make sense to upgrade incrementally
within the same product line, from version 3 to version 3.1 or sometimes even
to version 4. But the learning curve, rework, and inevitable mistakes made
with a totally new tool usually cancel out any benefit when you’re in the
middle of a project.

36: Lack of automated source-code control. Failure to use automated source-
code control exposes projects to needless risks. Without it, if two develop-
ers are working on the same part of the program, they have to coordinate
their work manually. They might agree to put the latest versions of each file
into a master directory and to check with each other before copying files into
that directory. But someone invariably overwrites someone else’s work.
People develop new code to out-of-date interfaces and then have to rede-
sign their code when they discover that they were using the wrong version
of the interface. Users report defects that you can’t reproduce because you
have no way to re-create the build they were using. On average, source code
changes at a rate of about 10 percent per month, and manual source-code
control can’t keep up (Jones 1994).

Table 3-1 contains a complete list of classic mistakes.

CROSS-REFERENCE

For more on source-code
control, see “Software

Configuration Management”
in Section 4.2.

CROSS-REFERENCE

For more on reuse, see
Chapter 33, “Reuse.”

CROSS-REFERENCE

For more on estimating
savings from productivity

tools, see “How Much
Schedule Reduction to

Expect” in Section 15.4.

49

3.4 Escape from Gilligan’s Island

Table 3-1. Summary of Classic Mistakes

People-Related Process-Related Product-Related Technology-Related
Mistakes Mistakes Mistakes Mistakes

3.4 Escape from Gilligan’s Island

A complete list of classic mistakes would go on for pages more, but those
presented are the most common and the most serious. As Seattle University’s
David Umphress points out, watching most organizations attempt to avoid
these classic mistakes seems like watching reruns of Gilligan’s Island. At the
beginning of each episode, Gilligan, the Skipper, or the Professor comes up
with a cockamamie scheme to get off the island. The scheme seems as
though it’s going to work for a while, but as the episode unfolds, something
goes wrong, and by the end of the episode the castaways find themselves
right back where they started—stuck on the island.

1. Undermined
motivation

2. Weak personnel

3. Uncontrolled
problem employees

4. Heroics

5. Adding people to
a late project

6. Noisy, crowded
offices

7. Friction between
developers and
customers

8. Unrealistic
expectations

9. Lack of effective
project sponsorship

10. Lack of stakeholder
buy-in

11. Lack of user input

12. Politics placed
over substance

13. Wishful thinking

14. Overly optimistic
schedules

15. Insufficient risk
management

16. Contractor failure

17. Insufficient
planning

18. Abandonment of
planning under
pressure

19. Wasted time during
the fuzzy front end

20. Shortchanged
upstream activities

21. Inadequate design

22. Shortchanged
quality assurance

23. Insufficient manage-
ment controls

24. Premature or overly
frequent convergence

25. Omitting necessary
tasks from estimates

26. Planning to catch
up later

27. Code-like-hell
programming

28. Requirements
gold-plating

29. Feature creep

30. Developer
gold-plating

31. Push-me, pull-me
negotiation

32. Research-oriented
development

33. Silver-bullet
syndrome

34. Overestimated
savings from
new tools or
methods

35. Switching tools
in the middle
of a project

36. Lack of
automated
source-code
control

50

Chapter 3: Classic Mistakes

Similarly, most companies at the end of each project find that they have made
yet another classic mistake and that they have delivered yet another project
behind schedule or over budget or both.

Your Own List of Worst Practices

Be aware of the classic mistakes. Create lists of “worst practices” to avoid on
future projects. Start with the list in this chapter. Add to the list by conduct-
ing project postmortems to learn from your team’s mistakes. Encourage other
projects within your organization to conduct postmortems so that you can
learn from their mistakes. Exchange war stories with your colleagues in other
organizations, and learn from their experiences. Display your list of mistakes
prominently so that people will see it and learn not to make the same mis-
takes yet another time.

Further Reading

Although a few books discuss coding mistakes, there are no books that I
know of that describe classic mistakes related to development schedules.
Further reading on related topics is provided throughout the rest of this book.

625

Index

Special Characters
3GLs (third-generation languages), 365

switching from a, 360–62
4GLs (fourth-generation languages), 365

switching to a, 360–62
90-90 problem, 580

A
Aburdene, Patricia, 258
accountability, team structure and, 302
accuracy

of data, measurement and, 476
precision vs., 173

achievement motivation, 255
adherence to plan, overly optimistic scheduling

and, 211
Advances in Software Inspections, 77
air-traffic-control workstation software, 320
Albrecht, Allan J., 174, 187
all-out rapid development, 20
Amish barn raising team, 273–74, 277, 279, 280,

286, 287, 292
Andriole, Steven J., 573
Applied Software Measurement (Jones), 204, 479
appreciation (recognition)

failure of teams and lack of, 290
lack of, as morale killer, 267–68
motivation and gestures of, 262–63

“Article of Understanding” (with customers), 325
Art of Software Testing, The (Myers), 76
Assessment and Control of Software Risks (Jones),

106, 161, 204, 343, 369, 608
assuming risks, 98
Auerbach, Red, 51
August, Judy, 452, 455, 461, 463
Australian Computer Society Software

Challenge, 61
automatic programming, 366–67

“Automatic Programming: Myths and Prospects”
(Rich and Waters), 366

autonomy, sense of
of team members, 286–87
work itself as motivation and, 259

avoiding risks, 97. See also risk management

B
Babich, W., 68
Bach, James, 41
Baker, F. Terry, 305, 306
ballpark schedule estimates, 185–97

efficient schedules, 192–94
first thing to do with, 196–97
nominal schedules, 194–96
shortest possible schedules, 188–92
tables of, 186–88

barn raising. See Amish barn raising team
baseline report, 475
Basili, Victor R., 12, 14, 74, 360, 469, 475, 556
Baumert, John, 57
Bayer, Sam, 287
Becoming a Technical Leader (Weinberg), 271
Belbin, Meredith, 284
Belz, F. C., 161
Bentley, Jon, 68, 436
Bersoff, Edward H., 68
best practices in rapid development, 390–401.

See also specific practices
chapters in this book on, 390

organization of, 392–94
sections in, 394

reasons for excluding candidates for, 395–96
summary of best-practice candidates, 394–400
summary of evaluations of, 400–401
summary tables on

“chance of first-time success” entry, 393
“chance of long-term success” entry, 393–94

626

Index

best practices in rapid development, summary
tables on, continued

“effect on schedule risk” entry, 393
“improvement in progress visibility”

entry, 393
“major interactions and trade-offs” entry, 394
“major risks” entry, 394
“potential reduction from nominal schedule”

entry, 392
sample table, 390–91

Bieman, James M., 431, 435, 436, 438, 439, 441,
443, 571, 597

Biggerstaff, Ted, 535
Bock, Douglas, 360
Boddie, John, 314, 338, 339, 388, 603, 604
Boehm, Barry W., 12–13, 40, 44, 45, 62, 71–73, 84,

94, 106, 123, 124, 161, 181–83, 192, 203, 212,
217, 249, 257, 262, 263, 276, 277, 331, 335,
417, 462, 484, 511, 518, 559, 568, 585, 601

Boeing, 256
Booch, Grady, 67
Brady, Shelia, 543, 603
breaking the build, penalty for, 410
Brodman, Judith G., 474
Brooks, Frederick P., Jr., 41, 207, 222, 305, 311,

317, 348, 349, 365, 369, 378, 411, 418, 534
Brooks, Ruven, 348
budget, unrealistic expectations about, evolution-

ary prototyping and, 436
buffers, project overrun and, 94
Bugsy (film), 344
build group, establishing a, 408–9
building a program, 406. See also daily build and

smoke test
Building Quality Software (Glass), 76
Burlton, Roger, 55, 428
burnout

overly optimistic scheduling and, 217
signing up and, 544

business software, defined, 22
business-team structure, 304
Butler Cox Foundation, 293
buy-in by stakeholders, lack of, 42
Bylinsky, Gene, 207

C
cancelation of projects, 319
Capability Maturity Model, The (Carnegie Mellon

University/Software Engineering Institute),
28, 59

Card, David N., 12, 74, 249, 531, 532
Carnegie Mellon University, 28
Carroll, Paul B., 23, 343, 488
case-based estimating, 181
case studies

change management, effective, 342–43
classic mistakes, 29–37
estimation

careful project estimation, 200–202
seat-of-the-pants, 164

fundamentals, lack of, 52–55
fuzzy front end, 124–25
lifecycle models

effective selection of lifecycle model, 159–61
ineffective selection of, 134–36

motivation
disheartening lunch with the boss, 250–51
highly motivational environment, 270–71

productivity tools
effective tool use, 368–69
ineffective tool use, 346–47

recovery of projects
successful project recovery, 385–87
unsuccessful project recovery, 372–73

requirements, 234–36, 246
risk management

contractor, lack of, 82–83
systematic, 103–5

schedule negotiation, successful, 229–30
strategy for rapid development

clear, 25–27
lack of a clear, 6

team structure
good match between project objectives and

team structure, 315–16
mismatch between project objectives and

team structure, 297–99

627

Index

case studies, continued
teamwork

high-performance team, 277–78
poor group dynamics, 274–75
selection of team members, 282–83

CASE tools, 363, 364, 366
Caswell, Deborah L., 478
categories, estimation by, 178
“chance of first-time success” entry, in

best-practice summary tables, 393
“chance of long-term success” entry, in

best-practice summary tables, 393–94
change

designing for (see designing for change)
managing a high-performance team and, 288

change analysis, 338–39
change-control boards, 339–41, 403
Cherlin, M., 293
chief-programmer team structure, 305
Chow, Tsun S., 76
classic mistakes, 8, 29–50

awareness of, 50
case study, 29–37
effect on development schedule, 37–39
people-related, 40–43
process-related, 44–46
product-related, 46–47
recovery of projects and, 379–80
technology-related, 47–48

Clements, Paul C., 423
CNA Insurance Company, 461
Coad, Peter, 67
COCOMO model, 182
code-and-fix lifecycle model, 140

strengths and weaknesses of, 156
Code Complete (McConnell), xvi, 67, 75, 343, 414,

423, 432, 524
code-like-hell approach (commitment-based

approach), 22–25, 184
as classic mistake, 46
disadvantages of, 23–24
successes and advantages of, 22–23
this book’s approach compared to, 24–25

code reading, 74

cohesiveness of teams, performance and, 277
Comer, Ed, 531, 532
commercial software, defined, 22
commitment

to productivity tool selection, 358
to the team, 285

commitment-based approach. See code-like-hell
approach (commitment-based approach)

communication
failure of teams and, 290
among team members, 286
team structure and, 302

Communications of the ACM, 317
Complete Guide to Software Testing, The

(Hetzel), 76
“Component Software” (Udell), 538
Confessions of a Used Program Salesman

(Tracz), 538
confidence factors, estimation and, 181–82
Connell, John, 443
Constantine, Larry L., 28, 43, 61, 67, 294, 296, 317
Constantine on Peopleware (Constantine), 28, 317
construction

customer-oriented, 242–43
as development fundamental, 64–65
further reading on, 67–68

Conte, S. D., 479
contractors. See also outsourcing

failure of, as classic mistake, 44
risks associated with, 89

contracts, outsourcing, 493, 495, 498–99
control

estimation vs., 170
evolutionary prototyping and diminished,

436–37
loss of

outsourcing and, 500
signing up and, 544

Controlling Software Projects (DeMarco), 59,
131, 203

convergence, premature or overly frequent
as classic mistake, 45–46
overly optimistic scheduling and, 213–15

628

Index

cost
lowest, as rapid development look-alike, 114
trade-offs among product, schedule, and, 126

Costello, Scott H., 207, 231
cost ratios, 72
Cox, Charles, 468, 474
Cray, Seymour, 47
“Creating New Software Was Agonizing Task for

Mitch Kapor Firm” (Carroll), 343
creativity, overly optimistic scheduling and, 216–17
creativity team, 300
crisis, miniature milestones in response to a, 484
crowded work environments, 41
Crunch Mode (Boddie), 388
Curtis, Bill, 12, 213, 249
custom applications, productivity tools and, 350
customer-oriented development, 16, 233–47

importance of customers to rapid development,
236–38

customer-oriented practices, 238–43
construction, 242–43
design, 242
further reading on, 247
planning, 239
requirements analysis, 239–42
requirements practices, 338

customer relations
daily build and smoke test and, 407
overly optimistic scheduling and, 213
Theory-W management and, 561

customers
developers’ understanding with, 325
expectations of, 243–45

unrealistic, 120–21, 243, 245
friction between developers and, 41–42
identifying, 116, 239
risks associated with, 88–89

customer-satisfaction surveys, 241, 242
Cusumano, Michael, 116, 255, 270, 272, 290, 324,

327, 341, 407, 414, 432, 536
cycles, short release, 339

D
daily build and smoke test, 405–14

bottom line on, 413–14
further reading on, 414
interactions with other practices, 413
managing risks of, 412–13
side effects of, 413
summary of, 405
time savings produced by, 406–7
using, 407–12

adding code to the build, 409
broken builds, checking for, 407–8
build and smoke testing even under

pressure, 411
build group, establishing a, 408–9
daily building of the product, 407
daily smoke test, 408
holding area for code that’s to be added

to the build, 409–10
keys to success in, 414
kinds of projects that can use this process,

411–12
penalty for breaking the build, 410
releasing builds in the morning, 410–11
requiring developers to smoke test before

adding code to system, 409
Davis, Alan M., 68, 366
DBMS-oriented applications, productivity tools

and, 350
deadlocks, breaking, in principled negotiations,

227
Debugging the Development Process (Maguire), 28,

231, 608
Dedene, Guido, 493, 496, 502
defect rates, 69–71

of error-prone modules, 72
defects, preventing, 71
DeGrace, Peter, 143, 161
DeMarco, Tom, 12, 28, 41, 59, 118, 131, 174,

186, 203, 217, 231, 249, 271, 276, 288, 290,
293–95, 317, 334, 506, 513, 543, 603, 608

Deming, W. Edwards, 265
demonstration prototyping, 591

629

Index

design. See also designing for change
customer-oriented, 242
as development fundamental, 62–63
evolutionary prototyping and poor, 438–39
further reading on, 66–67
inadequate, as classic mistake, 45
risks associated with, 91

“Design and Code Inspections to Reduce Errors in
Program Development” (Fagan), 77

designing for change, 415–23
bottom line on, 422
further reading on, 423
interactions with other practices, 422
managing the risks of, 421–22
side effects of, 422
summary of, 415
using, 416–21

change plans, 419
defining families of programs, 419–21
identifying areas likely to change, 416–17
information hiding, 417–19
keys to success in, 423
object-oriented design, 421

Design Objectives and Criteria (Boeing), 256
design-to-schedule lifecycle model, 149–50

strengths and weaknesses of, 157
design-to-tools lifecycle model, 152–53

strengths and weaknesses of, 157
developers

as bad negotiators, 221
estimates prepared by, 178
feedback on measurement data to, 474–75
friction between customers and, 41–42
gold-plating by, 47
hygiene factors for, 265–66
increased attachment to specific features, 328
in JAD sessions, 454
miniature milestones of, 485
motivations of, 251–54
not involving, in decisions that affect them, as

morale killer, 268–69
overly optimistic scheduling and relationships

between managers and, 217

developers, continued
recovery of projects and, 379
reuse and, 535

Developing Products in Half the Time (Smith and
Reinertsen), 131

development environment, risks associated
with, 88

development speed. See speed of development
De Vreese, Jean-Pierre, 493, 496, 502
diagnosis of defects, daily build and smoke test

and, 406
Discipline for Software Engineering, A

(Humphrey), 28
documentation

graphically oriented, 329
reuse and, 534

Dreger, Brian, 204
drop-dead date, fixed, 114–15
Dunn, Robert H., 62
Dunsmore, H. E., 479
Dupont, 293, 586
Dyer, William G., 296
Dynamics of Software Development (McCarthy),

317, 388, 414, 432

E
“effect on schedule risk” entry, in best-practice

summary tables, 393
efficient development, 19–20

customer relationships and, 237
tilted toward best schedule, 20

efficient schedules
ballpark estimates for, 192–94

shortest possible schedules and, 193
effort estimation, 182–83
Elements of Friendly Software Design, The (Heckel),

317
embedded software, 22
Emery, Fred, 287, 288
Emery, Merrelyn, 287, 288
employees. See personnel (employees; staff)
empowerment, sense of, team members’, 287
encapsulation, planned reuse and, 534

630

Index

end-users. See also customer-oriented
development; customers

lack of involvement, 42
risks associated with, 88

Erikson, W. J., 12, 217, 249
Ernst and Young, 61
error-prone modules, 72
error rates. See defect rates
estimate-convergence graph, 168
estimates (estimation), 163–204

accuracy vs. precision and, 173
allowing time planning for, 178
ballpark schedule, 185–97

efficient schedules, 192–94
first thing to do with, 196–97
nominal schedules, 194–96
shortest possible schedules, 188–92
tables of, 186–88

case-based, 181
case studies

careful project estimation, 200–202
seat-of-the-pants estimation, 164

by categories, 178
changing practices of, 179
commitment-based scheduling and, 184
confidence factors and, 181–82
construction example, 166
control vs., 170
convergence between reality and, 171–72
cooperation and, 171
developer-based, 178
as development fundamental, 55
effort, 182–83
function-point, 174–77
further reading on, 203–4
as gradual refinement process, 165–69
at low level of detail, 178
off-the-cuff, 177
omission of common tasks and, 179
omitting necessary tasks from, as classic

mistake, 46
overview of the process of, 173–74
padding of, 184

estimates (estimation), continued
plus-or-minus style, 180
presentation styles for, 179–82
previous projects as basis for, 178
principled negotiation method and, 227–29
probability of loss, 93
ranges for, 180
recalibration of schedules, 199–200
reestimation mistakes, 46
refinement of, 197–200
risk quantification and, 180–81
schedule, 183–85
size, 174–82

definition of size, 175
function-point estimation, 174

size of loss, 93
software tools for, 179
staged delivery and, 552
story of, 165–72, 221
tips on, 177–79
using several different techniques for, 179
by walk-through, 178

evolutionary delivery, 151–52, 425–32
further reading on, 432
interactions with other practices, 431
managing the risks of, 429
side effects of, 430
strengths and weaknesses of, 157
summary of, 425
using, 427–29

keys to success in, 432
release order, 428–29
when to use, 429

evolutionary prototyping lifecycle model, 147–48,
433–43

bottom line on, 441–42
evolutionary delivery and, 425, 426, 428–31
further reading on, 443
interactions with other practices, 441
managing the risks of, 435–40

diminished project control, 436–37
feature creep, 439
inefficient use of prototyping time, 440

631

Index

evolutionary prototyping lifecycle model, managing
the risks of, continued

poor design, 438–39
poor end-user or customer feedback, 437
poor maintainability, 439
poor product performance, 437
unrealistic performance expectations, 437
unrealistic schedule and budget

expectations, 436
side effects of, 440
strengths and weaknesses of, 156
summary of, 433–34
user-interface prototyping and, 591–92
using, 435

keys to success in, 442
expectations

measurements and, 468
unrealistic, 42

of customers, 120–21
after JAD session, 460
about performance, evolutionary prototyping

and, 437–38
about schedule and budget, evolutionary

prototyping and, 436
about schedule and budget, throwaway

prototyping and, 572
Exploring Requirements (Gause and Weinberg), 66
external environment, risks associated with, 90

F
Fagan, M. E., 45, 77, 123, 212
Faller, Benoît, 530, 534
families of programs/products, 420–21
features (feature set), 319–44

case study: managing change effectively, 342–43
creeping (creeping requirements), 46–47, 123,

319 (see also requirements (requirements
specifications or analysis))
evolutionary prototyping and, 439
kinds of controls, 320–21
outsourcing and, 492
reducing the feature set, 321–31
scrubbing (entirely removing) features,

329–30

features (feature set), creeping (creeping require-
ments), continued

staged delivery and, 555
timebox development and, 581
user-interface prototyping and, 591
versioned development, 330–31

further reading on, 343–44
late-project feature cuts, 341–42
mid-project changes, 331–41

effects of change, 335–36
killer-app syndrome, 332
methods of change control, 338–41
sources of change, 331–32
stopping changes altogether, 336–37
unclear or impossible goals, 332–35

recovery of projects and, 382–84
timebox development and, 580

feature-team structure, 307
Federal Aviation Administration (FAA), air-traffic-

control workstation software, 320
feedback

end-user or customer, evolutionary prototyping
and, 437

on measurement data, 474–75
team structure and, 302

Fenton, Norman, 474, 475
firmware, 22
first-order estimation practice, Jones’s, 185
Fisher, Roger, 231, 562
flow time, productivity environments and, 506
focus groups, 241, 242
fourth-generation languages. See 4GLs
Fox, Christopher J., 534, 535
Frakes, William B., 534, 535
Freedman, Daniel P., 77
Freeman, Peter, 538
friction

customer relationships and, 238
between developers and customers, 41–42

Function Point Analysis (Dreger), 204
function-point estimation, 174–77

further reading on, 204
function-point multipliers, 176

632

Index

fundamentals of software development, 8, 15,
51–79, 395

case study: lack of fundamentals, 52–55
following the instructions on, 77–78
further reading on, 66–68
management, 55–60
quality assurance (see quality assurance)
technical, 60–66

fuzzy front end, 124
case study, 124–25
wasted time during, 44

G
Gaffney, J., 187
gambles, 103

overly optimistic scheduling and, 216
Gates, Bill, 208, 290
Gause, Donald C., 66
Getting to Yes (Fisher and Ury), 222, 231
Gibbs, W. Wayt, xiii, 14, 320, 343
Gilb, Tom, 47, 59, 71, 74, 76, 82, 106, 204, 231,

428, 430, 432, 489, 558
Glass, Robert L., xvii, 76, 82, 206, 215, 216, 352,

367, 369, 416
goals

setting, 445
achievement motivation and, 255–57
measurement and, 469

unclear or impossible
mid-project changes and, 332–35
minimal-specification approach and, 326

gold-plating
minimal-specification approach and, 326–27
timebox development and, 581

Gordon, V. Scott, 431, 435, 436, 438, 439, 441, 443,
571, 597

Grady, Robert B., 478, 479
Graham, Dorothy, 74, 76
Grant, E. E., 12, 217, 249
granularity of data, 471
Gray, T. E., 12, 217, 277
Griss, 531, 534
groups, teams distinguished from, 276
Grove, Andrew S., 60, 265
growth, possibility for, as motivation, 257–58

H
Hackman, J. Richard, 258, 272
Hall, Tracy, 474, 475
Hamilton, Scott, 14
Handbook of Walkthroughs, Inspections

and Technical Reviews (Freedman and
Gerald), 77

Hatley, Derek J., 66
Hawthorne effect, 264–65
Hawthorne Works of the Western Electric

Company, 263
Heckel, Paul, 317
Henry, S. M., 529, 534
Herbsleb, James, 537
heroics, 41
Herzberg, Frederick, 254, 265, 272
Hetzel, Bill, 52, 56, 57, 76, 351
High Output Management (Grove), 60
high risk, 102–3
Highsmith, Jim, 287
hiring practices, 40
human resources, code-like-hell approach and, 24
Humphrey, Watts S., 28, 44, 211, 502
Hunter, Richard, 262, 321, 540
Hutchens, David H., 74
hygiene factors

morale and, 265
motivation and, 265–66
productivity environments and, 506

I
Iansiti, Marco, 116, 207, 231
IBM, 70, 72, 174

Santa Teresa office facility, 509, 512
“IBM’s Santa Teresa Laboratory-Architectural

Design for Program Development”
(McCue), 513

idle periods, long-term teambuilding and, 293–94
IEEE Software (magazine), 479, 538
“Impacts of Life Cycle Models on Software

Configuration Management” (Bersoff and
Davis), 68

implementation, risks associated with, 91

633

Index

“improvement in progress visibility” entry, in
best-practice summary tables, 393

incentives, motivation and, 262
incremental development practices, 152
ineffective development practices, 3. See also

classic mistakes
inefficient schedule-oriented practices, 20–21
information

about risks, 97
team structure and, 302

information hiding, 63
designing for change and, 417–19
planned reuse and, 534

in-house software, defined, 22
In Search of Excellence (Peters and Waterman),

247, 263, 272, 317
Inside RAD (Kerr and Hunter), 262, 321
inspections, 74

further reading on, 76–77
integration of code

daily build and smoke test and, 406
staged delivery and, 552

interactive software, defined, 22
interdependence among team members, 286
International Function Point User Groups

(IFPUG), 174

J
JAD (Joint Application Development), 241, 242,

324–25, 449–63
bottom line on, 461
further reading on, 463
interactions with other practices, 461
managing the risks of, 460
requirements specifications and, 450, 461–62
savings produced by, 450
side effects of, 460–61
using, 451–59

design phase, 451–52, 457–59
keys to success in, 462
planning phase, 451–57

job feedback, work itself as motivation and, 259
job satisfaction, defined, 254
Johnson, Donna L., 474

Joint Application Design (August), 463
Joint Application Development. See JAD
Joint Application Development (Wood and

Silver), 463
Joint Requirements Planning. See JRP
Jones, Capers, xiii, xvii, 12, 42, 45, 46, 48, 57, 66,

67, 69–73, 81, 106, 123, 161, 163, 174, 179,
185, 192, 204, 207, 211, 215, 217, 227, 244,
258, 297, 305, 309, 319, 331, 338, 339, 343,
353, 356, 360, 363, 364–65, 369, 370, 422,
441, 461, 469, 476, 479, 506, 512, 524, 531,
534, 537, 581, 596, 601, 606, 608

Jones’s first-order estimation practice, 176, 185
Joos, Rebecca, 531
JRP (Joint Requirements Planning), 452
jumping into coding, as classic mistake, 45

K
Karten, Naomi, 247
Katzenbach, Jon, 275, 296
Kemerer, Chris, 187, 188
Kerr, James, 262, 321, 540, 542
Kidder, Tracy, 23, 540, 542, 544, 545
Kitson, David H., 57, 62, 66, 70
Klein, Gary, 366
Klepper, Robert, 360
Kohen, Eliyezer, 63
Korson, Timothy D., 417
Krantz, Les, xvii

L
LaFasto, Frank M. J., 41, 256, 257, 279, 285, 288,

291, 294, 296, 299, 300, 302, 317
Lakhanpal, B., 40, 277, 293
languages. See 3GLs (third-generation languages);

4GLs (fourth-generation languages); rapid-
development languages (RDLs)

Laranjeira, Luiz, 197
large teams, 311–13
Larson, Carl E., 41, 256, 257, 279, 285, 288, 291,

294, 296, 299, 300, 302, 317
late projects, adding people to, 41
leaders (leadership), 283

JAD session, 454
recovery of projects and, 377–78

634

Index

leads, technical, 313–14
Lederer, Albert L., xiii, 178, 319
legacy-systems reengineering, outsourcing, 494
lifecycle planning (lifecycle models), 16, 133–43,

151–52, 239. See also specific models
case studies

effective selection of lifecycle model, 159–61
ineffective selection of lifecycle model,

134–36
choosing the most rapid model, 154–58
code-and-fix model, 140
design-to-schedule, 149–50
design-to-tools, 152–53
evolutionary prototyping, 147–48
incremental development practices, 152
modified waterfall model, 143–47
off-the-shelf software, 153–54
selection of, 465
staged delivery, 148–49
strengths and weaknesses of, 156–58
waterfall model, 136–39

lines-of-code measurements, 477
Lister, Timothy, 12, 28, 41, 217, 231, 249, 271, 276,

288, 290, 293, 295, 334, 506, 511, 513, 543,
603, 608

long-term rapid development, 217
loss of control

outsourcing and, 500
signing up and, 544

Lyons, Michael L., 253

M
Maguire, Steve, 28, 68, 231, 270, 543, 603, 604, 608
maintainability, evolutionary prototyping and

poor, 439
“major interactions and trade-offs” entry, in

best-practice summary tables, 394
“major risks” entry, in best-practice summary

tables, 394
management (managers). See also Theory-W

management
of high-performance teams, 288–89
inappropriate involvement of technically inept,

as morale killer, 268

management (managers), continued
manipulation by, as morale killer, 266–67
motivations of, compared to developers, 251–52
overly optimistic scheduling and relationships

between developers, 217
recovery of projects and, 377–78
technical leads and, 313–14

management controls, insufficient, as classic
mistake, 45

management fundamentals, 55–60
estimation and scheduling, 55
further reading on, 58–60
measurement, 58
planning, 56
tracking, 56–58

management risks, 87–88
Manager’s Guide to Software Engineering, A

(Pressman), 59, 75
Managing a Programming Project (Metzger),

56, 59
Managing Expectations (Karten), 247
Managing Software Maniacs (Whitaker), 247
Managing the Software Process (Humphrey), 502
manipulation by management, as morale killer,

266–67
Marciniak, John J., 493, 502
Marcotty, Michael, 68
Martin, James, 131, 293, 308, 317, 366, 452–55,

461, 463, 584, 586, 587
Masters, Stephen, 57, 62, 66, 70
maturity of productivity tools, 356–57
Mayo, Elton, 263
MBTI (Myers-Briggs Type Indicator) test, 253
McCarthy, Jim, 127, 242, 307, 317, 339, 341, 388,

407, 414, 432, 482
McConnell, Steve, xiv, 67, 75, 343, 414, 423, 432,

523, 524
McCue, Gerald M., 513
McDermott, Tim, 530, 534
McGarry, Frank, 12, 249, 277, 360, 469, 475,

530, 534
measurement, 467–79

benefits of using, 468
bottom line on, 478

635

Index

measurement, continued
as development fundamental, 58
expectations and, 468
further reading on, 478–79
interactions with other practices, 477
managing the risks of, 476–77
side effects of, 477
using, 469–76

accuracy of data, 476
analysis vs. measurement, 473–74
baseline report, 475
feedback on measurement data, 474–75
Goals, Questions, Metrics practice, 469
granularity, 471–73
keys to success in, 478
limitations, 475–76
measurement group, 469–70
Pareto analysis, 473
what to do with collected data, 473–75
what to measure, 470–73

measurement group, 469
Measures for Excellence (Putnam and Myers), 203
Method for Assessing the Software Engineering

Capability of Contractors, A (Humphrey and
Sweet), 502

Metzger, Philip W., 56, 59, 221, 543, 603
Microsoft

case study: motivation of developers at, 270–71
late-project feature cuts at, 341

“Microsoft Corporation: Office Business Unit”
(Iansiti), 231

Microsoft Secrets (Cusumano and Selby), 272,
414, 432

Microsoft Windows NDS tree 3.0, development of,
388, 408, 542–44

Microsoft Word for Windows 1.0
optimistic scheduling practices and, 207–9

Microsoft Visual C++, 242
milestones

major, 484
miniature (see miniature milestones)

military software, 22
Millington, Don, 236, 328

Mills, Harlan D., 12, 249, 305, 306, 543, 603
miniature milestones, 380–82, 481–89

bottom line on, 488
fine-grain control and, 483
further reading on, 489
generic task lists vs., 487
interactions with other practices, 488
managing risks of, 487
motivation and, 483
schedule risk and, 483
side effects of, 487
status visibility and, 482–83
summary of, 481
using, 484–87

assessing progress and recalibrating or
replanning, 486–87

developers’ own mini milestones, 485
“done” and “not done” as only two

statuses, 485
early or in response to a crisis, 484
exhaustive set of milestones, 486
keys to success in, 489
for short-term planning, 486
size limit, 485

minimal specifications, 323–29
benefits of, 325–26
keys to success in using, 328–29
lack of support for parallel activities and, 327
risks of, 326–28
wrong reason for using, 328

Modern Structured Analysis (Yourdon), 66
modularity, 63
“Modular Structure of Complex Systems, The”

(Parnas, Clements, and Weiss), 423
MOI model, 289
Moore, Dave, 270
morale

daily build and smoke test and, 407
defined, 254
factors that lower, 265–69
measurement and, 468
minimal-specification approach and, 325–26
outsourcing and, 500
project recovery and, 377, 379

636

Index

morale budget at Microsoft (case study), 270
More Programming Pearls (Bentley), 68
motivation(s), 14

achievement as, 255–57
case studies

disheartening lunch with the boss, 250–51
highly motivational environment, 270–71

commitment-based approach and, 23
defined, 254
of developers, 251–54
further reading on, 271–72
heavy-handed campaigns to improve, as morale

killer, 269
miniature milestones and, 483
minimal-specification approach and, 325–26
morale killers, 265–69

excessive schedule pressure, 267
heavy-handed motivation campaigns, 269
hygiene factors, 265–66
inappropriate involvement of technically

inept management, 268
lack of appreciation for developers, 267
low quality, 269
management manipulation, 266–67
not involving developers, 268–69
productivity barriers, 269

overly optimistic scheduling and, 216
performance reviews and, 265
personal life as, 260–61
pilot projects and, 263–65
possibility for growth as, 257–58
rewards and incentives and, 262–63
technical-supervision opportunity as, 261
timebox development and, 581
undermined, as classic mistake, 40
work itself as, 258–60

motivation (motivation factors), 249–72
mutual trust, teamwork and, 285
Myers, Glenford, 73, 74, 76
Myers, Ware, 14, 182, 192, 518
Myers-Briggs Type Indicator (MBTI) test, 253
Mythical Man-Month, The (Brooks), 305, 317,

 369, 418

N
Naisbitt, John, 258, 508
NASA, 478

Software Engineering Laboratory, 74, 277, 352,
421, 469, 474, 475, 530, 533

negotiation (negotiating skills)
estimates and, 221
principled (see principled negotiation method)
push-me, pull-me, 47
separating the people from the problem, 222–23

noisy, crowded offices, 41
nominal schedules, 194–96
“No Silver Bullets-Essence and Accidents of

Software Engineering” (Brooks), 348

O
Object Oriented Analysis and Design (Booch), 67
object-oriented design

designing for change and, 421
information hiding, 417–19
planned reuse and, 534

Object-Oriented Design (Coad and Yourdon), 67
object-oriented programming, 367
Object-Oriented Rapid Prototyping (Connell and

Shafer), 443
O’Brien, Larry, 358, 370
office space. See productivity environments
offshore outsourcing, 496
off-the-shelf software, 153–54

strengths and weaknesses of, 157
O’Grady, Frank, 294
Oldham, Greg R., 258, 272
Olsen, Neil, 18
“One More Time: How Do You Motivate Employ-

ees?” (Herzberg), 272
“On the Criteria to Be Used in Decomposing

Systems into Modules” (Parnas), 423
opportunistic efficiency, minimal-specification

approach and, 326
optimistic schedules, overly, as classic mistake, 44
optimistic scheduling. See scheduling (schedules),

overly optimistic

637

Index

organization of teams, 13
organization risks, 87–88
outsourcing, 491–502

bottom line on, 501
feature creep and, 492
further reading on, 502
interactions with other practices, 501
managing the risks of, 499–500
planning and, 493
requirements specification and, 492
reusable components and, 492
side effects of, 501
staffing flexibility and, 492
summary of, 491
time savings with, 492
using, 493–99

communication with the vendor, 493
contract considerations, 498–99
contract management, 493
double standards for outsourced work, 495
keys to success in, 501–2
kinds of arrangements, 495–96
legacy-systems reengineering, 494
management plan including risk

management, 493
offshore outsourcing, 496–97
technical resources, 493–94
unstable requirements, 494
vendor evaluation, 497–98

overrun, project, 94
overtime

desire for free, as rapid-development look-
alike, 115

voluntary (see voluntary overtime)
ownership, achievement motivation and, 255

P
padding of estimates, 184
Page-Jones, Meilir, 67
Papaccio, 45, 62, 71, 212, 335, 585
Pareto analysis, 473
Parnas, David L., 417, 419, 420, 422, 423
Peat Marwick, 82

penalty for breaking the build, 410
people (peopleware issues). See also personnel

(employees; staff)
classic mistakes related to, 40
as dimension of development speed, 11, 12–14
recovery of projects and, 376–79

Peopleware (DeMarco and Lister), 28, 231, 271,
513, 608

perception of development speed, 119–21
overcoming the perception of slow

development, 121
performance

product, evolutionary prototyping and, 437
team structure and monitoring of, 302

performance reviews, motivation and, 265
per-person-efficiency trade-offs, 127
Perry, Dewayne E., 476
personal life, as motivation, 260–61
personnel (employees; staff). See also people

(peopleware issues)
evaluations of, measurements misused for, 476
long-term teambuilding and, 293
outsourcing and staffing flexibility, 492
problem, 40–41

failure of teams and, 291–92
recovery of projects and, 377
risks associated with, 90
weak, 40

Peters, Chris, 255, 324, 413, 536
Peters, Tomas J., 247, 258, 263, 265, 271, 272, 317
Pfleeger, Shari Lawrence, 441, 533–36
philosophy, best practices and, 395
Pietrasanta, Alfred M., 14, 474
Pirbhai, Imtiaz A., 66
planned reuse, 531–35
planning (plans), 486

abandonment of, under pressure, as classic
mistake, 44

change, 419
customer-oriented, 239
as development fundamental, 56
insufficient, as classic mistake, 44
outsourcing and, 493

638

Index

planning (plans), continued
overly optimistic scheduling and adherence

to, 211
overly optimistic scheduling and quality of, 211
risk-management, 85, 96–97

Plauger, P. J., 28, 66–67
point-of-departure spec, 324
politics placed over substance, 43
postmortems, interim, 102
“potential reduction from nominal schedule”

entry, 392
Practical Guide to Structured Systems Design, The

(Page-Jones), 67
Practical Software Metrics for Project Management

and Process Improvement (Grady), 479
Prasad, Jayesh, xiii, 178, 319
precision, accuracy vs., 173
predictability, as rapid-development look-alike, 113
premature convergence, overly optimistic

scheduling and, 213–15
premature releases, daily build and smoke test

and, 412–13
presentation styles, for estimates, 179–82
Pressman, Roger S., 59, 75, 79
principled negotiation method, 222–29, 503

degrees of freedom in planning a software
project and, 225–26

focusing on interests, not positions, 224–25
insisting on using objective criteria, 227–29
inventing options for mutual gain, 225–27
separating the people from the problem, 222–23

Principles of Software Engineering Management
(Gilb), 59, 71, 106, 204, 231, 428, 430, 432,
489, 558

prioritization of risks, 85, 94–96
problem-resolution team, 300
process

abuse of focus on, 14–15
classic mistakes related to, 44–46
as dimension of development speed, 11, 14–16
recovery of projects and, 379–82
risks associated with, 91

product. See also features (feature set)
as dimension of development speed, 11, 17
risks associated with, 89–90
trade-offs among schedule, cost, and, 126–27

product characteristics, 17
product families, 420–21
productivity

barriers to, 269
failure of teams and, 290

classic mistakes and (see classic mistakes)
factors that affect, 37–38
lines-of-code measurement of, 477
motivation and, 40
peopleware issues and, 12, 13
per-person-efficiency trade-offs and, 127
team

permanent-team strategy, 292
variations in, 276–77

variations in, 14
among groups (teams), 12
among individuals, 12

productivity environments, 505–13
bottom line on, 511
further reading on, 513
interactions with other practices, 511
managing the risks of, 510–11
side effects of, 511
summary of, 505
using, 508–9

keys to success in, 513
productivity tools, 345–70

acquisition of, 353–58
criteria for tool selection, 356–58
risks of setting up a tools group, 355
tools person or group, 354–55

case studies
effective tool use, 368–69
ineffective tool use, 346–47

defined, 346
further reading on, 369–70
maturity of, 356–57

639

Index

productivity tools, continued
role in rapid development, 348–52

areas of special applicability, 349–50
limitations of productivity tools, 350–51
ultimate role of productivity tools, 351–52

silver-bullet syndrome (see silver bullets
(silver-bullet syndrome))

strategy for using, 352–53
use of, 358–63

how much schedule reduction to expect,
360–63

training, 359
when to deploy, 358–59

product size, 17
professional-athletic-team model, 309–10
program families, 420–21
Programming on Purpose (Plauger), 66
Programming on Purpose II (Plauger), 28
Programming Pearls (Bentley), 68
“Project Pathology: A Study of Project Failures”

(Thomsett), 388
project recovery. See recovery of projects
prototyping. See also evolutionary prototyping

lifecycle model; throwaway prototyping;
user-interface prototyping

prototyping, rapid, use of term, 434
prototyping, demonstration, 591
Psychology of Computer Programming, The

(Weinberg), 272
Putnam, Lawrence H., 14, 182, 192, 203, 518

Q
quality

lines-of-code measurement of, 477
low

daily build and smoke test and, 406
as morale killer, 269

overly optimistic scheduling and, 215–16
trade-offs, 127

quality assurance
fundamentals of, 69–77

defect rates, 69–71
error-prone modules, 72

quality assurance, continued
further reading on, 75–77
technical reviews, 73–75
testing, 72–73

purposes of, 15
shortchanged, as classic mistake, 45

Quality Software Management (Weinberg), 58, 218,
388, 608

R
RAD (Rapid Application Development), 366
Rapid Application Development (Martin), 131, 317,

366, 463, 587
rapid development. See also speed of development

approaches that contribute to, 130
core issues in, 109–31

further reading, 131
kind of rapid development needed, 111–16
odds of completing on time, 116–19
perception and reality of development

speed, 119–21
trade-off decisions, 126–27
typical schedule-improvement pattern,

128–30
variations in development practices, 109–11
where most of the time is spent, 122–25

customers’ importance to, 236–38
defined, 2
general kinds of, 18–21

all-out rapid development, 20–21
efficient development, 19–20
efficient development tilted toward best

schedule, 20
look-alikes, 113–15
trade-offs among different approaches to, 11, 18
ways of attaining, 2–3

rapid-development languages (RDLs), 515
bottom line on, 522–23
examples of, 516
interactions with other practices, 522
keys to success in, 523
managing the risks of, 520
side effects of, 522
using, 519

640

Index

rapid prototyping, use of term, 434
“Rapid Prototyping: Lessons Learned” (Gordon and

Bieman), 443
Raytheon, 14, 15, 21
RDLs. See rapid-development languages
“Realities of Off-Shore Reengineering” (Dedene

and De Vreese), 502
real-time systems, 22
recalibration of schedules, 199–200
recognition. See appreciation (recognition)
recovery of projects, 371–88. See also features

(feature set), late-project feature cuts and
mid-project changes

case studies
successful project recovery, 385–87
unsuccessful project recovery, 372–73

characteristics of projects in trouble, 371–72
fundamental approaches to, 373–74
philosophy of this book’s approach to, 374
plan for, 375–85

first steps, 376
people issues, 376–79
process, 379–82
product, 382
timing, 385

reestimation mistakes, 46
Reifer, Donald J., 493, 502
Reinertsen, D. G., 131
Reinventing the Corporation (Naisbitt and

Aburdene), 258
release cycles, short, 339
requirements (requirements specifications or

analysis), 61–62, 124
case studies, 234–36, 246
creeping (feature creep) (see features (feature

set), creeping (creeping requirements))
customer-oriented, 239–42, 338
detailed, 321–23
further reading on, 66
gold-plating, 46
JAD and, 450, 461–62
minimal specification, 323–29

benefits of, 325–26
keys to success in using, 328–29

requirements (requirements specifications or
analysis), continued

lack of support for parallel activities, 327
omission of key requirements, 326
risks of, 326–28
unclear or impossible goals, 326
wrong reason for using, 328

outsourcing and, 492, 494
recovery of projects and, 382–84
risks associated with, 89
scrubbing (entirely removing), 329–30, 525

research-oriented development, 47
resources, targeting, 16
reuse (reusable components), 527–38

bottom line on, 537
further reading on, 538
interactions with other practices, 536–37
keys to success in using, 537–38
managing the risks of, 535–36
outsourcing and, 492
side effects of, 536
summary of, 527
using, 528–35

opportunistic reuse, 528–31
planned reuse, 531–35

rewards
case study: at Microsoft, 270–71
motivation and, 262

rework
amount of time spent on, 123
avoidance of, 15
customer relationships and, 237

Rich, Charles, 366, 367
Rifkin, Stan, 468, 474
risk analysis, 85, 91–94
risk assessment, elements of, 85
risk, assuming, 98
risk control, 85, 96–102
risk exposure, 92
risk identification, 85–91

complete list of schedule risks, 86–91
contractor risks, 89
customer risks, 88–89
design and implementation risks, 91

641

Index

risk identification, continued
development environment risks, 88
end-user risks, 88
external environment risks, 90
organization and management risks, 87–88
personnel risks, 90
process risks, 91
product risks, 89–90
requirements risks, 89
schedule creation risks, 87

general risks, 85–86
most common schedule risks, 86

risk management, 8, 15, 81–106. See also
managing-risks sections of best-practice
Chapters 17–43

case studies, 82–83
systematic risk management, 103–5

disadvantages of, 82
elements of, 84
further reading on, 106
insufficient, as classic mistake, 44
levels of, 84
outsourcing and, 493

risk-management planning, 85, 96–97
risk monitoring, 85, 100–102
risk officer, 102
risk prioritization, 85, 94–96
risk quantification, estimation and, 180–81
risk resolution, 85, 97–100
risks, 102

customers-related, 237
roles, clear, team structure and, 302
Ross, Rony, 484, 559, 568
Rothfeder, Jeffrey, 82
runaway prevention, as rapid-development look-

alike, 113
Rush, Gary W., 461
Russell, Glen W., 74

S
Sackman, H., 12, 217, 249
Saiedian, Hossein, 14
sashimi model, 143–44
schedule compression, 191–92

schedule constraints, 112–13
schedule creation risks, 87
schedule estimation, 183–85
schedule-oriented practices, 3, 9, 10. See also

speed of development; visibility-oriented
practices

focusing only on, 10
focusing too much on single, 5
kinds of, 4

schedule pressure
beating, 220–29
build and smoke testing even under, 411
excessive, as morale killer, 267

schedule recalibration, 199–200
schedule risk, miniature milestones and, 483
schedule-risk-oriented practices. See fundamentals

of software development
scheduling (schedules), 205–31

beating schedule pressure, 220–29
principled negotiation, 222–29

case study: a successful schedule negotiation,
229–30

commitment-based, 184
as development fundamental, 55
further reading on, 231
overly optimistic, 207–20

accuracy of schedules and, 210
adherence to plan and, 211
bottom line and, 218–20
burnout and, 217
creativity and, 216–17
customer relations and, 213
developer-manager relationships and, 217
effects of, 210–15
example of, 207
gambling and, 216
long-term rapid development and, 217
motivation and, 216
premature convergence, 213–15
project focus and, 213
quality and, 215–16
quality of project planning and, 211
root causes of, 209–10
underscoping the project and, 212

642

Index

scheduling (schedules), continued
overly optimistic, as classic mistake, 44
principled negotiation method and, 222–29
probability of meeting, 116–19
timebox development and, 580
trade-offs among product, cost, and, 126

Scherr, Allen, 285, 540, 542
Scholtz, 367, 421, 534
Schulman, Edward, 12, 217, 255, 276
scientific software, 22
scribe, in JAD sessions, 455
scrubbing (entirely removing) features,

329–30, 525
search-and-rescue team model, 307–8
Seewaldt, T., 12, 217, 277
Selby, Richard, 74, 116, 255, 270, 272, 290, 324,

327, 341, 407, 414, 432, 536
Shafer, Linda, 443
Shaw, 436
Shen, V. Y., 479
Sherman, Roger, 138
shortest possible schedules, 188–92

efficient schedules and, 193
Showstopper! (Zachary), 272, 388
shrink-wrap software, defined, 22
Shultz, Scott, 586
signing up, 539–45

bottom line on, 545
in different environments, 542
further reading on, 545
giving people a choice about, 541
interactions with other practices, 544–45
keys to success in using, 545
managing the risks of, 543–44
shaky requirements and, 542
side effects of, 544
at the team level, 541
vision and, 540

Silver, Denise, 463
silver bullets (silver-bullet syndrome), 47–48,

363–69, 520–21
biting the bullet, 367–68
identifying, 365–67

Sims, James, 452
size estimation, 174–82

definition of size, 175
function-point estimation, 174

size of product, 17
skill variety, work itself as motivation and, 258
skunkworks-team structure, 306–7
Smith, Douglas, 296, 275
Smith, P. G., 131
smoke test. See daily build and smoke test
Sobol, Marion G., 366
software, types of, 22
Software Acquisition Management (Marciniak and

Reifer), 493, 502
Software Configuration Management (Babich), 68
Software Configuration Management (Bersoff), 68
software configuration management (SCM)

as development fundamental, 65–66
further reading on, 68

software development. See fundamentals of
software development; rapid development

software engineering, further reading on, 79
Software Engineering (Pressman), 75, 79
Software Engineering (Sommerville), 75, 79
Software Engineering Economics (Boehm), 203
Software Engineering Institute, 14, 28, 55, 57, 59,

66, 70, 374, 502
Software Engineering Laboratory (NASA), 74, 277,

352, 421, 469, 474, 475, 530, 533
Software Engineering Metrics and Models

(Conte et al.), 479
“Software Engineering Under Deadline Pressure”

(Costello), 231
Software Implementation (Marcotty), 68
Software Inspection (Gilb and Graham), 76
Software Measurement Guidebook (NASA), 478
Software Metrics (Grady and Caswell), 478
“Software Productivity Research Programming

Languages Table” (Jones), 524
Software Risk Management (Boehm), 106, 161
“Software Risk Management: Principles and

Practices” (Boehm), 106
“Software’s Chronic Crisis” (Gibbs), 343

643

Index

Software Sizing and Estimating (Symons), 204
Sommerville, Ian, 75, 79
Soul of a New Machine, The (Kidder), 540, 542, 545
source-code control, lack of automated, as classic

mistake, 48
specifications. See requirements (requirements

specifications or analysis)
speed of development. See also rapid development

classic mistakes and, 37–39
dimensions of, 11–18

people, 12–14
process, 14–16
product, 17
relative importance of, 21–22
technology, 17–18

typical pattern for improving, 128–30
spiral lifecycle model, 141–43, 547

strengths and weaknesses of, 156
sponsorship of projects, lack of effective, 42
staff. See personnel (employees; staff)
staged delivery lifecycle model, 148–49, 425, 426,

549–58
benefits of, 550–52
bottom line on, 558
further reading on, 558
interactions with other practices, 557
keys to success in using, 558
managing the risks of, 555–56
rigidity of, 557
side effects of, 556–57
strengths and weaknesses of, 157
summary of, 549
using, 552–55

developer focus, 553–54
kinds of projects, 554–55
technical dependencies, 553
theme releases, 554

Stahl, Leslie Hulet, 161
Standish Group, xiii, 42, 61, 211, 236, 243, 319
Stapleton, Jennifer, 236, 328
startup costs, long-term teambuilding and, 293
statistics, overreliance on, 475

status-oriented office improvements, lost
productivity from, 510

status visibility
measurement and, 468
miniature milestones and, 482–83
signing up and, 543
user-interface prototyping and, 591

Staudenmayer, Nancy A., 476
storyboards, minimal specification and, 324
Strategies for Real-Time System Specification

(Hatley and Pirbhai), 66
strategy for rapid development

alternative (commitment-based or code-like-hell
approach), 22–25

case studies
absence of a clear, 6
clear, 25

in general, 8–10
stress, software errors and, 215
Structured Design (Yourdon and Constantine), 67
SWAT team model, 308–9
Sweet, W. L., 502
Symons, Charles, xiii, 171, 179, 192, 204, 351
synergy, 18
systems software, defined, 22

T
tactical-execution team, 300–301
task identity, work itself as motivation and, 258
task significance, work itself as motivation and,

258–59
team identity

lack of, 289
sense of, 281

teams (team projects). See also teamwork
organization of, 13
productivity differences among, 12, 13
staff selection for, 13

team structure, 297–317
best for rapid development, 302–3
case studies

good match between project objectives and
team structure, 315–16

644

Index

team structure, case studies, continued
mismatch between project objectives and

team structure, 297–99
clear roles and accountabilities and, 302
effective communication and, 302
fact-based decision making and, 302
kinds of, 300–301
managers and technical leads, 313–14
models of, 304–13

business team, 304
chief-programmer team, 305–6
feature team, 307
large teams, 311–13
professional athletic team, 309
search-and-rescue team, 307–8
skunkworks team, 306–7
SWAT team, 308–9
theater team, 310–11

monitoring of individual performance and
providing feedback, 302

teamwork, 273–94
case studies

high-performance team, 277–78
poor group dynamics, 274–75
selection of team members, 282–83

creating a high-performance team, 278–89
challenging work, 280–81
characteristics of a high-performance team,

278–79
commitment to the team, 285
competent team members, 282–84
effective communication, 286
failure of teams, 289–92
high level of enjoyment, 288
interdependence among members, 286
long-term teambuilding, 292–94
managing a high-performance team, 288–89
mix of roles and skills, 283–84
mutual trust, 285
results-driven structure, 282
sense of autonomy, 286–87
sense of empowerment, 287
sense of team identity, 281

teamwork, creating a high-performance team,
continued

shared vision or goal, 279
small team size, 287–88

groups distinguished from teams, 276
importance to rapid development, 276–78
software uses of, 275–76
summary of guidelines, 294–95

Teamwork (Larson and LaFasto), 316
technical fundamentals, 60–66

construction, 64–65
design, 62–63
requirements management, 61–62
software configuration management (SCM), 65

technical leads, 313–14
technical reviews

comment on, 74–75
as development fundamental, 73–75
further reading on, 76–77

technical-supervision opportunities, as motivation,
261

technology
classic mistakes related to, 47–48
as dimension of development speed, 11, 17–18

“Ten Commandments of Tool Selection, The”
(O’Brien), 370

Tesch, Deborah B., 366
testing

as development fundamental, 72–73
further reading on, 76

Thayer, Richard H., 59
theater team model, 310–11
theme for the product, minimal specification

and, 324
theme releases, staged delivery and, 554
Theory-W management, 239, 376, 559–68

bottom line on, 568
further reading on, 568
interactions with other practices, 567–68
managing the risks of, 566–67
side effects of, 567
summary of, 559

645

Index

Theory-W management, continued
using, 561–66

keys to success in, 568
kinds of projects that can use Theory-W, 566
manager’s role, 566
step 1: establish win-win preconditions,

562–64
step 2: structure a win-win software

process, 564
step 3: structure a win-win software

product, 565
“Theory-W Software Project Management:

Principles and Examples” (Boehm and
Ross), 568

third-generation languages. See 3GLs
Third Wave Project Management (Thomsett), 106
Thomsett, Rob, 42, 106, 253, 293, 294, 317, 388
Thriving on Chaos (Peters), 258
throwaway prototyping, 433, 569–73

evolutionary prototyping and, 441
user-interface prototyping and, 591–92

timebox development, 575–83
bottom line on, 582
further reading on, 583
interactions with other practices, 582
managing the risks of, 581
side effects of, 581
using, 577–80

entrance criteria, 579
keys to success in, 583
timebox team, 580
variations, 580

tools group, 585
acquisition of productivity tools and, 354–56
summary of, 585

Top-10 Risks List, 100–102, 587
Townsend, Robert, 287
tracking, as development fundamental, 56–58
Tracz, Will, 534–36, 538
trade-offs

per-person-efficiency, 127
quality, 127
among schedule, cost, and product, 126–27

training, in productivity tool use, 357
transferring risks, 97
trust

failure of teams and lack of, 290
among team members, 285

Turner, Albert J., 556
turnover

long-term teambuilding and, 293
overly optimistic scheduling and, 217

Tutorial on Software Design Techniques (Parnas),
423

Tutorial: Software Engineering Project Manage-
ment (Thayer), 59

Tutorial: Software Quality Assurance (Chow, ed.),
76

U
Udell, John, 538
Umphress, David, 49
underscoping, overly optimistic scheduling and,

212
unrealistic expectations, 42

of customers, 120–21
after JAD session, 460
about performance, evolutionary prototyping

and, 437–38
about schedule and budget

evolutionary prototyping and, 436
throwaway prototyping and, 572

upstream activities, shortchanged, 45
Ury, William, 231, 562
user-interface prototyping, 324, 589–97

bottom line on, 597
interactions with other practices, 596
managing the risks of, 595–96
side effects of, 596
summary of, 589
using, 591–95

choosing a prototyping language, 592
end-user feedback and involvement, 593–94
evolutionary vs. throwaway prototyping,

591–92
finished product, 595

646

Index

user-interface prototyping, using, continued
keys to success in, 597
prototype as a Hollywood movie facade, 593

user manual, as specification, 324

V
Vaishnavi, Vijay K., 417
Valett, J., 12, 249, 277, 469
van Genuchten, Michiel, 46, 184, 199, 210, 486
vendors. See outsourcing
version 1 of productivity tools, 356
version 2

features, 339
of productivity tools, 357

version 3 of productivity tools, 357
versioned development, 330–31
visibility-oriented practices, 10
vision

failure of teams and lack of, 289
managing a high-performance team and, 288
sharing a, in high-performance teams, 279
signing up and, 540

vision statement, minimal specification and, 324
Visual C++, Microsoft, 242
voluntary overtime, 599–608

bottom line on, 606–7
further reading on, 608
interactions with other practices, 606
managing the risks of, 605–6
side effects of, 606
summary of, 599
using, 600–605

caution about too much overtime, 604–5
developer-pull vs. leader-push approach,

600–601
how much overtime to ask for, 603
keys to success in, 607
out-of-control projects, 603
overtime should not be mandatory, 601–3

Vosburgh, J. B., 37, 38, 60, 240, 241, 256, 319, 335
Votta, Lawrence G., 476

W
Waligora, Sharon, 530, 534
walkthroughs, 73

estimating by, 178
wasted effort, minimal-specification approach and

avoidance of, 326
wasted time, during fuzzy front end, 44
waterfall lifecycle model, 136–39

modified, 143–47
with risk reduction, 146
sashimi model, 143
with subprojects, 145

strengths and weaknesses of, 156
Waterman, Robert H., Jr., 247, 263, 271, 272, 317
Waters, Richard, 366, 367
Weinberg, Gerald M., 12, 40–41, 58, 66, 77, 217,

218, 221, 255, 271, 272, 276, 296, 388, 600,
601, 608

Weiss, David M., 423, 469
“What Are the Realities of Software Productivity/

Quality Improvements” (Glass), 369
“When the Rubber Hits the Road: A Guide to

Implementing Self-Managing Teams”
(Thomsett), 317

Whitaker, Ken, 247, 267, 554
Why Does Software Cost So Much? (DeMarco), 231,

317
“Why Is Technology Transfer So Hard?” (Jones),

370
Wicked Problems, Righteous Solutions (DeGrace

and Stahl), 161
Wiener, Lauren Ruth, 321
Windows NT 3.0, development of, 388, 408,

542–44
win-win projects, 239
WinWord (Microsoft Word for Windows) 1.0

optimistic scheduling practices and, 207–9
Wirth, Niklaus, 319
Wisdom of Teams, The (Katzenbach and Smith),

275

647

Index

wishful thinking, 43
schedules and, 221

Witness (film), 273, 296
Wood, Jane, 463
Word for Windows 1.0, optimistic scheduling

practices and, 207–9
work environments. See also productivity environ-

ments
noisy, crowded, 41

Work Redesign (Hackman and Oldham), 272
Wosser, 531, 534
Writing Solid Code (Maguire), 68

Y
Yourdon, Edward, 66–67, 73, 337, 423

Z
Zachary, Pascal, 23, 271, 272, 388, 408, 412, 413,

542, 544
Zawacki, Robert, xviii, 259, 351
Zelkowitz, 351

	Cover
	Reviews
	Copyright page
	Contents
	Case Studies
	Reference Tables

	Preface
	Who Should Read This Book?
	Technical Leads
	Individual Programmers
	Managers

	Key Benefits of This Book
	Why This Book Was Written

	Acknowledgments
	Chapter 3: Classic Mistakes
	3.1 Case Study in Classic Mistakes
	3.2 Effect of Mistakes on a Development Schedule
	3.3 Classic Mistakes Enumerated
	People
	Process
	Product
	Technology

	3.4 Escape from Gilligan’s Island
	Your Own List of Worst Practices

	Further Reading

	Index
	Special Characters
	A, B
	C
	D
	E
	F
	G, H, I
	J, K, L
	M
	N, O
	P
	Q, R
	S
	T
	U
	V, W
	Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
 /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
 /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
 /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
 /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
 /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
 /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
 /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
 /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
 /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
 /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
 /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
 /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
 /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
 /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
 /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive true
 /IncludeLayers true
 /IncludeProfiles true
 /MultimediaHandling /EmbedAll
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

