Collect, Combine, and Transform Data Using Power Query in Excel and Power BI

Gil Raviv
Collect, Combine, and Transform Data Using Power Query in Excel and Power BI

Gil Raviv
Contents at a Glance

Introduction xviii

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>Introduction to Power Query</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 2</td>
<td>Basic Data Preparation Challenges</td>
<td>21</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>Combining Data from Multiple Sources</td>
<td>61</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>Combining Mismatched Tables</td>
<td>83</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>Preserving Context</td>
<td>111</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td>Unpivoting Tables</td>
<td>135</td>
</tr>
<tr>
<td>CHAPTER 7</td>
<td>Advanced Unpivoting and Pivoting of Tables</td>
<td>155</td>
</tr>
<tr>
<td>CHAPTER 8</td>
<td>Addressing Collaboration Challenges</td>
<td>181</td>
</tr>
<tr>
<td>CHAPTER 9</td>
<td>Introduction to the Power Query M Formula Language</td>
<td>205</td>
</tr>
<tr>
<td>CHAPTER 10</td>
<td>From Pitfalls to Robust Queries</td>
<td>247</td>
</tr>
<tr>
<td>CHAPTER 11</td>
<td>Basic Text Analytics</td>
<td>277</td>
</tr>
<tr>
<td>CHAPTER 12</td>
<td>Advanced Text Analytics: Extracting Meaning</td>
<td>311</td>
</tr>
<tr>
<td>CHAPTER 13</td>
<td>Social Network Analytics</td>
<td>351</td>
</tr>
<tr>
<td>CHAPTER 14</td>
<td>Final Project: Combining It All Together</td>
<td>375</td>
</tr>
</tbody>
</table>

Index 385
Contents

Introduction ... xviii

Chapter 1 Introduction to Power Query .. 1
What Is Power Query? ... 2
 A Brief History of Power Query ... 3
 Where Can I Find Power Query? .. 6
Main Components of Power Query ... 7
 Get Data and Connectors .. 8
 The Main Panes of the Power Query Editor 9
Exercise 1-1: A First Look at Power Query 14
Summary ... 19

Chapter 2 Basic Data Preparation Challenges 21
Extracting Meaning from Encoded Columns 22
 AdventureWorks Challenge ... 22
 Exercise 2-1: The Old Way: Using Excel Formulas 23
 Exercise 2-2, Part 1: The New Way 24
 Exercise 2-2, Part 2: Merging Lookup Tables 28
 Exercise 2-2, Part 3: Fact and Lookup Tables 32
Using Column from Examples ... 34
 Practical Use of Column from Examples 37
 Exercise 2-3, Part 2: Converting Size to Buckets/Ranges 37
Extracting Information from Text Columns 40
 Exercise 2-4: Extracting Hyperlinks from Messages 40
Handling Dates .. 48
 Exercise 2-5: Handling Multiple Date Formats 48
 Exercise 2-6: Handling Dates with Two Locales 50
 Extracting Date and Time Elements 53
Preparing the Model ... 54
 Exercise 2-7: Splitting Data into Lookup
 Tables and Fact Tables .. 55
 Exercise 2-8: Splitting Delimiter-Separated
 Values into Rows ... 57
Summary ... 60

Chapter 3 Combining Data from Multiple Sources
 61

 Appending a Few Tables ... 61
 Appending Two Tables .. 62
 Exercise 3-1: Bikes and Accessories Example 62
 Exercise 3-2, Part 1: Using Append Queries as New 64
 Exercise 3-2, Part 2: Query Dependencies
 and References ... 65
 Appending Three or More Tables 68
 Exercise 3-2, Part 3: Bikes + Accessories + Components 68
 Exercise 3-2, Part 4: Bikes + Accessories +
 Components + Clothing ... 70
 Appending Tables on a Larger Scale 71
 Appending Tables from a Folder 71
 Exercise 3-3: Appending AdventureWorks Products
 from a Folder ... 71
 Thoughts on Import from Folder 74
 Appending Worksheets from a Workbook 74
 Exercise 3-4: Appending Worksheets: The Solution 75
Summary ... 81

Chapter 4 Combining Mismatched Tables
 83

 The Problem of Mismatched Tables 83
 What Are Mismatched Tables? 84
 The Symptoms and Risks of Mismatched Tables 84
 Exercise 4-1: Resolving Mismatched Column Names:
 The Reactive Approach ... 85
 Combining Mismatched Tables from a Folder 86
 Exercise 4-2, Part 1: Demonstrating the Missing
 Values Symptom ... 87
Chapter 5 Preserving Context

Preserving Context in File Names and Worksheets 111
Exercise 5-1, Part 1: Custom Column Technique 112
Exercise 5-1, Part 2: Handling Context from File
Names and Worksheet Names ... 113
Pre-Append Preservation of Titles 114
Exercise 5-2: Preserving Titles Using Drill Down 115
Exercise 5-3: Preserving Titles from a Folder 119
Post-Append Context Preservation of Titles 121
Exercise 5-4: Preserving Titles from Worksheets
in the same Workbook .. 122
Using Context Cues ... 126
Exercise 5-5: Using an Index Column as a Cue 127
Exercise 5-6: Identifying Context by Cell Proximity 130
Summary ... 134

Chapter 6 Unpivoting Tables

Identifying Badly Designed Tables 136
Introduction to Unpivot .. 138
Exercise 6-1: Using Unpivot Columns and
Unpivot Other Columns ... 139
Exercise 6-2: Unpivoting Only Selected Columns 142
Handling Totals ... 143
Exercise 6-3: Unpivoting Grand Totals 143
Unpivoting 2×2 Levels of Hierarchy 146
Exercise 6-4: Unpivoting 2×2 Levels of Hierarchy with Dates 147
Exercise 6-5: Unpivoting 2×2 Levels of Hierarchy 149
Handling Subtotals in Unpivoted Data 152
Exercise 6-6: Handling Subtotals 152
Summary ... 154

Chapter 7 Advanced Unpivoting and Pivoting of Tables 155

Unpivoting Tables with Multiple Levels of Hierarchy 156
 The Virtual PivotTable, Row Fields, and Column Fields 156
 Exercise 7-1: Unpivoting the AdventureWorks N×M
 Levels of Hierarchy .. 157
Generalizing the Unpivot Sequence 160
 Exercise 7-2: Starting at the End 160
 Exercise 7-3: Creating FnUnpivotSummarizedTable 162
The Pivot Column Transformation 173
 Exercise 7-4: Reversing an Incorrectly Unpivoted Table 173
 Exercise 7-5: Pivoting Tables of Multiline Records . 175
Summary ... 179

Chapter 8 Addressing Collaboration Challenges 181

Local Files, Parameters, and Templates 182
 Accessing Local Files—Incorrectly 182
 Exercise 8-1: Using a Parameter for a Path Name 183
 Exercise 8-2: Creating a Template in Power BI 185
 Exercise 8-3: Using Parameters in Excel 187
Working with Shared Files and Folders 194
 Importing Data from Files on OneDrive for
 Business or SharePoint 195
 Exercise 8-4: Migrating Your Queries to
 Connect to OneDrive for Business or SharePoint 197
 Exercise 8-5: From Local to SharePoint Folders 199
Security Considerations .. 201
Chapter 9 Introduction to the Power Query M Formula Language 205

Learning M .. 206
 Learning Maturity Stages 206
 Online Resources 209
 Offline Resources 209
 Exercise 9-1: Using #shared to Explore
 Built-in Functions 210
M Building Blocks 211
 Exercise 9-2: Hello World 212
 The let Expression 213
 Merging Expressions from Multiple Queries and
 Scope Considerations 215
 Types, Operators, and Built-in Functions in M 218
 Basic M Types ... 220
 The Number Type 220
 The Time Type 221
 The Date Type 222
 The Duration Type 223
 The Text Type 224
 The Null Type 224
 The Logical Type 225
 Complex Types ... 226
 The List Type .. 226
 The Record Type 229
 The Table Type 232
 Conditions and if Expressions 234
 if-then-else ... 235
 An if Expression Inside a let Expression 235
 Custom Functions 237
 Invoking Functions 239
 The each Expression 239
Chapter 10 From Pitfalls to Robust Queries

The Causes and Effects of the Pitfalls

Awareness

Best Practices

M Modifications

Pitfall 1: Ignoring the Formula Bar

Exercise 10-1: Using the Formula Bar to Detect Static References to Column Names

Pitfall 2: Changed Types

Pitfall 3: Dangerous Filtering

Exercise 10-2, Part 1: Filtering Out Black Products

The Logic Behind the Filtering Condition

Exercise 10-2, Part 2: Searching Values in the Filter Pane

Pitfall 4: Reordering Columns

Exercise 10-3, Part 1: Reordering a Subset of Columns

Exercise 10-3, Part 2: The Custom Function $FnReorderSubsetOfColumns$

Pitfall 5: Removing and Selecting Columns

Exercise 10-4: Handling the Random Columns in the Wide World Importers Table

Pitfall 6: Renaming Columns

Exercise 10-5: Renaming the Random Columns in the Wide World Importers Table

Pitfall 7: Splitting a Column into Columns

Exercise 10-6: Making an Incorrect Split

Pitfall 8: Merging Columns

More Pitfalls and Techniques for Robust Queries

Summary
Chapter 11 Basic Text Analytics ... 277
Searching for Keywords in Textual Columns 278
Exercise 11-1: Basic Detection of Keywords 278
Using a Cartesian Product to Detect Keywords 282
Exercise 11-2: Implementing a Cartesian Product 283
Exercise 11-3: Detecting Keywords by Using a Custom Function 290
Which Method to Use: Static Search, Cartesian Product, or Custom Function? 293
Word Splits ... 293
Exercise 11-4: Naïve Splitting of Words .. 293
Exercise 11-5: Filtering Out Stop Words ... 298
Exercise 11-6: Searching for Keywords by Using Split Words 300
Exercise 11-7: Creating Word Clouds in Power BI 308
Summary ... 310

Chapter 12 Advanced Text Analytics: Extracting Meaning 311
Microsoft Azure Cognitive Services .. 311
API Keys and Resources Deployment on Azure 313
Pros and Cons of Cognitive Services via Power Query 316
Text Translation .. 318
The Translator Text API Reference ... 319
Exercise 12-1: Simple Translation ... 320
Exercise 12-2: Translating Multiple Messages .. 324
Sentiment Analysis ... 329
What Is the Sentiment Analysis API Call? .. 330
Exercise 12-3: Implementing the FnGetSentiment Sentiment Analysis Custom Function ... 331
Exercise 12-4: Running Sentiment Analysis on Large Datasets 342
Extracting Key Phrases ... 344
Exercise 12-5: Converting Sentiment Logic to Key Phrases 344
Multi-Language Support ... 347
Replacing the Language Code .. 347
Dynamic Detection of Languages .. 347
Exercise 12-6: Converting Sentiment Logic to Language Detection 348
Summary ... 349
Figure Credits

Chapter 1, “Introduction to Power Query,” Figures 1-1 through 1-9 courtesy of Microsoft Corporation.

Chapter 2, “Basic Data Preparation Challenges,” Figures 2-1 through 2-16 courtesy of Microsoft Corporation.

Chapter 3, “Combining Data from Multiple Sources,” Figures 3-1 through 3-8 courtesy of Microsoft Corporation.

Chapter 4, “Combining Mismatched Tables,” Figures 4-1 through 4-11 courtesy of Microsoft Corporation.

Chapter 5, “Preserving Context,” Figures 5-1 through 5-11 courtesy of Microsoft Corporation.

Chapter 6, “Unpivoting Tables,” Figures 6-1 through 6-9 courtesy of Microsoft Corporation.

Chapter 7, “Advanced Unpivoting and Pivoting of Tables,” Figures 7-1 through 7-5 courtesy of Microsoft Corporation.

Chapter 8, “Addressing Collaboration Challenges,” Figures 8-1 through 8-10 courtesy of Microsoft Corporation.

Chapter 9, “Introduction to the Power Query M Formula Language,” Figures 9-2 through 9-10 courtesy of Microsoft Corporation.

Chapter 10, “From Pitfalls to Robust Queries,” Figures 10-2 through 10-9 courtesy of Microsoft Corporation.

Chapter 11, “Basic Text Analytics,” Figures 11-1 through 11-14, Figures 11-16 and 11-17 courtesy of Microsoft Corporation.

Chapter 12, “Advanced Text Analytics: Extracting Meaning,” Figures 12-3 through 12-8, Figures 12-10 through 12-14 courtesy of Microsoft Corporation.

Chapter 14, “Final Project: Combining It All Together,” Figures 14-1 through 14-3 courtesy of Microsoft Corporation.
Foreword

When we set out to build the original Power Query add-in for Excel, we had a simple yet ambitious mission: connecting to and transforming the world’s data. Five years later, we’ve moved beyond the original Excel add-in with native integration into Excel, Power BI, Power Apps, and a growing set of products that need to extract and transform data. But our original mission remains largely unchanged. With the ever-increasing heterogeneity of data, in many ways, our mission feels even more ambitious and challenging than ever. Much of today’s computing landscape is centered around data, but data isn’t always where or how you need it—we continue to advance Power Query with the goal of bridging that gap between the raw and desired states of data.

Throughout the Power Query journey, the user community has played a critical role in shaping the product through suggestions and feedback. The community has also played a central role in developing valuable educational content. As one of the key drivers of Power Query’s native integration into Excel 2016, Gil is well placed to provide valuable insights and tips for a variety of scenarios. Even after his tenure at Microsoft, Gil has remained an active and influential member of the Power Query community. Happy querying!

—Sid Jayadevan, Engineering Manager for Power Query, Microsoft Corporation

For readers not familiar with Power Query, it is an incredibly powerful and extensible engine that is the core of Microsoft BI tools. It enhances self-service business intelligence (BI) with an intuitive and consistent experience for discovering, combining, and refining data across a wide variety of sources. With data preparation typically touted as 80% of any BI solution, having a firm grasp of Power Query should be your first step in any sort of reporting or data discovery initiative. In addition to the core Power Query functionalities, Gil covers more advanced topics, such as how to use Power Query to automate data preparation and cleansing, how to connect to social networks to capture what your customers are saying about your business, how to use services like machine learning to do sentiment analysis, and how to use the M language to make practically any type of raw data a source of insights you glean value from. This book stands out in that it provides additional companion content with completed samples, data sources, and step-by-step tutorials.
Gil is a former member of the Excel team and the Microsoft Data Team. He directly contributed to the features and design of Power Query and has an amazing wealth of knowledge using Power Query and showing how it can make difficult data integration problems easy. That said, despite Power Query’s inherently extensible and easy-to-use design, mastering it for enterprise scenarios can still be difficult. Luckily for the reader, as an avid community member, forum contributor, conference presenter, peer mentor, and Power BI MVP, Gil Raviv is a master at taking complex concepts and decomposing them into very easy-to-follow steps, setting the reader up for success and making this book a must have for any BI specialist, data systems owner, or businessperson who wants to get value out of the data around him.

—Charles Sterling, Senior Program Manager,
Microsoft Corporation
About the Author

Gil Raviv is a Microsoft MVP and a Power BI blogger at https://DataChant.com. As a Senior Program Manager on the Microsoft Excel Product team, Gil led the design and integration of Power Query as the next-generation Get Data and data-wrangling technology in Excel 2016, and he has been a devoted M practitioner ever since.

With 20 years of software development experience, and four U.S. patents in the fields of social networks, cyber security, and analytics, Gil has held a variety of innovative roles in cyber security and data analytics, and he has delivered a wide range of software products, from advanced threat detection enterprise systems to protection of kids on Facebook.

In his blog, DataChant.com, Gil has been chanting about Power BI and Power Query since he moved to his new home in the Chicago area in early 2016. As a Group Manager in Avanade’s Analytics Practice, Gil is helping Fortune 500 clients create modern self-service analytics capability and solutions by leveraging Power BI and Azure.

You can contact Gil at gilra@datachant.com.
Writing this book is one of the scariest things I have willingly chosen to do, knowing I was going to journey into an uncharted land where only a few people have gone before and approach an ever-evolving technology that is relatively unfamiliar yet can drastically improve the professional lives of many users. How can I share the knowledge of this technology in a way that will enable you to harness its true essence and empower you to make a real impact on your business?

The writing of this book would not have been possible without the help and inspiration I received from many people.

First, I would like to thank my readers at DataChant.com. Your feedback and support made this endeavor possible. You have taught me the power of sharing.

Thank you to my wife and children, for being stranded at home with me for many days in late 2017 and the colder parts of 2018 to support my work. Thank you for your support. I hope you can also blame the winter in Chicago for staying with me so many weekends.

Special thanks to Trina MacDonald, my senior editor at Pearson. You reached out to me one day with an idea to write a book and have been supporting me all the way in publishing a completely different one. Good luck in your new journey.

Thank you to Justin DeVault, my first Six Sigma Master Black Belt client. As a technical editor, you combined your business savvy and technical prowess to review 14 chapters, 71 exercises, and 211 exercise files to ensure that the book can deliver on its promise. Without your insights, we could not have made it. You were the best person for this job.

To Microsoft Press, Pearson, Loretta Yates and the whole publishing team that contributed to the project, thank you! Thank you, Songlin Qiu, Ellie Bru, and Kitty Wilson for editing and proofreading and Tonya Simpson for orchestrating the production efforts; you have all magically transformed 14 chapters of Word documents into this book.

To my dear friend Yohai Nir, thank you for the rapport and guidance through the initial stages of the book.

Thank you to Luis Cabrera-Cordon, for reviewing Chapter 12. I hope that this chapter will help more business analysts use Microsoft Cognitive Services and gain new insights without the help of developers or data scientists.
To the amazing Program Managers Guy Hunkin, Miguel Llopis, Matt Masson, and Chuck Sterling: Thank you for the ongoing support and technical advice. Your work is truly inspirational.

Sid Jayadevan, Eli Schwarz, Vladik Branevich, and the brilliant people on the Redmond and Israeli development teams: It was a real pleasure working with you to deliver Power Query in Excel 2016.

To Yigal Edery, special thanks for accepting me into the ranks of the Microsoft Excel team and for challenging me to do more. I will never forget the night you pulled me over on the side of the road to share feedback and thank me.

Rob Collie, I wouldn’t be here without you. You had welcomed me to PowerPivotPro.com as a guest blogger and a principal consultant, and you helped me make the leap into a brave new world.

Marco Russo, Ken Puls, Chris Webb, Matt Allington, and Reza Rad—My fellow Microsoft MVPs and Power BI bloggers—you are my role models, and I thank you for the inspiration and vast knowledge.

Since I joined the Avanade Analytics team in early 2017, I have learned so much from all of you at Avanade. Special thanks to Neelesh Raheja for your mentorship and leadership. You have truly expanded my horizons in the sea of analytics.

Finally, to my parents. Although I now live 6,208 miles away, I want to thank you. Dad, you had taught me how to crunch numbers and use formulas in Excel many years ago. And, Mom, your artistic talent is influencing my Power BI visuals every day.

—Gil Raviv
Introduction

Did you know that there is a data transformation technology inside Microsoft Excel, Power BI, and other products that allows you to work miracles on your data, avoid repetitive manual work, and save up to 80% of your time?

- Every time you copy/paste similar data to your workbook and manually clean it, you are wasting precious time, possibly unaware of the alternative way to do it better and faster.

- Every time you rely on others to get your data in the right shape and condition, you should know that there is an easier way to reshape your data once and enjoy an automation that works for you.

- Every time you need to make quick informed decisions but confront massive data cleansing challenges, know you can now easily address these challenges and gain unprecedented potential to reduce the time to insight.

Are you ready for the change? You are about to replace the maddening frustration of the repetitive manual data cleansing effort with sheer excitement and fun, and throughout this process, you may even improve your data quality and tap in to new insights.

Excel, Power BI, Analysis Services, and PowerApps share a game-changing data connectivity and transformation technology, Power Query, that empowers any person with basic Excel skills to perform and automate data importing, reshaping, and cleansing. With simple UI clicks and a unified user experience across wide variety of data sources and formats, you can resolve any data preparation challenge and become a master data wrangler.

In this book, you will tackle real data challenges and learn how to resolve them with Power Query. With more than 70 challenges and 200 exercise files in the companion content, you will import messy and disjointed tables and work your way through the creation of automated and well-structured datasets that are ready for analysis. Most of the techniques are simple to follow and can be easily reused in your own business context.

Who this book is for

This book was written to empower business users and report authors in Microsoft Excel and Power BI. The book is also relevant for SQL Server or Azure Analysis Services developers who wish to speed up their ETL development. Users who create apps using Microsoft PowerApps can also take advantage of this book to integrate complex datasets into their business logic.
Whether you are in charge of repetitive data preparation tasks in Excel or you develop Power BI reports for your corporation, this book is for you. Analysts, business intelligence specialists, and ETL developers can boost their productivity by learning the techniques in this book. As Power Query technology has become the primary data stack in Excel, and as Power BI adoption has been tremendously accelerating, this book will help you pave the way in your company and make a bigger impact.

The book was written to empower all Power Query users. Whether you are a new, moderate, or advanced user, you will find useful techniques that will help you move to the next level.

Assumptions

Prior knowledge of Excel or Power BI is expected. While any Excel user can benefit from this book, you would gain much more from it if you meet one of the following criteria. (Note that meeting a single criterion is sufficient.)

- You frequently copy and paste data into Excel from the same sources and often need to clean that data
- You build reports in Excel or Power BI that are connected to external sources, and wish to improve them
- You are familiar with PivotTables in Excel
- You are familiar with Power Pivot in Excel and wish to simplify your data models
- You are familiar with Power Query and want to move to the next level
- You develop business applications using PowerApps and need to connect to data sources with messy datasets
- You are a developer in Analysis Services and wish to speed up your ETL development

How this book is organized

The book is organized into 14 chapters that start from generic and simpler data challenges and move on to advanced and specific scenarios to master. It is packed with hands-on exercises and step-by-step solutions that provide the necessary techniques for mastering real-life data preparation challenges and serve as a long-term learning resource, no matter how many new features will be released in Power Query in the future.

In Chapter 1, “Introduction to Power Query,” you will be introduced to Power Query and gain the baseline knowledge to start the exercises that follow.
In Chapter 2, “Basic Data Preparation Challenges,” you will learn how to tackle relatively basic common data challenges. If you carry out frequent data cleansing tasks at work, you will find this chapter extremely helpful. You will be introduced to the simplest techniques to automate your data cleansing duties, with simple mouse clicks and no software development skills. If you are new to Power Query, you will already start saving time by following the techniques in this chapter.

In Chapter 3, “Combining Data from Multiple Sources,” you will learn how to combine disjointed datasets and append multiple tables in the Power Query Editor. You will learn how to append together multiple workbooks from a folder and combine multiple worksheets in a robust manner—so when new worksheets are added, a single refresh of the report will suffice to append the new data into your report.

In Chapter 4, “Combining Mismatched Tables,” you will move to the next level and learn how to combine mismatched tables. In real-life scenarios your data is segmented and siloed, and often is not consistent in its format and structure. Learning how to normalize mismatched tables will enable you to gain new insights in strategic business scenarios.

In Chapter 5, “Preserving Context,” you will learn how to extract and preserve external context in your tables and combine titles and other meta information, such as filenames and worksheet names, to enrich your appended tables.

In Chapter 6, “Unpivoting Tables,” you will learn how to improve your table structure to utilize a better representation of the entities that the data represents. You will learn how the Unpivot transformation is a cornerstone in addressing badly designed tables, and harness the power of Unpivot to restructure your tables for better analysis. You will also learn how to address nested tables and why and how to ignore totals and subtotals from your source data.

In Chapter 7, “Advanced Unpivoting and Pivoting of Tables,” you will continue the journey in Unpivot transformations and generalize a solution that will help you unpivot any summarized table, no matter how many levels of hierarchies you might have as rows and columns. Then, you will learn how to apply Pivot to handle multiline records. The techniques you learn in this chapter will enable you to perform a wide range of transformations and reshape overly structured datasets into a powerful and agile analytics platform.

As a report author, you will often share your reports with other authors in your team or company. In Chapter 8, “Addressing Collaboration Challenges,” you will learn about basic collaboration challenges and how to resolve them using parameters and templates.

In Chapter 9, “Introduction to the Power Query M Formula Language,” you will embark in a deep dive into M, the query language that can be used to customize your queries to achieve more, and reuse your transformation on a larger scale of challenges. In this chapter, you will learn the main building blocks of M—including its syntax, operators, types, and a wide variety of built-in functions. If you are not an advanced user, you can skip this chapter and return later in your journey. Mastering M is not a prerequisite to becoming a master data wrangler, but the ability to modify the M formulas when needed can boost your powers significantly.
The user experience of the Power Query Editor in Excel and Power BI is extremely rewarding because it can turn your mundane, yet crucial, data preparation tasks into an automated refresh flow. Unfortunately, as you progress on your journey to master data wrangling, there are common mistakes you might be prone to making in the Power Query Editor, which will lead to the creation of vulnerable queries that will fail to refresh, or lead to incorrect results when the data changes. In Chapter 10, "From Pitfalls to Robust Queries," you will learn the common mistakes, or pitfalls, and how to avoid them by building robust queries that will not fail to refresh and will not lead to incorrect results.

In Chapter 11, "Basic Text Analytics," you will harness Power Query to gain fundamental insights into textual feeds. Many tables in your reports may already contain abundant textual columns that are often ignored in the analysis. You will learn how to apply common transformations to extract meaning from words, detect keywords, ignore common words (also known as stop words), and use Cartesian Product to apply complex text searches.

In Chapter 12, "Advanced Text Analytics: Extracting Meaning," you will progress from basic to advanced text analytics and learn how to apply language translation, sentiment analysis, and key phrase detection using Microsoft Cognitive Services. Using Power Query Web connector and a few basic M functions, you will be able to truly extract meaning from text and harness the power of artificial intelligence, without the help of data scientists or software developers.

In Chapter 13, "Social Network Analytics," you will learn how to analyze social network data and find how easy it is to connect to Facebook and gain insights into social activity and audience engagement on any brand, company, or product on Facebook. This exercise will also enable you to work on unstructured JSON datasets and practice Power Query on public datasets.

Finally, in Chapter 14, "Final Project: Combining It All Together," you will face the final challenge of the book and put all your knowledge to the test applying your new data-wrangling powers on a large-scale challenge. Apply the techniques from this book to combine dozens of worksheets from multiple workbooks, unpivot and pivot the data, and save Wide World Importers from a large-scale cyber-attack!

About the companion content

We have included this companion content to enrich your learning experience. You can download this book’s companion content by following these instructions:

1. Register your book by going to www.microsoftpressstore.com and logging in or creating a new account.
2. On the Register a Product page, enter this book’s ISBN (9781509307951), and click Submit.
3. Answer the challenge question as proof of book ownership.

4. On the Registered Products tab of your account page, click on the Access Bonus Content link to go to the page where your downloadable content is available.

The companion content includes the following:

- Excel workbooks and CSV files that will be used as messy and badly formatted data sources for all the exercises in the book. No need to install any external database to complete the exercises.

- Solution workbooks and Power BI reports that include the necessary queries to resolve each of the data challenges.

The following table lists the practice files that are required to perform the exercises in this book.

<table>
<thead>
<tr>
<th>Chapter 1: Introduction to Power Query</th>
<th>File(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1: Introduction to Power Query</td>
<td>C01E01.xlsx</td>
</tr>
<tr>
<td></td>
<td>C01E01 - Solution.xlsx</td>
</tr>
<tr>
<td></td>
<td>C01E01 - Solution.pbix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2: Basic Data Preparation Challenges</th>
<th>File(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2: Basic Data Preparation Challenges</td>
<td>C02E01.xlsx</td>
</tr>
<tr>
<td></td>
<td>C02E01 - Solution.xlsx</td>
</tr>
<tr>
<td></td>
<td>C02E02.xlsx</td>
</tr>
<tr>
<td></td>
<td>C02E02 - Solution - Part 1.xlsx</td>
</tr>
<tr>
<td></td>
<td>C02E02 - Solution - Part 2.xlsx</td>
</tr>
<tr>
<td></td>
<td>C02E02 - Solution - Part 3.xlsx</td>
</tr>
<tr>
<td></td>
<td>C02E02 - Solution - Part 1.pbix</td>
</tr>
<tr>
<td></td>
<td>C02E02 - Solution - Part 2.pbix</td>
</tr>
<tr>
<td></td>
<td>C02E02 - Solution - Part 3.pbix</td>
</tr>
<tr>
<td></td>
<td>C02E03 - Solution.xlsx</td>
</tr>
<tr>
<td></td>
<td>C02E03 - Solution - Part 2.xlsx</td>
</tr>
<tr>
<td></td>
<td>C02E03 - Solution.pbix</td>
</tr>
<tr>
<td></td>
<td>C02E03 - Solution - Part 2.pbix</td>
</tr>
<tr>
<td></td>
<td>C02E04.xlsx</td>
</tr>
<tr>
<td></td>
<td>C02E04 - Solution.xlsx</td>
</tr>
<tr>
<td></td>
<td>C02E04 - Solution.pbix</td>
</tr>
<tr>
<td></td>
<td>C02E05.xlsx</td>
</tr>
<tr>
<td></td>
<td>C02E05 - Solution.xlsx</td>
</tr>
<tr>
<td></td>
<td>C02E05 - Solution.pbix</td>
</tr>
<tr>
<td></td>
<td>C02E06.xlsx</td>
</tr>
<tr>
<td></td>
<td>C02E06 - Solution.xlsx</td>
</tr>
<tr>
<td></td>
<td>C02E06 - Solution.pbix</td>
</tr>
<tr>
<td>Chapter</td>
<td>File(s)</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| Chapter 3: Combining Data from Multiple Sources | C03E01 - Accessories.xlsx
C03E01 - Bikes.xlsx
C03E01 - Clothing.xlsx
C03E01 - Components.xlsx
C03E03 - Products.zip
C03E03 - Solution.xlsx
C03E03 - Solution.pbix
C03E04 - Year per Worksheet.xlsx
C03E04 - Solution 01.xlsx
C03E04 - Solution 02.xlsx
C03E04 - Solution 01.pbix
C03E04 - Solution 02.pbix |
| Chapter 4: Combining Mismatched Tables | C04E01 - Accessories.xlsx
C04E01 - Bikes.xlsx
C04E02 - Products.zip
C04E02 - Solution.xlsx
C04E02 - Solution.pbix
C04E03 - Products.zip
C04E03 - Solution.xlsx
C04E03 - Solution.pbix
C04E04 - Products.zip
C04E04 - Conversion Table.xlsx
C04E04 - Solution - Transpose.xlsx
C04E04 - Solution - Transpose.pbix
C04E05 - Solution - Unpivot.xlsx
C04E05 - Solution - Unpivot.pbix
C04E06 - Solution - Transpose Headers.xlsx
C04E06 - Solution - Transpose Headers.pbix
C04E07 - Solution - M.xlsx
C04E07 - Solution - M.pbix |
| Chapter 5: Preserving Context | C05E01 - Accessories.xlsx
C05E01 - Bikes & Accessories.xlsx
C05E01 - Bikes.xlsx
C05E01 - Solution.xlsx
C05E01 - Solution 2.xlsx
C05E01 - Solution.pbix
C05E01 - Solution 2.pbix |
<table>
<thead>
<tr>
<th>Chapter</th>
<th>File(s)</th>
</tr>
</thead>
</table>
| **Chapter 6: Unpivoting Tables** | C06E01.xlsx
C06E01 - Solution.xlsx
C06E01 - Solution.pbix
C06E02.xlsx
C06E02 - Solution.xlsx
C06E02 - Solution.pbix
C06E03.xlsx
C06E03 - Solution.xlsx
C06E03 - Wrong Solution.pbix
C06E04.xlsx
C06E04 - Solution.xlsx
C06E04 - Solution.pbix
C06E05.xlsx
C06E05 - Solution.xlsx
C06E05 - Solution.pbix
C06E06.xlsx
C06E06 - Solution.xlsx
C06E06 - Solution.pbix |
| **Chapter 7: Advanced Unpivoting and Pivoting of Tables** | C07E01.xlsx
C07E01 - Solution.xlsx
C07E01 - Solution.pbix
C07E02.xlsx
C07E02.pbix
C07E03.xlsx
C07E03 - Solution.xlsx
C07E03 - Solution.pbix
C07E04.xlsx
C07E04 - Solution.xlsx
C07E04 - Solution.pbix
C07E05.xlsx
C07E05 - Solution.xlsx
C07E05 - Solution.pbix |
<table>
<thead>
<tr>
<th>Chapter</th>
<th>File(s)</th>
</tr>
</thead>
</table>
| Chapter 8: Addressing Collaboration Challenges | C08E01.xlsx
C08E01 - Alice.xlsx
C08E01 - Alice.pbix
C08E01 - Solution.xlsx
C08E01 - Solution.pbix
C08E02 - Solution.pbix
C08E02 - Solution.pbix
C08E02 - Solution 2.pbit
C08E03 - Solution.xlsx
C08E03 - Solution 2.xlsx
C08E04 - Solution.xlsx
C08E04 - Solution.pbix
C08E05.xlsx
C08E05.pbix
C08E05 - Folder.zip
C08E05 - Solution.xlsx
C08E05 - Solution.pbix |
| Chapter 9: Introduction to the Power Query M Formula Language | C09E01 – Solution.xlsx
C09E01 – Solution.pbix |
| Chapter 10: From Pitfalls to Robust Queries | C10E01.xlsx
C10E01 - Solution.xlsx
C10E02 - Solution.xlsx
C10E02 - Solution.pbix
C10E03 - Solution.xlsx
C10E03 - Solution.pbix
C10E04 - Solution.xlsx
C10E04 - Solution.pbix
C10E05.xlsx
C10E05 - Solution.xlsx
C10E05 - Solution.pbix
C10E06.xlsx
C10E06 - Solution.xlsx
C10E06 - Solution.pbix
C10E06-v2.xlsx |
| Chapter 11: Basic Text Analytics | Keywords.txt
Stop Words.txt
C11E01.xlsx
C11E01 - Solution.xlsx
C11E01 - Solution.pbix
C11E02 - Solution.xlsx
C11E02 - Solution.pbix
C11E02 - Refresh Comparison.xlsx
C11E02 - Solution.pbix |
<table>
<thead>
<tr>
<th>Chapter 12: Advanced Text Analytics: Extracting Meaning</th>
<th>File(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12E01 - Solution.xlsx</td>
<td>C12E01 - Solution.xlsx</td>
</tr>
<tr>
<td>C12E01 - Solution.pbix</td>
<td>C12E01 - Solution.pbix</td>
</tr>
<tr>
<td>C12E02.xlsx</td>
<td>C12E02 - Solution.xlsx</td>
</tr>
<tr>
<td>C12E02 - Solution.xlsx</td>
<td>C12E02 - Solution.pdf</td>
</tr>
<tr>
<td>C12E02 - Solution.pbix</td>
<td>C12E02 - Solution.pbix</td>
</tr>
<tr>
<td>C12E03.xlsx</td>
<td>C12E03 - Solution.xlsx</td>
</tr>
<tr>
<td>C12E03 - Solution.pbix</td>
<td>C12E03 - Solution.pbix</td>
</tr>
<tr>
<td>C12E04.xlsx</td>
<td>C12E04 - Solution.xlsx</td>
</tr>
<tr>
<td>C12E04 - Solution.pbix</td>
<td>C12E04 - Solution.pbix</td>
</tr>
<tr>
<td>C12E05.xlsx</td>
<td>C12E05 - Solution.xlsx</td>
</tr>
<tr>
<td>C12E05 - Solution.pbix</td>
<td>C12E05 - Solution.pbix</td>
</tr>
<tr>
<td>C12E06.xlsx</td>
<td>C12E06 - Solution.xlsx</td>
</tr>
<tr>
<td>C12E06 - Solution.pbix</td>
<td>C12E06 - Solution.pbix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13: Social Network Analytics</th>
<th>File(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C13E01 - Solution.xlsx</td>
<td>C13E01 - Solution.xlsx</td>
</tr>
<tr>
<td>C13E01 - Solution.pbix</td>
<td>C13E01 - Solution.pbix</td>
</tr>
<tr>
<td>C13E02.xlsx</td>
<td>C13E02 - Solution.xlsx</td>
</tr>
<tr>
<td>C13E02 - Solution.xlsx</td>
<td>C13E02 - Solution.pbix</td>
</tr>
<tr>
<td>C13E02 - Solution.pbix</td>
<td>C13E02 - Solution.pbix</td>
</tr>
<tr>
<td>C13E03.xlsx</td>
<td>C13E03 - Solution.xlsx</td>
</tr>
<tr>
<td>C13E03 - Solution.pbix</td>
<td>C13E03 - Solution.pbix</td>
</tr>
<tr>
<td>C13E03 - Solution.xlsx</td>
<td>C13E03 - Solution.xlsx</td>
</tr>
<tr>
<td>C13E04.xlsx</td>
<td>C13E04 - Solution.xlsx</td>
</tr>
<tr>
<td>C13E04 - Solution.pbix</td>
<td>C13E04 - Solution.pbix</td>
</tr>
<tr>
<td>C13E05.xlsx</td>
<td>C13E05 - Solution.xlsx</td>
</tr>
<tr>
<td>C13E05 - Solution.pbix</td>
<td>C13E05 - Solution.pbix</td>
</tr>
<tr>
<td>C13E06.xlsx</td>
<td>C13E06 - Solution.xlsx</td>
</tr>
<tr>
<td>C13E06 - Solution.pbix</td>
<td>C13E06 - Solution.pbix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 14: Final Project: Combining It All Together</th>
<th>File(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14E01 - Goal.xlsx</td>
<td>C14E01 - Goal.xlsx</td>
</tr>
<tr>
<td>C14E01.zip</td>
<td>C14E01.zip</td>
</tr>
<tr>
<td>C14E01 - Solution.xlsx</td>
<td>C14E01 - Solution.xlsx</td>
</tr>
<tr>
<td>C14E01 - Solution.pbix</td>
<td>C14E01 - Solution.pbix</td>
</tr>
<tr>
<td>C14E02 - Compromised.xlsx</td>
<td>C14E02 - Compromised.xlsx</td>
</tr>
<tr>
<td>C14E02 - Solution.xlsx</td>
<td>C14E02 - Solution.xlsx</td>
</tr>
<tr>
<td>C14E02 - Solution.pbix</td>
<td>C14E02 - Solution.pbix</td>
</tr>
</tbody>
</table>
System requirements

You need the following software and hardware to build and run the code samples for this book:

- Software: Office 365, Excel 2016 or later versions of Excel, Power BI Desktop, Excel 2013 with Power Query Add-In, or Excel 2010 with Power Query Add-In
This page intentionally left blank
CHAPTER 2

Basic Data Preparation Challenges

Before anything else, preparation is the key to success.

—Alexander Graham Bell

IN THIS CHAPTER, YOU WILL

■ Learn how to split and extract valuable information from delimiter-separated values
■ Learn how to enrich your data from lookup tables in a single table or by using relationships between fact tables and lookup tables
■ Learn how Add Column from Examples can help you extract or compute meaningful data from columns and use it to explore new transformations
■ Learn how to extract meaningful information, such as hyperlinks, from text columns
■ Handle inconsistent date values from one or more locales
■ Learn how to extract date or time elements from Date columns
■ Split a table into a fact table and a lookup table by using the Reference and Remove Duplicates commands
■ Learn how to avoid refresh failures when a lookup table contains duplicate values, even when you are sure you removed them
■ Split delimiter-separated values into rows to define group/member associations

Working with messy datasets can consume a lot of time for a data analyst. In the past, analysts needed to tackle badly formatted data with painful manual cleansing efforts. Excel power users could also use advanced formulas and VBA to clean and prepare data. Those who knew programming languages such as Python and R could harness their power to aid in the cleansing effort. But in many cases, data analysts eventually abandoned their exploration of messy datasets, uncertain of the return on investment they would get from cleaning the badly formatted data.

In this chapter, you will learn a wide variety of techniques in the Power Query Editor in Excel and Power BI for cleaning badly formatted datasets. These techniques will enable you to prepare your data in a matter of minutes. If you are new to Power Query, this chapter is the key to achieving a lot as a data analyst. The simple techniques that you will learn here will significantly reduce your data preparation time and enable you to tackle bigger challenges more quickly.
You may need to prepare messy data for an ad hoc analysis, or you might need to periodically prepare and circulate reports for large audiences. This chapter introduces the most common and basic data preparation techniques that will save your time and enable you to automate and streamline your efforts to gain insights.

Extracting Meaning from Encoded Columns

One of the most common challenges in unprepared data is to extract meaning from columns that are badly formatted. If you have a sequence of delimiter-separated codes or values in a single column, you might want to split them into multiple columns.

Excel provides native formula functions for extracting values from badly formatted text. You can use a combination of the functions *LEFT*, *MID*, *RIGHT*, *FIND*, *SEARCH*, and *LEN* to extract any substring from text. But often, the logic to extract the information you seek requires complex formulas and is hard to maintain over time, requiring you to expand the formulas to new rows when your source data changes.

The Text to Columns wizard in the Data tab of Excel enables you to easily split a column into multiple columns. Unfortunately, if you need to load a new table and apply the same type of split, you need to repeat the steps or use macros and VBA. In this section you will learn how you can use Power Query to tackle this challenge. You will find that the Power Query Editor in Excel and Power BI is extremely helpful, especially if you need to repeat the same tasks often, work with large datasets, or maintain a report over the long term.

AdventureWorks Challenge

In this chapter, you will work with the product catalog of a fictitious bike manufacturer company, AdventureWorks Cycles, in the *AdventureWorks* database.

See Also AdventureWorks Cycles is a fictitious company invented by Microsoft to demonstrate the implementation of Microsoft applications in close-to-real-life business scenarios. The AdventureWorks database can be deployed on an Azure SQL Database server for learning purposes. You can create an Azure SQL Database server that contains AdventureWorks data by following the steps in the article https://docs.microsoft.com/en-us/azure/sql-database/sql-database-get-started-portal. You are not required to do this to follow the exercises in this book, but doing so will give you more data samples to practice Power Query.

Imagine that you are a new analyst in the fictitious company AdventureWorks. Your first task is to analyze the company’s product catalog and find out how many products the company manufactures by category, product size, and color. The list of products is provided in an Excel workbook that is manually exported from a legacy data warehouse. You can download the workbook C02E01.xlsx from https://aka.ms/DataPwrBIPivot/downloads.
Unfortunately, the product catalog is missing the Category, Size, and Color columns. Instead, it contains a Product Number, containing dash-separated values that include the information on category, size, and color. Figure 2-1 shows the mapping between the Product Number column and the missing columns.

FIGURE 2-1 The AdventureWorks product catalog has category, size, and color values encoded inside the product number.

Your predecessor, who was recently promoted and now leads the Business Intelligence team, had solved this challenge by using Excel formulas. In the next exercise, you will learn how he implemented the solution.

Exercise 2-1: The Old Way: Using Excel Formulas

Download the workbook C02E01 - Solution.xlsx from https://aka.ms/DataPwrBIPivot/downloads. This workbook, which was implemented by your predecessor, uses Excel formulas to extract the product category, color, and size. In this exercise, you can follow his notes and learn how he implemented the solution—without using Power Query.

Note Your goal in Exercise 2-1 is to review a typical solution in Excel, without using Power Query. You are not required to implement it or even fully understand it. As you will soon learn, the Power Query solution is simpler.

1. Open the workbook C02E01 - Solution.xlsx in Excel.

2. Review the first three worksheets: Products, Categories, and Colors. Products contains the main catalog table. In the Categories worksheet, you can see the mapping between category codes and values. For example, VE stands for vests, SH stands for shorts, WB stands for bottles, and BC stands for cages. In the Colors worksheet, you can see the mapping between color codes and values. For example, BE stands for blue, and BK stands for black.

 The fourth worksheet contains three PivotTables with the kind of analysis you would expect to do. All the PivotTables are fed from the data in the Products worksheet.

3. In the Products worksheet, select the cell F2. In the formula bar, notice that this cell contains the following formula:

 =LEFT(C2, 2)
CHAPTER 2 Basic Data Preparation Challenges

The formula returns the two leftmost characters from column C, which contains the product number. These two characters represent the category code.

4. Select cell G2. In the formula bar, you can see the following formula:

 =RIGHT(C2, 2)

 The formula returns the two rightmost characters from column C, which contains the product number. These two characters represent the color code.

5. Select cell H2. In the formula bar you can see the following formula:

 =SUBSTITUTE(MID(C2, SEARCH("-", C2, 8), 3), "-", "")

 This formula returns the code that represents the product size. This is where things become difficult. The inner formula searches for the character "-" in the product number at cell C2, starting from character 8. It returns the location of the character. Then, the MID function returns a three-digit substring. The substring may contain a leading or trailing dash character. The SUBSTITUTE function trims away the dash character.

6. Select cell I2. In the formula bar you can see the following formula:

 =VLOOKUP(F2, Categories!A:B, 2, FALSE)

 This formula returns the category value from the Categories worksheet, whose product code matches the value in F2.

7. Select cell J2. In the formula bar you can see the following formula:

 =VLOOKUP(G2, Colors!A:B, 2, FALSE)

 This formula returns the color value from the Colors worksheet, whose color code matches the value in G2.

If you are an Excel power user, it will not be difficult for you to implement the same formulas just described on a new dataset, such as in C02E01.xlsx. If you are not a power user, you can copy and paste the dataset from C02E01.xlsx to the relevant columns in the Products worksheet of C02E01 - Old Solution.xlsx, and then copy down all the formulas in columns F to J.

But what do you do if you need to update this workbook on a weekly basis? As you get constant product updates, you will need to perform a repetitive sequence of copies and pastes, which may lead to human errors and incorrect calculations. In the next two exercises, you will learn a better way to achieve your goals—by using Power Query.

Exercise 2-2, Part 1: The New Way

In this exercise, you will use the Power Query Editor to create a single Products table. Maintaining this new solution will be much easier than with C02E01 - Old Solution. A single refresh of the workbook will suffice, and you will no longer have many formulas in the spreadsheet to control and protect.
You can follow this exercise in Excel, Power BI Desktop, or any other product that includes the Power Query Editor.

Download the workbook C02E02.xlsx from https://aka.ms/DataPwrBIPivot/downloads and save it in a new folder: C:\Data\C02. The workbook contains the AdventureWorks database Products, Categories, and Colors worksheets. You will start the exercise by importing the three tables to the Power Query Editor.

1. Start a new blank Excel workbook or a new Power BI Desktop report.

2. Follow these steps to import C02E02.xlsx to the Power Query Editor:
 a. **In Excel:** In the Data tab, select Get Data, From File, From Workbook.

 Note Due to variations in the ribbons in the older versions of Excel, the instructions throughout the book from now on will assume you use Excel 2016 or later. (As a result, all entry points will be through the Get Data drop-down in the Data tab.) You can still follow these steps in the Power Query add-in for Excel 2010 and 2013 as well—the differences will be minuscule, and will only be applicable to the initial steps in the Data/Power Query ribbons. The ribbon differences among the Power Query versions is described in Chapter 1, “Introduction to Power Query,” in the section, “Where Can I Find Power Query?”

 In Power BI Desktop: In the Get Data drop-down menu, select Excel.

 b. Select the file C02E02.xlsx and select Import.

 c. In the Navigator dialog box that opens in Excel, select the Select Multiple Items check box. In either Excel or Power BI Desktop, select the worksheets Categories, Colors, and Products and select Edit. (As explained in Chapter 1, if you don’t find the Edit button in the Navigator dialog box, select Transform Data, or the second button that is right to Load.)

3. In the Power Query Editor that opens, to the left you can see the Queries pane, which contains three queries—one for each of the worksheets you selected in the Navigator in step 2. By selecting each of the queries, you can see a preview of the data in the Preview pane. To the right, you can see the Query Settings pane and the Applied Steps pane, which shows you the sequence of transformation steps as you make changes to your query. Follow these steps to prepare the Categories and Colors queries:

 a. In the Queries pane, select the Categories query. In the Preview pane, you will notice that the headers are Column1 and Column2. The first row contains the column names: Category Code and Product Category Name. To promote the first row, on the Transform tab, select Use First Row As Headers.

 Tip If you prefer working with shortcut menus, you can click on the table icon in the top-left corner of the table in the Preview pane of the Power Query Editor and select Use First Row As Headers.
2. In the Queries pane, select the Colors query, which requires the same preparation step as the Categories query. Its column names are Column1 and Column2. The first row contains the actual column names, Color Code and Color. To promote the first row, on Transform tab, select Use First Row As Headers.

4. In the Queries pane, select the Products query.

5. Select the Product Code column either by clicking its header or by selecting the Choose Columns drop-down menu on the Home tab and then selecting Go to Column. When the Go to Column dialog box opens, select the Product Code column in the list and click OK to close the dialog box.

6. On the Transform tab, select Split Column and then select By Delimiter. You can also right-click the header of the Product Code column and select Split Column from the shortcut menu, and then select By Delimiter.

7. In the Split Column by Delimiter dialog box that opens, by default, the correct settings are selected, and you could simply click OK to close the dialog box, but before you do, review the elements of the dialog (see Figure 2-2):

![Split Column by Delimiter dialog box](image)

FIGURE 2-2 The Split Column by Delimiter dialog box is automatically set to split by the dash delimiter. More options can be found under Advanced Options. It is recommended that you review them and ensure that the default choices are correct.
• The Custom option is selected in the dialog box, and the dash character is specified as a delimiter. This selection is recognized by Power Query because all the values in the columns are dash-separated.

• Each Occurrence of the Delimiter is selected because there are multiple dash characters.

• If you expand the Advanced Options section, you can see that Power Query detected that Product Number values can be split into four columns.

Tip When you have a fixed number of delimiters, the split into columns is effective. When you have an unknown number of delimiters, you should consider splitting the column into rows. Later in this exercise, you will learn when splitting into rows can be helpful.

• You can see that the quote character is also set. Why do you need it? How will you split dash-separated values if one of the values contains a dash that should not be used as a delimiter?

The owner of your data can use double quotes at the beginning and end of text that contains a dash. Power Query will not split the dash characters inside the quoted string. The only caveat is that when you have a double quote at the beginning of a value, but you are missing an ending double quote, the entire text starting from the double quote will be kept intact.

To ignore quotes, select None as the quote character.

8. After you close the Split Column by Delimiter dialog box, you can see in the Preview pane that the Product Number column is split into four columns: Product Number.1, Product Number.2, Product Number.3, and Product Number.4. Rename them Category Code, Short Product Number, Size, and Color. To rename a column, double-click the column name and type a new name. Alternatively, you can select the column and then select Rename in the Transform tab. The column name is then selected, and you can enter the new column name.

At this stage, you have extracted the size column, and you have separate codes for the product category and color. You will now learn two approaches for adding the actual category and color values instead of their codes. In Exercise 2-2, Part 2, you will learn how to merge the category and color values into the Products table, and in Exercise 2-2, Part 3, you will learn how to keep the three tables as fact and lookup tables.

9. To save the workbook or Power BI report follow these steps:

In Excel:

a. In the Home tab of the Power Query Editor, select the Close & Load drop-down menu and then select Close & Load To. The Import Data dialog box opens.

b. Select Only Create Connection and ensure that Add This Data to the Data Model is unselected. (In the third part of this exercise, you will select this check box.)

c. Save the workbook as C02E02 - Solution - Part 1.xlsx.

In Power BI Desktop: Select Close & Apply and save the report as C02E02 - Solution - Part 1.pbix.
Exercise 2-2, Part 2: Merging Lookup Tables

In this part of Exercise 2-2, you will merge the category and color values from the Categories and Colors queries into the Products query, according to their corresponding codes. Recall from Exercise 2-1 that mapping between the codes and the values can be done using VLOOKUP in Excel. In this exercise, you will learn an equivalent method using the Power Query Editor.

1. **In Excel:** Open the file C02E02 - Solution - Part 1.xlsx. In the Data tab, select Get Data and then select Launch Power Query Editor.

 In Power BI Desktop: Open the file C02E02 - Solution - Part 1.pbix and select Edit Queries from the Home tab.

2. In the Power Query Editor that opens, in the Queries pane, select the Products query. On the Home tab, select Merge Queries.

3. In the Merge dialog box that opens, you can merge between two tables according to matching values in specified columns. You will merge the category names from the Categories query into the Products query, according to the matching category code. Figure 2-3 illustrates the following steps you need to take in the Merge dialog box:

 ![Merge dialog box](image)

 FIGURE 2-3 You can merge categories into products by category code in the Merge dialog box.
a. Select the Category Code column in the Products table, and in the drop-down menu below the Products table, select Categories. Then select Category Code in the second table (refer to Figure 2-3).

b. In the Join Kind drop-down, make sure Left Outer (All from First, Matching from Second) is selected, and click OK.

In the Power Query Editor, you can see that a new Categories column is added as the last column, with Table objects as values.

4. Expand the Categories column (by clicking on the control at the right side of its header or by selecting the Categories column, and then selecting Expand in the Transform tab).

5. In the Expand pane, deselect Category Code and deselect Use Original Column Name As Prefix. Then click OK. The new Categories column is transformed to a new column called Product Category Name, with the matching category values in each row.

6. Now that you have the actual category name, remove the Category Code column by selecting it and pressing the Delete key.

Note Step 6 may seem a bit awkward for new users, who are accustomed to Excel formulas. You may be surprised to find that Product Category Name remains intact after the removal of Category Code. But keep in mind that the Power Query Editor does not work like Excel. In step 3, you relied on Category Code, as you merged categories into products by using the matching values in the Category Code column. However, in step 6 you removed the Category Code column. Whereas a spreadsheet can be perceived as a single layer, Power Query exposes you to a multi-layered flow of transformations, or states. Each state can be perceived as a transitory layer or a table, whose sole purpose is to serve as the groundwork for the next layer.

7. To merge the colors into the Products query, on the Home tab, select Merge Queries again. When the Merge dialog box opens, follow these steps (see Figure 2-4):

a. Select the Color Code column in the Products table, and in the drop-down menu below the Products table, select Colors. Then select the Color Code column in the second table.

b. In the Join Kind drop-down, ensure that Left Outer (All from First, Matching from Second) is selected and click OK.
In the Power Query Editor, a new Colors column is added as the last column, with Table objects as values. Let’s pause for a moment and learn about the Table object and how to interact with it. In addition to the expand control located on the right side of the column, you have three common interactions with the Table objects:

- You can drill down to a single Table object by clicking on any of the table hyperlinks. When you do so, a new step is added to Applied Steps, and from here you could potentially continue preparing your data, which is based on the selected Table object. Try it now.

 Select any of the Table objects in the Colors column. The table in the Preview pane is transformed into a single-row table with the specific color code and color value that was merged in the cell that you selected. Delete this step from Applied Steps so you can get back to the Products table.

- You can also drill down to a single Table object as a new query. This can allow you to explore the data of a single table, while keeping the original table intact. To drill down to a single Table object as a new query, right-click any of the Table objects and select Add As New Query. A new query is created, with all the transformation steps in Products, including the new drill-down step, which is equivalent to the drill-down in the preceding example. If you tried it, you can now delete the new query.
• For temporary inspection of a specified table object, you can click on the space of any cell that contains a Table object. At the bottom of the Preview pane, you see a preview of the table. Now that you’ve learned a bit more about the Table objects, let’s expand the Colors column.

Note You will find that working with other structured objects in the Power Query Editor—such as Record, List, and Binary objects—is similar: You can drill down to single object, add the object as a new query, or preview its content by clicking anywhere in the cell’s space.

8. Expand the Colors column (by clicking on the control at the right side of its header or by selecting the Colors column and then selecting Expand in the Transform tab).

9. In the Expand pane, deselect Color Code and deselect Use Original Column Name As Prefix. Then click OK. The new Colors column is transformed to Color, with the matching color values in each row.

10. Now that you have the actual color values, remove the Color Code column. The Products query is ready, and it’s time to load it to the report.

11. In Excel: Follow these steps to load Products into the Data Model:
 a. In the Home tab of the Power Query Editor, select Close & Load.
 b. In Excel, on the Data tab, select Queries and Connections to open the Queries pane. Right-click Products and select Load To.
 c. In the Import Data dialog box that opens, select Add This Data to the Data Model and click OK.
 d. You can now create a PivotTable that uses the Data Model and analyzes the distribution of colors or categories. On the Insert tab, select PivotTable. The Create PivotTable dialog box opens. Ensure that the option Use This Workbook’s Data Model is selected and click OK to close the dialog box.

In Power BI Desktop: Follow these steps:
 a. In the Queries pane, right-click Categories and deselect the Enable Load check box.
 b. Right-click the Colors query and deselect the Enable Load check box.

The last two steps allow you to treat specific queries as stepping-stones for other queries. Because you have extracted the category and color values from Categories and Colors, you can keep Products as the single table in your report. Deselecting Enable Load ensures that these queries are not loaded to the Power BI report. These steps are equivalent in Excel to step 9b, in Exercise 2-2, Part 1, where you selected Only Create Connection in the Import Data dialog box.
 c. On the Home tab, select Close & Apply.
The Products table is now loaded and ready, with categories, colors, and sizes. To review the solution, including an example of a PivotTable with the distribution of products by color, download the workbook C02E02 - Solution - Part 2.xlsx from https://aka.ms/DataPwrBIPivot/downloads. To review the Power BI solution, download the report C02E02 - Solution - Part 2.pbix.

Exercise 2-2, Part 3: Fact and Lookup Tables

In Part 2 of Exercise 2-2, you merged the category and color values from the Categories and Colors queries into the Products query. While this approach enables you to have a single table with the necessary information for your report, there is a better way to do it, using relationships.

Note When you import multiple tables, relationships between those tables may be necessary to accurately calculate results and display the correct information in your reports. The Excel Data Model (also known as Power Pivot) and Power BI Desktop make creating those relationships easy. To learn more about relationships in Power BI, see https://docs.microsoft.com/en-us/power-bi/desktop-create-and-manage-relationships.

In Part 3 of Exercise 2-2, you will start where you left off in Part 1 and load the three queries as separate tables in the Data Model.

1. **In Excel:** Open the file C02E02 - Solution - Part 1.xlsx. In the next steps you will load all the queries into the Data Model in Excel, which will enable you to create PivotTables and PivotCharts from multiple tables. On the Data tab, select Queries & Connections.

 a. In the Queries & Connections pane that opens, right-click the Categories query and select Load To.

 b. In the Import Data dialog box that opens, select Add This Data to the Data Model and close the dialog box.

 c. Right-click the Colors query and select Load To.

 d. In the Import Data dialog box that opens, select Add This Data to the Data Model and close the dialog box.

 e. Right-click the Products query and select Load To.

 f. In the Import Data dialog box that opens, select Add This Data to the Data Model and close the dialog box.

At this stage, you have the three tables loaded to the Data Model. It's time to create the relationship between these tables.

 g. On the Data tab, select Manage Data Model. The Power Pivot for Excel window opens.

 h. On the Home tab, select the Diagram view.

 In Power BI Desktop: Open the file C02E02 - Solution - Part 1.pbix and select the Relationships view from the left-side menu.
2. Drag and drop Category Code from the Categories table to Category Code in the Products table.

Your Data Model now consists of a fact table with the product list and two lookup tables with the supplementary information on categories and colors. As shown in Figure 2-5, there are one-to-many relationships between Category Code in the Categories table and Category Code in the Products table, as well as between Color Code in the Colors table and Color Code in the Products table.

See Also The topic of modeling is not the focus of this book. To learn more about Power Pivot, Data Models, and relationships in Excel and Power BI, see Analyzing Data with Power BI and Power Pivot for Excel by Alberto Ferrari and Marco Russo (Microsoft Press).
4. After you have established the relationships between the tables, hide the columns Category Code and Color Code in the tables to ensure that these fields will no longer be selected in PivotTables, PivotCharts, and Power BI visualizations. By hiding these fields, you help report consumers enjoy a cleaner report. In other scenarios where you have multiple fact tables connected to a lookup table by the same column, hiding the column in the fact tables can lead to a more extendable report, in which a single column in the lookup table can be used in a slicer or a visual to filter data coming from the multiple fact tables.

In Excel, right-click Color Code in the Colors table and select Hide from Client Tools. Repeat this step on Color Code in the Products table and Category Code in the Categories and Products tables.

You can now create PivotTables, PivotCharts, and visualizations as demonstrated in the solution files C02E02 - Solution - Part 3.xlsx and C02E02 - Solution - Part 3.pbix, which are available at https://aka.ms/DataPwrBIPivot/downloads.

Tip While the solution in Exercise 2-2, Part 2 simplifies your report, as it leaves you with a single table, in real-life reports that have multiple tables, the solution in Exercise 2-2, Part 3 will provide more opportunities for insight, as your model will become more complex. For example, having a single Categories lookup table connected to multiple fact tables with Product Category codes will allow you to compare between numerical columns across the different fact tables, using the shared categories.

Using Column from Examples

Often, the first command you see on the left side of the ribbon can reveal the importance of a feature. That is why, for example, you can find PivotTable as the first command in the Insert tab of Excel. In the Power Query Editor, you can find one of the most important capabilities as the first command in Add Column tab. Column from Examples is a powerful feature that enables you to extract meaning from existing columns into a new column, without any preliminary knowledge of the different transformations available in the Power Query Editor.

By using Column from Examples, you can add new columns of data in the Power Query Editor by simply providing one or more sample values for your new column. When you provide these examples, Power Query tries to deduce the calculation needed to generate the values in the new column. This capability can be used as a shortcut to extract new meaning from data. This is a very powerful feature, especially for new users because it means you are not required to explore for the necessary transformation in the
ribbons or memorize the M formulas to extract the meaningful data into the new column. If you simply provide a few examples in the new column, Power Query tries to do the work for you.

Exercise 2-3 provides a quick demonstration of Column from Examples with the dataset from Exercise 2-2.

Exercise 2-3, Part 1: Introducing Column from Examples

In Exercise 2-2, you learned how to split the product code into four elements. But imagine that you just need to extract the product size from the code. In this exercise you will learn how to do this by using Column from Examples.

If you didn’t follow Exercise 2-2, download the workbook C02E02.xlsx from https://aka.ms/DataPwrBIPivot/downloads and save it in the folder C:\Data\C02.

1. Start a new blank Excel workbook or a new Power BI Desktop report.

2. Follow these steps to import C02E02.xlsx to the Power Query Editor:
 In Power BI Desktop: In the Get Data drop-down menu, select Excel.
 b. Select the file C02E02.xlsx and select Import.
 c. In the Navigator dialog box that opens, select Products and then select Edit.

3. In the Power Query Editor, you can now see in the Preview pane that the Product Number column contains four dash-separated codes (for example, VE-C304-S-BE). The challenge is to extract the third value, which reflects the size of the product.

Select the Product Number column, and on the Add Column tab, select the Column from Examples drop-down menu, where you see two options:
 • From All Columns
 • From Selection

In this exercise, you need to extract the size of the product from Product Number, so select From Selection.

Tip In many cases, if you know in advance which columns should contribute to the new column, selecting the relevant input columns and then selecting From Selection in the Column from Examples drop-down menu will improve the chances that Power Query will provide a useful recommendation.

The Power Query Editor now enters a new state. The Preview pane is pushed down, and a new section is shown on top of the Preview pane, with the message Enter Sample Values to Create
a New Column. In the bottom-right part of this new section are OK and Cancel buttons to exit from this special state.

On the right side of the Preview pane is an area with a new empty column. This is where you can enter your examples. Before you do so, rename Column1 to Size by double-clicking the header of the new column.

4. Double-click the first blank cell of the Size column in the Preview pane. A drop-down menu shows a few recommended examples that you can select from to create the new column. The values in the drop-down menu can provide some ideas of transformation that can be used to populate the new column.

5. In the first blank cell, enter S, which represents the bolded size value in the product number VE-C304-S-BE. Press Enter, and Power Query populates the new Size column with all the suggested values, as illustrated in Figure 2-6. Press Ctrl+Enter or click OK to create the column.

![Figure 2-6](image.png)

FIGURE 2-6 The Power Query Editor in Add Column from Examples mode enables you to easily extract the size code from Product Number column.

6. You can now see the new Size column, calculated as expected. Load the data to your workbook or to a Power BI report and save.

You can download the solution files C02E03 - Solution.xlsx and C02E03 - Solution.pbix from https://aka.ms/DataPwrBIPivot/downloads.
Practical Use of Column from Examples

Column from Examples is a very useful tool to discover new transformations that are available in the user interface and in M. Let’s demonstrate how a new transformation can be discovered, using the output of Column from Examples. In step 6 of Exercise 2-3, Part 1, you can see that in the Applied Steps pane of the Power Query Editor, the last step, Inserted Text Between Delimiters, contains a settings control (in the shape of a cog) at the right side of the step. By clicking the settings control you can open the Text Between Delimiters dialog box. This dialog box allows you to extract text between delimiters. Now, when you know that such a dialog box exists, you can explore the Power Query Editor to find which ribbon command can trigger it, outside the Column from Examples flow. Exploring the Transform tab reveals the command Text Between Delimiters inside the Extract drop-down menu.

For intermediate Power Query users, a great way to improve knowledge of M is to use Column from Examples and review the suggested code that is shown in the top pane (highlighted in Figure 2-6). You may find some useful functions, such as Text.BetweenDelimiters, which is used in Exercise 2-3, Part 1.

Column from Examples can help you achieve a wide variety of transformations on text, dates, times, and numbers. You can even use it to create bucketing/ranges and conditional columns, as you will see in Exercise 2-3, Part 2.

See Also To find the latest list of the functions supported by Column from Examples, go to https://docs.microsoft.com/en-us/power-bi/desktop-add-column-from-example.

Exercise 2-3, Part 2: Converting Size to Buckets/Ranges

In this part of Exercise 2-3, you will use Column from Examples to group numeric size values into buckets. You can download the solution files C02E03 - Solution.xlsx and C02E03 - Solution.pbix from https://aka.ms/DataPwrBIPivot/downloads to follow the steps of this exercise.

1. Open C02E03 - Solution.xlsx or C02E03 - Solution.pbix and launch the Power Query Editor. To launch the Power Query Editor in Excel, go to the Data tab, select Get Data, and then select Launch Power Query Editor. To launch the Power Query Editor in Power BI Desktop, select Edit Queries on the Home tab.

 You can see that the Size column contains a combination of alphabetic and numeric size values. In the next two steps you will learn how to ignore the textual values and focus only on numeric values in the Size column by creating a new column with the numeric representation for sizes. There are several ways to achieve this goal. In step 2, you will do it using the error-handling features in Power Query. In step 3, you will do it using Column from Examples.

2. To extract all the numeric sizes from the Size column by using error handling, follow these steps:
 a. Select the Size column. On the Add Column tab, select Duplicate Column.
 b. Rename the new column Size - Numbers and change its type to Whole Number by selecting the ABC control in the header and Whole Number in the drop-down menu.
c. You now see Error values in all the cells that contained textual size codes (S, M, L, X, and NA), but you want to work on numbers only, so you need to replace the errors with nulls. To do this, select the Size - Numbers column, and on the Transform tab, select the Replace Values drop-down menu and then select Replace Errors. An easier way to find the Replace Errors transformation is by right-clicking on the column header and finding the transformation in the shortcut menu.

d. In the Replace Errors dialog box that opens, enter null in the Value box and click OK to close the dialog box.

3. To extract the numeric size values by using Column from Examples, instead of replacing errors with null, follow these steps:

 a. If you applied step 2, delete the last four steps that were created in Applied Steps. Your last step should now be Inserted Text Between Delimiter.

 b. Select the Size column. On the Add Column tab, select the Column from Examples drop-down menu and then select From Selection.

 c. When the Add Column from Examples pane opens, showing the new column, rename it Size - Numbers.

 d. Double-click the first blank cell in the Size - Numbers column. You can see that the value in the Size column is S. Because you are not interested in textual size values, enter null in the first blank cell and press Enter.

 e. When you see that the second and third values in the Size column are M and L, enter null in both the second and third cells of Size - Numbers and press Enter.

 f. Move to the cell in row 7. You can see that the value in the Size column is NA. Enter null in the seventh cell of the Size - Numbers column and press Enter.

 g. Move to row 21. You can see that the value in the Size column is X. Enter null in the corresponding cell of the Size - Numbers column and press Enter.

 h. Now, in row 22, you see the value 60. Enter 60 in the corresponding cell of the Size - Numbers column and press Enter. Power Query populates the new Size column with all the suggested values. You can now press Ctrl+Enter to create the new Size - Numbers column.

4. Change the type of the Size - Numbers column to Whole Number by selecting the ABC control in the header of the column in the Preview pane and Whole Number in the drop-down menu.
In the next part of this exercise, you will create a separate table for the products with numeric sizes and will classify them into four size buckets ($S =$ Small, $M =$ Medium, $L =$ Large, and $X =$ Extra Large) by using Column from Example.

5. In the Queries pane, right-click Products and select Reference. Rename the new query *Numeric-Size Products*. To rename the query, right-click the query in the Queries pane and select Rename in the shortcut menu, or rename the query in the Query Settings pane, under Properties, in the Name box.

 Tip Using Reference is a very useful technique for branching from a source table and creating a new one, starting from the last step of the referenced query.

6. In the new query, remove all the products whose Size - Numbers value is null. To do so, click the filter control in the Size - Numbers column and select Remove Empty.

7. Say that you want to convert the numeric sizes into the buckets of X, L, M, and S as follows: Numbers equal to or greater than 70 will be assigned to the X bucket. Numbers equal to or greater than 60 will be assigned to L. Numbers equal to or greater than 50 will be assigned to M, and numbers equal to or greater than 40 will be assigned to S. Here are the steps to achieve this by using Column from Examples (see Figure 2-7 to ensure you follow the steps correctly):

 ![FIGURE 2-7 You can use Add Column from Examples to create size buckets.](image-url)
a. Select the Size - Numbers column, and in the Add Column tab, select the Column from Examples drop-down menu and then select From Selection.

b. Rename the new column Size Bucket.

c. Enter X in row 1 (because Size - Numbers is 70).

d. Enter L in rows 2 and 3 (because the Size - Numbers values are 60 and 62, respectively).

e. Enter M in row 5 (because Size - Numbers is 50).

f. Enter S in row 20 (because Size - Numbers is 40).

g. Press Ctrl+Enter to create the new Size - Bucket column. The Size - Bucket column now contains the required bucket names for the relevant ranges.

8. For learning purposes, double-click the Added Conditional Column step in the Applied Steps pane. The Add Conditional Column dialog box opens. Review the conditions that defined the ranges for each bucket, and close the dialog box.

9. Review the M formula in the formula bar for a quick glimpse into the M syntax, which is discussed in more detail throughout the book, specifically in Chapter 9, “Introduction to the Power Query M Formula Language.”

You can download the solution files C02E03 - Solution - Part 2.xlsx and C02E03 - Solution - Part 2.pbix from https://aka.ms/DataPwrBIPivot/downloads.

Extracting Information from Text Columns

In the preceding exercises, you extracted meaningful information from delimiter-separated codes by using the Split Column by Delimiter transformation. In the next exercise, you will tackle a common challenge: how to extract meaningful data from unstructured textual data. While this challenge can be simple if your data is relatively consistent, you need a wider arsenal of techniques to address inconsistent data.

Exercise 2-4: Extracting Hyperlinks from Messages

In this exercise you will work on a workbook that contains imported Facebook posts from the official Microsoft Press Facebook page. Specifically, you will extract the hyperlinks from posts that were shared by Microsoft Press. While some hyperlinks are easily extracted, as they start with the prefix “http://”, there are plenty of edge cases that cannot be easily addressed.

Before you start, download the workbook C02E04.xlsx from https://aka.ms/DataPwrBIPivot/downloads and save it in C:\Data\C02.
Note While some elements in this exercise may be a bit advanced, requiring lightweight manipulation of formulas that are not explained in detail in this chapter, you will still find these elements extremely useful, and you will be able to apply them to your own data even if you do not fully understand them yet. Chapter 9 explains M in more detail, and it will help you feel more comfortable with the type of changes you encounter here.

1. Start a new blank Excel workbook or a new Power BI Desktop report.

2. Follow these steps to import C02E04.xlsx to the Power Query Editor:
 In Power BI Desktop: In the Get Data drop-down menu, select Excel.
 b. Select the file C02E04.xlsx and select Import.
 c. In the Navigator dialog box that opens, select Sheet1 and then click Edit.

The Power Query Editor opens, and you see that the Message column contains free text. Before you extract the hyperlinks from the Message column, to achieve your goal, as illustrated in Figure 2-8, you first need to duplicate the column to keep the original message intact, so select the Message column, and from the Add Column tab, select Duplicate Column.

3. Rename the new column Hyperlink.

4. To extract the hyperlink from the new column, you can use the hyperlink prefix “http://” as a delimiter and split the column, so select the Hyperlink column, and on the Transform tab, select Split Column and then select By Delimiter.
5. In the Split Column by Delimiter dialog box that opens, do the following:
 a. Enter “http://” in the text box below Custom.
 b. Select the Left-Most Delimiter option at Split At radio buttons and click OK to close the dialog box.

 You can now see that the Hyperlink column has been split into two columns: Hyperlink.1 and Hyperlink.2. But how can you extract hyperlinks that start with “https://” or perhaps just “www.”?

7. Ensure that your formula bar in the Power Query Editor is active. If you don’t see it, go to the View tab and select the Formula Bar check box. Now, you can see the following formula, which was generated in step 7:

 \[
 = \text{Table.SplitColumn("Renamed Columns", "Hyperlink", Splitter.SplitTextByEachDelimiter(\{"http://\}, QuoteStyle.Csv, false), \{"Hyperlink.1", "Hyperlink.2"\})}
 \]

8. To split the Hyperlink column by additional delimiters, you can change the function name from Splitter.SplitTextByEachDelimiter to Splitter.SplitTextByAnyDelimiter. Now, you can add the new delimiters “https://” and “www.”. You can see in the formula above that “https://” is wrapped in double quotes inside curly brackets. Curly brackets represent lists in the M language of Power Query. You can now add multiple items to the list by adding double-quoted comma-separated delimiters, like this: \{"http://", "https://", "www."\}.

 Here is the complete modified formula:

 \[
 = \text{Table.SplitColumn("Renamed Columns", "Hyperlink", Splitter.SplitTextByAnyDelimiter(\{"http://", "https://", "www."\}, QuoteStyle.Csv, false), \{"Hyperlink.1", "Hyperlink.2"\})}
 \]

9. Thanks to the addition of “www.” as a delimiter, you can now see in the Preview pane that in line 8 a new hyperlink was detected in the Hyperlink.2 column: microsoftpressstore.com/deals.

10. Go back to the last step in Applied Steps.

11. To audit the results in Hyperlink.2, in row 15, notice that the original message contains additional text following the hyperlink. To remove the trailing text from the hyperlink, you can assume that the hyperlinks end with a space character and split Hyperlink.2. To do it, select the Hyperlink.2 column. On the Transform tab, select Split Column and then select By Delimiter. The Split Column by Delimiter dialog box opens.

 a. Select Space from the Select or Enter Delimiter drop-down.
 b. Select the Left-Most Delimiter option for Split At radio buttons and click OK to close the dialog box.

12. Remove the Hyperlink.2.2 column.

 To continue auditing the results in Hyperlink.2, scroll down until you find the first null value, in row 29. A null value means that you couldn’t detect any hyperlink in the message. But if you...
take a closer look at the message in the Hyperlink.1 column, you can see that it contains the bolded hyperlink, as shown in the line Discover Windows containers in this free ebook. Download here: aka.ms/containersebook.

The next challenge is to extract the hyperlinks whose domain name is aka.ms and include them in the Hyperlink column. This challenge is rather complex because after you split the Message column by the delimiter aka.ms, the domain name will be removed from the split results. When you applied “www.” in step 8, “www.” was removed from the hyperlink, but that was a safe manipulation. You were taking the risk that the resulted hyperlink will work well without the “www.” prefix because it is common to omit this prefix from hyperlinks (e.g., www.microsoft.com and microsoft.com lead to the same website).

You need to find a way to split by aka.ms, and you must find a way to return the domain name, but only for rows that contain that domain. You will soon learn how to do it by using a conditional column. But first, you need to add aka.ms to the list of delimiters.

13. In Applied Steps, select again the first Split Column by Delimiter step, which you modified in step 8, and add aka.ms to the list of delimiters. Here is the modified formula:

```excel
```

You can now see in row 29 that the hyperlink is /containersebook. In the next steps, you will add a conditional column that will return the missing domain name aka.ms if the values in the Hyperlink column start with /.

14. In Applied Steps, go back to the last step. Remove the Hyperlink.1 column, and rename Hyperlink.2.1 to Hyperlink Old.

15. On the Add Column tab, select Conditional Column. When the Add Conditional Column dialog box opens, follow these steps (see Figure 2-9):

![Add Conditional Column dialog box](image)

FIGURE 2-9 You can add a conditional column as a preliminary step in adding back the domain name aka.ms. Note that the conditions in the dialog box are used as a stepping-stone to the final conditions.
Note The use of the Add Conditional Column dialog box will help you set the stage for the final conditions. The user interface is limited, and you are using it as a shortcut to generate part of the required conditions. The final touch will require a lightweight modification of the formula in the formula bar in step 16.

a. Enter *Hyperlink* in the New Column Name box.

b. Select *Hyperlink Old* from the Column Name drop-down for If.

c. Select Equals from the Operator drop-down and enter `null` in both the Value and Output text boxes.

d. Click the Add Rule button to add a new condition line.

e. Select *Hyperlink Old* from the Column Name drop-down for Else If.

f. Select Begins With as the operator in the second line.

g. Ensure that Enter a Value is selected in the ABC123 drop-down menu in the second line, under Value, and enter `/` in the Value box.

h. In the drop-down menu after the Then label for Else If, select Select a Column and then select *Hyperlink Old*.

i. In the drop-down menu below the Otherwise label, select Select a Column and then select *Hyperlink Old*.

j. Ensure that your settings match those in Figure 2-9 and click OK to close the dialog box.

16. Now look at the formula bar. It's time to modify the M formula to add the prefix aka.ms if a hyperlink starts with `/`. Here is the original formula, following step 15:

```plaintext
= Table.AddColumn(#"Renamed Columns1", "Custom", each if [Hyperlink Old] = null then null else if Text.StartsWith([Hyperlink Old], "/") then [Hyperlink Old] else [Hyperlink Old])
```

To fix it, you can concatenate aka.ms and `[Hyperlink Old]`. Much as you would do in an Excel formula, you can add aka.ms as a prefix in the Hyperlink Old column by using the `&` operator:

```
"aka.ms" & [Hyperlink Old]
```

Here is the modified formula, including the change, in bold:

```plaintext
= Table.AddColumn(#"Renamed Columns1", "Custom", each if [Hyperlink Old] = null then null else if Text.StartsWith([Hyperlink Old], "/") then "aka.ms" & [Hyperlink Old] else [Hyperlink Old])
```

Note In step 15, the first null condition was added to prevent `Text.StartsWith` from being applied on a null value in `[Hyperlink Old]`, which would result in an error.
17. Remove the Hyperlink Old column.

You are almost done, but there are few more surprises waiting for you. Continue auditing the results in the Hyperlink column by scrolling down to row 149. The Hyperlink cell is blank, but looking at the original Message column, you can see the following hyperlink inside the message: https://www.microsoftpressstore.com/Ignite.

Why is the Hyperlink cell blank in this case? When you split this message in step 14, both “https://” and “www.” participated in the split as delimiters. As a result, the split included three separated values, but only the first two were loaded. The next steps help you resolve this problem.

18. In Applied Steps, select the first Split Column by Delimiter step. Change the bolded section in the formula below from "Hyperlink.1", "Hyperlink.2") to 3:

```excel
= Table.SplitColumn(#"Renamed Columns", "Hyperlink", Splitter.SplitTextByAnyDelimiter(\{"http://", "https://", "www.", "aka.ms\}, QuoteStyle.Csv, false), \{"Hyperlink.1", "Hyperlink.2\})
```

Here is the complete modified formula:

```excel
```

See Also Here you use the argument 3 instead of the list of column names ("Hyperlink.1", "Hyperlink.2", Hyperlink.3"). The results are the same. The Table.SplitColumn function accepts either the column names or the number of new columns to use in the split. The fact is, you miss crucial data when you use only the default split; this is discussed in more detail in Chapter 10, “From Pitfalls to Robust Queries.”

Now, as shown in Figure 2-10, you have the hyperlink values either in Hyperlink.2 (in most of the rows) or in Hyperlink.3 (in row 149). If you merge the two columns, you can retrieve the missing hyperlinks and fix the query.

19. While the Split Column by Delimiter step is still selected in Applied Steps, insert the following steps into the transformation sequence:

 a. Select the two columns Hyperlink.2 and Hyperlink.3.
 b. On the Transform tab, select Merge Columns.
 c. When the Insert Step dialog box opens, warning you that this step will be inserted between the existing steps and may break your subsequent steps, select Insert.
 d. In the Merge Columns dialog box that opens, keep the default settings and click OK to close the dialog box.
 e. Rename the Merged column Hyperlink.2.
 f. When the Insert Step dialog box opens again, select Insert.
FIGURE 2-10 You can merge the Hyperlink.2 column with the Hyperlink.3 column to extract hyperlinks that start with https://www.

20. You can now select the last step in Applied Steps to ensure that the preceding steps work as expected.

There are still two cases that have not been handled correctly. First, in row 149 you can see that the hyperlinks don’t end with a space but with other punctuation, such as a dot. As a result, in step 11, when you applied space as a delimiter, you were not able to clean the trailing message from the hyperlink value. To fix it, you should trim the punctuation from all hyperlinks.

21. Select the Hyperlink column, and on the Transform tab, select Format and then select Trim. Alternatively, right-click the Hyperlink column, and in the shortcut menu, select Transform and then select Trim.

By default, Trim removes whitespace from the beginning and end of text values. You can manipulate it to also trim the trailing punctuation. This requires some changes in the formula bar. You can see that the formula includes the bolded element `Text.Trim`:

```m
= Table.TransformColumns("Removed Columns1",{["Hyperlink", Text.Trim, type text]})
```

The M function `Text.Trim` accepts a list of text items as its second argument to trim leading and trailing text other than spaces. In M, the punctuation list—dot, comma, and closing parenthesis—can be defined with curly brackets and comma-separated double-quoted values, as shown here:

```m
{ ".", ",", "" }
```
To feed the list as the second argument to `Text.Trim`, you should also feed its first argument, which is the actual text in the Hyperlink column. To get the actual text, you can use the combination of the keyword `each` and the underscore character. (Chapter 9 explains this in more details.) Copy this modified formula to the formula bar to trim the punctuations from the Hyperlink column:

```excel
= Table.TransformColumns(#"Removed Columns1",{{"Hyperlink", each Text.Trim(_, {".",","",")"}), type text}})
```

22. Notice the final issue in row 174, where you can see that the hyperlink ends with a new line, followed by more text. When you applied the second Split Text By Delimiter using a space, you didn’t extract the hyperlink correctly. To fix it, select the second Split Text By Delimiter in Applied Steps.

23. In the formula bar, notice the following code:

```excel
= Table.SplitColumn(#"Changed Type1", "Hyperlink.2", Splitter.SplitTextByEachDelimiter({" "), QuoteStyle.Csv, false), ("Hyperlink.2.1", "Hyperlink.2.2"))
```

Change it to the following (where changes are highlighted in bold):

```excel
= Table.SplitColumn(#"Changed Type1", "Hyperlink.2", Splitter.SplitTextByAnyDelimiter({" ", "#(lf)"}, QuoteStyle.Csv, false), ("Hyperlink.2.1", "Hyperlink.2.2"))
```

The value "#(lf)" describes the special line-feed character. In the preceding formula, you used the advanced split function `Splitter.SplitTextByAnyDelimiter` instead of `Splitter.SplitTextByDelimiter` to split by both spaces and line feeds.

24. Finally, to include the prefix “http://” in all the Hyperlink values, in Applied Steps, go back to the last step. Select the Hyperlink column, and on the Transform tab, select Format and then select Add Prefix. When the Prefix dialog box opens, enter “http://” in the Value box and close the dialog box.

25. In the preceding step, you added the prefix “http://” in all the rows, even where there are no URLs. But there are legitimate cases in which the Hyperlink column should be empty (for example, row 113). To remove “http://” from cells without hyperlinks, follow these steps:

 a. Select the Hyperlink column. Then, on the Home tab, select Replace Values.
 b. When the Replace Values dialog box opens, enter “http://” in the Value to Find box.
 c. Leave the Replace With box empty.
 d. Expand Advanced Options and select the Match Entire Cell Contents check box. (This step is crucial. Without it, Power Query removes “http://” from all the values.)
 e. Click OK to close the dialog box and select Close & Load in Excel or Close & Apply in Power BI Desktop to load the messages and their extracted hyperlinks to the report.
By now, you have resolved most of the challenges in this dataset and extracted the required hyperlinks. You can download the solution files C02E04 - Solution.xlsx and C02E04 - Solution.pbix from https://aka.ms/DataPwrBIPivot/downloads.

See Also There are still a few hyperlinks in the Message column. These hyperlinks do not start with “www.”, “http”, “https”, or “aka.ms”. Can you find them? In Chapter 11, “Basic Text Analytics,” you will learn advanced techniques for detecting keywords in messages. These techniques will help you detect a wider list of domain names and extract the hyperlinks.

Handling Dates

One of the most common data preparation challenges is dealing with data types. While text columns are easy to handle, numbers and dates can make even the simplest datasets daunting for analysis. In this section you will learn how to handle dates and times. You will start with a common challenge—converting text to dates—and then move on to more challenging cases involving invalid dates. At the end of this section you will learn how to extract specific date or time elements from date/time values.

When you load a table with dates or date/time values, Power Query converts the relevant columns to their correct date/time format. In Exercise 2-4, you imported a dataset with a Date/Time column. Power Query automatically converted the *Date* column to *Date/Time*. Exercise 2-5 shows how Power Query handles a column with mixed date formats.

Exercise 2-5: Handling Multiple Date Formats

Download the workbook C02E05.xlsx from https://aka.ms/DataPwrBIPivot/downloads and save it in C:\Data\C02. This workbook contains the AdventureWorks product catalog, with the release date of each product in the last column. Imagine that different data entry teams had typed the products’ release dates in five different formats:

- 7/1/2018
- 2018-07-01
- 7.1.2018
- Jul 1, 2018
- 1 July, 2018
For the sake of simplicity, assume that all the teams use the English/United States Locale in their regional settings, so the first date, 7/1/2018, is July 1 (not January 7).

When you try to work with these different formats and apply date calculations, you see that Excel does not recognize the dates in all the cells, and for some cells, it returns a #VALUE! error.

1. Open a copy of the workbook C02E05.xlsx. (Be sure to use a copy rather than the original workbook.)

2. In cell H2, add the following formula:

 = G2 + 1

 This formula should increment the release date by one day, but the result is 43283. This is because Excel stores dates as sequential serial numbers, so that they can be used in calculations. By default, January 1, 1900, is serial number 1, and July 1, 2018, is serial number 43282 (indicating the number of days since 1/1/1900).

3. To view the dates correctly, change the format of column H to Date. After you make this change, copy and paste the formula from step 2 into the next four rows: H3, H4, H5, and H6.

 Cells H4 and H6 return a #VALUE! error because Excel cannot find a way to convert them to dates or numbers to increment them by one.

4. It's time to learn how Power Query can help in this scenario, so open a new workbook or launch Power BI Desktop. Because your input data is based on English (United States) regional settings, you need to ensure that you use this locale in this exercise.

 In Excel: While you are still in the Power Query Editor, select File. Select Options and Settings, and then select Query Options. Under Current Workbook, select Regional Settings and then select English (United States) from the Locale drop-down.

 In Power BI Desktop: Select File, Options and Settings, Options. Under Current File, select Regional Settings and then select English (United States) from the Locale drop-down.

5. Click OK to close the Options dialog box.

6. Import the workbook C02E05.xlsx into the Power Query Editor:

 a. **In Excel:** On the Data tab, select Get Data, From File, From Workbook.

 b. **In Power BI Desktop:** In the Get Data drop-down menu, select Excel.

 c. Select the file C02E05.xlsx and select Import.

 c. When the Navigator dialog box opens, select Sheet1 and then select Edit.

7. When the Power Query Editor opens, notice that all the date values in the Release Date column are detected correctly, as shown in Figure 2-11.
FIGURE 2-11 Power Query automatically changes the column type from Text to Date and correctly converts the different date formats.

8. Close the Power Query Editor and load the data to your report.

Tip If you import dates of a different locale than the one defined for your Microsoft Windows operating system, you can define the specific locale in the Query Options dialog box, as shown in step 4. After you refresh the preview in the Power Query Editor, you see that the dates are recognized correctly.

Exercise 2-6: Handling Dates with Two Locales

In Exercise 2-5, you had multiple date formats, but you assumed that all dates were used by the same locale. In this exercise, you will learn how to handle cases where your dates are for multiple locales, and the months and days values should be swapped for some of the rows.

Download the workbook C02E06.xlsx from https://aka.ms/DataPwrBIPivot/downloads and save it in C:\Data\C02. For simplicity, the workbook contains only two rows from the AdventureWorks product catalog—each row for a product with a different country and release date formatted by the specific country’s locale:

- Country: United States, Release Date: 7/23/2018
- Country: United Kingdom, Release Date: 23/7/2018
As you can see in Figure 2-12, the Release Date column, when changed to the *Date* type, returns an error value for the UK row if your locale in the Power Query Options dialog box is set to English (United States); it returns an error value for the US row if your locale is English (United Kingdom) in that dialog box.

![Figure 2-12](image)

FIGURE 2-12 Converting the Release Date column from *Text* to *Date* yields different errors, depending on the workbook’s or file’s locale.

To resolve this issue, you cannot rely on the locale in the Options dialog box. Instead, you can use the Split Column by Delimiter and then apply a conditional column, as described in this exercise.

1. Start a new blank Excel workbook or a new Power BI Desktop report.
2. Import C02E06.xlsx to the Power Query Editor:
 a. **In Excel:** On the Data tab, select Get Data, From File, From Workbook.
 In Power BI Desktop: In the Get Data drop-down menu, select Excel.
 b. Select the file C02E06.xlsx and select Import.
 c. In the Navigator dialog box that opens, select Products, and then select Edit.
3. Select the Release Date column. On the Transform tab, select Split Column and then select By Delimiter. The Split Column by Delimiter dialog box that opens detects the forward slash (/) as the delimiter. Click OK to close the dialog box.

You can now see that Release Date is split into three columns: Release Date.1, Release Date.2, and Release Date.3. When Country is UK, Release Date.1 is the day, and Release Date.2 is the month. When Country is US, Release Date.1 is the month, and Release Date.2 is the day. In the next step, you will learn how to create a new column with the correct date, using an M formula and a custom column. Then, in steps 6–10, you will learn an alternative way that doesn’t require you to know M but that involves more interactions with the user interface of the Power Query Editor.
4. On the Add Column tab, select Custom Column. The Custom Column dialog box opens.
 a. Enter Date in the New Column Name box.
 b. Enter the following formula in the Custom Column Formula box:

      ```
      if [Country] = "US" then
          #date([Release Date.3], [Release Date.1], [Release Date.2])
      else
          #date([Release Date.3], [Release Date.2], [Release Date.1])
      
      Then click OK to close the dialog box.
      ```
 c. Change the type of the Date column to Date.
 d. Remove the columns Release Date.1, Release Date.2, and Release Date.3.

 Note In steps 6–10, you will learn the alternative way to create the date. Before you proceed, you should duplicate the current query so you can keep both versions.

5. To duplicate the Products query, right-click Products in the Queries pane and select Duplicate. A new query, Products (2), is created. Select it and in Applied Steps, delete the last three steps (including Added Custom).

6. Using the Ctrl key, select the three split date columns in this order: Release Date.1, Release Date.2, and Release Date.3. Now, on the Add Column tab, select Merge Columns. The Merge Columns dialog box opens.
 a. Select --Custom as the separator and then enter a forward slash character (/) in the box below.
 b. Enter US Date in the New Column Name box and click OK to close the dialog box.

7. Now, create a date column for the UK locale. Using the Ctrl key, select the three split date columns in this order: Release Date.2, Release Date.1, and Release Date.3. Now, on the Add Column tab, select Merge Columns. The Merge Columns dialog box opens.
 a. Select --Custom as the separator and then enter forward slash character (/) in the box below.
 b. Enter UK Date in the New Column Name box and click OK to close the dialog box.

You now have the columns US Date and UK Date with different date formats. It’s time to select which date format to choose for each row.

8. On the Add Column tab, select Conditional Column. The Add Conditional Column dialog box opens. Follow these steps to set the dialog as shown in Figure 2-13:
 a. Enter Date in the New Column Name box.
 b. Select Country from the Column Name drop-down.
 c. Select Equals as the operator and enter US in the box under Value.
d. In the drop-down menu below Output, select Select a Column and then select US Date.

e. In the drop-down menu below the Otherwise label, select Select a Column and then select UK Date.

f. Ensure that your settings match the screenshot in Figure 2-13 and click OK to close the Add Conditional Column dialog box.

![FIGURE 2.13](image) You can add a conditional column to select the correct date by country.

9. Change the type of the Date column to Date.

10. Remove the columns Release Date.1, Release Date.2, Release Date.3, US Date, and UK Date.

11. Load the query to your Excel workbook or Power BI report. The dates are displayed according to your Windows Locale settings, and you do not have any errors.

You can download the solution files C02E06 - Solution.xlsx and C02E06 - Solution.pbix from https://aka.ms/DataPwrBIPivot/downloads.

Extracting Date and Time Elements

Now you have Date or DateTime columns in your queries, and the format is consistent. How can you extract meaningful elements from such values? The Power Query Editor includes a wide variety of functions, as well as transformations in the Transform and Add Column tabs, to enable you to extract years, quarters, months, days, and many other calculated elements in order to enrich your dataset with time intelligence.

Here are some of the useful transformation steps, which are available on the Transform and Add Column tabs, under the Date drop-down menus when you select a Date or Date/Time column:

- **Age**: You assign this transformation on a selected Date or Date/Time column to calculate the elapsed time since the specific date. This is implemented by subtracting the current Date/Time from the specific value.
- **Date Only**: Extracts the date portion from the selected Date/Time column. Combined with the transformation Time Only, you can transform a Date/Time column into two separate columns, of types Date and Time, which simplifies your model and reduces the size of your report and memory consumption.

- **Year**: Extracts the year portion from a Date or Date/Time column.

- **Start of Year/End of Year**: Extracts the first or last day of the year as a Date value.

- **Month**: Extracts the month portion from a Date or Date/Time column.

- **Start of Month/End of Month**: Extracts the first or last day of the month as a Date value.

- **Days in Month**: Calculates the number of days in the current month of the selected Date column.

- **Name of Month**: Returns the name of the month.

- **Quarter of Year**: Returns the quarter of the current year.

- **Start of Quarter/End of Quarter**: Extracts the first or last day of the quarter as a Date value.

- **Week of Year/Week of Month**: Calculates the number of the week in the year or month.

- **Start of Week/End of Week**: Extracts the first or last day of the week as a Date value.

- **Day**: Extracts the day portion from a Date or Date/Time column.

- **Start of Day/End of Day**: Extracts the first or last date and time of the day from a Date/Time column.

- **Day of Week/Day of Year**: Calculates the number of the current day in the week or year.

- **Name of Day**: Returns the name of the day (for example, Sunday, Monday).

When you select multiple Date or Date/Time columns, you can also apply Subtract Days to calculate the elapsed time between the two dates or compute the earliest or latest dates.

Preparing the Model

Data preparation is key to the success of data analysis. To set the stage for effective analysis, you often need to split tables into multiple tables to ensure that you have a single flat table for facts or transactions (for example, Sales Order) and supplementary tables to support your facts (for example, Products, Clients).

In Exercise 2-2, Part 3, you learned how to create relationships between fact tables and lookup tables. While the modeling elements in Power Pivot and Power BI are not the focus of this book, the capability to shape your tables to meet your needs is indeed the focus. In the next three chapters, you will learn how to combine multiple tables to simplify your model. In Chapter 6, "Unpivoting Tables," you will learn how to break down complex table structures to better support your analysis.
In this section, you will learn the imperative preparation steps that allow you to split an aggregated table into multiple tables, to build star schemas, and to control the granularity of your entities.

Exercise 2-7: Splitting Data into Lookup Tables and Fact Tables

In this exercise, you will import sample data from another fictitious company: Wide World Importers. This dataset, which is richer and newer than the AdventureWorks dataset, is also provided by Microsoft for learning purposes. To learn more about this data sample, go to https://blogs.technet.microsoft.com/dataplatforminsider/2016/06/09/wideworldimporters-the-new-sql-server-sample-database/.

The workbook C02E07.xlsx which can be downloaded from https://aka.ms/DataPwrBIpivot/downloads, summarizes Wide World Importers orders. The goal of this exercise is to show you how easy it is to use Power Query to split a table into a fact table and a lookup table by using the Reference and Remove Duplicate options.

1. Download the workbook C02E07.xlsx and save it in the folder C:\Data\C02\.
2. Open a new blank Excel workbook or a new Power BI Desktop report and import the workbook C02E07.xlsx to the Power Query Editor.
3. In the Navigator dialog, select the Sales_Order table and then select Edit.
4. Rename the Sales_Order query Sales Order - Base.

Your goal here is to split the original table into two tables, with the correct granularity levels, as shown in Figure 2-14. One of the tables (the bottom left table in Figure 2-14) is for the orders and their stock item identifiers (the fact table), and the second (the bottom right table in Figure 2-14) is for the stock items (the lookup table).

![Figure 2-14: You can split the Sales Order table into a fact table and a lookup table.](image-url)
5. Right-click Sales Order - Base and select Reference. Rename the new query Stock Items. (To rename the query, right-click the query in the Queries pane and select Rename in the shortcut menu, or rename the query in the Query Settings pane, under Properties, in the Name box.)

6. Select the Stock Items query, and in Home tab, select Choose Columns.

7. In the Choose Columns dialog box that opens, deselect all columns and then select the columns Stock ID, Stock Item, and Stock Lead Time. Click OK to close the dialog box.

8. Select the Stock ID column, and on Home tab, select Remove Rows and then Remove Duplicates. You now have a lookup table for the stock items, with unique stock items on each row.

Note If you have multiple Stock ID values in the stock items table, you will not be able to create the relationship in step 13. This exercise deliberately avoids two crucial steps that are explained at the end of this exercise. Without these steps, Remove Duplicates by itself will not be sufficient to ensure that your lookup table has unique Stock ID values, and, as a result, the refresh will fail.

9. To create a new fact table for the orders, in the Queries pane, right-click on the Sales Order - Base query and select Reference.

10. Rename the new query Sales Orders. (To rename the query, right-click the query in the Queries pane and select Rename in the shortcut menu, or rename it in the Query Settings pane, under Properties, in the Name box.)

11. Select the Sales Orders query, and on the Home tab, select Choose Columns. The Choose Columns dialog box opens. Deselect the columns Stock Item and Stock Lead Time. Click OK to close the dialog box.

12. In Excel: On the Home tab, select Close & Load To to avoid loading the base query into your worksheet or Data Model. Then, in the Queries and Connections pane, select Sales Orders and Stock Items and load them into the Data Model, using the Load To option, as you did in Exercise 2-2, Part 2 step 11.

In Power BI Desktop: Disable the loading of Sales Order - Base, as you did in Exercise 2-2, Part 2 step 11.

13. Create a relationship between the two tables through the Stock ID columns.

When a Relationship Fails
When you create lookup tables in Power Query, as you did in Exercise 2-7, and you use text columns as keys in the relationship, two additional steps must be performed before you remove the duplicate keys in step 8 to ensure that your report does not fail to refresh.

In Exercise 2-7, in step 8 you removed the duplicate Stock ID values from the lookup table. Unfortunately, Power Query was designed differently than the Data Model in Excel and Power BI. While Power
Query is always case sensitive, the Data Model is not. As a result, if your Stock ID value, “Stock_1”, will include a lowercase or uppercase variant (e.g. “STOCK_1”) or will include a trailing space (e.g. “Stock_1 ”), Power Query will keep the two instances as unique values, but the Data Model will consider them duplicates and will issue the following error:

Column 'Stock ID' in Table 'Stock Items' contains a duplicate value 'Stock_1' and this is not allowed for columns on the one side of a many-to-one relationship or for columns that are used as the primary key of a table.

To experience this error, open the workbook C02E07.xlsx, and modify two of the Stock ID values. Change one of the values to uppercase, and add a space character at the end of another value. Then save the workbook and try to refresh your Exercise 2-7 solution workbook or Power BI report.

To fix this issue, apply the following steps on the Sales Orders - Base query:

1. Launch the Power Query Editor and select the Sales Orders - Base query.
2. Select the Stock ID column, and in the Transform tab, select Format and then select Lowercase or Uppercase or Capitalize Each Word. Any of these three options will ensure that the keys are normalized, so variations of lowercase/uppercase values will be removed as duplicate values by Power Query.
3. Select the Stock ID column, and on the Transform tab, select Format and then Trim.
4. Refresh the workbook or report, and the error does not occur again.

Referencing and removing duplicates to create lookup tables are common steps. Many users who apply the Remove Duplicates step are not aware of the potential refresh failures that could occur for a dataset that contains lowercase/uppercase variations or trailing spaces. Oftentimes, the errors even appear sooner, as the users try to build the relationship. Handling the case-sensitive values and trimming the spaces before the removal of duplicates will resolve these issues.

Download the solution files C02E07 - Solution.xlsx and C02E07 - Solution.pbix from https://aka.ms/DataPwrBIPivot/downloads.

See Also The pitfall of failing to apply these steps to prevent relationship refresh failures, is described at my blog at https://datachant.com/2017/02/14/power-bi-pitfall-10/. In Chapter 10, you will learn about more common pitfalls, or common errors that expose your reports to serious failures.

Exercise 2-8: Splitting Delimiter-Separated Values into Rows

In the preceding section, you learned how to split tables into fact and lookup tables. In this exercise, you will learn about a special case of fact and lookup tables. Imagine that your fact table acts as a mapping table that associates between members’ entities and their group unique identifiers. The lookup table in this scenario describes the group entities.
In this exercise, you will again use the AdventureWorks product table. Each product can be shipped in one or more colors. The associated colors are represented in comma-separated values, as illustrated in Figure 2-15, in the table to the left. In this exercise, you will learn how to split the products table into two tables: one for the entities (in this case, the products entities, without the colors) and the other one for the associations between groups and their members (in this case, product codes and colors).

![Source table: product colors are comma-separated](image)

FIGURE 2-15 You can split the comma-separated AdventureWorks product colors column to find how many products are released by color.

For this exercise, you will use the sample workbook C02E08.xlsx, which can be downloaded from https://aka.ms/DataPwrBIPivot/downloads. The sample workbook summarizes AdventureWorks product codes by average cost, average price, and comma-separated colors. To create a report that shows the number of products of each color, as shown in Figure 2-15, do the following.

1. Download the workbook C02E08.xlsx and save it in the folder C:\Data\C02\.
2. Open a new blank Excel workbook or a new Power BI Desktop report and import the workbook C02E08.xlsx from C:\Data\C02\ to the Power Query Editor.
3. In the Navigator dialog, select Products and then select Edit.
4. In the Queries pane, right-click Products and select Reference. Your goal is to create a new table with a mapping between the product codes and the colors.
5. Rename the new query *Products and Colors*. (To rename the query, you can right-click the query in the Queries pane and select Rename in the shortcut menu, or you can rename the query in the Query Settings pane, under Properties, in the Name box.)
6. With the new query selected, on the Home tab, select Choose Columns.
7. In the Choose Columns dialog box that opens, select ProductCodeNew and Colors and click OK to close the dialog box.
8. Select the Colors column, and on the Transform tab, select Split Column and then select By Delimiter.
9. In the Split Column by Delimiter dialog box that opens, note that the comma delimiter is selected by default, along with the option Each Occurrence of the Delimiter (see Figure 2-16). Expand the Advanced Options section and switch the Split Into option from Columns to Rows. Click OK to close the dialog box.

![Figure 2-16](image.png)

Figure 2-16 In the Split Column by Delimiter dialog box, don’t forget to select Split Into, and then select Rows under Advanced Options.

10. In the Colors and Products query, select the Colors column. On the Transform tab, select Format and then select Trim. This step removes the leading spaces from the color values.

You can now load the two tables into the Data Model in Excel or Power BI Desktop and create a relationship between ProductCodeNew in Products and ProductCodeNew in Products and Colors. You can download and review the solution files C02E08 - Solution.xlsx and C02E08 - Solution.pbix from https://aka.ms/DataPwrBI Pivot/downloads.

Tip To minimize the size of your report, you should remove the Colors column from the final Products table. However, if you try to do it now, you will get errors, as the Products query is referenced by Products and Colors. To resolve this issue and make it possible to remove Colors from Products, you need to create a new reference from Products and remove the Colors column from the referencing query. Then ensure that the original Products query is used only as a base query and will not get loaded to the Data Model or report. (In Exercise 2-2, Part 2, you learned how to disable the loading.)
Summary

Data preparation can be extremely time-consuming. But with the rich transformation capabilities available in the Power Query Editor, you can clean and prepare any dataset for analysis. This chapter introduced you to common data challenges and the ways Power Query provides to address them.

In Exercise 2-2 you learned how Power Query can extract codes and how to associate meaning with these codes, without the complex and difficult-to-maintain formulas presented in Exercise 2-1.

In Exercise 2-3, you were introduced to a very useful capability to extract meaning from columns, using examples. You saw that Column from Examples enables you to extract text, date, time, and numbers and offers a variety of transformations, based on the output examples you provide. You saw how this feature can be used to extract text between delimiters, apply a conditional column, and create buckets from ranges of numbers.

In Exercise 2-4, you learned how to parse hyperlinks from textual feed and apply different transformation techniques to achieve your goals. One of the most important lessons from this exercise is that you should audit your queries as often as possible and look for edge cases.

A common and highly time-consuming challenge involves handling inconsistent dates in your datasets. In Exercises 2-5 and 2-6, you learned how simple it is address inconsistent dates in Power Query.

Finally, in Exercises 2-7 and 2-8, you learned how to split a table into a fact table and a lookup table by using the Reference and Remove Duplicates options. You also learned how to avoid refresh errors by using Lowercase and Trim transformations, as well as how to split comma-separated values into rows to build group/members tables.

Even though you are still close to the beginning of this book, based on the exercises you have completed so far, you can probably reduce your data cleansing efforts by thousands of hours. In the next chapter, you will learn how to combine multiple tables and further reduce your time to insight.
Index

Numerals and Symbols
2x2 levels of hierarchy, unpivoting tables with complex tables, 149–151
 dates, 146–149
3x3 levels of hierarchy, unpivoting tables with, 156
 AdventureWorks example, 157–160
 Column fields, 156–157
 Row fields, 156–157
 virtual PivotTables, 156–157
2018 Revenues query (Wide World Importers project), 380
 , (comma), 70
& (concatenate) operator, 227, 231
{} (curly brackets), 70, 226
= (equal) operator, 224, 227
=> (goes-to symbol), 171
<> (not-equal) operator, 224, 227
[] (square brackets), 230
.. (two dots) operator, 227

A
Access Web Content dialog box, 196, 200
Add Column tab (Power Query Editor), 11, 16
Add Conditional Column dialog box, 36–40, 44, 52, 98, 124–125, 206, 279–280, 285
Advanced Editor (Power Query Editor), 12–13, 206, 208
AdventureWorks product catalog challenge, 23–24
 context. See context preservation
database, deploying, 22
dataset, exploring, 14–18
date/time values
dates with two locales, 50–53
 extracting, 53–54
 multiple date formats, 48–50
 transformations, 48
delimiter-separated values, splitting, 57–59
diagram of, 23
encoded columns, extracting values from with Excel formulas, 23–24
 with Power Query Editor, 23–24
 product size
 converting to buckets/ranges, 37–40
 extracting from product code, 34–35
 queries
 Append1, 113
 Appended Products, 104
 ColumnFields, 162–163
dependencies and references, 65–68
 Numeric-Size Products, 39
 Products, 52, 63, 65, 69, 76
 Products and Colors, 57–59
 Products Sample, 89–90, 102–106, 120–121
 Results, 172
 Revenues - Fixed First Attribute, 177–179
 Revenues - Fixed Number of Attributes, 176–177
 RowFields, 162–163
 Sales Order - Base, 55–56
 Sales Orders, 56
 Stock Items, 56
tables. See tables
 Age transformation, 53
 All Words query, 294
 All Words - Trim Punctuations query, 297
 Allington, Matt, 209
 Analysis Services, 5
 Analyzing Data with Power BI and Power Pivot for Excel (Ferrari and Russo), 137
 anchor columns, 139
 API key parameter
 Sentiment Analysis API, 335
 Translator Text API, 321–322
 Append Queries as New transformation, 64–65
 Append Queries transformation, 62–64
 Append1 query, 113
 Appended Products query, 104
 appending
 pivoted data, 377–378
 tables
 Append Queries as New transformation, 64–65
 Append Queries transformation, 62–64
 from folders, 71–74
 three or more tables, 68–70
 two tables, 62–68
 from workbooks, 74–81
worksheets

385
appending

AdventureWorks example, 74–79
robust approach to, 79–81
Applied Steps pane, 12, 16
Archimedes, 135
arithmetic operators, 221
attributes
fixed number of, 176–177
unfixed number of, 177–179
Azure Analysis Services, 5
Azure Cognitive Services, 311–313
multi-language support, 347
dynamic language detection, 348–349
FnDetectLanguage function, 348–349
language code, replacing, 347
pros and cons of, 316–318
Sentiment Analysis API, 329–330
API call syntax, 330
API key parameter, 335
converting to key phrases, 344–347
data loading, 332–333
data preparation, 330–331, 333–334
error prevention, 341
FnGetSentiment function, 332, 337–341
JSON content creation, 334–335
large datasets, 342–344
response handling, 337
web request creation, 335–336
Text Analytics API, 315–316, 344–347
Translator Text API
API key parameter, 321–322
deploying, 314–315
JSON content creation, 320
multiple message translation, 324–327
report sharing without API key, 324, 327–328
Translate call, 319–320
web request creation, 322–324
Azure connector, 8

B
Bell, Alexander Graham, 21
Berners-Lee, Tim, 247
BICOUNTANT blog, 209
black products, filtering, 257–258
BreakSentence API call, 319–320
buckets, converting size values into, 37–40

C
cartesian products, 282–283
implementing, 284–286
initial preparation, 283–284
performance improvement, 288–290
relationships, 286–287
case sensitivity, 17, 219
catalog. See product catalog
cell proximity, as context catalog
Changed Type steps
common pitfalls, 79
deleting, 163–164, 250
Changelog page, 354
Choose Columns dialog box, 334
cleaning datasets. See data preparation
co-authored reports, 181–182
local file access, 182–183
parameter values in Excel
data combination, rebuilding, 191–193
tables or named ranges as, 187–191
parameters as path names, 183–185
shared files
differences between, 198
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
removing queries from, 202
security considerations, 201–202
shared files/folders, 194–195
templates, creating, 185–187
collaboration challenges, 181–182
co-authored reports
local file access, 182–183
parameter values in Excel, 187–193
parameters as path names, 183–185
templates, 185–187
shared files, 194–195
differences between, 198
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
security considerations, 201–202
Column fields, 156–157, 162–163
Column from Examples
explained, 34–35
practical uses of, 37
size values
converting to buckets/ranges, 37–40
extracting from product code, 34–35
ColumnFields query, 162–163
columns
adding, 16
anchor, 139
Column fields, 156–157, 162–163
Column from Examples
explained, 34–35
practical uses of, 37
product size, converting to buckets/ranges, 34–35
product size, extracting from product code, 34–35
conditional, 38, 44, 52, 98, 124–125, 279–280, 285
as context cues, 127–130
encoded columns, extracting values from, 22
with Excel formulas, 23–24
with Power Query Editor, 23–24
expanding, 275
Facebook analytics
Comment, 365
Comment ID, 365
Comments Count, 370
created_time, 355–357
Facebook Page, 355–357
ID, 355–357
IsMutual, 359–360
object_link, 359, 365
Picture, 356–357
Time, 355–357
merging, 274–275
mismatched. See mismatched tables, combining
names, transposing, 100–106
negative numbers in, 16–17
Pivot transformation, 173
incorrectly unpivoted tables, reversing, 173–175
multiline records, 175–179
removing, 17, 265–267
renaming, 16, 79, 267–268
FnRenameColumnsByIndices function, 269–270
Table.TransformColumnNames function, 270–271
reordering, 261
FnReorderSubsetOfColumns function, 264
subsets of columns, 262–264
Source.Name, 73
splitting, 24–27, 271–274
static column names, detecting, 252–253
text columns, extracting data from, 40–48
type detection, 256
Unpivot transformations. See also
FnUnpivotSummarizedTable function
3x3 levels of hierarchy, 156–160
reversing, 173–175
Unpivot Columns, 139–142
Unpivot Only Selected Columns, 142–143
Unpivot Other Columns, 139–142
unpivoted, 139
Wide World Importers project, 377–378, 379
Combine Files dialog box, 72–73, 88, 92, 96
combining mismatched tables. See mismatched tables, combining
comma (,), 70
Comment column (Facebook analytics), 365
Comment ID column (Facebook analytics), 365
comments (Facebook)
extracting
basic method, 363–367
count of comments and shares, 367–370
hyperlinks, 40–48
filtered by time, 367
Comments Count column (Facebook analytics), 370
Comments query (Facebook analytics), 363–365
Common Data Service for Apps, 2, 5
complex tables, unpivoting, 149–151
custom column technique, 112–113
from file and worksheet names, 113–114
titles
Drill Down transformation, 115–119
from folders, 119–121
pre-append preservation, 121–126
post-append preservation, 113–119
from worksheets, 122–126
Conversion Table query, 302
conversion tables
column name-only transposition, 99–101
creating, 93–95

387
conversion tables

loading, 95–96
M query language, 106–109
merge sequence, 97–99
transpose techniques, 96–99
unpivoting, merging, and pivoting back, 99–101
Copy Path to Clipboard option, 195–196
counting Facebook comments/shares, 367–370
Create Function dialog box, 326
cues, context, 126–127
cell proximity, 130–134
index columns as, 127–130
curly bracket ({ }), 70, 226
custom connectors, 209
custom functions
creating, 237–238
detecting keywords with, 290–292
Custom XML Data, 202

D
Data Catalog connector, 8
data combination, rebuilding, 191–193
"Data Explorer" codename, 3
Data Load options, 14
data preparation, 21–22. See also context preservation
Column from Examples explained, 34–35
practical uses of, 37
product size, converting to buckets/ranges, 34–35
product size, extracting from product code, 34–35
date/time values
dates with two locales, 50–53
extracting, 53–54
multiple date formats, 48–50
transformations, 48
delimiter-separated values, splitting, 24–27
dependencies, query, 65–68
deployment
Text Analytics API, 315–316
Translator Text API, 314–315
Document Inspector, 202
documentation, function, 209–211
downloading Power Query add-in, 7
Drill Down transformation, context preservation with, 115–119
drill down results, combining in query, 117–119
M query language, 116
duplicates, removing, 56, 275
#duration expression, 223
duration type, 223
Duration.X functions, 223
dynamic language detection, 348–349

E
each expression, 239–240
eager evaluations, 242
Edit Relationship dialog box, 345
editing queries, 18
Einstein, Albert, 61
encoded columns, extracting values from, 22
with Excel formulas, 23–24
with Power Query Editor, 23–24
Sentiment Analysis API, 330–331, 333–334
tables
merging, 23–24
relationship refresh failures, 56–57
relationships, creating, 32–34
splitting, 55–56
text columns, extracting data from, 40–48
Wide World Importers project, 378
Data Source Settings dialog box, 9
Databases connector, 8
DataChant blog, 209
dataset cleaning. See data preparation
#date expression, 222
Date Only transformation, 54
date type, 222
Date.AddDays function, 222
date/time values
dates with two locales, 50–53
extracting, 53–54
multiple date formats, 48–50
transformations, 48
unpivoting 2x2 levels of hierarchy with, 146–149
Date.X functions, 222
Day of Week transformation, 54
Day of Year transformation, 54
Day transformation, 54
Days in Month transformation, 54
declaring
functions, 219
types, 218–219
delimiter-separated values, splitting, 24–27
dependencies, query, 65–68
Deployment
Text Analytics API, 315–316
Translator Text API, 314–315
Document Inspector, 202
documentation, function, 209–211
downloading Power Query add-in, 7
Drill Down transformation, context preservation with, 115–119
drill down results, combining in query, 117–119
M query language, 116
duplicates, removing, 56, 275
#duration expression, 223
duration type, 223
Duration.X functions, 223
dynamic language detection, 348–349

E
each expression, 239–240
eager evaluations, 242
Edit Relationship dialog box, 345
editing queries, 18
Einstein, Albert, 61
encoded columns, extracting values from, 22
with Excel formulas, 23–24
with Power Query Editor, 23–24
Sentiment Analysis API, 330–331, 333–334
tables
merging, 23–24
relationship refresh failures, 56–57
relationships, creating, 32–34
splitting, 55–56
text columns, extracting data from, 40–48
Wide World Importers project, 378
Data Source Settings dialog box, 9
Databases connector, 8
DataChant blog, 209
FnReorderSubsetOfColumns function

Facebook Graph API. See Facebook analytics
Facebook Page column, 355–357
Facebook Pages I Like query, 352–357
Facebook.Graph function, 354–355
fact tables, 137
relationships
creating, 32–34
relationship refresh failures, 56–57
splitting data into, 55–56
Feldmann, Imke, 209
Ferrari, Alberto, 137
Fibonacci sequence, 243–245
File tab (Power Query Editor), 10
files
context preservation, 113–114
local file access
parameters as path names, 183–185
refresh errors, 182–183
shared, 194–195
differences between, 198
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
removing queries from, 202
security considerations, 199–201
Translator Text API reports, 324, 327–328
templates, creating, 185–187
filter pane values, searching, 260–261
Filter Rows dialog box, 17, 127, 200
filtering
black products, 257–258
case-insensitive, 17
common pitfalls with, 80, 256
filter pane values, searching, 260–261
filtering condition logic, 258–260
sample scenario, 257–258
condition logic, 258–260
Facebook posts and comments by time, 367
Facebook posts and comments by time, 367
stop words, 298–300
first-degree friends (Facebook), extracting, 357–360
Fitzgerald, F. Scott, 375
FnCleanSummarizedTable function, 378
FnDetectKeywords function, 290
FnDetectLanguages function, 348–349
FnGetKeyPhrases function, 344–347
FnGetSentiment function, 332
creating, 337–339
invoking, 339–341
FnLoadPostsByPage function, 371
FnNormalizeColumnNames function, 106
FnRenameColumnsByIndices function, 269–270
FnReorderSubsetOfColumns function, 264

F
Facebook Access dialog box, 353
Facebook analytics. See also Microsoft Press posts, analyzing; text analytics
Facebook connector overview, 352
friends and friends-of-friends, extracting, 357–360
hyperlinks, extracting from posts, 40–48
multiple pages, comparing, 370–373
pages you liked, finding, 352–357
pages your friends liked, finding, 360–362
posts and comments, extracting
basic method, 363–367
count of comments and shares, 367–370
filtered by time, 367
Facebook dialog box, 353
Facebook connector, 352
friends and friends-of-friends, extracting, 357–360
multiple pages, comparing, 370–373
pages you liked, finding, 352–357
pages your friends liked, finding, 352–357, 360–362
posts and comments, extracting
basic method, 363–367
count of comments and shares, 367–370
filtered by time, 367

errors
changed types, 79
Formula.Firewall, 190–193
M query language, 240–242
sentiment analysis, 341
ETL (Extract Transform Load) tools, Power Query as, 5
Example File drop-down menu, 88
Excel.CurrentWorkbook function, 191–192
Excelguru blog, 209
Excel.Workbook function, 183, 184, 190, 197
Export a Template dialog box, 185–187, 328
expressions
#date, 222
#duration, 223
each, 239–240
if, 234–235
if-then-else, 235
in let expressions, 235–237
lazy versus eager evaluations, 242
let, 213–215, 235–237
merging, 215–218
#table, 233
#time, 221
try/otherwise, 241–242
Web.Contents, 322–323
ETL (Extract Transform Load) tools, Power Query as, 5
Example File drop-down menu, 88
Excel.CurrentWorkbook function, 191–192
Excelguru blog, 209
Excel.Workbook function, 183, 184, 190, 197
Export a Template dialog box, 185–187, 328
expressions
#date, 222
#duration, 223
each, 239–240
if, 234–235
if-then-else, 235
in let expressions, 235–237
lazy versus eager evaluations, 242
let, 213–215, 235–237
merging, 215–218
#table, 233
#time, 221
try/otherwise, 241–242
Web.Contents, 322–323
Facebook Graph API. See Facebook analytics
Facebook Page column, 355–357
Facebook Pages I Like query, 352–357
Facebook.Graph function, 354–355
fact tables, 137
relationships
creating, 32–34
relationship refresh failures, 56–57
splitting data into, 55–56
Feldmann, Imke, 209
Ferrari, Alberto, 137
Fibonacci sequence, 243–245
File tab (Power Query Editor), 10
files
context preservation, 113–114
local file access
parameters as path names, 183–185
refresh errors, 182–183
shared, 194–195
differences between, 198
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
removing queries from, 202
security considerations, 199–201
Translator Text API reports, 324, 327–328
templates, creating, 185–187
filter pane values, searching, 260–261
Filter Rows dialog box, 17, 127, 200
filtering
black products, 257–258
case-insensitive, 17
common pitfalls with, 80, 256
filter pane values, searching, 260–261
filtering condition logic, 258–260
sample scenario, 257–258
condition logic, 258–260
Facebook posts and comments by time, 367
stop words, 298–300
first-degree friends (Facebook), extracting, 357–360
Fitzgerald, F. Scott, 375
FnCleanSummarizedTable function, 378
FnDetectKeywords function, 290
FnDetectLanguages function, 348–349
FnGetKeyPhrases function, 344–347
FnGetSentiment function, 332
creating, 337–339
invoking, 339–341
FnLoadPostsByPage function, 371
FnNormalizeColumnNames function, 106
FnRenameColumnsByIndices function, 269–270
FnReorderSubsetOfColumns function, 264

F
FnUnpivotSummarizedTable function

FnUnpivotSummarizedTable function
applying to Wide World Importers table, 379–380 creating
Changed Type steps, deleting, 163–164
ColumnFields, 162–163
List.Count, 164–167
List.FirstN, 164–167
List.Zip, 168–169
queries, converting into function, 169–171
Renamed Columns step, 168–169
RowFields, 162–163
Table.ColumnNames, 164–167
ValueField, 162–163
invoking, 160–162
testing, 172
folders
appending tables from, 71–74
combining mismatched tables from, 86–89
header generalization, 89–90
same-order assumption, 89–90
simple normalization, 90–93
importing from, 74
preserving titles from, 119–121
shared, 194–195
differences between, 198
importing data from, 195–197
modifying queries for, 197–198
removing queries from, 202
security considerations, 199–201
Translator Text API reports, 324, 327–328
formula bar (Power Query Editor), 12–13, 16
ignoring, 251–252
M query language in, 206–207
Formula.Firewall error, 190–193
formulas
LEFT, 23
Parameters[{0}189
RIGHT, 24
Source[{0}116–117, 189
static column names, detecting, 252–253
SUBSTITUTE, 24
VLOOKUP, 24
friends (Facebook)
extracting, 357–360
pages your friends liked, finding, 360–362
Friends and Pages query (Facebook analytics), 361–362
functions
built-in, 219–220
converting queries into, 169–171
custom
creating, 237–238
detecting keywords with, 290–292
Date.X, 222
declarations, 219
documentation for, 209–211
Duration.X, 223
Excel.CurrentWorkbook, 191–192
Excel.Workbook, 183, 184, 190, 197
Facebook.Graph, 354–355
FnCleanSummarizedTable, 378
FnDetectKeywords, 290
FnDetectLanguages, 348–349
FnGetKeyPhrases, 344–347
FnGetSentiment, 332
creating, 337–339
invoking, 339–341
FnLoadPostsByPage, 371
FnNormalizeColumnNames, 106
FnRenameColumnsByIndices, 269–270
FnReorderSubsetOfColumns, 264
FnUnpivotSummarizedTable, invoking, 379–380
FnUnpivotSummarizedTable creation
Changed Type steps, deleting, 163–164
ColumnFields, 162–163
List.Count, 164–167
List.FirstN, 164–167
List.Zip, 168–169
queries, converting into function, 169–171
Renamed Columns step, 168–169
RowFields, 162–163
Table.ColumnNames, 164–167
testing, 172
ValueField, 162–163
invoking, 239
List.Accumulate, 208, 229, 244–246, 303–307
List.Average, 227
List.Contains, 229
List.Count, 164–167
List.Dates, 229
List.Difference, 229, 263
List.First, 228
List.FirstN, 164–167
List.Generate, 208, 229, 244
List.Intersect, 229
List.Last, 126
List.LastN, 228
List.Min, 229
List.MinN, 229
List.Numbers, 227, 229
hyperlinks, extracting from Facebook posts

List.Count, 131–132, 146
List.Range, 267
List.Select, 228
List SORT, 229
List.Standard Deviation, 229
List.Transform, 229
List.Union, 229
List.Zip, 168–169
MissingField.Ignore, 266
MissingField.UseNull, 266
Number.Abs, 219
Number.From, 221
Number.IsEven, 221
Number.PI, 221
Number.Power, 221
Number.Sin, 221
Record.AddField, 232
Record.Combine, 232
Record.FieldCount, 232
Record.HasFields, 232
Replacer.ReplaceText, 91
Splitter.SplitTextByAnyDelimiter, 42, 47, 295
Splitter.SplitTextByDelimiter, 295
SUM, 145
Table.AddColumn, 44, 326
Table.Buffer, 288–293
Table.ColumnCount, 233
Table.ColumnNames, 80, 123, 164–167, 234, 263
Table.Combine, 69–70
Table.CombineColumns, 166
Table.Distinct, 338
Table.FillDown, 164–166
Table.FirstN, 146
Table.FirstValue, 233
Table.FromColumns, 234
Table.FromList, 234
Table.FromRecords, 234
Table.FromRows, 234
Table.IsEmpty, 233
Table.Pro, 143
Table.RemoveColumns, 90, 122, 265–267
Table.RemoveLastN, 146
Table.RenameColumns, 79, 80, 126, 168–169, 268–269
Table.ReorderColumns, 262–264
Table.Repeat, 290
Table.ReplaceValue, 303
Table.ReplaceValues, 303
Table.RowCount, 234
Table.SelectColumns, 266
Table.SelectRows, 259, 290, 338
Table.SplitColumn, 45, 47, 167, 273–274
Table.ToColumns, 234
Table.ToList, 234
Table.ToRecords, 234
Table.ToRows, 234
Table.TransformColumnNames, 90–93, 270–271
Table.TransformColumns, 46, 47
Table.TransformColumnType, 78
Table.TransformColumnTypes, 163–164, 169, 252–253,
274–275
Table.Unpivot, 142
Table.UnpivotOtherColumns, 140, 167
Text.BetweenDelimiters, 37
Text.Proper, 91
Text.Trim, 46, 297
Time.Hour, 222

G

generalizing Unpivot sequence

FnUnpivotSummarizedTable creation

Changed Type steps, deleting, 163–164
ColumnFields, 162–163
List.Count, 164–167
List.FirstN, 164–167
List.Zip, 168–169
queries, converting into function, 169–171
Renamed Columns step, 168–169
RowFields, 162–163
Table.ColumnNames, 164–167
testing, 172
ValueField, 162–163
FnUnpivotSummarizedTable invocation, 160–162
purpose of, 160

Get & Transform Data section, 7
Get Data dialog box, 95, 200
Facebook data. See Facebook analytics
opening, 7, 8–9, 15

Get Data interface, 8–9
Get External Data section, 7
GetSentiment query, 333
Go to Column dialog box, 26

goes-to symbol (=>), 171
grand totals

removing, 145–146
unpivoting, 143–146
Group By dialog box, 343

H

hackers, detecting and tracking, 384
Hacker’s Instructions query (Wide World Importers
project), 384
header generalization, 89–90
“Hello World” program, 212–213
Home tab (Power Query Editor), 10
hyperlinks, extracting from Facebook posts, 40–48
ID column (Facebook analytics)

ID column (Facebook analytics), 355–357
if expressions, 234–235
if-then-else, 235
in let expressions, 235–237
Ignore the Privacy Levels option, 190
Import Data dialog box, 15, 18, 31, 32
Import from Folder option, 74
importing. See also appending from folders, 74
tables, 15
index columns, as context cues, 127–130
infinity, positive/negative, 221
Insert Step dialog box, 45, 305
Integer-Divide, 176–177, 342
Invoke Custom Function dialog box, 326, 343, 345
invoking
FnGetSentiment function, 339–341
functions, 239
IsMutual column (Facebook analytics), 359–360

J
Jobs, Steve, 181
JSON content, creating
Sentiment Analysis API, 334–335
Translator Text API, 320

K
Kazantzakis, Nikos, 311
key phrases, extracting, 344–347
keyword searches
basic detection of keywords, 278–282
Cartesian products, 282–283
implementing, 284–286
initial preparation, 283–284
performance improvement, 288–290
relationships, 286–287
custom functions, 290–292
multi-word keywords, 302–308
selecting method for, 293
with split words, 300–301
Merge Queries, 301–302
multi-word keywords, 302–308
Keywords.txt dialog box, 284, 301

dynamic language detection, 348–349
FnDetectLanguages function, 348–349
language code, replacing, 347
lazy evaluations, 242
LEFT formula, 23
let expression, 213–215, 235–237
"liked" pages, finding
pages you liked, 352–357
pages your friends liked, 360–362
list type, 226–227
functions, 228–229
List.Accumulate, 208, 229, 244–246, 303–307
List.Average, 229
List.Combine, 229
List.Contains, 229
List.Count, 164–167, 227, 228
List.Dates, 229
List.Difference, 229, 263
List.First, 228
List.FirstN, 164–167, 228
List.Generate, 208, 229, 244
List.InsertRange, 263
List.Intersect, 229
ListIsEmpty, 228
List.Last, 126, 228
List.LastN, 228
List.Max, 229
List.MaxN, 229
List.Min, 229
List.MinN, 229
List.Numbers, 227, 229
List.PositionOf, 131–132, 146
List.Range, 267
List.Select, 228
List.Sort, 229
List.StandardDeviation, 229
List.Transform, 229
List.Union, 229
List.Zip, 168–169
operators, 227–228
List.Accumulate function, 208, 229, 244–246, 303–307
List.Average function, 229
List.Combine function, 229
List.Contains function, 229
List.Count function, 164–167, 227, 228
List.Dates function, 229
List.Difference function, 229, 263
List.First function, 228
List.FirstN function, 164–167, 228
List.Generate function, 208, 229, 244
List.InsertRange function, 263
List.Intersect function, 229
List.Merge function, 229
List.IsEmpty function, 228

L
languages
language code, replacing, 347
multi-language support, 347
Microsoft Azure Cognitive Services

List.Last function, 126, 228
List.LastN function, 228
List.Max function, 229
List.MaxN function, 229
List.Min function, 229
List.MinN function, 229
List.Numbers function, 227, 229
List.PositionOf function, 131–132, 146
List.Range function, 267
List.Select function, 228
List.Sort function, 229
List.StandardDeviation function, 229
List.Transform function, 229
List.Union function, 229
List.Zip function, 168–169
loading
 conversion tables, 95–96
 queries, 18
local file access
 parameters as path names, 183–185
 refresh errors, 182–183
locales, handling in dates, 50–53
logical operators, 221, 234
logical type, 225
lookup tables
 delimiter-separated values, splitting, 57–59
 relationships
 creating, 32–34
 relationship refresh failures, 56–57
 splitting data into, 55–56
loops, 242–243

M
M query language, 12–13, 205–206. See also functions
case sensitivity, 219
column name normalization, 106–109
custom functions, 237–238
Drill Down transformation, 116
error handling, 240–242
expressions
 #date, 222
 #duration, 223
each, 239–240
 if, 234–237
 lazy versus eager evaluations, 242
 let, 213–215
 merging, 215–218
 #table, 233
 #time, 221
 try/otherwise, 241–242
 Web.Contents, 322–323
"Hello World" program, 212–213
loops, 242–243
maturity stages, 206–209
modifications for robust queries, 250
offline resources, 209–211
online resources, 209
operators
 arithmetic, 221
 concatenate (&), 227, 231
 equal (=), 224, 227
 logical, 221, 234
 not, 234
 not-equal (<>), 224, 227
two dots (.), 227
recursion, 243
types
 Changed Type step, 250
definitions, 234–235
date, 222
declaring, 218–219
duration, 223
if expressions, 234–237
list, 226–229
logical, 225
null, 224–225
number, 220–221
record, 229–232
table, 232–234
text, 224
time, 221–222
uses of, 218–220
maturity stages in learning M, 206–209
Merge Columns dialog box, 52, 123, 124, 159
Merge dialog box, 28–32, 97, 382–383
Merge Queries, 301–302
merging
 columns
 common pitfalls with, 274–275
 Wide World Importers project, 381
 expressions, 215–218
 mismatched tables, 97–99
 queries, 301–302
 tables, 382–383
Microsoft Azure Analysis Services, 5
Microsoft Azure Cognitive Services, 311–313
multi-language support, 347
dynamic language detection, 348–349
FnDetectLanguages function, 348–349
language code, replacing, 347
pros and cons of, 316–318
Sentiment Analysis API, 329–330
API call syntax, 330
API key parameter, 335
Microsoft Azure Cognitive Services

converting to key phrases, 344–347
data loading, 332–333
data preparation, 330–331, 333–334
error prevention, 341
FnGetSentiment function, 332, 337–341
JSON content creation, 334–335
large datasets, 342–344
response handling, 337
web request creation, 335–336

Text Analytics API, 315–316, 344–347
Translator Text API
API key parameter, 321–322
deploying, 314–315
JSON content creation, 320
multiple message translation, 324–327
report sharing without API key, 324, 327–328
Translate call, 319–320
web request creation, 322–324

Microsoft Press posts, analyzing, 277. See also Facebook analytics
key phrases, extracting, 344–347
keyword searches
basic detection of keywords, 278–282
cartesian products, 282–290
custom functions, 290–292
selecting method for, 293
with split words, 300–308
multi-language support, 347
dynamic language detection, 348–349
FnDetectLanguages function, 348–349
language code, replacing, 347
queries
All Words, 294
All Words - Trim Punctuations, 297
Conversion Table, 302
Microsoft Press Posts, 279–281, 283–284, 294
No Stop Words, 298–299
Post Topics, 301
Post Topics - Fastest, 291
Post Topics with Function, 290
Punctuations, 294
sentiment analysis, 329–330
API call syntax, 330
API key parameter, 335
converting to key phrases, 344–347
data loading, 332–333
data preparation, 330–331, 333–334
error prevention, 341
FnGetSentiment function, 332, 337–341
JSON content creation, 334–335
large datasets, 342–344
response handling, 337
web request creation, 335–336

word clouds, creating, 308–310
word splits, 293
keyword searches with, 300–308
stop words, filtering, 298–300
words with punctuation, 294–298
words with spaces, 293–294
Microsoft Press Posts query, 279–281, 283–284, 294
Microsoft SQL Azure Labs, 3
Microsoft SQL Server Data Tools (SSDT), 2, 5
mismatched tables, combining
column name-only transposition, 99–101
creating, 93–95
loading, 95–96
M query language, 106–109
merge sequence, 97–99
transpose techniques, 96–99
unpivoting, merging, and pivoting back, 99–101
examples of, 84
from folders, 86–87
header generalization, 89–90
missing values symptom, 87–89
same-order assumption, 89–90
simple normalization, 90–93
mismatched table symptoms and risks, 84–85
problem of, 83–84
reactive approach, 85–86
Wide World Importers project, 381–383
missing columns, ignoring, 266
missing values problem, 378
header generalization, 89–90
same-order assumption, 89–90
simple normalization, 90–93
symptoms and risks, 87–89
MissingField.Ignore function, 266
MissingField.UseNull function, 266
Month transformation, 54
multi-language support, 347
dynamic language detection, 348–349
FnDetectLanguages function, 348–349
language code, replacing, 347
multiline records, pivoting, 175–176
fixed number of attributes, 176–177
Integer-Divide, 176–177
unfixed number of attributes, 177–179
multiple Facebook pages, comparing, 370–373
multiple levels of hierarchy, unpivoting tables with, 156
AdventureWorks example, 157–160
Column fields, 156–157
Row fields, 156–157
virtual PivotTables, 156–157
multiple message translation, 324–327
pitfalls

multiple tables, appending
from folders, 71–74
three or more tables, 68–70
two tables, 62
 Append Queries as New transformation, 64–65
 Append Queries transformation, 62–64
Bikes and Accessories example, 62–64
query dependencies and references, 65–68
from workbooks
 AdventureWorks example, 74–81
 robust approach to, 79–81
multi-word keywords, detecting, 302–308

N
Nadella, Satya, 1
Name of Day transformation, 54
Name of Month transformation, 54
names
 context preservation, 113–119
 removing columns based on, 267
 static column names, detecting, 252–253
 transposing, 100–106
NaN (not a number), 221
Navigator dialog box, 15
negative infinity, 221
negative numbers, correcting, 16–17
nesting let expressions, 214
New Query menu, 7
No Stop Words query, 298–299
Noland, Kenneth, 111
normalization. See also context preservation
conversion tables
 column name-only transposition, 100–106
 creating, 93–95
 loading, 95–96
M query language, 106–109
merge sequence, 97–99
transpose techniques, 96–99
unpivoting, merging, and pivoting back, 99–101
Table.with TransformColumnNames function, 90–93
not operator, 234
not-equal (<> operator, 224, 227
null type, 224–225
number type, 220–221
Number.Abs function, 219
Number.From function, 221
Number.IsEven function, 221
Number.PI function, 221
Number.Power function, 221
Number.Sin function, 221
Numeric-Size Products query, 39

O
object_link column (Facebook analytics), 359, 365
OneDrive for Business folders
 importing data from, 195–197
 modifying queries for, 197–198
 removing queries from, 202
 security considerations, 199–201
 SharePoint compared to, 198
operators
 arithmetic, 221
 concatenation, 227, 231
 equal, 224, 227
 logical, 221, 234
 not, 234
 not-equal, 224, 227
two dots (.), 227
Options dialog box, 13–14

P
pages (Facebook)
 hyperlinks, extracting from, 40–48
 multiple pages, comparing, 370–373
 pages you liked, finding, 352–357
 pages your friends liked, finding, 360–362
 posts and comments, extracting
 basic method, 363–367
 count of comments and shares, 367–370
 filtered by time, 367
Pages query (Facebook analytics), 370–371
parameter values
 data combination, rebuilding, 191–193
 as path names, 183–185
 tables or named ranges as, 187–191
Parameters dialog box, 183–184, 186, 321, 325, 335
Parameters(0) formula, 189
parent category, identifying, 126–127
cell proximity, 130–134
index columns as context clues, 127–130
path names, parameters as, 183–185
Path query, 190
Path2 query, 189
performance, Cartesian products, 288–290
Picasso, Pablo, 155
Picture column (Facebook analytics), 355–357
pitfalls
 awareness of, 250
 best practices, 250
 causes and effects, 248–249
 Changed Type step, 250
 expanded columns, 275
 filtering, 80, 256
pitfalls

filter pane values, searching, 260–261
filtering condition logic, 258–260
sample scenario, 257–258
formula bar, ignoring, 251–252
M modifications for, 250
merged columns, 274–275
removal of columns, 265–267
removal of duplicates, 56, 275
renamed columns, 79, 267–268
FnRenameColumnsByIndices function, 269–270
Table.TransformColumnNames function, 270–271
reordered columns, 261
FnReorderSubsetOfColumns function, 264
subsets of columns, 262–264
split columns, 271–274
table of, 276
Pivot transformation, 173
incorrectly unpivoted tables, reversing, 173–175
mismatched tables, combining, 99–101
multi-line records, 175–176
fixed number of attributes, 176–177
Integer-Divide, 176–177
unfixed number of attributes, 177–179
Wide World Importers project
pivot sequence on 2018 revenues, 380
transforming and appending data, 377–378
unpivoting, 379–380
position, removing columns based on, 266–267
positive infinity, 221
Possible Data Loss dialog box, 64
Post Topics - Fastest query, 291
Post Topics query, 301
Post Topics with Function query, 290
post-append preservation, 121–126
posts (Facebook)
extracting
basic method, 363–367
count of comments and shares, 367–370
hyperlinks, 40–48
filtered by time, 367
Posts - All Pages query (Facebook analytics), 371–373
Posts - Base query (Facebook analytics), 363–365, 367
Power BI Designer, 4
Power BI Desktop, history of, 62
Power Query
advantages of, 2
defined, 2
entry points for, 6–7
history of, 3–5
navigating, 14–18
supported connectors, 8–9
Power Query add-in, downloading, 7
Power Query Editor components, 9–10
Advanced Editor, 12–13
Applied Steps pane, 12
formula bar, 12–13, 16
Preview pane, 10
Queries pane, 12
Query Options dialog box, 13–14
Query Settings pane, 12
ribbon tabs, 10–11
Power Query Editor, launching, 5, 37
pragmatics, 136
pre-append preservation, 113–114
preserving context, 327
Preview pane (Power Query Editor), 10
Privacy Levels dialog box, 327, 336
privacy levels, ignoring, 190
product catalog. See AdventureWorks product catalog
product size
converting to buckets/ranges, 37–40
extracting from product code, 34–35
Products and Colors query, 57–59
Products query, 52, 63, 65, 69, 76
Products Sample query, 89–90, 102–106, 120–121
Puls, Ken, 209
punctuation
splitting words from, 294–296
trimming off, 296–298
Punctuations query, 294
Quarter of Year transformation, 54
queries. See also M query language
AdventureWorks product catalog
Append1, 113
Appended Products, 104
ColumnFields, 162–163
dependencies and references, 65–68
Numeric-Size Products, 39
Products, 52, 63, 65, 69, 76
Products and Colors, 57–59
Products Sample, 89–90, 102–106, 120–121
Results, 172
Revenues - Fixed First Attribute, 177–179
Revenues - Fixed Number of Attributes, 176–177
RowFields, 162–163
Sales Order - Base, 55–56
Sales Orders, 56
Stock Items, 56
common pitfalls
awareness of, 250
best practices, 250
causes and effects, 248–249
Changed Type step, 254–256
expanded columns, 275
filtering, 80, 256–261
formula bar, ignoring, 251–252
M modifications for, 251
merged columns, 274–275
removal of columns, 265–267
removal of duplicates, 56, 275
renamed columns, 79, 267–271
reordered columns, 261–264
split columns, 271–274
table of, 276
converting into functions, 169–171
dependencies, 65–68
editing, 18
Facebook analytics
 Comments query, 363–365
 Facebook Pages I Like, 352–357
 Friends and Pages, 361–362
 Pages, 370–371
 Posts - All Pages, 371–373
 Posts - Base, 363–365, 367
GetSentiment, 333
loading to reports, 18
merging, 301–302
merging expressions from, 215–218
Microsoft Press posts example
 All Words, 294
 All Words - Trim Punctuations, 297
 Conversion Table, 302
 Microsoft Press Posts, 279–281, 283–284, 294
 No Stop Words, 298–299
 Post Topics, 301
 Post Topics - Fastest, 291
 Post Topics with Function, 290
 Punctuations, 294
migrating to SharePoint sites, 199–201
modifying for OneDrive for Business and SharePoint, 197–198
Path, 190
Path2, 189
references, 65–68
removing, 202
renaming, 16
Scored Posts, 342
Sentiment Scores, 339–340
Translated Messages, 326
Wide World Importers project
 2018 Revenues, 380
 Compromised Rows, 383
 Hacker’s Instructions, 384
 Workbook, 192–193
Queries pane (Power Query Editor), 12
Query Dependencies dialog box, 65–66, 191–193, 198
Query Options dialog box, 13–14, 255, 317
Query Settings dialog box, 16
Query Settings pane (Power Query Editor), 12
R
Rad, Reza, 209
RADACAD blog, 209
ranges, converting size values into, 37–40
rebuilding data combination, 191–193
Recent Sources dialog box, 9
record type, 229–231
 functions, 232
 operators, 231–232
Record.AddField function, 232
Record.Combine function, 232
Record.FieldCount function, 232
Record.HasFields function, 232
recursion, 243
references, query, 65–68
refresh errors
 local file access, 182–183
 troubleshooting, 79–81
refreshes of reports, 18
relationships
 Cartesian products, 286–287
 refresh failures, 56–57
 between tables
 creating, 32–34
 relationship refresh failures, 56–57
Remove Bottom Rows dialog box, 120, 122
removing
 columns, 17, 265–267
 duplicates, 56, 275
 queries, 202
totals, 145–146
Renamed Columns step, 168–169
renaming
 columns, 16, 79, 267–268
 FnRenameColumnsByIdxIndices function, 269–270
 Table.TransformColumnNames function, 270–271
 queries, 16
reordering columns, 261
 FnReorderSubsetOfColumns function, 264
 subsets of columns, 262–264
Replace Errors dialog box, 38
Replace Values dialog box, 47, 303
Replace.ReplaceText function, 91
reports, 181–182
 loading queries to, 18
 local file access, 182–183
 parameter values in Excel
data combination, rebuilding, 191–193
tables or named ranges as, 187–191
parameters as path names, 183–185
refreshes of, 18
shared files, 194–195
differences between, 198
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
removing queries from, 202
security considerations, 201–202
sharing without API key, 324, 327–328
templates, creating, 185–187
response handling, Sentiment Analysis API, 337
Results query, 172
revenues, Wide World Importers
combining, 381
comparing, 381–383
pivot sequence on, 380
transforming and appending, 377–378
unpivoting, 379–380
Revenues - Fixed First Attribute query, 177–179
Revenues - Fixed Number of Attributes query, 176–177
reversing Unpivot transformation, 173–175
ribbon tabs (Power Query Editor), 10–11
RIGHT formula, 24
Row fields, 156–157, 162–163
RowFields query, 162–163
rows
Row fields, 156–157, 162–163
splitting delimiter-separated values into, 57–59
Russo, Marco, 137

S
Sales Order - Base query, 55–56
Sales Orders query, 56
same-order assumption, 89–90
saving workbooks as templates, 202
Schlegal, Friedrich, 83
Scored Posts query, 342
searches
filter pane values, 260–261
keyword
basic detection of keywords, 278–282
Cartesian products, 282–290
custom functions, 290–292
selecting method for, 293
with split words, 300–308
second-degree friends (Facebook), extracting, 357–360
security, shared files/folders, 199–201
semantics, 136
Sentiment Analysis API, 329–330
API call syntax, 330
API key parameter, 335
converting to key phrases, 344–347
data loading, 332–333
data preparation, 330–331, 333–334
error prevention, 341
FnGetSentiment function, 332
creating, 337–339
invoking, 339–341
JSON content creation, 334–335
large datasets, 342–344
response handling, 337
web request creation, 335–336
Sentiment Scores query, 339–340
shared files/folders, 194–195
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
removing queries from, 202
security considerations, 201–202
Translator Text API reports, 324, 327–328
#shared variable, 209–211
SharePoint sites
migrating local queries to, 199–201
OneDrive for Business compared to, 198
removing queries from, 202
security considerations, 199–201
shared files
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
removing queries from, 202
security considerations, 201–202
shared files/folders, 194–195
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
removing queries from, 202
security considerations, 201–202
Translator Text API reports, 324, 327–328
#shared variable, 209–211
social network analytics, 351–352. See also Microsoft Press posts, analyzing
Facebook connector overview, 352
friends and friends-of-friends, extracting, 357–360
multiple pages, comparing, 370–373
pages you liked, finding, 352–357
pages your friends liked, finding, 360–362
posts and comments, extracting
basic method, 363–367
count of comments and shares, 367–370
filtered by time, 367
hyperlinks, 40–48
Source{0} formula, 116–117, 189
Source.Name column, 73
spaces, splitting words with, 293–294
Split Column By Delimiter dialog box, 26–27, 42, 51, 59, 125, 273, 294
Split Column By Number of Characters dialog box, 341
split data, 378
Splitter.SplitTextByAnyDelimiter function, 42, 47, 295
Splitter.SplitTextByDelimiter function, 295
splitting data
common pitfalls, 271–274
delimiter-separated values, 24–27, 57–59
words, 293
keywords searches with, 300–308
with spaces, 293–294
stop words, filtering, 298–300
words with punctuation, 294–298
SQL Server 2017
Analysis Services, 5
SSDT (SQL Server Data Tools), 2, 5
SQL Server Data Tools (SSDT), 2, 5
square brackets ([]), 230
SSDT (SQL Server Data Tools), 2, 5
Start of Day transformation, 54
Start of Month transformation, 54
Start of Quarter transformation, 54
Start of Week transformation, 54
Start of Year transformation, 54
static column names, detecting, 252–253
Stock Items query, 56
Stop words, filtering, 298–300
subsets of columns, reordering, 262–264
SUBSTITUTE formula, 24
subtotals, unpivoting, 152–154
SUM function, 145
summarized tables
 cleaning, 378
 unpivoting, 379–380
syntax, 136
T
#table expression, 233
table type, 232–234
Table.AddColumn function, 44, 326
Table.Buffer function, 288–293
Table.ColumnCount function, 233
Table.ColumnName function, 80, 123, 164–167, 234, 263
Table.Combine function, 69–70
Table.CombineColumns function, 166
Table.Distinct function, 338
Table.FillDown function, 164–166
Table.FirstN function, 146
Table.FirstValue function, 233
Table.FromColumns function, 234
Table.FromList function, 234
Table.FromRecords function, 234
Table.FromRows function, 234
Table.IsEmpty function, 233
Table.Profile function, 233
Table.RemoveColumns function, 90, 122, 265–267
Table.RemoveLastN function, 146
Table.RenameColumns function, 79, 80, 126, 168–169, 268–269
Table.ReorderColumns function, 262–264
Table.Repeat function, 290
Table.ReplaceValue function, 303
Table.ReplaceValues function, 303
Table.RowCount function, 233
tables. See also AdventureWorks product catalog;
 context preservation
 appending
 Append Queries as New transformation, 64–65
 Append Queries transformation, 62–64
 from folders, 71–74
 three or more tables, 68–70
 two tables, 62–68
 from workbooks, 74–81
badly designed, 136–138
columns. See columns
conversion
column name-only transposition, 100–106
creating, 93–95
loading, 95–96
M query language, 106–109
merge sequence, 97–99
transpose techniques, 96–99
unpivoting, merging, and pivoting back, 99–101
date/time values
dates with two locales, 50–53
extracting, 53–54
transformations, 48
fact, 137
importing, 15
merging, 23–24
mismatched, combining, 99–101
examples of, 84
from folders, 86–93
mismatched table symptoms and risks, 84–85
problem of, 83–84
reactive approach, 85–86
Wide World Importers project, 381–383
Pivot transformation, 173
incorrectly unpivoted tables, reversing, 173–175
multiline records, 175–179
relationship refresh failures, 56–57
relationships, creating, 32–34, 48–50
splitting, 55–56, 57–59
Unpivot transformations. See also
 FtnUnpivotSummarizedTable function
 2x2 levels of hierarchy, 146–151
 3x3 levels of hierarchy, 156–160
 applying, 136–138
 grand totals, 143–146
 mismatched tables, combining, 99–101
 reversing, 173–175
 subtotals, 152–154
 Unpivot Columns, 139–142
 Unpivot Only Selected Columns, 142–143
Unpivot Other Columns, 139–142
Wide World Importers project, 379–380
Wide World Importers project
 cleaning, 378
 combining, 381
 comparing, 381–383
 merging, 382–383
 unpivoting, 379–380
Table.SelectColumns function, 266
Table.SelectRows function, 259, 290, 338
Table.SplitColumn function, 45, 47, 167, 273–274
Table.ToColumns function, 234
Table.ToList function, 234
Table.ToRecords function, 234
Table.ToRows function, 234
Table.TransformColumnNames function, 90–93, 270–271
Table.TransformColumns function, 46, 47
Table.TransformColumnType function, 163–164, 169, 252–253, 274–275
Table.Unpivot function, 142
Table.UnpivotOtherColumns function, 140, 167
team environments, 181–182
c-o-authored reports
 local file access, 182–183
 parameter values in Excel, 187–193
 parameters as path names, 183–185
 templates, 185–187
shared files, 194–195
differences between, 198
importing data from, 195–197
migrating local queries to, 199–201
modifying queries for, 197–198
security considerations, 201–202
templates
 creating, 185–187
 saving workbooks as, 202
text analytics, 277. See also Azure Cognitive Services; Facebook analytics
case sensitivity, 17
keyword searches
 basic detection of keywords, 278–282
 Cartesian products, 282–290
 custom functions, 290–292
 selecting method for, 293
 with split words, 300–308
Microsoft Azure Cognitive Services, 311–313
multi-language support, 347
dynamic language detection, 348–349
FnDetectLanguages function, 348–349
language code, replacing, 347
sentiment analysis, 329–330
API call syntax, 330
API key parameter, 335
converting to key phrases, 344–347
data loading, 332–333
data preparation, 330–331, 333–334
error prevention, 341
FnGetSentiment function, 332, 337–341
JSON content creation, 334–335
large datasets, 342–344
response handling, 337
web request creation, 335–336
Text Analytics API, 344–347
text translation
 API key parameter, 321–322
 deploying, 314–315
 JSON content creation, 320
 multiple message translation, 324–327
 report sharing without API key, 324, 327–328
 Translate call, 319–320
 web request creation, 322–324
 word clouds, creating, 308–310
 word splits, 293
 keyword searches with, 300–308
 stop words, filtering, 298–300
 words with punctuation, 294–298
 words with spaces, 293–294
Text Analytics API, 315–316, 344–347
Text Between Delimiters dialog box, 37
text columns, extracting data from, 40–48
Text to Columns wizard, 22
text translation, 318–319
 API key parameter, 321–322
 deploying, 314–315
 JSON content creation, 320
 multiple message translation, 324–327
 report sharing without API key, 324, 327–328
 Translate call, 319–320
 web request creation, 322–324
text type, 224
Text Between Delimiters function, 37
Text.Proper function, 91
Text.Trim function, 46, 297
Time column (Facebook analytics), 355–357
#time expression, 221
time type, 221–222
time/date values
 dates with two locales, 50–53
 extracting, 53–54
 filtering Facebook data by, 367
 multiple date formats, 48–50
 transformations, 48
 unpivoting 2x2 levels of hierarchy with, 146–149
Time.Hour function, 222
titles, preserving
 Drill Down transformation, 115–119
 from folders, 119–121
Unpivot transformations

post-append preservation, 121–126
pre-append preservation, 113–119
from worksheets, 122–126
totals
removing, 145–146
unpivoting
grand totals, 143–146
subtotals, 152–154
tracking hackers, 384
Transform tab (Power Query Editor), 11
transformations
Drill Down, 115–119
Pivot, 173, 377–378
incorrectly unpivoted tables, reversing, 173–175
mismatched tables, combining, 99–101
multiline records, 175–179
Wide World Importers project, 377–380
transpose
column names only, 100–106
transposing, merging, and transposing back, 96–99
Unpivot. See also FnUnpivotSummarizedTable function
2x2 levels of hierarchy, 146–149
3x3 levels of hierarchy, 156–160
applying, 136–138
grand totals, 143–146
mismatched tables, combining, 99–101
reversing, 173–175
subtotals, 152–154
Unpivot Columns, 139–142
Unpivot Only Selected Columns, 142–143
Unpivot Other Columns, 139–142
Wide World Importers project, 379–380
Translate call, 319–320
Translated Messages query, 326
translation, text, 318–319
API key parameter, 321–322
deploying, 314–315
JSON content creation, 320
multiple message translation, 324–327
report sharing without API key, 324, 327–328
Translate call, 319–320
web request creation, 322–324
Translator Text API
API key parameter, 321–322
deploying, 314–315
JSON content creation, 320
multiple message translation, 324–327
report sharing without API key, 324, 327–328
Translate call, 319–320
web request creation, 322–324
transpose techniques
column names only, 100–106
transposing, merging, and transposing back, 96–99
trimming punctuation, 296–298
troubleshooting. See also pitfalls
appended tables, 79–81
Formula.Firewall error, 190–193
local file access, 182–183
relationship refresh failures, 56–57
try/otherwise expression, 241–242
two dots operator (.), 227
types
Changed Type step, 250
date, 222
declaring, 218–219
detecting, 256
duration, 223
list. See list type
logical, 225
null, 224–225
number, 220–221
record, 229–231
functions, 232
operators, 231–232
table, 232–234
text, 224
time, 221–222
uses of, 218–220
U
Unpivot Columns transformation, 139–142
Unpivot Only Selected Columns transformation, 142–143
Unpivot Other Columns transformation, 139–142
Unpivot transformations
2x2 levels of hierarchy
complex tables, 149–151
with dates, 146–149
3x3 levels of hierarchy, 156
applying, 136–138
FnUnpivotSummarizedTable creation
Changed Type steps, deleting, 163–164
ColumnFields, 162–163
List.Count, 164–167
List.FirstN, 164–167
List.Zip, 168–169
queries, converting into function, 169–171
Renamed Columns step, 168–169
RowFields, 162–163
Table.ColumnNames, 164–167
testing, 172
ValueField, 162–163
FnUnpivotSummarizedTable invocation, 160–162
grand totals, 143–146
mismatched tables, combining, 99–101
multiple levels of hierarchy
Unpivot transformations

- AdventureWorks example, 157–160
- Column fields, 156–157
- Row fields, 156–157
- virtual PivotTables, 156–157
- reversing, 173–175
- subtotals, 152–154
- Unpivot Columns, 139–142
- Unpivot Only Selected Columns, 142–143
- Unpivot Other Columns, 139–142
- Wide World Importers project, 379–380
- unpivoted columns, 139
- user engagement (Facebook)
 - multiple pages, comparing, 370–373
 - posts and comments, extracting
 - basic method, 363–367
 - count of comments and shares, 367–370
 - filtered by time, 367
- unpivoted columns, 139
- Value fields, creating, 162–163
- values, missing, 87–89, 378
- View tab (Power Query Editor), 11
- virtual PivotTables, 156–157
- VLOOKUP formula, 24

V

- View tab (Power Query Editor), 11
- virtual PivotTables, 156–157
- VLOOKUP formula, 24

W

- From Web dialog box, 196
- web request creation
 - Sentiment Analysis API, 335–336
 - Translator Text API, 322–324
- Webb, Chris, 209
- Web.Contents M expression, 322–323
- Week of Month transformation, 54
- Week of Year transformation, 54
- Wide World Importers project
 - black products, filtering, 257–258
 - challenge, 375–376
 - clues, 376–377
 - columns
 - merging, 274–275
 - removing, 265–267
 - renaming, 268–271
 - reordering, 262–264
 - splitting, 272–274
 - static column names, detecting, 252–253
 - filter pane values, searching, 260–261
 - flow diagram, 376
 - functions
 - FnCleanSummarizedTable, 378
 - FnUnpivotSummarizedTable, 379–380
 - hacker, detecting and tracking, 384
 - queries
 - 2018 Revenues, 380
 - Compromised Rows, 383
 - Hacker’s Instructions, 384
 - revenues tables
 - cleaning, 378
 - combining, 381
 - comparing, 381–383
 - summarized tables
 - pivot sequence on 2018 revenues, 380
 - transforming and appending, 377–378
 - unpivoting, 379–380
 - wizards, Text to Columns, 22
 - word clouds, creating, 308–310
 - word splits, 293
 - keyword searches with, 300–301
 - Merge Queries, 301–302
 - multi-word keywords, 302–308
 - words with punctuation
 - splitting words from punctuation, 294–296
 - stop words, filtering, 298–300
 - trimming off punctuation, 296–298
 - words with spaces, 293–294
 - Word-Breaking, turning off, 346
 - Workbook query, 192–193
 - workbooks/worksheets
 - appending tables from
 - AdventureWorks example, 74–81
 - robust approach to, 79–81
 - context preservation, 113–114
 - Custom XML Data, 202
 - preserving titles from, 122–126
 - removing queries from, 202
 - saving as templates, 202

X-Y-Z

- Year transformation, 54
- Zuckerberg, Mark, 351