

The Defi nitive Guide to
DAX: Business intelligence
with Microsoft Power
BI, SQL Server Analysis
Services, and Excel

Second Edition

Marco Russo and Alberto Ferrari

9781509306978_print.indb i9781509306978_print.indb i 21/05/19 5:30 pm21/05/19 5:30 pm

Published with the authorization of Microsoft Corporation by:

Pearson Education, Inc.

Copyright © 2020 by Alberto Ferrari and Marco Russo

All rights reserved. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request
forms, and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/. No patent
liability is assumed with respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-1-5093-0697-8

ISBN-10: 1-5093-0697-8

Library of Congress Control Number: 2019930884

ScoutAutomatedPrintCode

Trademarks

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks”
webpage are trademarks of the Microsoft group of companies. All other marks are
property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fi tness is implied. The information provided is on an “as is” basis.
The authors, the publisher, and Microsoft Corporation shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from
the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

EDITOR-IN-CHIEF

Brett Bartow

EXECUTIVE EDITOR

Loretta Yates

DEVELOPMENT EDITOR

Mark Renfrow

MANAGING EDITOR

Sandra Schroeder

SENIOR PROJECT EDITOR

Tonya Simpson

COPY EDITOR

Chuck Hutchinson

INDEXER

Ken Johnson

PROOFREADER

Abigail Manheim

TECHNICAL EDITOR

Daniil Maslyuk

EDITORIAL ASSISTANT

Cindy Teeters

COVER DESIGNER

Twist Creative, Seattle

COMPOSITOR

codeMantra

9781509306978_print.indb ii9781509306978_print.indb ii 21/05/19 5:30 pm21/05/19 5:30 pm

 iii

Contents at a Glance

Foreword xvii

Introduction to the second edition xx

Introduction to the fi rst edition xxi

CHAPTER 1 What is DAX? 1

CHAPTER 2 Introducing DAX 17

CHAPTER 3 Using basic table functions 57

CHAPTER 4 Understanding evaluation contexts 79

CHAPTER 5 Understanding CALCULATE and CALCULATETABLE 115

CHAPTER 6 Variables 175

CHAPTER 7 Working with iterators and with CALCULATE 187

CHAPTER 8 Time intelligence calculations 217

CHAPTER 9 Calculation groups 279

CHAPTER 10 Working with the fi lter context 313

CHAPTER 11 Handling hierarchies 345

CHAPTER 12 Working with tables 363

CHAPTER 13 Authoring queries 395

CHAPTER 14 Advanced DAX concepts 437

CHAPTER 15 Advanced relationships 471

CHAPTER 16 Advanced calculations in DAX 519

CHAPTER 17 The DAX engines 545

CHAPTER 18 Optimizing VertiPaq 579

CHAPTER 19 Analyzing DAX query plans 609

CHAPTER 20 Optimizing DAX 657

Index 711

9781509306978_print.indb iii9781509306978_print.indb iii 21/05/19 5:30 pm21/05/19 5:30 pm

9781509306978_print.indb iv9781509306978_print.indb iv 21/05/19 5:30 pm21/05/19 5:30 pm

 v

Contents

Foreword .xvii

Introduction to the second edition . xx

Introduction to the fi rst edition . xxi

Chapter 1 What is DAX? 1
Understanding the data model . 1

Understanding the direction of a relationship . 3

DAX for Excel users . 5
Cells versus tables . 5
Excel and DAX: Two functional languages . 7
Iterators in DAX . 8
DAX requires theory . 8

DAX for SQL developers . 9
Relationship handling . 9
DAX is a functional language . 10
DAX as a programming and querying language 10
Subqueries and conditions in DAX and SQL . 11

DAX for MDX developers . 12
Multidimensional versus Tabular . 12
DAX as a programming and querying language 12
Hierarchies . 13
Leaf-level calculations . 14

DAX for Power BI users . 14

Chapter 2 Introducing DAX 17
Understanding DAX calculations . 17

DAX data types . 19
DAX operators .23
Table constructors .24
Conditional statements .24

9781509306978_print.indb v9781509306978_print.indb v 21/05/19 5:30 pm21/05/19 5:30 pm

vi Contents

Understanding calculated columns and measures .25
Calculated columns .25
Measures .26

Introducing variables .30

Handling errors in DAX expressions . 31
Conversion errors . 31
Arithmetic operations errors .32
Intercepting errors .35
Generating errors. .38

Formatting DAX code .39

Introducing aggregators and iterators .42

Using common DAX functions .45
Aggregation functions .45
Logical functions .46
Information functions .48
Mathematical functions .49
Trigonometric functions .50
Text functions .50
Conversion functions . 51
Date and time functions .52
Relational functions .53

Conclusions .55

Chapter 3 Using basic table functions 57
Introducing table functions .57

Introducing EVALUATE syntax .59

Understanding FILTER . 61

Introducing ALL and ALLEXCEPT .63

Understanding VALUES, DISTINCT, and the blank row68

Using tables as scalar values .72

Introducing ALLSELECTED .75

Conclusions .77

9781509306978_print.indb vi9781509306978_print.indb vi 21/05/19 5:30 pm21/05/19 5:30 pm

 Contents vii

Chapter 4 Understanding evaluation contexts 79
Introducing evaluation contexts .80

Understanding fi lter contexts .80
Understanding the row context .85

Testing your understanding of evaluation contexts .88
Using SUM in a calculated column .88
Using columns in a measure .89

Using the row context with iterators .90
Nested row contexts on different tables . 91
Nested row contexts on the same table .92
Using the EARLIER function .97

Understanding FILTER, ALL, and context interactions98

Working with several tables . 101
Row contexts and relationships .102
Filter context and relationships .106

Using DISTINCT and SUMMARIZE in fi lter contexts109

Conclusions . 113

Chapter 5 Understanding CALCULATE and
CALCULATETABLE 115

Introducing CALCULATE and CALCULATETABLE . 115
Creating fi lter contexts . 115
Introducing CALCULATE . 119
Using CALCULATE to compute percentages .124
Introducing KEEPFILTERS .135
Filtering a single column .138
Filtering with complex conditions. .140
Evaluation order in CALCULATE .144

Understanding context transition .148
Row context and fi lter context recap .148
Introducing context transition . 151
Context transition in calculated columns .154
Context transition with measures . 157

9781509306978_print.indb vii9781509306978_print.indb vii 21/05/19 5:30 pm21/05/19 5:30 pm

viii Contents

Understanding circular dependencies . 161

CALCULATE modifi ers .164
Understanding USERELATIONSHIP .164
Understanding CROSSFILTER .168
Understanding KEEPFILTERS .168
Understanding ALL in CALCULATE .169
Introducing ALL and ALLSELECTED with no parameters 171

CALCULATE rules .172

Chapter 6 Variables 175
Introducing VAR syntax . 175

Understanding that variables are constant . 177

Understanding the scope of variables . 178

Using table variables . 181

Understanding lazy evaluation .182

Common patterns using variables .183

Conclusions .185

Chapter 7 Working with iterators and with CALCULATE 187
Using iterators. .187

Understanding iterator cardinality .188
Leveraging context transition in iterators .190
Using CONCATENATEX .194
Iterators returning tables .196

Solving common scenarios with iterators .199
Computing averages and moving averages .199
Using RANKX . 203
Changing calculation granularity . 211

Conclusions .215

Chapter 8 Time intelligence calculations 217
Introducing time intelligence . 217

Automatic Date/Time in Power BI .218
Automatic date columns in Power Pivot for Excel219
Date table template in Power Pivot for Excel 220

9781509306978_print.indb viii9781509306978_print.indb viii 21/05/19 5:30 pm21/05/19 5:30 pm

 Contents ix

Building a date table . 220
Using CALENDAR and CALENDARAUTO . 222
Working with multiple dates . 224
Handling multiple relationships to the Date table 224
Handling multiple date tables . 226

Understanding basic time intelligence calculations 228
Using Mark as Date Table . 232

Introducing basic time intelligence functions . 233
Using year-to-date, quarter-to-date, and month-to-date 235
Computing time periods from prior periods .237
Mixing time intelligence functions . 239
Computing a difference over previous periods241
Computing a moving annual total . 243
Using the right call order for nested time intelligence

functions . 245

Understanding semi-additive calculations . 246
Using LASTDATE and LASTNONBLANK . 248
Working with opening and closing balances 254

Understanding advanced time intelligence calculations 258
Understanding periods to date . 259
Understanding DATEADD . 262
Understanding FIRSTDATE, LASTDATE, FIRSTNONBLANK,

and LASTNONBLANK . 269
Using drillthrough with time intelligence .271

Working with custom calendars . 272
Working with weeks . 272
Custom year-to-date, quarter-to-date, and month-to-date276

Conclusions . 277

Chapter 9 Calculation groups 279
Introducing calculation groups . 279

Creating calculation groups .281

Understanding calculation groups . 288
Understanding calculation item application .291
Understanding calculation group precedence 299
Including and excluding measures from calculation items 304

9781509306978_print.indb ix9781509306978_print.indb ix 21/05/19 5:30 pm21/05/19 5:30 pm

x Contents

Understanding sideways recursion . 306

Using the best practices . 311

Conclusions . 311

Chapter 10 Working with the fi lter context 313
Using HASONEVALUE and SELECTEDVALUE .314

Introducing ISFILTERED and ISCROSSFILTERED .319

Understanding differences between VALUES and FILTERS 322

Understanding the difference between ALLEXCEPT and
ALL/VALUES . 324

Using ALL to avoid context transition . 328

Using ISEMPTY . 330

Introducing data lineage and TREATAS . 332

Understanding arbitrarily shaped fi lters . 336

Conclusions . 343

Chapter 11 Handling hierarchies 345
Computing percentages over hierarchies . 345

Handling parent/child hierarchies . 350

Conclusions . 362

Chapter 12 Working with tables 363
Using CALCULATETABLE . 363

Manipulating tables . 365
Using ADDCOLUMNS . 366
Using SUMMARIZE . 369
Using CROSSJOIN . 372
Using UNION .374
Using INTERSECT . 378
Using EXCEPT . 379

Using tables as fi lters .381
Implementing OR conditions .381
Narrowing sales computation to the fi rst year’s

customers . 384

9781509306978_print.indb x9781509306978_print.indb x 21/05/19 5:30 pm21/05/19 5:30 pm

 Contents xi

Computing new customers . 386
Reusing table expressions with DETAILROWS 388

Creating calculated tables . 390
Using SELECTCOLUMNS . 390
Creating static tables with ROW .391
Creating static tables with DATATABLE . 392
Using GENERATESERIES . 393

Conclusions . 394

Chapter 13 Authoring queries 395
Introducing DAX Studio . 395

Understanding EVALUATE . 396
Introducing the EVALUATE syntax . 396
Using VAR in DEFINE . 397
Using MEASURE in DEFINE . 399

Implementing common DAX query patterns . 400
Using ROW to test measures . 400
Using SUMMARIZE .401
Using SUMMARIZECOLUMNS . 403
Using TOPN . 409
Using GENERATE and GENERATEALL .415
Using ISONORAFTER .418
Using ADDMISSINGITEMS . 420
Using TOPNSKIP .421
Using GROUPBY .421
Using NATURALINNERJOIN and NATURALLEFTOUTERJOIN . . 424
Using SUBSTITUTEWITHINDEX . 426
Using SAMPLE . 428

Understanding the auto-exists behavior in DAX queries 429

Conclusions . 435

Chapter 14 Advanced DAX concepts 437
Introducing expanded tables . 437

Understanding RELATED .441
Using RELATED in calculated columns . 443

9781509306978_print.indb xi9781509306978_print.indb xi 21/05/19 5:30 pm21/05/19 5:30 pm

xii Contents

Understanding the difference between table fi lters and
column fi lters. 444

Using table fi lters in measures . 447
Understanding active relationships .451
Difference between table expansion and fi ltering 453
Context transition in expanded tables . 455

Understanding ALLSELECTED and shadow fi lter contexts 456
Introducing shadow fi lter contexts . 457
ALLSELECTED returns the iterated rows .461
ALLSELECTED without parameters . 463

The ALL* family of functions . 463
ALL . 465
ALLEXCEPT . 466
ALLNOBLANKROW . 466
ALLSELECTED . 466
ALLCROSSFILTERED . 466

Understanding data lineage. 466

Conclusions . 469

Chapter 15 Advanced relationships 471
Implementing calculated physical relationships .471

Computing multiple-column relationships .471
Implementing relationships based on ranges .474
Understanding circular dependency in calculated

physical relationships .476

Implementing virtual relationships . 480
Transferring fi lters in DAX . 480
Transferring a fi lter using TREATAS . 482
Transferring a fi lter using INTERSECT . 483
Transferring a fi lter using FILTER . 484
Implementing dynamic segmentation using

virtual relationships . 485

Understanding physical relationships in DAX . 488

Using bidirectional cross-fi lters .491

9781509306978_print.indb xii9781509306978_print.indb xii 21/05/19 5:30 pm21/05/19 5:30 pm

 Contents xiii

Understanding one-to-many relationships . 493

Understanding one-to-one relationships . 493

Understanding many-to-many relationships . 494
Implementing many-to-many using a bridge table 494
Implementing many-to-many using a common dimension 500
Implementing many-to-many using MMR weak

relationships . 504

Choosing the right type of relationships . 506

Managing granularities . 507

Managing ambiguity in relationships .512
Understanding ambiguity in active relationships514
Solving ambiguity in non-active relationships515

Conclusions . 517

Chapter 16 Advanced calculations in DAX 519
Computing the working days between two dates .519

Showing budget and sales together . 527

Computing same-store sales . 530

Numbering sequences of events . 536

Computing previous year sales up to last date of sales 539

Conclusions . 544

Chapter 17 The DAX engines 545
Understanding the architecture of the DAX engines 545

Introducing the formula engine . 547
Introducing the storage engine . 547
Introducing the VertiPaq (in-memory) storage engine 548
Introducing the DirectQuery storage engine 549
Understanding data refresh . 549

Understanding the VertiPaq storage engine . 550
Introducing columnar databases . 550
Understanding VertiPaq compression . 553
Understanding segmentation and partitioning 562
Using Dynamic Management Views . 563

9781509306978_print.indb xiii9781509306978_print.indb xiii 21/05/19 5:30 pm21/05/19 5:30 pm

xiv Contents

Understanding the use of relationships in VertiPaq 565

Introducing materialization . 568

Introducing aggregations .571

Choosing hardware for VertiPaq .573
Hardware choice as an option .573
Set hardware priorities .574
CPU model .574
Memory speed .575
Number of cores .576
Memory size .576
Disk I/O and paging .576
Best practices in hardware selection . 577

Conclusions . 577

Chapter 18 Optimizing VertiPaq 579
Gathering information about the data model . 579

Denormalization . 584

Columns cardinality .591

Handling date and time . 592

Calculated columns . 595
Optimizing complex fi lters with Boolean calculated columns 597
Processing of calculated columns . 599

Choosing the right columns to store . 599

Optimizing column storage . 602
Using column split optimization . 602
Optimizing high-cardinality columns . 603
Disabling attribute hierarchies. 604
Optimizing drill-through attributes . 604

Managing VertiPaq Aggregations . 604

Conclusions . 607

9781509306978_print.indb xiv9781509306978_print.indb xiv 21/05/19 5:30 pm21/05/19 5:30 pm

 Contents xv

Chapter 19 Analyzing DAX query plans 609
Capturing DAX queries . 609

Introducing DAX query plans. .612
Collecting query plans .613
Introducing logical query plans. .614
Introducing physical query plans .614
Introducing storage engine queries .616

Capturing profi ling information . 617
Using DAX Studio . 617
Using the SQL Server Profi ler . 620

Reading VertiPaq storage engine queries . 624
Introducing xmSQL syntax . 624
Understanding scan time . 632
Understanding DISTINCTCOUNT internals . 634
Understanding parallelism and datacache . 635
Understanding the VertiPaq cache . 637
Understanding CallbackDataID . 640

Reading DirectQuery storage engine queries . 645
Analyzing composite models . 646
Using aggregations in the data model . 647

Reading query plans . 649

Conclusions . 655

Chapter 20 Optimizing DAX 657
Defi ning optimization strategies . 658

Identifying a single DAX expression to optimize 658
Creating a reproduction query .661
Analyzing server timings and query plan information 664
Identifying bottlenecks in the storage engine or

formula engine . 667
Implementing changes and rerunning the test query 668

Optimizing bottlenecks in DAX expressions . 668
Optimizing fi lter conditions . 668
Optimizing context transitions . 672

9781509306978_print.indb xv9781509306978_print.indb xv 21/05/19 5:30 pm21/05/19 5:30 pm

xvi Contents

Optimizing IF conditions . 678
Reducing the impact of CallbackDataID . 690
Optimizing nested iterators . 693
Avoiding table fi lters for DISTINCTCOUNT . 699
Avoiding multiple evaluations by using variables 704

Conclusions . 709

Index 711

9781509306978_print.indb xvi9781509306978_print.indb xvi 21/05/19 5:30 pm21/05/19 5:30 pm

 xvii

Foreword

You may not know our names. We spend our days writing the code for the software
you use in your daily job: We are part of the development team of Power BI, SQL

Server Analysis Services, and…yes, we are among the authors of the DAX language and
the VertiPaq engine.

The language you are going to learn using this book is our creation. We spent years
working on this language, optimizing the engine, fi nding ways to improve the optimizer,
and trying to build DAX into a simple, clean, and sound language to make your life as a
data analyst easier and more productive.

But hey, this is intended to be the foreword of a book, so no more about us! Why are
we writing a foreword for a book published by Marco and Alberto, the SQLBI guys? Well,
because when you start learning DAX, it is a matter of a few clicks and searches on the
web before you fi nd articles written by them. You start reading their papers, learning
the language, and hopefully appreciating our hard work. Having met them many years
ago, we have great admiration for their deep knowledge of SQL Server Analysis Services.
When the DAX adventure started, they were among the fi rst to learn and adopt this new
engine and language.

The articles, papers, and blog posts they publish and share on the web have become
the source of learning for thousands of people. We write the code, but we do not spend
much time teaching developers how to use it; Marco and Alberto are the ones who
spread the knowledge about DAX.

Alberto and Marco’s books are among a few bestsellers on this topic, and now with
this new guide to DAX, they have truly created a milestone publication about the lan-
guage we author and love. We write the code, they write the books, and you learn DAX,
providing unprecedented analytical power to your business. This is what we love: work-
ing all together as a team—we, they, and you—to extract better insights from data.

Marius Dumitru, Architect, Power BI CTO’s Offi ce

Cristian Petculescu, Chief Architect of Power BI

Jeffrey Wang, Principal Software Engineer Manager

Christian Wade, Senior Program Manager

9781509306978_print.indb xvii9781509306978_print.indb xvii 21/05/19 5:30 pm21/05/19 5:30 pm

xviii

Acknowledgments

Writing this second edition required an entire year’s worth of work, three months
more than the fi rst edition. It has been a long and amazing journey, connecting

people all around the world in any latitude and time zone to be able to produce the
result you are going to read. We have so many people to thank for this book that we
know it is impossible to write a complete list. So, thanks so much to all of you who con-
tributed to this book—even if you had no idea that you were doing so. Blog comments,
forum posts, email discussions, chats with attendees and speakers at technical confer-
ences, analysis of customer scenarios, and so much more have been useful to us, and
many people have contributed signifi cant ideas to this book. Moreover, big thanks to all
the students of our courses: By teaching you, we got better!

That said, there are people we must mention personally, because of their particular
contributions.

We want to start with Edward Melomed: He has inspired us, and we probably would
not have started our journey with the DAX language without a passionate discussion
we had with him several years ago and that ended with the table of contents of our fi rst
book about Power Pivot written on a napkin.

We want to thank Microsoft Press and the people who contributed to the project:
They all greatly helped us along the process of book writing.

The only job longer than writing a book is the studying you must do in preparation
for writing it. A group of people that we (in all friendliness) call “ssas-insiders” helped
us get ready to write this book. A few people from Microsoft deserve a special mention
as well, because they spent a lot of their precious time teaching us important concepts
about Power BI and DAX: They are Marius Dumitru, Jeffrey Wang, Akshai Mirchandani,
Krystian Sakowski, and Cristian Petculescu. Your help has been priceless, guys!

We also want to thank Amir Netz, Christian Wade, Ashvini Sharma, Kasper De Jonge,
and T. K. Anand for their contributions to the many discussions we had about the prod-
uct. We feel they helped us tremendously in strategic choices we made in this book and
in our career.

We wanted to reserve a special mention to a woman who did an incredible job
improving and cleaning up our English. Claire Costa proofread the entire manuscript and
made it so much easier to read. Claire, your help is invaluable—Thanks!

9781509306978_print.indb xviii9781509306978_print.indb xviii 21/05/19 5:30 pm21/05/19 5:30 pm

 Acknowledgments xix

The last special mention goes to our technical reviewer: Daniil Maslyuk carefully
tested every single line of code, text, example, and reference we had written. He found
any and all kinds of mistakes we would have missed. He rarely made comments that did
not require a change in the book. The result is amazing for us. If the book contains fewer
errors than our original manuscript, it is only because of Daniil’s efforts. If it still contains
errors, it is our fault, of course.

Thank you so much, folks!

Errata, updates, and book support

We’ve made every effort to ensure the accuracy of this book and its companion content.
You can access updates to this book—in the form of a list of submitted errata and their
related corrections—at https://MicrosoftPressStore.com/Defi nitiveGuideDAX/errata

For additional book support and information, please visit https://MicrosoftPressStore.
com/Support.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

Stay in touch

Let’s keep the conversation going! We are on Twitter: http://twitter.com/MicrosoftPress.

9781509306978_print.indb xix9781509306978_print.indb xix 21/05/19 5:30 pm21/05/19 5:30 pm

xx

Introduction to the second
edition

When we decided it was time to update this book, we thought it would be an easy
job: After all, not many things have changed in the DAX language, and the theo-

retical core of the book was still very good. We believed the focus would mainly be on
updating the screenshots from Excel to Power BI, adding a few touch-ups here and there,
and we would be done. How wrong we were!

As soon as we started updating the fi rst chapter, we quickly discovered that we
wanted to rewrite nearly everything. We felt so not only in the fi rst chapter, but at every
page of the book. Therefore, this is not really a second edition; it is a brand new book.

The reason is not that the language or the tools have changed so drastically. The
reason is that over these last few years we—as authors and teachers—have evolved a lot,
hopefully for the better. We have taught DAX to thousands of users and developers all
around the world; we worked hard with our students, always striving for the best way to
explain complex topics. Eventually, we found different ways of describing the language
we love.

We increased the number of examples for this edition, showing practical uses of the
functionalities after teaching the theoretical foundation of DAX. We tried to use a sim-
pler style, without compromising on precision. We fought with the editor to increase the
page count, as this was needed to cover all the topics we wanted to share. Nevertheless,
we did not change the leitmotif of the book: we assume no previous knowledge of DAX,
even though this is not a book for the casual DAX developer. This is a book for people
who really want to learn the language and gain a deep understanding of the power and
complexity of DAX.

Yes, if you want to leverage the real power of DAX, you need to be prepared for a
long journey with us, reading the book from cover to cover, and then reading it again,
searching for the many details that—at fi rst sight—are not obvious.

9781509306978_print.indb xx9781509306978_print.indb xx 21/05/19 5:30 pm21/05/19 5:30 pm

 xxi

Introduction to the fi rst edition

We have created considerable amounts of content on DAX: books about Power
Pivot and SSAS Tabular, blog posts, articles, white papers, and fi nally a book dedi-

cated to DAX patterns. So why should we write (and, hopefully, you read) yet another
book about DAX? Is there really so much to learn about this language? Of course, we
think the answer is a defi nite yes.

When you write a book, the fi rst thing that the editor wants to know is the number of
pages. There are very good reasons why this is important: price, management, allocation
of resources, and so on. In the end, nearly everything in a book goes back to the number
of pages. As authors, this is somewhat frustrating. In fact, whenever we write a book, we
have to carefully allocate space to the description of the product (either Power Pivot for
Microsoft Excel or SSAS Tabular) and of to the DAX language. This has always left us with
the bitter feeling of not having enough pages to describe all we wanted to teach about
DAX. After all, you cannot write 1,000 pages about Power Pivot; a book of such size
would be intimidating for anybody.

Thus, for years we wrote about SSAS Tabular and Power Pivot, and we kept the project
of a book completely dedicated to DAX in a drawer. Then we opened the drawer and
decided to avoid choosing what to include in the next book: We wanted to explain
everything about DAX, with no compromises. The result of that decision is this book.

Here you will not fi nd a description of how to create a calculated column, or which
dialog box to use to set a property. This is not a step-by-step book that teaches you how
to use Microsoft Visual Studio, Power BI, or Power Pivot for Excel. Instead, this is a deep
dive into the DAX language, starting from the beginning and then reaching very techni-
cal details about how to optimize your code and model.

We loved each page of this book while we were writing it. We reviewed the content
so many times that we had it memorized. We continued adding content whenever we
thought there was something important to include, thus increasing the page count and
never cutting something because there were no pages left. Doing that, we learned more
about DAX and we enjoyed every moment spent doing so.

But there is one more thing. Why should you read a book about DAX?

Come on, you thought this after the fi rst demo of Power Pivot or Power BI. You are
not alone; we thought the same the fi rst time we tried it. DAX is so easy! It looks so
similar to Excel! Moreover, if you have already learned other programming and/or query

9781509306978_print.indb xxi9781509306978_print.indb xxi 21/05/19 5:30 pm21/05/19 5:30 pm

xxii Introduction to the fi rst edition

languages, you are probably used to learning a new language by looking at examples of
the syntax, matching patterns you fi nd to those you already know. We made this mistake,
and we would like you to avoid doing the same.

DAX is a mighty language, used in a growing number of analytical tools. It is very
powerful, but it includes a few concepts that are hard to understand by inductive reason-
ing. The evaluation context, for instance, is a topic that requires a deductive approach:
You start with a theory, and then you see a few examples that demonstrate how the
theory works. Deductive reasoning is the approach of this book. We know that a number
of people do not like learning this way, because they prefer a more practical approach—
learning how to solve specifi c problems, and then with experience and practice, they
understand the underlying theory with an inductive reasoning. If you are looking for that
approach, this book is not for you. We wrote a book about DAX patterns, full of examples
and without any explanation of why a formula works, or why a certain way of coding is
better. That book is a good source for copying and pasting DAX formulas. The goal of
this book here is different: to enable you to master DAX. All the examples demonstrate
a DAX behavior; they do not solve a specifi c problem. If you fi nd formulas that you can
reuse in your models, good for you. However, always remember that this is just a side
effect, not the goal of the example. Finally, always read any note to make sure there are
no possible pitfalls in the code used in the examples. For educational purposes we have
often used code that was not the best practice.

We really hope you will enjoy spending time with us in this beautiful trip to learn DAX,
at least in the same way we enjoyed writing it.

Who this book is for

If you are a casual user of DAX, then this book is probably not the best choice for you.
Many books provide a simple introduction to the tools that implement DAX and to the
DAX language itself, starting from the ground up and reaching a basic level of DAX pro-
gramming. We know this very well, because we wrote some of those books, too!

If, on the other hand, you are serious about DAX and you really want to understand
every detail of this beautiful language, then this is your book. This might be your fi rst
book about DAX; in that case you should not expect to benefi t from the most advanced
topics too early. We suggest you read the book from cover to cover and then read the
most complex parts again, once you have gained some experience; it is very likely that
some concepts will become clearer at that point.

9781509306978_print.indb xxii9781509306978_print.indb xxii 21/05/19 5:30 pm21/05/19 5:30 pm

 Introduction to the fi rst edition xxiii

DAX is useful to different people, for different purposes: Power BI users might need
to author DAX formulas in their models, Excel users can leverage DAX to author Power
Pivot data models, business intelligence (BI) professionals might need to implement
DAX code in BI solutions of any size. In this book, we tried to provide information to all
these different kinds of people. Some of the content (specifi cally the optimization part) is
probably more targeted to BI professionals, because the knowledge needed to optimize
a DAX measure is very technical; but we believe that Power BI and Excel users too should
understand the range of possible performance of DAX expressions to achieve the best
results for their models.

Finally, we wanted to write a book to study, not only a book to read. At the beginning,
we try to keep it easy and follow a logical path from zero to DAX. However, when the
concepts to learn start to become more complex, we stop trying to be simple, and we
remain realistic. DAX is simple, but it is not easy. It took years for us to master it and to
understand every detail of the engine. Do not expect to be able to learn all this content
in a few days, by reading casually. This book requires your attention at a very high level.
In exchange for that, we offer an unprecedented depth of coverage of all aspects of DAX,
giving you the option to become a real DAX expert.

Assumptions about you

We expect our reader to have basic knowledge of Power BI and some experience in the
analysis of numbers. If you have already had prior exposure to the DAX language, then
this is good for you—you will read the fi rst part faster—but of course knowing DAX is
not necessary.

There are references throughout the book to MDX and SQL code; however, you do
not really need to know these languages because they just refl ect comparisons between
different ways of writing expressions. If you do not understand those lines of code, it is
fi ne; it means that that specifi c topic is not for you.

In the most advanced parts of the book, we discuss parallelism, memory access, CPU
usage, and other exquisitely geeky topics that not everybody might be familiar with.
Any developer will feel at home there, whereas Power BI and Excel users might be a bit
intimidated. Nevertheless, this information is required in order to discuss DAX optimiza-
tion. Indeed, the most advanced part of the book is aimed more towards BI developers
than towards Power BI and Excel users. However, we think that everybody will benefi t
from reading it.

9781509306978_print.indb xxiii9781509306978_print.indb xxiii 21/05/19 5:30 pm21/05/19 5:30 pm

xxiv Introduction to the fi rst edition

Organization of this book

The book is designed to fl ow from introductory chapters to complex ones, in a logi-
cal way. Each chapter is written with the assumption that the previous content is fully
understood; there is nearly no repetition of concepts explained earlier. For this reason,
we strongly suggest that you read it from cover to cover and avoid jumping to more
advanced chapters too early.

Once you have read it for the fi rst time, it becomes useful as a reference: For example,
if you are in doubt about the behavior of ALLSELECTED, then you can jump straight to that
section and clarify your mind on that. Nevertheless, reading that section without having
digested the previous content might result in some frustration or, worse, in an incom-
plete understanding of the concepts.

With that said, here is the content at a glance:

 ■ Chapter 1 is a brief introduction to DAX, with a few sections dedicated to users
who already have some knowledge of other languages, namely SQL, Excel, or
MDX. We do not introduce any new concept here; we just give several hints about
the differences between DAX and other languages that might be known to the
reader.

 ■ Chapter 2 introduces the DAX language itself. We cover basic concepts such as
calculated columns, measures, and error-handling functions; we also list most of
the basic functions of the language.

 ■ Chapter 3 is dedicated to basic table functions. Many functions in DAX work on
tables and return tables as a result. In this chapter we cover the most basic table
functions, whereas we cover advanced table functions in Chapter 12 and 13.

 ■ Chapter 4 describes evaluation contexts. Evaluation contexts are the foundation
of the DAX language, so this chapter, along with the next one, is probably the
most important in the entire book.

 ■ Chapter 5 only covers two functions: CALCULATE and CALCULATETABLE. These are the
most important functions in DAX, and they strongly rely on a good understand-
ing of evaluation contexts.

 ■ Chapter 6 describes variables. We use variables in all the examples of the book,
but Chapter 6 is where we introduce their syntax and explain how to use vari-
ables. This chapter will be useful as a reference when you see countless examples
using variables in the following chapters.

9781509306978_print.indb xxiv9781509306978_print.indb xxiv 21/05/19 5:30 pm21/05/19 5:30 pm

 Introduction to the fi rst edition xxv

 ■ Chapter 7 covers iterators and CALCULATE: a marriage made in heaven. Learning
how to use iterators, along with the power of context transition, leverages much
of the power of DAX. In this chapter, we show several examples that are useful to
understand how to take advantage of these tools.

 ■ Chapter 8 describes time intelligence calculations at a very in-depth level. Year-
to-date, month-to-date, values of the previous year, week-based periods, and
custom calendars are some of the calculations covered in this chapter.

 ■ Chapter 9 is dedicated to the latest feature introduced in DAX: calculation
groups. Calculation groups are very powerful as a modeling tool. This chapter
describes how to create and use calculation groups, introducing the basic con-
cepts and showing a few examples.

 ■ Chapter 10 covers more advanced uses of the fi lter context, data lineage, inspec-
tion of the fi lter context, and other useful tools to compute advanced formulas.

 ■ Chapter 11 shows you how to perform calculations over hierarchies and how to
handle parent/child structures using DAX.

 ■ Chapters 12 and 13 cover advanced table functions that are useful both to author
queries and/or to compute advanced calculations.

 ■ Chapter 14 advances your knowledge of evaluation context one step further and
discusses complex functions such as ALLSELECTED and KEEPFILTERS, with the aid of
the theory of expanded tables. This is an advanced chapter that uncovers most of
the secrets of complex DAX expressions.

 ■ Chapter 15 is about managing relationships in DAX. Indeed, thanks to DAX any
type of relationship can be set within a data model. This chapter includes the
description of many types of relationships that are common in an analytical
data model.

 ■ Chapter 16 contains several examples of complex calculations solved in DAX. This
is the fi nal chapter about the language, useful to discover solutions and new ideas.

 ■ Chapter 17 includes a detailed description of the VertiPaq engine, which is the
most common storage engine used by models running DAX. Understanding it is
essential to learning how to get the best performance in DAX.

 ■ Chapter 18 uses the knowledge from Chapter 17 to show possible optimizations
that you can apply at the data model level. You learn how to reduce the cardinality
of columns, how to choose columns to import, and how to improve performance
by choosing the proper relationship types and by reducing memory usage in DAX.

9781509306978_print.indb xxv9781509306978_print.indb xxv 21/05/19 5:30 pm21/05/19 5:30 pm

xxvi Introduction to the fi rst edition

 ■ Chapter 19 teaches you how to read a query plan and how to measure the per-
formance of a DAX query with the aid of tools such as DAX Studio and SQL Server
Profi ler.

 ■ Chapter 20 shows several optimization techniques, based on the content of the
previous chapters about optimization. We show many DAX expressions, measure
their performance, and then display and explain optimized formulas.

Conventions

The following conventions are used in this book:

 ■ Boldface type is used to indicate text that you type.

 ■ Italic type is used to indicate new terms, measures, calculated columns, tables, and
database names.

 ■ The fi rst letters of the names of dialog boxes, dialog box elements, and com-
mands are capitalized. For example, the Save As dialog box.

 ■ The names of ribbon tabs are given in ALL CAPS.

 ■ Keyboard shortcuts are indicated by a plus sign (+) separating the key names. For
example, Ctrl+Alt+Delete means that you press Ctrl, Alt, and Delete keys at the
same time.

About the companion content

We have included companion content to enrich your learning experience. The compan-
ion content for this book can be downloaded from the following page:

MicrosoftPressStore.com/Defi nitiveGuideDAX/downloads

The companion content includes the following:

 ■ A SQL Server backup of the Contoso Retail DW database that you can use to build
the examples yourself. This is a standard demo database provided by Microsoft,
which we have enriched with several views, to make it easier to create a data
model on top of it.

 ■ A separate Power BI Desktop model for each fi gure of the book. Every fi gure has
its own fi le. The data model is almost always the same, but you can use these fi les
to closely follow the steps outlined in the book.

9781509306978_print.indb xxvi9781509306978_print.indb xxvi 21/05/19 5:30 pm21/05/19 5:30 pm

 79

C H A P T E R 4

Understanding evaluation contexts

At this point in the book, you have learned the basics of the DAX language. You know how to create
calculated columns and measures, and you have a good understanding of common functions used in
DAX. This is the chapter where you move to the next level in this language: After learning a solid theo-
retical background of the DAX language, you become a real DAX champion.

With the knowledge you have gained so far, you can already create many interesting reports, but
you need to learn evaluation contexts in order to create more complex formulas. Indeed, evaluation
contexts are the basis of all the advanced features of DAX.

We want to give a few words of warning to our readers. The concept of evaluation contexts is simple,
and you will learn and understand it soon. Nevertheless, you need to thoroughly understand several
subtle considerations and details. Otherwise, you will feel lost at a certain point on your DAX learning
path. We have been teaching DAX to thousands of users in public and private classes, so we know that
this is normal. At a certain point, you have the feeling that formulas work like magic because they work,
but you do not understand why. Do not worry: you will be in good company. Most DAX students reach
that point, and many others will reach it in the future. It simply means that evaluation contexts are not
clear enough to them. The solution, at that point, is easy: Come back to this chapter, read it again, and
you will probably fi nd something new that you missed during your fi rst read.

Moreover, evaluation contexts play an important role when using the CALCULATE function—which
is probably the most powerful and hard-to-learn DAX function. We introduce CALCULATE in
Chapter 5, “Understanding CALCULATE and CALCULATETABLE,” and then we use it throughout the rest
of the book. Understanding CALCULATE without having a solid understanding of evaluation contexts
is problematic. On the other hand, understanding the importance of evaluation contexts without hav-
ing ever tried to use CALCULATE is nearly impossible. Thus, in our experience with previous books we
have written, this chapter and the subsequent one are the two that are always marked up and have the
corners of pages folded over.

In the rest of the book we will use these concepts. Then in Chapter 14, “Advanced DAX concepts,”
you will complete your learning of evaluation contexts with expanded tables. Beware that the content
of this chapter is not the defi nitive description of evaluation contexts just yet. A more detailed descrip-
tion of evaluation contexts is the description based on expanded tables, but it would be too hard to
learn about expanded tables before having a good understanding of the basics of evaluation contexts.
Therefore, we introduce the whole theory in different steps.

9781509306978_print.indb 799781509306978_print.indb 79 21/05/19 5:30 pm21/05/19 5:30 pm

80 CHAPTER 4 Understanding Evaluation Contexts

Introducing evaluation contexts

There are two evaluation contexts: the fi lter context and the row context. In the next sections, you learn
what they are and how to use them to write DAX code. Before learning what they are, it is important to
state one point: They are different concepts, with different functionalities and a completely different usage.

The most common mistake of DAX newbies is that of confusing the two contexts as if the row con-
text was a slight variation of a fi lter context. This is not the case. The fi lter context fi lters data, whereas
the row context iterates tables. When DAX is iterating, it is not fi ltering; and when it is fi ltering, it is not
iterating. Even though this is a simple concept, we know from experience that it is hard to imprint in
the mind. Our brain seems to prefer a short path to learning—when it believes there are some similari-
ties, it uses them by merging the two concepts into one. Do not be fooled. Whenever you have the
feeling that the two evaluation contexts look the same, stop and repeat this sentence in your mind like
a mantra: “The fi lter context fi lters, the row context iterates, they are not the same.”

An evaluation context is the context under which a DAX expression is evaluated. In fact, any DAX
expression can provide different values in different contexts. This behavior is intuitive, and this is
the reason why one can write DAX code without learning about evaluation contexts in advance. You
probably reached this point in the book having authored DAX code without learning about evaluation
contexts. Because you want more, it is now time to be more precise, to set up the foundations of DAX
the right way, and to prepare yourself to unleash the full power of DAX.

Understanding fi lter contexts
Let us begin by understanding what an evaluation context is. All DAX expressions are evaluated inside a
context. The context is the “environment” within which the formula is evaluated. For example, consider
a measure such as

Sales Amount := SUMX (Sales, Sales[Quantity] * Sales[Net Price])

This formula computes the sum of quantity multiplied by price in the Sales table. We can use this
measure in a report and look at the results, as shown in Figure 4-1.

FIGURE 4-1 The measure Sales Amount, without a context, shows the grand total of sales.

This number alone does not look interesting. However, if you think carefully, the formula computes
exactly what one would expect: the sum of all sales amounts. In a real report, one is likely to slice the
value by a certain column. For example, we can select the product brand, use it on the rows, and the
matrix report starts to reveal interesting business insights as shown in Figure 4-2.

9781509306978_print.indb 809781509306978_print.indb 80 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 81

FIGURE 4-2 Sum of Sales Amount, sliced by brand, shows the sales of each brand in separate rows.

The grand total is still there, but now it is the sum of smaller values. Each value, together with all the
others, provides more detailed insights. However, you should note that something weird is happening:
The formula is not computing what we apparently asked. In fact, inside each cell of the report, the
formula is no longer computing the sum of all sales. Instead, it computes the sales of a given brand.
Finally, note that nowhere in the code does it say that it can (or should) work on subsets of data. This
fi ltering happens outside of the formula.

Each cell computes a different value because of the evaluation context under which DAX executes
the formula. You can think of the evaluation context of a formula as the surrounding area of the cell
where DAX evaluates the formula.

DAX evaluates all formulas within a respective context. Even though the formula is
the same, the result is different because DAX executes the same code against different
subsets of data.

This context is named Filter Context and, as the name suggests, it is a context that fi lters tables.
Any formula ever authored will have a different value depending on the fi lter context used to perform
its evaluation. This behavior, although intuitive, needs to be well understood because it hides many
complexities.

Every cell of the report has a different fi lter context. You should consider that every cell has a dif-
ferent evaluation—as if it were a different query, independent from the other cells in the same report.
The engine might perform some level of internal optimization to improve computation speed, but you
should assume that every cell has an independent and autonomous evaluation of the underlying DAX
expression. Therefore, the computation of the Total row in Figure 4-2 is not computed by summing the
other rows of the report. It is computed by aggregating all the rows of the Sales table, although this
means other iterations were already computed for the other rows in the same report. Consequently,

9781509306978_print.indb 819781509306978_print.indb 81 21/05/19 5:30 pm21/05/19 5:30 pm

82 CHAPTER 4 Understanding Evaluation Contexts

depending on the DAX expression, the result in the Total row might display a different result, unrelated
to the other rows in the same report.

Note In these examples, we are using a matrix for the sake of simplicity. We can defi ne an
evaluation context with queries too, and you will learn more about it in future chapters. For
now, it is better to keep it simple and only think of reports, to have a simplifi ed and visual
understanding of the concepts.

When Brand is on the rows, the fi lter context fi lters one brand for each cell. If we increase the com-
plexity of the matrix by adding the year on the columns, we obtain the report in Figure 4-3.

FIGURE 4-3 Sales amount is sliced by brand and year.

Now each cell shows a subset of data pertinent to one brand and one year. The reason for this is that
the fi lter context of each cell now fi lters both the brand and the year. In the Total row, the fi lter is only
on the brand, whereas in the Total column the fi lter is only on the year. The grand total is the only cell
that computes the sum of all sales because—there—the fi lter context does not apply any fi lter to the
model.

The rules of the game should be clear at this point: The more columns we use to slice and dice,
the more columns are being fi ltered by the fi lter context in each cell of the matrix. If one adds the
Store[Continent] column to the rows, the result is—again—different, as shown in Figure 4-4.

9781509306978_print.indb 829781509306978_print.indb 82 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 83

FIGURE 4-4 The context is defi ned by the set of fi elds on rows and on columns.

Now the fi lter context of each cell is fi ltering brand, country, and year. In other words, the fi lter con-
text contains the complete set of fi elds that one uses on rows and columns of the report.

Note Whether a fi eld is on the rows or on the columns of the visual, or on the slicer and/or
page/report/visual fi lter, or in any other kind of fi lter we can create with a report—all this
is irrelevant. All these fi lters contribute to defi ne a single fi lter context, which DAX uses to
evaluate the formula. Displaying a fi eld on rows or columns is useful for aesthetic purposes,
but nothing changes in the way DAX computes values.

Visual interactions in Power BI compose a fi lter context by combining different elements from a
graphical interface. Indeed, the fi lter context of a cell is computed by merging together all the fi lters
coming from rows, columns, slicers, and any other visual used for fi ltering. For example, look at
Figure 4-5.

9781509306978_print.indb 839781509306978_print.indb 83 21/05/19 5:30 pm21/05/19 5:30 pm

84 CHAPTER 4 Understanding Evaluation Contexts

FIGURE 4-5 In a typical report, the context is defi ned in many ways, including slicers, fi lters, and other visuals.

The fi lter context of the top-left cell (A.Datum, CY 2007, 57,276.00) not only fi lters the row and the
column of the visual, but it also fi lters the occupation (Professional) and the continent (Europe), which
are coming from different visuals. All these fi lters contribute to the defi nition of a single fi lter context
valid for one cell, which DAX applies to the whole data model prior to evaluating the formula.

A more formal defi nition of a fi lter context is to say that a fi lter context is a set of fi lters. A fi lter,
in turn, is a list of tuples, and a tuple is a set of values for some defi ned columns. Figure 4-6 shows a
visual representation of the fi lter context under which the highlighted cell is evaluated. Each element
of the report contributes to creating the fi lter context, and every cell in the report has a different fi lter
context.

Calendar Year

CY 2007

Education

High School

Partial College

Brand

Contoso

FIGURE 4-6 The fi gure shows a visual representation of a fi lter context in a Power BI report.

The fi lter context of Figure 4-6 contains three fi lters. The fi rst fi lter contains a tuple for Calendar Year
with the value CY 2007. The second fi lter contains two tuples for Education with the values High School
and Partial College. The third fi lter contains a single tuple for Brand, with the value Contoso. You might

9781509306978_print.indb 849781509306978_print.indb 84 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 85

notice that each fi lter contains tuples for one column only. You will learn how to create tuples with
multiple columns later. Multi-column tuples are both powerful and complex tools in the hand of a DAX
developer.

Before leaving this introduction, let us recall the measure used at the beginning of this section:

Sales Amount := SUMX (Sales, Sales[Quantity] * Sales[Net Price])

Here is the correct way of reading the previous measure: The measure computes the sum of Quantity
multiplied by Net Price for all the rows in Sales which are visible in the current fi lter context.

The same applies to simpler aggregations. For example, consider this measure:

Total Quantity := SUM (Sales[Quantity])

It sums the Quantity column of all the rows in Sales that are visible in the current fi lter context. You
can better understand its working by considering the corresponding SUMX version:

Total Quantity := SUMX (Sales, Sales[Quantity])

Looking at the SUMX defi nition, we might consider that the fi lter context affects the evaluation of
the Sales expression, which only returns the rows of the Sales table that are visible in the current fi lter
context. This is true, but you should consider that the fi lter context also applies to the following mea-
sures, which do not have a corresponding iterator:

Customers := DISTINCTCOUNT (Sales[CustomerKey]) -- Count customers in filter context

Colors :=
VAR ListColors = DISTINCT ('Product'[Color]) -- Unique colors in filter context
RETURN COUNTROWS (ListColors) -- Count unique colors

It might look pedantic, at this point, to spend so much time stressing the concept that a fi lter con-
text is always active, and that it affects the formula result. Nevertheless, keep in mind that DAX requires
you to be extremely precise. Most of the complexity of DAX is not in learning new functions. Instead,
the complexity comes from the presence of many subtle concepts. When these concepts are mixed
together, what emerges is a complex scenario. Right now, the fi lter context is defi ned by the report. As
soon as you learn how to create fi lter contexts by yourself (a critical skill described in the next chapter),
being able to understand which fi lter context is active in each part of your formula will be of para-
mount importance.

Understanding the row context
In the previous section, you learned about the fi lter context. In this section, you now learn the second
type of evaluation context: the row context. Remember, although both the row context and the fi lter
context are evaluation contexts, they are not the same concept. As you learned in the previous section,
the purpose of the fi lter context is, as its name implies, to fi lter tables. On the other hand, the row con-
text is not a tool to fi lter tables. Instead, it is used to iterate over tables and evaluate column values.

9781509306978_print.indb 859781509306978_print.indb 85 21/05/19 5:30 pm21/05/19 5:30 pm

86 CHAPTER 4 Understanding Evaluation Contexts

This time we use a different formula for our considerations, defi ning a calculated column to com-
pute the gross margin:

Sales[Gross Margin] = Sales[Quantity] * (Sales[Net Price] - Sales[Unit Cost])

There is a different value for each row in the resulting calculated column, as shown in Figure 4-7.

FIGURE 4-7 There is a different value in each row of Gross Margin, depending on the value of other columns.

As expected, for each row of the table there is a different value in the calculated column. Indeed,
because there are given values in each row for the three columns used in the expression, it comes as a
natural consequence that the fi nal expression computes different values. As it happened with the fi lter
context, the reason is the presence of an evaluation context. This time, the context does not fi lter a
table. Instead, it identifi es the row for which the calculation happens.

Note The row context references a row in the result of a DAX table expression. It should
not be confused with a row in the report. DAX does not have a way to directly reference a
row or a column in the report. The values displayed in a matrix in Power BI and in a Pivot-
Table in Excel are the result of DAX measures computed in a fi lter context, or are values
stored in the table as native or calculated columns.

In other words, we know that a calculated column is computed row by row, but how does DAX know
which row it is currently iterating? It knows the row because there is another evaluation context provid-
ing the row—it is the row context. When we create a calculated column over a table with one million
rows, DAX creates a row context that evaluates the expression iterating over the table row by row,
using the row context as the cursor.

9781509306978_print.indb 869781509306978_print.indb 86 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 87

When we create a calculated column, DAX creates a row context by default. In that case, there is no
need to manually create a row context: A calculated column is always executed in a row context. You
have already learned how to create a row context manually—by starting an iteration. In fact, one can
write the gross margin as a measure, like in the following code:

Gross Margin :=
SUMX (
 Sales,
 Sales[Quantity] * (Sales[Net Price] - Sales[Unit Cost])
)

In this case, because the code is for a measure, there is no automatic row context. SUMX, being an
iterator, creates a row context that starts iterating over the Sales table, row by row. During the iteration,
it executes the second expression of SUMX inside the row context. Thus, during each step of the itera-
tion, DAX knows which value to use for the three column names used in the expression.

The row context exists when we create a calculated column or when we are computing an expres-
sion inside an iteration. There is no other way of creating a row context. Moreover, it helps to think
that a row context is needed whenever we want to obtain the value of a column for a certain row. For
example, the following measure defi nition is invalid. Indeed, it tries to compute the value of Sales[Net
Price] and there is no row context providing the row for which the calculation needs to be executed:

Gross Margin := Sales[Quantity] * (Sales[Net Price] - Sales[Unit Cost])

This same expression is valid when executed for a calculated column, and it is invalid if used in a
measure. The reason is not that measures and calculated columns have different ways of using DAX.
The reason is that a calculated column has an automatic row context, whereas a measure does not. If
one wants to evaluate an expression row by row inside a measure, one needs to start an iteration to
create a row context.

Note A column reference requires a row context to return the value of the column from a
table. A column reference can be also used as an argument for several DAX functions with-
out a row context. For example, DISTINCT and DISTINCTCOUNT can have a column refer-
ence as a parameter, without defi ning a row context. Nonetheless, a column reference in a
DAX expression requires a row context to be evaluated.

At this point, we need to repeat one important concept: A row context is not a special kind of fi lter
context that fi lters one row. The row context is not fi ltering the model in any way; the row context only
indicates to DAX which row to use out of a table. If one wants to apply a fi lter to the model, the tool to
use is the fi lter context. On the other hand, if the user wants to evaluate an expression row by row, then
the row context will do the job.

9781509306978_print.indb 879781509306978_print.indb 87 21/05/19 5:30 pm21/05/19 5:30 pm

88 CHAPTER 4 Understanding Evaluation Contexts

Testing your understanding of evaluation contexts

Before moving on to more complex descriptions about evaluation contexts, it is useful to test your
understanding of contexts with a couple of examples. Please do not look at the explanation immedi-
ately; stop after the question and try to answer it. Then read the explanation to make sense of it. As a
hint, try to remember, while thinking, ”The fi lter context fi lters; the row context iterates. This means that
the row context does not fi lter, and the fi lter context does not iterate.”

Using SUM in a calculated column
The fi rst test uses an aggregator inside a calculated column. What is the result of the following expres-
sion, used in a calculated column, in Sales?

Sales[SumOfSalesQuantity] = SUM (Sales[Quantity])

Remember, this internally corresponds to this equivalent syntax:

Sales[SumOfSalesQuantity] = SUMX (Sales, Sales[Quantity])

Because it is a calculated column, it is computed row by row in a row context. What number do you
expect to see? Choose from these three answers:

 ■ The value of Quantity for that row, that is, a different value for each row.

 ■ The total of Quantity for all the rows, that is, the same value for all the rows.

 ■ An error; we cannot use SUM inside a calculated column.

Stop reading, please, while we wait for your educated guess before moving on.

Here is the correct reasoning. You have learned that the formula means, “the sum of quantity for all
the rows visible in the current fi lter context.” Moreover, because the code is executed for a calculated
column, DAX evaluates the formula row by row, in a row context. Nevertheless, the row context is not
fi ltering the table. The only context that can fi lter the table is the fi lter context. This turns the question
into a different one: What is the fi lter context, when the formula is evaluated? The answer is straight-
forward: The fi lter context is empty. Indeed, the fi lter context is created by visuals or by queries, and a
calculated column is computed at data refresh time when no fi ltering is happening. Thus, SUM works
on the whole Sales table, aggregating the value of Sales[Quantity] for all the rows of Sales.

The correct answer is the second answer. This calculated column computes the same value for each
row, that is, the grand total of Sales[Quantity] repeated for all the rows. Figure 4-8 shows the result of
the SumOfSalesQuantity calculated column.

9781509306978_print.indb 889781509306978_print.indb 88 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 89

FIGURE 4-8 SUM (Sales[Quantity]), in a calculated column, is computed against the entire database.

This example shows that the two evaluation contexts exist at the same time, but they do not interact.
The evaluation contexts both work on the result of a formula, but they do so in different ways.
Aggregators like SUM, MIN, and MAX only use the fi lter context, and they ignore the row context. If
you have chosen the fi rst answer, as many students typically do, it is perfectly normal. The thing is that
you are still confusing the fi lter context and the row context. Remember, the fi lter context fi lters; the
row context iterates. The fi rst answer is the most common, when using intuitive logic, but it is wrong—
now you know why. However, if you chose the correct answer ... then we are glad this section helped
you in learning the important difference between the two contexts.

Using columns in a measure
The second test is slightly different. Imagine we defi ne the formula for the gross margin in a measure
instead of in a calculated column. We have a column with the net price, another column for the product
cost, and we write the following expression:

GrossMargin% := (Sales[Net Price] - Sales[Unit Cost]) / Sales[Unit Cost]

What will the result be? As it happened earlier, choose among the three possible answers:

 ■ The expression works correctly, time to test the result in a report.

 ■ An error, we should not even write this formula.

 ■ We can defi ne the formula, but it will return an error when used in a report.

As in the previous test, stop reading, think about the answer, and then read the following
explanation.

9781509306978_print.indb 899781509306978_print.indb 89 21/05/19 5:30 pm21/05/19 5:30 pm

90 CHAPTER 4 Understanding Evaluation Contexts

The code references Sales[Net Price] and Sales[Unit Cost] without any aggregator. As such, DAX
needs to retrieve the value of the columns for a certain row. DAX has no way of detecting which row
the formula needs to be computed for because there is no iteration happening and the code is not in a
calculated column. In other words, DAX is missing a row context that would make it possible to retrieve
a value for the columns that are part of the expression. Remember that a measure does not have an
automatic row context; only calculated columns do. If we need a row context in a measure, we should
start an iteration.

Thus, the second answer is the correct one. We cannot write the formula because it is syntactically
wrong, and we get an error when trying to enter the code.

Using the row context with iterators

You learned that DAX creates a row context whenever we defi ne a calculated column or when we start
an iteration with an X-function. When we use a calculated column, the presence of the row context is
simple to use and understand. In fact, we can create simple calculated columns without even knowing
about the presence of the row context. The reason is that the row context is created automatically by
the engine. Therefore, we do not need to worry about the presence of the row context. On the other
hand, when using iterators we are responsible for the creation and the handling of the row context.
Moreover, by using iterators we can create multiple nested row contexts; this increases the complexity
of the code. Therefore, it is important to understand more precisely the behavior of row contexts with
iterators.

For example, look at the following DAX measure:

IncreasedSales := SUMX (Sales, Sales[Net Price] * 1.1)

Because SUMX is an iterator, SUMX creates a row context on the Sales table and uses it during the
iteration. The row context iterates the Sales table (fi rst parameter) and provides the current row to the
second parameter during the iteration. In other words, DAX evaluates the inner expression (the second
parameter of SUMX) in a row context containing the currently iterated row on the fi rst parameter.

Please note that the two parameters of SUMX use different contexts. In fact, any piece of DAX code
works in the context where it is called. Thus, when the expression is executed, there might already be a
fi lter context and one or many row contexts active. Look at the same expression with comments:

SUMX (
 Sales, -- External filter and row contexts
 Sales[Net Price] * 1.1 -- External filter and row contexts + new row context
)

The fi rst parameter, Sales, is evaluated using the contexts coming from the caller. The second
parameter (the expression) is evaluated using both the external contexts plus the newly created row
context.

9781509306978_print.indb 909781509306978_print.indb 90 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 91

All iterators behave the same way:

 1. Evaluate the fi rst parameter in the existing contexts to determine the rows to scan.

 2. Create a new row context for each row of the table evaluated in the previous step.

 3. Iterate the table and evaluate the second parameter in the existing evaluation context, includ-
ing the newly created row context.

 4. Aggregate the values computed during the previous step.

Be mindful that the original contexts are still valid inside the expression. Iterators add a new row
context; they do not modify existing fi lter contexts. For example, if the outer fi lter context contains a
fi lter for the color Red, that fi lter is still active during the whole iteration. Besides, remember that the
row context iterates; it does not fi lter. Therefore, no matter what, we cannot override the outer fi lter
context using an iterator.

This rule is always valid, but there is an important detail that is not trivial. If the previous contexts
already contained a row context for the same table, then the newly created row context hides the
previous existing row context on the same table. For DAX newbies, this is a possible source of mistakes.
Therefore, we discuss row context hiding in more detail in the next two sections.

Nested row contexts on different tables
The expression evaluated by an iterator can be very complex. Moreover, the expression can, on its own,
contain further iterations. At fi rst sight, starting an iteration inside another iteration might look strange.
Still, it is a common DAX practice because nesting iterators produce powerful expressions.

For example, the following code contains three nested iterators, and it scans three tables: Catego-
ries, Products, and Sales.

SUMX (
 'Product Category', -- Scans the Product Category table
 SUMX (-- For each category
 RELATEDTABLE ('Product'), -- Scans the category products
 SUMX (-- For each product
 RELATEDTABLE (Sales) -- Scans the sales of that product
 Sales[Quantity] --
 * 'Product'[Unit Price] -- Computes the sales amount of that sale
 * 'Product Category'[Discount]
)
)
)

The innermost expression—the multiplication of three factors—references three tables. In fact,
three row contexts are opened during that expression evaluation: one for each of the three tables that
are currently being iterated. It is also worth noting that the two RELATEDTABLE functions return the
rows of a related table starting from the current row context. Thus, RELATEDTABLE (Product), being

9781509306978_print.indb 919781509306978_print.indb 91 21/05/19 5:30 pm21/05/19 5:30 pm

92 CHAPTER 4 Understanding Evaluation Contexts

executed in a row context from the Categories table, returns the products of the given category. The
same reasoning applies to RELATEDTABLE (Sales), which returns the sales of the given product.

The previous code is suboptimal in terms of both performance and readability. As a rule, it is fi ne to
nest iterators provided that the number of rows to scan is not too large: hundreds is good, thousands
is fi ne, millions is bad. Otherwise, we may easily hit performance issues. We used the previous code to
demonstrate that it is possible to create multiple nested row contexts; we will see more useful examples
of nested iterators later in the book. One can express the same calculation in a much faster and read-
able way by using the following code, which relies on one individual row context and the RELATED
function:

SUMX (
 Sales,
 Sales[Quantity]
 * RELATED ('Product'[Unit Price])
 * RELATED ('Product Category'[Discount])
)

Whenever there are multiple row contexts on different tables, one can use them to reference the
iterated tables in a single DAX expression. There is one scenario, however, which proves to be challenging.
This happens when we nest multiple row contexts on the same table, which is the topic covered in the
following section.

Nested row contexts on the same table
The scenario of having nested row contexts on the same table might seem rare. However, it does hap-
pen quite often, and more frequently in calculated columns. Imagine we want to rank products based
on the list price. The most expensive product should be ranked 1, the second most expensive product
should be ranked 2, and so on. We could solve the scenario using the RANKX function. But for educa-
tional purposes, we show how to solve it using simpler DAX functions.

To compute the ranking, for each product we can count the number of products whose price is
higher than the current product’s. If there is no product with a higher price than the current product
price, then the current product is the most expensive and its ranking is 1. If there is only one product
with a higher price, then the ranking is 2. In fact, what we are doing is computing the ranking of a
product by counting the number of products with a higher price and adding 1 to the result.

Therefore, one can author a calculated column using this code, where we used PriceOfCurrent-
Product as a placeholder to indicate the price of the current product.

1. 'Product'[UnitPriceRank] =
2. COUNTROWS (
3. FILTER (
4. 'Product',
5. 'Product'[Unit Price] > PriceOfCurrentProduct
6.)
7.) + 1

9781509306978_print.indb 929781509306978_print.indb 92 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 93

FILTER returns the products with a price higher than the current products’ price, and COUNTROWS
counts the rows of the result of FILTER. The only remaining issue is fi nding a way to express the price of
the current product, replacing PriceOfCurrentProduct with a valid DAX syntax. By “current,” we mean
the value of the column in the current row when DAX computes the column. It is harder than you might
expect.

Focus your attention on line 5 of the previous code. There, the reference to Product[Unit Price] refers
to the value of Unit Price in the current row context. What is the active row context when DAX executes
row number 5? There are two row contexts. Because the code is written in a calculated column, there is
a default row context automatically created by the engine that scans the Product table. Moreover,
FILTER being an iterator, there is the row context generated by FILTER that scans the product table
again. This is shown graphically in Figure 4-9.

Product[UnitPriceRank] =

COUNTROWS (
 FILTER (
 Product,
 Product[Unit Price] >= PriceOfCurrentProduct
)
) + 1

Row context of the

calculated column

Row context of the

FILTER function

FIGURE 4-9 During the evaluation of the innermost expression, there are two row contexts on the
same table.

The outer box includes the row context of the calculated column, which is iterating over Product.
However, the inner box shows the row context of the FILTER function, which is iterating over Product
too. The expression Product[Unit Price] depends on the context. Therefore, a reference to Product[Unit
Price] in the inner box can only refer to the currently iterated row by FILTER. The problem is that, in that
box, we need to evaluate the value of Unit Price that is referenced by the row context of the calculated
column, which is now hidden.

Indeed, when one does not create a new row context using an iterator, the value of Product[Unit
Price] is the desired value, which is the value in the current row context of the calculated column, as in
this simple piece of code:

Product[Test] = Product[Unit Price]

To further demonstrate this, let us evaluate Product[Unit Price] in the two boxes, with some dummy
code. What comes out are different results as shown in Figure 4-10, where we added the evaluation of
Product[Unit Price] right before COUNTROWS, only for educational purposes.

9781509306978_print.indb 939781509306978_print.indb 93 21/05/19 5:30 pm21/05/19 5:30 pm

94 CHAPTER 4 Understanding Evaluation Contexts

Products[UnitPriceRank] =

Product[UnitPrice] +

COUNTROWS (
 FILTER (
 Product,
 Product[Unit Price] >= PriceOfCurrentProduct
)
) + 1

This is the value of the current
product in the calculated column

This is the value of the
product iterated by FILTER

FIGURE 4-10 Outside of the iteration, Product[Unit Price] refers to the row context of the calculated column.

Here is a recap of the scenario so far:

 ■ The inner row context, generated by FILTER, hides the outer row context.

 ■ We need to compare the inner Product[Unit Price] with the value of the outer Product[Unit
Price].

 ■ If we write the comparison in the inner expression, we are unable to access the outer
Product[Unit Price].

Because we can retrieve the current unit price, if we evaluate it outside of the row context of
FILTER, the best approach to this problem is saving the value of the Product[Unit Price] inside a variable.
Indeed, one can evaluate the variable in the row context of the calculated column using this code:

'Product'[UnitPriceRank] =
VAR
 PriceOfCurrentProduct = 'Product'[Unit Price]
RETURN
 COUNTROWS (
 FILTER (
 'Product',
 'Product'[Unit Price] > PriceOfCurrentProduct
)
) + 1

Moreover, it is even better to write the code in a more descriptive way by using more variables to
separate the different steps of the calculation. This way, the code is also easier to follow:

'Product'[UnitPriceRank] =
VAR PriceOfCurrentProduct = 'Product'[Unit Price]
VAR MoreExpensiveProducts =
 FILTER (
 'Product',
 'Product'[Unit Price] > PriceOfCurrentProduct
)
RETURN
 COUNTROWS (MoreExpensiveProducts) + 1

9781509306978_print.indb 949781509306978_print.indb 94 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 95

Figure 4-11 shows a graphical representation of the row contexts of this latter formulation of the
code, which makes it easier to understand which row context DAX computes each part of the formula in.

Product[UnitPriceRank] =
VAR PriceOfCurrentProduct = Product[Unit Price]
VAR MoreExpensiveProducts =
 FILTER (
 Product,
 Product[Unit Price] > PriceOfCurrentProduct
)
RETURN
 COUNTROWS (MoreExpensiveProducts) + 1

This is the value of the current
product in the calculated column

This is the value of the
product iterated by FILTER

FIGURE 4-11 The value of PriceOfCurrentProduct is evaluated in the outer row context.

Figure 4-12 shows the result of this calculated column.

FIGURE 4-12 UnitPriceRank is a useful example of how to use variables to navigate within nested row contexts.

9781509306978_print.indb 959781509306978_print.indb 95 21/05/19 5:30 pm21/05/19 5:30 pm

96 CHAPTER 4 Understanding Evaluation Contexts

Because there are 14 products with the same unit price, their rank is always 1; the fi fteenth product
has a rank of 15, shared with other products with the same price. It would be great if we could rank 1, 2,
3 instead of 1, 15, 19 as is the case in the fi gure. We will fi x this soon but, before that, it is important to
make a small digression.

To solve a scenario like the one proposed, it is necessary to have a solid understanding of what a
row context is, to be able to detect which row context is active in different parts of the formula and,
most importantly, to conceive how the row context affects the value returned by a DAX expression. It
is worth stressing that the same expression Product[Unit Price], evaluated in two different parts of the
formula, returns different values because of the different contexts under which it is evaluated. When
one does not have a solid understanding of evaluation contexts, it is extremely hard to work on such
complex code.

As you have seen, a simple ranking expression with two row contexts proves to be a challenge. Later
in Chapter 5 you learn how to create multiple fi lter contexts. At that point, the complexity of the code
increases a lot. However, if you understand evaluation contexts, these scenarios are simple. Before
moving to the next level in DAX, you need to understand evaluation contexts well. This is the reason
why we urge you to read this whole section again—and maybe the whole chapter so far—until these
concepts are crystal clear. It will make reading the next chapters much easier and your learning experi-
ence much smoother.

Before leaving this example, we need to solve the last detail—that is, ranking using a sequence of 1,
2, 3 instead of the sequence obtained so far. The solution is easier than expected. In fact, in the previ-
ous code we focused on counting the products with a higher price. By doing that, the formula counted
14 products ranked 1 and assigned 15 to the second ranking level. However, counting products is not
very useful. If the formula counted the prices higher than the current price, rather than the products,
then all 14 products would be collapsed into a single price.

'Product'[UnitPriceRankDense] =
VAR PriceOfCurrentProduct = 'Product'[Unit Price]
VAR HigherPrices =
 FILTER (
 VALUES ('Product'[Unit Price]),
 'Product'[Unit Price] > PriceOfCurrentProduct
)
RETURN
 COUNTROWS (HigherPrices) + 1

Figure 4-13 shows the new calculated column, along with UnitPriceRank.

9781509306978_print.indb 969781509306978_print.indb 96 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 97

FIGURE 4-13 UnitPriceRankDense returns a more useful ranking because it counts prices, not products.

This fi nal small step is counting prices instead of counting products, and it might seem harder than
expected. The more you work with DAX, the easier it will become to start thinking in terms of ad hoc
temporary tables created for the purpose of a calculation.

In this example you learned that the best technique to handle multiple row contexts on the same
table is by using variables. Keep in mind that variables were introduced in the DAX language as late as
2015. You might fi nd existing DAX code—written before the age of variables—that uses another tech-
nique to access outer row contexts: the EARLIER function, which we describe in the next section.

Using the EARLIER function
DAX provides a function that accesses the outer row contexts: EARLIER. EARLIER retrieves the value of
a column by using the previous row context instead of the last one. Therefore, we can express the value
of PriceOfCurrentProduct using EARLIER (Product[UnitPrice]).

Many DAX newbies feel intimidated by EARLIER because they do not understand row contexts well
enough and they do not realize that they can nest row contexts by creating multiple iterations over the

9781509306978_print.indb 979781509306978_print.indb 97 21/05/19 5:30 pm21/05/19 5:30 pm

98 CHAPTER 4 Understanding Evaluation Contexts

same table. EARLIER is a simple function, once you understand the concept of row context and nesting.
For example, the following code solves the previous scenario without using variables:

'Product'[UnitPriceRankDense] =
COUNTROWS (
 FILTER (
 VALUES ('Product'[Unit Price]),
 'Product'[UnitPrice] > EARLIER ('Product'[UnitPrice])
)
) + 1

Note EARLIER accepts a second parameter, which is the number of steps to skip, so that
one can skip two or more row contexts. Moreover, there is also a function named EARLIEST
that lets a developer access the outermost row context defi ned for a table. In the real world,
neither EARLIEST nor the second parameter of EARLIER is used often. Though having two
nested row contexts is a common scenario in calculated columns, having three or more of
them is something that rarely happens. Besides, since the advent of variables, EARLIER has
virtually become useless because variable usage superseded EARLIER.

The only reason to learn EARLIER is to be able to read existing DAX code. There are no further rea-
sons to use EARLIER in newer DAX code because variables are a better way to save the required value
when the right row context is accessible. Using variables for this purpose is a best practice and results in
more readable code.

Understanding FILTER, ALL, and context interactions

In the preceding examples, we used FILTER as a convenient way of fi ltering a table. FILTER is a common
function to use whenever one wants to apply a fi lter that further restricts the existing fi lter context.

Imagine that we want to create a measure that counts the number of red products. With the knowl-
edge gained so far, the formula is easy:

NumOfRedProducts :=
VAR RedProducts =
 FILTER (
 'Product',
 'Product'[Color] = "Red"
)
RETURN
 COUNTROWS (RedProducts)

We can use this formula inside a report. For example, put the product brand on the rows to produce
the report shown in Figure 4-14.

9781509306978_print.indb 989781509306978_print.indb 98 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 99

FIGURE 4-14 We can count the number of red products using the FILTER function.

Before moving on with this example, stop for a moment and think carefully about how DAX com-
puted these values. Brand is a column of the Product table. Inside each cell of the report, the fi lter
context fi lters one given brand. Therefore, each cell shows the number of products of the given brand
that are also red. The reason for this is that FILTER iterates the Product table as it is visible in the current
fi lter context, which only contains products with that specifi c brand. It might seem trivial, but it is better
to repeat this a few times than there being a chance of forgetting it.

This is more evident if we add a slicer to the report fi ltering the color. In Figure 4-15 there are two
identical reports with two slicers fi ltering color, where each slicer only fi lters the report on its immedi-
ate right. The report on the left fi lters Red and the numbers are the same as in Figure 4-14, whereas the
report on the right is empty because the slicer is fi ltering Azure.

FIGURE 4-15 DAX evaluates NumOfRedProducts taking into account the outer context defi ned by the slicer.

In the report on the right, the Product table iterated by FILTER only contains Azure products,
and, because FILTER can only return Red products, there are no products to return. As a result, the
NumOfRedProducts measure always evaluates to blank.

9781509306978_print.indb 999781509306978_print.indb 99 21/05/19 5:30 pm21/05/19 5:30 pm

100 CHAPTER 4 Understanding Evaluation Contexts

The important part of this example is the fact that in the same formula, there are both a fi lter
context coming from the outside—the cell in the report, which is affected by the slicer selection—and
a row context introduced in the formula by the FILTER function. Both contexts work at the same time
and modify the result. DAX uses the fi lter context to evaluate the Product table, and the row context to
evaluate the fi lter condition row by row during the iteration made by FILTER.

We want to repeat this concept again: FILTER does not change the fi lter context. FILTER is an iterator
that scans a table (already fi ltered by the fi lter context) and it returns a subset of that table, according to
the fi ltering condition. In Figure 4-14, the fi lter context is fi ltering the brand and, after FILTER returned the
result, it still only fi ltered the brand. Once we added the slicer on the color in Figure 4-15, the fi lter con-
text contained both the brand and the color. For this reason, in the left-hand side report FILTER returned
all the products iterated, and in the right-hand side report it did not return any product. In both reports,
FILTER did not change the fi lter context. FILTER only scanned a table and returned a fi ltered result.

At this point, one might want to defi ne another formula that returns the number of red products
regardless of the selection done on the slicer. In other words, the code needs to ignore the selection
made on the slicer and must always return the number of all the red products.

To accomplish this, the ALL function comes in handy. ALL returns the content of a table ignoring the
fi lter context. We can defi ne a new measure, named NumOfAllRedProducts, by using this expression:

NumOfAllRedProducts :=
VAR AllRedProducts =
 FILTER (
 ALL ('Product'),
 'Product'[Color] = "Red"
)
RETURN
 COUNTROWS (AllRedProducts)

This time, FILTER does not iterate Product. Instead, it iterates ALL (Product).

ALL ignores the fi lter context and always returns all the rows of the table, so that FILTER returns the
red products even if products were previously fi ltered by another brand or color.

The result shown in Figure 4-16—although correct—might be surprising.

FIGURE 4-16 NumOfAllRedProducts returns strange results.

9781509306978_print.indb 1009781509306978_print.indb 100 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 101

There are a couple of interesting things to note here, and we want to describe both in more detail:

 ■ The result is always 99, regardless of the brand selected on the rows.

 ■ The brands in the left matrix are different from the brands in the right matrix.

First, 99 is the total number of red products, not the number of red products of any given brand.
ALL—as expected—ignores the fi lters on the Product table. It not only ignores the fi lter on the color,
but it also ignores the fi lter on the brand. This might be an undesired effect. Nonetheless, ALL is easy
and powerful, but it is an all-or-nothing function. If used, ALL ignores all the fi lters applied to the
table specifi ed as its argument. With the knowledge you have gained so far, you cannot yet choose to
only ignore part of the fi lter. In the example, it would have been better to only ignore the fi lter on the
color. Only after the next chapter, with the introduction of CALCULATE, will you have better options to
achieve the selective ignoring of fi lters.

Let us now describe the second point: The brands on the two reports are different. Because the
slicer is fi ltering one color, the full matrix is computed with the fi lter on the color. On the left the color
is Red, whereas on the right the color is Azure. This determines two different sets of products, and
consequently, of brands. The list of brands used to populate the axis of the report is computed in the
original fi lter context, which contains a fi lter on color. Once the axes have been computed, then DAX
computes values for the measure, always returning 99 as a result regardless of the brand and color.
Thus, the report on the left shows the brands of red products, whereas the report on the right shows
the brands of azure products, although in both reports the measure shows the total of all the red prod-
ucts, regardless of their brand.

Note The behavior of the report is not specifi c to DAX, but rather to the SUMMARIZE-
COLUMNS function used by Power BI. We cover SUMMARIZECOLUMNS in Chapter 13,
“Authoring queries.”

We do not want to further explore this scenario right now. The solution comes later when you learn
CALCULATE, which offers a lot more power (and complexity) for the handling of fi lter contexts. As
of now, we used this example to show that you might fi nd unexpected results from relatively simple
formulas because of context interactions and the coexistence, in the same expression, of fi lter and row
contexts.

Working with several tables

Now that you have learned the basics of evaluation contexts, we can describe how the context behaves
when it comes to relationships. In fact, few data models contain just one single table. There would most
likely be several tables, linked by relationships. If there is a relationship between Sales and Product,
does a fi lter context on Product fi lter Sales, too? And what about a fi lter on Sales, is it fi ltering Product?
Because there are two types of evaluation contexts (the row context and the fi lter context) and rela-
tionships have two sides (a one-side and a many-side), there are four different scenarios to analyze.

9781509306978_print.indb 1019781509306978_print.indb 101 21/05/19 5:30 pm21/05/19 5:30 pm

102 CHAPTER 4 Understanding Evaluation Contexts

The answer to these questions is already found in the mantra you are learning in this chapter, “The
fi lter context fi lters; the row context iterates” and in its consequence, “The fi lter context does not iterate;
the row context does not fi lter.”

To examine the scenario, we use a data model containing six tables, as shown in Figure 4-17.

FIGURE 4-17 Data model used to learn the interaction between contexts and relationships.

The model presents a couple of noteworthy details:

 ■ There is a chain of relationships starting from Sales and reaching Product Category, through
Product and Product Subcategory.

 ■ The only bidirectional relationship is between Sales and Product. All remaining relationships are
set to be single cross-fi lter direction.

This model is going to be useful when looking at the details of evaluation contexts and relationships
in the next sections.

Row contexts and relationships
The row context iterates; it does not fi lter. Iteration is the process of scanning a table row by row and of
performing an operation in the meantime. Usually, one wants some kind of aggregation like sum or
average. During an iteration, the row context is iterating an individual table, and it provides a value to

9781509306978_print.indb 1029781509306978_print.indb 102 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 103

all the columns of the table, and only that table. Other tables, although related to the iterated table, do
not have a row context on them. In other words, the row context does not interact automatically with
relationships.

Consider as an example a calculated column in the Sales table containing the difference between
the unit price stored in the fact table and the unit price stored in the Product table. The following DAX
code does not work because it uses the Product[UnitPrice] column and there is no row context on
Product:

Sales[UnitPriceVariance] = Sales[Unit Price] – 'Product'[Unit Price]

This being a calculated column, DAX automatically generates a row context on the table contain-
ing the column, which is the Sales table. The row context on Sales provides a row-by-row evaluation
of expressions using the columns in Sales. Even though Product is on the one-side of a one-to-many
relationship with Sales, the iteration is happening on the Sales table only.

When we are iterating on the many-side of a relationship, we can access columns on the one-side
of the relationship, but we must use the RELATED function. RELATED accepts a column reference as
the parameter and retrieves the value of the column in the corresponding row in the target table.
RELATED can only reference one column and multiple RELATED functions are required to access more
than one column on the one-side of the relationship. The correct version of the previous code is the
following:

Sales[UnitPriceVariance] = Sales[Unit Price] - RELATED ('Product'[Unit Price])

RELATED requires a row context (that is, an iteration) on the table on the many-side of a relation-
ship. If the row context were active on the one-side of a relationship, then RELATED would no longer
be useful because RELATED would fi nd multiple rows by following the relationship. In this case, that
is, when iterating the one-side of a relationship, the function to use is RELATEDTABLE. RELATEDTABLE
returns all the rows of the table on the many-side that are related with the currently iterated table. For
example, if one wants to compute the number of sales of each product, the following formula defi ned
as a calculated column on Product solves the problem:

Product[NumberOfSales] =
VAR SalesOfCurrentProduct = RELATEDTABLE (Sales)
RETURN
 COUNTROWS (SalesOfCurrentProduct)

This expression counts the number of rows in the Sales table that corresponds to the current
product. The result is visible in Figure 4-18.

9781509306978_print.indb 1039781509306978_print.indb 103 21/05/19 5:30 pm21/05/19 5:30 pm

104 CHAPTER 4 Understanding Evaluation Contexts

FIGURE 4-18 RELATEDTABLE is useful in a row context on the one-side of the relationship.

Both RELATED and RELATEDTABLE can traverse a chain of relationships; they are not limited to a
single hop. For example, one can create a column with the same code as before but, this time, in the
Product Category table:

'Product Category'[NumberOfSales] =
VAR SalesOfCurrentProductCategory = RELATEDTABLE (Sales)
RETURN
 COUNTROWS (SalesOfCurrentProductCategory)

The result is the number of sales for the category, which traverses the chain of relationships from
Product Category to Product Subcategory, then to Product to fi nally reach the Sales table.

In a similar way, one can create a calculated column in the Product table that copies the category
name from the Product Category table.

'Product'[Category] = RELATED ('Product Category'[Category])

In this case, a single RELATED function traverses the chain of relationships from Product to Product
Subcategory to Product Category.

Note The only exception to the general rule of RELATED and RELATEDTABLE is for one-
to-one relationships. If two tables share a one-to-one relationship, then both RELATED and
RELATEDTABLE work in both tables and they result either in a column value or in a table with
a single row, depending on the function used.

Regarding chains of relationships, all the relationships need to be of the same type—that is, one-
to-many or many-to-one. If the chain links two tables through a one-to-many relationship to a bridge
table, followed by a many-to-one relationship to the second table, then neither RELATED nor RELATED-
TABLE works with single-direction fi lter propagation. Only RELATEDTABLE can work using bidirectional

9781509306978_print.indb 1049781509306978_print.indb 104 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 105

fi lter propagation, as explained later. On the other hand, a one-to-one relationship behaves as a
one-to-many and as a many-to-one relationship at the same time. Thus, there can be a one-to-one
relationship in a chain of one-to-many (or many-to-one) without interrupting the chain.

For example, in the model we chose as a reference, Customer is related to Sales and Sales is related
to Product. There is a one-to-many relationship between Customer and Sales, and then a many-to-one
relationship between Sales and Product. Thus, a chain of relationships links Customer to Product.
However, the two relationships are not in the same direction. This scenario is known as a many-to-
many relationship. A customer is related to many products bought and a product is in turn related to
many customers who bought that product. We cover many-to-many relationships later in Chapter 15,
“Advanced relationships”; let us focus on row context, for the moment. If one uses RELATEDTABLE
through a many-to-many relationship, the result would be wrong. Consider a calculated column in
Product with this formula:

Product[NumOfBuyingCustomers] =
VAR CustomersOfCurrentProduct = RELATEDTABLE (Customer)
RETURN
 COUNTROWS (CustomersOfCurrentProduct)

The result of the previous code is not the number of customers who bought that product. Instead,
the result is the total number of customers, as shown in Figure 4-19.

FIGURE 4-19 RELATEDTABLE does not work over a many-to-many relationship.

RELATEDTABLE cannot follow the chain of relationships because they are not going in the same
direction. The row context from Product does not reach Customers. It is worth noting that if we try
the formula in the opposite direction, that is, if we count the number of products bought for each
customer, the result is correct: a different number for each row representing the number of products
bought by the customer. The reason for this behavior is not the propagation of a row context but,
rather, the context transition generated by RELATEDTABLE. We added this fi nal note for full disclosure.
It is not time to elaborate on this just yet. You will have a better understanding of this after reading
Chapter 5.

9781509306978_print.indb 1059781509306978_print.indb 105 21/05/19 5:30 pm21/05/19 5:30 pm

106 CHAPTER 4 Understanding Evaluation Contexts

Filter context and relationships
In the previous section, you learned that the row context iterates and, as such, that it does not use
relationships. The fi lter context, on the other hand, fi lters. A fi lter context is not applied to an individual
table. Instead, it always works on the whole model. At this point, you can update the evaluation context
mantra to its complete formulation:

The fi lter context fi lters the model; the row context iterates one table.

Because a fi lter context fi lters the model, it uses relationships. The fi lter context interacts with
relationships automatically, and it behaves differently depending on how the cross-fi lter direction of
the relationship is set. The cross-fi lter direction is represented with a small arrow in the middle of a
relationship, as shown in Figure 4-20.

FIGURE 4-20 Behavior of fi lter context and relationships.

The fi lter context uses a relationship by going in the direction allowed by the arrow. In all relation-
ships the arrow allows propagation from the one-side to the many-side, whereas when the cross-fi lter
direction is BOTH, propagation is allowed from the many-side to the one-side too.

A relationship with a single cross-fi lter is a unidirectional relationship, whereas a relationship with
BOTH cross-fi lter directions is a bidirectional relationship.

This behavior is intuitive. Although we have not explained this sooner, all the reports we have used
so far relied on this behavior. Indeed, in a typical report fi ltering by Product[Color] and aggregating
the Sales[Quantity], one would expect the fi lter from Product to propagate to Sales. This is exactly
what happens: Product is on the one-side of a relationship; thus a fi lter on Product propagates to Sales,
regardless of the cross-fi lter direction.

9781509306978_print.indb 1069781509306978_print.indb 106 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 107

Because our sample data model contains both a bidirectional relationship and many unidirectional
relationships, we can demonstrate the fi ltering behavior by using three different measures that count
the number of rows in the three tables: Sales, Product, and Customer.

[NumOfSales] := COUNTROWS (Sales)
[NumOfProducts] := COUNTROWS (Product)
[NumOfCustomers] := COUNTROWS (Customer)

The report contains the Product[Color] on the rows. Therefore, each cell is evaluated in a fi lter con-
text that fi lters the product color. Figure 4-21 shows the result.

FIGURE 4-21 This shows the behavior of fi lter context and relationships.

In this fi rst example, the fi lter is always propagating from the one-side to the many-side of rela-
tionships. The fi lter starts from Product[Color]. From there, it reaches Sales, which is on the many-side
of the relationship with Product, and Product, because it is the very same table. On the other hand,
NumOfCustomers always shows the same value—the total number of customers. This is because the
relationship between Customer and Sales does not allow propagation from Sales to Customer. The fi lter
is moved from Product to Sales, but from there it does not reach Customer.

You might have noticed that the relationship between Sales and Product is a bidirectional relation-
ship. Thus, a fi lter context on Customer also fi lters Sales and Product. We can prove it by changing the
report, slicing by Customer[Education] instead of Product[Color]. The result is visible in Figure 4-22.

9781509306978_print.indb 1079781509306978_print.indb 107 21/05/19 5:30 pm21/05/19 5:30 pm

108 CHAPTER 4 Understanding Evaluation Contexts

FIGURE 4-22 Filtering by customer education, the Product table is fi ltered too.

This time the fi lter starts from Customer. It can reach the Sales table because Sales is on the many-
side of the relationship. Furthermore, it propagates from Sales to Product because the relationship
between Sales and Product is bidirectional—its cross-fi lter direction is BOTH.

Beware that a single bidirectional relationship in a chain does not make the whole chain bidirec-
tional. In fact, a similar measure that counts the number of subcategories, such as the following one,
demonstrates that the fi lter context starting from Customer does not reach Product Subcategory:

NumOfSubcategories := COUNTROWS ('Product Subcategory')

Adding the measure to the previous report produces the results shown in Figure 4-23, where the
number of subcategories is the same for all the rows.

FIGURE 4-23 If the relationship is unidirectional, customers cannot fi lter subcategories.

Because the relationship between Product and Product Subcategory is unidirectional, the fi lter does
not propagate to Product Subcategory. If we update the relationship, setting the cross-fi lter direction to
BOTH, the result is different as shown in Figure 4-24.

FIGURE 4-24 If the relationship is bidirectional, customers can fi lter subcategories too.

9781509306978_print.indb 1089781509306978_print.indb 108 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 109

With the row context, we use RELATED and RELATEDTABLE to propagate the row context through
relationships. On the other hand, with the fi lter context, no functions are needed to propagate the
fi lter. The fi lter context fi lters the model, not a table. As such, once one applies a fi lter context, the
entire model is subject to the fi lter according to the relationships.

Important From the examples, it may look like enabling bidirectional fi ltering on all the
relationships is a good option to let the fi lter context propagate to the whole model. This is
defi nitely not the case. We will cover advanced relationships in depth later, in Chapter 15.
Bidirectional fi lters come with a lot more complexity than what we can share with this
introductory chapter, and you should not use them unless you have a clear idea of the
consequences. As a rule, you should enable bidirectional fi lters in specifi c measures by using
the CROSSFILTER function, and only when strictly required.

Using DISTINCT and SUMMARIZE in fi lter contexts

Now that you have a solid understanding of evaluation contexts, we can use this knowledge to solve a
scenario step-by-step. In the meantime, we provide the analysis of a few details that—hopefully—will
shed more light on the fundamental concepts of row context and fi lter context. Besides, in this example
we also further describe the SUMMARIZE function, briefl y introduced in Chapter 3, “Using basic table
functions.”

Before going into more details, please note that this example shows several inaccurate calculations
before reaching the correct solution. The purpose is educational because we want to teach the process
of writing DAX code rather than give a solution. In the process of authoring a measure, it is likely you
will make several initial errors. In this guided example, we describe the correct way of reasoning, which
helps you solve similar errors by yourself.

The requirement is to compute the average age of customers of Contoso. Even though this looks
like a legitimate requirement, it is not complete. Are we speaking about their current age or their age
at the time of the sale? If a customer buys three times, should it count as one event or as three events
in the average? What if they buy three times at different ages? We need to be more precise. Here is the
more complete requirement: “Compute the average age of customers at the time of sale, counting each
customer only once if they made multiple purchases at the same age.”

The solution can be split into two steps:

 ■ Computing the age of the customer when the sale happened

 ■ Averaging it

9781509306978_print.indb 1099781509306978_print.indb 109 21/05/19 5:30 pm21/05/19 5:30 pm

110 CHAPTER 4 Understanding Evaluation Contexts

The age of the customer changes for every sale. Thus, the age needs to be stored in the Sales table.
For each row in Sales, one can compute the age of the customer at the time when the sale happened.
A calculated column perfectly fi ts this need:

Sales[Customer Age] =
DATEDIFF (-- Compute the difference between
 RELATED (Customer[Birth Date]), -- the customer’s birth date
 Sales[Order Date], -- and the date of the sale
 YEAR -- in years
)

Because Customer Age is a calculated column, it is evaluated in a row context that iterates Sales.
The formula needs to access Customer[Birth Date], which is a column in Customer, on the one-side of a
relationship with Sales. In this case, RELATED is needed to let DAX access the target table. In the sample
database Contoso, there are many customers for whom the birth date is blank. DATEDIFF returns blank
if the fi rst parameter is blank.

Because the requirement is to provide the average, a fi rst—and inaccurate—solution might be a
measure that averages this column:

Avg Customer Age Wrong := AVERAGE (Sales[Customer Age])

The result is incorrect because Sales[Customer Age] contains multiple rows with the same age if a
customer made multiple purchases at a certain age. The requirement is to compute each customer
only once, and this formula is not following such a requirement. Figure 4-25 shows the result of this last
measure side-by-side with the expected result.

FIGURE 4-25 A simple average computes the wrong result for the customer’s age.

9781509306978_print.indb 1109781509306978_print.indb 110 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 111

Here is the problem: The age of each customer must be counted only once. A possible solution—
still inaccurate—would be to perform a DISTINCT of the customer ages and then average it, with the
following measure:

Avg Customer Age Wrong Distinct :=
AVERAGEX (-- Iterate on the distinct values of
 DISTINCT (Sales[Customer Age]), -- Sales[Customer Age] and compute the
 Sales[Customer Age] -- average of the customer’s age
)

This solution is not the correct one yet. In fact, DISTINCT returns the distinct values of the customer
age. Two customers with the same age would be counted only once by this formula. The requirement
is to count each customer once, whereas this formula is counting each age once. In fact, Figure 4-26
shows the report with the new formulation of Avg Customer Age. You see that this solution is still
inaccurate.

FIGURE 4-26 The average of the distinct customer ages still provides a wrong result.

In the last formula, one might try to replace Customer Age with CustomerKey as the parameter of
DISTINCT, as in the following code:

Avg Customer Age Invalid Syntax :=
AVERAGEX (-- Iterate on the distinct values of
 DISTINCT (Sales[CustomerKey]), -- Sales[CustomerKey] and compute the
 Sales[Customer Age] -- average of the customer’s age
)

This code contains an error and DAX will not accept it. Can you spot the reason, without reading the
solution we provide in the next paragraph?

9781509306978_print.indb 1119781509306978_print.indb 111 21/05/19 5:30 pm21/05/19 5:30 pm

112 CHAPTER 4 Understanding Evaluation Contexts

AVERAGEX generates a row context that iterates a table. The table provided as the fi rst parameter
to AVERAGEX is DISTINCT (Sales[CustomerKey]). DISTINCT returns a table with one column only, and
all the unique values of the customer key. Therefore, the row context generated by AVERAGEX only
contains one column, namely Sales[CustomerKey]. DAX cannot evaluate Sales[Customer Age] in a row
context that only contains Sales[CustomerKey].

What is needed is a row context that has the granularity of Sales[CustomerKey] but that also con-
tains Sales[Customer Age]. SUMMARIZE, introduced in Chapter 3, can generate the existing unique
combinations of two columns. Now we can fi nally show a version of this code that implements all the
requirements:

Correct Average :=
AVERAGEX (-- Iterate on
 SUMMARIZE (-- all the existing combinations
 Sales, -- that exist in Sales
 Sales[CustomerKey], -- of the customer key and
 Sales[Customer Age] -- the customer age
), --
 Sales[Customer Age] -- and average the customer’s age
)

As usual, it is possible to use a variable to split the calculation in multiple steps. Note that the access
to the Customer Age column still requires a reference to the Sales table name in the second argument
of the AVERAGEX function. A variable can contain a table, but it cannot be used as a table reference.

Correct Average :=
VAR CustomersAge =
 SUMMARIZE (-- Existing combinations
 Sales, -- that exist in Sales
 Sales[CustomerKey], -- of the customer key and
 Sales[Customer Age] -- the customer age
)
RETURN
AVERAGEX (-- Iterate on list of
 CustomersAge, -- Customers/age in Sales
 Sales[Customer Age] -- and average the customer’s age
)

SUMMARIZE generates all the combinations of customer and age available in the current fi lter con-
text. Thus, multiple customers with the same age will duplicate the age, once per customer. AVERAGEX
ignores the presence of CustomerKey in the table; it only uses the customer age. CustomerKey is only
needed to count the correct number of occurrences of each age.

It is worth stressing that the full measure is executed in the fi lter context generated by the report.
Thus, only the customers who bought something are evaluated and returned by SUMMARIZE. Every
cell of the report has a different fi lter context, only considering the customers who purchased at least
one product of the color displayed in the report.

9781509306978_print.indb 1129781509306978_print.indb 112 21/05/19 5:30 pm21/05/19 5:30 pm

 CHAPTER 4 Understanding Evaluation Contexts 113

Conclusions

It is time to recap the most relevant topics you learned in this chapter about evaluation contexts.

 ■ There are two evaluation contexts: the fi lter context and the row context. The two evaluation
contexts are not variations of the same concept: the fi lter context fi lters the model; the row con-
text iterates one table.

 ■ To understand a formula’s behavior, you always need to consider both evaluation contexts
because they operate at the same time.

 ■ DAX creates a row context automatically for a calculated column. One can also create a row
context programmatically by using an iterator. Every iterator defi nes a row context.

 ■ You can nest row contexts and, in case they are on the same table, the innermost row context
hides the previous row contexts on the same table. Variables are useful to store values retrieved
when the required row context is accessible. In earlier versions of DAX where variables were not
available, the EARLIER function was used to get access to the previous row context. As of today,
using EARLIER is discouraged.

 ■ When iterating over a table that is the result of a table expression, the row context only contains
the columns returned by the table expression.

 ■ Client tools like Power BI create a fi lter context when you use fi elds on rows, columns, slicers,
and fi lters. A fi lter context can also be created programmatically by using CALCULATE, which we
introduce in the next chapter.

 ■ The row context does not propagate through relationships automatically. One needs to force
the propagation by using RELATED and RELATEDTABLE. You need to use these functions in a
row context on the correct side of a one-to-many relationship: RELATED on the many-side,
RELATEDTABLE on the one-side.

 ■ The fi lter context fi lters the model, and it uses relationships according to their cross-fi lter
direction. It always propagates from the one-side to the many-side. In addition, if you use the
cross-fi ltering direction BOTH, then the propagation also happens from the many-side to the
one-side.

At this point, you have learned the most complex conceptual topics of the DAX language. These
points rule all the evaluation fl ows of your formulas, and they are the pillars of the DAX language.
Whenever you encounter an expression that does not compute what you want, there is a huge chance
that was because you have not fully understood these rules.

As we said in the introduction, at fi rst glance all these topics look simple. In fact, they are. What
makes them complex is the fact that in a DAX expression you might have several evaluation contexts
active in different parts of the formula. Mastering evaluation contexts is a skill that you will gain with
experience, and we will try to help you on this by showing many examples in the next chapters. After
writing some DAX formulas of your own, you will intuitively know which contexts are used and which
functions they require, and you will fi nally master the DAX language.

9781509306978_print.indb 1139781509306978_print.indb 113 21/05/19 5:30 pm21/05/19 5:30 pm

9781509306978_print.indb 1149781509306978_print.indb 114 21/05/19 5:30 pm21/05/19 5:30 pm

 545

C H A P T E R 1 7

The DAX engines

The goal of the book up to this point has been to provide a solid understanding of the DAX language.
On top of gaining further experience through practice, the next goal for you is to write effi cient
DAX and not just DAX that works. Writing effi cient DAX requires understanding the internals of the
engine. The next chapters aim to provide the essential knowledge to measure and improve DAX code
performance.

More specifi cally, this chapter is dedicated to the internal architecture of the engines running DAX
queries. Indeed, a DAX query can run on a model that is stored entirely in memory, or entirely on the
original data source, or on a mix of these two options.

Starting from this chapter, we somewhat deviate from DAX and begin to discuss low-level technical
details about the implementation of products that use DAX. This is an important topic, but you need
to be aware that implementation details change often. We did our best to show information at a level
that is not likely to change soon, carefully balancing detail level and usefulness with consistency over
time. Nevertheless, given the pace at which technology runs these days, the information might be
outdated within a few years. The most up-to-date information is always available online, in blog posts
and articles.

New versions of the engines come out every month, and the query optimizer can change and
improve the query execution. Therefore, we aim to teach how the engines work, rather than just pro-
vide a few rules about writing DAX code that would quickly become obsolete. We sometimes provide
best practices, but remember to always double-check how our suggestions apply to your specifi c
scenario.

Understanding the architecture of the DAX engines

The DAX language is used in several Microsoft products based on the Tabular technology. Yet, specifi c
features might only be available in a few editions or license conditions. A Tabular model uses both
DAX and MDX as query languages. This section describes the broader architecture of a Tabular model,
regardless of the query language and of the limitations of specifi c products.

9781509306978_print.indb 5459781509306978_print.indb 545 21/05/19 5:31 pm21/05/19 5:31 pm

546 CHAPTER 17 The DAX engines

Every report sends queries to Tabular using either DAX or MDX. Despite the query language used,
the Tabular model uses two engines to process a query:

 ■ The formula engine (FE), which processes the request, generating and executing a query plan.

 ■ The storage engine (SE), which retrieves data out of the Tabular model to answer the requests
made by the Formula Engine. The Storage Engine has two implementations:

• VertiPaq hosts a copy of the data in-memory that is refreshed periodically from the data
source.

• DirectQuery forwards queries directly to the original data source for every request.
DirectQuery does not create an additional copy of data.

Figure 17-1 represents the architecture that executes a DAX or MDX query.

Formula Engine

Tabular Model

Storage Engine

Cached Data

Data Source

DAX
CALCULATION

ENGINE

VERTIPAQ
(xmSQL)

QUERY
(DAX/MDX)

PERIODIC
REFRESH

DIRECTQUERY
(SQL, ...)

FIGURE 17-1 A query is processed by an architecture using a formula engine and a storage engine.

The formula engine is the higher-level execution unit of the query engine in a Tabular model. It
can handle all the operations requested by DAX and MDX functions and can solve complex DAX and
MDX expressions. However, when the formula engine must retrieve data from the underlying tables, it
forwards part of the requests to the storage engine.

The queries sent to the storage engine might vary from a simple retrieval of the raw table data to
more complex queries aggregating data and joining tables. The storage engine only communicates
with the formula engine. The storage engine returns data in an uncompressed format, regardless of the
original format of the data.

A Tabular model usually stores data using either the VertiPaq or the DirectQuery storage engine.
However, composite models can use both technologies within the same data model and for the same
tables. The choice of which engine to use is made by the engine on a by-query basis.

This book is exclusively focused on DAX. Be mindful that MDX uses the same architecture when it
queries a Tabular model. This chapter describes the different types of storage engines available in a
Tabular model, focusing more on the details of the VertiPaq engine because it is the native and faster
engine for DAX.

9781509306978_print.indb 5469781509306978_print.indb 546 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 547

Introducing the formula engine
The formula engine is the absolute core of the DAX execution. Indeed, the formula engine alone is able
to understand the DAX language, though it understands MDX as well. The formula engine converts a
DAX or MDX query into a query plan describing a list of physical steps to execute. The storage engine
part of Tabular is not aware that its queries originated from a model supporting DAX.

Each step in the query plan corresponds to a specifi c operation executed by the formula engine.
Typical operators of the formula engine include joins between tables, fi ltering with complex conditions,
aggregations, and lookups. These operators typically require data from columns in the data model.
In these cases, the formula engine sends a request to the storage engine, which answers by returning
a datacache. A datacache is a temporary storage area created by the storage engine and read by the
formula engine.

Note Datacaches are not compressed; datacaches are plain in-memory tables stored in an
uncompressed format, regardless of the storage engine they come from.

The formula engine always works with datacaches returned by the storage engine or with data
structures computed by other formula engine operators. The result of a formula engine operation is
not persisted in memory across different executions, even within the same session. On the other hand,
datacaches are kept in memory and can be reused in following queries. The formula engine does not
have a cache system to reuse results between different queries. DAX relies entirely on the cache
features of the storage engine.

Finally, the formula engine is single-threaded. This means that any operation executed in the for-
mula engine uses just one thread and one core, no matter how many cores are available. The formula
engine sends requests to the storage engine sequentially, one query at a time. A certain degree of par-
allelism is available only within each request to the storage engine, which has a different architecture
and can take advantage of multiple cores available. This is described in the next sections.

Introducing the storage engine
The goal of the storage engine is to scan the Tabular database and produce the datacaches needed by
the formula engine. The storage engine is independent from DAX. For example, DirectQuery on top
of SQL Server uses SQL as the storage engine. SQL was born much earlier than DAX. Although it might
seem strange, the internal storage engine of Tabular (known as VertiPaq) is independent from DAX
too. The overall architecture is very clean and sound. The storage engine executes exclusively queries
allowed by its own set of operators. Depending on the kind of storage engine used, the set of operators
might range from very limited (VertiPaq) to very rich (SQL). This affects the performance and the kind
of optimizations that a developer should consider when analyzing query plans.

9781509306978_print.indb 5479781509306978_print.indb 547 21/05/19 5:31 pm21/05/19 5:31 pm

548 CHAPTER 17 The DAX engines

A developer can defi ne the storage engine used for each table, using one of these three options:

 ■ Import: Also called in-memory, or VertiPaq. The content of the table is stored by the VertiPaq
engine, copying and restructuring the data from the data source during data refresh.

 ■ DirectQuery: The content of the table is read from the data source at query time, and it is not
stored in memory during data refresh.

 ■ Dual: The table can be queried in both VertiPaq and DirectQuery. During data refresh the table
is loaded in memory, but at query time the table may also be read in DirectQuery mode, with
the most up-to-date information.

Moreover, a table in a Tabular model could be used as an aggregation for another table. Aggrega-
tions are useful to optimize storage engine requests, but not to optimize a bottleneck in the formula
engine. Aggregations can be defi ned in both VertiPaq and DirectQuery, though they are commonly
defi ned in VertiPaq to achieve the best query performance.

The storage engine features a parallel implementation. However, it receives requests from the for-
mula engine, which sends them synchronously. Thus, the formula engine waits for one storage engine
query to fi nish before sending the next one. Therefore, parallelism in the storage engine might be
reduced by the lack of parallelism of the formula engine.

Introducing the VertiPaq (in-memory) storage engine
The VertiPaq storage engine is the native lower-level execution unit of the DAX query engine. In certain
products it was offi cially named xVelocity In-Memory Analytical Engine. Nevertheless, it is widely
known as VertiPaq, which is the original code name used during development. VertiPaq stores a copy
of the data read from the data source in a compressed in-memory format based on a columnar
database structure.

VertiPaq queries are expressed using an internal pseudo-SQL language called xmSQL. xmSQL is
not a real query language, but rather a textual representation of a storage engine query. The intent of
xmSQL is to give visibility to humans as to how the formula engine is querying VertiPaq. VertiPaq offers
a very limited set of operators: In case the calculation requires a more complex evaluation within an
internal data scan, VertiPaq can perform a callback to the formula engine.

The VertiPaq storage engine is multithreaded. The operations performed by the VertiPaq storage
engine are very effi cient and can scale up on multiple cores. A single storage engine query can increase
its parallelism up to one thread for each segment of a table. We will describe segments later in this
chapter. Considering that the storage engine can use up to one thread per column segment, one can
benefi t from the parallelism of the storage engine only when there are many segments involved in the
query. In other words, if there are eight storage engine queries, running on a small table (one segment),
they will run sequentially one after the other, instead of all in parallel, because of the synchronous
nature of communication between the formula engine and the storage engine.

9781509306978_print.indb 5489781509306978_print.indb 548 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 549

A cache system stores the results produced by the VertiPaq storage engine, holding a limited num-
ber of results—typically the last 512 internal queries per database, but different versions of the engine
might use a different number. When the storage engine receives an xmSQL query identical to one
already in cache, it returns the corresponding datacache without doing any scan of data in memory.
The cache is not involved in security considerations because the row-level security system only infl u-
ences the formula engine behavior, producing different xmSQL queries in case the user is restricted to
seeing specifi c rows in a table.

A scan operation made by the storage engine is usually faster than the equivalent scan performed
by the formula engine, even with a single thread available. This is because the storage engine is better
optimized for these operations and because it iterates over compressed data; the formula engine, on
the other hand, can only iterate over datacaches, which are uncompressed.

Introducing the DirectQuery storage engine
The DirectQuery storage engine is a generic defi nition, describing the scenario where the data is kept
in the original data source instead of being copied in the VertiPaq storage. When the formula engine
sends a request to the storage engine in DirectQuery mode, it sends a query to the data source in its
specifi c query language. This is SQL most of the time, but it could be different.

The formula engine is aware of the presence of DirectQuery. Therefore, the formula engine gener-
ates a different query plan compared to VertiPaq because it can take advantage of more advanced
functions available in the query language used by the data source. For example, SQL can manage string
transformations such as UPPER and LOWER, whereas the VertiPaq engine does not have any string
manipulation functions available.

Any optimization of the storage engine using DirectQuery requires an optimization of the data
source—for example, using indexes in a relational database. More details about DirectQuery and the
possible optimizations are available in the following white paper: https://www.sqlbi.com/whitepapers/
directquery-in-analysis-services-2016/. The considerations are valid for both Power BI and Analysis
Services because they share the same underlying engine.

Understanding data refresh
DAX runs on SQL Server Analysis Services (SSAS) Tabular, Azure Analysis Services (same as SSAS in this
book), Power BI service (both on server and on the local Power BI Desktop), and in the Power Pivot for
Microsoft Excel add-in. Technically, both Power Pivot for Excel and Power BI use a customized version
of SSAS Tabular. Speaking about different engines is thus somewhat artifi cial: Power Pivot and Power BI
are like SSAS although SSAS runs in a hidden mode. In this book, we do not discriminate between these
engines; when we mention SSAS, the reader should always mentally replace SSAS with Power Pivot or
Power BI. If there are differences worth highlighting, then we will note them in that specifi c section.

9781509306978_print.indb 5499781509306978_print.indb 549 21/05/19 5:31 pm21/05/19 5:31 pm

550 CHAPTER 17 The DAX engines

When SSAS loads the content of a source table in memory, we say that it processes the table. This
takes place during the process operation of SSAS or during the data refresh in Power Pivot for Excel
and Power BI. The table process for DirectQuery simply clears the internal cache without executing any
access to the data source. On the other hand, when processing occurs in VertiPaq mode, the engine
reads the content of the data sources and transforms it into the internal VertiPaq data structure.

VertiPaq processes a table following these few steps:

 1. Reading of the source dataset, transformation into the columnar data structure of VertiPaq,
encoding and compressing of each column.

 2. Creating of dictionaries and indexes for each column.

 3. Creating of the data structures for relationships.

 4. Computing and compressing all the calculated columns and calculated tables.

The last two steps are not necessarily sequential. Indeed, a relationship can be based on a calculated
column, or calculated columns can depend on a relationship because they use RELATED or CALCULATE.
Therefore, SSAS creates a complex graph of dependencies to execute the steps in the correct order.

In the next sections, we describe these steps in more detail. We also cover the format of the internal
structures created by SSAS during the transformation of the data source into the VertiPaq model.

Understanding the VertiPaq storage engine

The VertiPaq engine is the most common storage engine used in Tabular models. VertiPaq is used
whenever a table is in Import storage mode. This is the common choice in many data models, and it is
the only choice in Power Pivot for Excel. In composite models, the presence of tables or aggregations in
dual storage mode also implies the use of the VertiPaq storage engine combined with DirectQuery.

For these reasons, a solid knowledge of the VertiPaq storage engine is a basic skill required to
understand how to optimize both the memory consumption of the model and the execution time of
the queries. In this section, we describe how the VertiPaq storage works.

Introducing columnar databases
VertiPaq is an in-memory columnar database. Being in-memory means that all the data handled by a
model reside in RAM. But VertiPaq is not only in-memory; it is also a columnar database. Therefore, it is
relevant to have a good understanding of what a columnar database is in order to correctly understand
VertiPaq.

We think of a table as a list of rows, where each row is divided into columns. For example, consider
the Product table in Figure 17-2.

9781509306978_print.indb 5509781509306978_print.indb 550 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 551

ID Name Color Unit Price

1 Camcorder Red 112.25

2 Camera Red 97.50

3 Smartphone White 100.00

4 Console Black 112.25

5 TV Blue 1,240.85

6 CD Red 39.99

7 Touch screen Blue 45.12

8 PDA Black 120.25

9 Keyboard Black 120.50

Product

FIGURE 17-2 The fi gure shows the Product table, with four columns and nine rows.

Thinking of a table as a set of rows, we are using the most natural visualization of a table structure.
Technically, this is known as a row store. In a row store, data is organized in rows. When the table is
stored in memory, we might think that the value of the Name column in the fi rst row is adjacent to the
values of the ID and Color columns in the same row. On the other hand, the value in the second row of
the Name column is slightly farther from the Name value in the fi rst row because in between we fi nd
Color and Unit Price in the fi rst row, and the value of the ID column in the second row. As an example,
the following code is a schematic representation of the physical memory layout of a row store:

ID,Name,Color,Unit Price|1,Camcorder,Red,112.25|2,Camera,Red,97.50|3,Smartphone,
White,100.00|4,Console,Black,112.25|5,TV,Blue,1,240.85|6,CD,Red,39.99|7,
Touch screen,Blue,45.12|8,PDA,Black,120.25,9,Keyboard,Black,120.50

Imagine a developer needs to compute the sum of Unit Price: The engine must scan the entire
memory area, reading many irrelevant values in the process. Imagine scanning the memory of the
database sequentially: To read the fi rst value of Unit Price, the engine needs to read (and skip) the fi rst
row of ID, Name, and Color. Only then does it fi nd an interesting value. The same process is repeated
for all the rows. Following this technique, the engine needs to read and ignore many columns to fi nd
the relevant values to sum.

Reading and ignoring values take time. In fact, if we asked someone to compute the sum of Unit
Price, they would not follow that algorithm. Instead, as human beings, they would probably scan the
fi rst row in Figure 17-2 searching for the position of Unit Price, and then move their eyes down, reading
the values one at a time and mentally accumulating them to produce the sum. The reason for this very
natural behavior is that we save time by reading vertically instead of row-by-row.

A columnar database organizes data to optimize vertical scanning. To obtain this result, it needs a
way to make the different values of a column adjacent to one another. In Figure 17-3 you can see the
same Product table as organized by a columnar database.

9781509306978_print.indb 5519781509306978_print.indb 551 21/05/19 5:31 pm21/05/19 5:31 pm

552 CHAPTER 17 The DAX engines

Color

Red

Red

White

Black

Blue

Red

Blue

Black

Black

Product Columns

ID

1

2

3

4

5

6

7

8

9

Name

Camcorder

Camera

Smartphone

Console

TV

CD

Touch screen

PDA

Keyboard

Unit Price

112.25

97.50

100.00

112.25

1,240.85

39.99

45.12

120.25

120.50

FIGURE 17-3 The Product table organized column-by-column.

When stored in a columnar database, each column has its own data structure; it is physically sepa-
rated from the others. Thus, the different values of Unit Price are adjacent to one another and distant
from Color, Name, and ID. The following code is a schematic representation of the physical memory
layout of a column store:

ID,1,2,3,4,5,6,7,8,9
Name,Camcorder,Camera,Smartphone,Console,TV,CD,Touch screen,PDA,Keyboard
Color,Red,Red,White,Black,Blue,Red,Blue,Black,Black
Unit Price,112.25,97.50,100.00,112.25,1240.85,39.99,45.12,120.25,120.50

With this data structure, computing the sum of Unit Price is much easier because the engine imme-
diately goes to the structure containing Unit Price. There, it fi nds all the values needed to perform the
computation next to each other. In other words, it does not have to read and ignore other column
values: In a single scan, it obtains exclusively the useful numbers, and it can quickly aggregate them.

In our next scenario, instead of summing Unit Price, we compute the sum of Unit Price just for the
Red products. You are encouraged to give this a try before reading on, in order to better understand
the algorithm.

This is not so easy anymore; indeed, it is no longer possible to obtain the desired number by simply
scanning the Unit Price column. What developers would typically do is scan the Color column, and
whenever it is Red, retrieve the corresponding value in Unit Price. At the end, all the values would be
summed up to compute the result.

Though very intuitive, this algorithm requires a constant move of the eyes from one column to the
other in Figure 17-3, possibly using a fi nger as a guide to save the last scanned position of Color. It is not
an optimized way of computing the value. The reason is that the engine needs to constantly jump from
one memory area to another, resulting in poor performance. A better way—which only computers
use—is to fi rst scan the Color column, fi nd the positions where the color is Red, and then scan the
Unit Price column, summing only the values in the positions identifi ed in the previous step.

9781509306978_print.indb 5529781509306978_print.indb 552 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 553

This last algorithm is much better because it performs one scan of the fi rst column and one scan of
the second column, always accessing memory locations that are adjacent to one another—other than
the jump between the scan of the fi rst and second column. Sequential reading of memory is much
faster than random access.

For a more complex expression, such as the sum of all products that are either Blue or Black with a
price higher than US$50, things are even worse. This time, there is no possibility of scanning the column
one at a time because the condition depends on way too many columns. As usual, trying on paper
helps better understand the problem.

The simplest algorithm producing the desired result is to scan the table not on a column basis, but
on a row basis instead. We naturally tend to scan the table row-by-row, though the storage organiza-
tion is column-by-column. Although it is a very simple operation when executed on paper by a human,
the same operation is extremely expensive if executed by a computer in RAM; indeed, it requires a lot
of random reads of memory, leading to poorer performance than if computed doing a sequential scan.

As discussed, a columnar storage presents both pros and cons. Columnar databases provide very
quick access to a single column; but as soon as one needs a calculation involving many columns, they
need to spend some time—after having read the column content—to reorganize the information so
that the fi nal expression can be computed. Even though this example was very simple, it helps highlight
the most important characteristics of column stores:

 ■ Single-column access is very fast: It sequentially reads a single block of memory and then
computes whatever aggregation is needed on that memory block.

 ■ If an expression uses many columns, the algorithm is more complex because it requires the
engine to access different memory areas at different times, keeping track of the progress in a
temporary area.

 ■ The more columns are needed to compute an expression, the harder it becomes to produce a
result. At a certain point it becomes easier to rebuild the row storage out of the column store to
compute the expression.

Column stores aim to reduce the read time. However, they spend more CPU cycles to rearrange the
data when many columns from the same table are used. Row stores, on the other hand, have a more
linear algorithm to scan data, but they result in many useless reads. As a rule, reducing reads at the
cost of increasing CPU usage is a good deal, because with modern computers, it is always easier (and
cheaper) to increase the CPU speed versus reducing I/O (or memory access) time.

Moreover, as we will see in the next sections, columnar databases have more options to reduce the
amount of time spent scanning data. The most relevant technique used by VertiPaq is compression.

Understanding VertiPaq compression
In the previous section, you learned that VertiPaq stores each column in a separate data structure. This
simple fact allows the engine to implement some extremely important compressions and encoding
described in this section.

9781509306978_print.indb 5539781509306978_print.indb 553 21/05/19 5:31 pm21/05/19 5:31 pm

554 CHAPTER 17 The DAX engines

Note The actual details of the compression algorithm of VertiPaq are proprietary. Thus, we
cannot publish them in a book. Yet what we explain in this chapter is already a good approx-
imation of what takes place in the engine, and we can use it, for all intents and purposes, to
describe how the VertiPaq engine stores data.

VertiPaq compression algorithms aim to reduce the memory footprint of a data model. Reducing
the memory usage is a very important task for two very good reasons:

 ■ A smaller model makes better use of the hardware. Why spend money on 1 TB of RAM when the
same model, once compressed, can be hosted in 256 GB? Saving RAM is always a good option,
if feasible.

 ■ A smaller model is faster to scan. As simple as this rule is, it is very important when speaking
about performance. If a column is compressed, the engine will scan less RAM to read its con-
tent, resulting in better performance.

Understanding value encoding
Value encoding is the fi rst kind of encoding that VertiPaq might use to reduce the memory cost of a
column. Consider a column containing the price of products, stored as integer values. The column
contains many different values and a defi ned number of bits is required to represent all of them.

In the Figure 17-4 example, the maximum value of Unit Price is 216. At least 8 bits are required to
store each integer value up to that number. Nevertheless, by using a simple mathematical operation,
we can reduce the storage to 5 bits.

Reducing the number of bits needed

Unit Price

212

197

214

197

214

197

194

197

216

Unit Price - 194

18

3

20

3

20

3

0

3

22

Max: 216
8 bits needed

Max: 22
5 bits needed

Value Encoding

FIGURE 17-4 By using simple mathematical operations, VertiPaq reduces the number of bits needed for a column.

9781509306978_print.indb 5549781509306978_print.indb 554 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 555

In the example, VertiPaq found out that by subtracting the minimum value (194) from all the values
of the column, it could modify the range of the values in the column, reducing it to a range from 0 to
22. Storing numbers up to 22 requires fewer bits than storing numbers up to 216. While 3 bits might
seem like an insignifi cant savings, when we multiply this by a few billion rows, it is easy to see that the
difference can be important.

The VertiPaq engine is much more sophisticated than this. It can discover mathematical relation-
ships between the values of a column, and when it fi nds them, it can use them to modify the storage.
This reduces its memory footprint. Obviously, when using the column, it must reapply the transforma-
tion in the opposite direction to obtain the original value. Depending on the transformation, this can
happen before or after aggregating the values. Again, this increases the CPU usage and reduces the
number of reads, which is a very good option.

Value encoding only takes place for integer columns because it cannot be applied on strings or
fl oating-point values. Be mindful that VertiPaq stores the Currency data type of DAX (also called Fixed
Decimal Number) as an integer value. Therefore, currencies can be value-encoded too, whereas fl oat-
ing point numbers cannot.

Understanding hash encoding
Hash encoding (also known as dictionary encoding) is another technique used by VertiPaq to reduce
the number of bits required to store a column. Hash encoding builds a dictionary of the distinct values
of a column and then replaces the column values with indexes to the dictionary. In Figure 17-5 you can
see the storage of the Color column, which uses strings and cannot be value-encoded.

Replacing data types with dictionary and indexes

Hash Encoding

Color

Red

Red

White

Black

Blue

Red

Blue

Black

Black

ID Color

0 Red

1 White

2 Black

3 Blue

Color ID

0

0

1

2

3

0

3

2

2

FIGURE 17-5 Hash encoding consists of building a dictionary and replacing values with indexes.

When VertiPaq encodes a column with hash encoding, it

 ■ Builds a dictionary, containing the distinct values of the column.

 ■ Replaces the values with integer numbers, where each number is the dictionary index of the
original value.

9781509306978_print.indb 5559781509306978_print.indb 555 21/05/19 5:31 pm21/05/19 5:31 pm

556 CHAPTER 17 The DAX engines

There are some advantages in using hash encoding:

 ■ All columns only contain integer values; this makes it simpler to optimize the internal code of
the engine. Moreover, it also means that VertiPaq is data type independent.

 ■ The number of bits used to store a single value is the minimum number of bits necessary to
store an index entry. In the example provided, 2 bits are enough because there are only four
different values.

These two aspects are of paramount importance for VertiPaq. It does not matter whether a column
uses a string, a 64-bit integer, or a fl oating point to represent a value. All these data types can be hash
encoded, providing the same performance in terms of speed of scanning and of storage space. The
only difference might be in the size of the dictionary, which is typically very small when compared with
the size of the original column itself.

The primary factor to determine the column size is not the data type. Instead, it is the number of
distinct values of the column. We refer to the number of distinct values of a column as its cardinality.
Repeating a concept this important is always a good thing: Of all the various aspects of an individual
column, the most important one when designing a data model is its cardinality.

The lower the cardinality, the smaller the number of bits required to store a single value. Conse-
quently, the smaller the memory footprint of the column. If a column is smaller, not only will it be pos-
sible to store more data in the same amount of RAM, but it will also be much faster to scan it whenever
the engine needs to aggregate its values in a DAX expression.

Understanding Run Length Encoding (RLE)
Hash encoding and value encoding are two very good compression techniques. However, there is
another complementary compression technique used by VertiPaq: Run Length Encoding (RLE). This
technique aims to reduce the size of a dataset by avoiding repeated values. For example, consider
a column storing in which quarter the sales took place, stored in the Sales table. This column might
contain the string “Q1” repeated many times in contiguous rows, for all the sales in the same quarter.
In such a case, VertiPaq avoids storing values that are repeated. It replaces them with a slightly more
complex structure that contains the value only once, with the number of contiguous rows having the
same value. This is shown in Figure 17-6.

RLE’s effi ciency strongly depends on the repetition pattern of the column. Some columns have the
same value repeated for many rows, resulting in a great compression ratio. Other columns with quickly
changing values produce a lower compression ratio. Data sorting is extremely important to improve
the compression ratio of RLE. Therefore, fi nding an optimal sort order is an important step of the data
refresh performed by VertiPaq.

9781509306978_print.indb 5569781509306978_print.indb 556 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 557

Quarter

Q1

Q1

Q1

Q1

Q1

Q1

…

Q2

Q2

Q2

Q2

Q2

Q2

Q2

Q2

Q2

…

Quarter Count

Q1 310

Q2 290

… …

RLE

310 times

290 times

Reducing rows using Run Length Encoding (RLE)

FIGURE 17-6 RLE replaces values that are repeated with the number of contiguous rows with the same value.

Finally, there could be columns in which the content changes so often that if VertiPaq tried to
compress them using RLE, the compressed columns would end up using more space than the original
columns. A great example of this is the primary key of a table. It has a different value for each row,
resulting in an RLE version larger than the column itself. In cases like this, VertiPaq skips the RLE com-
pression and stores the column as-is. Thus, the VertiPaq storage of a column never exceeds the original
column size. Worst-case scenario, both would be the same size.

In the example, we have shown RLE working on a Quarter column containing strings. RLE can also
process the already hash-encoded version of a column. Each column can have both RLE and either
hash or value encoding. Therefore, the VertiPaq storage for a column compressed with hash encoding
consists of two distinct entities: the dictionary and the data rows. The latter is the RLE-encoded result of
the hash-encoded version of the original column, as shown in Figure 17-7.

9781509306978_print.indb 5579781509306978_print.indb 557 21/05/19 5:31 pm21/05/19 5:31 pm

558 CHAPTER 17 The DAX engines

Quarter

Q1

Q1

Q1

Q1

Q2

Q2

…

Q2

Q3

Q3

Q3

Q3

Q4

Q4

Q4

Q4

…

4 unique IDs
2 bits used

Hash Encoding

Q.ID Quarter

0 Q1

1 Q2

2 Q3

3 Q4

Q.ID

0

0

0

0

1

1

…

1

2

2

2

2

3

3

3

3

…

RLE

VertiPaq Store

Q.ID Count

0 310

1 290

2 425

3 350

Q.ID Quarter

0 Q1

1 Q2

2 Q3

3 Q4

Dictionary

Data Rows

FIGURE 17-7 RLE is applied to the dictionary-encoded version of a column.

VertiPaq also applies RLE to value-encoded columns. In this case the dictionary is missing because
the column already contains value-encoded integers.

The factors infl uencing the compression ratio of a Tabular model are, in order of importance:

 1. The cardinality of the column, which defi nes the number of bits used to store a value.

 2. The number of repetitions, that is, the distribution of data in a column. A column with many
repeated values is compressed more than a column with very frequently changing values.

 3. The number of rows in the table.

 4. The data type of the column, which only affects the dictionary size.

Given all these considerations, it is nearly impossible to predict the compression ratio of a table.
Moreover, while a developer has full control over certain aspects of a table—they can limit the number
of rows and change the data types—these are the least important aspects. Yet as you learn in the next
chapter, one can work on cardinality and repetitions too. This improves the compression and perfor-
mance of a model.

Finally, it is worth noting that reducing the cardinality of a column also increases the chances of rep-
etitions. For example, if a time column is stored at the second granularity, then the column contains up

9781509306978_print.indb 5589781509306978_print.indb 558 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 559

to 86,400 distinct values. If, on the other hand, the developer stores the same time column at the hour
granularity, then not only have they reduced the cardinality, but they also introduced repeating values.
Indeed, 3,600 seconds convert to one same hour. All this results in a much better compression ratio.
On the other hand, changing the data type from DateTime to Integer or even String offers a negligible
impact on column size.

Understanding re-encoding
SSAS must decide which algorithm to use to encode each column. More specifi cally, it needs to decide
whether to use value or dictionary encoding. In order to make an educated decision, it reads a row
sample during the fi rst scan of the source, and it chooses a compression algorithm depending on the
values found.

If the data type of the column is not Integer, then the choice is straightforward: SSAS goes for
dictionary encoding. For integer values, it uses some heuristics, for example:

 ■ If the numbers in the column increase linearly, it is probably a primary key and value encoding is
the best option.

 ■ If all numbers fall within a defi ned range of values, then value encoding is the way to go.

 ■ If the numbers fall within a very wide range of values, with values very different from another,
then dictionary encoding is the best choice.

Once the decision is made, SSAS starts to compress the column using the chosen algorithm. Unfor-
tunately, it sometimes makes the wrong decision and fi nds this out only very late during processing.
For example, SSAS might read a few million rows where the values are in the 100–201 range, so value
encoding is the best choice. After those millions of rows, suddenly an outlier appears, such as a large
number like 60,000,000. Obviously, the initial choice was wrong because the number of bits needed to
store such a large number is huge. What should SSAS do then? Instead of continuing with the wrong
choice, SSAS can decide to re-encode the column. This means that the entire column is re-encoded
using dictionary encoding. This process might take a long time because SSAS needs to reprocess the
whole column.

For very large datasets where processing time is important, a best practice is the following: the data
distribution in the fi rst set of rows read by SSAS should be of such quality that all types of values are
represented. This in turn reduces re-encoding to a minimum. Developers do so by providing a quality
sample in the fi rst partition processed or by providing an encoding hint parameter to the column.

Note The Encoding Hint property was introduced in Analysis Services 2017, and it is not
available in all products.

9781509306978_print.indb 5599781509306978_print.indb 559 21/05/19 5:31 pm21/05/19 5:31 pm

560 CHAPTER 17 The DAX engines

Finding the best sort order
As we said earlier, RLE’s effi ciency strongly depends on the sort order of the table. All the columns of
the same table are sorted the same way to keep integrity of the data at the table level. In large tables
it is important to determine the best sorting of data to improve the effi ciency of RLE and to reduce the
memory footprint of the model.

When SSAS reads a table, it tries different sort orders to improve the compression. In a table with
many columns, this is a very expensive operation. SSAS then sets an upper limit to the time it can spend
fi nding the best sort order. The default can change with different versions of the engine. At printing
time, the default is currently 10 seconds per million rows. One can modify its value in the Processing-
TimeboxSecPerMRow entry in the confi guration fi le of the SSAS service. Power BI and Power Pivot do
not provide access to this value.

Note SSAS searches for the best sort order in the data, using a heuristic algorithm that cer-
tainly also considers the physical order of the rows it receives. For this reason, although one
cannot force the sort order used by VertiPaq for RLE, it is possible to provide the engine with
data sorted arbitrarily. The VertiPaq engine includes this sort order in the options to consider.

To attain maximum compression, one can set the value of ProcessingTimeboxSecPerMRow to 0,
which means SSAS stops searching only when it fi nds the best compression factor. The benefi t in terms
of space usage and query speed can vary. On the other hand, processing will take much longer because
the engine is being instructed to try all the possible sort orders before making a choice.

Generally, developers should put the columns with the least number of unique values fi rst in the sort
order because these columns are likely to generate many repeating values. Still, keep in mind that fi nd-
ing the best sort order is a very complex task. It only makes sense to spend time on this when the data
model is really large (in the order of a few billion rows). Otherwise, the benefi t obtained from these
extreme optimizations is limited.

Once all the columns are compressed, SSAS completes the processing by building calculated col-
umns, tables, hierarchies, and relationships. Hierarchies and relationships are additional data structures
needed by VertiPaq to execute queries, whereas calculated columns and tables are added to the model
by using DAX expressions.

Calculated columns, like all other columns, are compressed after they are computed. However, cal-
culated columns are not the same as standard columns. Calculated columns are compressed during the
fi nal stage of processing, when all the other columns have already fi nished their compression. Conse-
quently, VertiPaq does not consider calculated columns when choosing the best sort order for a table.

Consider creating a calculated column that results in a Boolean value. There being only two values,
the calculated column can be compressed very well (1 bit is enough to store a Boolean value), and it is
a very good candidate to be fi rst in the sort order list. Indeed, doing this, the table shows all the True

9781509306978_print.indb 5609781509306978_print.indb 560 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 561

values fi rst and only later the False values. Being a calculated column, the sort order is already defi ned
by other columns; it might be the case that with the defi ned sort order, the calculated column fre-
quently changes its value. In that case, the column ends up with less-than-optimal compression.

Whenever there is a chance to compute a column in DAX or in the data source (including Power
Query), keep in mind that computing it in the data source results in slightly better compression. Many
other factors may drive the choice of DAX instead of Power Query or SQL to calculate the column. For
example, the engine automatically computes a calculated column in a large table depending on a col-
umn in a small table, whenever said small table has a partial or full refresh. This happens without having
to reprocess the entire large table, which would be necessary if the computation were in Power Query
or SQL. This is something to consider when looking for the optimal compression.

Note A calculated table has the same compression as a regular table, without the side
effects described for calculated columns. However, creating a calculated table can be quite
expensive. Indeed, a calculated table requires enough memory to keep a copy of the entire
uncompressed table in memory before it is compressed. Carefully think before creating a
large calculated table because of the memory pressure generated at refresh time.

Understanding hierarchies and relationships
As we said in the previous sections, at the end of table processing, SSAS builds two additional data
structures: hierarchies and relationships.

There are two types of hierarchies: attribute hierarchies and user hierarchies. Hierarchies are data
structures used primarily to improve performance of MDX queries and also to improve certain search
operations in DAX. Because the concept of hierarchy is not present in the DAX language, hierarchies
are not relevant to the topics of this book.

Relationships, on the other hand, play an important role in the VertiPaq engine; it is important to
understand how they work for extreme optimizations. We will describe the role of relationships in a
query in following chapters. Here, we are only interested in defi ning what relationships are, in terms of
VertiPaq storage and behavior.

A relationship is a data structure that maps IDs from one table to row numbers in another table. For
example, consider the columns ProductKey in Sales and ProductKey in Product. These two columns are
used to build the relationship between the two tables. Product[ProductKey] is a primary key. Because
it is a primary key, the engine used value encoding and no compression at all. Indeed, RLE could not
reduce the size of a column in the absence of duplicated values. On the other hand, Sales[ProductKey]
is likely to have been dictionary-encoded and compressed. This is because it probably contains many
repetitions. Therefore, despite the columns having the same name and data type, their internal data
structures are completely different.

9781509306978_print.indb 5619781509306978_print.indb 561 21/05/19 5:31 pm21/05/19 5:31 pm

562 CHAPTER 17 The DAX engines

Moreover, because they are part of a relationship, VertiPaq knows that queries are likely to use the
columns very often placing a fi lter on Product and also expecting to fi lter Sales. VertiPaq would be very
slow if—every time it needs to move a fi lter from Product to Sales—it had to perform the following:
retrieve values from Product[ProductKey], search them in the dictionary of Sales[ProductKey], and fi nally
retrieve the IDs of Sales[ProductKey] to place the fi lter.

Therefore, to improve query performance, VertiPaq stores relationships as pairs of IDs and row
numbers. Given the ID of a Sales[ProductKey], it can immediately fi nd the corresponding rows of
Product that match the relationship. Relationships are stored in memory, as any other data structure of
VertiPaq. Figure 17-8 shows how the relationship between Sales and Product is stored in VertiPaq.

Amount ProductKey

25.00 1

12.50 2

2.25 3

2.50 3

14.00 4

25.00 5

Relationship

ProductKey Product

1 Coffee

2 Pasta

3 Tomato

BLANK BLANK

Row Num

1

2

3

4

Sales[ProductKey] Product[Row Num]

1 1

2 2

3 3

4 4

5 4

ProductSales

FIGURE 17-8 The fi gure shows the relationship between Sales and Product.

Even though the structure does not seem to be very intuitive, later in this chapter we describe how
VertiPaq uses relationships and why relationships have this very specifi c structure. It would come
naturally that it is a complex structure optimized for performance.

Understanding segmentation and partitioning
Compressing a table of several billion rows in one single step would be extremely memory-intensive
and time-consuming. Therefore, the table is not processed as a single unit. Instead, during process-
ing, SSAS splits the table into segments that contain 8 million rows each by default. When a segment
is completely read, the engine starts to compress the segment while reading the next segment in the
meantime.

It is possible to confi gure the segment size in SSAS using the DefaultSegmentRowCount entry in the
confi guration fi le of the service (or in the server properties in Management Studio). In Power BI Desk-
top and Power Pivot, the segment size has a set value of 1 million rows, and it cannot be changed.

9781509306978_print.indb 5629781509306978_print.indb 562 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 563

Segmentation is important for several reasons, including query parallelisms and compression effi -
ciency. When querying a table, VertiPaq uses the segments as the basis for parallelism: It uses one core
per segment when scanning a column. By default, SSAS always uses one single thread to scan a table
with 8 million rows or less. We start observing parallelism in action only on much larger tables.

The larger the segment, the better the compression. Having the option of analyzing more rows in
a single compression step, VertiPaq can achieve better compression levels. On very large tables, it is
important to test different segment sizes and measure the memory usage to achieve optimal compres-
sion. Keep in mind that increasing the segment size can negatively affect processing time: The larger
the segment, the slower the processing.

Although the dictionary is global to the table, bit-sizing takes place at the segment level. Thus, if a
column has 1,000 distinct values but only two distinct values are used in a specifi c segment, then that
column will be compressed to a single bit for that segment.

If segments are small, then the parallelism at query time is increased. This is not always a good thing.
While it is true that scanning the column is faster because more cores can do that in parallel, VertiPaq
needs more time at the end of the scan to aggregate partial results computed by the different threads.
If a partition is too small, then the time required for managing task switching and fi nal aggregation is
more than the time needed to scan the data, with a negative impact on the overall query performance.

During processing, the treatment of the fi rst segment is particular if the table has only one partition.
Indeed, the fi rst segment can be larger than DefaultSegmentRowCount. VertiPaq reads twice the size
of DefaultSegmentRowCount and starts to segment a table only if the table contains more rows. This
does not apply to a partitioned table. If a table is partitioned, then all the segments are smaller than the
default segment row count. Consequently, in SSAS a nonpartitioned table with 10 million rows is stored
as a single segment. On the other hand, a table with 20 million rows uses three segments: two contain-
ing 8 million rows and one containing 4 million rows. In Power BI Desktop and Power Pivot, VertiPaq
uses multiple segments for tables with more than 2 million rows.

Segments cannot exceed the partition size. If the partitioning schema of a model creates partitions
of only 1 million rows, then all the segments will be smaller than 8 million rows; namely, they will be
same as the partition size. Overpartitioning a table is a common mistake made by novices to optimize
performance. What they obtain is the opposite effect: Creating too many small partitions typically
lowers performance.

Using Dynamic Management Views
SSAS enables the discovery of all the information about the data model using Dynamic Management
Views (DMV). DMVs are extremely useful to explore how a model is compressed, the space used by
different columns and tables, the number of segments in a table, or the number of bits used by col-
umns in different segments.

DMVs can run from inside SQL Server Management Studio. Regardless, we suggest you use DAX
Studio; it offers a list of all DMVs in a simpler way without the need to remember them or to reopen this

9781509306978_print.indb 5639781509306978_print.indb 563 21/05/19 5:31 pm21/05/19 5:31 pm

564 CHAPTER 17 The DAX engines

book looking for the DMV name. However, a more effi cient way to use DMVs is with the free VertiPaq
Analyzer tool (http://www.sqlbi.com/tools/vertipaq-analyzer/), which displays data from DMVs and
organizes them in useful reports, as shown in Figure 17-9.

FIGURE 17-9 VertiPaq Analyzer shows statistics about a data model in an effi cient manner.

Although DMVs use an SQL-like syntax, the full SQL syntax is not available. DMVs do not run inside
SQL Server. They are only a convenient way to discover the status of SSAS and to gather information
about data models.

There are different DMVs, divided into two main categories:

 ■ SCHEMA views: These return information about SSAS metadata, such as database names,
tables, and individual columns. They are used to gather information about data types, names,
and similar data, including statistical information about numbers of rows and unique values
stored in columns.

 ■ DISCOVER views: They are intended to gather information about the SSAS engine and/or dis-
cover statistics information about objects in a database. For example, one can use views in the
discover area to enumerate the DAX keywords, the number of connections and sessions that are
currently open, or the traces running.

In this book, we do not describe the details of all the views because doing so would be going off
topic. More information is available in Microsoft documentation on the web. Instead, we want to
provide a few hints and point out the most useful DMVs related to databases used by DAX. Moreover,
while many DMVs report useful information in many columns, in this book we describe the most
interesting ones related to the internal structure.

A fi rst useful DMV to discover the memory usage of all the objects in the SSAS instance is DIS-
COVER_OBJECT_MEMORY_USAGE. This DMV returns information about all the objects in all the data-
bases in the SSAS instance. DISCOVER_OBJECT_MEMORY_USAGE is not limited to the current database.
For example, the following query can be run in DAX Studio or SQL Server Management Studio:

SELECT * FROM $SYSTEM.DISCOVER_OBJECT_MEMORY_USAGE

Figure 17-10 shows a small excerpt of the result of the previous query. There are many more columns
and rows, so analyzing this detailed information can be very time-consuming.

9781509306978_print.indb 5649781509306978_print.indb 564 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 565

FIGURE 17-10 Partial result of the DISCOVER_OBJECT_MEMORY_USAGE DMV.

The output of the DMV is a table containing many rows that are very hard to read. The out-
put structure is a parent/child hierarchy that starts with the instance name and ends with indi-
vidual column information. Although the raw dataset is nearly impossible to read, one can
build a Power Pivot data model on top of this query, implementing the parent/child hierar-
chy structure and browsing the full memory map of the instance. Kasper De Jonge published
a workbook on his blog that does exactly this. It is available at http://www.powerpivotblog.nl/
what-is-using-all-that-memory-on-my-analysis-server-instance/.

Other useful DMVs to check the current state of the Tabular engine are DISCOVER_SESSIONS, DIS-
COVER_CONNECTIONS, and DISCOVER_COMMANDS. These DMVs provide information about active
sessions, connections, and executed commands. These views are used by an open source tool called
SSAS Activity Monitor, available at https://github.com/RichieBzzzt/SSASActivityMonitor/tree/master/
Download, that provides the same information (plus much more) in a more convenient way.

There are also DMVs that analyze the distribution of data in columns and tables, and the memory
required for compressed data. These are TMSCHEMA_COLUMN_STORAGES and DISCOVER_STOR-
AGE_TABLE_COLUMNS. The former is the more recent one; the latter is there for compatibility with
older versions of the engine (compatibility level 1103 or lower).

Finally, a very useful DMV to analyze calculation dependency is DISCOVER_CALC_DEPENDENCY.
This DMV can be used to create a graph of dependencies between calculations in the data model,
including calculated columns, calculated tables, and measures. Figure 17-11 shows an excerpt of the
result of this DMV.

FIGURE 17-11 Partial result of the DISCOVER_CALC_DEPENDENCY DMV.

Understanding the use of relationships in VertiPaq

When a DAX query generates requests to the VertiPaq storage engine, the presence of relationships
in the data model allows a quicker transfer of the fi lter context from one table to another. The internal
implementation of a relationship in VertiPaq is worth knowing because relationships might affect the
performance of a query even though most of the calculation happens in the storage engine.

9781509306978_print.indb 5659781509306978_print.indb 565 21/05/19 5:31 pm21/05/19 5:31 pm

566 CHAPTER 17 The DAX engines

To understand how relationships work, we start from the analysis of a query that only involves one
table, Sales:

EVALUATE
ROW (
 "Result", CALCULATE (
 COUNTROWS (Sales),
 Sales[Quantity] > 1
)
)

-- Result
-- 20016

A developer used to working with tables in relational databases might suppose that the engine
iterates the Sales table, tests the value of the Quantity column for each row of Sales, and increments
the returned value if the Quantity value is greater than 1. In fact, VertiPaq does it better: VertiPaq only
scans the Quantity column because it already provides the number of rows for the entire table. There-
fore, a single column scan is enough to solve the entire query.

If we write a similar query using the column of another table as a fi lter, then scanning a single col-
umn is no longer enough to produce the result. For example, consider the following query that counts
the number of rows in Sales related to products of the Contoso brand:

EVALUATE
ROW (
 "Result", CALCULATE (
 COUNTROWS (Sales),
 'Product'[Brand] = "Contoso"
)
)

-- Result
-- 37984

This time, we are using two different tables: Sales and Product. Solving this query requires a bit more
effort. Indeed, because the fi lter is on Product and the table to aggregate is Sales, it is not possible to
scan a single column.

If you are not used to columnar databases, you probably think that, to solve the query, the engine
should iterate the Sales table, follow the relationship with Product, and sum 1 if the product brand is
Contoso, 0 otherwise. This would be an algorithm like the following DAX code:

EVALUATE
ROW (
 "Result", SUMX (
 Sales,
 IF (RELATED ('Product'[Brand]) = "Contoso", 1, 0)
)

9781509306978_print.indb 5669781509306978_print.indb 566 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 567

)

-- Result
-- 37984

Although this is a simple algorithm, it contains much more complexity than expected. Indeed, if we
carefully think about the columnar nature of VertiPaq, we realize that this query involves three different
columns:

 ■ Product[Brand] used to fi lter the Product table.

 ■ Product[ProductKey] used by the relationship between Product and Sales.

 ■ Sales[ProductKey] used on the Sales side of the relationship.

Iterating over Sales[ProductKey], searching the row number in Product scanning Product[ProductKey],
and fi nally gathering the brand in Product[Brand] would be extremely expensive. The process requires a
lot of random reads to memory, with negative consequences on performance. Therefore, VertiPaq uses
a completely different algorithm, optimized for columnar databases.

First, VertiPaq scans the Product[Brand] column and retrieves the row numbers of the Product table
where Product[Brand] is Contoso. As shown in Figure 17-12, VertiPaq scans the Brand dictionary (1),
retrieves the encoding of Contoso, and fi nally scans the segments (2) searching for the row numbers in
the product table where the dictionary ID equals 0 (corresponding to Contoso), returning the indexes
to the rows found (3).

Search «Contoso»

Output row numbers

Row

2

3

…

12

3

Product[Brand]

Row ID

1 2

2 0

3 0

4 1

… …

ID Brand

0 Contoso

1 Fabrikam

2 Proseware

3 Tailspin Toys

Dictionary

Data Rows

FIGURE 17-12 The output of a brand scan is the list of rows where Brand equals Contoso.

9781509306978_print.indb 5679781509306978_print.indb 567 21/05/19 5:31 pm21/05/19 5:31 pm

568 CHAPTER 17 The DAX engines

At this point, VertiPaq knows which rows in the Product table contain the given brand. The relation-
ship between Product and Sales enables VertiPaq to translate the row numbers of Product in internal
data IDs for Sales[ProductKey]. VertiPaq performs a lookup of the selected row numbers to determine
the values of Sales[ProductKey] valid for those rows, as shown in Figure 17-13.

Look up row number Output IDs

2
ID

5

Row Num

2

3

…

Product[RowNumber]

Sales[ProductKey]

Relationship

Product
Row Num

Sales
[ProductKey]

1 1

2 5

3 8

4 7

5 6

6 100

7 111

8 87

9 54

… …

1

FIGURE 17-13 VertiPaq scans the product keys in the relationship to retrieve the IDs where brand equals Contoso.

The last step is to apply the fi lter on the Sales table. Since VertiPaq already has the list of values of
Sales[ProductKey], it is enough to scan the Sales[ProductKey] column to transform this list of values into
row numbers and fi nally count them. If, instead of computing a COUNTROWS, VertiPaq had to perform
the SUM of a column, then it would perform an additional step transforming row numbers into column
values to perform the last step.

The important takeaway is that the cost of a relationship depends on the cardinality of the column
that defi nes the relationship. Even though the previous query fi ltered only one brand, the cost of the
relationship was the number of products for that brand. The lower the cardinality of a relationship,
the better. When the cardinality of a relationship is above one million unique values, the end user can
experience slower performance. A performance degradation is already measurable when the relation-
ship has 100,000 unique values. VertiPaq aggregations can mitigate the impact of high-cardinality rela-
tionships by pre-aggregating data at a different granularity, removing the cost of traversing expensive
relationships at query time. We briefl y discuss aggregations later in this chapter.

Introducing materialization

Now that we have provided a basic explanation of how VertiPaq stores data in memory, we can
describe what materialization is. Materialization is a step of the query execution that occurs when using
columnar databases. Understanding when and how it happens is of paramount importance.

9781509306978_print.indb 5689781509306978_print.indb 568 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 569

The basic principle about materialization is that every time the formula engine sends a request to
the storage engine, the formula engine receives an uncompressed table that is generated dynamically
by the storage engine. This special temporary table is called a datacache. A datacache is always the
materialization of data that will be consumed by the formula engine, regardless of the storage engine
used. Both VertiPaq and DirectQuery generate datacaches.

A large materialization happens when a single storage engine query produces a large datacache.
The conditions for a DAX query to produce a large materialization depend on many factors; basically,
whenever the storage engine is not able to execute all the operations required by the DAX query, the
formula engine will do the work using a copy of the data owned by the storage engine. Be mindful that
the formula engine cannot access the raw data directly, whether VertiPaq or DirectQuery. To access the
raw data, the formula engine needs to ask the storage engine to retrieve the data and save it in a data-
cache. The amount and kind of materialization can be very different depending on the storage engine
used. In this book, we only describe how to reduce the materialization in VertiPaq. For DirectQuery
there could be differences between different data source drivers. Even so, the tools used to measure
the materialization produced by the storage engine are the same used for VertiPaq.

The next chapters describe how to measure the materialization produced by a DAX query using spe-
cifi c tools and metrics. In this section, we just introduce the concept of materialization and how it relates
to the result of a query. The cardinality of the result of every DAX query defi nes the optimal materializa-
tion. For example, the following query returns a single row, counting the number of rows in a table:

EVALUATE
ROW (
 "Result", COUNTROWS (Sales)
)

-- Result
-- 100231

The optimal materialization for the previous query is a datacache with only one row. This means that
the entire calculation is performed within the storage engine. The next query returns one row for each
year; therefore, the optimal materialization is three rows, one for each year with sales:

EVALUATE
SUMMARIZECOLUMNS (
 'Date'[Calendar Year],
 "Sales Amount", [Sales Amount]
)

-- Calendar Year	Sales Amount
-- CY 2007 | 11,309,946.12
-- CY 2008 | 9,927,582.99
-- CY 2009 | 9,353,814.87

Whenever the storage engine produces a single datacache with the same cardinality as the result
of the DAX query, that is called a late materialization. If the storage engine produces more datacaches
and/or the datacache produced has more rows than those displayed in the result, we have an early

9781509306978_print.indb 5699781509306978_print.indb 569 21/05/19 5:31 pm21/05/19 5:31 pm

570 CHAPTER 17 The DAX engines

materialization. With a late materialization the formula engine does not have to aggregate data,
whereas with an early materialization the formula engine must perform operations like joining and
grouping, which result in slower queries for the end users.

Predicting materialization is not easy without a deep knowledge of the VertiPaq engine. For exam-
ple, the materialization of the following query is optimal because the entire calculation is executed
within the storage engine:

EVALUATE
VAR LargeOrders =
 CALCULATETABLE (
 DISTINCT (Sales[Order Number]),
 Sales[Quantity] > 1
)
VAR Result =
 ROW (
 "Orders", COUNTROWS (LargeOrders)
)
RETURN
 Result

-- Orders
-- 8388

On the other hand, the next query creates a temporary table that corresponds to the number of
unique combinations between customers and dates related to sales with a quantity greater than one
(for a total of 6,290 combinations):

EVALUATE
VAR LargeSalesCustomerDates =
 CALCULATETABLE (
 SUMMARIZE (Sales, Sales[CustomerKey], Sales[Order Date]),
 Sales[Quantity] > 1
)
VAR Result =
 ROW (
 "CustomerDates", COUNTROWS (LargeSalesCustomerDates)
)
RETURN
 Result

-- CustomerDates
-- 6290

The latter query has a materialization of 6,290 rows, even though there is only one row in the result.
The two queries are similar: a table is evaluated and then its rows are counted. The reason why the
former has an earlier materialization is because it involves a single column, whereas the calculation
requiring the combinations of two columns cannot be solved by the storage engine by just scanning
the two columns. In general, any operation involving a single column has higher chances of being
solved in the storage engine, but it would be a mistake to believe that involving multiple columns is

9781509306978_print.indb 5709781509306978_print.indb 570 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 571

always an issue. For example, the following query has an optimal late materialization even though it
multiplies two columns from two tables, Sales and Product:

DEFINE
 MEASURE Sales[Sales Amount] =
 SUMX (
 Sales,
 Sales[Quantity] * RELATED ('Product'[Unit Price])
)
EVALUATE
ROW ("Sales Amount", [Sales Amount])

-- Sales Amount
-- 33,690,148.51

In complex queries it is nearly impossible to obtain an optimal late materialization. Therefore, the
effort for optimizing a query is reducing the materialization, pushing most of the workload to the stor-
age engine, if possible.

Introducing aggregations

A data model can have multiple tables related to the same original raw data. The purpose of this
redundancy is to offer alternative ways to the storage engine to retrieve the data faster. The tables used
to this purpose are called aggregations.

An aggregation is nothing but a pregrouped version of the original table. By pre-aggregating data, one
reduces the number of columns (hence, the number of rows) and replaces values with their aggregate.

As an example, consider the Sales table in Figure 17-14, which has one row for each date, product,
and customer.

Date Product Customer Quantity Amount

2018-09-01 AV010 C092 3 29.97

2018-09-01 AV022 C092 1 16.40

2018-09-01 AV010 C054 2 19.98

2018-09-01 FL892 C248 1 190.00

2018-09-01 GT400 C127 1 999.00

2018-09-02 AV010 C115 3 29.97

2018-09-02 FL580 C127 1 790.00

2018-09-02 AV022 C772 2 32.80

2018-09-02 KB723 C614 2 59.98

2018-09-02 FL580 C614 1 790.00

… … … … …

Sales

FIGURE 17-14 The original Sales table has a high number of rows.

9781509306978_print.indb 5719781509306978_print.indb 571 21/05/19 5:31 pm21/05/19 5:31 pm

572 CHAPTER 17 The DAX engines

If a query requires the sum of Quantity or Amount by Date, the storage engine must evaluate and
aggregate all the rows with the same Date. In VertiPaq this operation is relatively quick, thanks to the
compression and the optimized algorithms that scan the memory. DirectQuery is usually much slower
than VertiPaq to perform the same operation. Anyway, VertiPaq also requires time to scan billions of
rows rather than millions of rows. Therefore, there could be an advantage in creating an alternate—
smaller—table to use in place of the original one.

Figure 17-15 shows the content of a Sales table aggregated by Date. In this case, there is only one
row for every date, and the Quantity and Amount columns store the sum of the values included in the
original rows, pre-aggregated by Date.

Date Quantity Amount

2018-09-01 8 1,255.35

2018-09-02 9 1,702.75

… … …

Sales Agg Date

FIGURE 17-15 The Sales Agg Date table has one row for every date.

In an aggregated table, every column is either a “group by” or an aggregation of the original table.
If a request to the storage engine only needs columns that are present in an aggregation table, then
the engine uses the aggregation rather than the original source. The Sales Agg Date table shown in
Figure 17-15 can be mapped as an aggregation of Sales by specifying the role of each column:

 ■ Date: GroupBy Sales[Date]

 ■ Quantity: Sum Sales[Quantity]

 ■ Amount: Sum Sales[Amount]

The aggregation type must be specifi ed for every column that is not a “group by.” The aggregation
types available are Count, Min, Max, Sum, and count rows of the table. A column in an aggregation
table can only map native columns in the original table; it is not possible to specify an aggregation over
a calculated column.

Important Aggregations cannot be used to optimize the execution of complex calculations
in DAX. The only purpose of aggregations is to reduce the execution time of storage engine
queries. Aggregations can be useful for relatively small tables in DirectQuery, whereas
aggregations for VertiPaq should be considered only for tables with billions of rows.

A table in a Tabular model can have multiple aggregations with different priorities in case there are
multiple aggregations compatible with a specifi c storage engine request. Moreover, aggregations and
original tables can be stored with different storage engines. A common scenario is storing aggrega-
tions in VertiPaq to improve the performance of large tables accessed through DirectQuery. Neverthe-
less, it is also possible to create aggregations in the same storage engine used for the original table.

9781509306978_print.indb 5729781509306978_print.indb 572 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 573

Note There could be limitations in storage engines available for aggregations and original
tables, depending on the version and the license of the product used. This section provides
general guidance on the concept of aggregations, which are one of the tools to optimize
performance of a DAX query as described in the following chapters.

Aggregations are powerful, but they require a lot of attention to detail. An incorrect defi nition of
aggregations produces incorrect or inconsistent results. It is a responsibility of the data modeler to
guarantee that a query executed in an aggregation produces the same result as an equivalent query
executed on the original table. Aggregations are an optimization tool and should be used only when-
ever strictly necessary. The presence of aggregations requires additional work to defi ne and maintain
the aggregation tables in the data model. One should therefore use them only after having checked
that a performance benefi t exists.

Choosing hardware for VertiPaq

Choosing the right hardware is critical for a solution based on a Tabular model using the VertiPaq stor-
age engine. Spending more does not always mean having a better machine. This section describes how
to choose the right hardware for a Tabular model.

Since the introduction of Analysis Services 2012, we helped several companies adopt the new Tabu-
lar model in their solutions. A very common issue was that when going into production, performance
was slower than expected. Worse, sometimes it was slower than in the development environments.
Most of the times, the reason for that was incorrect hardware sizing, especially when the server was in
a virtualized environment. As we will explain, the problem is not the use of a virtual machine in itself.
Instead, the problem is more likely the technical specs of the underlying hardware. A very complete
and detailed hardware-sizing guide for Analysis Services Tabular is available in the whitepaper titled
“Hardware Sizing a Tabular Solution (SQL Server Analysis Services)” (http://msdn.microsoft.com/en-us/
library/jj874401.aspx). The goal of this section is to provide a quick guide to understand the issues
affecting many data centers when they host a Tabular solution. Users of Power Pivot or Power BI Desk-
top on a personal computer can skip the details about Non-Uniform Memory Access (NUMA) support,
but all the other considerations are equally true for choosing the right hardware.

Hardware choice as an option
The fi rst question is whether one can choose their hardware or not. The problem of using a virtual
machine for a Tabular solution is that often the hardware has already been selected and installed. One
can only infl uence the number of cores and the amount of RAM that are assigned to the server. Unfor-
tunately, these parameters are not so relevant for performance. If there are limited choices available,
one should collect information about the CPU model and clock of the host server as soon as possible.
If this information is not accessible, ask for a small virtual machine running on the same host server
and run the Task Manager: The Performance tab shows the CPU model and the clock rate. With this

9781509306978_print.indb 5739781509306978_print.indb 573 21/05/19 5:31 pm21/05/19 5:31 pm

574 CHAPTER 17 The DAX engines

information, one can predict whether the performance will be worse than an average modern laptop.
Unfortunately, chances are that many developers will be in that position. If so, then they must sharpen
their political skills to convince the right people that running Tabular on that server is a bad idea. If the
host server is a good machine, then one still needs to avoid the pitfall of running a virtual machine on
different NUMA nodes (more on this later).

Set hardware priorities
If it is possible to infl uence the hardware selection, this is the order of priorities:

 1. CPU Clock and Model: the faster, the better.

 2. Memory Speed: the faster, the better.

 3. Number of Cores: the higher, the better. Still, a few fast cores are way better than many
slow cores.

 4. Memory Size.

Disk I/O performance is not on the list. Indeed, it is not important at query time although it could
have a role in improving the speed of a disaster recovery. There is only one condition (paging) where
disk I/O affects performance, and we discuss it later in this section. However, the RAM of the system
should be sized so that there will be no paging at all. Our reader should allocate the budget on CPU
and memory speed, memory size, and not waste money on disk I/O bandwidth. The following sections
include information to consider for such allocation.

CPU model
The most important factors that affect the speed of code running in VertiPaq are CPU clock and model.
Different CPU models might have a different performance at the same clock rate, so considering the
clock alone is not enough. The best practice is to run a benchmark measuring the different perfor-
mance in queries that stress the formula engine. An example of such a query is the following:

DEFINE
VAR t1 =
 SELECTCOLUMNS (CALENDAR (1, 10000), "x", [Date])
VAR t2 =
 SELECTCOLUMNS (CALENDAR (1, 10000), "y", [Date])
VAR c =
 CROSSJOIN (t1, t2)
VAR result =
 COUNTROWS (c)
EVALUATE
 ROW ("x", result)

This query can run in DAX Studio or SQL Server Management Studio connected to any Tabular
model; the execution is intentionally slow and does not produce any meaningful result. Using a query
of a typical workload for a specifi c data model is certainly better because performance might vary on

9781509306978_print.indb 5749781509306978_print.indb 574 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 575

different hardware depending on the memory allocated to materialize intermediate results; the query
in the preceding code block has a minimal use of memory.

For example, this query runs in 9.5 seconds on an Intel i7-4770K 3.5 GHz, and in 14.4 seconds on
an Intel i7-6500U 2.5 GHz. These CPUs run a desktop workstation and a notebook, respectively. Do
not assume that a server will be faster. You should always evaluate hardware performance by running
the same test with the same version of the engine and looking at the results because they are often
surprising.

In general, Intel Xeon processors used on a server are E5 and E7 series, and it is common to fi nd
clock speed around 2–2.4 GHz even with a very high number of cores available. You should look for a
clock speed of 3 GHz or more. Another important factor is the L2 and L3 cache size: The larger, the bet-
ter. This is especially important for large tables and relationships between tables based on columns that
have more than 1 million unique values.

The reason why CPU and cache are so important for VertiPaq is clarifi ed in Table 17-1, which com-
pares the typical access time of data stored at different distances from the CPU. The column with
human metrics represents the same difference using metrics that are easier for humans to understand.

TABLE 17-1 Expanded versions of the tables

Access Access Time Human Metrics

1 CPU cycle 0.3 ns 1 s

L1 cache 0.9 ns 3 s

L2 cache 2.8 ns 9 s

L3 cache 12.9 ns 43 s

RAM access 120 ns 6 min

Solid-state disk I/O 50–150 μs s 2–6 days

Rotational disk I/O 1–10 ms 1–12 months

As shown here, the fastest storage in a PC is not the RAM; it is the core cache. It should be clear that
a large L2 cache is important, and the CPU speed plays a primary role in determining performance.
The same table also clarifi es why keeping data in RAM is so much better than accessing data in other,
slower storage devices.

Memory speed
The memory speed is an important factor for VertiPaq. Every operation made by the engine accesses
memory at a very high speed. When the RAM bandwidth is the bottleneck, performance counters
report CPU usage instead of I/O waits. Unfortunately, there are no performance counters that monitor
the time spent waiting for the RAM access. In Tabular, this amount of time can be relevant, and it is hard
to measure.

9781509306978_print.indb 5759781509306978_print.indb 575 21/05/19 5:31 pm21/05/19 5:31 pm

576 CHAPTER 17 The DAX engines

In general, you should use RAM that has at least 1,833 MHz; however, if the hardware platform
permits, you should select faster RAM—2,133 MHz or more.

Number of cores
VertiPaq splits execution on multiple threads only when the table involved has multiple segments. Each
segment contains 8 million rows by default (1 million on Power BI and Power Pivot). A CPU with eight
cores will not use all of them in a single query unless a table has at least 64 million rows, or 8 million
rows in Power BI and Power Pivot.

For these reasons, scalability over multiple cores is effective only for very large tables. Raising the
number of cores improves performance for a single query only when it hits a large table, 200 million
rows or more. In terms of scalability (number of concurrent users), a higher number of cores might not
improve performance if users access the same tables as they would contend access to shared RAM.
A better way to increase the number of concurrent users is to use more servers in a load-balancing
confi guration.

The best practice is to get the maximum number of cores available on a single socket, getting the
highest clock rate possible. Having two or more sockets on the same server is not good, even though
Analysis Services Tabular recognizes the NUMA architecture. NUMA requires a more expensive inter-
socket communication whenever a thread running on a socket accesses memory allocated by another
socket. You can fi nd more details about NUMA architecture in Hardware Sizing a Tabular Solution (SQL
Server Analysis Services) at http://msdn.microsoft.com/en-us/library/jj874401.aspx.

Memory size
The entire volume of data managed by VertiPaq must be stored in memory. Additional RAM is required
to execute process operations—unless there is a separate process server—and to execute queries.
Optimized queries usually do not have a high request for RAM, but a single query can materialize tem-
porary tables that could be very large. Database tables have a high compression rate, whereas materi-
alization of intermediate tables during a single query generates uncompressed data.

Having enough memory only guarantees that a query will end by returning a result, but increas-
ing available RAM does not produce any performance improvement. Cache used by Tabular does
not increase just because there is more RAM available. However, a condition of low available memory
might negatively affect query performance if the server starts paging data. Developers should have
enough memory to store all the data of their database and to avoid materialization during query
execution. More memory than this is a waste of resources.

Disk I/O and paging
You should not allocate budget on storage I/O for Analysis Services Tabular. This is very different from
Multidimensional, where random I/O operation on disk occurs very frequently, especially in certain
measures. In Tabular, there are no direct storage I/O operations during a query. The only event when

9781509306978_print.indb 5769781509306978_print.indb 576 21/05/19 5:31 pm21/05/19 5:31 pm

 CHAPTER 17 The DAX engines 577

this might happen is under low memory conditions. However, it is less expensive and more effective to
provide more RAM to a server than trying to improve performance by increasing storage I/O through-
put when there is systematic paging caused by low memory availability.

Best practices in hardware selection
You should measure performance before choosing the hardware for SSAS Tabular. It is common to
observe a server running twice as slow as a development workstation, even if the server is very new.
This is because a server designed to be scalable—especially for virtual machines—does not usually
perform very well for activities made by a single thread. However, this type of workload is very com-
mon in VertiPaq. One will need time and numbers, doing a proper benchmark, to convince a company
that a “standard server” could be the weak point of their entire BI solution.

Conclusions

In this fi rst chapter about optimization we described the internal architecture of a Tabular engine, and
we provided the basic information about how data is stored in VertiPaq. As you will see in the following
chapters, this knowledge is of paramount importance to optimize your code.

These are the main topics you learned in the chapter:

 ■ There are two engines inside a Tabular server: the formula engine and storage engine.

 ■ The formula engine is the top-level query engine. It is very powerful but rather limited in terms
of speed because it is single-threaded.

 ■ There are two storage engines: VertiPaq and DirectQuery.

 ■ VertiPaq is an in-memory columnar database. It stores information on a column-by-column
basis, providing very quick access to single columns. Using multiple columns in a single DAX
formula might require materialization.

 ■ VertiPaq compresses columns to reduce the memory scan time. Optimizing a model means
optimizing the compression by reducing the cardinality of a column as much as possible.

 ■ Both VertiPaq and DirectQuery storage engines can coexist in the same model; this is called a
composite model. A single query can use only VertiPaq, only DirectQuery, or both, depending
on the storage model of the tables involved in the query.

Now that we have provided the basic knowledge about the internals of the engine, in the next
chapter we start learning a few techniques to optimize VertiPaq storage to reduce both the size of a
data model and its execution time.

9781509306978_print.indb 5779781509306978_print.indb 577 21/05/19 5:31 pm21/05/19 5:31 pm

9781509306978_print.indb 5789781509306978_print.indb 578 21/05/19 5:31 pm21/05/19 5:31 pm

 711

Index

Numbers
1:1 relationships (data models), 2

A
active relationships

ambiguity, 514–515
CALCULATETABLE function, 451–453
expanded tables and, 450–453
USERELATIONSHIP function, 450–451

ADDCOLUMNS function, 223–224, 366–369,
371–372

ADDCOLUMNS iterators, 196–199
ADDMISSINGITEMS function

authoring queries, 419–420, 432–433
auto-exists feature (queries), 432–433

aggregation functions, xmSQL queries, 625–627
aggregations, 568–571

in data models, 587–588, 647–648
SE, 548
VertiPaq aggregations, managing,

604–607
aggregators, 42, 43, 44, 45–46

AVERAGE function, 43–44
AVERAGEX function, 44
COUNT function, 46
COUNTA function, 46
COUNTBLANK function, 46
COUNTROWS function, 46
DISTINCTCOUNT function, 46
DISTINCTCOUNTNOBLANK function, 46
MAX function, 43
MIN function, 43
SUM function, 42–43, 44–45
SUMX function, 45

ALL function, 464–465
ALLEXCEPT function versus, 326–328
CALCULATE function and, 125–132, 164, 169–172

calculated physical relationships, circular
dependencies, 478

columns and, 64–65
computing percentages, 125–132
context transitions, avoiding, 328–330
evaluation contexts, 100–101
fi lter contexts, 324–326, 327–330
measures and, 63–64
nonworking days between two dates, computing,

523–525
percentages, computing, 63–64
syntax of, 63
top categories/subcategories example,

66–67
VALUES function and, 67, 327–328

ALL* functions, 462–464
ALLCROSSFILTERED function, 464, 465
ALLEXCEPT function, 65–66, 464, 465

ALL function versus, 326–328
computing percentages, 135
fi lter contexts, 326–328
VALUES function versus, 326–328

ALLNOBLANKROW function, 464, 465, 478
ALLSELECTED function, 74–75, 76, 455–457,

464, 465
CALCULATE function and, 171–172
computing percentages, 75–76
iterated rows, returning, 460–462
shadow fi lter contexts, 459–462

alternate/primary keys column (tables),
599, 600

ambiguity in relationships, 512–513
active relationships, 514–515
non-active relationships, 515–517

Analysis Services 2012/2014 and CallbackDataID
function, 644

annual totals (moving), computing, 243–244
arbitrarily shaped fi lters, 336

best practices, 343
building, 338–343

9781509306978_print.indb 7119781509306978_print.indb 711 21/05/19 5:32 pm21/05/19 5:32 pm

712

arbitrarily shaped fi lters

column fi lters versus, 336
defi ned, 337–338
simple fi lters versus, 337
uses of, 343

arithmetic operators, 23
error-handling

division by zero, 32–33
empty/missing values, 33–35

xmSQL queries, 627
arrows (cross fi lter direction), 3
attributes, data model optimization

disabling attribute hierarchies, 604
optimizing drill-through attributes, 604

authoring queries, 395
ADDMISSINGITEMS function, 419–420,

432–433
auto-exists feature, 428–434
DAX Studio, 395
DEFINE sections

MEASURE keyword in, 399
VAR keyword in, 397–399

EVALUATE statements
ADDMISSINGITEMS function, 419–420,

432–433
example of, 396
expression variables and, 398
GENERATE function, 414–417
GENERATEALL function, 417
GROUPBY function, 420–423
ISONORAFTER function, 417–419
NATURALINNERJOIN function, 423–425
NATURALLEFTOUTERJOIN function, 423–425
query variables and, 398
ROW function, 400–401
SAMPLE function, 427–428
SUBSTITUTEWITHINDEX function, 425–427
SUMMARIZE function, 401–403, 433–434
SUMMARIZECOLUMNS function, 403–409,

429–434
syntax of, 396–399
TOPN function, 409–414
TOPNSKIP function, 420

expression variables, 397–399
GENERATE function, 414–417
GENERATEALL function, 417
GROUPBY function, 420–423
ISONORAFTER function, 417–419
MEASURE in DEFINE sections, 399

measures
query measures, 399
testing, 399–401

NATURALINNERJOIN function, 423–425
NATURALLEFTOUTERJOIN function, 423–425
query variables, 397–399
ROW function, testing measures, 400–401
SAMPLE function, 427–428
shadow fi lter contexts, 457–462
SUBSTITUTEWITHINDEX function, 425–427
SUMMARIZE function, 401–403, 433–434
SUMMARIZECOLUMNS function, 403–409,

429–434
TOPN function, 409–414
TOPNSKIP function, 420
VAR in DEFINE sections, 397–399

Auto Date/Time (Power BI), 218–219
auto-exists feature (queries), 428–434
automatic date columns (Power Pivot for Excel), 219
AVERAGE function, 43–44, 199
AVERAGEA function, returning averages, 199
averages (means)

computing averages, AVERAGEX function,
199–201

moving averages, 201–202
returning averages

AVERAGE function, 199
AVERAGEA function, 199

AVERAGEX function, 44
computing averages, 199–201
fi lter contexts, 111–112

AVERAGEX iterators, 188

B
batch events (xmSQL queries), 630–632
bidirectional cross-fi lter direction (physical

relationships), 490, 491–493, 507
bidirectional fi ltering (relationships), 3–4
bidirectional relationships, 106, 109
Binary data type, 23
BLANK function, 36
blank rows, invalid relationships, 68–71
Boolean calculated columns, data model optimization,

597–598
Boolean conditions, CALCULATE function, 119–120,

123–124
Boolean data type, 22

9781509306978_print.indb 7129781509306978_print.indb 712 21/05/19 5:32 pm21/05/19 5:32 pm

calculation items

 713

Boolean logic, 23
bottlenecks, DAX optimization, 667–668

identifying SE/FE bottlenecks, 667–668
optimizing bottlenecks, 668

bridge tables, MMR (Many-Many Relationships),
494–499

budget/sales information (calculations), showing
together, 527–530

C
CALCULATE function, 115

ALL function, 125–132, 164, 169–172
ALLSELECTED function, 171–172
Boolean conditions, 119–120, 123–124
calculated physical relationships, circular

dependencies, 478–480
calculation items, applying to expressions,

291–299
circular dependencies, 161–164
computing percentages, 124, 135

ALL function, 125–132
ALLEXCEPT function, 135
VALUES function, 133–134

context transitions, 148, 151–154
calculated columns, 154–157
measures, 157–160

CROSSFILTER function, 168
evaluation contexts, 79
evaluation order, 144–148
fi lter arguments, 118–119, 122, 123, 445–447
fi lter contexts, 148–151
fi ltering

multiple columns, 140–143
a single column, 138–140

KEEPFILTERS function, 135–138, 139–143, 164,
168–169
evaluation order, 146–148
fi ltering multiple columns, 142–143

moving averages, 201–202
numbering sequences of events (calculations),

537–538
overwriting fi lters, 120–122, 136
Precedence calculation group, 299–304
range-based relationships (calculated physical

relationships), 474–476
RELATED function and, 443–444
row contexts, 148–151
rules for, 172–173

semantics of, 122–123
syntax of, 118, 119–120
table fi lters, 382–384, 445–447
time intelligence calculations, 228–232
transferring fi lters, 482–483, 484–485
UNION function and, 376–378
USERELATIONSHIP function, 164–168

calculated columns, 25–26
Boolean calculated columns, data model

optimization, 597–598
context transitions, 154–157
data model optimization, 595–599
DISTINCT function, 68
expressions, 29
measures, 42

choosing between calculated columns and
measures, 29–30

differences between calculated columns and
measures, 29

using measures in calculated columns, 30
processing, 599
RELATED function, 443–444
SUM function, evaluation contexts, 88–89
table functions, 59
VALUES function, 68

calculated physical relationships, 471
circular dependencies, 476–480
multiple-column relationships, 471–473
range-based relationships, 474–476

calculated tables, 59
creating, 390–391
DISTINCT function, 68
SELECTCOLUMNS function, 390–391
VALUES function, 68

CALCULATETABLE function, 115, 363
active relationships, 451–453
FILTER function versus, 363–365
time intelligence functions, 259, 260–261

calculation granularity and iterators, 211–214
calculation groups, 279–281

calculation items and, 288
creating, 281–288
defi ned, 288
Name calculation group, 288
Precedence calculation group, 288, 299–304

calculation items
applying to expressions, 291

CALCULATE function, 291–299

9781509306978_print.indb 7139781509306978_print.indb 713 21/05/19 5:32 pm21/05/19 5:32 pm

714

calculation items

DATESYTD function, 293–296
YTD calculations, 294

best practices, 311
calculation groups and, 288
Expression calculation item, 289
format strings, 289–291
including/excluding measures from calculation

items, 304–306
Name calculation item, 288
Ordinal values, 289
properties of, 288–289
sideways recursion, 306–311
YOY calculation item, 289–290
YOY% calculation item, 289–290

calculations
budget/sales information (calculations), showing

together, 527–530
nonworking days between two dates, computing,

523–525
precomputing values (calculations), computing work

days between two dates, 525–527
sales

computing previous year sales up to last day sales
(calculations), 539–544

computing same-store sales, 530–536
showing budget/sales information together,

527–530
syntax of, 17–18
work days between two dates, computing,

519–523
nonworking days, 523–525
precomputing values (calculations), 525–527

CALENDAR function, building date tables, 222
CALENDARAUTO function, building date tables,

222–224
calendars (custom), time intelligence calculations,

272
DATESYTD function, 276–277
weeks, 272–275

CallbackDataID function
Analysis Services 2012/2014 and, 644
DAX optimization, 690–693
parallelism and, 641
VertiPaq and, 640–644

capturing DAX queries, 609–611
cardinality

columns (tables)
data model optimization, 591–592
optimizing high-cardinality columns, 603

iterators, 188–190
relationships (data models), 489–490, 586–587,

590–591
Cardinality column (VertiPaq Analyzer), 581, 583
categories/subcategories example, ALL function and,

66–67
cells (Excel), 5
chains (relationships), 3
circular dependencies

CALCULATE function and, 161–164
calculated physical relationships, 476–480

code documentation, variables, 183–184
code maintenance/readability, FILTER function, 62–63
column fi lters

arbitrarily shaped fi lters versus, 336
defi ned, 336

columnar databases, 550–553
columns (tables), 5–7

ADDCOLUMNS function, 223–224, 366–369,
371–372

ADDCOLUMNS iterators, 196–199
ALL function and, 64–65
ALLEXCEPT function and, 65–66
automatic date columns (Power Pivot for Excel), 219
Boolean calculated columns, data model

optimization, 597–598
calculated columns, 25–26, 42, 443–444

Boolean calculated columns, 597–598
choosing between calculated columns and

measures, 29–30
context transitions, 154–157
data model optimization, 595–599
differences between calculated columns and

measures, 29
DISTINCT function, 68
expressions, 29
processing, 599
SUM function, 88–89
table functions, 59
using measures in calculated columns, 30
VALUES function, 68

cardinality
data model optimization, 591–592
optimizing high-cardinality columns, 603

Date column, data model optimization, 592–595
defi ned, 2
descriptive attributes column (tables), 600,

601–602
fi ltering

9781509306978_print.indb 7149781509306978_print.indb 714 21/05/19 5:32 pm21/05/19 5:32 pm

CROSSFILTER function

 715

CALCULATE function, 138–140
multiple columns, 140–143
a single column, 138–140
table fi lters versus, 444–447

measures, evaluation contexts, 89–90
multiple columns

DISTINCT function and, 71
VALUES function and, 71

primary/alternate keys column (tables),
599, 600

qualitative attributes column (tables),
599, 600

quantitative attributes column (tables), 599,
600–601

referencing, 17–18
relationships, 3
row contexts, 87
SELECTCOLUMNS function, 390–391, 393–394
SELECTCOLUMNS iterators, 196, 197–199
split optimization, 602–603
storage optimization, 602

column split optimization, 602–603
high-cardinality columns, 603

storing, 601–602
SUBSTITUTEWITHINDEX function, 425–427
SUMMARIZE function and, 401
SUMMARIZECOLUMNS function, 403–409,

429–434
technical attributes column (tables), 600, 602
Time column, data model optimization, 592–595
VertiPaq Analyzer, 580–583

Columns # column (VertiPaq Analyzer), 582
Columns Hierarchies Size column (VertiPaq

Analyzer), 582
Columns Total Size column (VertiPaq Analyzer), 581
COMBINEVALUES function, multiple-column

relationships (calculated physical relationships),
472–473

comments
at the end of expressions, 18
expressions, comment placement in expressions, 18
multi-line comments, 18
single-line comments, 18

comparison operators, 23
composite data models, 646–647

DirectQuery mode, 488
VertiPaq mode, 488

compression (VertiPaq), 553–554
hash encoding, 555–556
re-encoding, 559

RLE, 556–559
value encoding, 554–555

CONCATENATEX function
iterators and, 194–196
tables as scalar values, 74

conditional statements, 24–25, 708–709
conditions

DAX, 11
SQL, 11

CONTAINS function
tables and, 387–388
transferring fi lters, 481–482, 484–485

CONTAINSROW function and tables, 387–388
context transitions, 148

ALL function and, 328–330
CALCULATE function and, 151–154
calculated columns, 154–157
DAX optimization, 672–678
expanded tables, 454–455
iterators, leveraging context transitions, 190–194
measures, 157–160
time intelligence functions, 260

conversion functions, 51
CURRENCY function, 51
DATE function, 51, 52
DATEVALUE function, 51
FORMAT function, 51
INT function, 51
TIME function, 51, 52
VALUE function, 51

conversions, error-handling, 31–32
cores (number of), VertiPaq hardware selection,

574, 576
COUNT function, 46
COUNTA function, 46
COUNTBLANK function, 46
COUNTROWS function, 46

fi lter contexts and relationships, 109
nested row contexts on the same table, 92–95
tables as scalar values, 73

CPU model, VertiPaq hardware selection, 574–575
cross-fi lter directions (physical relationships), 3, 490

bidirectional cross-fi lter direction, 490, 491–493, 507
single cross-fi lter direction, 490

cross-fi ltering, data model optimization, 590
cross-island relationships, 489
CROSSFILTER function

bidirectional relationships, 109
CALCULATE function and, 168

9781509306978_print.indb 7159781509306978_print.indb 715 21/05/19 5:32 pm21/05/19 5:32 pm

716

CROSSJOIN function and tables

CROSSJOIN function and tables, 372–374, 383–384
Currency data type, 21
CURRENCY function, 51
custom calendars, time intelligence calculations, 272

DATESYTD function, 276–277
weeks, 272–275

customers (new), computing (tables), 380–381,
386–387

D
Daily AVG

calculation group precedence, 299–303
calculation items, including/excluding measures,

304–306
data lineage, 332–336, 465–468
data models

aggregations, 647–648
composite data models, 646–647

DirectQuery mode, 488
VertiPaq mode, 488

defi ned, 1–2
optimizing with VertiPaq, 579

aggregations, 587–588, 604–607
calculated columns, 595–599
choosing columns for storage, 599–602
column cardinality, 591–592
cross-fi ltering, 590
Date column, 592–595
denormalizing data, 584–591
disabling attribute hierarchies, 604
gathering data model information,

579–584
optimizing column storage, 602–603
optimizing drill-through attributes, 604
relationship cardinality, 586–587, 590–591
Time column, 592–595

relationships, 2
1:1 relationships, 2
active relationships, 450–453
bidirectional fi ltering, 3–4
cardinality, 586–587, 590–591
chains, 3
columns, 3
cross fi lter direction, 3
DAX and SQL, 9
directions of, 3–4
many-sided relationships, 2, 3

one-sided relationships, 2, 3
Relationship reports (VertiPaq Analyzer), 584
unidirectional fi ltering, 4
weak relationships, 2

single data models
DirectQuery mode, 488
VertiPaq mode, 488

tables, defi ned, 2
weak relationships, 439

data refreshes, SSAS (SQL Server Analysis Services),
549–550

Data Size column (VertiPaq Analyzer), 581
data types, 19

Binary data type, 23
Boolean data type, 22
Currency data type, 21
DateTime data type, 21–22
Decimal data type, 21
Integer data type, 21
operators, 23

arithmetic operators, 23
comparison operators, 23
logical operators, 23
overloading, 19–20
parenthesis operators, 23
text concatenation operators, 23

string/number conversions, 19–21
strings, 22
Variant data type, 22

Database Size % column (VertiPaq Analyzer), 582
databases (columnar), 550–553
datacaches

FE, 547
SE, 547
VertiPaq, 549, 635–637

DATATABLE function, creating static tables,
392–393

Date column, data model optimization, 592–595
DATE function, 51, 52
date table templates (Power Pivot for Excel), 220
date tables

building, 220–221
ADDCOLUMNS function, 223–224
CALENDAR function, 222
CALENDARAUTO function, 222–224
date templates, 224

duplicating, 227
loading from other data sources, 221

9781509306978_print.indb 7169781509306978_print.indb 716 21/05/19 5:32 pm21/05/19 5:32 pm

DAX (Data Analysis eXpressions)

 717

Mark as Date Table, 232–233
multiple dates, managing, 224

multiple date tables, 226–228
multiple relationships to date tables,

224–226
naming, 221

date templates, 224
date/time-related calculations, 217

Auto Date/Time (Power BI), 218–219
automatic date columns (Power Pivot for

Excel), 219
basic calculations, 228–232
basic functions, 233–235
CALCULATE function, 228–232
CALCULATETABLE function, 259, 260–261
context transitions, 260
custom calendars, 272

DATESYTD function, 276–277
weeks, 272–275

date tables
ADDCOLUMNS function, 223–224
building, 220–224
CALENDAR function, 222
CALENDARAUTO function, 222–224
date table templates (Power Pivot for

Excel), 220
date templates, 224
duplicating, 227
loading from other data sources, 221
managing multiple dates, 224–228
Mark as Date Table, 232–233
multiple date tables, 226–228
multiple relationships to date tables, 224–226
naming, 221

DATEADD function, 237–238, 262–269
DATESINPERIOD function, 243–244
DATESMTD function, 259, 276–277
DATESQTD function, 259, 276–277
DATESYTD function, 259, 260, 261–262, 276–277
differences over previous periods, computing,

241–243
drillthrough operations, 271
FILTER function, 228–232
FIRSTDATE function, 269, 270
FIRSTNONBLANK function, 256–257, 270–271
LASTDATE function, 248–249, 254, 255, 269–270
LASTNONBLANK function, 250–254, 255, 270–271
mixing functions, 239–241

moving annual totals, computing, 243–244
MTD calculations, 235–236, 259–262, 276–277
nested functions, call order of, 245–246
NEXTDAY function, 245–246
nonworking days between two dates, computing,

523–525
opening/closing balances, 254–258
PARALLELPERIOD function, 238–239
periods to date, 259–262
PREVIOUSMONTH function, 239
QTD calculations, 235–236, 259–262, 276–277
SAMEPERIODLASTYEAR function, 237, 245–246
semi-additive calculations, 246–248
STARTOFQUARTER function, 256–257
time periods, computing from prior periods,

237–239
work days between two dates, computing,

519–523
nonworking days, 523–525
precomputing values (calculations),

525–527
YTD calculations, 235–236, 259–262, 276–277

DATEADD function, time intelligence calculations,
237–238, 262–269

DATESINPERIOD function, computing moving annual
totals, 243–244

DATESMTD function, time intelligence calculations,
259, 276–277

DATESQTD function, time intelligence calculations,
259, 276–277

DATESYTD function
calculation items, applying to expressions,

293–296
time intelligence calculations, 259, 260, 261–262,

276–277
DateTime data type, 21–22
DATEVALUE function, 51
DAX (Data Analysis eXpressions), 1

conditions, 11
data models

defi ned, 1–2
relationships, 2–4
tables, 2

date templates, 224
DAX and, cells and tables, 5–7
Excel and

functional languages, 7
theories, 8–9

expressions

9781509306978_print.indb 7179781509306978_print.indb 717 21/05/19 5:32 pm21/05/19 5:32 pm

718

DAX (Data Analysis eXpressions)

identifying a single DAX expression for
optimization, 658–661

optimizing bottlenecks, 668
as functional language, 10
functions, 6–7
iterators, 8
MDX, 12

hierarchies, 13–14
leaf-level calculations, 14
multidimensional versus tabular space, 12
as programming language, 12–13
as querying language, 12–13
queries, 613

optimizing, 657
bottlenecks, 668
CallbackDataID function, 690–693
change implementation, 668
conditional statements, 708–709
context transitions, 672–678
creating reproduction queries, 661–664
DISTINCTCOUNT function, 699–704
to-do list, 658
fi lter conditions, 668–672
identifying a single DAX expression for

optimization, 658–661
identifying SE/FE bottlenecks, 667–668
IF conditions, 678–690
multiple evaluations, avoiding with variables,

704–708
nested iterators, 693–699
query plans, 664–667
rerunning test queries, 668
server timings, 664–667
variables, 704–708

Power BI and, 14–15
as programming language, 10–11
queries

capturing, 609–611
creating reproduction queries, 661–662
DISTINCTCOUNT function, 634–635
executing, 546

query plans, 612–613
collecting, 613–614
DAX Studio, 617–620
logical query plans, 612, 614
physical query plans, 612–613, 614–616
SQL Server Profi ler, 620–623

as querying language, 10–11

SQL and, 9
subqueries, 11

DAX engines
DirectQuery, 546, 548, 549
FE, 546, 547

datacaches, 547
operators of, 547
single-threaded implementation, 547

SE, 546
aggregations, 548
datacaches, 547
DirectQuery, 548, 549
operators of, 547
parallel implementations, 548
VertiPaq, 547–549, 550–577

Tabular model and, 545–546
VertiPaq, 546, 547–548, 550. See also data models,

optimizing with VertiPaq
aggregations, 571–573
columnar databases, 550–553
compression, 553–562
datacaches, 549
DMV, 563–565
hardware selection, 573–577
hash encoding, 555–556
hierarchies, 561–562
materialization, 568–571
multithreaded implementations, 548
partitioning, 562–563
processing tables, 550
re-encoding, 559
relationships (data models), 561–562,

565–568
RLE, 556–559
scan operations, 549
segmentation, 562–563
sort orders, 560–561
value encoding, 554–555

DAX Studio, 395
capturing DAX queries, 609–611
Power BI and, 609–611
query measures, creating, 662–663
query plans, capturing profi ling information,

617–620
VertiPaq caches, 639–640

DAXFormatter.com, 41
Decimal data type, 21
DEFINE MEASURE clauses in EVALUATE statements, 59

9781509306978_print.indb 7189781509306978_print.indb 718 21/05/19 5:32 pm21/05/19 5:32 pm

evaluation contexts

 719

DEFINE sections (authoring queries)
MEASURE keyword in, 399
VAR keyword in, 397–399

denormalizing data and data model optimization,
584–591

descriptive attributes column (tables), 600, 601–602
DETAILROWS function, reusing table expressions,

388–389
dictionary encoding. See hash encoding
Dictionary Size column (VertiPaq Analyzer), 581
DirectQuery, 488–489, 546, 548, 549, 617

calculated columns, 25–26
composite data models, 488
End events (SQL Server Profi ler), 621
SE, 549

composite data models, 646–647
reading, 645–646

single data models, 488
Disk I/O performance, VertiPaq hardware selection,

574, 576–577
DISTINCT function, 71

blank rows and invalid relataionships, 68, 70–71
calculated columns, 68
calculated physical relationships

circular dependencies, 477–478
range-based relationships, 476

fi lter contexts, 111–112
multiple columns, 71
UNION function and, 375–378
VALUES function versus, 68

DISTINCTCOUNT function, 46
DAX optimization, 699–704
same-store sales (calculations), computing,

535–536
table fi lters, avoiding, 699–704
VertiPaq SE queries, 634–635

DISTINCTCOUNTNOBLANK function, 46
DIVIDE function, DAX optimization, 684–687
division by zero, arithmetic operators, 32–33
DMV (Dynamic Management Views) and SSAS,

563–565
documenting code, variables, 183–184
drill-through attributes, optimizing, 604
drillthrough operations, time intelligence calculations,

271
duplicating, date tables, 227
duration of an order example, 26
dynamic segmentation, virtual relationships and,

485–488

E
EARLIER function, evaluation contexts, 97–98
editing text, formatting DAX code, 42
empty/missing values, error-handling, 33–35
Encoding column (VertiPaq Analyzer), 582, 583
error-handling

BLANK function, 36
Excel, empty/missing values, 35
expressions, 31

arithmetic operator errors, 32–35
conversion errors, 31–32

generating errors, 38–39
IF function, 36, 37
IFERROR function, 35–36, 37–38
ISBLANK function, 36
ISERROR function, 36, 38
SQRT function, 36
variables, 37

EVALUATE statements
ADDMISSINGITEMS function, 419–420,

432–433
DEFINE MEASURE clauses, 59
example of, 396
expression variables and, 398
GENERATE function, 414–417
GENERATEALL function, 417
GROUPBY function, 420–423
ISONORAFTER function, 417–419
NATURALINNERJOIN function, 423–425
NATURALLEFTOUTERJOIN function, 423–425
ORDER BY clauses, 60
query variables and, 398
ROW function, 400–401
SAMPLE function, 427–428
SUBSTITUTEWITHINDEX function, 425–427
SUMMARIZE function, 401–403, 433–434
SUMMARIZECOLUMNS function, 403–409,

429–434
syntax of, 59–60, 396–399
TOPN function, 409–414
TOPNSKIP function, 420

evaluation contexts, 79
ALL function, 100–101
AVERAGEX function, fi lter contexts, 111–112
CALCULATE function, 79
columns in measures, 89–90
COUNTROWS function, fi lter contexts and

relationships, 107–108
defi ned, 80

9781509306978_print.indb 7199781509306978_print.indb 719 21/05/19 5:32 pm21/05/19 5:32 pm

720

evaluation contexts

DISTINCT function, fi lter contexts, 111–112
EARLIER function, 97–98
fi lter contexts, 80, 109–110

AVERAGEX function, 111–112
CALCULATE function, 118–119
CALCULATE function and, 148–151
creating, 115–119
DISTINCT function, 111–112
examples of, 80–85
fi lter arguments, 118–119
relationships and, 106–109
row contexts versus, 85
SUMMARIZE function, 112

FILTER function, 92–93, 94–95, 98–101
multiple tables, working with, 101–102

fi lter contexts and relationships, 106–109
row contexts and relationships, 102–105

RELATED function
fi lter contexts and relationships, 109
nested row contexts on different tables, 92
row contexts and relationships, 103–105

RELATEDTABLE function
fi lter contexts and relationships, 109
nested row contexts on different tables,

91–92
row contexts and relationships, 103–105

relationships and, 101–102
fi lter contexts, 106–109
row contexts, 102–105

row contexts, 80
CALCULATE function and, 148–151
column references, 87
examples of, 86–87
fi lter contexts versus, 85
iterators and, 90–91
nested row contexts on different tables,

91–92
nested row contexts on the same table, 92–97
relationships and, 102–105

SUM function, in calculated columns, 88–89
SUMMARIZE function, fi lter contexts, 112

evaluations (multiple), avoiding with variables,
704–708

events (calculations), numbering sequences of, 536–539
Excel

calculations, 8
cells, 5
columns, 5–7

DAX and
cells and tables, 5–7
functional languages, 7
theories, 8–9

error-handling, empty/missing values, 35
formulas, 6
functions, 6–7
Power Pivot for Excel

automatic date columns, 219
date table templates, 220

EXCEPT function, tables and, 379–381
expanded tables

active relationships, 450–453
column fi lters versus table fi lters, 444–447
context transitions, 454–455
fi lter contexts, 439–441
fi ltering, 444–447

active relationships and, 450–453
differences between table fi lters and expanded

tables, 453–454
RELATED function, 441–444
relationships, 437–441
table fi lters

column fi lters versus, 444–447
in measures, 447–450

Expression calculation item, 289
Expression Trees, 612
expressions

calculated columns, 29
calculation items, applying to expressions, 291

CALCULATE function, 291–299
DATESYTD function, 293–296
YTD calculations, 294

comments, placement in expressions, 18
DAX optimization, 658–661, 668
error-handling, 31

arithmetic operator errors, 32–35
conversion errors, 31–32

formatting, 39–40, 42
MDX

DAX and, 12–13, 14
queries, 546, 604, 613, 663–664

query measures, 399
scalar expressions, 57–58
table expressions

EVALUATE statements, 59–60
reusing, 388–389

variables, 30–31, 397–399

9781509306978_print.indb 7209781509306978_print.indb 720 21/05/19 5:32 pm21/05/19 5:32 pm

fi ltering

 721

F
FE (Formula Engines), 546, 547

bottlenecks, identifying, 667–668
datacaches, 547
operators of, 547
query plans, reading, 652–653, 654–655
single-threaded implementation, 547, 642

fi lter arguments
CALCULATE function, 118–119, 122, 123,

445–447
defi ned, 120
multiple column references, 140
SUMMARIZECOLUMNS function, 406–409

fi lter contexts, 80, 109–110, 313, 343–344
ALL function, 324–326, 327–330
ALLEXCEPT function, 326–328
arbitrarily shaped fi lters, 336

best practices, 343
building, 338–343
column fi lters versus, 336
defi ned, 337–338
simple fi lters versus, 337
uses of, 343

AVERAGEX function, 111–112
CALCULATE function, 148–151

fi lter arguments, 118–119
overwriting fi lters, 120–122

column fi lters
arbitrarily shaped fi lters versus, 336
defi ned, 336

creating, 115–119
data lineage, 332–336
DISTINCT function, 111–112
examples of, 80–85
expanded tables, 439–441
FILTERS function, 322–324
HASONVALUE function, 314–318
ISCROSSFILTERED function, 319–322
ISEMPTY function, 330–332
ISFILTERED function, 319, 320–322
nesting in variables, 184–185
relationships and, 106–109
row contexts versus, 85
SELECTEDVALUE function, 318–319
simple fi lters

arbitrarily shaped fi lters versus, 337

defi ned, 337
SUMMARIZE function, 112
TREATAS function, 334–336
VALUES function, 322–324, 327–328

FILTER function, 57–58
CALCULATETABLE function versus, 363–365
code maintenance/readability, 62–63
evaluation contexts, 98–101
as iterator, 60–61
nested row contexts on the same table,

92–93, 94–95
nesting, 61–62
range-based relationships (calculated physical

relationships), 474–476
syntax of, 60
time intelligence calculations, 228–232
transferring fi lters, 481–482, 484–485

fi lter operations, xmSQL queries, 628–630
fi ltering

ALLCROSSFILTERED function, 464, 465
columns (tables) versus table fi lters, 444–447
DAX optimization, fi lter conditions, 668–672
expanded tables

differences between table fi lters and expanded
tables, 453–454

table fi lters and active relationships,
450–453

FILTER function
range-based relationships (calculated physical

relationships), 474–476
transferring fi lters, 484–485

KEEPFILTERS function, 461–462, 482–483, 484
relationships

bidirectional fi ltering, 3–4
unidirectional fi ltering, 4

shadow fi lter contexts, 457–462
tables, 381

CALCULATE function and, 445–447
column fi lters versus, 444–447
differences between table fi lters and expanded

tables, 453–454
DISTINCTCOUNT function, 699–704
in measures, 447–450
OR conditions, 381–384
table fi lters and active relationships,

450–453
transferring fi lters, 480–481

CALCULATE function, 482

9781509306978_print.indb 7219781509306978_print.indb 721 21/05/19 5:32 pm21/05/19 5:32 pm

722

fi ltering

CONTAINS function, 481–482
FILTER function, 481–482, 484–485
INTERSECT function, 483–484
TREATAS function, 482–483, 484

FILTERS function
fi lter contexts, 322–324
VALUES function versus, 322–324

FIRSTDATE function, time intelligence calculations,
269, 270

FIRSTNONBLANK function, time intelligence calculations,
256–257, 270–271

FORMAT function, 51
format strings

calculation items and, 289–291
defi ned, 291
SELECTEDMEASUREFORMATSTRING function,

291
formatting DAX code, 39, 41–42

DAXFormatter.com, 41
editing text, 42
expressions, 39–40, 42
formulas, 42
help, 42
variables, 40–41

formulas
Excel, 6

formatting, 42
IN function, tables and, 387–388
functions

ADDCOLUMNS function, 223–224, 366–369,
371–372

ADDMISSINGITEMS function
authoring queries, 419–420, 432–433
auto-exists feature (queries), 432–433

aggregation functions, xmSQL queries,
625–627

aggregators, 42, 44, 45–46
AVERAGE function, 43–44
AVERAGEX function, 44
COUNT function, 46
COUNTA function, 46
COUNTBLANK function, 46
COUNTROWS function, 46
DISTINCTCOUNT function, 46
DISTINCTCOUNTNOBLANK function, 46
MAX function, 43
MIN function, 43

SUM function, 42–43, 44–45
SUMX function, 45

ALL function, 464–465
ALLEXCEPT function versus, 326–328
CALCULATE function and, 164, 169–172
calculated physical relationships and circular

dependencies, 478
computing nonworking days between two dates,

523–525
computing percentages, 125–132
context transitions, 328–330
evaluation contexts, 100–101
fi lter contexts, 324–326, 327–330
VALUES function and, 327–328

ALL* functions, 462–464
ALLCROSSFILTERED function, 464, 465
ALLEXCEPT function, 464, 465

ALL function versus, 326–328
computing percentages, 135
fi lter contexts, 326–328
VALUES function versus, 326–328

ALLNOBLANKROW function, 464, 465, 478
ALLSELECTED function, 455–457, 464, 465

CALCULATE function and, 171–172
returning iterated rows, 460–462
shadow fi lter contexts, 459–462

AVERAGE function, returning averages,
199

AVERAGEA function, returning averages, 199
AVERAGEX function

computing averages, 199–201
fi lter contexts, 111–112

Boolean conditions, 123–124
CALCULATE function, 115

ALL function, 125–132, 164, 169–172
ALLSELECTED function, 171–172
Boolean conditions, 119–120
calculated physical relationships and circular

dependencies, 478–480
calculation items, applying to expressions,

291–299
circular dependencies, 161–164
computing percentages, 124–135
context transitions, 148, 151–160
CROSSFILTER function, 168
evaluation contexts, 79
evaluation order, 144–148

Z01_Russo_Index_p711-741.indd 722Z01_Russo_Index_p711-741.indd 722 21/05/19 5:38 pm21/05/19 5:38 pm

functions

 723

fi lter arguments, 118–119, 122, 123,
445–447

fi lter contexts, 148–151
fi ltering a single column, 138–140
fi ltering multiple columns, 140–143
KEEPFILTERS function, 135–138,

139–143, 164, 168–169
KEEPFILTERS function and, 146–148
moving averages, 201–202
numbering sequences of events (calculations),

537–538
overwriting fi lters, 120–122
Precedence calculation group, 299–304
range-based relationships (calculated physical

relationships), 474–476
RELATED function and, 443–444
row contexts, 148–151
rules for, 172–173
semantics of, 122–123
syntax of, 118, 119–120
table fi lters, 445–447
tables as fi lters, 382–384
time intelligence calculations, 228–232
transferring fi lters, 482–483, 484–485
UNION function and, 376–378
USERELATIONSHIP function, 164–168

CALCULATETABLE function, 115, 363
active relationships, 451–453
FILTER function versus, 363–365
time intelligence functions, 259, 260–261

CALENDAR function, date tables, 222
CALENDARAUTO function, date tables, 222–224
CallbackDataID function

Analysis Services 2012/2014 and, 644
DAX optimization, 690–693
parallelism and, 641
VertiPaq and, 640–644

COMBINEVALUES function, multiple-column
relationships (calculated physical relationships),
472–473

CONCATENATEX function
iterators and, 194–196
tables as scalar values, 74

CONTAINS function
tables and, 387–388
transferring fi lters, 481–482, 484–485

CONTAINSROW function, tables and, 387–388
conversion functions, 51

COUNTROWS function
fi lter contexts and relationships, 107–108
nested row contexts on the same table,

92–95
tables as scalar values, 73

CROSSFILTER function
bidirectional relationships, 109
CALCULATE function and, 168

CROSSJOIN function, tables and, 372–374,
383–384

CURRENCY function, 51
DATATABLE function, creating static tables,

392–393
DATE function, 51, 52
DATEADD function, time intelligence calculations,

237–238, 262–269
DATESINPERIOD function, moving annual totals,

243–244
DATESMTD function, time intelligence calculations,

259, 276–277
DATESQTD function, time intelligence calculations,

259, 276–277
DATESYTD function

calculation items, applying to expressions,
293–296

time intelligence calculations, 259, 260, 261–262,
276–277

DATEVALUE function, 51
DETAILROWS function, reusing table expressions,

388–389
DISTINCT function

calculated physical relationships and circular
dependencies, 477–478

fi lter contexts, 111–112
range-based relationships (calculated physical

relationships), 476
UNION function and, 375–378

DISTINCTCOUNT function
avoiding table fi lters, 699–704
computing same-store sales, 535–536
DAX optimization, 699–704

DIVIDE function, DAX optimization, 684–687
EARLIER function, evaluation contexts, 97–98
Excel, 6–7
EXCEPT function, tables and, 379–381
FILTER function

CALCULATETABLE function versus,
363–365

evaluation contexts, 98–101

9781509306978_print.indb 7239781509306978_print.indb 723 21/05/19 5:32 pm21/05/19 5:32 pm

functions

724

nested row contexts on the same table, 92–93,
94–95

range-based relationships (calculated physical
relationships), 474–476

time intelligence calculations, 228–232
transferring fi lters, 481–482, 484–485

FILTERS function
fi lter contexts, 322–324
VALUES function versus, 322–324

FIRSTDATE function, time intelligence calculations,
269, 270

FIRSTNONBLANK function, time intelligence
calculations, 256–257, 270–271

FORMAT function, 51
IN function, tables and, 387–388
GENERATE function, authoring queries, 414–417
GENERATEALL function, authoring queries, 417
GENERATESERIES function, tables and, 393–394
GROUPBY function

authoring queries, 420–423
SUMMARIZE function and, 420–423

HASONEVALUE function
fi lter contexts, 314–318
tables as scalar values, 73

information functions, 48–49
INT function, 51
INTERSECT function

tables and, 378–379
transferring fi lters, 483–484

ISCROSSFILTERED function, fi lter contexts,
319–322

ISEMPTY function, fi lter contexts, 330–332
ISFILTERED function

fi lter contexts, 319, 320–322
time intelligence calculations, 268–269

ISNUMBER function, 48–49
ISONORAFTER function

authoring queries, 417–419
TOPN function and, 417–419

ISSELECTEDMEASURE function, including/excluding
measures from calculation items, 304–306

ISSUBTOTAL function and SUMMARIZE function,
402–403

KEEPFILTERS function, 461–462
CALCULATE function and, 135–138, 142–143,

146–148, 164, 168–169
evaluation order, 146–148
transferring fi lters, 482–483, 484

LASTDATE function, time intelligence calculations,
248–249, 254, 255, 269–270

LASTNONBLANK function, 250–254, 255, 270–271
logical functions

IF function, 46–47
IFERROR function, 47
SWITCH function, 47–48

LOOKUPVALUE function, 444, 473
mathematical functions, 49
NATURALINNERJOIN function, authoring queries,

423–425
NATURALLEFTOUTERJOIN function, authoring

queries, 423–425
nested functions, call order of time intelligence

functions, 245–246
NEXTDAY function, call order of nested time

intelligence functions, 245–246
PARALLELPERIOD function, time intelligence

calculations, 238–239
PREVIOUSMONTH function, time intelligence

calculations, 239
RANK.EQ function, 210
RANKX function, numbering sequences of events

(calculations), 538–539
RELATED function

CALCULATE function and, 443–444
calculated columns, 443–444
context transitions in expanded tables, 455
expanded tables, 441–444
fi lter contexts and relationships, 109
nested row contexts on different tables, 92
row contexts and relationships, 103–105
table fi lters and expanded tables, 454

RELATEDTABLE function
fi lter contexts and relationships, 109
nested row contexts on different tables,

91–92
row contexts and relationships, 103–105

relational functions, 53–54
ROLLUP function, 401–402, 403
ROW function

creating static tables, 391–392
testing measures, 400–401

SAMEPERIODLASTYEAR function
call order of nested time intelligence functions,

245–246
computing previous year sales up to last day sales

(calculations), 540–544
time intelligence calculations, 237

9781509306978_print.indb 7249781509306978_print.indb 724 21/05/19 5:32 pm21/05/19 5:32 pm

granularity

 725

SAMPLE function, authoring queries,
427–428

SELECTCOLUMNS function, 390–391, 393–394
SELECTEDMEASURE function, including/excluding

measures from calculation items, 304–306
SELECTEDMEASUREFORMATSTRING function, 291
SELECTEDVALUE function

calculated physical relationships and circular
dependencies, 479–480

computing same-store sales, 533–534
context transitions in expanded tables,

454–455
fi lter contexts, 318–319
tables as scalar values, 73–74

STARTOFQUARTER function, time intelligence
calculations, 256–257

SUBSTITUTEWITHINDEX function, authoring queries,
425–427

SUM function in calculated columns, 88–89
SUMMARIZE function

authoring queries, 401–403, 433–434
auto-exists feature (queries), 433–434
columns (tables) and, 401
fi lter contexts, 112
GROUPBY function and, 420–423
ISSUBTOTAL function and, 402–403
ROLLUP function and, 401–402, 403
table fi lters and expanded tables, 453–454
tables and, 369–372, 373–374, 383–384
transferring fi lters, 484–485

SUMMARIZECOLUMNS function
authoring queries, 403–409, 429–434
auto-exists feature (queries), 429–434
fi lter arguments, 406–409
IGNORE modifi er, 403–404
ROLLUPADDISSUBTOTAL modifi er, 404–406
ROLLUPGROUP modifi er, 406
TREATAS function and, 407–408

table functions, 57
ALL function, 63–65, 66–67
ALLEXCEPT function, 65–66
ALLSELECTED function, 74–76
calculated columns and, 59
calculated tables, 59
DISTINCT function, 68, 70–71
FILTER function, 57–58, 60–63
measures and, 59
nesting, 58–59

RELATEDTABLE function, 58–59
VALUES function, 67–74

text functions, 50–51
TIME function, 51, 52
time intelligence functions (nested), call order of,

245–246
TOPN function

authoring queries, 409–414
ISONORAFTER function and, 417–419
sort order, 410

TOPNSKIP function, authoring queries, 420
TREATAS function, 378

data lineage, 467–468
fi lter contexts and data lineage, 334–336
SUMMARIZECOLUMNS function and, 407–408
transferring fi lters, 482–483, 484
UNION function and, 377–378

trigonometric functions, 50
UNION function

CALCULATE function and, 376–378
DISTINCT function and, 375–378
tables and, 374–378
TREATAS function and, 377–378

USERELATIONSHIP function
active relationships, 450–451
CALCULATE function and, 164–168
non-active relationships and ambiguity, 516–517

VALUE function, 51
VALUES function

ALL function and, 327–328
ALLEXCEPT function versus, 326–328
calculated physical relationships and circular

dependencies, 477–480
computing percentages, 133–134
fi lter contexts, 322–324, 327–328
FILTERS function versus, 322–324
range-based relationships (calculated physical

relationships), 474–476

G
GENERATE function, authoring queries, 414–417
GENERATEALL function, authoring queries, 417
GENERATESERIES function, tables and, 393–394
generating errors (error-handling), 38–39
granularity

calculations and iterators, 211–214
relationships (data models), 507–512

9781509306978_print.indb 7259781509306978_print.indb 725 21/05/19 5:32 pm21/05/19 5:32 pm

GROUPBY function

726

GROUPBY function
authoring queries, 420–423
SUMMARIZE function and, 420–423

H
hash encoding (VertiPaq compression),

555–556
HASONEVALUE function

fi lter contexts, 314–318
tables as scalar values, 73

help, formatting DAX code, 42
hierarchies, 345, 362

attribute hierarchies (data model optimization),
disabling, 604

Columns Hierarchies Size column (VertiPaq
Analyzer), 582

DAX, 13–14
MDX, 13–14
P/C (Parent/Child) hierarchies, 350–361, 362
percentages, computing, 345

IF conditions, 349
PercOnCategory measures, 348
PercOnParent measures, 346–349
ratio to parent calculations, 345

SSAS and, 561–562
Use Hierarchies Size column (VertiPaq Analyzer),

582

I
IF conditions

computing percentages over hierarchies, 349
DAX optimization, 678–679

DIVIDE function and, 684–687
iterators, 687–690
in measures, 679–683

IF function, 36, 37, 46–47
IFERROR function, 35–36, 37–38, 47
IGNORE modifi er, SUMMARIZECOLUMNS function,

403–404
information functions, 48–49
INT function, 51
Integer data type, 21
INTERSECT function

tables and, 378–379
transferring fi lters, 483–484

intra-island relationships, 489
invalid relationships, blank rows and, 68–71

ISBLANK function, 36
ISCROSSFILTERED function, fi lter contexts,

319–322
ISEMPTY function, fi lter contexts, 330–332
ISERROR function, 36, 38
ISFILTERED function

fi lter contexts, 319, 320–322
time intelligence calculations, 268–269

ISNUMBER function, 48–49
ISONORAFTER function

authoring queries, 417–419
TOPN function and, 417–419

ISSELECTEDMEASURE function, including/excluding
measures from calculation items, 304–306

ISSUBTOTAL function, 402–403
iterators, 8, 43, 44, 209–215

ADDCOLUMNS iterators, 196–199
averages (means)

computing with AVERAGEX function,
199–201

moving averages, 201–202
returning with AVERAGE function, 199
returning with AVERAGEA function, 199

AVERAGEX iterators, 188
behavior of, 91
calculation granularity, 211–214
cardinality, 188–190
CONCATENATEX function and, 194–196
context transitions, leveraging, 190–194
DAX optimization

IF conditions, 687–690
nested iterators, 693–699

FILTER function as, 60–61
nested iterators

DAX optimization, 693–699
leveraging context transitions, 190–194

parameters of, 187–188
RANK.EQ function, 210
RANKX iterators, 188, 202–210
ROW CONTEXT iterators, 187–188
row contexts and, 90–91
SELECTCOLUMNS iterators, 196, 197–199
SUMX iterators, 187–188
tables, returning, 196–199

J
join operators, xmSQL queries, 628–630

9781509306978_print.indb 7269781509306978_print.indb 726 21/05/19 5:32 pm21/05/19 5:32 pm

MIN function

 727

K
KEEPFILTERS function, 461–462

CALCULATE function and, 135–138, 139–143, 164,
168–169
evaluation order, 146–148
fi ltering multiple columns, 142–143

transferring fi lters, 482–483, 484

L
last day sales (calculations), computing previous year

sales up to, 539–544
LASTDATE function, time intelligence calculations,

248–249, 254, 255, 269–270
LASTNONBLANK function, time intelligence calculations,

250–254, 255, 270–271
lazy evaluations, variables, 181–183
leaf-level calculations

DAX, 14
MDX, 14

leap year bug, 22
list of values. See fi lter arguments
logical functions

IF function, 46–47
IFERROR function, 47
SWITCH function, 47–48

logical operators, 23
logical query plans, 612, 614, 650–651
LOOKUPVALUE function, 444, 473

M
maintenance (code), FILTER function, 62–63
many-sided relationships (data models), 2, 3
many-to-many relationships. See MMR
Mark as Date Table, 232–233
materialization (queries), 568–571
mathematical functions, 49
MAX function, 43
MDX (Multidimensional Expressions)

DAX and, 12
hierarchies, 13–14
leaf-level calculations, 14
multidimensional versus tabular space, 12
as programming language, 12–13
as querying language, 12–13

queries, 546

attribute hierarchies (data model optimization),
disabling, 604

DAX and, 613
executing, 546
reproduction queries, creating, 663–664

means (averages)
computing averages, AVERAGEX function,

199–201
moving averages, 201–202
returning averages

AVERAGE function, 199
AVERAGEA function, 199

MEASURE keyword, DEFINE sections (authoring
queries), 399

measures, 26–28
ALL function and, 63–64
calculated columns, 42

choosing between calculated columns and
measures, 29–30

differences between calculated columns and
measures, 29

using measures in calculated columns, 30
calculation items, including/excluding measures from,

304–306
columns in, evaluation contexts, 89–90
context transitions, 157–160
DEFINE MEASURE clauses in EVALUATE

statements, 59
defi ning in tables, 29
expressions, 29
IF conditions, DAX optimization, 679–683
ISSELECTEDMEASURE function, including/excluding

measures from calculation items, 304–306
PercOnCategory measures, computing percentages

over hierarchies, 348
PercOnParent measures, computing percentages

over hierarchies, 346–349
query measures, 399, 662–663
SELECTEDMEASURE function, including/excluding

measures from calculation items, 304–306
table fi lters in, 447–450
table functions, 59
testing, 399–401
VALUES function and, 67–68

memory size, VertiPaq hardware selection,
574, 576

memory speed, VertiPaq hardware selection, 574,
575–576

MIN function, 43

9781509306978_print.indb 7279781509306978_print.indb 727 21/05/19 5:32 pm21/05/19 5:32 pm

MMR (Many-Many Relationships)

728

MMR (Many-Many Relationships), 489, 490, 494, 507
bridge tables, 494–499
common dimensionality, 500–504
weak relationships, 504–506

moving annual totals, computing, 243–244
moving averages, CALCULATE function, 201–202
MTD (Month-to-Date) calculations, time intelligence

calculations, 235–236, 259–262, 276–277
multi-line comments, 18
multiple columns

DISTINCT function and, 71
multiple-column relationships (calculated physical

relationships), 471–473
VALUES function and, 71

MultipleItemSales variable, 58

N
Name calculation group, 288
Name calculation item, 288
naming variables, 182
narrowing table computations, 384–386
NATURALINNERJOIN function, authoring queries,

423–425
NATURALLEFTOUTERJOIN function, authoring queries,

424–425
nested functions, call order of time intelligence

functions, 245–246
nested iterators

DAX optimization, 693–699
leveraging context transitions, 190–194

nesting
fi lter contexts, in variables, 184–185
FILTER functions, 61–62
multiple rows, in variables, 184
row contexts

on different tables, 91–92
on the same table, 92–97

table functions, 58–59
VAR/RETURN statements, 179–180

new customers, computing (tables), 380–381,
386–387

NEXTDAY function, call order of nested time intelligence
functions, 245–246

non-active relationships, ambiguity, 515–517
nonworking days between two dates, computing,

523–525
numbering sequences of events (calculations), 536–539
numbers, conversions, 19–21

O
one-sided relationships (data models), 2, 3
one-to-many relationships. See SMR
one-to-one relationships. See SSR
opening/closing balances (time intelligence

calculations), 254–258
operators, 23

arithmetic operators, 23
division by zero, 32–33
empty/missing values, 33–35
error-handling, 32–35

comparison operators, 23
logical operators, 23
overloading, 19–20
parenthesis operators, 23
text concatenation operators, 23

optimizing
columns

high-cardinality columns, 603
split optimization, 602–603
storage optimization, 602–603

data models with VertiPac, 579
aggregations, 587–588
cross-fi ltering, 590
denormalizing data, 584–591
gathering data model information,

579–584
relationship cardinality, 586–587

DAX, 657
bottlenecks, 668
CallbackDataID function, 690–693
change implementation, 668
conditional statements, 708–709
context transitions, 672–678
DISTINCTCOUNT function, 699–704
expressions, identifying a single DAX expression

for optimization, 658–661
fi lter conditions, 668–672
IF conditions, 678–683, 684–690
multiple evaluations, avoiding with variables,

704–708
nested iterators, 693–699
query plans, 664–667
reproduction queries, creating,

661–664
SE/FE bottlenecks, identifying, 667–668
server timings, 664–667

9781509306978_print.indb 7289781509306978_print.indb 728 21/05/19 5:32 pm21/05/19 5:32 pm

queries

 729

test queries, rerunning, 668
to-do list, 658
variables, 704–708

OR conditions, tables as fi lters, 381–384
ORDER BY clauses in EVALUATE statements, 60
orders (example), computing duration of, 26
Ordinal values, calculated items, 289
overwriting fi lters, CALCULATE function, 120–122, 136

P
P/C (Parent/Child) hierarchies, 350–361, 362
paging, VertiPaq hardware selection, 576–577
parallelism

CallbackDataID function, 641
VertiPaq SE queries, 641

PARALLELPERIOD function, time intelligence calculations,
238–239

parenthesis operators, 23
partitioning and SSAS, 562–563
Partitions # column (VertiPaq Analyzer), 582
percentages, computing, 135

ALL function, 63–64
ALLSELECTED function, 75–76
CALCULATE function, 124

ALL function, 125–132
ALLEXCEPT function, 135
VALUES function, 133–134

hierarchies, 345
IF conditions, 349
PercOnCategory measures, 348
PercOnParent measures, 346–349
ratio to parent calculations, 345

PercOnCategory measures, computing percentages
over hierarchies, 348

PercOnParent measures, computing percentages over
hierarchies, 346, 348–349

PercOnSubcategory measures, computing percentages
over hierarchies, 346–348

physical query plans, 612–613, 614–616, 651–652
physical relationships

calculated physical relationships, 471–473
circular dependencies, 476–480
range-based relationships, 474–476

cardinality, 489–490
choosing, 506–507
cross-fi lter directions, 490

bidirectional cross-fi lter direction, 490,
491–493, 507

single cross-fi lter direction, 490
cross-island relationships, 489
intra-island relationships, 489
MMR, 489, 490, 494, 507

bridge tables, 494–499
common dimensionality, 500–504
weak relationships, 504–506

SMR, 489, 490, 493, 507
SSR, 489, 490, 493–494
strong relationships, 488
virtual relationships versus, 506–507
weak relationships, 488, 489, 504–506

Power BI
Auto Date/Time, 218–219
DAX and, 14–15
DAX Studio and, 609–611
fi lter contexts, 84–85
Power BI reports and DAX queries, 609–610

Power Pivot for Excel
automatic date columns, 219
date table templates, 220

Precedence calculation group, 288, 299–304
precomputing values (calculations), computing work days

between two dates, 525–527
previous year sales up to last day sales (calculations),

computing, 539–544
PREVIOUSMONTH function, time intelligence calcula-

tions, 239
Primary/Alternate Keys column (tables), 599
primary/alternate keys column (tables), 600
processing tables, 550
PYTD (Previous Year-To-Date) calculations, calculation

items and sideways recursion, 307–308

Q
QTD (Quarter-to-Date) calculations, time intelligence

calculations, 235–236, 259–262, 276–277
qualitative attributes column (tables), 599, 600
quantitative attributes column (tables), 599, 600–601
queries

DAX queries
capturing, 609–611
DISTINCTCOUNT function, 634–635
executing, 546

DAX query plans, 612–613

9781509306978_print.indb 7299781509306978_print.indb 729 21/05/19 5:32 pm21/05/19 5:32 pm

730

queries

DirectQuery, 546, 548, 549, 617
DirectQuery SE queries

composite data models, 646–647
reading, 645–646

Expression Trees, 612
FE, 546, 547

datacaches, 547
operators of, 547
single-threaded implementation, 547

materialization, 568–571
MDX queries, 546

DAX and, 613
disabling attribute hierarchies (data model

optimization), 604
executing, 546

query measures, creating with DAX Studio,
662–663

reproduction queries, creating
creating query measures with DAX Studio,

662–663
in DAX, 661–662
in MDX, 663–664

SE, 546, 616–617
aggregations, 548
datacaches, 547
DirectQuery, 548
operators of, 547
parallel implementations, 548
VertiPaq, 547–549, 550–577

test queries, rerunning (DAX optimization), 668
VertiPaq, 546, 547–548, 550. See also data models,

optimizing with VertiPaq
aggregations, 571–573
columnar databases, 550–553
compression, 553–562
datacaches, 549
DMV, 563–565
hardware selection, 573–577
hash encoding, 555–556
hierarchies, 561–562
materialization, 568–571
multithreaded implementations, 548
partitioning, 562–563
processing tables, 550
re-encoding, 559
relationships (data models), 561–562,

565–568
RLE, 556–559

scan operations, 549
segmentation, 562–563
sort orders, 560–561
value encoding, 554–555

VertiPaq SE queries, 624
composite data models, 646–647
datacaches and parallelism, 635–637
DISTINCTCOUNT function, 634–635
scan time, 632–634
xmSQL queries and, 624–632

xmSQL queries, 624
aggregation functions, 625–627
arithmetical operations, 627
batch events, 630–632
fi lter operations, 628–630
join operators, 630

queries, authoring, 395
ADDMISSINGITEMS function, 419–420,

432–433
auto-exists feature, 428–434
DAX Studio, 395
DEFINE sections

MEASURE keyword in, 399
VAR keyword in, 397–399

EVALUATE statements
ADDMISSINGITEMS function, 419–420,

432–433
example of, 396
expression variables and, 398
GENERATE function, 414–417
GENERATEALL function, 417
GROUPBY function, 420–423
ISONORAFTER function, 417–419
NATURALINNERJOIN function, 423–425
NATURALLEFTOUTERJOIN function, 423–425
query variables and, 398
ROW function, 400–401
SAMPLE function, 427–428
SUBSTITUTEWITHINDEX function, 425–427
SUMMARIZE function, 401–403, 433–434
SUMMARIZECOLUMNS function, 403–409,

429–434
syntax of, 396–399
TOPN function, 409–414
TOPNSKIP function, 420

expression variables, 397–399
GENERATE function, 414–417

9781509306978_print.indb 7309781509306978_print.indb 730 21/05/19 5:32 pm21/05/19 5:32 pm

relationships (data models)

 731

GENERATEALL function, 417
GROUPBY function, 420–423
ISONORAFTER function, 417–419
MEASURE in DEFINE sections, 399
measures

query measures, 399
testing, 399–401

NATURALINNERJOIN function, 423–425
NATURALLEFTOUTERJOIN function, 423–425
query variables, 397–399
ROW function, testing measures, 400–401
SAMPLE function, 427–428
shadow fi lter contexts, 457–462
SUBSTITUTEWITHINDEX function, 425–427
SUMMARIZE function, 401–403, 433–434
SUMMARIZECOLUMNS function, 403–409,

429–434
TOPN function, 409–414
TOPNSKIP function, 420
VAR in DEFINE sections, 397–399

Query End events (SQL Server Profi ler), 621
query plans

capturing queries
DAX Studio, 617–620
SQL Server Profi ler, 620–623

collecting, 613–614
DAX optimization, 664–667
logical query plans, 612, -614, 650–651
physical query plans, 612–613, 614–616, 651–652
reading, 649–655

query variables, 397–399

R
range-based relationships (calculated physical

relationships), 474–476
RANK.EQ function, 210
RANKX function, numbering sequences of events

(calculations), 538–539
RANKX iterators, 188, 202–210
ratio to parent calculations, computing percentages over

hierarchies, 345
readability (code), FILTER function, 62–63
recursion (sideways), calculation items, 306–311
re-encoding

SSAS and, 559
VertiPaq, 559

referencing columns in tables, 17–18
refreshing data, SSAS (SQL Server Analysis Services),

549–550
RELATED function

CALCULATE function and, 443–444
calculated columns, 443–444
context transitions in expanded tables, 455
expanded tables, 441–444
fi lter contexts, relationships and, 109
nested row contexts on different tables, 92
row contexts and relationships, 103–105
table fi lters and expanded tables, 454

RELATEDTABLE function, 58–59
fi lter contexts, relationships and, 109
nested row contexts on different tables, 91–92
row contexts and relationships, 103–105

relational functions, 53–54
relationships (data models), 2

1:1 relationships, 2
active relationships

ambiguity, 514–515
CALCULATETABLE function, 451–453
expanded tables and, 450–453
USERELATIONSHIP function, 450–451

ambiguity, 512–513
active relationships, 514–515
non-active relationships, 515–517

bidirectional fi ltering, 3–4
bidirectional relationships, 106, 109
calculated physical relationships, 471

circular dependencies, 476–480
multiple-column relationships, 471–473
range-based relationships, 474–476

cardinality, 489–490, 586–587, 590–591
chains, 3
columns, 3
cross-fi lter directions, 3, 490

bidirectional cross-fi lter direction, 490,
491–493, 507

single cross-fi lter direction, 490
cross-island relationships, 489
DAX and SQL, 9
directions of, 3–4
evaluation contexts and, 101–102

fi lter contexts, 106–109
row contexts, 102–105

expanded tables, 437–441

9781509306978_print.indb 7319781509306978_print.indb 731 21/05/19 5:32 pm21/05/19 5:32 pm

732

relationships (data models)

granularity, 507–512
intra-island relationships, 489
invalid relationships and blank rows, 68–71
many-sided relationships, 2, 3
MMR, 489, 490, 494, 507

bridge tables, 494–499
common dimensionality, 500–504
weak relationships, 504–506

non-active relationships, ambiguity, 515–517
one-sided relationships, 2, 3
performance, 507
physical relationships

calculated physical relationships,
471–480

cardinality, 489–490
choosing, 506–507
cross-fi lter directions, 490–493
cross-island relationships, 489
intra-island relationships, 489
MMR, 489, 490, 494–506, 507
SMR, 489, 490, 493, 507
SSR, 489, 490, 493–494
strong relationships, 488
virtual relationships versus, 506–507
weak relationships, 488, 489, 504–506

Relationship reports (VertiPaq Analyzer), 584
Relationship Size column (VertiPaq Analyzer), 582
relationships, expanded tables, 437–441
shallow relationships in batch events (xmSQL queries),

630–632
SMR, 489, 490, 493, 507
SSAS and, 561–562
SSR, 489, 490, 493–494
strong relationships, 488
transferring fi lters, 480–481

CALCULATE function, 482
CONTAINS function, 481–482
FILTER function, 481–482, 484–485
INTERSECT function, 483–484
TREATAS function, 482–483, 484

unidirectional fi ltering, 4
USERELATIONSHIP function, non-active relationships

and ambiguity, 516–517
VertiPaq and, 565–568
virtual relationships, 480, 507

dynamic segmentation, 485–488
physical relationships versus, 506–507

transferring fi lters, 480–485
weak relationships, 2, 439, 488, 489, 504–506

reproduction queries, creating
in DAX, 661–662
in MDX, 663–664
query measures, creating with DAX Studio,

662–663
reusing table expressions, 388–389
RLE (Run Length Encoding), VertiPaq, 556–559
ROLLUP function, 401–402, 403
ROLLUPADDISSUBTOTAL modifi er, SUMMARIZECOL-

UMNS function, 404–406
ROLLUPGROUP modifi er, SUMMARIZECOLUMNS func-

tion, 406
ROW CONTEXT iterators, 187–188
row contexts, 80

CALCULATE function and, 148–151
column references, 87
examples of, 86–87
fi lter contexts versus, 85
iterators and, 90–91
nested row contexts

on different tables, 91–92
on the same table, 92–97

relationships and, 102–105
ROW function

static tables, creating, 391–392
testing measures, 400–401

rows (tables)
ALLNOBLANKROW function, 464, 465
blank rows, invalid relationships, 68–71
CONTAINSROW function, 387–388
DETAILROWS function, 388–389
nesting in variables, 184
SAMPLE function, 427–428
TOPN function, 409–414

Rows column (VertiPaq Analyzer), 581, 583

S
sales

budget/sales information (calculations), showing
together, 527–530

previous year sales up to last day sales (calculations),
computing, 539–544

same-store sales (calculations), computing, 530–536
same-store sales (calculations), computing, 530–536
SAMEPERIODLASTYEAR function

9781509306978_print.indb 7329781509306978_print.indb 732 21/05/19 5:32 pm21/05/19 5:32 pm

SQL Server Profi ler

 733

computing previous year sales up to last day sales
(calculations), 540–544

nested time intelligence functions, call order of,
245–246

time intelligence calculations, 237
SAMPLE function, authoring queries, 427–428
scalar expressions, 57–58
scalar values

storing in variables, 176, 181
tables as, 71–74

SE (Storage Engines), 546
aggregations, 548
bottlenecks, identifying, 667–668
datacaches, 547
DirectQuery, 548, 549
operators of, 547
parallel implementations, 548
queries, 616–617
SE queries, copy VertiPaq SE queries entries
VertiPaq, 547–548, 550. See also data models,

optimizing with VertiPaq
aggregations, 571–573
columnar databases, 550–553
compression, 553–562
datacaches, 549
DMV, 563–565
hardware selection, 573–577
hash encoding, 555–556
hierarchies, 561–562
materialization, 568–571
multithreaded implementations, 548
partitioning, 562–563
processing tables, 550
re-encoding, 559
relationships (data models), 561–562,

565–568
RLE, 556–559
scan operations, 549
segmentation, 562–563
sort orders, 560–561
value encoding, 554–555

VertiPaq SE queries, 624–632
segmentation

dynamic segmentation and virtual relationships,
485–488

SSAS and, 562–563
Segments # column (VertiPaq Analyzer), 582
SELECTCOLUMNS function, 390–391, 393–394

SELECTCOLUMNS iterators, 196, 197–199
SELECTEDMEASURE function, including/excluding

measures from calculation items, 304–306
SELECTEDMEASUREFORMATSTRING function, 291
SELECTEDVALUE function

calculated physical relationships, circular
dependencies, 479–480

context transitions in expanded tables,
454–455

fi lter contexts, 318–319
same-store sales (calculations), computing,

533–534
tables as scalar values, 73–74

semi-additive calculations, time intelligence calculations,
246–248

sequences of events (calculations), numbering, 536–539
server timings, DAX optimization, 664–667
shadow fi lter contexts, 457–462
shallow relationships in batch events (xmSQL queries),

630–632
sideways recursion, calculation items, 306–311
simple fi lters

arbitrarily shaped fi lters versus, 337
defi ned, 337

single cross-fi lter direction (physical relationships), 490
single data models

DirectQuery mode, 488
VertiPaq mode, 488

single-line comments, 18
SMR (Single-Many Relationships), 489, 490,

493, 507
sort order, determining, ORDER BY clauses, 60
sort orders

SSAS and, 560–561
VertiPaq, 560–561

SQL (Structured Query Language)
conditions, 11
DAX and, 9
as declarative language, 10
error-handling, empty/missing values, 35
subqueries, 11

SQL Server Profi ler
DirectQuery End events, 621
Query End events, 621
query plans, capturing profi ling information,

620–623
VertiPaq SE Query Cache Match events, 621
VertiPaq SE Query End events, 621

9781509306978_print.indb 7339781509306978_print.indb 733 21/05/19 5:32 pm21/05/19 5:32 pm

734

SQRT function

SQRT function, 36
SSAS (SQL Server Analysis Services)

data refreshes, 549–550
DMV, 563–565
hierarchies, 561–562
partitioning, 562–563
processing tables, 550
re-encoding, 559
relationships (data models), 561–562
segmentation, 562–563
sort orders, 560–561

SSR (Single-Single Relationships), 489, 490, 493–494
star schemas, denormalizing data and data model opti-

mization, 586
STARTOFQUARTER function, time intelligence calcula-

tions, 256–257
static tables, creating

DATATABLE function, 392–393
ROW function, 391–392

storing
blockz, in variables, 176, 181
columns (tables), 601–602
partial results of calculations, in variables, 176–177
scalar values, in variables, 176, 181
tables, in variables, 58

string conversions, 19–21
strong relationships, 488
subcategories/categories example, ALL function and,

66–67
subqueries

DAX, 11
SQL, 11

SUBSTITUTEWITHINDEX function, authoring queries,
425–427

SUM function, 42–43, 44–45, 88–89
SUMMARIZE function

authoring queries, 401–403, 433–434
auto-exists feature (queries), 433–434
columns (tables) and, 401
fi lter contexts, 112
GROUPBY function and, 420–423
ISSUBTOTAL function and, 402–403
ROLLUP function and, 401–402, 403
table fi lters and expanded tables, 453–454
tables and, 369–372, 373–374, 383–384
transferring fi lters, 484–485

SUMMARIZECOLUMNS function

authoring queries, 403–409, 429–434
auto-exists feature (queries), 429–434
fi lter arguments, 406–409
IGNORE modifi er, 403–404
ROLLUPADDISSUBTOTAL modifi er, 404–406
ROLLUPGROUP modifi er, 406
TREATAS function and, 407–408

SUMX function, 45
SUMX iterators, 187–188
SWITCH function, 47–48

T
table constructors, 24
table expressions, EVALUATE statements,

59–60
table fi lters, DISTINCTCOUNT function,

699–704
table functions, 57

ALL function
columns and, 64–65
computing percentages, 63–64
measures and, 63–64
syntax of, 63
top categories/subcategories example,

66–67
VALUES function versus, 67

ALLEXCEPT function, 65–66
ALLSELECTED function, 74–76
calculated columns and, 59
calculated tables, 59
DISTINCT function, 71

blank rows and invalid relationships, 68, 70–71
calculated columns, 68
multiple columns, 71
VALUES function versus, 68

FILTER function, 57–58
code maintenance/readability, 62–63
as iterator, 60–61
nesting, 61–62
syntax of, 60

measures and, 59
nesting, 58–59
RELATEDTABLE function, 58–59
VALUES function, 71

ALL function versus, 67
blank rows and invalid relationships, 68–71

9781509306978_print.indb 7349781509306978_print.indb 734 21/05/19 5:32 pm21/05/19 5:32 pm

tables

 735

calculated columns, 68
calculated tables, 68
DISTINCT function versus, 68
measures and, 67–68
multiple columns, 71
tables as scalar values, 71–74

Table Size % column (VertiPaq Analyzer), 582
Table Size column (VertiPaq Analyzer), 581
table variables, 181–182
tables, 363

ADDCOLUMNS function, 366–369, 371–372
blank rows, invalid relationships, 68–71
bridge tables, MMR, 494–499
CALCULATE function, tables as fi lters, 382–384
calculated columns, 25–26, 42

choosing between calculated columns and
measures, 29–30

differences between calculated columns and
measures, 29

expressions, 29
using measures in calculated columns, 30

calculated tables, 59
creating, 390–391
DISTINCT function, 68
SELECTCOLUMNS function, 390–391
VALUES function, 68

CALCULATETABLE function, 363–365
columns

ADDCOLUMNS function, 366–369, 371–372
Boolean calculated columns, 597–598
calculated columns and data model optimization,

595–599
calculated columns, RELATED function, 443–444
cardinality, 603
cardinality and data model optimization, 591–592
Date column, 592–595
defi ned, 2
descriptive attributes column (tables), 600,

601–602
fi ltering, 444–447
optimizing high-cardinality columns, 603
Primary/Alternate Keys column (tables), 599
primary/alternate keys column (tables), 600
qualitative attributes column (tables), 599, 600
quantitative attributes column (tables), 599,

600–601
referencing, 17–18

relationships, 3
SELECTCOLUMNS function, 390–391,

393–394
storage optimization, 602–603
storing, 601–602
SUBSTITUTEWITHINDEX function, 425–427
SUMMARIZE function and, 401
SUMMARIZECOLUMNS function, 403–409,

429–434
technical attributes column (tables), 600, 602
Time column, 592–595
VertiPaq Analyzer, 580–583

computing new customers, 380–381, 386–387
CONTAINS function, 387–388
CONTAINSROW function, 387–388
CROSSJOIN function, 372–374, 383–384
date tables

ADDCOLUMNS function, 223–224
building, 220–224
CALENDAR function, 222
CALENDARAUTO function, 222–224
date table templates (Power Pivot for Excel),

220
date templates, 224
duplicating, 227
loading from other data sources, 221
managing multiple dates, 224–228
Mark as Date Table, 232–233
multiple date tables, 226–228
multiple relationships to date tables,

224–226
naming, 221

defi ned, 2
DETAILROWS function, 388–389
EXCEPT function, 379–381
expanded tables

active relationships, 450–453
column fi lters versus table fi lters, 444–447
context transitions, 454–455
differences between table fi lters and expanded

tables, 453–454
fi lter contexts, 439–441
fi ltering, 444–447, 450–453
RELATED function, 441–444
relationships, 437–441
table fi lters in measures, 447–450
table fi lters versus column fi lters, 444–447

9781509306978_print.indb 7359781509306978_print.indb 735 21/05/19 5:32 pm21/05/19 5:32 pm

736

tables

expressions, reusing, 388–389
FILTER function versus CALCULATETABLE function,

363–365
fi ltering

CALCULATE function and, 445–447
column fi lters versus, 444–447
in measures, 447–450

as fi lters, 381–384
GENERATESERIES function, 393–394
IN function, 387–388
INTERSECT function, 378–379
iterators, returning tables with, 196–199
measures, defi ning in tables, 29
narrowing computations, 384–386
NATURALINNERJOIN function, 423–425
NATURALLEFTOUTERJOIN function, 423–425
processing, 550
records, 2
reusing expressions, 388–389
rows

ALLNOBLANKROW function, 464, 465
CONTAINSROW function, 387–388
DETAILROWS function, 388–389
SAMPLE function, 427–428
TOPN function, 409–414

as scalar values, 71–74
SELECTCOLUMNS function, 390–391, 393–394
static tables

creating with DATATABLE function, 392–393
creating with ROW function, 391–392

storing in variables, 176, 181
SUMMARIZE function, 369–372, 373–374, 383–384
temporary tables in batch events (xmSQL queries),

630–632
TOPN function, 409–414
UNION function, 374–378
variables, storing tables in, 58

Tabular model
calculation groups, creating, 281–288
DAX engines and, 545–546
DAX queries, executing, 546
DirectQuery, 546
MDX queries, executing, 546
VertiPaq, 546

technical attributes column (tables), 600, 602
templates

date table templates (Power Pivot for Excel), 220
date templates, 224

temporary tables in batch events (xmSQL queries),
630–632

test queries, rerunning (DAX optimization), 668
text

concatenation operators, 23
editing, formatting DAX code, 42

text functions, 50–51
Time column, data model optimization, 592–595
TIME function, 51, 52
time intelligence calculations, 217

Auto Date/Time (Power BI), 218–219
automatic date columns (Power Pivot for Excel),

219
basic calculations, 228–232
basic functions, 233–235
CALCULATE function, 228–232
CALCULATETABLE function, 259, 260–261
context transitions, 260
custom calendars, 272

DATESYTD function, 276–277
weeks, 272–275

date tables
ADDCOLUMNS function, 223–224
building, 220–224
CALENDAR function, 222
CALENDARAUTO function, 222–224
date table templates (Power Pivot for Excel),

220
date templates, 224
duplicating, 227
loading from other data sources, 221
managing multiple dates, 224–228
Mark as Date Table, 232–233
multiple date tables, 226–228
multiple relationships to date tables,

224–226
naming, 221

DATEADD function, 237–238, 262–269
DATESINPERIOD function, 243–244
DATESMTD function, 259, 276–277
DATESQTD function, 259, 276–277
DATESYTD function, 259, 260, 261–262, 276–277
differences over previous periods, computing,

241–243
drillthrough operations, 271
FILTER function, 228–232
FIRSTDATE function, 269, 270
FIRSTNONBLANK function, 256–257,

270–271

9781509306978_print.indb 7369781509306978_print.indb 736 21/05/19 5:32 pm21/05/19 5:32 pm

variables

 737

LASTDATE function, 248–249, 254, 255,
269–270

LASTNONBLANK function, 250–254, 255,
270–271

mixing functions, 239–241
moving annual totals, computing, 243–244
MTD calculations, 235–236, 259–262, 276–277
nested functions, call order of, 245–246
NEXTDAY function, 245–246
opening/closing balances, 254–258
PARALLELPERIOD function, 238–239
periods to date, 259–262
PREVIOUSMONTH function, 239
QTD calculations, 235–236, 259–262,

276–277
SAMEPERIODLASTYEAR function, 237, 245–246
semi-additive calculations, 246–248
STARTOFQUARTER function, 256–257
time periods, computing from prior periods,

237–239
YTD calculations, 235–236, 259–262, 276–277

time periods, computing from prior periods,
237–239

top categories/subcategories example, ALL function and,
66–67

TOPN function
authoring queries, 409–414
ISONORAFTER function and, 417–419
sort order, 410

TOPNSKIP function, authoring queries, 420
transferring fi lters, 480–481

CALCULATE function, 482
CONTAINS function, 481–482
FILTER function, 481–482, 484–485
INTERSECT function, 483–484
TREATAS function, 482–483, 484

TREATAS function, 378
data lineage, 467–468
fi lter contexts and data lineage, 334–336
SUMMARIZECOLUMNS function and,

407–408
transferring fi lters, 482–483, 484
UNION function and, 377–378

trigonometric functions, 50

U
unary operators, P/C (Parent/Child) hierarchies, 362
unidirectional fi ltering (relationships), 4

UNION function
CALCULATE function and, 376–378
DISTINCT function and, 375–378
tables and, 374–378
TREATAS function and, 377–378

Use Hierarchies Size column (VertiPaq Analyzer),
582

USERELATIONSHIP function
active relationships, 450–451
CALCULATE function and, 164–168
non-active relationships and ambiguity,

516–517

V
value encoding (VertiPaq compression),

554–555
VALUE function, 51
values, list of. See fi lter arguments
VALUES function, 71

ALL function and, 327–328
ALL function versus, 67
ALLEXCEPT function versus, 326–328
blank rows and invalid relataionships, 68–71
calculated columns, 68
calculated physical relationships

circular dependencies, 477–480
range-based relationships, 474–476

calculated tables, 68
computing percentages, 133–134
DISTINCT function versus, 68
fi lter contexts, 322–324, 327–328
FILTERS function versus, 322–324
measures and, 67–68
multiple columns, 71
tables as scalar values, 71–74

VAR keyword, DEFINE sections (authoring queries),
397–399

variables, 30–31, 175
as a constant, 177–178
defi ning, 176, 178–180
documenting code, 183–184
error-handling, 37
expression variables, 397–399
formatting, 40–41
lazy evaluations, 181–183
multiple evaluations, avoiding with variables,

704–708

9781509306978_print.indb 7379781509306978_print.indb 737 21/05/19 5:32 pm21/05/19 5:32 pm

738

variables

MultipleItemSales variable, 58
names, 182
nesting

fi lter contexts, 184–185
multiple rows, 184

query variables, 397–399
scalar values, 58
scope of, 178–180
storing

partial results of calculations, 176–177
scalar values, 176, 181
tables, 176, 181

table variables, 181–182
tables, storing, 58
VAR syntax, 175–177
VAR/RETURN blocks, 175–177, 180
VAR/RETURN statements, nesting, 179–180

Variant data type, 22
VertiPaq, 546, 547–548, 550

aggregations, 571–573, 604–607
caches, 637–640
CallbackDataID function, 640–644
columnar databases, 550–553
compression, 553–554

hash encoding, 555–556
re-encoding, 559
RLE, 556–559
value encoding, 554–555

data model optimization, 579
aggregations, 587–588, 604–607
calculated columns, 595–599
choosing columns for storage, 599–602
column cardinality, 591–592
cross-fi ltering, 590
Date column, 592–595
denormalizing data, 584–591
disabling attribute hierarchies, 604
gathering data model information, 579–584
optimizing column storage, 602–603
optimizing drill-through attributes, 604
relationship cardinality, 586–587, 590–591
Time column, 592–595

datacaches, 549
DMV, 563–565
hardware selection, 573

best practices, 577
CPU model, 574–575

Disk I/O performance, 574, 576–577
memory size, 574, 576
memory speed, 574, 575–576
number of cores, 574, 576
as an option, 573–574
paging, 576–577
setting priorities, 574–576

hierarchies, 561–562
materialization, 568–571
multithreaded implementations, 548
partitioning, 562–563
processing tables, 550
relationships (data models), 561–562, 565–568
row-level security, 639
scan operations, 549
segmentation, 562–563
sort orders, 560–561
VertiPaq Analyzer

columns (tables), 580–583
gathering data model information, 579–584

VertiPaq Analyzer, Relationship reports, 584
VertiPaq mode, 488–489

composite data models, 488
single data models, 488

VertiPaq SE queries, 624
composite data models, 646–647
datacaches, parallelism and, 635–637
DISTINCTCOUNT function, 634–635
scan time, 632–634
xmSQL queries and, 624

aggregation functions, 625–627
arithmetical operations, 627
batch events, 630–632
fi lter operations, 628–630
join operators, 630

VertiPaq SE Query Cache Match events (SQL Server
Profi ler), 621

VertiPaq SE Query End events (SQL Server Profi ler), 621
virtual relationships, 480, 507

dynamic segmentation, 485–488
physical relationships versus, 506–507
transferring fi lters, 480–481

CALCULATE function, 482
CONTAINS function, 481–482
FILTER function, 481–482, 484–485
INTERSECT function, 483–484
TREATAS function, 482–483, 484

9781509306978_print.indb 7389781509306978_print.indb 738 21/05/19 5:32 pm21/05/19 5:32 pm

YTD (Year-to-Date) calculations

 739

W
weak relationships, 2, 439, 488, 489, 504–506
weeks (custom calendars), time intelligence calculations,

272–275
work days between two dates, computing, 519–523

nonworking days, 523–525
precomputing values (calculations), 525–527

X
xmSQL

CallbackDataID function
parallelism and, 641
VertiPaq and, 640–644

VertiPaq queries, 548
xmSQL queries, 624

aggregation functions, 625–627

arithmetic operations, 627
batch events, 630–632
fi lter operations, 628–630
join operators, 630

Y
YOY (Year-Over-Year) calculation item, 289–290
YOY% (Year-Over-Year Percentage) calculation item,

289–290
YTD (Year-to-Date) calculations

calculation group precedence, 299–303
calculation items

applying to expressions, 294
sideways recursion, 307

time intelligence calculations, 235–236, 259–262,
276–277

9781509306978_print.indb 7399781509306978_print.indb 739 21/05/19 5:32 pm21/05/19 5:32 pm

Marco Russo and Alberto Ferrari are the founders of sqlbi.com,
where they regularly publish articles about Microsoft Power BI,
Power Pivot, DAX, and SQL Server Analysis Services. They have
worked with DAX since the fi rst beta version of Power Pivot
in 2009 and, during these years, sqlbi.com became one of the
major sources for DAX articles and tutorials. Their courses, both
in-person and online, are the major source of learning for many
DAX enthusiasts.

They both provide consultancy and mentoring on business
intelligence (BI) using Microsoft technologies. They have
written several books and papers about Power BI, DAX, and
Analysis Services. They constantly help the community of DAX
users providing content for the websites daxpatterns.com,
daxformatter.com, and dax.guide.

Marco and Alberto are also regular speakers at major
international conferences, including Microsoft Ignite, PASS
Summit, and SQLBits. Contact Marco at marco.russo@sqlbi.com,
and contact Alberto at alberto.ferrari@sqlbi.com

9781509306978_print.indb 7429781509306978_print.indb 742 21/05/19 5:32 pm21/05/19 5:32 pm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

