

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9781509304912
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9781509304912
https://plusone.google.com/share?url=http://www.informit.com/title/9781509304912
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9781509304912
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9781509304912/Free-Sample-Chapter

Exam Ref 70-762
Developing SQL
Databases

Louis Davidson
Stacia Varga

am Microsoft

Exam Ref 70-762 Developing SQL Databases

Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2017 by Pearson Education Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must

be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any

form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms, and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/. No patent liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-1-5093-0491-2
ISBN-10: 1-5093-0491-6

Library of Congress Control Number: 2016962647
First Printing January 2017
Trademarks

Microsoft and the trademarks listed at https://www.microsoft.com on the “Trademarks” webpage are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an “as is” basis. The authors, the publisher, and Microsoft Corporation shall have
neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information
contained in this book or programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief Greg Wiegand

Acquisitions Editor Trina MacDonald

Development Editor
Managing Editor
Senior Project Editor
Editorial Production
Copy Editor

Indexer

Proofreader
Technical Editor

Cover Designer

Rick Kughen
Sandra Schroeder
Tracey Croom
Backstop Media
Jordan Severns
Julie Grady
Christina Rudloff
Christopher Ford

Twist Creative, Seattle

http://www.pearsoned.com/permissions/
https://www.microsoft.com

Contents at a glance

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4

Introduction
Preparing for the exam

Design and implement database objects
Implement programmability objects
Manage database concurrency

Optimize database objects and SQL infrastructure

Index

Xi

4%

101
195
265

369

This page intentionally left blank

Contents

Chapter 1

Introduction Xi
Organization of thisbook, Xii
Microsoft certifications Xii
Acknowledgments Xii
Free ebooks from Microsoft Press.............. Xiii
Microsoft Virtual Academyt Xiii
Quick access to onlinereferences Xiv
Errata, updates, & book support Xiv
We wantto hearfromyou i Xiv
Stay intouch Xiv
Preparing for the exam XV
Design and implement database objects 1
Skill 1.1: Design and implement a relational database schema 2

Designing tables and schemas based on business requirements 2

Improving the design of tables by using normalization

Writing table create statements 11

Determining the most efficient data types to use 15
Skill 1.2: Design and implement indexes 24

Design new indexes based on provided tables, queries,

or plans 26

Distinguish between indexed columns and included columns 41

Implement clustered index columns by using best practices 46

Recommend new indexes based on queryplans 49

vi

Chapter 2

Skill 1.3: Design and implement views 52
Design a view structure to select data based on user or
business requirements 53
Identify the steps necessary to design an updateable view 57
Implement partitioned views 64
Implement indexed views 67
Skill 1.4: Implement columnstore indexes 70
Determine use cases that support the use of columnstore
indexes 70
Identify proper usage of clustered and non-clustered
columnstore indexes 73
Design standard non-clustered indexes in conjunction
with clustered columnstore indexes 85
Implement columnstore index maintenance 89
SUMMAIY. « o oot e e e 94
Thought experiment. 96
Thought experiment answer. ..., 98
Implement programmability objects 101
Skill 2.1 Ensure data integrity with constraints 102
Define table and foreign-key constraints to enforce
business rules 102
Write Transact-SQL statements to add constraints to tables 119
Identify results of Data Manipulation Language
(DML) statements given existing tables and constraints 123
Identify proper usage of PRIMARY KEY constraints 125
Skill 2.2 Create stored procedures. ..., 130
Design stored procedure components and structure
based on business requirements 131
Implement input and output parameters 135
Implement table-valued parameters 137
Implement return codes 139
Streamline existing stored procedure logic 141
Implement error handling and transaction control
logic within stored procedures 144

Chapter 3

Skill 2.3 Create triggers and user-defined functions

Design trigger logic based on business requirements

Determine when to use Data Manipulation Language
(DML) triggers, Data Definition Language (DDL) triggers,
or logon triggers

Recognize results based on execution of AFTER or
INSTEAD OF triggers

Design scalar-valued and table-valued user-defined
functions based on business requirements

Identify differences between deterministic and
non-deterministic functions

Summary

Thought Experiment.

Though Experiment Answer ...,

Manage database concurrency

Skill 3.1: Implement transactions

Identify DML statement results based on transaction behavior

Recognize differences between and identify usage of
explicit and implicit transactions

Implement savepoints within transactions

Determine the role of transactions in high-concurrency
databases

Skill 3.2: Manage isolation levels

Identify differences between isolation levels

Define results of concurrent queries based on isolation level

Identify the resource and performance impact of given
isolation levels

Skill 3.3: Optimize concurrency and locking behavior............

Troubleshoot locking issues

Identify lock escalation behaviors
Capture and analyze deadlock graphs
Identify ways to remediate deadlocks

159

169

176

180

203
209

211

....216

217
219

228

....230

231
237
237
241

vii

viii

Chapter 4

Skill 3.4: Implement memory-optimized tables and
native stored procedures.

Define use cases for memory-optimized tables
Optimize performance of in-memory tables

Determine best case usage scenarios for natively
compiled stored procedures

Enable collection of execution statistics for natively
compiled stored procedures

Summary
Thought experiment. i

Thought experiment answers. ...,

242
245

255

Optimize database objects and SQL infrastructure 265

Skill 4.1: Optimize statistics and indexescoooinn..

Determine the accuracy of statistics and the associated
impact to query plans and performance

Design statistics maintenance tasks

Use dynamic management objects to review current
index usage and identify missing indexes

Consolidate overlapping indexes

Skill 4.2: Analyze and troubleshoot query plans.....................
Capture query plans using extended events and traces
Identify poorly performing query plan operators

Compare estimated and actual query plans and related
metadata

Configure Azure SQL Database Performance Insight

Skill 4.3: Manage performance for database instances
Manage database workload in SQL Server
Design and implement Elastic Scale for Azure SQL Database
Select an appropriate service tier or edition
Optimize database file and tempdb configuration
Optimize memory configuration

Monitor and diagnose schedule and wait statistics
using dynamic management objects

Troubleshoot and analyze storage, 10, and cache issues
Monitor Azure SQL Database query plans

266
273

276
281

283
283
291

314
319

324
325
331
334
336
339

340
343
346

Skill 4.4: Monitor and trace SQL Server baseline performance metrics .. 347
Monitor operating system and SQL Server performance metrics 347

Compare baseline metrics to observed metrics while

troubleshooting performance issues 352
Identify differences between performance monitoring
and logging tools 355
Monitor Azure SQL Database performance 356
Determine best practice use cases for extended events 359
Distinguish between Extended Events targets 359
Compare the impact of Extended Events and SQL Trace 360
Define differences between Extended Events Packages,
Targets, Actions, and Sessions 360
Chapter summary 362
Thought experiment....... i 365
Thought experiment answer.o ... 367
Index 369

Contents ix

This page intentionally left blank

Introduction

The 70-762 exam tests your knowledge about developing databases in Microsoft SQL Server
2016. To successfully pass this exam, you should know how to create various types of data-
base objects, such as disk-based and memory-optimized tables, indexes, views, and stored
procedures, to name a few. Not only must you know how and why to develop specific types
of database objects, but you must understand how to manage database concurrency by
correctly using transactions, assigning isolation levels, and troubleshooting locking behavior.
Furthermore, you must demonstrate familiarity with techniques to optimize database per-
formance by reviewing statistics and index usage, using tools to troubleshoot and optimize
query plans, optimizing the configuration of SQL Server and server resources, and monitoring
SQL Server performance metrics. You must also understand the similarities and differences
between working with databases with SQL Server on-premises and Windows Azure SQL
Database in the cloud.

The 70-762 exam is focused on measuring skills of database professionals, such as devel-
opers or administrators, who are responsible for designing, implementing, or optimizing re-
lational databases by using SQL Server 2016 or SQL Database. In addition to reinforcing your
existing skills, it measures what you know about new features and capabilities in SQL Server
and SQL Database.

To help you prepare for this exam and reinforce the concepts that it tests, we provide
many different examples that you can try for yourself. Some of these examples require only
that you have installed SQL Server 2016 or have created a Windows Azure subscription. Other
examples require that you download and restore a backup of the Wide World Importers
sample database for SQL Server 2016 from https://github.com/Microsoft/sql-server-samples/
releases/tag/wide-world-importers-v1.0. The file to download from this page is WideWorldIm-
porters-Full.bak. You can find documentation about this sample database at Wide World
Importers documentation, https.//msdn.microsoft.com/library/mt734199(v=sql.1).aspx.

This book covers every major topic area found on the exam, but it does not cover every
exam question. Only the Microsoft exam team has access to the exam questions, and Micro-
soft regularly adds new questions to the exam, making it impossible to cover specific ques-
tions. You should consider this book a supplement to your relevant real-world experience and
other study materials. If you encounter a topic in this book that you do not feel completely
comfortable with, use the "Need more review?” links you'll find in the text to find more infor-
mation and take the time to research and study the topic. Great information is available on
MSDN, TechNet, and in blogs and forums.

xi

https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://msdn.microsoft.com/library/mt734199(v=sql.1).aspx

xii

Organization of this book

This book is organized by the “Skills measured” list published for the exam. The “Skills mea-
sured” list is available for each exam on the Microsoft Learning website: https.//aka.ms/examlist.
Each chapter in this book corresponds to a major topic area in the list, and the technical tasks in
each topic area determine a chapter’s organization. If an exam covers six major topic areas, for
example, the book will contain six chapters.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premises and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

MORE INFO ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifica-
tions, go to https://www.microsoft.com/learning.

Acknowledgments

Louis Davidson | would like to dedicate my half of this book to my wife Valerie, who
put up with me writing my half of this book (a few times) while simultaneously finishing my
Database Design book.

Technically speaking, | would like to thank my colleagues in the MVP community and
program at Microsoft. | have learned so much from them for the many years | have been an
awardee and would never have accomplished so much without them. Far more than one is
referenced for additional material.

Thank you, Stacia, for your work on the book. | appreciate your involvement more than
you can imagine.

https://aka.ms/examlist
https://www.microsoft.com/learning
https://www.microsoft.com/learning

Stacia Varga | am grateful to have a community of SQL Server professionals that are always
ready to share their experience and insights related with me, whether through informal con-
versations or more extensive reviews of any content that | write. The number of people with
whom | have had informal conversations are too numerous to mention, but they know who
they are. | would like to thank a few people in particular for the more in-depth help they pro-
vided: Joseph D'Antoni, Grant Fritchey, and Brandon Leach. And thanks to Louis as well. We
have been on stage together, we have worked together, and now we have written together!

Behind the scenes of the publishing process, there are many other people involved that
help us bring this book to fruition. I'd like to thank Trina McDonald for her role as the acquisi-
tions editor and Troy Mott as the managing editor for his incredible patience with us and his
efforts to make the process as easy as possible. | also appreciate the copyediting by Christina
Rudloff and technical editing by Christopher Ford to ensure that the information we provide
in this book is communicated as clearly as possible and technically accurate.

Last, | want to thank my husband, Dean Varga, not only for tolerating my crazy work hours
during the writing of this book, but also for doing his best to create an environment condu-
cive to writing on many different levels.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from Mi-
crosoft Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and Mobi
for Kindle formats, ready for you to download at:

https://aka.ms/mspressfree

Check back often to see what is new!

Microsoft Virtual Academy

Build your knowledge of Microsoft technologies with free expert-led online training from
Microsoft Virtual Academy (MVA). MVA offers a comprehensive library of videos, live events,
and more to help you learn the latest technologies and prepare for certification exams. You'll
find what you need here:

https://www.microsoftvirtualacademy.com

xiii

https://aka.ms/mspressfree
https://www.microsoftvirtualacademy.com

Quick access to online references

Throughout this book are addresses to webpages that the author has recommended you visit
for more information. Some of these addresses (also known as URLs) can be painstaking to
type into a web browser, so we've compiled all of them into a single list that readers of the
print edition can refer to while they read.

Download the list at https.//aka.ms/examref762/downloads.

The URLs are organized by chapter and heading. Every time you come across a URL in the
book, find the hyperlink in the list to go directly to the webpage.

Errata, updates, & book support

We've made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

https://aka.ms/examref762/detail
If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
https://support.microsoft.com.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

https://aka.ms/tellpress

We know you're busy, so we've kept it short with just a few questions. Your answers go
directly to the editors at Microsoft Press. (No personal information will be requested.) Thanks
in advance for your input!

Stay in touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress.

https://aka.ms/examref762/downloads
https://aka.ms/examref762/detail
https://support.microsoft.com
https://aka.ms/tellpress
http://twitter.com/MicrosoftPress

Important: How to use this book to study for the exam

Certification exams validate your on-the-job experience and product knowledge. To gauge
your readiness to take an exam, use this Exam Ref to help you check your understanding of
the skills tested by the exam. Determine the topics you know well and the areas in which you
need more experience. To help you refresh your skills in specific areas, we have also provided
“Need more review?"” pointers, which direct you to more in-depth information outside the
book.

The Exam Ref is not a substitute for hands-on experience. This book is not designed to
teach you new skills.

We recommend that you round out your exam preparation by using a combination of
available study materials and courses. Learn more about available classroom training at
https.//www.microsoft.com/learning. Microsoft Official Practice Tests are available for many
exams at https.//aka.ms/practicetests. You can also find free online courses and live events
from Microsoft Virtual Academy at https.//www.microsoftvirtualacademy.com.

This book is organized by the “Skills measured” list published for the exam. The
“Skills measured” list for each exam is available on the Microsoft Learning website:
https.//aka.ms/examlist.

Note that this Exam Ref is based on this publicly available information and the author’s
experience. To safeguard the integrity of the exam, authors do not have access to the exam
questions.

Xv

https://www.microsoft.com/learning
https://aka.ms/practicetests
https://www.microsoftvirtualacademy.com
https://aka.ms/examlist

This page intentionally left blank

Manage database
concurrency

| n a typical environment, a database receives multiple requests to perform an operation
and often these requests can occur concurrently. As an administrator, you must under-
stand how SQL Server handles these requests by default and the available options for
changing this default behavior. Your overarching goal is to prevent unexpected results,
while enabling as many processes as possible.

The 70-762 exam tests your skills related to this goal of managing database concurrency.
Here in Skill 3.1, we review the basic properties and behaviors of transactions in SQL Server
and the role of transactions in high-concurrency databases. Skill 3.2 addresses the available
options for managing concurrency in SQL Server by using isolation levels and explores in
detail the differences between isolation levels as well as the effect each isolation level has
on concurrent transactions, system resources, and overall performance. Then in Skill 3.3 we
explore the tools at your disposal to better understand locking behavior in SQL Server and
the steps you can take to remediate deadlocks. Skill 3.4 introduces memory-optimized ta-
bles as another option for improving concurrency by explaining the use cases for which this
approach is best, how to optimize performance when tables are held in memory instead
of on disk, and considerations for using and analyzing performance of natively compiled
stored procedures.

Skills in this chapter:
m Implement transactions
= Manage isolation levels
m Optimize concurrency and locking behavior

® Implement memory-optimized tables and native stored procedures

Skill 3.1: Implement transactions

SQL Server protects data integrity by using transactions to control how, when, or even
whether data changes in a database. A transaction is a unit of work consisting of one or
more read and write commands that SQL Server executes completely or not at all. In the
exam, you must be able to recognize scenarios in which transactions can complete success-

195

196

fully or not, and know how to use T-SQL statements to manage transaction behavior. You
must also understand potential problems with transactions executing concurrently and how
SQL Server uses locks to mitigate these problems.

This section covers how to:
m |dentify DML statement results based on transaction behavior

m Recognize differences between and identify usage of explicit and implicit transac-
tions

m Implement savepoints within transactions

m Determine the role of transactions in high-concurrency databases

Identify DML statement results based on transaction
behavior

The results of a DML statement depends on transaction behavior. If the transaction succeeds,
then the inserts, the updates, or the deletes that SQL Server executes as part of that transac-
tion are committed to the database and permanently change the data in the affected tables.
If the transaction fails for any reason, you can cancel or rollback the transaction to reverse any
changes made to the database by the transaction prior to the failure. SQL Server has vari-

ous methods for managing transaction behavior, but you also have options for changing this
behavior when writing code to execute transactions.

In this section, we explore the ways that SQL Server supports the following set of prop-
erties collectively known in database theory as ACID to ensure data is protected in case of
system or hardware failure:

m Atomicity An atomic transaction is a set of events that cannot be separated from
one another and must be handled as a single unit of work. A common example is a
bank transaction in which you transfer money from your checking account to your sav-
ings account. A successful atomic transaction not only correctly deducts the amount
of the transfer from one account, but also adds it to the other account. If the trans-
action cannot complete all of its steps successfully, it must fail, and the database is
unchanged.

m Consistency When a transaction is consistent, any changes that it makes to the data
conform to the rules defined in the database by constraints, cascades, and triggers
and thereby leave the database in a valid state. To continue the previous example, the
amount removed from your checking account must be the same amount added to
your savings account when the transaction is consistent.

m Isolation Anisolated transaction behaves as if it were the only transaction interact-
ing with the database for its duration. /solation ensures that the effect on the database
is the same whether two transactions run at the same time or one after the other.

Manage database concurrency

Similarly, your transfer to the savings account has the same net effect on your overall
bank balances whether you were the only customer performing a banking transaction
at that time, or there were many other customers withdrawing, depositing, or transfer-
ring funds simultaneously.

m Durability A durable transaction is one that permanently changes the database and
persists even if the database is shut down unexpectedly. Therefore, if you receive a
confirmation that your transfer is complete, your bank balances remain correct even if
your bank experienced a power outage immediately after the transaction completed.

NOTE ACID PROPERTY SUPPORT

By default, SQL Server guarantees all four ACID properties, although you can request an
alternate isolation level if necessary. We explain isolation levels in detail in Skill 3.2.

Before we start exploring transaction behavior, let's set up a new database, add some
tables, and insert some data to establish a test environment as shown in Listing 3-1.

LISTING 3-1 Create a test environment for exploring transaction behavior

CREATE DATABASE ExamBook762Ch3;
GO
USE ExamBook762Ch3;
GO
CREATE SCHEMA Examples;
GO
CREATE TABLE Examples.TestParent
(
ParentId dint NOT NULL
CONSTRAINT PKTestParent PRIMARY KEY,
ParentName varchar(100) NULL
s

CREATE TABLE Examples.TestChild
(
ChildId 1int NOT NULL
CONSTRAINT PKTestChild PRIMARY KEY,
ParentId int NOT NULL,
ChildName varchar(100) NULL
N
ALTER TABLE Examples.TestChild
ADD CONSTRAINT FKTestChild_Ref _TestParent
FOREIGN KEY (ParentId) REFERENCES Examples.TestParent(ParentId);

INSERT INTO Examples.TestParent(ParentId, ParentName)
VALUES (1, 'Dean'), (2, 'Michael'), (3, 'Robert');

INSERT INTO Examples.TestChild (ChildId, ParentId, ChildName)
VALUES (1,1, 'Daniel'), (2, 1, 'Alex'), (3, 2, 'Matthew'), (4, 3, 'Jason');

Skill 3.1: Implement transactions

197

198

Even a single statement to change data in a table is a transaction (as is each individual
INSERT statement in Listing 3-1). Consider this example:
UPDATE Examples.TestParent

SET ParentName = 'Bob'
WHERE ParentName = 'Robert';

When you execute this statement, if the system doesn't crash before SQL Server lets you
know that the statement completed successfully, the new value is committed. That is, the
change to the data resulting from the UPDATE statement is permanently stored in the data-
base. You can confirm the successful change by running the following SELECT statement.

SELECT ParentId, ParentName
FROM Examples.TestParent;

The result of the UPDATE statement properly completed as you can see in the SELECT
statement results.

ParentId ParentName

Dean
2 Michael
3 Bob
Atomicity

The execution of one statement at a time as a transaction does not clearly demonstrate

the SQL Server support for the other ACID properties. Instead, you need a transaction with
multiple statements. To do this, use the BEGIN TRANSACTION (or BEGIN TRAN) and COMMIT
TRANSACTION (or COMMIT TRAN) statements (unless you implement implicit transactions as
we describe in the next section).

You can test atomicity by attempting to update two different tables in the same transac-
tion like this:

BEGIN TRANSACTION;
UPDATE Examples.TestParent
SET ParentName = 'Mike’
WHERE ParentName = 'Michael’';

UPDATE Examples.TestChild

SET ChildName = 'Matt'

WHERE ChildName = 'Matthew';
COMMIT TRANSACTION;

When the transaction commits, the changes to both tables become permanent. Check the
results with this query:

SELECT TestParent.ParentId, ParentName, ChildId, ChildName
FROM Examples.TestParent
FULL OUTER JOIN Examples.TestChild ON TestParent.ParentId = TestChild.ParentId;

The transaction updated both tables as you can see in the query results:

Manage database concurrency

ParentId ParentName ChildId ChildName

1 Dean 1 Daniel
1 Dean 2 Alex
2 Michael 3 Matt
3 Bob 4 Jason

On the other hand, if any one of the statements in a transaction fails, the behavior de-
pends on the way in which you construct the transaction statements and whether you change
the SQL Server default settings. A common misconception is that using BEGIN TRANSACTION
and COMMIT TRANSACTION are sufficient for ensuring the atomicity of a transaction. You
can test the SQL Server default behavior by adding or changing data in one statement and
then trying to delete a row having a foreign key constraint in another statement like this:

BEGIN TRANSACTION;

INSERT INTO Examples.TestParent(ParentId, ParentName)
VALUES (4, ‘Linda’);

DELETE Examples.TestParent
WHERE ParentName = 'Bob';
COMMIT TRANSACTION;

In this case, the deletion fails, but the insertion succeeds as you can see by the messages
that SQL Server returns.
(1 row(s) affected)
Msg 547, Level 16, State 0, Line 24
The DELETE statement conflicted with the REFERENCE constraint "FKTestChild_Ref_

TestParent". The conflict occurred in database "ExamBook762Ch3", table "Examples.
TestChild", column 'ParentId'.

The statement has been terminated.

When you check the data again, you see a total of four rows in the Examples.TestParent
table:

ParentId ParentName

1 Dean

2 Michael
3 Bob

4 Linda

If you want SQL Server to roll back the entire transaction and thereby guarantee atomicity,
one option is to use the SET XACT_ABORT option to ON prior to executing the transaction
like this:

SET XACT_ABORT ON;

BEGIN TRANSACTION;
INSERT INTO Examples.TestParent(ParentId, ParentName)
VALUES (5, ‘Isabelle’);

DELETE Examples.TestParent
WHERE ParentName = 'Bob';
COMMIT TRANSACTION;

Skill 3.1: Implement transactions

199

200

In this case, SQL Server rolls back all successfully completed statements in the transaction
and returns the database to its state at the start of the transaction in which only four rows ex-
ist in the Examples.TestParent table as shown in the previous example. The SET XACT_ABORT
option is set to OFF by default, therefore you must enable the option when you want to
ensure that SQL Server rolls back a failed transaction.

What if the error raised is not a constraint violation, but a syntax error? Execute the follow-
ing code that first disables the SET XACT_ABORT option (to prove the roll back works correct-
ly with the default SQL Server setting) and then attempts an INSERT and a DELETE containing
a deliberate syntax error:

SET XACT_ABORT OFF;
BEGIN TRANSACTION;

INSERT INTO Examples.TestParent(ParentId, ParentName)
VALUES (5, ‘Isabelle’);

DELETE Examples.TestParent
WHEN ParentName = 'Bob';
COMMIT TRANSACTION;

Although the INSERT is successful and would commit if the subsequent error were a con-
straint violation, SQL Server does not commit the insertion, and the database remains in its
original state when it encounters a syntax error in a transaction.

Another option to consider is to explicitly include a roll back instruction in your transaction
by enclosing it in a TRY block and adding a ROLLBACK TRANSACTION (or ROLLBACK TRAN)
statement in a CATCH block:

BEGIN TRY
BEGIN TRANSACTION;

INSERT INTO Examples.TestParent(ParentId, ParentName)
VALUES (5, 'Isabelle');

DELETE Examples.TestParent
WHERE ParentName = 'Bob';
COMMIT TRANSACTION;
END TRY
BEGIN CATCH
IF @@TRANCOUNT > O ROLLBACK TRANSACTION;
END CATCH

Because the transaction includes a DELETE statement that fails due to a constraint viola-
tion, the CATCH block is invoked and the transaction rolls back. Therefore, the Examples.
Parent table still contains only four rows.

Notice also in the previous example that the execution of the ROLLBACK TRANSACTION
requires the current status of the transaction (obtained by the @@TRANCOUNT variable) to
be greater than 0, which means that a transaction is active. We explore the use of this variable
in more detail in the section covering implicit and explicit transactions.

Manage database concurrency

\\)) EXAM TIP

For the exam, you should understand how nested transactions interact and how transac-
tions roll back in the event of failure.

NEED MORE REVIEW? ROLLBACK TRANSACTION STATEMENT

For more in-depth information about the ROLLBACK TRANSACTION statement, see
https://msdn.microsoft.com/en-us/library/ms181299.aspx.

Consistency

These last two examples not only demonstrate atomicity compliance in SQL Server, but also
consistency. Another commonly used term for consistency is data integrity. To preserve data
integrity in a database, you cannot remove a row from a table when there is an existing
dependency on that row. Similarly, you cannot add a row to a table having foreign key con-
straints without providing a valid foreign key value in the new row. Any rule that you add to
the database as we described in Chapter 2, "Implement programmability objects,” is enforced
by SQL Server to guarantee consistency.

Isolation

Now let’s take a look at how SQL Server handles isolation by default. We explore your options
for managing isolation in detail in Skill 3.2, but for Skill 3.1 you must understand what hap-
pens if you rely on the behavior of READ COMMITTED, the SQL Server default isolation level.
To observe this behavior, set up two separate sessions in SQL Server Management Studio.

In one session, execute the following statement:

BEGIN TRANSACTION;
INSERT INTO Examples.TestParent(ParentId, ParentName)
VALUES (5, 'Isabelle');

The omission of the COMMIT statement in this example is deliberate. At this point, the
transaction is still active, but it is not yet committed. Furthermore, the uncommitted transac-
tion continues to hold a lock on the table preventing any other access to the table as long as
the transaction remains uncommitted.

In the second session, execute the following statement:

SELECT ParentId, ParentName
FROM Examples.TestParent;

When you attempt to read rows from the locked table, the query continues to execute
indefinitely because it is waiting for the transaction in the first session to complete. This
behavior is an example of a write operation blocking a read operation. By default, SQL Server
uses the READ COMMITTED isolation level to protect the transaction by preventing other
operations from returning potentially incorrect results as a result of reading uncommitted in-
serts that could later be rolled back. It also insulates the transaction from premature changes
to the values of those inserts by another transaction’s update operation.

Skill 3.1: Implement transactions 201

https://msdn.microsoft.com/en-us/library/ms181299.aspx
https://msdn.microsoft.com/en-us/library/ms181299.aspx
https://msdn.microsoft.com/en-us/library/ms181299.aspx
https://msdn.microsoft.com/en-us/library/ms181299.aspx

202

In the first session, end the transaction like this:
COMMIT TRANSACTION;

As soon as you commit the transaction, the query in the second session returns five rows
and includes the newly inserted row:

ParentId ParentName

1 Dean

2 Michael
3 Bob

4 Linda

5 Isabelle
Durability

SQL Server guarantees full transaction durability by default. If the system crashes for some
reason after SQL Server confirms a successful commit, the changes made by the transaction
are visible after the system returns to an operable status even if the transaction operations
had not been written to disk prior to the system failure.

To make this possible, SQL Server uses write-ahead logging to first hold data changes in
a log buffer and then writes the changes to the transaction log on disk when the transaction
commits or if the log buffer becomes full. The transaction log contains not only changes to
data, but also page allocations and de-allocations, and changes to indexes. Each log record
includes a unique log sequence number (LSN) to that every record change that belongs to
the same transaction can be rolled back if necessary.

Once the transaction commits, the log buffer flushes the transaction log and writes the
modifications first to the data cache, and then permanently to the database on disk. A change
is never made to the database without confirming that it already exists in the transaction log.
At that point, SQL Server reports a successful commit and the transaction cannot be rolled
back.

What if a failure occurs after the change is written to the transaction log, but before SQL
Server writes the change to the database? In this case, the data changes are uncommitted.
Nonetheless, the transaction is still durable because you can recreate the change from the
transaction log if necessary.

SQL Server also supports delayed durable transactions, also known as lazy commits. By us-
ing this approach, SQL Server can process more concurrent transactions with less contention
for log 10, thereby increasing throughput. Once the transaction is written to the transaction
log, SQL Server reports a successful transaction and any changes that it made are visible to
other transactions. However, all transaction logs remain in the log buffer until the buffer is full
or a buffer flush event occurs, at which point the transaction is written to disk and becomes
durable. A buffer flush occurs when a fully durable transaction in the same database commits
or a manual request to execute sp_flush_log is successful.

Manage database concurrency

Delayed durability is useful when you are willing to trade potential data loss for reduced

latency in transaction log writes and reduced contention between transactions. Such a trade-
off is acceptable in a data warehouse workload that runs batches frequently enough to pick
up rows lost in a previous batch. The eventual resolution of data loss is acceptable alternative
to durability only because the data warehouse is not the system of record. Delayed durability
is rarely acceptable in an online transaction processing (OLTP) system.

NEED MORE REVIEW? DELAYED TRANSACTION DURABILITY

You can enable a database to support delayed transaction durability and then force or
disable delayed transaction durability at the transaction level as an option of the COM-

MIT statement. Although you should understand the concept and use cases for delayed
durability for the exam, you do not need to identify all the possible options and interac-
tions between database and transaction settings. However, if you would like more in-depth
information about delayed transaction durability, refer to the MSDN description at https://
msdn.microsoft.com/en-us/library/ms181299.aspx.

For an in-depth assessment of the performance and data loss implications of delayed
transaction durability, see "Delayed Durability in SQL Server 2014” by Aaron Bertrand at
https.//sqlperformance.com/2014/04/io-subsystem/delayed-durability-in-sql-server-2014.
Although the article was written for SQL Server 2014, the principles continue to apply to
SQL Server 2016.

Recognize differences between and identify usage of
explicit and implicit transactions

An important aspect of transaction management is knowing which commands are in scope.
That is, you must know which commands are grouped together for execution as a single
transaction. SQL Server supports the following methods for transaction control:

m Auto-commit Any single statement that changes data and executes by itself is auto-
matically an atomic transaction. Whether the change affects one row or thousands of
rows, it must complete successfully for each row to be committed. You cannot manu-
ally rollback an auto-commit transaction, although SQL Server performs a rollback if a
system failure occurs before the transaction completes.

m Implicit An implicit transaction automatically starts when you execute certain
DML statements and ends only when you use COMMIT TRANSACTION or ROLLBACK
TRANSACTION. However, you must first configure a session to run in implicit transac-
tion mode by first executing the SET IMPLICIT_TRANSACTIONS ON statement. After
you do this, any of the following statements begin a new transaction: ALTER TABLE,
BEGIN TRANSACTION, CREATE, DELETE, DROP, FETCH, GRANT, INSERT, OPEN, REVOKE,
SELECT (only if selecting from a table), TRUNCATE TABLE, and UPDATE.

Skill 3.1: Implement transactions

203

https://msdn.microsoft.com/en-us/library/ms181299.aspx
https://msdn.microsoft.com/en-us/library/ms181299.aspx
https://sqlperformance.com/2014/04/io-subsystem/delayed-durability-in-sql-server-2014
https://msdn.microsoft.com/en-us/library/ms181299.aspx
https://msdn.microsoft.com/en-us/library/ms181299.aspx
https://sqlperformance.com/2014/04/io-subsystem/delayed-durability-in-sql-server-2014

m Explicit An explicit transaction has a specific structure that you define by using the
BEGIN TRANSACTION at the beginning of the transaction and the COMMIT TRANSAC-
TION or ROLLBACK TRANSACTION at the end of the transaction.

NEED MORE REVIEW? BATCH-SCOPED TRANSACTIONS

QL Server also supports batch-scoped transactions when Multiple Active Result Sets (or
MARS) is enabled, but you do not need to be familiar with this topic for the exam. If you
would like to learn more about batch-scoped transactions, see https://msdn.microsoft.com/
en-us/library/ms131686.aspx.

Implicit transactions

Let’s examine the behavior of implicit transactions by executing a series of statements incre-
mentally. First, enable the implicit transaction mode like this:

SET IMPLICIT_TRANSACTIONS ON;

Next, execute an INSERT statement and then check the status of open transactions:

INSERT INTO Examples.TestParent(ParentId, ParentName)
VALUES (6, 'Lukas');
SELECT @@TRANCOUNT;

The SELECT statement returns a 1 because SQL Server starts a new transaction when
implicit transactions are enabled and the INSERT statement is executed. At this point, the
transaction remains uncommitted and blocks any readers of the Examples.TestParent table.

Now you can end the transaction, check the status of open transactions, and check the
change to the table by executing the following statements:

COMMIT TRANSACTION;

SELECT @@TRANCOUNT;

SELECT ParentId, ParentName
FROM Examples.TestParent;

The results of the SELECT statements show that the COMMIT statement both ended the
transaction and decremented the @ @TRANCOUNT variable and that a new row appears in
the Examples.Parent table:

(No column name)

1 Dean

2 Michael
3 Bob

4 Linda

5 Isabelle
6 Lukas

204 Manage database concurrency

https://msdn.microsoft.com/en-us/library/ms131686.aspx
https://msdn.microsoft.com/en-us/library/ms131686.aspx
https://msdn.microsoft.com/en-us/library/ms131686.aspx
https://msdn.microsoft.com/en-us/library/ms131686.aspx

IMPORTANT TRANSACTION COMMITMENT BY SQL SERVER

It is important to note that the transaction commits not only because the COMMIT state-
ment is executed, but also because the value of @@TRANCOUNT is decremented to zero.
Only at that time does SQL Server write log records and commit the transaction.

Now disable the implicit transaction mode:

SET IMPLICIT_TRANSACTIONS OFF;

Just as you can see in many of the transaction examples in the previous section, an implicit
transaction can contain one or more statements and ends with an explicit execution of a
COMMIT TRANSACTION or ROLLBACK TRANSACTION statement. Apart from the absence of
a BEGIN TRANSACTION statement, an implicit transaction resembles an explicit transaction
and behaves in the same way as well.

You might use implicit transactions when migrating an application from a different data-
base platform or when you need to run your application across multiple database platforms
because fewer code changes are required. In most cases, however, best practice dictates
avoiding the use of implicit transactions. When you rely on auto-commit or explicit transac-
tions instead, changes are committed as quickly as possible and performance is less likely to
be adversely affected.

l)) EXAM TIP

For the exam, it is important to understand the impact of using implicit transactions. Be
sure to review the remarks at “SET IMPLICIT_TRANSACTIONS (Transact-SQL),” https://msdn.
microsoft.com/en-us/library/ms187807.aspx.

Explicit transactions

When you want complete control over transaction behavior, use an explicit transaction. You
have nothing to configure at the server or database level to enable explicit transactions. Sim-
ply enclose your transaction statements in the BEGIN TRANSACTION and COMMIT TRANS-
ACTION statements. Furthermore, you should include logic to handle errors, such as a TRY/
CATCH block, as shown in an example in the “Atomicity” section, or an IF/ELSE construct like
this:

BEGIN TRANSACTION;
INSERT INTO Examples.TestParent(ParentId, ParentName)
VALUES (7, 'Mary');
DELETE Examples.TestParent
WHERE ParentName = 'Bob';
IF @@ERROR != 0
BEGIN
ROLLBACK TRANSACTION;
RETURN
END
COMMIT TRANSACTION;

Skill 3.1: Implement transactions 205

https://msdn.microsoft.com/en-us/library/ms187807.aspx
https://msdn.microsoft.com/en-us/library/ms187807.aspx

The following commands cannot be used in an explicit transaction:
m ALTER DATABASE

m ALTER FULLTEXT CATALOG
m ALTER FULLTEXT INDEX

= BACKUP

m CREATE DATABASE

m CREATE FULLTEXT CATALOG
m CREATE FULLTEXT INDEX

m DROP DATABASE

m DROP FULLTEXT CATALOG
m DROP FULLTEXT INDEX

m RECONFIGURE

m RESTORE

You can nest explicit transactions, although this capability is not ANSI-standard transac-
tion behavior. As one example, consider a situation in which you have a set of statements in
a transaction and one of the statements calls a stored procedure that starts its own transac-
tion. Remember that each BEGIN TRANSACTION increments the @ @TRANCOUNT variable
and each COMMIT TRANSACTION decrements it. The ROLLBACK TRANSACTION resets the
variable to zero and rolls back every statement to the beginning of the first transaction, but
does not abort the stored procedure. When @@TRANCOUNT is zero, SQL Server writes to
the transaction log. If the session ends before @@TRANCOUNT returns to zero, SQL Server
automatically rolls back the transaction.

Let’s test this behavior by creating a stored procedure and calling it in a transaction as
shown in Listing 3-2.

LISTING 3-2 Create and execute a stored procedure to test an explicit transaction

CREATE PROCEDURE Examples.DeleteParent
@ParentId INT
AS
BEGIN TRANSACTION;
DELETE Examples.TestParent
WHERE ParentId = @ParentId;
IF @Q@ERROR != 0
BEGIN
ROLLBACK TRANSACTION;
RETURN;
END
COMMIT TRANSACTION;
GO
BEGIN TRANSACTION;
INSERT INTO Examples.TestParent(ParentId, ParentName)

206 Manage database concurrency

VALUES (7, 'Mary');

EXEC Examples.DeleteParent @ParentId=3;
IF Q@Q@ERROR != 0

BEGIN

ROLLBACK TRANSACTION;

RETURN
END
COMMIT TRANSACTION;
GO

When you execute these statements, several error messages display:

(1 row(s) affected)

Msg 547, Level 16, State 0, Procedure DeleteParent, Line 6 [Batch Start Line 16]
The DELETE statement conflicted with the REFERENCE constraint
"FKTestChild_Ref_TestParent". The conflict occurred in database "ExamBook762Ch3", table
"Examples.TestChild", column 'ParentId'.

The statement has been terminated.

Msg 266, Level 16, State 2, Procedure DeleteParent, Line 0 [Batch Start Line 16]
Transaction count after EXECUTE indicates a mismatching number of BEGIN and COMMIT
statements. Previous count = 1, current count = 0.

Msg 3903, Level 16, State 1, Line 25

The ROLLBACK TRANSACTION request has no corresponding BEGIN TRANSACTION.

The first transaction begins with an INSERT statement at which point @ @TRANCOUNT
is 1. Then the call to the stored procedure results in the start of a second transaction and
increments @@TRANCOUNT to 2. The constraint violation causes an error that then calls the
ROLLBACK TRANSACTION statement, which in turn resets @@TRANCOUNT to 0 and rolls
back the INSERT. The error message regarding the mismatching transaction count occurs
because the @@TRANCOUNT value when the stored procedure ends no longer matches its
value when the stored procedure started. That error leads to the ROLLBACK TRANSACTION
statement in the first transaction. However, because @ @TRANCOUNT is still 0, effectively
there is no open transaction and therefore the message about no corresponding BEGIN
TRANSACTION displays.

This situation highlights a potential problem with nested transactions in stored procedures.

If you want each stored procedure to roll back only its own work if it encounters an error, you
should test for an existing transaction, skip the step to begin a new transaction if one exists,
and use a savepoint to roll back the to the start of the current transaction if an error occurs in
the stored procedure. (We discuss savepoints in more detail in the next section.) Furthermore,
the COMMIT statement in the stored procedure should execute only if the stored procedure
starts its own transaction. By storing the @ @TRANCOUNT value in a variable before you
execute the remaining stored procedure’s statements, you can later test whether a transac-
tion existed at the start. If it did not, the variable’s value is 0 and you can then safely commit
the transaction that the stored procedure started. If a transaction did exist, no further action
is required in the stored procedure.

We can revise the previous example to avoid nesting transactions as shown in Listing 3-3.

Skill 3.1: Implement transactions

207

LISTING 3-3 Create a stored procedure that avoids a nested transaction

CREATE PROCEDURE Examples.DeleteParentNoNest
@ParentId INT
AS
DECLARE @CurrentTranCount INT
SELECT @CurrentTranCount = @@TRANCOUNT.
IF (@CurrentTranCount = 0)
BEGIN TRANSACTION DeleteTran;
ELSE
SAVE TRANSACTION DeleteTran;
DELETE Examples.TestParent
WHERE ParentId = @ParentId;
IF @@ERROR != 0
BEGIN
ROLLBACK TRANSACTION DeleteTran;
RETURN;
END
IF (@CurrentTranCount = 0)
COMMIT TRANSACTION;
GO
BEGIN TRANSACTION;
INSERT INTO Examples.TestParent(ParentId, ParentName)
VALUES (7, 'Mary');
EXEC Examples.DeleteParentNoNest @ParentId=3;
IF @@ERROR !'= 0
BEGIN
ROLLBACK TRANSACTION;
RETURN
END
COMMIT TRANSACTION;
GO

When you execute the statements in Listing 3-3 and then check the table, you find that
the new row is committed in the table and the row with the Parentld value of 3 remains in the
table because the foreign key constraint caused SQL Server to roll back that transaction.

ParentId ParentName

1 Dean

2 Michael
3 Bob

4 Linda

5 Isabelle
6 Lukas

7 Mary

\) EXAM TIP

Be sure that you understand when SQL Server increments and decrements @ @TRAN-
COUNT and how to implement error handling for transactions.

The explicit transactions described to this point are all local transactions. Another option
is to execute a distributed transaction when you need to execute statements on more than

208 Manage database concurrency

one server. To do this, start the transaction with the BEGIN DISTRIBUTED TRANSACTION and
then end it with either COMMIT TRANSACTION or ROLLBACK TRANSACTION statements.
The server on which you execute the distributed transaction controls the completion of the
transaction.

Implement savepoints within transactions

A savepoint is a named location from which a transaction can restart if part of it is condition-
ally canceled. That means you can rollback a transaction to a specific savepoint if a statement
does not complete successfully, as shown in the previous example.

When you assign a savepoint name, you should use 32 characters or less. SQL Server al-
lows you to assign a longer name, but the statement uses only the first 32 characters. Bear in
mind that the savepoint name is case-sensitive even if SQL Server is not configured for case
sensitivity. Another option is to use a variable in the SAVE TRANSACTION statement, but
the data type must be char, varchar, nchar, or nvarchar. If you use the same savepoint name
multiple times in the same transaction, the ROLLBACK TRANSACTION statement rolls back to
the most recent savepoint.

Normally, a ROLLBACK TRANSACTION resets the value of @@TRANCOUNT to 0. However,
when a transaction rolls back to a savepoint, @@TRANCOUNT is not reset. The SAVE TRANS-
ACTION statement also has no effect on @@TRANCOUNT.

In Listing 3-4, the transaction has multiple savepoints and SELECT statements illustrate the
effect of modifying data, and then rolling back to a specific savepoint.

Listing 3-4 Create a transaction with multiple savepoints

BEGIN TRANSACTION;
INSERT INTO Examples.TestParent(ParentId, ParentName)
VALUES (8, 'Ed");
SAVE TRANSACTION StartTran;

SELECT 'StartTran' AS Status, ParentId, ParentName
FROM Examples.TestParent;

DELETE Examples.TestParent
WHERE ParentId = 7;
SAVE TRANSACTION DeleteTran;

SELECT 'Delete 1' AS Status, ParentId, ParentName
FROM Examples.TestParent;

DELETE Examples.TestParent

WHERE ParentId = 6;
SELECT 'Delete 2' AS Status, ParentId, ParentName
FROM Examples.TestParent;

ROLLBACK TRANSACTION DeleteTran;

SELECT 'RollbackDelete2' AS Status, ParentId, ParentName
FROM Examples.TestParent;

Skill 3.1: Implement transactions

209

ROLLBACK TRANSACTION StartTran;
SELECT @@TRANCOUNT AS 'TranCount';
SELECT 'RollbackStart' AS Status, ParentId, ParentName
FROM Examples.TestParent;
COMMIT TRANSACTION;
GO

The queries interspersed throughout this transaction give us visibility into the behavior of
the savepoint and roll back operations:

Status ParentId ParentName
StartTran 1 Dean
StartTran 2 Mike
StartTran 3 Bob
StartTran 4 Linda
StartTran 5 Isabelle
StartTran 6 Lukas
StartTran 7 Mary
StartTran 8 Ed

Status ParentId ParentName
Delete 1 1 Dean

Delete 1 2 Mike

Delete 1 3 Bob

Delete 1 4 Linda

Delete 1 5 Isabelle
Delete 1 6 Lukas

Delete 1 8 Ed

Status ParentId ParentName
Delete 2 1 Dean

Delete 2 2 Mike

Delete 2 3 Bob

Delete 2 4 Linda

Delete 2 5 Isabelle
Delete 2 8 Ed

Status ParentId ParentName
RoTlbackDelete2 1 Dean
Rol1backDelete2 2 Mike
Rol1backDelete2 3 Bob
RollbackDelete2 4 Linda
RollbackDelete2 5 Isabelle
Rol1backDelete2 6 Lukas
Rol1backDelete2 8 Ed
TranCount

1

Status ParentId ParentName

210 Manage database concurrency

RollbackStart 1 Dean
RolTbackStart 2 Mike
RollbackStart 3 Bob
RollbackStart 4 Linda
RollbackStart 5 Isabelle
RollbackStart 6 Lukas
RolTbackStart 7 Mary
RollbackStart 8 Ed

The eight rows in the query with status StartTran show the condition of the table after
the INSERT operation and reflects the state of the data for the StartTran savepoint. Next, the
seven rows in the query with status Delete 1 include one less row due to the DELETE operation.
The DeleteTran savepoint includes this version of the table. After another DELETE operation
executes, the query with status Delete 2 returns six rows. The first ROLLBACK TRANSACTION
statement restores the version of data for the DeleteTran savepoint, and the query with status
RollbackDelete2 correctly shows the seven rows prior to the second DELETE operation. Next,
we can see that the @@TRANCOUNT variable at this point is still 1 because the ROLLBACK
TRANSACTION statement did not reset it to 0. Last, another ROLLBACK TRANSACTION returns
the table to its earlier state, which is committed at the end of the transaction.

NOTE SAVEPOINTS IN DISTRIBUTED TRANSACTIONS

You cannot use savepoints in a distributed transaction beginning from an explicit BEGIN
DISTRIBUTED TRANSACTION statement or a local transaction escalation.

Determine the role of transactions in high-concurrency
databases

A high concurrency database should support a high number of simultaneous processes that
do not interfere with one another while preserving the consistency of the data affected by
those processes. Processes modifying data can potentially adversely affect processes trying to
read or change the same data at the same time. To prevent simultaneous attempts to change
the same data, SQL Server acquires locks for the current transaction, thereby blocking all
other transactions.

Potential problems with concurrent processes

A failure to control concurrency in database can result in a variety of side effects. Typically,
you want to design applications that avoid these problems. In some cases, your business
requirements might allow a behavior. For now, let’s focus on which potential problems might
arise. In Skill 3.2, we explain how to use isolation levels to manage the behavior of concurrent
transactions.

Skill 3.1: Implement transactions

211

212

DIRTY READS

A dirty read, also known as an uncommitted dependency, can occur when an uncommitted
transaction updates a row at the same time that another transaction reads that row with its
new value. Because the writing transaction is not committed, the row could revert to its origi-
nal state and consequently the reading transaction has data that is not valid.

SQL Server does not allow dirty reads by default. However, by controlling the isolation
level of the reading transaction, you can specify whether it reads both uncommitted and
committed data or committed data only.

NON-REPEATABLE READS

A non-repeatable read can occur when data is read more than once within the same transac-
tion while another transaction updates the same data between read operations. Let’s say that
a transaction reads the current in-stock quantity of a widget from an inventory table as 5 and
continues to perform other operations, which leaves the transaction in an uncommitted state.
During this time, another transaction changes the in-stock quantity of the widget to 3. Then
the first transaction reads the in-stock quantity of the widget again, which is now inconsistent
with the initial value read.

PHANTOM READS

Closely related to a non-repeatable read is a phantom read. This potential problem can occur
when one transaction reads the same data multiple times while another transaction inserts
or updates a row between read operations. As an example, consider a transaction in which a
SELECT statement reads rows having in-stock quantities less than 5 from the inventory table
and remains uncommitted while a second transaction inserts a row with an in-stock quantity
of 1. When the first transaction reads the inventory table again, the number of rows increases
by one. In this case, the additional row is considered to be a phantom row. This situation oc-
curs only when the query uses a predicate.

LOST UPDATES

Another potential problem can occur when two processes read the same row and then up-
date that data with different values. This might happen if a transaction first reads a value into
a variable and then uses the variable in an update statement in a later step. When this update
executes, another transaction updates the same data. Whichever of these transactions is com-
mitted first becomes a lost update because it was replaced by the update in the other transac-
tion. You cannot use isolation levels to change this behavior, but you can write an application
that specifically allows lost updates.

Resource locks

SQL Server locks the minimum number of resources required to complete a transaction. It
uses different types of locks to support as much concurrency as possible while maintaining
data consistency and transaction isolation. The SQL Server Lock Manager chooses the lock
mode and resources to lock based on the operation to be performed, the amount of data to

Manage database concurrency

be affected by the operation, and the isolation level type (described in Skill 3.2). It also man-
ages the compatibility of locks on the same resources, resolves deadlocks when possible, and
escalates locks when necessary (as described in Skill 3.3).

SQL Server takes locks on resources at several levels to provide the necessary protection
for a transaction. This group of locks at varying levels of granularity is known as a lock hierar-
chy and consists of one or more of the following lock modes:

m Shared (S) This lock mode, also known as a read lock, is used for SELECT, INSERT,
UPDATE, and DELETE operations and is released as soon as data has been read from
the locked resource. While the resource is locked, other transactions cannot change
its data. However, in theory, an unlimited number of shared (s) locks can exist on a
resource simultaneously. You can force SQL Server to hold the lock for the duration of
the transaction by adding the HOLDLOCK table hint like this:

BEGIN TRANSACTION;
SELECT ParentId, ParentName
FROM Examples.TestParent WITH (HOLDLOCK);

WAITFOR DELAY ‘00:00:15";
ROLLBACK TRANSACTION;

Another way to change the lock’s duration is to set the REPEATABLE_READ or SERIALIZ-
ABLE transaction isolation levels, which we explain in more detail in Skill 3.2.

m Update (U) SQL Server takes this lock on a resource that might be updated in order
to prevent a common type of deadlocking, which we describe further in Skill 3.3. Only
one update (U) lock can exist on a resource at a time. When a transaction modifies the
resource, SQL Server converts the update (U) lock to an exclusive (X) lock.

m Exclusive (X) This lock mode protects a resource during INSERT, UPDATE, or DELETE
operations to prevent that resource from multiple concurrent changes. While the lock
is held, no other transaction can read or modify the data, unless a statement uses the
NOLOCK hint or a transaction runs under the read uncommitted isolation level as we
describe in Skill 3.2

= Intent An intent lock establishes a lock hierarchy to protect a resource at a lower
level from getting a shared (S) lock or exclusive (X) lock. Technically speaking, intent
locks are not true locks, but rather serve as an indicator that actual locks exist at a
lower level. That way, another transaction cannot try to acquire a lock at the higher
level that is incompatible with the existing lock at the lower level. There are six types of
intent locks:

m Intent shared (IS) With this lock mode, SQL Server protects requested or ac-
quired shared (S) locks on some resources lower in the lock hierarchy.

m Intent exclusive (IX) This lock mode is a superset of intent shared (IS) locks that
not only protects locks on resources lower in the hierarchy, but also protects re-
quested or acquired exclusive (X) locks on some resources lower in the hierarchy.

Skill 3.1: Implement transactions 213

m Shared with intent exclusive (SIX) This lock mode protects requested or ac-
quired shared (S) locks on all resources lower in the hierarchy and intent exclusive
(IX) locks on some resources lower in the hierarchy. Only one shared with intent
exclusive (SIX) lock can exist at a time for a resource to prevent other transactions
from modifying it. However, lower level resources can have intent shared (IS) locks
and can be read by other transactions.

m Intent update (IU) SQL Server uses this lock mode on page resources only to
protect requested or acquired update (U) locks on all lower-level resources and
converts it to an intent exclusive (IX) lock if a transaction performs an update opera-
tion.

m Shared intent update (SIU) This lock mode is a combination of shared (S) and
intent update (IU) locks and occurs when a transaction acquires each lock separately
but holds them at the same time.

m Update intent exclusive (UIX) This lock mode results from a combination of
update (U) and intent exclusive (IX) locks that a transaction acquires separately but
holds at the same time.

m Schema SQL Server acquires this lock when an operation depends the table's
schema. There are two types of schema locks:

m Schema modification (Sch-M) This lock mode prevents other transactions from
reading from or writing to a table during a Data Definition Language (DDL) opera-
tion, such as removing a column. Some Data Manipulation Language (DML) opera-
tions, such as truncating a table, also require a schema modification (Sch-M) lock.

m Schema stability (Sch-S) SQL Server uses this lock mode during query compila-
tion and execution to block concurrent DDL operations and concurrent DML opera-
tions requiring a schema modification (Sch-M) lock from accessing a table.

m Bulk Update (BU) This lock mode is used for bulk copy operations to allow multiple
threads to bulk load data into the same table at the same time and to prevent other
transactions that are not bulk loading data from accessing the table. SQL Server ac-
quires it when the table lock on bulk load table option is set by using sp_tableoption or
when you use a TABLOCK hint like this:

INSERT INTO Examples.TestParent WITH (TABLOCK)
SELECT <columns> FROM <table>;

m Key-range A key-range lock is applied to a range of rows that is read by a query with
the SERIALIZABLE isolation level to prevent other transactions from inserting rows that
would be returned in the serializable transaction if the same query executes again. In
other words, this lock mode prevents phantom reads within the set of rows that the
transaction reads.

m RangeS-S This lock mode is a shared range, shared resource lock used for a serial-
izable range scan.

214 Manage database concurrency

m RangeS-U This lock mode is a shared range, update resource lock used for a
serializable update scan.

m Rangel-N This lock mode is an insert range, null resource lock that SQL Server
acquires to test a range before inserting a new key into an index.

m RangeX-X This lock mode is an exclusive range, exclusive resource lock used when
updating a key in a range.
While many locks are compatible with each other, some locks prevent other transactions
from acquiring locks on the same resource, as shown in Table 3-1. Let's consider a situation
in which one transaction has a shared (S) lock on a row and another transaction is requesting
an exclusive (X) lock. In this case, the request is blocked until the first transaction releases its
lock.

TABLE 3-1 Lock compatibility for commonly encountered lock modes

Existing granted mode

Requested) U X IS IX SIX
mode

S Yes Yes No Yes No No
u Yes No No Yes No No
X No No No No No No
IS Yes Yes No Yes Yes Yes
IX No No No Yes Yes No
SIX No No No Yes No No

NEED MORE REVIEW? LOCK COMPATIBILITY

For a complete matrix of lock compatibility, see “"Lock Compatibility (Database Engine)” at
https://technet.microsoft.com/en-us/library/ms186396(v=sql.105).aspx.

SQL Server can acquire a lock on any of the following resources to ensure that the user of
that resource has a consistent view of the data throughout a transaction:

m RID A row identifier for the single row to lock within a heap and is acquired when
possible to provide the highest possible concurrency.

m KEY A key or range of keys in an index for a serializable transaction can be locked
in one of two ways depending on the isolation level. If a transaction runs in the READ
COMMITTED or REPEATABLE READ isolation level, the index keys of the accessed rows
are locked. If the table has a clustered index, SQL Server acquires key locks instead of
row locks because the data rows are the leaf-level of the index. If a transaction runs
in the SERIALIZABLE isolation mode, SQL Server acquires key-range locks to prevent
phantom reads.

Skill 3.1: Implement transactions

215

https://technet.microsoft.com/en-us/library/ms186396(v=sql.105).aspx
https://technet.microsoft.com/en-us/library/ms186396(v=sql.105).aspx
https://technet.microsoft.com/en-us/library/ms186396(v=sql.105).aspx
https://technet.microsoft.com/en-us/library/ms186396(v=sql.105).aspx

216

m PAGE An 8-kilobyte (KB) data or index page gets locked when a transaction reads all
rows on a page or when page-level maintenance, such as updating page pointers after
a page-split, is performed.

m EXTENT A contiguous block of eight data or index pages gets a shared (S) or exclu-
sive (X) locks typically during space allocation and de-allocation.

m HoBT A heap or B-Tree lock can be an entire index or all data pages of a heap.

m Table An entire table, including both data and indexes, can be locked for SELECT,
UPDATE, or DELETE operations.

m File A database file can be locked individually.

m Application A resource defined by your application can be locked by using
sp_getapplock so that you can lock any resource you want with a specified lock
mode.

m Metadata Any system metadata can be locked to protect system catalog
information.

m Allocation unit An database allocation unit used for storage of data can be locked.

m Database An entire database gets a shared (S) lock to indicate it is currently in use so
that another process cannot drop it, take it offline, or restore it.

To increase concurrency, SQL Server uses dynamic lock management. That is, in a
large table for which many row locks are required (as determined by the query optimizer),
SQL Server might instead take a page or table lock at the beginning of a transaction. SQL
Server can also escalate lock modes dynamically during a transaction. For example, if the
transaction initially has a set of row locks, and later requests more row locks, SQL Server
releases the row locks and takes a table lock. This behavior simplifies lock management,
but reduces concurrency.

EXAM TIP

Locks and lock escalation in SQL Server are important concepts covered in the exam that
you should understand thoroughly.

NOTE IMPLICIT TRANSACTION LOCKS

Be aware that when you use implicit transactions, SQL Server holds locks until you commit
the transaction. This behavior can reduce concurrency and interfere with truncation of the
transaction log.

Manage database concurrency

Skill 3.2: Manage isolation levels

SQL Server uses isolation levels to manage conflict between two transactions attempting

to use or change the same data at the same time. Furthermore, because the way in which
you implement transactions impacts database performance, you need to understand the
differences between isolation levels and be familiar with the scenarios with which each is
best suited. Given a scenario in which an isolation level and a set of concurrent queries are
specified, you should be able to predict the outcome of the queries. In addition, you should
understand the types of locks that SQL Server acquires for each isolation level, if applicable,
as well as the effect on other resources, such as tempdb, and the resulting potential perfor-
mance impact of using a specific isolation level.

This section covers how to:
= |dentify differences between isolation levels
m Define results of concurrent queries based on isolation level

m |dentify the resource and performance impact of given isolation levels

Identify differences between isolation levels

At one end of the spectrum, SQL Server can protect data completely to prevent one transac-
tion from seeing the effects of another transaction, while at the other end of the spectrum, it
can give all transactions full access to the data. It does this by using isolation levels to control
whether a lock is acquired during a read, the type of lock, and the duration of the lock. Isola-
tion levels also determine whether a read operation can access rows that have been changed
by another transaction and whether it can access uncommitted rows. Additionally, isolation
levels block transactions requiring access to a resource with an exclusive lock.

It is important to note that setting an isolation level does not change the way in which SQL
Server acquires locks. If a transaction modifies data, SQL Server always acquires an exclusive
(X) lock on the data to change, and holds the lock for the duration of the transaction. The
purpose of the isolation levels is to specify how read operations should behave when other
concurrent transactions are changing data.

If you lower the isolation level, you can increase the number of concurrent transactions
that SQL Server processes, but you also increase the risk of dirty reads and other problems
associated with concurrent processes as we described in Skill 3.1. If you raise the isolation
level, you minimize these concurrency problems, but transactions are more likely to block one
another and performance is more likely to suffer. Therefore, you must find the appropriate
balance between protecting data and the effect of each isolation level.

SQL Server supports both pessimistic and optimistic isolation levels for concurrency man-
agement. Pessimistic isolation levels use blocking to avoid conflicts whereas optimistic isola-
tion levels use snapshots of the data to enable higher concurrency. Pessimistic isolation levels
rely on locks to prevent changes to data during read operations and to block read operations

Skill 3.2: Manage isolation levels 217

218

on data that is being changed by another operation. Optimistic isolation levels make a copy
of data for read operations so that write operations can proceed unhindered. If SQL Server
detects two write operations attempting to modify the same data at the same time, it returns
a message to the application in which there should be appropriate logic for resolving this
conflict.

EXAM TIP

It is important to understand the differences between SQL Server isolation levels and sce-
narios for which each is appropriate.

Read Committed

READ COMMITTED is the default isolation level for SQL Server. It uses pessimistic locking to
protect data. With this isolation level set, a transaction cannot read uncommitted data that is
being added or changed by another transaction. A transaction attempting to read data that is
currently being changed is blocked until the transaction changing the data releases the lock.
A transaction running under this isolation level issues shared locks, but releases row or page
locks after reading a row. If your query scans an index while another transactions changes the
index key column of a row, that row could appear twice in the query results if that key change
moved the row to a new position ahead of the scan. Another option is that it might not ap-
pear at all if the row moved to a position already read by the scan.

Read Uncommitted

The READ UNCOMMITTED isolation level is the least restrictive setting. It allows a transaction
to read data that has not yet been committed by other transactions. SQL Server ignores any
locks and reads data from memory. Furthermore, transactions running under this isolation
level do not acquire shared (S) locks to prevent other transactions from changing the data
being read. Last, if a transaction is reading rows using an allocation order scan when another
transaction causes a page split, your query can miss rows. For these reasons, READ UNCOM-
MITTED is never a good choice for line of business applications where accuracy matters most,
but might be acceptable for a reporting application where the performance benefit out-
weighs the need for a precise value.

Repeatable Read

When you set the REPEATABLE READ isolation level, you ensure that any data read by one
transaction is not changed by another transaction. That way, the transaction can repeat a
query and get identical results each time. In this case, the data is protected by shared (S)
locks. It is important to note that the only data protected is the existing data that has been
read. If another transaction inserts a new row, the first transaction’s repeat of its query could
return this row as a phantom read.

Manage database concurrency

Serializable

The most pessimistic isolation level is SERIALIZABLE, which uses range locks on the data to
not only prevent changes but also insertions. Therefore, phantom reads are not possible
when you set this isolation level. Each transaction is completely isolated from one another
even when they execute in parallel or overlap.

Snapshot

The SNAPSHOT isolation level is optimistic and allows read and write operations to run
concurrently without blocking one another. Unlike the other isolation levels, you must first
configure the database to allow it, and then you can set the isolation level for a transaction.
As long as a transaction is open, SQL Server preserves the state of committed data at the
start of the transaction and stores any changes to the data by other transactions in tempdb. It
increases concurrency by eliminating the need for locks for read operations.

NOTE SNAPSHOT ISOLATION AND DISTRIBUTED TRANSACTIONS

You cannot use SNAPSHOT isolation with distributed transactions. In addition, you cannot
use enable it in the following databases: master, msdb, and tempdb.

Read Committed Snapshot

The READ_COMMITTED_SNAPSHOT isolation level is an optimistic alternative to READ
COMMITTED. Like the SNAPSHOT isolation level, you must first enable it at the database
level before setting it for a transaction. Unlike SNAPSHOT isolation, you can use the READ_
COMMITTED_SNAPSHOT isolation level with distributed transactions. The key difference
between the two isolation levels is the ability with READ_COMMITTED_SNAPSHOT for a
transaction to repeatedly read data as it was at the start of the read statement rather than
at the start of the transaction. When each statement executes within a transaction, SQL
Server takes a new snapshot that remains consistent until the next statement executes.

You use this isolation level when your application executes a long-running, multi-state-
ment query and requires the data to be consistent to the point in time that the query starts.
You should also consider using this isolation level when enough read and write blocking oc-
curs that the resource overhead of maintaining row snapshots is preferable and there is little
likelihood of a transaction rolling back due to an update conflict.

Define results of concurrent queries based on isolation level

To better appreciate the effect of concurrent queries, let's consider a scenario that involves
two users that are operating on the same data. One user starts executing a query that results
in a full table scan and normally takes several minutes to complete. Meanwhile, a minute after

Skill 3.2: Manage isolation levels 219

220

the read operation begins, the other user updates and commits row in the same table that
has not yet been read by the first user’s query. The rows returned by the first user’s query
depend on the isolation levels set for that user.

Before we look at each isolation level's effect on this scenario, let’s create a table and add
some data as shown in Listing 3-5.

LISTING 3-5 Create a test environment for testing isolation levels

CREATE TABLE Examples.IsolationLevels

(
RowId 1int NOT NULL
CONSTRAINT PKRowId PRIMARY KEY,
ColumnText varchar(100) NOT NULL
H

INSERT INTO Examples.IsolationlLevels(RowId, ColumnText)
VALUES (1, 'Row 1'), (2, 'Row 2'), (3, '"Row 3'), (4, 'Row 4');

You use the SET TRANSACTION ISOLATION LEVEL statement when you want to override
the default isolation level and thereby change the way a SELECT statement behaves with
respect to other concurrent operations. It is important to know that this statement changes
the isolation level for the user session. If you want to change the isolation level for a single
statement only, use a table hint instead.

Read Committed

Because this isolation level only reads committed data, dirty reads are prevented. However, if
query reads the same data multiple times, non-repeatable reads or phantom reads are pos-
sible.

Because the READ COMMITTED isolation level is the default, you do not need to explicitly
set the isolation level. However, if you had previously changed the isolation level for the user
session or the database, you can revert it to the default isolation level by executing the fol-
lowing statement:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
To test the behavior of the READ COMMITTED isolation level, execute the following state-
ments:

BEGIN TRANSACTION;
UPDATE Examples.IsolationLevels
SET ColumnText = 'Row 1 Updated'
WHERE RowId = 1;

In a new session, read the table that you just updated:

SELECT RowId, ColumnText
FROM Examples.IsolationLevels;

Manage database concurrency

In this case, the update operation blocks the read operations. Return to the first session
and restore the data by rolling back the transaction:

ROLLBACK TRANSACTION;
Now the second session’s read request completes successfully, and the results do not
include the updated row because it was never committed.

RowId ColumnText

1 Row 1
2 Row 2
3 Row 3
4 Row 4

Read Uncommitted

This isolation level allows dirty reads, non-repeatable reads, and phantom reads. On the other
hand, a transaction set to this isolation level executes quickly because locks and validations
are ignored.

Let's observe this behavior by starting a transaction without committing it:

BEGIN TRANSACTION;
UPDATE Examples.IsolationlLevels
SET ColumnText = 'Row 1 Updated'
WHERE RowId = 1;

Now open a new session, change the isolation level, and read the table that you just up-
dated:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT RowId, ColumnText
FROM Examples.IsolationlLevels;

The results include the updated row:

RowId ColumnText

1 Row 1 Updated
2 Row 2
3 Row 3
4 Row 4

Return to the first session and roll back the transaction:
ROLLBACK TRANSACTION;

Then in the second session, read the table again:

SELECT RowId, ColumnText
FROM Examples.IsolationlLevels;

Now the results show the data in its state prior to the update that rolled back:

RowId ColumnText

Skill 3.2: Manage isolation levels

221

222

1 Row 1
2 Row 2
3 Row 3
4 Row 4

Rather than change the isolation level at the session level, you can force the read uncom-
mitted isolation level by using the NOLOCK hint. Repeat the previous example by using two
new sessions to revert to the default isolation level and replacing the statements in the sec-
ond session with the following statement:

SELECT RowId, ColumnText

FROM Examples.IsolationLevels
WITH (NOLOCK);

Repeatable Read

The behavior of the REPEATABLE READ isolation level is much like that of READ COMMITTED,
except that it ensures that multiple reads of the same data within a transaction is consistent.
Dirty reads and non-repeatable reads are prevented, although phantom reads are a possible
side effect because range locks are not used.

We can see the effects of using REPEATABLE READ by running statements in separate ses-

sions. Start by adding the following statements in one new session:
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
BEGIN TRANSACTION;

SELECT RowId, ColumnText

FROM Examples.IsolationLevels;

WAITFOR DELAY '00:00:15';

SELECT RowId, ColumnText

FROM Examples.IsolationLevels;
ROLLBACK TRANSACTION;

In the second session, add the following statements and then with both sessions visible,
execute both sessions:

UPDATE Examples.IsolationLevels
SET ColumnText = 'Row 1 Updated'
WHERE RowId = 1;

In this case, the first read operations blocks the update operation, which executes when
the first read’s locks are released, the update commits the data change, but the second query
returns the same rows as the first query due to the isolation level of the transaction:

RowId ColumnText

RowId ColumnText

Manage database concurrency

1 Row 1
2 Row 2
3 Row 3
4 Row 4

If you check the table values again, you can see that the updated row appears in the query

results:

RowId ColumnText

1 Row 1 Updated
2 Row 2
3 Row 3
4 Row 4
Serializable

The SERIALIZABLE isolation level behaves like REPEATABLE READ, but goes one step further
by ensuring new rows added after the start of the transaction are not visible to the trans-
action’s statement. Therefore, dirty reads, non-repeatable reads, and phantom reads are
prevented.

Before we see how the SERIALIZABLE isolation level works, let's look at an example that
produces a phantom read. In one new session, add the following statements:
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
BEGIN TRANSACTION;
SELECT RowId, ColumnText
FROM Examples.IsolationLevels;
WAITFOR DELAY '00:00:15';
SELECT RowId, ColumnText
FROM Examples.IsolationlLevels;
ROLLBACK TRANSACTION;

As in the previous examples, start a new session to insert a row into the same table, and
execute both sessions:

INSERT INTO Examples.IsolationLevels(RowId, ColumnText)
VALUES (5, '"Row 5");

In this case, the transaction starts with a read operation and returns four rows, but does
not block the insert operation. The REPEATABLE READ isolation level only prevents changes
to data that has been read, but does not prevent the transaction from seeing the new row,
which is returned by the second query as shown here:

RowId ColumnText

Skill 3.2: Manage isolation levels

223

224

RowId ColumnText

1 Row 1 Updated
2 Row 2
3 Row 3
4 Row 4
5 Row 5

Replace the isolation level statement in the first session with this statement to change the
isolation level:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Then create a new session to insert another row:

INSERT INTO Examples.IsolationLevels(RowId, ColumnText)
VALUES (6, 'Row 6');

This time because the INSERT operation is blocked by the transaction, both queries return
the same results without the new row.

RowId ColumnText

1 Row 1
2 Row 2
3 Row 3
4 Row 4
5 Row 5

1 Row 1
2 Row 2
3 Row 3
4 Row 4
5 Row 5

After the transaction ends, any subsequent queries to the table return six rows. The trade-
off for this consistency during the transaction is the blocking of write operations.

Snapshot

Snapshot Isolation gives you the same data for the duration of the transaction. This level of
protection prevents dirty reads, non-repeatable reads, and phantom reads. As other transac-
tions update or delete rows, a copy of the modified row is inserted into tempdb. This row also
includes a transaction sequence number so that SQL Server can determine which version to
use for a new transaction’s snapshot. When the new transaction executes a read request, SQL
Server scans the version chain to find the latest committed row having a transaction sequence
number lower than the current transaction. Periodically, SQL Server deletes row versions for
transactions that are no longer open.

To use the SNAPSHOT isolation level, you must first enable it at the database level by using
the following statement:

Manage database concurrency

ALTER DATABASE ExamBook762Ch3
SET ALLOW_SNAPSHOT_ISOLATION ON;

Now set the isolation level for the session and start a transaction:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
BEGIN TRANSACTION;

SELECT RowId, ColumnText

FROM Examples.IsolationLevels;

WAITFOR DELAY '00:00:15';

SELECT RowId, ColumnText

FROM Examples.IsolationLevels;
ROLLBACK TRANSACTION;

Then set up a write operation in a new second session:

INSERT INTO Examples.IsolationLevels(RowId, ColumnText)
VALUES (7, '"Row 7");

The write operation runs immediately because it is no longer blocked by the read opera-
tions, yet the query results return only the six rows that existed prior to the insertion.

NOTE SNAPSHOT ISOLATION AND TEMPDB

If you access global temp tables within a transaction set to SNAPSHOT isolation, you must
first enable the ALLOW_SNAPSHOT_ISOLATION database option for tempdb. As an alterna-
tive, you can use a hint to change the isolation level for the statement.

If you have a transaction that reads from a database that is enabled for SNAPSHOT isola-
tion and another database that is not enabled, the transaction fails. To execute successfully,
the transaction must include a table hint for the database without SNAPSHOT isolation level
enabled.

Let’s set up another database and a new table as shown in Listing 3-6.

LISTING 3-6 Create a separate for testing isolation levels

CREATE DATABASE ExamBook762Ch3_IsolationTest;
GO
USE ExamBook762Ch3_IsolationTest;
GO
CREATE SCHEMA Examples;
GO
CREATE TABLE Examples.IsolationLevelsTest
(RowId INT NOT NULL
CONSTRAINT PKRowId PRIMARY KEY,
ColumnText varchar(100) NOT NULL
);
INSERT INTO Examples.IsolationLevelsTest(RowId, ColumnText)
VALUES (1, 'Row 1'), (2, '"Row 2'), (3, '"Row 3'), (4, 'Row 4");

Now try to execute the following transaction that joins the data from the snapshot-en-
abled database with data from the other database:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

Skill 3.2: Manage isolation levels

225

226

BEGIN TRANSACTION;
SELECT tl1.RowId, t2.ColumnText
FROM Examples.IsolationLevels AS tl
INNER JOIN ExamBook762Ch3_IsolationTest.Examples.IsolationLevelsTest AS t2
ON tl1.RowId = t2.Rowld;
END TRANSACTION;

SQL Server returns the following error:

Msg 3952, Level 16, State 1, Line 5

Snapshot isolation transaction failed accessing database 'ExamBook762Ch3_IsolationTest'
because snapshot isolation is not allowed in this database. Use ALTER DATABASE to allow
shapshot isolation.

You might not always have the option to alter the other database to enable Snapshot
isolation. Instead, you can change the isolation level of the transaction’s statement to READ
COMMITTED, which allows the transaction to execute successfully:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
BEGIN TRANSACTION;
SELECT t1.RowId, t2.ColumnText
FROM Examples.IsolationLevels AS tl
INNER JOIN ExamBook762Ch3_IsolationTest.Examples.IsolationLevelsTest AS t2
WITH (READCOMMITTED)
ON tl1.RowId = t2.RowId;
END TRANSACTION;

Another problem that you might encounter when using this isolation level is an update
conflict, which causes the transaction to terminate and roll back. This situation can occur
when one transaction using the SNAPSHOT isolation level reads data that another transaction
modifies and then the first transaction attempts to update the same data. (This situation does
not occur when a transaction runs using the READ_COMMITTED_SNAPSHOT isolation level.)

A problem can also arise when the state of the database changes during the transaction.
As one example, a transaction set to SNAPSHOT isolation fails when the database is changed
to read-only after the transaction starts, but before it accesses the database. Likewise, a
failure occurs if a database recovery occurred in that same interval. A database recovery can
be caused when the database is set to OFFLINE and then to ONLINE, when it auto-closes and
re-opens, or when an operation detaches and attaches the database.

It is important to know that row versioning applies only to data and not to system meta-
data. If a statement changes metadata of an object while a transaction using the SNAPSHOT
isolation level is open and the transaction subsequently references the modified object, the
transaction fails. Be aware that BULK INSERT operations can change a table’s metadata and
cause transaction failures as a result. (This behavior does not occur when using the READ_
COMMITTED_SNAPSHOT isolation level.)

One way to see this behavior is to change an index on a table while a transaction is open.
Let's first add an index to a table:

CREATE INDEX Ix_RowId ON Examples.IsolationLevels (RowId);

Manage database concurrency

Next set up a new transaction:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
BEGIN TRANSACTION;

SELECT RowId, ColumnText

FROM Examples.IsolationlLevels;

WAITFOR DELAY '00:00:15';

SELECT RowId, ColumnText

FROM Examples.IsolationlLevels;
ROLLBACK TRANSACTION;

Then set up a second session to change the index by using the following statement and
execute both sessions:

ALTER INDEX Ix_RowId
ON Examples.IsolationLevels REBUILD;

SQL Server returns the following error due to the metadata change:

Msg 3961, Level 16, State 1, Line 6

Snapshot isolation transaction failed in database 'ExamBook762Ch3' because the object
accessed by the statement has been modified by a DDL statement in another concurrent
transaction since the start of this transaction. It is disallowed because the metadata
is not versioned. A concurrent update to metadata can lead to inconsistency if mixed
with snapshot isolation.

Be sure to disable snapshot isolation after completing the examples in this section:

ALTER DATABASE ExamBook762Ch3
SET ALLOW_SNAPSHOT_ISOLATION OFF;

Read Committed snapshot
To use the READ_COMMITTED_SNAPSHOT isolation level, you need only enable it at the
database level by using the following statement:

ALTER DATABASE ExamBook762Ch3
SET READ_COMMITTED_SNAPSHOT ON;

With this setting enabled, all queries that normally execute using the READ COMMITTED
isolation level switch to using the READ_COMMITTED_SNAPSHOT isolation level without
requiring you to change the query code. SQL Server creates a snapshot of committed data
when each statement starts. Consequently, read operations at different points in a transaction
might return different results.

During the transaction, SQL Server copies rows modified by other transactions into a col-
lection of pages in tempdb known as the version store. When a row is updated multiple times,
a copy of each change is in the version store. This set of row versions is called a version chain.

Let's see how this isolation level differs from the SNAPSHOT isolation level by setting up a
new session:

Skill 3.2: Manage isolation levels

227

228

BEGIN TRANSACTION;
SELECT RowId, ColumnText
FROM Examples.IsolationLevels;
WAITFOR DELAY '00:00:15"';
SELECT RowId, ColumnText
FROM Examples.IsolationLevels;
ROLLBACK TRANSACTION;

Next, set up a write operation in a new second session, and then execute both sessions:

INSERT INTO Examples.IsolationLevels(RowId, ColumnText)
VALUES (8, '"Row 8");

Just as with the SNAPSHOT isolation level, the write operation runs immediately because
read operations are not blocking it. However, each query returns different results because the
statements read different versions of the data.

0O NO VT A WN B
~ X
o O
s =
N VA WN R

Last, disable the READ_COMMITTED_SNAPSHOT isolation level after completing this
example:

ALTER DATABASE Examples
SET READ_COMMITTED_SNAPSHOT OFF;

Identify the resource and performance impact of given
isolation levels

The goal of isolation levels is to ensure that queries return complete and consistent results
while other concurrent processes are running. To avoid locking contention and improve over-
all performance, you should keep each transaction short and concise so it can execute quickly
while holding the fewest and smallest possible locks.

Manage database concurrency

Read Committed

With this isolation level, SQL Server holds two types of locks. A shared (S) lock is acquired for
read operations and is held only for the duration of that single operation. On the other hand,
an exclusive (X) lock is acquired for a write operation. Any changes to the data are not visible
to other operations for the duration of the write operation’s transaction.

Read Uncommitted

SQL Server ignores existing locks and reads both committed and uncommitted data. Further-
more, it does not acquire shared locks for read operations. However, schema modification
locks can still block reads.

Repeatable Read

SQL Server places Shared (S) locks on the data (and up the lock hierarchy) for the duration of
the transaction. Therefore, reads block write operations in other transactions. Consequently,
SQL Server cannot manage as many concurrent processes and performance can be adversely
impacted as deadlocks can become more frequent.

Serializable

SQL Server locks data for a read operation and also uses key-range locks to prevent any
other transactions from inserting or modifying the data for the duration of a transaction. This
high level of locking reduces concurrency and potentially slows performance due to locking
contention.

Snapshot

No locks are acquired for this isolation level. Consequently, deadlocks and lock escalations
occur less frequently, performance is faster, and concurrency is higher. Read operations are
not blocked by write operations, and write operations are not blocked by read operations.

On the other hand, these benefits come with an overhead cost. More space is required
in tempdb for row version storage and more CPU and memory is required by SQL Server to
manage row versioning. Update operations might run slower as a result of the extra steps
required to manage row versions. Furthermore, long running read operations can run slower
if many updates or deletes are occurring and increasing the length of the version chains that
SQL Server must scan. You can improve performance by placing tempdb on a dedicated,
high-performance disk drive.

Skill 3.2: Manage isolation levels

229

230

NOTE SNAPSHOT ISOLATION AND TEMPDB DISK SPACE

When using this isolation level, it is important to make sure there is enough disk space for
tempdb. If it runs out of space, update operations can complete successfully, but the read
operations relying on row version might fail.

Read Committed Snapshot

When a new transaction using the READ_COMMITTED_SNAPSHOT isolation level requests
locked data, SQL Server provides a copy of the data. It does not acquire shared page or row
locks. As a consequence, reads do not block write operations and writes do not block read
operations, although writes do require exclusive locks and continue to block other writes until
the end of the transaction. However, because SQL Server removes row versions from tempdb
when a transaction is over, it is possible to experience some concurrency side effects.

NOTE READ_COMMITTED_SNAPSHOT ISOLATION AND TEMPDB DISK SPACE

READ_COMMITTED_SNAPSHOT uses less tempdb space than snapshot isolation, but it is
still important to ensure tempdb has enough space for both normal operations and row
versionhing. Note that both READ_COMMITTED_SNAPSHOT and SNAPSHOT isolation levels
can be enabled at the same time, but there is only one copy of data in the version store.

Skill 3.3: Optimize concurrency and locking behavior

SQL Server uses locks to control the effect of concurrent transactions on one another. Part

of your job as an administrator is to improve concurrency by properly managing locking
behavior. That means you need to understand how to uncover performance problems related
to locks and lock escalations. Additionally, you must know how to use the tools available to
you for identifying when and why deadlocks happen and the possible steps you can take to
prevent deadlocks from arising.

This section covers how to:

m Troubleshoot locking issues

m [dentify lock escalation behaviors

m Capture and analyze deadlock graphs

m |dentify ways to remediate deadlocks

Manage database concurrency

Troubleshoot locking issues

Before you can troubleshoot locking issues, you must understand how SQL Server uses locks,
which we describe in detail in Skill 3.1. As part of the troubleshooting process, you need to
determine which resources are locked, why they are locked, and the lock type in effect.

You can use the following dynamic management views (DMVs) to view information about
locks:

m sys.dm_tran_locks Use this DMV to view all current locks, the lock resources, lock
mode, and other related information.

m sys.dm_os_waiting_tasks Use this DMV to see which tasks are waiting for a re-
source.

m sys.dm_os_wait_stats Use this DMV to see how often processes are waiting while
locks are taken.

Before we look at these DMVs in detail, let’s set up our environment as shown in Listing
3-7 so that we can establish some context for locking behavior.

LISTING 3-7 Create a test environment for testing locking behavior

CREATE TABLE Examples.LockingA

(
RowId 1int NOT NULL
CONSTRAINT PKLockingARowId PRIMARY KEY,
ColumnText varchar(100) NOT NULL
)3

INSERT INTO Examples.LockingA(RowId, ColumnText)
VALUES (1, 'Row 1'), (2, 'Row 2'), (3, 'Row 3'), (4, 'Row 4');
CREATE TABLE Examples.LockingB

(
RowId 1int NOT NULL
CONSTRAINT PKLockingBRowId PRIMARY KEY,
ColumnText varchar(100) NOT NULL
s

INSERT INTO Examples.LockingB(RowId, ColumnText)
VALUES (1, 'Row 1'), (2, '"Row 2'), (3, '"Row 3'), (4, 'Row 4');

sys.dm_tran_locks

The sys.dm_tran_locks DMV provides you with information about existing locks and locks that
have been requested but not yet granted in addition to details about the resource for which
the lock is requested. You can use this DMV only to view information at the current point in
time. It does not provide access to historical information about locks. Table 3-2 describes each
column in sys.dm_tran_locks.

Skill 3.3: Optimize concurrency and locking behavior

231

TABLE 3-2 sys.dm_tran_locks

COLUMN

resource_type

resource_subtype
resource_database_id

resource_description
resource_associated_entity_id
resource_lock_partition
request_mode

request_type

request_status
request_reference_count
request_lifetime
request_session_id
request_exec_context_id

request_request_id

request_owner_type

request_owner_id
request_owner_guid
request_owner_lockspace_id

lock_owner_address

pdw_node_id

DESCRIPTION

One of the following types of resources: DATABASE, FILE, OBJECT,
PAGE, KEY, EXTENT, RID, APPLICATION, METADATA, HOBT, or
ALLOCATION_UNIT.

If a resource has a subtype, this column displays it.
The ID of the database containing the resource.

Additional information, if available, about the resource not found
in other resource columns.

The ID of the entity with which the resource is associated, such as
an object ID, HoBT ID, or Allocation Unit ID.

The ID of the lock partition for partitioned lock resource. The
value is 0 for a non-partitioned lock resource.

The lock mode requested by waiting requests or granted for other
requests.

This value is always LOCK.

One of the following values to reflect the current status of the
request: GRANTED, CONVERT, WAIT, LOW_PRIORITY_CONVERT,
LOW_PRIORITY_WAIT, or ABORT_BLOCKERS.

The approximate number of times the requestor has requested
the resource.

This column is not supported.

The ID of the session that owns the request. An orphaned distrib-
uted transaction has a value of -2. A deferred recovery transaction
has a value of -3.

The ID of the execution context for the process that owns the
request.

The ID of the request for the process that owns the request. This
value changes when the active MARS connection for the transac-
tion changes.

The type of entity that owns the request: TRANSACTION,
CURSOR, SESSION, SHARED_TRANSACTION_WORKSPACE,
EXCLUSIVE_TRANSACTION_WORKSPACE, or NOTIFICATION_
OBJECT.

The ID of the owner of the request.
The GUID of the owner of the request.
This column is not supported.

The memory address of the internal data structure that is track-
ing the request. Join it with the resource_address column in sys.
dm_os_waiting_tasks.

The ID for node in the Analytics Platform System (formerly known
as Parallel Data Warehouse).

NOTE SYS.DM_TRAN_LOCKS RESOURCE TYPE SUBTYPES

For a full list of subtypes for each resource type, refer to the sys.dm_tran_locks documen-

tation at https://msdn.microsoft.com/en-us/library/ms190345.aspx.

Manage database concurrency

https://msdn.microsoft.com/en-us/library/ms190345.aspx
https://msdn.microsoft.com/en-us/library/ms190345.aspx
https://msdn.microsoft.com/en-us/library/ms190345.aspx
https://msdn.microsoft.com/en-us/library/ms190345.aspx

Let's start some transactions to observe the locks that SQL Server acquires. In one session,
execute the following statements:

BEGIN TRANSACTION;
SELECT RowId, ColumnText
FROM ExampTes.LockingA
WITH (HOLDLOCK, ROWLOCK);

In a separate session, start another transaction:

BEGIN TRANSACTION;
UPDATE Examples.LockingA
SET ColumnText = '"Row 2 Updated'
WHERE RowId = 2;

Now let’s use the sys.dm_tran_locks DMV to view some details about the current locks:

SELECT
request_session_id as s_id,
resource_type,
resource_associated_entity_id,
request_status,
request_mode
FROM sys.dm_tran_locks
WHERE resource_database_id = db_id('ExamBook762Ch3");

Although your results might vary, especially with regard to identifiers, the DMV returns re-
sults similar to the example below. Notice the wait for the exclusive lock for session 2. It must
wait until session 1 releases its shared range (RangeS-S) locks that SQL Server takes due to the
HOLDLOCK table hint. This table hint is equivalent to setting the isolation level to SERIALIZ-
ABLE. SQL Server also takes intent locks on the table (which appears on the OBJECT rows of
the results) and the page, with session 1 taking intent shared (IS) locks and session 2 taking
intent exclusive (IX) locks.

s_id resource_type resource_associated_entity_id request_status request_mode

1 DATABASE 0 GRANT S

2 DATABASE 0 GRANT S

1 PAGE 72057594041729024 GRANT IS

2 PAGE 72057594041729024 GRANT IX

1 KEY 72057594041729024 GRANT RangeS-S
1 KEY 72057594041729024 GRANT RangeS-S
1 KEY 72057594041729024 GRANT RangeS-S
1 KEY 72057594041729024 GRANT RangeS-S
1 KEY 72057594041729024 GRANT RangeS-S
2 KEY 72057594041729024 WAIT X

1 OBJECT 933578364 GRANT IS

2 OBJECT 933578364 GRANT IX

Connect to the ExamBook762Ch3 database containing the resource and use one of the re-
source_associated_entity_id values from the previous query in the WHERE clause to see which
object is locked, like this:

Skill 3.3: Optimize concurrency and locking behavior

233

SELECT
object_name(object_id) as Resource,
object_id,
hobt_id

FROM sys.partitions

WHERE hobt_id=72057594041729024;

When you view the results of this latter query, you can see the name of the resource that is
locked, like this:

Resource object_id hobt_id

LockingA 933578364 72057594041729024

In the previous example, you can also see the object_id returned from sys.partitions cor-
responds to the resource_associated_entity_id associated with the OBJECT resource_type in
the DMV.

When troubleshooting blocking situations, look for CONVERT in the request_status column
in this DMV. This value indicates the request was granted a lock mode earlier, but now needs
to upgrade to a different lock mode and is currently blocked.

sys.dm_os_waiting_tasks

Another useful DMV is sys.dm_os_waiting_tasks. Whenever a user asks you why a query is
taking longer to run than usual, a review of this DMV should be one of your standard trouble-
shooting steps. You can find a description of each column in this DMV in Table 3-3.

TABLE 3-3 sys.dm_os_waiting_tasks

COLUMN DESCRIPTION

waiting_task_address The address of the waiting task.

session_id The ID of the session that owns the task.

exec_context_id The ID of the execution context of the task.

wait_duration_ms The total wait time for this wait type in milliseconds. This value in-
cludes signal_wait_time_ms.

wait_type The type of wait.

resource_address The address of the resource for which the task is waiting.

blocking_task_address The task that is currently holding the requested resource.

blocking_session_id The ID of the session that is blocking the request. This column is

NULL if the task is not blocked, -2 if the blocking resource is owned
by an orphaned transaction, -3 if the blocking resource is owned by
a deferred recovery transaction, and -4 if the session ID of the block-
ing latch owner cannot be determined due to internal latch state

transitions.
blocking_exec_context_id The ID of the execution context of the blocking task.
resource_description The description of the resource consumed. See https://msdn.micro-

soft.com/en-us/library/ms188743.aspx for more information.

pdw_node_id The ID for node in the Analytics Platform System (formerly known as
Parallel Data Warehouse).

234 Manage database concurrency

https://msdn.micro-soft.com/en-us/library/ms188743.aspx
https://msdn.micro-soft.com/en-us/library/ms188743.aspx

In particular, you can use the sys.dm_trans_locks DMV in conjunction with the sys.dm_os_
waiting_tasks DMV to find blocked sessions, as shown in Listing 3-8.

LISTING 3-8 Use system DMV sys.dm_tran_locks and sys.dm_os_waiting_tasks to display blocked sessions

SELECT
tl.resource_type AS res_typ,
tl.resource_database_id AS res_dbid,
tl.resource_associated_entity_id AS res_entid,
tl.request_mode AS mode,
tl.request_session_id AS s_id,
t2.blocking_session_id AS blocking_s_id

FROM sys.dm_tran_Tlocks as tl1

INNER JOIN sys.dm_os_waiting_tasks as t2
ON tl.Tock_owner_address = t2.resource_address;

Whereas the earlier query showing existing locks is helpful for learning how SQL Server
acquires locks, the query in Listing 3-8 returns information that is more useful on a day-to-
day basis for uncovering blocking chains. In the query results shown below, you can see that
session 2 is blocked by session 1.

res_typ res_dbid res_entid mode s_id blocking_s_id
KEY 27 72057594041729024 X 2 1

Execute the following statement in both sessions to release the locks:

ROLLBACK TRANSACTION;

sys.dm_os_wait_stats

The sys.dm_os_wait_stats DMV is an aggregate view of all waits that occur when a requested
resource is not available, a worker thread is idle typically due to background tasks, or an ex-
ternal event must complete first. Table 3-4 explains the columns in sys.dm_os_wait_stats.

TABLE 3-4 sys.dm_os_wait_stats

COLUMN DESCRIPTION

wait_type The type of wait. The wait types associated with locks all begin with LCK.

waiting_tasks_count The number of waits having this wait type. The start of a new wait increments this
value.

wait_time_ms The total wait time for this wait type in milliseconds. This value includes sig-
nal_wait_time_ms

max_wait_time_ms The highest wait time for this wait type in milliseconds.

signal_wait_time_ms The amount of time in milliseconds between the time the waiting thread was sig-
naled and the time it started running.

pdw_node_idpdw_ The ID for node in the Analytics Platform System (formerly known as Parallel Data

node_id Warehouse).

There are many wait types unrelated to locks, so when using the sys.dm_os_wait_stats
DMV, you should apply a filter to focus on lock waits only, like this:

Skill 3.3: Optimize concurrency and locking behavior

235

SELECT
wait_type as wait,
waiting_tasks_count as wt_cnt,
wait_time_ms as wt_ms,
max_wait_time_ms as max_wt_ms,
signal_wait_time_ms as signal_ms

FROM sys.dm_os_wait_stats

WHERE wait_type LIKE 'LCK%'

ORDER BY wait_time_ms DESC;

NOTE WAIT TYPES

For a full list of wait types, refer to the sys.dm_os_wait_stats documentation at https://
msdn.microsoft.com/en-us/library/ms179984.aspx.

The partial results of this query on our computer shown in the following example indi-
cate that our SQL Server instance have the longest waits when threads are waiting for an
exclusive (X) lock. On the other hand, the greatest number of waits is a result of waiting for
a schema modification (SCH-M) lock. In both cases, the waits are caused because SQL Server
has already granted an incompatible lock to the resource on another thread. This information
is useful for identifying long-term trends, but does not show you details about the locked

resources.

wait wt_cnt wt_ms max_wt_ms signal_ms
LCK_M_X 6 1170670 712261 114
LCK_M_S 28 19398 2034 43
LCK_M_SCH_M 449 92 28 46
LCK_M_SCH.S 1 72 72 0

NOTE WAIT TYPE TROUBLESHOOTING LIBRARY

Your SQL Server instance undoubtedly yields different results for this DMV. You can find a
comprehensive library of SQL Server wait types compiled by SQLSkills available at https://
www.sqlskills.com/help/waits. This library includes a description of wait types, general
guidance for troubleshooting lock waits, and specific guidance for individual lock waits.

You can reset the cumulative values in the sys.dm_os_wait_stats DMV by executing the fol-
lowing statement: DBCC SQLPERF (N'sys.dm_os_wait_stats’, CLEAR);. Otherwise, these values
are reset each time that the SQL Server service restarts.

\) EXAM TIP

For the exam, you should know which DMVs you can reset manually as compared to the
DMVs that require a SQL Server service restart to be reset.

236 Manage database concurrency

https://msdn.microsoft.com/en-us/library/ms179984.aspx
https://msdn.microsoft.com/en-us/library/ms179984.aspx
https://www.sqlskills.com/help/waits
https://www.sqlskills.com/help/waits
https://msdn.microsoft.com/en-us/library/ms179984.aspx
https://msdn.microsoft.com/en-us/library/ms179984.aspx
https://www.sqlskills.com/help/waits
https://www.sqlskills.com/help/waits

Identify lock escalation behaviors

Lock escalation occurs when SQL Server detects too much memory, or too many system
resources are required for a query’s locks. It then converts one set of locks to another set of
locks applied to resources higher in the lock hierarchy. In other words, SQL Server tries to
use fewer locks to cover more resources. As an example, SQL Server might choose to esca-
late a high number of row locks to a table lock. This capability can reduce overhead on the
one hand, but can impact performance on the other hand because more data is locked. As a
result, there is greater potential for blocking.

Lock escalation occurs when more than 40 percent of the available database engine
memory pool is required by lock resources, or at least 5,000 locks are taken in a single T-SQL
statement for a single resource. SQL Server converts an intent lock to a full lock, as long as the
full lock is compatible with existing locks on the resource. It then releases system resources
and locks on the lower level of the lock hierarchy. If the new lock is taken on a row or a page,
SQL Server adds an intent lock on the object at the next higher level. However, if other locks
prevent lock escalation, SQL Server continues attempting to perform the escalation for each
new 1,250 locks it takes.

In most cases, you should let SQL Server manage the locks. If you implement a monitoring
system, take note of Lock:Escalation events to establish a benchmark. When the number of
Lock:Escalation events exceeds the benchmark, you can take action at the table level or at the
query level.

Another option for monitoring lock escalation is to benchmark the percentage of time that
intent lock waits (LCK_M_I*) occur relative to regular locks in the sys.dm_os_wait_stats DMV
by using a query like this:

SELECT
wait_type as wait,
wait_time_ms as wt_ms,
CONVERT (decimal(9,2), 100.0 * wait_time_ms /
SUM(wait_time_ms) OVER ()) as wait_pct
FROM sys.dm_os_wait_stats

WHERE wait_type LIKE 'LCK%'
ORDER BY wait_time_ms DESC;

Capture and analyze deadlock graphs

Usually the process of locking and unlocking SQL Server is fast enough to allow many users to
read and write data with the appearance that it occurs simultaneously. However, sometimes
two sessions block each other and neither can complete, which is a situation known as dead-
locking. Normally, the database engine terminates a thread of a deadlocked transaction with
error 1205 and suggests a remedy, such as running the transaction again.

Let's deliberately create a deadlock between two transactions. Start two sessions and add
the following statements to the first session:

Skill 3.3: Optimize concurrency and locking behavior

237

238

BEGIN TRANSACTION;

UPDATE Examples.LockingA
SET ColumnText = 'Row 1 Updated'
WHERE RowId = 1;

WAITFOR DELAY '00:00:05'";

UPDATE Examples.LockingB;

SET ColumnText = 'Row 1 Updated Again'

WHERE RowId = 1;

Next, in the second session, add the following statements:

BEGIN TRANSACTION;

UPDATE Examples.LockingB
SET ColumnText = 'Row 1 Updated'
WHERE RowId = 1;

WAITFOR DELAY '00:00:05"';

UPDATE Examples.LockingA;

SET ColumnText = 'Row 1 Updated Again'

WHERE RowId = 1;

Now execute the statements in the first session, and then, within five seconds, execute the

second session’s statements. Only one of the transaction completes and the other was termi-
nated with a rollback by SQL Server as shown by the following message:
Msg 1205, Level 13, State 51, Line 6

Transaction (Process ID 70) was deadlocked on lock resources with another process and
has been chosen as the deadlock victim. Rerun the transaction.

In this example, both transactions need the same table resources. Both transactions can
successfully update a row without conflict and have an exclusive lock on the updated data.
Then they each try to update data in the table that the other transaction had updated, but
each transaction is blocked while waiting for the other transaction’s exclusive lock to be re-
leased. Neither transaction can ever complete and release its lock, thereby causing a dead-
lock. When SQL Server recognizes this condition, it terminates one of the transactions and
rolls it back. It usually chooses the transaction that is least expensive to rollback based on the
number of transaction log records. At that point, the aborted transaction’s locks are released
and the remaining open transaction can continue.

Of course, deadlocks are not typically going to happen while you watch, so how can you
know when and why they occur? You can use either SQL Server Profiler or Extended Events to
capture a deadlock graph, an XML description of a deadlock.

\}) ExamTip

The exam also tests your knowledge about capturing deadlocks without a graph by using
Trace Flags 1204 and 1222. You can enable these trace flags by using the following syntax:
DBCC TRACEON(1204,1222,-1). Whenever a deadlock occurs, the deadlock victim and the
other transaction involved in the deadlock appear in the SQL Server log. See “Detecting
and Ending Deadlocks” at https://technet.microsoft.com/en-us/library/ms178104.aspx to
review this topic in more depth.

Manage database concurrency

https://technet.microsoft.com/en-us/library/ms178104.aspx

SQL Server Profiler deadlock graph

If you use SQL Server Profiler to capture a deadlock graph, you must configure the trace be-
fore deadlocks occur. Start by creating a new trace, and connect to your SQL Server instance.
In the Trace Properties dialog box, select the Events Selection tab, select the Show All Events
check box, expand Locks, and then select the following events:

m Deadlock graph
m Lock:Deadlock
m Lock:Deadlock Chain

On the Events Extraction Settings tab, select the Save Deadlock XML Events Separately op-
tion, navigate to a directory into which SQL Server Profiler saves deadlock graphs, and supply
a name for the graph. You can choose whether to save all deadlock graphs in a single .xdl file
or save multiple deadlock graphs as a separate .xdl file.

NOTE VIEWING A DEADLOCK GRAPH SAVED AS AN .XDL FILE

Whenever you can save a deadlock graph as an .xdl file, you can later open that file in SQL
Server Management Studio to view it.

Now set up the deadlock scenario again to generate the deadlock graph. In one session,
add the following statements:

BEGIN TRANSACTION;

UPDATE Examples.LockingA
SET ColumnText = 'Row 2 Updated'
WHERE RowId = 2;

WAITFOR DELAY '00:00:05';

UPDATE Examples.LockingB

SET ColumnText = 'Row 2 Updated Again'

WHERE RowId = 2;

Next, in the second session, add the following statements:

BEGIN TRANSACTION;

UPDATE Examples.LockingB
SET ColumnText = 'Row 2 Updated'
WHERE RowId = 2;

WAITFOR DELAY '00:00:05";

UPDATE Examples.LockingA

SET ColumnText = 'Row 2 Updated Again'

WHERE RowId = 2;

When a deadlock occurs, you can see the deadlock graph as an event in SQL Server Pro-
filer, as shown in Figure 3-1. In the deadlock graph, you see the tables and queries involved
in the deadlock, which process was terminated, and which locks led to the deadlock. The
ovals at each end of the deadlock graph contain information about the processes running the
deadlocked queries. The terminated process displays in the graph with an x superimposed on
it. Hover your mouse over the process to view the statement associated with it. The rectangles
labeled Key Lock identify the database object and index associated with the locking. Lines in

Skill 3.3: Optimize concurrency and locking behavior

239

the deadlock graph show the relationship between processes and database objects. A request
relationship displays when a process waits for a resource while an owner relationship displays
when a resource waits for a process.

Key Lock

Hot ID: 72067564041 784560 — —
associated abad TAOSTSIS0H1 704550 _—

#| Chiject nama: ExamBook 762Ch] Examples LackngB P
Indes rame: #KLockingEFowid Demertode) X

—F

bk Request Moder X
Holit ID; 72057554041 729024 S e
associsted abpd. T2057504041720024 —— ——
Chyect name: ExamBook M62Chd Examples Lockingd.

Indes rame: PHLeekingARowld

FIGURE 3-1 A deadlock graph

Extended Events deadlock graph

In Extended Events, you can use the continuously running system_health session to dis-
cover past deadlocks. As an alternative, you can set up a new session dedicated to capturing
deadlock information. The system_health session automatically captures detected deadlocks
without requiring special configuration. That means you can analyze a deadlock after it has
occurred.

To find deadlock information in the Extended Events viewer, open SQL Server Manage-
ment Studio, connect to the database engine, expand the Management node in Object
Explorer, expand the Extended Events node, expand the Sessions node, and then expand
the System_health node. Right-click PackageO.event_file, and select View Target Data. In the
Extended Events toolbar, click the Filters button. In the Filters dialog box, select Name in the
Field drop-down list, type xml_deadlock_report in the Value text box, as shown in Figure 3-2,
and then click OK. Select Xml_deadlock_report in the filtered list of events, and then click the
Deadlock tab below it to view the deadlock graph.

v
] Set e fter |
|
|
Addecnal fkers
&ndOr Field Operator Value
e . wmi_deadock _repot
oo e

FIGURE 3-2 An Extended Events filter for xml_deadlock_report

240 Manage database concurrency

Identify ways to remediate deadlocks

Deadlocks are less likely to occur if transactions can release resources as quickly as possible.
You can also lock up additional resources to avoid contention between multiple transactions.
For example, you can use a hint to lock a table although this action can also cause blocking.

Usually the best way to resolve a deadlock is to rerun the transaction. For this reason,
you should enclose a transaction in a TRY/CATCH block and add retry logic. Let’s revise the
previous example to prevent the deadlock. Start two new sessions and add the statements in
Listing 3-9 to both sessions.

LISTING 3-9 Add retry logic to avoid deadlock

DECLARE @Tries tinyint
SET @Tries = 1

WHILE @Tries <= 3
BEGIN

BEGIN TRANSACTION
BEGIN TRY
UPDATE Examples.LockingB
SET ColumnText = 'Row 3 Updated'
WHERE RowId = 3;
WAITFOR DELAY '00:00:05"';
UPDATE Examples.LockingA
SET ColumnText = 'Row 3 Updated Again'
WHERE RowId = 3;
COMMIT TRANSACTION;
END TRY
BEGIN CATCH
SELECT ERROR_NUMBER() AS ErrorNumber;
ROLLBACK TRANSACTION;
SET @Tries = @Tries + 1;
CONTINUE;
END CATCH
END

Next, execute each session. This time the deadlock occurs again, but the CATCH block
captured the deadlock. SQL Server does not automatically roll back the transaction when
you use this method, so you should include a ROLLBACK TRANSACTION in the CATCH block.
The @@TRANCOUNT variable resets to zero in both transactions. As a result, SQL Server no
longer cancels one of the transactions and you can also see the error number generated for
the deadlock victim:

ErrorNumber

Re-execution of the transaction might not be possible if the cause of the deadlock is still
locking resources. To handle those situations, you could need to consider the following meth-
ods as alternatives for resolving deadlocks.

Skill 3.3: Optimize concurrency and locking behavior

m Use SNAPSHOT or READ_COMMITTED_SNAPSHOT isolation levels. Either of these op-
tions avoid most blocking problems without the risk of dirty reads. However, both of
these options require plenty of space in tempdb.

m Use the NOLOCK query hint if one of the transactions is a SELECT statement, but only
use this method if the trade-off of a deadlock for dirty reads is acceptable.

m Add a new covering nonclustered index to provide another way for SQL Server to read
data without requiring access to the underlying table. This approach works only if the
other transaction participating in the deadlock does not use any of the covering index
keys. The trade-off is the additional overhead required to maintain the index.

m Proactively prevent a transaction from locking a resource that eventually gets locked
by another transaction by using the HOLDLOCK or UPDLOCK query hints.

Skill 3.4: Implement memory-optimized tables and
native stored procedures

The In-Memory OLTP feature built into SQL Server 2016 adds a new memory-optimized rela-
tional data management engine and a native stored procedure compiler to the platform that
you can use to run transactional workloads with higher concurrency. A memory-optimized
table is a highly optimized data structure that SQL Server uses to store data completely in
memory without paging to disk. It uses hash and nonclustered ordered indexes to support
faster data access from memory than traditional B-tree indexes. SQL Server maintains a copy
of the data on disk to guarantee transaction durability and to reload tables during database
recovery.

To further optimize query performance, you can implement natively compiled stored pro-
cedures as long as the stored procedure accesses memory-optimized tables only. A natively
compiled stored procedure is a stored procedure compiled into machine language for faster
execution, lower latency, and lower CPU utilization.

This section covers how to:

m Define use cases for memory-optimized tables

m Optimize performance of in-memory tables

m Determine best case usage scenarios for natively compiled stored procedures

m Enable collection of execution statistics for natively compiled stored procedures

Define use cases for memory-optimized tables

You use memory-optimized tables when you need to improve the performance and scalabil-
ity of existing tables, or when you have frequent bottlenecks caused by locking and latching
or code execution. SQL Server uses optimistic concurrency management for memory-opti-

242 Manage database concurrency

mized tables, which eliminates the need for locks and latches and in results in faster opera-
tions. In addition, SQL Server uses algorithms that are specifically optimized to access data
from memory and natively compiled stored procedures to execute code faster. Depending on
the type of workload you run, you can achieve five to 20 times performance gains with higher
throughput and lower latency after migrating an existing disk-based table to a memory-
optimized table.

In general, OLTP workloads with the following characteristics benefit most from migration
to memory-optimized tables: short transactions with fast response times, queries accessing
a limited number of tables that contain small data sets, and high concurrency requirements.
This type of workload could also require high transaction throughput and low latency at
scale. In the exam, you must be able to recognize the following use cases for which memory-
optimized tables are best suited:

m High data ingestion rate The database engine must process a high number of
inserts, either as a steady stream or in bursts. Bottlenecks from locking and latching
are a common problem in this scenario. Furthermore, last-page contention can occur
when many threads attempt to access the same page in a standard B-tree and indexes
intended to improve query performance add overhead time to insert operations. Per-
formance is often measured in terms of throughput rate or the number of rows loaded
per second. A common scenario for this workload is the Internet of Things in which
multiple sensors are sending data to SQL Server. Other examples include of applica-
tions producing data at a high rate include financial trading, manufacturing, telemetry,
and security monitoring. Whereas disk-based tables can have difficulty managing the
rate of inserts, memory-optimized tables can eliminate resource contention and re-
duce logging. In some cases, requirements permitting, you can further reduce transac-
tion execution time by implementing delayed durability, which we describe in greater
detail in the next section.

= High volume, high performance data reads Bottlenecks from latching and
locking, or from CPU utilization can occur when there are multiple concurrent read
requests competing with periodic inserts and updates, particularly when small regions
of data within a large table are accessed frequently. In addition, query execution time
carries overhead related to parsing, optimizing, and compiling statements. Perfor-
mance in this case often requires the overall time to complete a set of steps for a
business transaction to be measured in milliseconds or a smaller unit of time. Industries
with these requirements include retail, online banking, and online gaming, to name a
few. The use of memory-optimized tables in this scenario eliminates contention be-
tween read and write operations and retrieves data with lower latency, while the use of
natively compiled stored procedures enables code to execute faster.

= Complex business logic in stored procedures When an application requires inten-
sive data processing routines and performs high volume inserts, updates, and deletes,
the database can experience significant read-write contention. In some scenarios, the
workload must process and transform data before writing it to a table, as is common
in Extract-Transform-Load (ETL) operations, which can be a time-consuming operation.

Skill 3.4: Implement memory-optimized tables and native stored procedures

243

244

In other scenarios, the workload must perform point lookups or minimal joins before
performing update operations on a small number of rows. Industries with these types
of high-volume, complex logic workloads include manufacturing supply chains and
retailers maintaining online, real-time product catalogs. Memory-optimized tables
can eliminate lock and latch contention and natively compiled stored procedures can
reduce the execution time to enable higher throughput and lower latency. Another
possibility is to use delayed durability to reduce transaction execution time, but only if
the application requirements permit some potential data loss.

Real-time data access Several factors contribute to latency when accessing data in
traditional disk-based tables, including the time required to parse, optimize, com-

pile, and execute a statement, the time to write a transaction to the transaction log,
and CPU utilization when the database is experiencing heavy workloads. Examples of
industries requiring low latency execution include financial trading and online gaming.
With memory-optimized tables, the database engine retrieves data more efficiently
with reduced contention and natively compiled stored procedures execute code more
efficiently and faster. In addition, point lookup queries execute faster due to the use of
non-clustered hash indexes and minimal logging reduces overall transaction execution
time. Altogether, these capabilities of memory-optimized tables enable significantly
lower latency than disk-based tables.

Session state management Applications that require the storage of state informa-
tion for stateless protocols, such as HTTP, often use a database to persist this informa-
tion across multiple requests from a client. This type of workload is characterized by
frequent inserts, updates, and point lookups. When running at scale with load bal-
anced web servers, multiple servers can update data for the same session or perform
point lookups, which results in increased contention for the same resources. This type
of workload is characterized by frequently changes to a small amount of data and
incurs a significant amount of locking and latching. Memory-optimized tables reduce
contention, retrieve data effectively, and reduce or eliminate IO when using non-dura-
ble (SCHEMA_ONLY) tables, which we describe in the next section. On the other hand,
the database engine does not resolve conflicts resulting from attempts by separate
concurrent transactions to modify the same row, which is relatively rare in session state
management. Nonetheless, the application should include logic to retry an operation if
a transaction fails due to a write conflict.

Applications relying heavily on temporary tables, table variables, and table-
valued parameters Many times an application needs a way to store intermediate
results in a temporary location before applying additional logic to transform the data
into its final state for loading into a target table. Temporary tables and table variables
are different ways to fulfill this need. As an alternative, an application might use table-
valued parameters to send multiple rows of data to a stored procedure or function
and avoid the need for temporary tables or table variables. All three of these methods
require writes to tempdb and potentially incur additional execution time due to the IO
overhead. You can instead use memory-optimized temporary tables, table variables,

Manage database concurrency

and table-valued parameters to take advantage of the same optimizations available for
memory-optimized tables. By doing so, you can eliminate both the tempdb contention
and the IO overhead. You can achieve faster execution time when using these objects
in a natively compiled stored procedure.

m ETL operations ETL operations typically require the use of staging tables to copy
data from source systems as a starting point, and might also use staging tables for
intermediate steps necessary to transform data prior to loading the processed data
into a target table. Although this workload does not usually suffer from bottlenecks re-
lated to concurrency problems, it can experience delays due to |10 operations and the
overhead associated with query processing. For applications requiring low latency in
the target database, consider using memory-optimized tables for faster, more efficient
access to data. To reduce or eliminate |0, use non-durable tables as we describe in the
next section.

NEED MORE REVIEW? MEMORY-OPTIMIZED TABLE USE CASES AND
IMPLEMENTATION STRATEGIES
For a more in-depth review of use cases and implementation strategies for memory-opti-
mized tables, download the “In-Memory OLTP — Common Workload Patterns and Migra-
tion Considerations” whitepaper from https://msdn.microsoft.com/library/dn673538.aspx.
Be aware that memory-optimized tables in SQL Server 2016 support more features than
described in the whitepaper, which was written about SQL Server 2014. For a complete list
of the newly supported features see https://msdn.microsoft.com/en-us/library/bb510411.
aspx#inMemory.

Optimize performance of in-memory tables

As we described in the previous section, there are many use cases for which migrating disk-
based tables to memory-optimized tables improves overall performance. However, to ensure
you get optimal performance, there are several tasks that you can perform.

IMPORTANT SQL SERVER EDITIONS SUPPORTING MEMORY-OPTIMIZED TABLES

To use memory-optimized tables, you must use the SQL Server 2016 Enterprise, Developer,
or Evaluation edition. In this latest version, the maximum size of an optimized table is 2
terabytes (TB).

Before we look at these tasks, let’s start by creating the data directory on the root drive

to hold a new database, and then enabling in-memory OLTP in a new database as shown in
Listing 3-10. Enabling a database for memory-optimized tables requires you to define the fi-
legroup by using the CONTAINS MEMORY_OPTIMIZED_DATA option. SQL Server uses this file-
group container to store checkpoint files necessary for recovering memory-optimized tables.

Skill 3.4: Implement memory-optimized tables and native stored procedures

245

https://msdn.microsoft.com/library/dn673538.aspx
https://msdn.microsoft.com/en-us/library/bb510411.aspx#InMemory
https://msdn.microsoft.com/en-us/library/bb510411.aspx#InMemory
https://msdn.microsoft.com/library/dn673538.aspx
https://msdn.microsoft.com/library/dn673538.aspx
https://msdn.microsoft.com/library/dn673538.aspx
https://msdn.microsoft.com/en-us/library/bb510411.aspx#InMemory
https://msdn.microsoft.com/en-us/library/bb510411.aspx#InMemory

246

IMPORTANT MANUALLY CREATE A DATA DIRECTORY FOR THE MEMORY-OPTIMIZED
TABLE EXAMPLES

You must manually create the data directory on the C drive before you execute the state-
ments shown in Listing 3-10. If the directory does not exist, the statement execution fails.

LISTING 3-10 Enable in-memory OLTP in a new database

CREATE DATABASE ExamBook762Ch3_IMOLTP
ON PRIMARY (
NAME = ExamBook762Ch3_IMOLTP_data,
FILENAME = 'C:\data\ExamBook762Ch3_IMOLTP.mdf', size=500MB
),
FILEGROUP ExamBook762Ch3_IMOLTP_FG CONTAINS MEMORY_OPTIMIZED_DATA (
NAME = ExamBook762Ch3_IMOLTP_FG_Container,
FILENAME = 'C:\data\ExamBook762Ch3_IMOLTP_FG_Container'

D)
LOG ON (
NAME = ExamBook762Ch3_IMOLTP_log,
FILENAME = 'C:\data\ExamBook762Ch3_IMOLTP_log.l1df', size=500MB
J;
GO

Now let’s create the Examples schema, and then add one memory-optimized table and
one disk-based table for comparison, as shown in Listing 3-11. Notice the addition of the
MEMORY_OPTIMIZED = ON clause, which instructs the database engine to create a table
dynamic link library (DLL) file and load the table into memory. The database engine also
generates and compiles DML routines for accessing data in the table and saves the routines
as DLLs, which are called when data manipulation is requested. Unless you specify otherwise,
as we describe later in the "Durabiity options” section, a memory-optimized table is durable
in which case it must have a primary key defined. Furthermore, it must also contain at least
one index, which is satisfied below by the specification of NONCLUSTERED on the primary key
column. We discuss indexing options in greater detail later in the “Indexes” section.

LISTING 3-11 Create a new schema and add tables to the memory-optimized database

USE ExamBook762Ch3_IMOLTP;

GO

CREATE SCHEMA Examples;

GO

CREATE TABLE Examples.Order_Disk (
OrderId INT NOT NULL PRIMARY KEY NONCLUSTERED,
OrderDate DATETIME NOT NULL,
CustomerCode NVARCHAR(5) NOT NULL

)

GO

CREATE TABLE Examples.Order_IM (
OrderID INT NOT NULL PRIMARY KEY NONCLUSTERED,
OrderDate DATETIME NOT NULL,
CustomerCode NVARCHAR(5) NOT NULL

)

WITH (MEMORY_OPTIMIZED = ON);

GO

Manage database concurrency

NOTE MEMORY-OPTIMIZED TABLE ROW SIZE CONSIDERATIONS AND UNSUPPORTED
DATA TYPES

SQL Server 2016 supports a row size greater than 8,060 bytes, even without a LOB column,
in a memory-optimized table. However, for better performance, you should create as nar-
row a table as possible.

You should be aware that SQL Server 2016 does not support the following data types in
memory-optimized tables: datetimeoffset, geography, geometry, hierarchyid, rowversion,
xml, sql_variant, and user-defined types.

Natively compiled stored procedures

The first optimization task to perform is to create a natively compile stored procedure.
Natively compiled stored procedures are compiled at the time of creation, unlike interpreted
stored procedures that compile at first execution. Furthermore, natively compiled stored pro-
cedures can access memory-optimized tables only. Native compilation translates the stored
procedure code first into C code, and then into machine language, which enables the busi-
ness logic to both execute and access data faster and more efficiently. The machine language
version of the code is stored as a dynamic link library (DLL) in the default data directory for
your SQL Server instance.

Many of the limitations that existed in SQL Server 2014 for natively compiled stored proce-
dures have been removed. However, the following limitations still remain in SQL Server 2016:

= tempdb access You cannot create or access temporary tables, table variables, or
table-valued functions in tempdb. Instead, you can create a non-durable memory-
optimized table (described later in this section) or memory-optimized table types or
table variables.

NEED MORE REVIEW? MEMORY OPTIMIZATION OF TEMPORARY TABLES

For more information about replacing temporary tables with memory-optimized
objects, see “Faster temp table and table variable by using memory optimization” at
https://msdn.microsoft.com/en-us/library/mt718711.aspx.

m Cursors As an alternative, you can use set-based logic or a WHILE loop.

m CASE statement To work around lack of support for the CASE statement, you can
use a table variable to store the result set. The table variable includes a column to
serve as a condition flag that you can then use as a filter.

NOTE WORKAROUND FOR A CASE STATEMENT IN A NATIVELY COMPILED STORED
PROCEDURE

You can see an example of code implementing a workaround for the conditional logic
of a CASE statement in “Implementing a CASE Expression in a Natively Compiled Stored
Procedure” at https://msdn.microsoft.com/en-us/library/dn629453.aspx.

Skill 3.4: Implement memory-optimized tables and native stored procedures

247

https://msdn.microsoft.com/en-us/library/mt718711.aspx
https://msdn.microsoft.com/en-us/library/dn629453.aspx
https://msdn.microsoft.com/en-us/library/mt718711.aspx
https://msdn.microsoft.com/en-us/library/mt718711.aspx
https://msdn.microsoft.com/en-us/library/mt718711.aspx
https://msdn.microsoft.com/en-us/library/dn629453.aspx
https://msdn.microsoft.com/en-us/library/dn629453.aspx
https://msdn.microsoft.com/en-us/library/dn629453.aspx

248

MERGE statement You cannot use a memory-optimized table as the target of a
MERGE statement. Therefore, you must use explicit INSERT, UPDATE, or DELETE
statements instead.

SELECT INTO clause You cannot use an INTO clause with a SELECT statement. As an
alternative, use INSERT INTO <table> SELECT syntax.

FROM clause You cannot use a FROM clause or subqueries in an UPDATE statement.

NOTE WORKAROUND FOR A FROM CLAUSE IN A NATIVELY COMPILED STORED
PROCEDURE.

As a workaround, you can use a memory-optimized type and a trigger as described in

"Implementing UPDATE with FROM or Subqueries” at https://msdn.microsoft.com/en-us/

library/mt757375.aspx.

PERCENT or WITH TIES in TOP clause There are no alternatives for using these op-
tions in a natively compiled stored procedure.

DISTINCT with aggregate functions There is no alternative for using this option in
a natively compiled stored procedure.

Operators: INTERSECT, EXCEPT, APPLY, PIVOT, UNPIVOT, LIKE, CONTAINS There
are no alternatives for using these operators in a natively compiled stored procedure.

Common table expressions (CTEs) You must rewrite your query to reproduce the
functionality of a CTE in a natively compiled stored procedure.

Multi-row INSERT statements You must instead use separate INSERT statements in

a natively compiled stored procedure.

m EXECUTE WITH RECOMPILE There is no alternative for using this option in a na-
tively compiled stored procedure.

m View You cannot reference a view in a natively compiled stored procedure. You must

define your desired SELECT statement explicitly in the procedure code.

NOTE UNSUPPORTED T-SQL CONSTRUCTS FOR NATIVELY COMPILED STORED
PROCEDURES

The list of limitations for natively compiled stored procedures highlights the main features
that remain unsupported. You can find a complete list of constructs, features, operators,
and so on for natively compiled stored procedures at "Transact-SQL Constructs Not Sup-
ported by In-Memory OLTP” at https://msdn.microsoft.com/en-us/library/dn246937.aspx.

If you want to migrate an existing stored procedure to a natively compiled stored proce-
dure, you can use the Stored Procedure Native Compilation Advisor in SQL Server Manage-
ment Studio to evaluate whether your stored procedure contains elements that are not
supported. You can learn more about this tool by reading "Native Compilation Advisor” at
https://msdn.microsoft.com/en-us/library/dn358355.aspx.

Manage database concurrency

https://msdn.microsoft.com/en-us/library/mt757375.aspx
https://msdn.microsoft.com/en-us/library/mt757375.aspx
https://msdn.microsoft.com/en-us/library/dn246937.aspx
https://msdn.microsoft.com/en-us/library/dn358355.aspx
https://msdn.microsoft.com/en-us/library/mt757375.aspx
https://msdn.microsoft.com/en-us/library/mt757375.aspx
https://msdn.microsoft.com/en-us/library/dn246937.aspx
https://msdn.microsoft.com/en-us/library/dn246937.aspx
https://msdn.microsoft.com/en-us/library/dn246937.aspx
https://msdn.microsoft.com/en-us/library/dn358355.aspx
https://msdn.microsoft.com/en-us/library/dn358355.aspx
https://msdn.microsoft.com/en-us/library/dn358355.aspx

EXAM TIP

For the exam, it is important that you are able to identify the limitations of natively com-
piled stored procedures.

To observe the performance difference between an interpreted stored procedure and a

natively compiled stored procedure, create two stored procedures as shown in Listing 3-12. In
this example, the following portions of the code are specific to native compilation:

= WITH NATIVE_COMPILATION This clause is required to create a natively compiled

stored procedure.

SCHEMABINDING This option is required to bind the natively compiled stored
procedure to the object that it references. Consequently, you cannot drop tables ref-
erenced in the procedure code. Furthermore, you cannot use the wildcard (*) operator,
and instead must reference column names explicitly in a SELECT statement.

BEGIN ATOMIC...END You use this option to create an atomic block, which is a block
of T-SQL statements that succeed or fail together. A natively compiled stored procedure
can have only one atomic block. Starting an atomic block creates a transaction if one

does not yet exist or creates a savepoint if there is an existing transaction. An atomic
block must include options defining the isolation level and language like this: WITH
(TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = N'English’).

LISTING 3-12 Create stored procedures to test execution performance

USE ExamBook762Ch3_IMOLTP;

GO

Create natively compiled stored procedure

CREATE PROCEDURE Examples.OrderInsert_NC

@OrderID INT,
@CustomerCode NVARCHAR(10)

WITH NATIVE_COMPILATION, SCHEMABINDING

AS

BEGIN ATOMIC
WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = N'English")

DECLARE @OrderDate DATETIME = getdate();
INSERT INTO Examples.Order_IM (OrderId, OrderDate, CustomerCode)
VALUES (@OrderID, @OrderDate, @CustomerCode);

END;

GO

Create interpreted stored procedure

CREATE PROCEDURE Examples.OrderInsert_Interpreted

AS

@OrderID INT,
@CustomerCode NVARCHAR(10),
@TargetTable NVARCHAR(20)

DECLARE @OrderDate DATETIME = getdate();

DECLARE @SQLQuery NVARCHAR(MAX) ;

SET @SQLQuery = "INSERT INTO ' +
@TargetTable +
' (OrderId, OrderDate, CustomerCode) VALUES (' +
CAST(@OrderID AS NVARCHAR(6)) +

Skill 3.4: Implement memory-optimized tables and native stored procedures

249

250

','"" + CONVERT(NVARCHAR(20), @OrderDate, 101)+
'Y, 4+ @CustomerCode +
Ty
EXEC (@SQLQuery);
GO

Next, run the statements at least twice in Listing 3-13 to compare the performance of each
type of stored procedure. Ignore the results from the first execution because the duration is
skewed due to memory allocation and other operations that SQL Server performs one time
only. The code in Listing 3-13 first inserts 100,000 rows into a disk-based table using an inter-
preted stored procedure and measures the time required to perform the INSERT operation.
Then the code inserts rows into a memory-optimized table using the same interpreted stored
procedure and measures the processing time. Last, the code deletes rows from the memory-
optimized table, resets the time measurement variables, and then inserts rows into the table
by using a natively compiled stored procedure.

LISTING 3-13 Execute each stored procedure to compare performance

SET STATISTICS TIME OFF;
SET NOCOUNT ON;

DECLARE @starttime DATETIME = sysdatetime();
DECLARE @timems INT;

DECLARE @i INT = 1;

DECLARE @rowcount INT = 100000;

DECLARE @CustomerCode NVARCHAR(10);

--Reset disk-based table
TRUNCATE TABLE Examples.Order_Disk;

-- Disk-based table and interpreted stored procedure
BEGIN TRAN;
WHILE @i <= @rowcount
BEGIN;
SET @CustomerCode = 'cust' + CAST(@i as NVARCHAR(6));
EXEC Examples.OrderInsert_Interpreted @i, @CustomerCode, 'Examples.Order_Disk';
SET @i += 1;
END;
COMMIT;

SET @timems = datediff(ms, @starttime, sysdatetime());

SELECT 'Disk-based table and interpreted stored procedure: ' AS [Description],
CAST(@timems AS NVARCHAR(10)) + " ms' AS Duration;

-- Memory-based table and interpreted stored procedure

SET @i = 1;

SET @starttime = sysdatetime();

BEGIN TRAN;
WHILE @i <= @rowcount
BEGIN;
SET @CustomerCode = 'cust' + CAST(@i AS NVARCHAR(6));
EXEC Examples.OrderInsert_Interpreted @i, @CustomerCode, 'Examples.Order_IM';
SET @i += 1;

Manage database concurrency

END;
COMMIT;

SET @timems = datediff(ms, @starttime, sysdatetime());
SELECT 'Memory-optimized table and interpreted stored procedure: ' AS [Description],
CAST(@timems AS NVARCHAR(10)) + ' ms' AS Duration;

-- Reset memory-optimized table
DELETE FROM Examples.Order_IM;
SET @i = 1;

SET @starttime = sysdatetime();

BEGIN TRAN;
WHILE @i <= @rowcount
BEGIN;
SET @CustomerCode = 'cust' + CAST(@i AS NVARCHAR(6));
EXEC Examples.OrderInsert_NC @i, @CustomerCode;
SET @i += 1;
END;
COMMIT;

SET @timems = datediff(ms, @starttime, sysdatetime());

SELECT 'Memory-optimized table and natively compiled stored procedure:'
AS [Description],
CAST(@timems AS NVARCHAR(10)) + ' ms' AS Duration;

GO

Your results vary from the results shown in the following example due to differences in

hardware and memory configuration. However, your results should similarly reflect a variance
in duration between the types of tables and stored procedures such that the memory-opti-
mized table and natively compiled stored procedure performing inserts is considerably faster

than the other two options:

Description Duration

Disk-based table and interpreted stored procedure: 10440 ms

Description Duration

Memory-optimized table and interpreted stored procedure: 10041 ms

Description Duration

Memory-optimized table and natively compiled stored procedure: 1885 ms

NEED MORE REVIEW? NATIVELY-COMPILED USER-DEFINED FUNCTIONS AND INLINE
TABLE-VALUED FUNCTIONS

You can also natively compile scalar user-defined functions (UDFs) and inline table-valued

functions (TVFs) in SQL Server 2016 for more efficient data access. You can learn more by

reviewing "Scalar User-Defined Functions for In-Memory OLTP" at https://msdn.microsoft.

com/en-us/library/dn935012.aspx.

Skill 3.4: Implement memory-optimized tables and native stored procedures

251

https://msdn.microsoft.com/en-us/library/dn935012.aspx
https://msdn.microsoft

252

Indexes

A memory-optimized table can have up to eight non-clustered indexes, all of which are cover-
ing indexes. That is, they include all columns in the table. Unlike a traditional B-tree index for a
disk-based table, an index for a memory-optimized table exists only in memory and does not
contain data. Instead, an index points to a row in memory and is recreated during database
recovery. In addition, updates to an indexed memory-optimized table do not get logged.

An index for a memory-optimized table can be one of the following three types:

m Hash You use a nonclustered hash index when you have many queries that perform

point lookups, also known as equi-joins. When you specify the index type, as shown
below, you must include a bucket count. The bucket count value should be between
one to two times the expected number of distinct values in the indexed column. It is
better to have a bucket count that is too high rather than set it too low because it is
more likely to retrieve data faster, although it consumes more memory.
CREATE TABLE Examples.Order_IM_Hash (
OrderID INT NOT NULL PRIMARY KEY
NONCLUSTERED HASH WITH (BUCKET_COUNT = 1000000),
OrderDate DATETIME NOT NULL,
CustomerCode NVARCHAR(5) NOT NULL
INDEX ix_CustomerCode HASH WITH (BUCKET_COUNT = 1000000)

)
WITH (MEMORY_OPTIMIZED = ON);

Columnstore A new feature in SQL Server 2016 is the ability to add a columnstore
index to a memory-optimized table. This type of index, which we cover in greater de-
tail in Chapter 1, "Design and implement database objects,” is best when your queries
perform large scans of a table because it can process data by using batch execution
mode. Rather than read data row by row, it can process chunks of data in batches and
thereby reduce query execution time and CPU utilization. Consider this type of index
for single-threaded queries, sort operations (such as ORDER BY), and T-SQL window
functions.
CREATE TABLE Examples.Order_IM CCI (

OrderID INT NOT NULL PRIMARY KEY NONCLUSTERED,

OrderDate DATETIME NOT NULL,

CustomerCode NVARCHAR(5) NOT NULL,

INDEX 1ix_CustomerCode_cci CLUSTERED COLUMNSTORE)
WITH (MEMORY_OPTIMIZED = ON);

Nonclustered B-tree You use a memory-optimized nonclustered B-tree index when
your queries have an ORDER BY clause on an indexed column, or when your queries
return a few records by performing range selections against an index column using the
greater than (>) or less than (<) operators, or testing an indexed column for inequality.
You also can consider using a nonclustered index in combination with a columnstore
index when your queries perform point lookups or need to join together two fact
tables in a data warehouse.

Manage database concurrency

CREATE TABLE Examples.Order_IM_NC (
OrderID INT NOT NULL PRIMARY KEY NONCLUSTERED,
OrderDate DATETIME NOT NULL,
CustomerCode NVARCHAR(5) NOT NULL INDEX -ix_CustomerCode NONCLUSTERED

)
WITH (MEMORY_OPTIMIZED = ON);

A new feature in SQL Server 2016 is the ability to add or drop indexes, or change the
bucket count for an index in a memory-optimized table. To do this, you use the ALTER TABLE
statement only, as shown in Listing 3-14. The CREATE INDEX, DROP INDEX, and ALTER INDEX
statements are invalid for memory-optimized tables.

LISTING 3-14 Use the ALTER TABLE statement to add, modify, or drop an index

USE ExamBook762Ch3_IMOLTP;
GO
-- Add a column and an 1index
ALTER TABLE Examples.Order_IM

ADD Quantity INT NULL,

INDEX ix_OrderDate(OrderDate);
-- Alter an index by changing the bucket count
ALTER TABLE Examples.Order_IM_Hash

ALTER INDEX ix_CustomerCode

REBUILD WITH (BUCKET_COUNT = 2000000);

-- Drop an index
ALTER TABLE Examples.Order_IM

DROP INDEX ix_OrderDate;

Offlload analytics to readable secondary

The ability to use both columnstore and nonclustered indexes in memory-optimized tables
makes it much easier to support both OLTP and analytics workloads in the same database.
However, sometimes analytics queries require considerable CPU, 10, and memory resources
that might have an adverse impact on OLTP performance. If you need to support both OLTP
and analytics workloads, consider an Always On configuration to offload analytics workloads
to a readable secondary.

Durability options
When you create a memory-optimized table, you must decide how SQL Server should man-
age durability of the data. You can choose one of the following two types:

m Durable With this type, SQL Server guarantees full durability just as if the table were
disk-based. If you do not specify the durability option explicitly when you create a
memory-optimized table, it is durable by default. To explicitly define a durable table,
use the SCHEMA_AND_DATA durability option like this:

CREATE TABLE Examples.Order_IM Durable (
OrderID INT NOT NULL PRIMARY KEY NONCLUSTERED,

OrderDate DATETIME NOT NULL,
CustomerCode NVARCHAR(5) NOT NULL

Skill 3.4: Implement memory-optimized tables and native stored procedures

253

254

WITH (MEMORY_OPTIMIZED = ON, DURABILITY=SCHEMA_AND_DATA);
GO

= Non-durable By choosing this type of durability, you instruct SQL Server to persist

only the table schema, but not the data. This option is most appropriate for use cases
in which data is transient, such as an application’s session state management, or ETL
staging. SQL Server never writes a non-durable table’s data changes to the transaction
log. To define a non-durable table, use the SCHEMA_ONLY durability option like this:
CREATE TABLE Examples.Order_IM_Nondurable (

OrderID INT NOT NULL PRIMARY KEY NONCLUSTERED,

OrderDate DATETIME NOT NULL,

CustomerCode NVARCHAR(5) NOT NULL
)

WITH (MEMORY_OPTIMIZED = ON, DURABILITY=SCHEMA_ONLY);
GO

Because non-durable memory-optimized tables do not incur logging overhead, transac-
tions writing to them run faster than write operations on durable tables. However, to opti-
mize performance of durable memory-optimized tables, configure delayed durability at the
database or transaction level. Just as with disk-based tables, delayed durability for a memory-
optimized table reduces the frequency with which SQL Server flushes log records to disk and
enables SQL Server to commit transactions before writing log records to disk.

NOTE DELAYED DURABILITY USAGE

Use delayed durability with care. You can lose some transactions if a system failure occurs.

If you set delayed durability at the database level, every transaction that commits on
the database is delayed durable by default, although you can override this behavior at the
transaction level. Similarly, if the database is durable, you can configure the database to allow
delayed durable transactions and then explicit define a transaction as delayed durable. If you
prefer, you can disable delayed durability and prevent delayed durable transactions entirely
regardless of the transaction’s commit level. You can also specify delayed durability for a na-
tively compiled stored procedure. Listing 3-15 includes examples of these various settings.

LISTING 3-15 Configure delayed durability

--Set at database level only, all transactions commit as delayed durable
ALTER DATABASE ExamBook762Ch3_IMOLTP

SET DELAYED_DURABILITY = FORCED;
--Override database delayed durability at commit for durable transaction
BEGIN TRANSACTION;

INSERT INTO Examples.Order_IM_Hash

(OrderId, OrderDate, CustomerCode)

VALUES (1, getdate(), 'custl');
COMMIT TRANSACTION WITH (DELAYED_DURABILITY = OFF);
GO

--Set at transaction Tevel only

Manage database concurrency

ALTER DATABASE ExamBook762Ch3_IMOLTP
SET DELAYED_DURABILITY = ALLOWED;
BEGIN TRANSACTION;
INSERT INTO Examples.Order_IM_Hash
(OrderId, OrderDate, CustomerCode)
VALUES (2, getdate(), 'cust2');
COMMIT TRANSACTION WITH (DELAYED_DURABILITY = ON);

--Set within a natively compiled stored procedure
CREATE PROCEDURE Examples.OrderInsert_NC_DD
@OrderID INT,
@CustomerCode NVARCHAR(10)
WITH NATIVE_COMPILATION, SCHEMABINDING
AS
BEGIN ATOMIC
WITH (DELAYED_DURABILITY = ON,
TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = N'English")
DECLARE @OrderDate DATETIME = getdate();
INSERT INTO Examples.Order_IM (OrderId, OrderDate, CustomerCode)
VALUES (@OrderID, @OrderDate, @CustomerCode);
END;
GO
--Disable delayed durability completely for all transactions
-- and natively compiled stored procedures
ALTER DATABASE ExamBook762Ch3_IMOLTP
SET DELAYED_DURABILITY = DISABLED;

Determine best case usage scenarios for natively compiled
stored procedures

In SQL Server 2016, you can use natively compiled stored procedures to get better perfor-
mance when operating on memory-optimized tables. You use them for:

m Applications for which obtaining the best possible performance is a requirement
m Queries that execute frequently
m Tasks that must perform as fast as possible

If you have a lot of rows to process and a lot of logic to apply, the natively compiled stored
procedure performs faster than an interpreted stored procedure. It is also good when you
need to perform any of the following tasks:

m Aggregation

= Nested loop join

m Multi-statement SELECT, INSERT, UPDATE, or DELETE operations
= Complex expressions

m Procedural logic, such as conditional statements and loops

It is not typically the best option when you need to process only a single row.

Skill 3.4: Implement memory-optimized tables and native stored procedures 255

256

Enable collection of execution statistics for natively
compiled stored procedures

The goal of using memory-optimized tables is to execute processes as quickly as possible.
Consequently, you could be surprised that some statistics, such as worker_time and elapsed_
time, do not get collected by DMVs such as sys.dm_exec_query_stats and sys.dm_exec_pro-
cedure_stats. In fact, these DMVs include no information about natively compiled stored
procedures.

Instead, you need to specifically enable the collection of execution statistics by using one
of the following system stored procedures:
m sys.sp_xtp_control_proc_exec_stats Use this system stored procedure to enable
statistics collection for your SQL Server instance at the procedure level.

m sys.sp_xtp_control_query_exec_stats Use this system stored procedure to enable
statistics collection at the query level for selected natively compiled stored procedures.

NOTE EXECUTION STATISTICS COLLECTION

Keep in mind that enabling the collection of execution statistics can have an adverse effect
on the performance of natively compiled stored procedures. Rather than collect statistics
globally for an instance, you should collect statistics for selected natively compiled stored
procedures only to reduce this impact.

sys.sp_xtp_control_proc_exec_stats

Use the sys.sp_xtp_control_proc_exec_stats system stored procedure to enable and disable
procedure-level statistics collection on your SQL Server instance, as shown in Listing 3-16.
When SQL Server or a database starts, statistics collection is automatically disabled. Note that
you must be a member of the sysadmin role to execute this stored procedure.

LISTING 3-16 Enable and disable statistics collection at the procedure level

--Enable statistics collection at the procedure Tevel
EXEC sys.sp_xtp_control_proc_exec_stats @new_collection_value = 1;

--Check the current status of procedure-Tevel statistics collection
DECLARE @c BIT;

EXEC sys.sp_xtp_control_proc_exec_stats @Tld_collection_value=@c output
SELECT @c AS 'Current collection status';

--Disable statistics collection at the procedure Tevel
EXEC sys.sp_xtp_control_proc_exec_stats @new_collection_value = 0;

Manage database concurrency

sys.sp_xtp_control_query_exec_stats

Listing 3-17 shows an example of using the sys.sp_xtp_control_query_exec_stats system pro-
cedure to enable and disable query-level statistics collection. You can even use it to enable
statistics collection for a specific natively compiled stored procedure, but it must have been
executed at least once before you enable statistics collection. When SQL Server starts, query-
level statistics collection is automatically disabled. Note that disabling statistics collection at
the procedure level does not disable any statistics collection that you have configured at the
query level. As with the previous system stored procedure, you must be a member of the

sysadmin role to execute sys.sp_xtp_control_query_exec_stats.

LISTING 3-17 Enable and disable statistics collection at the query level

--Enable statistics collection at the query level
EXEC sys.sp_xtp_control_query_exec_stats @new_collection_value = 1;

--Check the current status of query-level statistics collection

DECLARE @c BIT;

EXEC sys.sp_xtp_control_query_exec_stats @old_collection_value=@c output;
SELECT @c AS 'Current collection status';

--Disable statistics collection at the query level
EXEC sys.sp_xtp_control_query_exec_stats @new_collection_value = 0;

--Enable statistics collection at the query level for a specific

--natively compiled stored procedure

DECLARE @ncspid int;

DECLARE @dbid int;

SET @ncspid = OBJECT_ID(N'Examples.OrderInsert_NC');

SET @dbid = DB_ID(N'ExamBook762Ch3_IMOLTP')

EXEC [sys].[sp_xtp_control_query_exec_stats] @new_collection_value = 1,
@database_id = @dbid, @xtp_object_id = @ncspid;

--Check the current status of query-level statistics collection for a specific
--natively compiled stored procedure
DECLARE @c bit;
DECLARE @ncspid 1int;
DECLARE @dbid int;
SET @ncspid = OBJECT_ID(N'Examples.OrderInsert_NC');
SET @dbid = DB_ID(N'ExamBook762Ch3_IMOLTP')
EXEC sp_xtp_control_query_exec_stats @database_id = @dbid,
@xtp_object_id = @ncspid, @old_collection_value=@c output;
SELECT @c AS 'Current collection status';

--Disable statistics collection at the query level for a specific

--natively compiled stored procedure

DECLARE @ncspid int;

DECLARE @dbid int;

EXEC sys.sp_xtp_control_query_exec_stats @new_collection_value = 0,
@database_id = @dbid, @xtp_object_id = @ncspid;

Skill 3.4: Implement memory-optimized tables and native stored procedures

257

Statistics collection queries

After enabling statistics collections at the procedure level, you can query the sys.dm_exec_
procedure_stats DMV to review the results. Listing 3-19 illustrates an example query that
filters for natively compiled stored procedures. This query returns results for the time during
which statistics collection was enabled and remains available after you disable statistics col-
lection at the procedure level.

IMPORTANT RUN NATIVELY COMPILED STORED PROCEDURES BEFORE GETTING
PROCEDURE-LEVEL STATISTICS

Be sure to execute the statements in Listing 3-13 after enabling statistics collection. Other-
wise, the statement in Listing 3-18 will not return results.

LISTING 3-18 Get procedure-level statistics

SELECT
OBJECT_NAME(PS.object_id) AS obj_name,
cached_time as cached_tm,
last_execution_time as last_exec_tm,
execution_count as ex_cnt,
total_worker_time as wrkr_tm,
total_elapsed_time as elpsd_tm
FROM sys.dm_exec_procedure_stats PS
INNER JOIN sys.all_sql_modules SM
ON SM.object_id = PS.object_id
WHERE SM.uses_native_compilation = 1;

Here is an example of the results from the query in Listing 3-18:

obj_name cached_tm Tlast_exec_tm ex_cnt wrkr_tm elpsd_tm

OrderInsert_NC 2016-10-15 20:44:33.917 2016-10-15 20:44:35.273 100000 376987 383365

You can also review the statistics collection at the query level by executing a query against
the sys.dm_exec_query_stats DMV, as shown in Listing 3-19.

IMPORTANT RUN NATIVELY COMPILED STORED PROCEDURES BEFORE GETTING
QUERY-LEVEL STATISTICS

You must execute the statements in Listing 3-13 after enabling statistics collection to see
results from executing the statement in Listing 3-19.

LISTING 3-19 Get query-level statistics

SELECT
st.objectid as obj_id,
OBJECT_NAME(st.objectid) AS obj_nm,
SUBSTRING(st.text,
(QS.statement_start_offset / 2) + 1,
((QS.statement_end_offset - QS.statement_start_offset) / 2) + 1)
AS 'Query',

258 Manage database concurrency

QS.Tlast_execution_time as last_exec_tm,
QS.execution_count as ex_cnt
FROM sys.dm_exec_query_stats QS
CROSS APPLY sys.dm_exec_sql_text(sql_handle) st
INNER JOIN sys.all_sql_modules SM
ON SM.object_id = st.objectid
WHERE SM.uses_native_compilation = 1

The information available in the query results from Listing 3-19 is similar to the procedure-
level statistics, but includes a row for each statement in the natively compiled stored proce-
dure and includes the query text for each statement. Note that total_worker_time and total_
elapsed_time were excluded from this example to restrict the width of the query results.

obj_id obj_name Query Tast_exec_tm ex_cnt

981578535 OrderInsert_NC INSERT INTO 2016-10-15 21:09:25.877 100000
Examples.Order_IM
(OrderId, OrderDate,
CustomerCode)
VALUES (@OrderID,
@OrderDate,
@CustomerCode)

Chapter summary

m Transaction management is the key to the SQL Server support of ACID. ACID proper-
ties determine whether a set of statements are handled individually or as an indivisible
unit of work, whether a transaction violates database rules, whether one transaction
can see the effects of other transactions, and whether a statement persists after an
unexpected shutdown.

m SQL Server guarantees ACID by managing the effects of a transaction’s success or
failure through committing or rolling back a transaction, using a default isolation to
prevent changes made by one transaction from impacting other transactions, and rely-
ing on a transaction log for durability.

® Implicit transactions start automatically for specific DML statements, but require an ex-
plicit COMMIT TRANSACTION or ROLLBACK TRANSACTION statement to end. Before
using implicit transactions, you must enable the implicit transaction mode.

m Explicit transactions require a BEGIN TRANSACTION statement to start and a COM-
MIT TRANSACTION or ROLLBACK TRANSACTION to end. You should incorporate error
handling and include logic to avoid nesting transactions for more complete control
over transaction behavior.

m Savepoints allow you to partially rollback a transaction to a named location. Neither
the SAVE TRANSACTION nor the ROLLBACK TRANSACTION statements have an effect
on the @@TRANCOUNT variable (as long as the transaction rolls back to a specific
savepoint rather than completely).

Skill 3.4: Implement memory-optimized tables and native stored procedures

259

260

A high concurrency database can suffer from data integrity issues when a process at-
tempts to modify data while other simultaneous processes are trying to read or modify
the data. Potential side effects include dirty reads, non-repeatable reads, phantom
reads, and lost updates.

SQL Server uses resource locks to enable high-concurrency while maintaining ACID
properties for a transaction. SQL Server uses a lock hierarchy on resources to protect
transactions and the types of locks that SQL Server can acquire on resources. SQL
Server's response to a request for a new lock when a lock already exists depends on
the compatibility between the requested and existing lock modes.

SQL Server uses isolation levels to control the degree to which one transaction has
visibility into the changes made by other transactions. Each of the following isolation
levels has potential side effects on data integrity and on concurrency: READ COM-
MITTED, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE, SNAPSHOT, and
READ_COMMITTED_SNAPSHOT.

You can change the isolation level at the session level by using the SET TRANSACTION
ISOLATION LEVEL statement or at statement level by using a table hint to raise concur-
rency at the risk of introducing potential side effects.

Because SQL Server acquires different types of locks for each isolation level, raising or
lowering isolation levels have varying effects on transaction performance.

The SNAPSHOT and READ_COMMITTED_SNAPSHOT isolation levels both create copies
of data and require more CPU and memory than other isolation levels. In addition,
they both require adequate space in tempdb, although of the two isolation levels,
READ_COMMITTED_SNAPSHOT requires less space.

Use the system DMVs sys.dm_tran_locks and sys.dm_os_wait_stats to find locked re-
sources, understand why they are locked, and identify the lock mode acquired for the
locked resources.

SQL Server uses lock escalation to more effectively manage locks, but as a result can
result in more blocking of transactions. Use the sys.dm_os_wait_stats DMV to moni-

tor lock escalation events and look for ways to tune queries if performance begins to
degrade due to more blocking issues.

A deadlock graph provides you with insight into the objects involved in a deadlock and
identifies the terminated process. You can capture a deadlock graph by using either
SQL Server Profiler to later review deadlock events that have yet to occur or by using
Extended Events to review deadlock events that have already occurred.

Enclosing a transaction in a TRY/CATCH block to retry it is usually the best way to
resolve a deadlock. Alternative methods have varying trade-offs and include using
the SNAPSHOT or READ_COMMITTED_SNAPSHOT isolation levels, using the NOLOCK,
HOLDLOCK, or UPDLOCK query hints, or adding a new covering nonclustered index.
Memory-optimized tables are well-suited for specific OLTP scenarios: high data inges-
tion rate; high volume, high performance data reads; complex business logic in stored

Manage database concurrency

procedures; real-time data access; session state management; applications relying
heavily on temporary tables, table variables, and table-valued parameters; and ETL
operations.

Besides implementing memory-optimized tables to improve an application’s perfor-
mance, you can also consider the following techniques to optimize performance even
more: natively compiled stored procedures, the addition of indexes to the memory-
optimized tables, the use of a readable secondary in an Always On configuration to
which you can offload analytics workloads, non-durable tables, or delayed durability
for transactions.

Natively compiled stored procedures typically execute faster and are best suited for
applications requiring high performance, queries that execute frequently, and tasks
that must perform extremely fast. You experience better performance gains over an
interpreted stored procedure when a natively compiled stored procedure must process
many rows of data and apply complex logic.

Use the system stored procedures sys.sp_xtp_control_proc_exec_stats and sys.sp_xtp_
control_query_exec_stats to enable or disable the collection of execution statistics for
natively compiled stored procedures at the procedure level or query level, respectively.
After enabling statistics collection, use the sys.dm_exec_procedure_stats and sys.dm_
exec_query_stats DMVs to review the statistics.

Thought experiment

In this thought experiment, demonstrate your skills and knowledge of the topics covered in
this chapter. You can find answers to this thought experiment in the next section.

You are a database administrator at Coho Winery. Your manager has asked you to trouble-
shoot and resolve a number of concurrency problems in the OLTP system running on SQL

Server 2016. Your manager has presented you with the following issues that users of the

system are experiencing:

1.

Two users ran the same report within seconds of one another. When they meet to
review the results, they notice that the totals in the reports do not match. One report
has more detail rows than the other report. You examine the stored procedure code
that produces the report.

SELECT
so.0rderID,
OrderDate,
ExpectedDeliveryDate,
CustomerlID,
CustomerPurchaseOrderNumber,
StockItemID,
Quantity,
UnitPrice

FROM Sales.Orders so
WITH (NOLOCK)

Thought experiment

261

262

INNER JOIN Sales.OrderLines sol
WITH (NOLOCK)
ON so.0OrderID = sol.0OrderID

What step do you recommend to ensure greater consistency in the report and what
are the ramifications of making this change?

Users are reporting a process to update the order system is running slowly right now.
Which DMVs do you use to identify the blocking process and why?

A new application developer is asking for help diagnosing transaction behavior. The
transaction in the following code never gets committed:
BEGIN TRANSACTION;
UPDATE <do something>;
BEGIN TRANSACTION;
UPDATE <DO SOMETHING>;
BEGIN TRANSACTION;

UPDATE <DO SOMETHING>;
COMMIT TRANSACTION;

What recommendation can you give the developer to achieve the desired result and
commit all update operations?

An internal application captures performance and logging data from thousands of
devices through a web API. Seasonally, the incoming rate of data shifts from 3,000
transactions/sec to 30,000 transactions/sec and overwhelms the database. What imple-
mentation strategy do you recommend?

Which indexing strategy should be used for a memory-optimized table for which the
common query pattern is shown below?

SELECT CustomerName FROM Customer
WHERE StartDate > DateAdd(day, -7, GetUtcDate());

Thought experiment answers

This section contains the solutions to the thought experiment. Each answer explains the reso-
lution to each of the issues identified in the OLTP system.

1.

The use of the NOLOCK table hint is common in reporting applications against OLTP sys-
tems in which lack of consistency is a trade-off for faster query performance. However,
when users are dissatisfied with inconsistent results, you can recommend removing this
table hint and allow the default isolation in SQL Server to manage transaction isolation.
Long write operations can block the report from executing. Similarly, if the report takes
a long time to execute, the read operation can block write operations.

Start with a query that returns sys.dm_os_waiting_tasks where blocking_session_id <>
0 and session_id equals the ID for the user’s session to see if anything is blocking the
user’s request. The following columns will give you details about the blocking situation:
blocking_session_id, wait_type, and wait_duration_ms. You can join this information

Manage database concurrency

to sys.dm_tran_locks to discover the current locks involved by including the request_
mode and resource_type columns. The request_status column provides information
about the locks. A value of CONVERT in this column is an indicator that a request is
blocked. You can also use the value in the resource_associated_entity_id column to find
the associated object’s name in sys.partitions.

In explicit transaction mode with nested transactions, each BEGIN TRANSACTION must
correspond to a COMMIT TRANSACTION. As each new transaction starts with BEGIN
TRANSACTION, the @@TRANCOUNT variable increments by 1 and each COMMIT
TRANSACTION decrements it by 1. The complete transaction does not get written to
disk and committed completely until @@TRANCOUNT is 0.

While this solution is correct, a better solution is not to use nested transactions.

For this type of scenario, you recommend migrating the application to memory-
optimized tables. The use of memory-optimized tables is well-suited for the ingestion
of high-volume inserts because it prevents the bottlenecks commonly resulting from
locking and eliminates logging. Consequently, the throughput rate (hnumber of rows
loaded per second) can substantially increase.

You should recommend a nonclustered B-tree index for this query pattern. It works
best for range selections in contrast to a hash index which works best for point lookups
or a columnstore index which works best for large table scans.

Thought experiment answers

263

This page intentionally left blank

Index

A B

abbreviations 11 backward compatibility 64
ACID properties 196-203 baseline performance metrics 347-362
actual query plans 314-319 compared to observed metrics 352-355
AFTER triggers 160, 176-179 batch execution mode 79-80
algebrizer 283 batch separator 12
ALTER INDEX statement 89, 90, 92 BEGIN ATOMIC_END clause 249
ALTER statement 61 BEGIN TRANSACTION statement 151, 205, 207
ALTER TABLE command 120-122 binary data 17
ALTER TABLE statement 14-15, 27, 253 bookmark lookups 30
approximate numeric data type 16 bottlenecks 242, 243, 340, 345
artificial keys 5, 47 Boyce-Codd normal form 9
ASCII characters 18 brackets 11
atomic blocks 249 B-Tree indexes 24-50
atomicity 196, 198-201 designing 26-40
attributes 3 structure 24-26

relationship of non-key to key 8-11 bulk data loading
auto-commit transactions 203 into clustered columnstore index 89-93
autocommit transactions 151 bulk update locks 214
AUTO_CREATE_STATISTICS 271 business requirements
Autogrowth 338 for database 2-4
AUTO_UPDATE_STATISTICS 271 view structure design based on 53-57
AUTO_UPDATE_STATISTICS_ASYNC 271 business rules
Azure Access Panel. See Access Panel enforcing with constraints 102-115

Azure portal 319-320, 356-357
Azure SQL Database
DMVs for 358
Extended Events in 358
performance monitoring 356-358
Azure SQL Database Performance Insight 283, 319-324
Azure SQL Database query plans 346

369

cache issues

370

C

cache issues 345-346
Camel Casing 12
cardinality 74, 266-270
cascading operations 113-115
CASE statement 247
character data 17
CHECK constraint 65
CHECK constraints 102, 107-111, 121, 160
classification process 325
classifier user-defined functions 329-330
client-side tracing 290-292, 360
CLR. See Common Language Runtime (CLR)
CLR stored procedures 130
clustered columnstore indexes 73-80, 85-88
bulk data loading 89-93
clustered indexes 25, 46-48, 69, 85
Clustered Index Scan operator 36, 50, 69, 293-294
clustering key 46-47, 48
COALESCE() function 20
columnar data 165-167
columnar databases 70-71
column constraints 102
COLUMNPROPERTYEX() function 34
columns 5, 5-6
adding 14-15
cardinality of 266-270
clustered index 46-48
computed 20-21, 34
data format for 109-110
data types for 15-24
density of 268
dropping 15
foreign key 28-32, 74
indexed vs. included 41-45
limiting to set of values 118-119
NOT NULL 104
NULL values in 28, 106
column segments
in columnstore indexes 72
columnstore indexes 70-93, 252
adding rows to compressed rowgroups 83
attributes of 85
batch execution mode 79-80
clustered 73-80, 85-88
loading data into 89-93

maintenance 89-95

non-bulk operations on 93-95
non-clustered 78, 80-88

structure of 71-72

targeting analytically valuable columns in 83
use cases 70-73

Columnstore Scan operator 88
COMMIT statement 204-205

COMMIT TRANSACTION 151

COMMIT TRANSACTION statement 205
Common Language Runtime (CLR) 130
common table expressions (CTEs) 116, 248
company names 18-19

comparison operators 59

composite indexes 25, 39

compressed rowgroups 83
COMPRESSION_DELAY setting 83
computed columns 20-21

indexing 34

Compute Scalar operator 30
concurrency 26
concurrent processes

potential problems with 211-216

concurrent queries

results of 219-228

connectors. See also receive connectors;

See also send connectors

consistency 196, 201
constraints 14, 61, 101, 102-129

adding to tables 119-122
CHECK 65, 102, 107-111, 121, 160
column 102
DEFAULT 48, 65, 102, 103-105
FOREIGN KEY 73, 75, 102
relating to UNIQUE constraint 117-119
use of 110-116
PRIMARY KEY 27, 28, 41, 47, 65, 102, 106, 111-112,
120, 125-130
results of DML statements and 123-125
table 102
UNIQUE 102, 105-106, 117-119, 120
uniqueness 27-28

covering indexes 41-45, 57, 77

CPU pressure 341

CPU usage 350

CREATE COLUMNSTORE INDEX statement 83
CREATE INDEX statement 29, 39, 43, 48
CREATE SCHEMA statement 12

CREATE TABLE statement 12-15
CTEs. See common table expressions (CTEs)

D

DAC. See Datacenter Activation Coordination
DAGs. See Database Availability Groups
DAS. See Direct-Attached Storage
data
binary 17
character (string) 17
hiding 53
limiting, through DDL 61-62
modifying in views, with multiple tables 62-64
redundant 8, 9
reformatting 53, 54-55
view structure design to select 53-57
data access
real-time 244
database concurrency 195-264
isolation levels and 216-229
locking behavior and 230-241
memory-optimized tables and 242-255
natively compiled stored procedures and 242,
255-258
transactions and 195-216
DATABASE DDL triggers 172-174
database design
adding indexes during 26-32
based on business requirements 2-4
denormalization 11
determining data types 15-24
using normalization 4-11
writing table create statements 11-15
Database Engine Tuning Advisor 281
database file optimization 336-337
database instances
performance management for 324-346
database file optimization 336-337
database workload 325-331
Elastic Scale 331-333
memory optimization 339-340
query plans 346
storage, 10, and cache troubleshooting 343-346
wait statistics 340-343
tempdb optimization 338-339
Database Manipulation Language (DML)
statements 196-203

data types

database objects 1-100
changing definition of 61
columnstore indexes 70-93
dropping 61
indexes 24-50
naming 11-12, 12-13
relational database schema 2-24
views 52-69
databases. See mailbox databases
columnar 70-71
logical database model 4
tuning 32
database scalability 331-333
Database Throughput Unit (DTU) 321-322
database workload
managing, in SQL Server 325-331
Resource Governor management queries 330-331
resource pools 326-328
user-defined functions 328-329
workload groups 328
Databse Definition Language (DDL) triggers 159
Data Definition Language (DDL) 123
Data Definition Language (DDL) triggers 169-174
data distribution 266-270
data files 336
data format 107, 109-110
data input
CHECK constraints on 107-111
coordinating multiple values 110-111
data integrity
complex 160-164
constraints for 102-129
data loading
into columnstore index 89-95
Data Manipulation Language (DML) 123-125
Data Manipulation Language (DML) triggers 159-160,
169. See also triggers
data storage. See also storage architectures; See
also storage requirements
datatype
choosing 108-109
conversion 144
int 107
precedence 144
data types 15-24
approximate numeric 16
binary data 17
character (string) data 17

371

data values

372

computed columns 20-21
considerations for choosing 18-20
date and time values 16-17
dynamic data masking 20, 21-24
for clustering key 48
importance of choosing 15-16
not supported in columnstore indexes 71
other 17-18
precise numeric 16
data values 15
data warehouses
clustered columnstore indexes and 73-80
date values 16-17
DBCC SHOW_STATISTICS command 266-268
DDL. See Data Definition Language (DDL)
deadlock graphs
capture and analyze 237-240
Extended Events 240
SQL Server Profiler 239-240
deadlocks 351
remediation of 241-242
decimals 16
DEFAULT constraint 48, 65
DEFAULT constraints 102, 103-105
DEFAULT keyword 182
DEFAULT VALUES 104-105
degenerate dimensions 75
degree of parallelism (DOP) 328
delayed durability 254
delayed durable transactions 202-203
DELETE statement 63
delimiters 11, 12
deltastore structure 72
denormalization 11
design
database
adding indexes during 26-32
based on business requirements 2-4
determining data types 15-24
using normalization 4-11
writing table create statements 11-15
indexes 26-40
tables
improving, using normalization 4-11
deterministic calculations 20
deterministic functions 186-188
Developer edition 335
DFS. See Distributed File Share

dimensional formatted data warehouses
using clustered columnstore indexes on 73-80

dimension keys 74

dimensions 74

dirty reads 212

Disk Usage Summary report 353-354

distributed transactions 208-209, 211, 219

divide-by-zero errors 180-181

DML. See Data Manipulation Language (DML)

DMV. See dynamic management view

DMVs. See dynamic management views (DMVs)

doomed transactions 152

double-quotes 11

DROP command 61

DROP [objectType] IF EXISTS command 61

duplicate key values 46

durability 197, 202-203

durable memory-optimized tables 254

dynamic data masking 20, 21-24

dynamic link library (DLL) files 246, 247

dynamic management objects (DMOs) 276-281,
340-343, 347, 348, 355

dynamic management view (DMV) 45

dynamic management views (DMVs) 231-237, 256-259,
276-280, 304-305, 341-342, 345-346, 358

EFS. See Encrypting File System
elastic database client library 332
Elastic Scale 331-333
email() function 23
ENCRYPTION 52
Enterprise edition 334-335
error handling
@@ERROR system function for 148-149
in stored procedures 144-158
rethrowing errors 150
throwing errors 144, 145-147
THROW statement for 157
transaction control logic in 144, 151-158
TRY...CATCH construct for 149-151, 153-154, 157
ERROR_PROCEDURE() function 158
@@ERROR system function 148-149, 154
ESRA. See EdgeSync replication account (ESRA)
estimated query plans 268-270, 314-319
ETDATE() function 20
Evaluation edition 335

EVENTDATA() function 171
exclusive locks 213, 229, 236
EXECUTE AS statement 24
EXECUTE statement 142
execution statistics 256-259
explicit transactions 151, 203-204, 205-209
Express edition 334
Extended Events 283-286, 313, 346, 348, 352, 355, 358
actions 360
best practice use cases for 359
compared with SQL Trace 360
events 360
packages 360
sessions 360
targets 359-360, 360
Extended Events deadlock graph 240
external resource pools 327
Extract-Transform-Load (ETL) operations 243, 245-246

F

fact tables 74, 78

federated SQL Servers 64

file groups 336-337

file placement 336, 338

file size 338

filtered rowstore indexes 29, 84

first normal form 6-7

forced query plans 313-314

foreign key columns 28-32, 74

FOREIGN KEY constraints 28-32, 75, 102
cascading operations 113-115
limiting column to set of values using 118-119
PRIMARY KEY constraints and 111-112
relating to UNIQUE constraint 117-119
table hierarchies and 115-116
use of 110-116

forms 4

FROM clause 60, 248

FSW. See File Share Witness

FUNCTION query 182

functions
deterministic 186-188
non-deterministic 186-188
system. See system functions
user-defined. See User-Defined Functions (UDFs)

G

globally unique identifier (GUID) 18, 48
Globally Unique Identifiers (GUIDs) 128
GO 12

GROUP BY query 182

GUID. See globally unique identifier

H

hash indexes 252
Hash Match (Aggregate) operator 298-299
Hash Match (Inner Join) operator 299-302
Hash Match join operator 51
Hash Match operator 35, 37, 51, 77
heaps 25
heirarchyld data type 18
high-concurrency databases
transactions in 211-216
hygiene. See message hygiene

IDENTITY property 65, 104, 105, 126-128
implicit transactions 203-205, 216
included columns 41-45
INCLUDE keyword 43, 46
index create memory 340
indexed columns 41-45
indexed views 67-69
indexes 24-50, 252-253
adding during coding phase 26
adding during database design phase 26-32
bookmark lookups 30
clustered 25, 46-48, 69, 85
columnstore 70-93
clustered and non-clustered 73-87
data loading 89-95
maintenance 89-95
use cases 70-73
composite 25, 39
consolidating overlapping 281-282
covering 41-45, 57, 77
designing 26-40
common search paths 32-35
foreign key columns 28-32
once data is in tables 32-40
uniqueness constraints 27-28

indexes

373

index keys

374

filtered 29, 84

finding unused 278-279
fragmented 279-280

identifying missing 280-281
indexed vs. included columns 41-45
joins 35-37

missing 45, 46

non-clustered 25, 85

optimization of 266-284
optimizing 28

query plans 30-32, 34-36, 42, 46, 49-52
review current usage 276-279
simple 25, 39

sorts 38-41

structure 24-26

uses of 24, 31-32

using dynamic managemet objects to review 276-281

index keys 42
maximum size of 25-26
Index Seek (NonClustered) operator 294-295
In-Memory OLTP feature 242
inner data set 301
INSERT INTO clause 105
INSERT statements 248
INSTEAD OF INSERT triggers 168
INSTEAD OF triggers 160, 166-170, 176-179
INSTEAD OF UPDATE triggers 166
int data type 107
integers 16, 48
intent locks 213-214
internal resource pools 327
Internet of Things 243
interpreted SQL stored procedures 130
interpreted stored procedures 249
10 issues 341
IO troubleshooting 343-345
isolation 196-197, 201-202
isolation levels 216-229
concurrent queries based on 219-228
differences between 217-219
READ COMMITTED 218, 220-221, 229

READ_COMMITTED_SNAPSHOT 219, 227-228,

230-231
READ UNCOMMITTED 218, 221-222, 229
REPEATABLE READ 218, 222-223, 229

resource and performance impact of 228-230

SERIALIZABLE 218, 223-224, 229
SNAPSHOT 219, 224-227, 229

J

joins 35-37

K

key attributes

relationship to non-key attributes 8-11
Key Lookup (Clustered) operator 294-295
Key Lookup operator 38
key-range locks 214-215
keys 5, 6

artificial 5

natural 6

surrogate 6

L

lazy commits 202-203

linked servers 67

lock compatibility 215

lock escalation events 351

lock hierarchy 213-215

locking behavior 230-241
deadlocking 237-241
escalation behaviors 237-238
troubleshooting 231-237

log files 336. See transaction log files

logging tools 355

login triggers 159, 174-176

logon triggers 169, 174-176

log sequence numbers (LSNs) 202

long running queries 323-324

lost updates 212

Lync Online. See Skype for Business

M

maintenance

columnstore indexes 89-95
Management Data Warehouse 352-355
materialized views. See indexed views
max server memory 339
max worker threads 340
measures 75
memory cache 345-346
memory optimization 339-340

memory-optimized tables 242-255
analytics workloads 253
durability options 253-254
indexes 252-253
natively compile stored procedures and 247-252
performance optimization of 245-255
SQL Server editions supporting 245
use cases for 242-245
memory pressure 342
memory usage monitoring 350
Merge Join operator 38, 40-41
MERGE statement 248
message transport. See transport
Microsoft Azure. See Azure
Microsoft Azure Active Directory. See Azure Active Direc-
tory (Azure AD)
min memory per query 340
min server memory 339
missing indexes 45, 46
monetary values 16, 19

N

names
company 18-19
database objects 12-13
object 11-12
NAT. See network address translation (NAT)
natively compiled objects 130
natively compiled stored procedures 242
creating 247-252
execution statistics for 256-259
unsupported T-SQL constructs for 249
usage scenarios for 255
natural keys 6
Nested Loop operator 78
nested loops 35
nested transactions 206-207
NEWSEQUENTIALID() function 128
NICs. See network interface cards (NICs)
non-bulk operations
on columnstore 93-95
nonclustered B-tree indexes 252
non-clustered columnstore indexes
73,78, 80-88
designing in conjuction with clustered 85-88
filtered 84-85
on OLTP tables 81-85

parameter sniffing

non-clustered indexes 25, 85
non-deterministic functions 186-188
non-durable memory-optimized tables 254
non-key attributes

relationship to key attributes 8-11
non-repeatable reads 212
normalization

Boyce-Codd normal form 9

defined 4

first normal form 6-7

rules

covering relationship of non-key attributes to at-
tributes 8-11
covering shape of table 5-7

second normal form 8-10

table design using 4-11

third normal form 8, 9-11
NOT NULL columns 104
NULL columns 106
NULL expression 13
NULL values 28, 29

(0

object naming 11-13
objects 3
Office Telemetry. See telemetry
OLTP. See online transaction processing
OLTP databases 28
OLTP tables
using non-clustered columnstore indexes on 81-85
ON clause 14
one-to-one cardinality 10
online transaction processing (OLTP) 1-100
operating system performance metrics 347-352
ORDER BY clause 38, 40, 52
outer data set 301
Overall Resource Consumption view 314

P

parallelism 76

parameters
input and output 135-137
stored procedures 132, 135-139
table-valued 137-139, 244
type mismatch 143-144

parameter sniffing 310

375

partial() function

376

partial() function 23
partitioned views 64-67
partitioning 14, 337-338
Pascal-casing 12
PERCENT clause 248
performance
data types and 15
performance counters 344-346, 348-351
Performance Monitor 347, 348-351, 355
performance monitoring
Azure SQL Database 356-358
baseline performance metrics 347-362
DMOs for 276-280, 340-343, 347, 348, 355
Extended Events for 355, 358, 359-362
Management Data Warehouse 352-355
Performance Monitor for 347, 348-351, 355
SQL Trace for 347, 355
vs. logging 355
phantom reads 212
plan summary 308, 310, 311
platform-as-a-service. See PaaS
precise numeric data type 16
prefixes 11
PRIMARY KEY constraint 14, 27, 28, 41, 47, 65
PRIMARY KEY constraints 102, 106, 120
FOREIGN KEY constraints and 111-112
use of 125-130

Q

quantum 340
queries
concurrent 219-228
dimensional data warehouses 73-80
grouping data in 76
long running 323-324
parallelism 76
range 47
resource consuming 321-323
Resource Governor management 330-331
slow 351
statistics collection 258-259
that return large results 47
Query Menu 31
query optimizer 283
query parsing 283
Query Performance Insight 319-324
query plan operators 291-301

Clustered Index Scan operator 293-294
Hash Match (Aggregate) operator 298-299
Hash Match (Inner Join) operator 299-302
Hash Match operator 296
Index Seek (NonClustered) operator 294-295
Key Lookup (Clustered) operator 294-295
Sort operator 295-297
Table Scan operator 293
query plans 30-32, 34-36, 35-36, 42, 46, 49-52,
268-270, 283-324
Azure SQL Database 346
Azure SQL Database Performance Insight 319-324
capturing, using extended events and traces 283-292
comparing estimated and actual 314-319
estimated 268
forced 313-314
performance impacts of 351
poorly performing operators 291-301
query_post_execution_showplan 284
query_pre_execution_showplan 284
Query Statistics History report 354
Query Store 283, 346
components 304-306
enabling 319-320
properties 302-304
views 306-314
query_store_plan_forcing_failed Extended Event 313

R

RAISERROR statement 145-147
range queries 47
READ COMMITTED isolation level 218, 220-221, 229
READ_COMMITTED_SNAPSHOT isolation level 219,
227-228, 230-231
READ UNCOMMITTED isolation level 218, 221-222, 229
real data types 19
real-time analytics
using non-clustered columnstore indexes 81-85
real-time data access 244
REBUILD setting 89, 92
redundant data 8, 9
Regressed Queries view 314
relational database schema 2-24
designing
based on business requirements 2-4
determining data types 15-24
using normalization 4-11
writing table create statements 11-15

REORGANIZE setting 89, 90, 92
REPEATABLE_READ isolation level 213, 218, 222-223,
229
reporting
views for 53, 55-56
resource consuming queries 321-323
resource consumption monitoring 330-331, 359
Resource Governor 325-331
management queries 330-331
resource locks 212-216
resource pools 325, 326-328
RETURN statement 139-140
REVERT statement 24
ROLLBACK TRANSACTION statement 151, 164, 207, 209
row groups 83
in columnstore index 71
Row-Level Security feature 53
rows 5, 5-6
rowstore 24
rowstore indexes
uses of 85
rowversion data type 18

S

savepoints 157, 209-211
SAVE TRANSACTION statement 209
scalar user-defined functions 180-183
SCHEMABINDING 52
SCHEMABINDING clause 249
schema locks 214
schema modification locks 236
schemas

defined 3

designing

based on business requirements 2-4

relational database 2-24
SCOPE_IDENTITY() function 136
search conditions 35
secondary data files 336-337
secondary uniqueness criteria 105-106
second normal form 8-10
security

Row-Level Security feature 53
security audits 359
SELECT clause 183
SELECT INTO clause 248
SELECT statement 317

SQL Operating System (SQLOS) Scheduler

SELECT statements 52
self-service deployment. See user-driven client deploy-
ments
semicolons 12
semi joins 51
SEQUENCE object 65
SEQUENCE objects 128
SERIALIZABLE isolation level 213, 218, 223-224, 229
Server Activity History report 353
SERVER DDL triggers 170-172
server principal 169, 171
servers
linked 67
server-side tracing 286-289, 360
service tiers 335
session state management 244
SET command 134
SET SHOWPLAN_ALL ON statement 315
SET SHOWPLAN_TEXT ON statement 315
SET SHOWPLAN_XML ON statement 315
sharding 331-332
shared locks 229
simple indexes 25, 39
SIMPLE recovery model 338
slow queries 351
SMTP. See Single Mail Transfer Protocol (SMTP)
SNAPSHQT isolation level 219, 224-227, 229
snowflake schema 74
Sort operator 295-297
sorts 38-41
spatial data type 18
SPF. See send policy framework (SPF) records
Split-Merge service 333
sp_query_store_flush_db 305
sp_query_store_force_plan 305
sp_query_store_remove_plan 305
sp_query_store_remove_query 305
sp_query_store_reset_exec_stats 305
sp_query_store_unforce_plan 305
sp_trace_create 286
sp_trace_setevent 286
sp_trace_setfilter 286
sp_trace_setstatus 286
SQL Database. See also Azure SQL Database
DMVs for 358
Elastic Scale for 331-333
Extended Events in 358
SQL Operating System (SQLOS) Scheduler 340

377

SQL Server

378

SQL Server
baseline performance metrics 347-362
Enterprise Edition 67
managing database workload in 325-331
memory optimization 339-340
Standard Edition 67
SQL Server 2012
columnstar indexes and 85
SQL Server 2014
columnstar indexes and 85
SQL Server 2016
columnstar indexes and 85-86
editions 334-335
service tiers 334-335
SQL Server Agent stored procedures 273
SQL Server Integration Services (SSIS) 275
SQL Server Lock Manager 212-213
SQL Server Management Studio 352
SQL Server Profiler 286, 288-289, 290
SQL Server Profiler deadlock graph 239-240
SQL Server Resource Governor 325-331
SQL Trace 283, 286-292, 347, 351, 355, 360
sql_variant 17
Standard edition 334
star schema 73-74
statistics 266-277
accuracy of 266-273
automatic updates 271-273
data distribution and cardinality 267-271
execution. See execution statistics
maintenance tasks 273-276
wait 340-343
statistics collection queries 258-259
STATS_DATE system function 272
storage
troubleshooting 343-345
stored procedures 53, 101
CLR 130
complex business logic in 243
creating 130-158
designing, based on business requirements 131-135
error handling in 144-158
interpreted 249
interpreted SQL 130
natively compiled 130, 242, 247-252, 255-258
parameters 132
input and output 135-137
table-valued 137-139
type mismatch 143-144

return codes 139-140

returning data from 133-134

server-side tracing 286

SQL Server Agent extended 273

streamlining logic 141-144

structure of 131

transactions in 206-208

use of 131
string data 17
STRING_SPLIT() function 137-138
surrogate keys 6
surrograte keys 126-129
syntax

names 11-12
sys.database_connection_stats 358
sys.dm_db_index_physical_stats 279-280
sys.dm_db_index_usage_stats 276-278
sys.dm_db_missing_index_details 280
sys.dm_db_missing_index_groups 280
sys.dm_db_missing_index_group_stats 280
sys.dm_db_resource_stats 358
sys.dm_exec_query_stats 358
sys.dm_exec_session_wait_stats 342
sys.dm_io_virtual_file_stats 343
sys.dm_os_memory_cache_counters 345
sys.dm_os_memory_clerks 345
sys.dm_os_performance_counters 344
sys.dm_os_sys_memory 345
sys.dm_os_waiting_tasks 231, 234-235, 342
sys.dm_os_wait_stats 231, 235-236, 341-342
sys.dm_tran_locks 231, 231-234, 358
sys.event_log 358
sys.fn_trace_getinfo system function 288
sys.master_files 343
sys.query_store_plan 304
sys.query_store_query 304
sys.query_store_query_text 304
sys.query_store_runtime_stats 304
sys.query_store_runtime_stats_interval 305
sys.sp_xtp_control_proc_exec_stats 256
sys.sp_xtp_control_query_exec_stats 257-258
system functions

invalid use of, on search arguments 143
system health 359

-

table constraints 102

tables
adding constraints to 119-122
adding indexes to 32-40
ALTER TABLE statement 14-15, 27
cascading operations 113-115
columns 5, 5-6
adding 14-15
data types for 15-24
dropping 15
indexed vs. included 41-45
creating 11
designing
based on business requirements 2-4
using normalization 4-11
fact 74,78
hierarchies 115-116
joins 35-37
keys 5, 6
memory-optimized 242-255
modifying, using views 58-64
multiple, in views 62-64
names 11-13
OoLTP
using non-clustered columnstore indexes on 81-85
PRIMARY KEY constraints 27
redundancy in 9
relationship of non-key to key attributes 8-11
rows 5-6
rules covering shape of 5-7
sorts 38-41
temporary 244
virtual 62
Table Scan operator 293
table-valued parameters 137-139, 244
table-valued user-defined functions 183-186
table variables 244
tempdb 224, 242, 247, 343
tempdb optimization 338-339
temporal extensions 14
temporary tables 244
third normal form 8, 9-11
THROW statement 145-147, 155, 157, 164
timestamp 18
time values 16-17
Top Resource Consuming Queries view 308
traces 283, 286-292, 351
client-side 290-292, 360
server-side 286-289, 360
Tracked Querie view 314
@@TRANCOUNT variable 204, 206, 207, 209

UNIQUE constraints

transaction control logic
in stored procedures 144-158
transactions 195-216
ACID properties of 196-203
auto-commit 203
distributed 208-209, 211, 219
DLM statement results based on 196-203
explicit 203-204, 205-209
implicit 203-205, 216
in high-concurrency databases 211-216
isolation levels 216-229
nested 206-207
resource locks and 212-216
savepoints within 209-211
Transact-SQL code 2-24, 12
Transact-SQL statements
to add contraints to tables 119-122
triggers 101
AFTER 176-179
columnar data and 165-167
complex data integrity and 160-164
creating 159-179
DDL 159, 169-174
designing logic for, based on business requirements
159-169
DML 159-160, 169
INSTEAD OF 166-170, 176-179
login 159
logon 169, 174-176
running code in response to action 164-165
uses of 160
troubleshooting
10 343-345
locking behavior 231-237
performance issues 352-355
storage 343-345
TRY...CATCH construct 149-151, 153-154, 157
T-SQL statements 346
tuple mover 72, 89

U

UDFs. See User-Defined Functions (UDFs)
uncommitable transactions 152
underscores 12
UNION ALL set operator 64
UNIQUE constraints 102, 120
FOREIGN KEY constraints relating to 117-119
use of 105-106

379

uniqueidentifier data type

uniqueidentifier data type 18
uniqueness constraints

on indexes 27-28
updateable views 57-63
update locks 213
UPDATE operations

DEFAULT constraints on 104

in columnstore index 72
UPDATE statement 179
UPDATE STATISTICS statement 271, 275
Update Statistics Task dialog box 274
user accounts. See also identities
user-defined functions 50

User-Defined Functions (UDFs) 101, 159, 180-186

classifier 328-329

scalar 180-183

table-valued 183-186
user-defined resource pools 327
user identities. See identities
user input

DEFAULT constraints on 103-105

limiting with constraints 107-111
user requirements

creating views to meet 53-57

Vv

version store 227
VIEW_METADATA 52, 58
views 52-69
basic form of 52
designing

based on user or business requirements 53-57

updateable 57-63
editable 58-64
indexed 67-69
layers of 55

limiting what data can be added to table 61-62

modifiable 167-169

modifying data in, with multiple tables 62-64

options for 52
partitioned 64-67

that reference single table, modifying 58-61

uses 52, 53
as reporting interface 55-56

reformatting data in output 54-55

table modification 58-64
to hide data 53
virtual tables 62

380

W

wait statistics 340-343

wait types 235

Web edition 334

WHERE clause 62, 87, 88, 183

WIM. See Windows Imaging Format (WIM)
WITH CHECK OPTION clause 52, 61-62
WITH NATIVE_COMPILATION clause 249
WITH TIES in TOP clause 248

worker threads 340-341

workload groups 325, 328

X

XACT_ABORT() function 152, 155-156
XACT_STATE() function 152

XML data type 18
xml_deadlock_report 240

Y

ys.sp_xtp_control_query_exec_stats 256

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Organization of this book
	Microsoft certifications
	Acknowledgments
	Free ebooks from Microsoft Press
	Microsoft Virtual Academy
	Quick access to online references
	Errata, updates, & book support
	We want to hear from you
	Stay in touch
	Preparing for the exam

	Chapter 3 Manage database concurrency
	Skill 3.1: Implement transactions
	Identify DML statement results based on transaction behavior
	Recognize differences between and identify usage of explicit and implicit transactions
	Implement savepoints within transactions
	Determine the role of transactions in high-concurrency databases

	Skill 3.2: Manage isolation levels
	Identify differences between isolation levels
	Define results of concurrent queries based on isolation level
	Identify the resource and performance impact of given isolation levels

	Skill 3.3: Optimize concurrency and locking behavior
	Troubleshoot locking issues
	Identify lock escalation behaviors
	Capture and analyze deadlock graphs
	Identify ways to remediate deadlocks

	Skill 3.4: Implement memory-optimized tables and native stored procedures
	Define use cases for memory-optimized tables
	Optimize performance of in-memory tables
	Determine best case usage scenarios for natively compiled stored procedures
	Enable collection of execution statistics for natively compiled stored procedures
	Summary

	Thought experiment
	Thought experiment answers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

