
16
Create games
with pygame

	 593

What you will learn
Writing games is great fun. Unlike “proper” programs, games are not always
tied to a formal specification and don’t need to do anything useful. They
just must be fun to play. Games are a great place to experiment with your
software. You can write code just to see what happens when it runs, and see
whether the result is interesting. Everyone should write at least one comput-
er game in their lives. In this chapter, you’ll start creating games. You’ll learn
how to make a complete game and finish with a framework you can use to
create more games of your own design.

Getting started with pygame . 594

Draw images with pygame . 601

Get user input from pygame . 606

Create game sprites . 609

Complete the game . 629

What you have learned .636

Start pygame and draw some lines
The best way to understand how pygame works is to start it up and draw something. Open
the Python Command Shell in IDLE to get started. Before we can use pygame in a program,
we need to import it; enter the statement below and press Enter:

>>> import pygame

Once we’ve imported the pygame module, we can start using the functions and classes it
contains. The pygame framework needs to be set up before you can use it to display the
items in your game. A game program does this by calling the init function in the pygame
module, as shown here:

>>> pygame.init()

When you press Enter, the init function sets up the different pygame elements, each of
which performs a specific task when the game is running. Elements read user input, make
sounds, and so on. The init function returns a tuple that tells you how many elements have
been successfully initialized, and how many have failed to initialize. If an element fails to
initialize, pygame might not have been installed correctly. However, most games ignore this
value and assume that all is well.

>>> pygame.init()

(6, 0)

MAKE SOMETHING HAPPEN

594	 Chapter 16  Create games with pygame

Getting started with pygame
In this section, we’ll get started with pygame, and we’ll create some shapes and display
them on the screen. The free pygame library contains lots of Python classes you can
use to create games. The snaps functions we used in the early chapters of this book
were written using pygame, so you should have already loaded pygame onto your
computer (see Chapter 3 for instructions).

Note that the pygame library makes use of tuples to create single-data items that
contain colors and coordinates that describe items in the games. If you’re not sure
what a tuple is, read the description of tuples in Chapter 8 before you work through
the following “Make Something Happen.”

The display above shows that six modules have been set up correctly and that none have
failed to initialize. If you see any failures—in other words, if the second value in the tuple is
any value other than zero—you should make sure that pygame has been properly installed.

Next, we need to create a drawing surface. A drawing surface has a specific size, which is set
when we create it. The size is given in pixels (a pixel is the size of a dot on the display). The
more pixels you have, the better quality the display. You also find pixel dimensions when
talking about camera and video screen resolution. We’ll use a screen size of 800 pixels wide
and 600 pixels high. We can use a tuple to create a surface as follows:

>>> size = (800, 600)

Remember that a tuple is a way of grouping a number of items. You can find out more about
them in Chapter 8. Once we have the tuple that describes the size of the game screen, we can
use this value as an argument to the function that creates a pygame drawing surface.

>>> surface = pygame.display.set_mode(size)

This statement creates the drawing surface, sets the variable surface to refer to it, and then
displays the surface on the screen. You should see the window below appear on your screen.

You can change the title of the drawing window using the following function:

>>> pygame.display.set_caption('An awesome game by Rob')

This function changes the title of the window as shown below.

595Getting started with pygame

Now we can draw things on the surface, so we’ll start by drawing some lines. The line drawing
function in pygame accepts four parameters:

●● The surface on which to draw

●● The drawing color

●● The start position of the line

●● The end position of the line

Let’s assemble these items. We’ve already created the surface, so we can just use that. The
color of an item in pygame is expressed as a tuple containing three values. We first saw this
mechanism for expressing color in Chapter 3 when we used the snaps framework to draw
text. Each value in the tuple represents the amount of red, green, and blue, respectively. The
lowest level is 0; the highest level is 255. If we want to draw a red line, we can create a tuple
that contains all the red and none of the other two primary colors. Enter the following tuple:

>>> red = (255, 0, 0)

Now we can set the start position of the line. For a given position on the screen, the value of x
specifies how far the position is from the left edge, and the value of y specifies how far down
the screen from the top edge. A specific location is expressed as a tuple containing the values
(x, y). The figure below shows how pygame coordinates work. The important thing to remem-
ber is that the origin, which is the point with the coordinate (0,0) is the top left corner of the
display. Increasing the value of x moves you toward the right of the screen, and increasing the
value of y will move you down the screen.

This might not be how you expect graphics to work. Most graphs that you draw have their
origins in the bottom left, and increasing y moves up. However, placing the origin in the top
left corner is standard practice when drawing graphics on a computer.

Y Coordinate

X Coordinate

596	 Chapter 16  Create games with pygame

Bearing this in mind, let’s draw a line from the origin on the screen to the position (500,300).
We can create some tuples that hold these values. Type in these two statements to set the
start and end position of the line.

>>> start = (0,0)

>>> end = (500, 300)

Now we can issue our drawing instruction. Type in the following call to the line function in
the pygame draw module:

>>> pygame.draw.line(surface, red, start, end)

When you press Enter, the line is drawn, and the line function returns a rectangle object that
encloses this line:

>>> pygame.draw.line(surface, red, start, end)

<rect(0, 0, 501, 301)>

We’ll ignore the values returned from the drawing methods. Unfortunately, if you look at the
game window, you won’t see any lines on the screen. Draw operations take place on the back
buffer managed by pygame. We don’t draw directly on the screen because we don’t want the
player to see each individual draw action. Instead, we perform all our drawing operations on
a piece of memory in the computer (called the back buffer). When the drawing is finished, we
copy this piece of memory onto the display memory. The memory that used to be displayed
becomes the new back buffer, and the process starts again.

In pygame, the flip function swaps the display memory and the back-buffer memory. We
need to call flip to make a line appear on the screen, so type the call below and press Enter.

>>> pygame.display.flip()

This call will cause a red line to appear on the game display, as shown on the next page.

597Getting started with pygame

If you don’t want a black background, you can use the fill function to fill the screen with
a chosen color. These three statements create a tuple that describes the color white, fills the
back buffer with white, and then flips the back buffer to display the white screen.

>>> white = (255, 255, 255)

>>> surface.fill(white)

>>> pygame.display.flip()

If you do this, you’ll notice that the red line we created has been erased.

598	 Chapter 16  Create games with pygame

We can use these functions to create some nice-looking images. The program below
draws 100 colored lines and 100 colored dots. The program uses functions that create
random colors and positions on the display area.

#EG 16.01 pygame drawing functions

import random The demo uses random numbers

599Getting started with pygame

import pygame

class DrawDemo:

 @staticmethod

 def do_draw_demo():

 init_result = pygame.init()

 if init_result[1] != 0:

 print('pygame not installed properly')

 return

 width = 800

 height = 600

 size = (width, height)

 def get_random_coordinate():

 X = random.randint(0, width-1)

 Y = random.randint(0, height-1)

 return (X, Y)

 def get_random_color():

 red = random.randint(0, 255)

 green = random.randint(0, 255)

 blue = random.randint(0, 255)

 return (red, green, blue)

 surface = pygame.display.set_mode(size)

 pygame.display.set_caption('Drawing example')

 red = (255, 0, 0)

 green = (0, 255, 0)

 blue = (0, 0, 255)

 black = (0, 0, 0)

 yellow = (255, 255, 0)

 magenta = (255, 0, 255)

 cyan = (0, 255, 255)

 white = (255, 255, 255)

 gray = (128, 128, 128)

 # Fill the screen with white

 surface.fill(white)

 # Draw 100 random lines

 for count in range(100):

 The demo uses pygame

 Class to contain our demo program

 Make the method static since we should need to create a demo class
 Method to demonstrate pygame drawing

 Initialize pygame
 If the number of failures is not zero, we have a problem

 Display a message
 Abandon the demonstration

 Set the width of the screen
 Set the height of the screen

 Set the size of the game display

 Function to get a random coordinate
 Get a random X value
 Get a random Y value

 Return a tuple made from X and Y

 Function to get a random color
 Get a random red value

 Get a random green value
 Get a random blue value

 Return a tuple made from red, green, and blue

 Create the game surface
 Set the window caption

 Create some color tuples

600	 Chapter 16  Create games with pygame

 start = get_random_coordinate()

 end = get_random_coordinate()

 color = get_random_color()

 pygame.draw.line(surface, color, start, end)

 # Draw 100 dots

 dot_radius = 10

 for count in range(100):

 pos = get_random_coordinate()

 color = get_random_color()

 radius = random.randint(5, 50)

 pygame.draw.circle(surface, color, pos, radius)

 pygame.display.flip()

DrawDemo.do_draw_demo()

When I ran the above program, the display appeared as shown in Figure 16-1:

Figure 16-1  Drawing dots and lines

When you run the program, you’ll get an image that looks similar but will have a com-
pletely different arrangement of lines and circles because your program will get a dif-
ferent sequence of random numbers from the ones produced when I ran the program.

 Flip the drawn elements to the display memory

 Call the do_draw_demo method in the DrawDemo object

601Draw images with pygame

Making art
You could create a program that displays a different pattern every now and then. You could
use the time of day and the current weather conditions to determine what colors to use in the
pattern and create a display that changes throughout the day (perhaps with bright primary
colors in the morning and more mellow and darker colors in the evening). If the weather is
warm, the colors could have a red tinge, and if it’s colder, you could create colors with more
blues. Remember that you can create any color you like for your graphics by choosing the
amount of red, green, and blue it should contain.

MAKE SOMETHING HAPPEN

Draw images with pygame
Pygame can also draw images on the screen. The images are loaded from files stored on
your computer. You’ve already used the display_image function from the snaps library
to draw images; now you’ll discover how to use pygame to load and display images.

Image file types
There are a number of different formats for storing pictures on computers. When
working with Pygame, your pictures should be in one of these two formats:

●● PNG—The PNG format is lossless, meaning it always stores an exact version of the
image. PNG files can also have transparent regions, which is important when you
want to draw one image on top of another.

●● JPEG—The JPEG format is lossy, meaning the image is compressed in a way that
makes it much smaller, but at the expense of precise detail.

The games you create should use JPEG images for the large backgrounds and PNG
images for smaller objects drawn on top of them.

If you have no usable pictures of your own, you can use the ones I’ve provided with the
sample files for this chapter, but the games will work best if you use your own pictures.

Figure 16-2 shows my picture of the cheese we’ll be using in the game that we will
create. In the game, the player will control the cheese and use it to catch crackers
around the screen. You can use another picture if you wish. In fact, I strongly advise
that you do. I’ve saved the image in the PNG file format with a width of 50 pixels,
which will work with the size of the screen we’re using.

602	 Chapter 16  Create games with pygame

Figure 16-2  The cheese

If you need to convert images into the PNG format, you can load an image using the
Microsoft Paint program and then save it in this format. With Paint, you can also scale
and crop images if you want to reduce the number of pixels in the image. For more
advanced image manipulation, I recommend the program Paint.Net, which is free
here: www.getpaint.net. Another great image manipulation program is Gimp, which
is available for most machines. You can download Gimp from www.gimp.org.

Load an image into a game
The pygame library contains a function called load that loads an image. The image to
be loaded is identified by its file name. The load function searches the local folder for
the file. In other words, it looks in the folder from which the program is running. We
saw this behavior in Chapter 8 when we wrote programs to store and load data using
files. The statement below loads an image from a file. The variable cheeseImage is set
to refer to the image that’s been loaded.

cheeseImage = pygame.image.load('cheese.png')

Now that we have an image loaded, we can draw it on the display. When an image
is drawn, the data that describes the image is copied into the memory used for the
display. Game developers call this blitting the graphics data onto the screen. The pyg-
ame library contains a method called blit that’s used to copy an image into display
memory. The blit method requires two pieces of information to work:

●● The image to be drawn

●● The coordinates on the screen where the image is to be blitted

603Draw images with pygame

Let’s put our cheese image at the top left corner of the display. The statement below
creates a tuple that describes this position. The values of the x and y coordinates are
both zero.

cheesePos = (0,0)

We can now call the blit method to actually draw the cheese. The blit method is
provided by the display surface that we created when our game program started.

surface.blit(cheeseImage, cheesePos)

The complete program that draws the cheese on the screen can be found below:

EG16-02 Image Drawing

import pygame

class ImageDemo:

 @staticmethod

 def do_image_demo():

 init_result = pygame.init()

 if init_result[1] != 0:

 print('pygame not installed properly')

 return

 width = 800

 height = 600

 size = (width, height)

 surface = pygame.display.set_mode(size)

 pygame.display.set_caption('Image example')

 white = (255, 255, 255)

 surface.fill(white)

 cheeseImage = pygame.image.load('cheese.png')

 cheesePos = (0,0)

 surface.blit(cheeseImage, cheesePos)

 pygame.display.flip()

ImageDemo.do_image_demo()

 Initialize pygame

 End the method if pygame fails
to start

 Set the size of the display

 Get the pygame drawing surface

 Sets up the pygame display

 Clear the screen to white

 Load the cheese image
 Set the cheese position to the top left corner of the screen

 Draw the cheese
 Flip the display memory so that the cheese is displayed

604	 Chapter 16  Create games with pygame

When we run this program, it draws some cheese on the screen as shown in
Figure 16-3. Note that the drawing position for an image when we blit it onto the
screen is the top left corner of that image.

Figure 16-3  Cheese on the screen

Make an image move
The blit function is given the draw position for an image. We can make an image
appear to move by repeatedly drawing the image at different positions.

EG16-03 Moving cheese

cheeseX = 40

cheeseY = 60

clock = pygame.time.Clock()

for i in range(1,100):

 clock.tick(30)

 surface.fill((255,255,255))

 cheeseX = cheeseX + 1

 cheeseY = cheeseY + 1

 cheesePos = (cheeseX,cheeseY)

 surface.blit(cheeseImage, cheesePos)

 pygame.display.flip()

 Set the start position for the cheese

 Create a pygame clock instance

 Move the cheese 100 times
 Pause the game so that we have 30 frames per second

 Fill the screen with white
 Increase the x position of the cheese
 Increase the y position of the cheese

 Create a cheese position tuple
 Blit the cheese onto the screen

 Flip to the back buffer to update the display

Move an image
We can investigate the way that games make objects appear to move by using the EG16‑03
Moving cheese program. When you use IDLE to run it, you should find that the cheese
moves majestically down the screen for a while and then stops. The speed of the movement
is controlled by the frame rate of the game. The frame rate is the rate at which the screen is
redrawn, expressed as the number of frames per second (fps). The pygame Clock class pro-
vides a tick method that is given the number of frames per second required by the game. The
program creates a new clock before it starts moving the cheese around.

clock = pygame.time.Clock()

The Clock class provides a set of time management methods that games can use. We’ll use
the tick method that allows us to make the game run at a constant speed. Without the clock,
our game would run as fast as Python can execute the program, which would be impossible
to play.

clock().tick(30)

The tick method will pause the game until the start of the next frame “slot.” Find the above
statement in the program and change the value from 30 to 60. The program will now update
the screen 60 times per second. Run the program, and you’ll find that the cheese moves twice
as fast as it did before because the tick method is now allowing 60 frames per second.

If you change the frame rate to 5 (5 frames per second), you’ll find that the cheese moves
slowly and you’ll be able to see each movement.

A player will get a good game experience if the game updates at 60 frames per second.
Games on smaller devices—for example, mobile phones and tablets—might use lower frame
rates to save battery power.

MAKE SOMETHING HAPPEN

605Draw images with pygame

Investigate events in pygame
We can look at how events work in pygame by creating some events and seeing the results.
Open the Python IDLE Command Shell and type in the following statements to create a
pygame window:

>>> import pygame

>>> pygame.init()

(6, 0)

>>> size = (800, 600)

>>> surface = pygame.display.set_mode(size)

Now use your mouse to click in the window that pygame has opened and press a few keys.
Each key press will generate an event that will be captured by pygame. Now we can create a
loop to look at the events that have been stored. Go back to IDLE and enter the following:

>>> for e in pygame.event.get():

 print(e)

The get method returns a collection of events. This loop will print all the events in the
pygame event queue. When you enter an empty line after the print statement, you’ll see
all the event information:

MAKE SOMETHING HAPPEN

606	 Chapter 16  Create games with pygame

Get user input from pygame
Now that we can move items around the screen under program control, the next thing
we need is a way that a player can interact with the game. A game receives input from
the user by means of pygame events. An event is a user action—for example, pressing
a keyboard key or moving the mouse. We first saw these kinds of events when we
created a graphical user interface using Tkinter in Chapter 13. When we wanted to
receive events in Tkinter, we bound a method to an event. When the event occurred,
the method was called.

In pygame, events are managed differently. While a pygame program is running, the
pygame system captures input events and places them in a queue. The game program
must check the event queue regularly to see if there are any actions to which the
program must respond. The events we’re interested in are keyboard events generated
when a key is pressed or released.

>>> for e in pygame.event.get():

 print(e)

<Event(17-VideoExpose {})>

<Event(16-VideoResize {'size': (800, 600), 'w': 800, 'h': 600})>

<Event(1-ActiveEvent {'gain': 0, 'state': 1})>

<Event(2-KeyDown {'unicode': 'r', 'key': 114, 'mod': 0, 'scancode': 19})>

<Event(3-KeyUp {'key': 114, 'mod': 0, 'scancode': 19})>

<Event(2-KeyDown {'unicode': 'o', 'key': 111, 'mod': 0, 'scancode': 24})>

<Event(3-KeyUp {'key': 111, 'mod': 0, 'scancode': 24})>

<Event(2-KeyDown {'unicode': 'b', 'key': 98, 'mod': 0, 'scancode': 48})>

<Event(3-KeyUp {'key': 98, 'mod': 0, 'scancode': 48})>

<Event(1-ActiveEvent {'gain': 1, 'state': 1})>

>>>

Each event is described by a dictionary that holds information about the event. If you look
through the events above, you’ll see that the R, O, and B keys have been pressed and released
in turn.

As the game runs, the event queue must be checked to see if any commands have
been entered that should cause objects on the screen to move. We want the cheese to
move while an arrow key is held down and then stop moving when the key is released.
The code below does this. Also, this code contains a test that causes the game to end
when the player presses the Escape (Esc) key.

EG16-04 Steerable cheese

cheeseX = 40

cheeseY = 60

cheeseYSpeed = 2

cheeseMovingUp = False

cheeseMovingDown = False

clock = pygame.time.Clock()

while True:

 clock().tick(60)

 for e in pygame.event.get():

 if e.type == pygame.KEYDOWN:

 if e.key == pygame.K_ESCAPE:

 pygame.quit()

 return

 Set the cheese’s initial position
 Set the speed of the cheese movement

 Cheese is not moving up
 Cheese is not moving down

 Create a clock
 Repeatedly perform the game loop

 Wait for the next frame start
 Work through the events

 Does the event describe a key-down event?
 Is the key the Escape key?

 Shut down pygame
 If Escape has been pressed, exit the game loop

607Get user input from pygame

Game loops
The code above is an example of a “game loop.” You may have some questions about it.

Question: What is the variable e used for in the program?

Answer: The variable e contains each event that the game loop is checking. The game is
interested only in events generated when a key is pressed or released. When a key press
is detected, the program checks to see which key was pressed. If the key is the Up Arrow,
the code sets the flag to indicate that the cheese should move up; if the key is the Down
Arrow, the code sets the flag to indicate that the cheese should move down. The game
loop also contains tests that will clear the flag if a key is released.

Question: Why does the cheese move when I hold a key down?

Answer: Remember that the statements in the game loop are being repeated 60 times a
second. So, every sixtieth of a second, the program is updating the position of the cheese.
If a key is down, the cheese will be moved each time around the game loop. Currently, the
cheeseYspeed is 2, which means that in a second the cheese will move 120 pixels.

Question: How do we change the speed of the cheese?

Answer: The variable cheeseYspeed gives the speed of the cheese in the y direction (up
and down the screen). If we want to make the cheese move faster, we can increase the
value of this variable.

CODE ANALYSIS

608	 Chapter 16  Create games with pygame

 elif e.key == pygame.K_UP:

 cheeseMovingUp = True

 elif e.key == pygame.K_DOWN:

 cheeseMovingDown = True

 elif e.type == pygame.KEYUP:

 if e.key == pygame.K_UP:

 cheeseMovingUp = False

 elif e.key == pygame.K_DOWN:

 cheeseMovingDown = False

 if cheeseMovingDown:

 cheeseY = cheeseY+cheeseYSpeed

 if cheeseMovingUp:

 cheeseY = cheeseY-cheeseYSpeed

 Is the key the Up arrow?
 Set the flag that indicates the cheese is moving up

 Is the key the Down arrow?
 Set the flag that indicates the cheese is moving down

 Does the event describe a key up event?
 Is the key the Up arrow?

 Clear the flag that indicates the cheese is moving up
 Is the key the Down arrow?

 Clear the flag that indicates the cheese is moving down

 Is the cheese moving down?
 Move the cheese down the screen

 Is the cheese moving up?
 Move the cheese up

Question: Why do we increase the value of y to move the cheese down the screen?

Answer: This is because the coordinate system used by pygame places the origin (the
point where the values of x and Y are zero) at the top of the screen. Increasing the value
of y will move the cheese down the screen.

Question: What would happen if the player pressed both the Up and the Down Arrow keys
at the same time?

Answer: The cheese would be moved both up and then down again when it was
updated. The result of this would be that the cheese would not appear to move, which is
what we want the game to do.

Question: What would happen if the player moved the cheese right off the screen?

Answer: You can run the sample program to find out what happens. Drawing an image
off the screen will not cause the game program to fail, but the object will not be visible.
If we want to stop the cheese from moving off the screen, we will need to add code to
make sure that the cheese is never positioned off the screen.

Question: What does the pygame.quit() method do?

Answer: The pygame.quit() method is called when the user presses the Escape key to
finish a game; it closes pygame and causes the game window to be closed.

Create game sprites
The game we’ll create will display three different object types on the screen:

●● Cheese—The player will steer the cheese around the screen.

●● Crackers—The player will try to capture the cheese on the cracker.

●● Killer tomato—The tomato will chase the cheese.

Each of these screen objects is called a sprite. You can think of a sprite as an image
that is part of the game display. We will create a Sprite class that has an image drawn
on the screen, a position on the screen, and a set of behaviors. Each sprite will do the
following things:

●● Draw itself on the screen.

●● Update itself. If the sprite is the cheese, it will move in response to player input; if
the sprite is the killer tomato, it will chase the cheese.

●● Reset itself. When we start a new game, we must put the sprite in its starting position.

609Create game sprites

610	 Chapter 16  Create games with pygame

Sprites might have other behaviors, too, but these are the fundamental things that a
sprite must do. We can put these behaviors into a class:

class Sprite:

 '''

 A sprite in the game. Can be subclassed

 to create sprites with particular behaviors

 '''

 def __init__(self, image, game):

 '''

 Initialize a sprite

 image is the image to use to draw the sprite

 default position is origin (0,0)

 game is the game that contains this sprite

 '''

 self.image = image

 self.position = [0, 0]

 self.game = game

 self.reset()

 def update(self):

 '''

 Called in the game loop to update

 the status of the sprite.

 Does nothing in the superclass

 '''

 pass

 def draw(self):

 '''

 Draws the sprite on the screen at its

 current position

 '''

 self.game.surface.blit(self.image, self.position)

 def reset(self):

 '''

 Called at the start of a new game to

 reset the sprite

 '''

 pass

 This will be the superclass for all sprites in the game

 Called to set up the values in a sprite

 Store the image in the sprite
 Set the position in the sprite to the top left corner

 Store the game reference in the sprite
 Reset the sprite

 Called when a sprite is to be updated

 Called to ask a sprite to draw itself

 Called to ask a sprite to reset itself

Sprite superclass
The code above defines the superclass for all the sprites in the game. You may have some
questions about it.

Question: What is the game parameter used for in the initializer?

Answer: When the game creates a new sprite, it must tell the sprite which game it is
part of because some sprites will need to use information stored in the game object.
For example, if the cheese manages to capture a cracker, the score value will need to
be updated.

Programmers say that the sprite class and the game class will be tightly coupled. Changes
to the code in the CrackerChaseGame class might affect the behavior of sprites in the
game. If the programmer of the CrackerChaseGame class changes the name of the vari-
able that keeps the score from score to game_score, the Update method in the Cheese
class will fail when the player captures a cracker. A lot of coupling between classes in a
large system is a bad idea, but in the case of our game it makes the development much
easier, so I think it’s reasonable to make the program work in this way.

Question: Why are the update and reset methods empty?

Answer: You can think of the Sprite class as a template for subclasses. Some of the
game elements will need methods to implement update and reset behaviors. The
cheese will need a reset method that places it in the middle of the screen at the start of
the game. The cheese will need an update method that moves it around the screen. The
cheese class will be a subclass of Sprite, and adds its own version of these methods.

Question: How does the draw method work?

Answer: The draw method is called to ask the sprite to draw itself on the screen.

 def draw(self):

 '''

 Draws the sprite on the screen at its

 current position

 '''

 self.game.surface.blit(self.image, self.position)

The game that the sprite is part of contains an attribute called surface, which is the
pygame drawing surface for this game. The above method finds the game attribute from
the sprite that’s drawing itself. The game attribute was set when the sprite was created;
the game attribute uses the game’s surface property to blit the sprite image onto
the screen.

CODE ANALYSIS

611Create game sprites

612	 Chapter 16  Create games with pygame

The Sprite class doesn’t do much, but it can be used to manage the background
image for this game. The game will take place on a “tablecloth” background. We can
think of this as a very large sprite that fills the screen. We can now make our first ver-
sion of the game that contains a game loop that just displays the background sprite.

class CrackerChase:

 '''

 Plays the amazing cracker chase game

 '''

 def play_game(self):

 '''

 Starts the game playing

 Will return when the player exits

 the game.

 '''

 init_result = pygame.init()

 if init_result[1] != 0:

 print('pygame not installed properly')

 return

 self.width = 800

 self.height = 600

 self.size = (self.width, self.height)

 self.surface = pygame.display.set_mode(self.size)

 pygame.display.set_caption('Cracker Chase')

 background_image = pygame.image.load('background.png')

 self.background_sprite = Sprite(image=background_image,

 game=self)

 clock = pygame.time.Clock()

 while True:

 clock.tick(60)

 for e in pygame.event.get():

 if e.type == pygame.KEYDOWN:

 if e.key == pygame.K_ESCAPE:

 pygame.quit()

 return

 self.background_sprite.draw()

 pygame.display.flip()

 Class that contains the entire game

 Called to play the game

 Initialize pygame

 Quit if pygame is not installed on this machine

 Set the width and height of the game display
 Create a tuple that defines the screen size

 Create the drawing surface
 Set the caption for the game screen

 Load the background image
 Create the background sprite

 Tell the sprite the game it is part of
 Create the game for the clock

 Game loop that runs forever
 Ensure the game updates 60 times per second

 Get the events from pygame
 Is the event a key press?

 If the key pressed is Escape, return from the game method

 Close the game screen
 Return from the game method

 Ask the background to draw itself
 Flip the back buffer to the front

Game class
The code above defines the class that will implement our game. You might have some ques-
tions about it.

Question: How does the game pass a reference to itself to the sprite constructor?

Answer: We know that when a method in a class is called, the self parameter is called
to reference the object within which the method is running. We can pass self into other
parts of the game that need it:

self.background_sprite = Sprite(image=background_image, game=self)

The code above makes a new Sprite instance and sets the value of the game argument
to self so that the sprite now knows which game it is part of.

Question: Why does the game call the draw method on the sprite to draw it? Can’t the game
just draw the image held inside the sprite?

Answer: This is a very important question, and it comes down to responsibility. Should the
sprite be responsible for drawing on the screen, or should the game do the drawing? I think
drawing should be the sprite’s job because it gives the developer a lot more flexibility.

For instance, adding smoke trails to some of the sprites in this game by drawing “smoke”
images behind the sprite would be much easier to do if I could just add the code into the
“smoky” sprites rather than the game having to work out which sprites needed smoke
trails and draw them differently.

Question: Does this mean that when the game runs the entire screen will be redrawn each
time, even if nothing on the screen has changed?

Answer: Yes. You might think that this is wasteful of computer power, but this is how
most games work. It is much easier to draw everything from scratch than it is to keep
track of changes to the display and only redraw parts that have changed.

CODE ANALYSIS

613Create game sprites

614	 Chapter 16  Create games with pygame

The code below shows how we would start a game running:

EG16-05 background sprite

game = CrackerChase()

game.play_game()

Add a player sprite
The player sprite will be a piece of cheese that is steered around the screen. We’ve seen
how a game can respond to keyboard events; now we’ll create a player sprite and get the
game to control it. The Cheese class below implements the player object in our game.

class Cheese(Sprite):

 '''

 Player-controlled cheese object that can be steered

 around the screen by the player

 '''

 def reset(self):

 '''

 Reset the cheese position and stop any movement

 '''

 self.movingUp = False

 self.movingDown = False

 self.position[0] = (self.game.width - self.image.get_width())/2

 self.position[1] = (self.game.height - self.image.get_height())/2

 self.movement_speed=[5,5]

 def update(self):

 '''

 Update the cheese position and then stop it moving off

 the screen.

 '''

 if self.movingUp:

 self.position[1] = self.position[1] - (self.movement_speed[1])

 if self.movingDown:

 self.position[1] = self.position[1] + (self.movement_speed[1])

 Create a game instance
 Start the game running

 Override the reset method in the sprite superclass

 Center the cheese across the screen
 Stop the cheese moving up

 Stop the cheese moving down

 Set the initial move speed for the cheese
 Center the cheese down the screen

 Center the cheese across the screen

 If we are moving up, move the cheese up

 If we are moving down, move the cheese down

Player sprite
The code above defines the Cheese sprite. I’ve left off some of the movement methods to
save space in the book, but you can find them all in the example program EG16-06 Cheese
Player in the sample code for this chapter. You might have some questions about it.

Question: Why does the Cheese class not have an __init__ or draw method?

Answer: The Cheese class is a subclass of the Sprite class we created earlier, which
means the Cheese class inherits those two methods from the Sprite class.

Question: What do the get_width and get_height methods do?

Answer: These methods are provided by the pygame image class to allow a game to
determine the dimensions of an image. We use them to make sure that the player cannot
move the cheese off the screen.

CODE ANALYSIS

615Create game sprites

 if self.position[0] < 0:

 self.position[0]=0

 if self.position[1] < 0:

 self.position[1]=0

 if self.position[0] + self.image.get_width() > self.game.width:

 self.position[0] = self.game.width - self.image.get_width()

 if self.position[1] + self.image.get_height() > self.game.height:

 self.position[1] = self.game.height - self.image.get_height()

 def StartMoveUp(self):

 'Start the cheese moving up'

 self.movingUp = True

 def StopMoveUp(self):

 'Stop the cheese moving up'

 self.movingUp = False

 'Other cheese movement methods go here...'

 Stop movement off the left edge of the screen

 Stop movement off the top of the screen
 Stop movement off the right of the screen

 Stop movement off the bottom of the screen

 Called to start the cheese moving up the screen

 Set the up movement flag to True

Called to stop the cheese moving up the screen

 Set the up movement flag to False

Screen width

Screen height height
Y Coordinate

widthX Coordinate

The image above shows how this works. The program knows the position of the cheese
and the width and height of the screen. If the x position plus the width of the cheese is
greater than the width of the screen (as it is in the image above), the update method for
the cheese will put the cheese back on the right edge:

if self.position[0] + self.image.get_width() > self.game.width:

 self.position[0] = self.game.width - self.image.get_width()

The position of a sprite is held in a list, with the element at location 0 holding the x
position of the sprite. The sprite can use its reference to the game to get the width of the
screen and the get_width method to obtain the width of the sprite image. Note that in
the above image, the cheese is not moving off the bottom of the screen. Forcing a sprite
to stay on the screen in this way is called clamping the sprite.

The Cheese class also uses the width and the height of the sprite image to position the
cheese in the center of the screen when the cheese is reset.

self.position[0] = (self.game.width - self.image.get_width())/2

self.position[1] = (self.game.height - self.image.get_height())/2

616	 Chapter 16  Create games with pygame

617Create game sprites

Control the player sprite
The game class creates an instance of the cheese sprite and uses keyboard events to
trigger message to the sprite to control its movement. Below is the game class code
that does this. If you run the example program EG16-06 Cheese Player, you can see
this in action. The player can move the cheese around the screen, but the cheese will
not move off the edge of the screen.

cheese_image = pygame.image.load('cheese.png')

self.cheese_sprite = Cheese(image=cheese_image, game=self)

clock = pygame.time.Clock()

while True:

 clock.tick(60)

 for e in pygame.event.get():

 if e.type == pygame.KEYDOWN:

 if e.key == pygame.K_ESCAPE:

 pygame.quit()

 return

 elif e.key == pygame.K_UP:

 self.cheese_sprite.StartMoveUp()

 elif e.key == pygame.K_DOWN:

 self.cheese_sprite.StartMoveDown()

 'Other cheese movement key handlers go here...'

 self.background_sprite.draw()

 self.background_sprite.update()

 self.cheese_sprite.draw()

 self.cheese_sprite.update()

 pygame.display.flip()

Add a Cracker sprite
Moving the cheese around the screen is fun for a while, but we need to add some
targets for the player. The targets are crackers the player must use to capture the
cheese. When a cracker is captured, the game score is increased, and the cracker
moves to another random position on the screen. The Cracker sprite is a subclass
of the Sprite class:

 Load the cheese image
 Create a cheese sprite

 Create a clock to control the game

 Start of the game loop
 Ensure that the game runs at 60 frames per second

 Process game events
 Is this a key pressed event?

 Has the Escape key been pressed?
 Shut down the game

 Return from the game method
 Has the Up key been pressed?

 Start the cheese moving up
 Has the Down key been pressed?

 Start the cheese moving down

 Draw the background sprite
 Update the background sprite

 Draw the cheese sprite
 Update the cheese sprite

 Flip the display buffer to make the draw actions visible

618	 Chapter 16  Create games with pygame

class Cracker(Sprite):

 '''

 The cracker provides a target for the cheese

 When reset, it moves to a new random place

 on the screen

 '''

 def reset(self):

 self.position[0] = random.randint(0,

 self.game.width-self.image.get_width())

 self.position[1] = random.randint(0,

 self.game.height-self.image.get_height())

The Cracker class is very small because it gets most of its behavior from its superclass,
the Sprite class. It just contains one method, reset, which uses the Python random
number generator to pick a random position for the cracker. We can add it to our
game by creating it and then drawing it in the game loop. The sample program
EG16-07 Cheese and cracker shows how this works.

Figure 16-4 shows the game in action. The figure shows that there are at least two
problems with this game. First, the cracker seems to be on top of the cheese. If the
cheese is going to “capture” the cracker, it would look better if the cheese appeared
to be “on top” of the cracker. We can fix this by changing the order in which the game
elements are drawn. The pygame framework places images on the screen in the order
they are drawn. The second problem with this game is that it looks a bit boring. I think
we need more crackers to serve as additional targets.

Figure 16-4  Cheese and cracker

619Create game sprites

Add lots of sprite instances
We could increase the number of crackers by creating more individual cracker
instances:

cracker_image = pygame.image.load('cracker.png')

self.cracker1 = Cracker(image=cracker_image, game=self)

self.cracker2 = Cracker(image=cracker_image, game=self)

self.cracker3 = Cracker(image=cracker_image, game=self)

The code above would create three crackers called cracker1, cracker2, and cracker3.
This would work, but it would be hard to manage because the game would have to
update and draw each of these sprites individually. It would turn into a real problem
when game players request 50 crackers on the screen. Whenever we’ve had this prob-
lem in the past, we have used a collection of some kind (usually a list) to solve it. We
can do this here, too.

self.sprites = []

cracker_image = pygame.image.load('cracker.png')

for i in range(20):

 cracker_sprite = Cracker(image=cracker_image,game=self)

 self.sprites.append(cracker_sprite)

The statements above create 20 cracker sprites. The game now contains a list, called
sprites, which holds all the sprites in the game.

for sprite in self.sprites:

 sprite.update()

for sprite in self.sprites:

 sprite.draw()

Above are the statements that we can use in the game loop to update and draw the
cracker sprites. In the sample game EG16-08 Cheese and crackers, you can see how
this works. This version of the game also adds the background and the cheese objects
to the sprites list so that everything in the game is drawn and updated by the above
two loops. Figure 16-5 shows the game now. If we want to have even more crackers,
we just need to change the limit of the range in the for loop that creates them.

 Create a list to hold all the sprites in the game

 Load the cracker image

 Create a for loop that goes around 20 times
 Create a Cracker sprite

 Add the sprite to the list of sprites

620	 Chapter 16  Create games with pygame

Figure 16.5  Cheese and multiple crackers

Catch the crackers
The game now has lots of crackers and a piece of cheese that can chase them. But
nothing happens when the cheese “catches” a cracker. We need to add a behavior to
the Cracker that detects when the cracker has been “caught” by the cheese. A cracker
is caught by the cheese when the cheese moves “on top” of it. The game can detect
when this happens by testing that rectangles enclosing the two sprites intersect.

Figure 16-6 shows the cheese in the process of catching a cracker. The rectangles
around the cheese and cracker images are called bounding boxes. When one bound-
ing box moves “inside” another, we say that the two are intersecting. When the cracker
updates, it will test to see whether it intersects with the cheese.

621Create game sprites

Figure 16-6  Intersecting sprites

Figure 16-7 shows how the test will work. In this figure, the two sprites are not
intersecting because the right edge of the cheese is to the left of the left edge of the
cracker. In other words, the cheese is too far to the left to intersect with the cracker.
This would also be true if the cheese were above, below, or to the right of the cracker.
We can create a method that tests for these four situations. If any of them are true, the
rectangles do not intersect.

Figure 16-7  Non-intersecting sprites

622	 Chapter 16  Create games with pygame

def intersects_with(self, target):

 '''

 Returns True if this sprite intersects with

 the target supplied as a parameter

 '''

 max_x = self.position[0]+self.image.get_width()

 max_y = self.position[1]+self.image.get_height()

 target_max_x = target.position[0]+target.image.get_width()

 target_max_y = target.position[1]+target.image.get_height()

 if max_x < target.position[0]:

 return False

 if max_y < target.position[1]:

 return False

 if self.position[0] > target_max_x:

 return False

 if self.position[1] > target_max_y:

 return False

 # if we get here, the sprites intersect

 return True

The method is an attribute of a Sprite object, which returns True if the sprite inter-
sects with a particular target. We add this method to the Sprite class so that all sprites
can use it. Now we can add an update method to the Cracker class that checks to see
whether the cracker intersects with the cheese:

def update(self):

 if self.intersects_with(game.cheese_sprite):

 self.captured_sound.play()

 self.reset()

 Get the right edge of this sprite
 Get the bottom edge of this sprite

 Get the right edge of
the target

 Get the bottom edge
of the target

 Is this sprite to the left?

 Is this sprite underneath?

 Is this sprite to the right?

 Is this sprite above?

 Return True because the sprites intersect

 Have we been captured?
 Play our capture sound effect

 Reset the position of the cracker

623Create game sprites

Add sound
The preceding update method plays a sound effect when a cracker is “captured”
by the cheese. The pygame framework provides a Sound class to manage sound
playback. When an instance of Sound is created, it is given the name of the file that
contains the sound data.

cracker_eat_sound = pygame.mixer.Sound('burp.wav')

The statement above creates a Sound instance called cracker_eat_sound from the
sound file burp.wav. We pass this sound into a Cracker when we create a new instance:

cracker_sprite = Cracker(image=cracker_image, game=self,

 captured_sound=cracker_eat_sound)

For this to work, we must modify the __init__ method in the Cracker to store the
sound in the cracker:

def __init__(self, image, game, captured_sound):

 super().__init__(image, game)

 self.captured_sound = captured_sound

The attribute captured_sound in the Cracker object can be used to play the sound
effect when that cracker is eaten. In the present version of the game, all the crackers
make the same sound when they are eaten, but we could use different sound effects
for each cracker if we wished. The example program EG16-09 Capturing crackers lets
the player capture crackers. When a cracker is captured, the game plays a sound effect
and the cracker moves to a different location.

If you want to create your own sound effects, you can use the program Audacity to
capture and edit sounds. It is a free download from www.audacityteam.org and is
available for most operating systems.

 Store the capture sound in the cracker

 Call the constructor in the superclass
 Set the sound attribute of the cracker

Bad collision detection

There are some problems with using bounding boxes to detect collisions. The image above
shows that the cheese and the cracker are not colliding, but the game will think that they are.
This should not be too much of a problem for our game. It makes it easier for the player, as
they don’t always have to move the cheese right over the cracker to score a point. However,
the player might have grounds for complaint if the game decides they have been caught by a
killer tomato because of this issue. There are three ways to solve this problem:

●● When the bounding boxes intersect (as they do above), we could check the intersecting
rectangle (the part where the two bounding boxes overlap) to see if they have any pixels
in common. Doing so provides very precise collision detection, but it will slow down
the game.

●● Alternatively, we could detect collisions using distance rather than intersection, which
works well if the sprites are mostly round.

●● The final solution is the one I like best. I could make all the game images rectangular, so
the sprites fill their bounding boxes and the player always sees when they have collided
with something.

WHAT COULD GO WRONG

624	 Chapter 16  Create games with pygame

625Create game sprites

PROGRAMMER’S POINT

When you write a game, you control the universe
One of the reasons I like writing games so much is that I have complete control of what I’m
making. If I’m solving a problem for a customer, I must deliver certain outcomes. But in a
game, I can change what it does if I find a problem. I can also redefine the gameplay if I
make a mistake in the program. Sometimes, this produces a more interesting behavior than
the one I was trying to create. This has happened on a number of occasions.

Add a killer tomato
Currently, the game is not much of a game. There is no jeopardy for the player. When
you make a game, you set up something that the player is trying to achieve. Then
you add some elements that will make this difficult for them. In the case of the game
“Cracker Chase,” I want to add “killer tomatoes” that will relentlessly hunt down the
player. As the game progresses, I want the player to be chased by increasingly more
tomatoes until the game becomes all about survival. The tomatoes will be interesting
because I’ll give them artificial intelligence and physics.

Add “artificial intelligence” to a sprite
Artificial intelligence sounds very difficult to achieve, but in the case of this game, it is
actually very simple. At its heart, artificial intelligence in a game simply means making
a program that would behave like a person in that situation. If you were chasing me,
you’d do this by moving toward me. The direction you would move would depend on
my position relative to you. If I were to your left, you’d move left, and so on. We can
put the same behavior into our killer tomato sprite:

if game.cheese_sprite.position[0] > self.position[0]:

 self.x_speed = self.x_speed + self.x_accel

else:

 self.x_speed = self.x_speed - self.x_accel

if game.cheese_sprite.position[1] > self.position[1]:

 self.y_speed = self.y_speed + self.y_accel

else:

 self.y_speed = self.y_speed - self.y_accel

This condition shows how we can make an intelligent killer tomato. It compares the
x positions of the cheese_sprite and the tomato. If the cheese is to the right of the

 Is the player to the
right of the tomato?

 Accelerate to the right

 Accelerate to the left

 Is the player below the tomato?
 Accelerate down

 Accelerate up

626	 Chapter 16  Create games with pygame

tomato, the x speed of the tomato is increased to make it move to the right. If the
cheese is to the left of the tomato, it will accelerate in the other direction. The code
above then repeats the process for the vertical positions of the two sprites. The result is
a tomato that will move intelligently toward the cheese. Note that this means we could
make a “cowardly” tomato that runs away from the player by making the acceleration
negative so that the tomato accelerates in the opposite direction of the cheese.

PROGRAMMER’S POINT

Using “artificial intelligence” makes games much more interesting
There is a lot of debate as to whether “game artificial intelligence” is actually “proper” arti-
ficial intelligence. You can find a very good discussion of the issue here: https://software.
intel.com/en-us/articles/designing-artificial-intelligence-for-games-part-1. I personally
think that you can call this kind of programming “artificial intelligence” because players of
a game really do react as if they are interacting with something intelligent when faced with
something like our killer tomato. You can make a game much more compelling by giving
game objects the kind of intelligence described above.

Add physics to a sprite
Each time the game updates, it can update the position of the objects on the screen.
The amount that each object moves each time the game updates is the speed of the
object. When the player is moving, the cheese’s position is updated by the value 5. In
other words, when the player is holding down a movement key, the position of the
cheese in that direction is being changed by 5. The updates occur 60 times per second
because this is the rate at which the game loop runs. In other words, the cheese would
move 300 pixels (60*5) in a single second. We can increase the speed of the cheese by
adding a larger value to the position each time it is updated. If we used a speed value
of 10, we’d find that the cheese would move twice as fast.

Acceleration is the amount that the speed value is changing. The statements below
update the x_speed of the tomato by the acceleration and then apply this speed to
the position of the tomato.

self.x_speed = self.x_speed + self.x_accel

self.position[0] = self.position[0] + self.x_speed

The initial speed of the tomato is set to zero, so each time the tomato is updated, the
speed (and hence the distance it moves) will increase. If we do this in conjunction with
“artificial intelligence,” we get a tomato that will move rapidly toward the player.

 Add the acceleration to the speed
 Update the position of the sprite

627Create game sprites

If we just allowed the tomato to accelerate continuously, we’d find that the tomato
would just get faster and faster, and the game would become unplayable.

The statement below adds some “friction” to slow down the tomato. The friction value
is less than 1, so each time we multiply the speed by the friction, it will be reduced,
which will cause the tomato to slow down over time.

self.x_speed = self.x_speed * self.friction_value

The friction and acceleration values are set in the reset method for the Tomato sprite:

def reset(self):

 self.entry_count = 0

 self.friction_value = 0.99

 self.x_accel = 0.2

 self.y_accel = 0.2

 self.x_speed = 0

 self.y_speed = 0

 self.position = [-100,-100]

After some experimentation, I came up with the acceleration value of 0.2 and a
friction value of 0.99. If I want a sprite that chases me more quickly, I can increase the
acceleration. If I want the sprite to slow down more quickly, I can increase the friction.
You can have a lot of fun playing with these values. You can create sprites that drift
slowly toward the player and, by making the acceleration negative, you can make
them run away from the player.

PROGRAMMER’S POINT

When you write a game, you can always cheat
When you’re writing a game, you should always start with the simplest, fastest way of get-
ting an effect to work, and then improve it if necessary.

The “physics” that I’m using are not really an accurate simulation of physical objects. The
way that I’ve implemented friction is not very realistic, but it works and gives the player a
good experience. I find it interesting that six or seven lines of Python can make something
that behaves in such a believable way. The Cracker Chase game uses very simple collision
detection, artificial intelligence, and physics, but it is still fun to play. It really feels as if the
tomatoes are chasing you. Making the physics model completely accurate would take a lot
of extra work and would add very little to the gameplay.

 Multiply the speed by the friction

628	 Chapter 16  Create games with pygame

Create timed sprites
It’s important that a game be progressive. If the game started with lots of killer
tomatoes, the player would not last very long and would not enjoy the experience. I’d
like each tomato to appear every 5 seconds. We can do this by giving each tomato an
“entry delay” value when we construct it:

tomato_image = pygame.image.load('tomato.png')

for entry_delay in range(300,3000,300):

 tomato_sprite = Tomato(image=tomato_image,

 game=self,

 entry_delay=entry_delay)

 self.sprites.append(tomato_sprite)

This code uses a version of the range function that we haven’t seen before. The first
argument to the range is the start value, which in this case is 300. The second argu-
ment is the upper limit, and the third argument is the “step” between values. This will
give us values of entry_delay that start at 300 and then go up in steps to 2700 (note
that the value 3000 is the limit).

The __init__ method in the Tomato class stores the value of entry_delay and is used
to delay the entry of the sprite:

def update(self):

 self.entry_count = self.entry_count + 1

 if self.entry_count < self.entry_delay:

 return

The update method is called 60 times per second. The first tomato has an entry delay
of 300, which means that it will arrive at 300/60 seconds, which is 5 seconds after the
game starts. The next tomato will appear 5 seconds after that, and so on, up until the
last one. The example program EG16-10 Killer tomato shows how this works. It can
get rather frantic after a few tomatoes have turned up and are chasing you.

 Loop to generate the entry delay values
 Create a new tomato
 Give the tomato the

entry delay value

 Add the tomato to the list of sprites

 Increase the entry counter by 1
 If the entry counter is less than

the delay, return

629Complete the game

Complete the game
We now have a program that provides some gameplay. Now we need to turn this into
a proper game. To do so, we need to add a start screen, provide a way that the player
can start the game, detect and manage the end of the game, and then, because it
adds a lot to the gameplay, add a high score.

Add a start screen
A start screen is where the player will—you guessed it—start the game. Then, when
the game is complete, the game returns to the start screen. We can add a start screen
to the Cracker Chase game by using a flag value to indicate the mode of the game:

def start_game(self):

 for sprite in self.sprites:

 sprite.reset()

 self.score=0

 self.game_running = True

Above is the method that starts a game playing. It resets all the sprites, sets the score
to zero, and sets the game_running flag to True. The game_running flag controls the
behavior of the game loop:

while True:

 clock.tick(60)

 if self.game_running:

 self.update_game()

 self.draw_game()

 else:

 self.update_start()

 self.draw_start()

 pygame.display.flip()

This is the game loop for the game. The code that updates the game and draws it
is now in methods that are called if the game is running. If the game is not running,
methods are called to update and draw the start screen.

 Reset all the sprites

 Clear the game score
 Set the flag to indicate that the game is running

 Repeat game forever
 Keep the frame rate to 60 frames per second

 Is the game active?
 Update the game

 Draw the game

 Update the start screen
 Draw the start screen

 Display the back buffer

630	 Chapter 16  Create games with pygame

def update_start(self):

 for e in pygame.event.get():

 if e.type == pygame.KEYDOWN:

 if e.key == pygame.K_ESCAPE:

 pygame.quit()

 sys.exit()

 elif e.key == pygame.K_g:

 self.start_game()

The start screen update behavior checks for two keys:

●● If the G key is pressed, the start_game method is called to start the game.

If the Escape key is pressed, the method shuts down pygame by calling quit and then
using the exit method from the sys module to end the program.

Use exit to shut down Python
The exit method is in the sys module, which means that the game must import the
module:

import sys

Once we have imported sys, we can call the exit function from the module to exit a
Python program instantly.

sys.exit()

Draw text in pygame
The start screen will display information for the player, as shown in Figure 16-8. The
pygame framework can draw text on the screen. It uses a Font object that is created
when the game starts.

 Work through all the pygame events
 Is the event a key down?

 Is the key the Escape key?
 Quit pygame

 Exit the program

631Complete the game

Figure 16-8  Start screen

self.font = pygame.font.Font(None, 60)

The initializer for the font accepts two parameters—the font design to use and the size
of the font. The statement above specifies None for the font design, which will select
the default pygame font. The size of 60 gives a text size that works well for the game.
To place a message on the screen, the game first renders the text using the font.

text = self.font.render('hello world', True, (255,0,0))

The render method accepts three arguments:

●● The first is a string that contains the text to be rendered.

●● The second argument selects aliasing. This technique smooths the edges of the
characters, and you should use it to make your text look nice.

●● The third argument specifies the color of the text. It contains the amount of red, blue,
and green that the text color should contain. The maximum color intensity is 255.

632	 Chapter 16  Create games with pygame

The code above will render “hello world” in bright red.

Once the text has been rendered, the next step is to blit it onto the display. We do this
the same way we blit images.

self.surface.blit(text, (0,0))

The first argument to the blit method is for the text to be drawn; the second argu-
ment is the location on the screen. The statement above would render “hello world”
in the top left corner of the screen. A program can get the width and the height of
rendered text, which can be used to center text on the screen. The CrackerChase class
contains a little method that draws text on the screen:

def display_message(self, message, y_pos):

 '''

 Displays a message on the screen

 The first argument is the message text

 The second argument is the vertical position

 of the text

 The text is drawn centered on the screen

 It is drawn with a black shadow

 '''

 shadow = self.font.render(message, True, (0,0,0))

 text = self.font.render(message, True, (0,0,255))

 text_position = [self.width/2 - text.get_width()/2, y_pos]

 self.surface.blit(shadow, text_position)

 text_position[0] += 2

 text_position[1] += 2

 self.surface.blit(text, text_position)

This method actually draws the text twice. The first time, the text is drawn in black,
and then the text is drawn again in blue. The second time the text is drawn, it is moved
slightly to make it appear that the black text is a shadow.

This method uses the += operator, which can be used to increase the value of a
variable. Rather than writing:

text_position[0] = text_position[0]+2

You can write:

text_position[0] += 2

 Render the text in black
 Render the text in blue

 Calculate the position of the text

 Draw the shadow
 Move the draw position across
 Move the draw position down

 Draw the text

633Complete the game

There are similar operators for subtract (-=), multiply (*=) and divide (/=).

If you look closely at Figure 16-8, you can see that the result of this extra drawing is
that text looks three-dimensional, which makes text stand out on the screen.

PROGRAMMER’S POINT

Don’t worry about making the graphics hardware work for you
You might think it’s rather extravagant to draw all the text on the screen twice just to get a
shadow effect. However, modern graphics hardware is perfectly capable of many thou-
sands of drawing operations per second. I’ve been known to draw text twenty times just
to get a nice blurred shadow effect behind it. If you think something might look good, my
advice is to try it and only worry about performance if the game seems to run very slowly
after you’ve done it.

def draw_start(self):

 self.start_background_sprite.draw()

 self.display_message(message='Top Score: ' + str(self.top_score),y_pos=0)

 self.display_message(message='Welcome to Cracker Chase', y_pos=150)

 self.display_message(message='Steer the cheese to', y_pos=250)

 self.display_message(message='capture the crackers', y_pos=300)

 self.display_message(message='BEWARE THE KILLER TOMATOES', y_pos=350)

 self.display_message(message='Arrow keys to move', y_pos=450)

 self.display_message(message='Press G to play', y_pos=500)

 self.display_message(message='Press Escape to exit', y_pos=550)

Above is the draw_start method for the game, which draws the sprite that contains
the background image and then displays the help messages on the display.

PROGRAMMER’S POINT

Make sure you tell people how to play your game
In my long and distinguished career in computing, I’ve judged quite a few game develop-
ment competitions. I’ve lost count of the number of games that I’ve tried to play and failed
because the game doesn’t tell me what to do. The problem is usually that everyone focuses
on making the game, and not on telling people how to play it. Failing at a game while you
work out which keys you are supposed to press doesn’t make for a very good introduction
to it, so make sure that you make the instructions clear and present them right at the start.

634	 Chapter 16  Create games with pygame

End the game
The start screen allows the player to play the game. We’ve seen that the game has two
states, which are managed by the game_running attribute. This attribute is set to True
when the game is running and False when the start screen is displayed. Now we need
to create the code that manages the game_running value. At the start of this section,
we saw that the game contained a method that started the game. The game also
contains a method to end it.

def end_game(self):

 self.game_running = False

 if self.score > self.top_score:

 self.top_score = self.score

The end_game method sets game_running to False. It also updates the top_score
value. If the current score is greater than the highest score so far, it is updated to the
new top score.

PROGRAMMER’S POINT

Adding a high score makes a game much more interesting
Adding a high score to a game makes the game much more compelling. Players will spend
a lot of time trying to beat their previous scores. A good improvement to this game would
be to make it save the high score in a file and load the high score when the game starts.

Detect the game end
The game ends when the player collides with a killer tomato, which is detected in the
update method for the tomato sprite:

def update(self):

 ' position update code for the tomato here'

 if self.intersects_with(game.cheese_sprite):

 self.game.end_game()

We can add more logic to make the game more interesting. We could give the player
a health value that reduces each time he or she collides with a tomato. We could make
the health slowly recover over time. We could even add the traditional “three lives”
that are standard for games like this.

635Complete the game

PROGRAMMER’S POINT

Always make a playable game
Something else I noticed while judging game development competitions was that some
teams would produce a brilliant piece of gameplay but not attach it to a game. You’d start
playing the game and find that it never actually ended. You should make sure that your
game is a complete game from the very start. The game should have a beginning, middle,
and end. As you have seen in this section, it’s easy to do this, but when people start making
a game, they seem to leave it to the last minute to create the game start screen and the
game ending code, so that what they produce is not a game, but more of a technical demo,
which is not quite the same thing. Making your game into a proper game right from the
start also makes it much easier for people to try it and then give you feedback.

Score the game
Each time the cheese collides with a cracker, the game score is increased. The score is
updated in the update method for the cracker sprite:

def update(self):

 if self.intersects_with(game.cheese_sprite):

 self.captured_sound.play()

 self.reset()

 self.game.score += 10

The score is displayed on the screen each time the game display is drawn by the
draw_game method.

def draw_game(self):

 for sprite in self.sprites:

 sprite.draw()

 status = 'Score: ' + str(game.score)

 self.display_message(status, 0)

You can find the completed game in the folder EG16-11 Complete Game. It’s fun to
play for short bursts, particularly if there are a few of you trying to beat the high score.
My highest score so far is 380, but I never was any good at playing video games.

 Update the game score

 Draw all the game sprites

 Assemble the score message
 Display the score at the top of the screen

636	 Chapter 16  Create games with pygame

Make a game of your own
The Cracker Chase game can be used as the basis of any sprite-based game you might like
to create. You can change the artwork, create new types of enemies, make the game two-
player, or add extra sound effects. When I said at the start of this book that programming is
the most creative thing you can learn to do, this is the kind of thing I was talking about. You
can create a game called “Closet frenzy” where you are chased around by coat hangers while
you search for a matching sock. You could create “Walrus Space Rescue,” where you must
steer an interplanetary walrus through an asteroid minefield. Anything you can think up, you
can build. However, one word of caution. Don’t have too many ideas. I’ve seen lots of game
development teams get upset because they can’t get all their ideas to work at once. It is much
more sensible to get something simple working and then add things to it later.

MAKE SOMETHING HAPPEN: DEVELOPMENT CHALLENGE

What you have learned
In this chapter, you created a playable game and discovered how the pygame frame-
work lets you work with graphics and sound. You found that a class hierarchy, with
a sprite superclass and different game objects as subclasses of this is a great way to
create game objects. You also discovered that games work by having a “game loop”
that repeatedly updates and draws items on the screen. You used the event mecha-
nism of pygame to capture keyboard input, and you used events to control an object
on the screen. You’ve seen that “artificial intelligence” can be created with a couple
of if conditions, and physics can be implemented using a few calculations. You also
implemented a start screen and a game screen to make a complete game experience.

Hopefully, you’ve also taken a few ideas of your own and used them to create some
more games.

Here are some points to ponder about game development.

Do all games work using a game loop?

Most games use a game loop. A text-based adventure will work by reading in what
you type and replying, but most modern games work with a loop.

Why are draw and update separate methods?

You might wonder why I separated the draw and update behaviors in the game.
Although they are separate methods, they always seem to be called together. Why not
have just one method (perhaps called do_game) which does both?

637What you have learned

The answer has to do with performance. For simple games like Cracker Chase, it’s
perfectly fine for the drawing and updating to take place at the same rate. However,
if you’re running on a low-performance platform, you may want to update the game
at a different rate from the rate you draw it. The reason for this is that people are
much more tolerant of the game display “flickering” than they are for changes in the
speed of a game update. If the game update slows down, it can cause problems with
collisions not being detected (for example, bullets might pass right through things
without the game noticing they had collided). For this reason, a game should sepa-
rate drawing and updating so that the two processes can be made to run at different
speeds if required.

How would I create an attract mode for my game?

Currently, our game just has two states, the start screen and the game screen. Many
games have an “attract mode” screen as well, which displays some gameplay. Creating
an attract mode screen is quite easy. We could make an “AI player” who moved the
cheese around the screen in a random way, and then just run the game with the ran-
dom player at the controls. We could add an “attract mode” behavior to the tomatoes
so that they were aiming for a point some distance from the player, to make the game
last longer in demo mode.

How could I make the gameplay the same each time the game is played?

The game uses the Python random number generator to produce the position of
the crackers, which means each time the game runs, the crackers are in a different
position. We can use the seed function from the Random module to give the Python
random number generator the same seed before each game. This would mean that
the crackers would be drawn and would respawn in the same sequence each time the
game was played. A determined player could learn the pattern and use this to get a
high score.

Is the author of the game always the best person at playing it?

Most definitely not. I’m often surprised how other people can be much better than me
at playing games I’ve created. Sometimes they even try to help me with hints and tips
about things to do in the game to get a higher score.

	_Hlk493851786
	_GoBack

