
14
Python programs
as network clients

9781509304523_14_Python_548-569.indd 548 10/29/17 6:39 PM

 549

What you will learn
In this chapter, you’ll discover how to create Python programs that interact
with the Internet and the World Wide Web. You’ll learn the fundamentals of
computer networking and how to create a program that can grab informa-
tion from a web server on the Internet. You’ll also learn about the standards
used to transfer data between programs.

Computer networking .550

Consume the web from Python .562

What you have learned .567

9781509304523_14_Python_548-569.indd 549 10/29/17 6:39 PM

550 Chapter 14 Python programs as network clients

Computer networking
Before we look at how Python programs use network connections, we need to learn
a little bit about networks. This is not a detailed description, but it should give you
enough background to understand how our programs will work.

Network communication
Networks can use wires, radio, or fiber optic links to send their data signals. Whatever
the medium, the fundamental principle is that hardware puts data onto the medium
in the form of digital bits and then gets it off again. A bit is either 0 or 1 (or you can
think of a bit as either true or false) and can be signaled by the presence or absence of
a voltage, light from a light-emitting diode (LED), or a radio signal. If you imagine sig-
naling your friend in the house across the road by flashing your bedroom light on and
off (Figure 14-1), you’ll have an idea of the starting point of network communications.

Figure 14-1 House-to-house networking

Once we have this raw ability to send a signal from one place to another, we can start
transferring useful data. We could invent a protocol (an arrangement of messages
and responses) and use it to pass messages. To communicate useful signals, you must
agree on a message format. You could say, “If my light is off, and I flash it on twice, it
means that it’s safe to come around because my sister is out. If I flash it once, it means
don’t come. If I flash it three times, it means to come and bring pizza with you.” This
is the basis of a protocol, which is an arrangement by communicating parties on the
construction and meaning of messages.

The messages and the protocol are independent of each other. We could replace “flash
the light” with “tap on the water pipes” or “make a puff of smoke, “and the protocol
could be the same. Three flashes or three taps could each mean “bring pizza.” When we
design networks, we can express this using layers, as depicted in Figure 14-2.

9781509304523_14_Python_548-569.indd 550 10/29/17 6:39 PM

551Computer networking

Lights

Our message protocol

Pipes Smoke

Transport layer

Physical layer

Figure 14-2 Layers in networks

The protocol sits on top of a physical layer that can deliver the network events. We can
use light flashes, bangs on a pipe, or even puffs of smoke to deliver network messages.
Each layer will set out standards. For example, the standard for the Lights physical layer
in the network will state, “A flash must be no longer than one-half second, and all the
flashes must occur within a five-second period.” The standard for the Pipes layer will
describe how loud a tap on the pipe must be.

The transport protocol on top of the physical layer will be designed with no consid-
eration for how the messages are sent; it only will be told what message events have
been received. We can add new kinds of message delivery. For example, we could
add a flag-waving delivery without having to change the entire network. The network
protocols used by the Internet are based on this layered approach.

Address messages
Your bedroom light communication system would be more complicated if you had
two friends on your street who wanted to use their bedroom lights to communicate
with you. You would have to add some form of addressing and give each person a
unique address on the network. A message would now be made up of two compo-
nents. The first component would be the address of the recipient, and the second
would contain the message itself. Computer networks function in the same way. Every
station on a physical network must have a unique address. Messages sent to that
address are picked up by the network hardware in that station.

Networks also have a broadcast address, which allows a system to send a message
that will be acted on by every system. In our “bedroom light network” a broadcast
address could be used to warn everyone that your sister has come home and her new
boyfriend is with her, so your house is to be avoided at all costs. In computer net-
works, a broadcast is how a new computer can learn the addresses for important sys-
tems on the network. A system can send out a broadcast saying, “Hi. I’m new around
here!” Another system would respond with configuration information.

All the stations on a network can receive and act on a broadcast sent around it. In
fact, if it wanted to, a station could listen to all the messages traveling down its part
of the wire or Wi-Fi channel, which illustrates a problem with networks. Just as all

9781509304523_14_Python_548-569.indd 551 10/29/17 6:39 PM

MAKE SOMETHING HAPPEN

552 Chapter 14 Python programs as network clients

your friends can see all the messages from your bedroom light, including those not
meant for them, there is nothing to stop someone from eavesdropping on network
traffic around your network. When you connect to a secure website, your computer
is encoding all the messages it sends out so that someone listening other than the
intended recipient would not be able to learn anything.

Hosts and ports
If we want to use our bedroom light flashing protocol to talk to people at the same
address, we need to improve our protocol. If we want to send messages to Chris and
Imogen, who both live in the same house, we would need to improve our protocol so
that a message contains data that identifies the recipient.

In the case of a computer system, we have the same problem. A given computer
server can provide an immense variety of different services to the clients that connect
to it. The server might be sending webpages to one user, sharing video with another,
and hosting a multiplayer game for 20 people all at the same time. The different cli-
ents need a way of locating the service they want on the server.

The Internet achieves this by using “ports.” A port is a number that identifies a service
provided by a computer. Some ports are “well-known.” For example, port number 80
is traditionally used for webpages. In other words, when your browser connects to a
webpage, it’s using the Internet address of the server to find the actual computer, and
then it’s connecting to port 80 to get the webpage from that server.

When a program starts a service, it tells the network software which port that service
is sitting behind. When messages arrive for that port, the messages are passed to the
program. If you think about it, the Internet is just a way that we can make one pro-
gram talk to another on a distant computer. The program (perhaps a web server) you
want to talk to sits behind a port on a computer connected to the Internet. You run
another program (perhaps a web browser) that creates a connection to that port that
lets you request webpages and display them on your computer.

Programmers can write programs that use any port number, but many network connec-
tions contain a component called a firewall that only allows certain packets addressed to
particular well-known ports to be passed through, which reduces the chance of systems
on the network coming under attack from malicious network programs.

Send network messages with Python
Now that we know how the fundamentals of the network function, we can look at how
a Python program can use a network to send and receive messages. We’ll send a mes-
sage using the User Datagram Protocol (UDP) element of the internet protocol suite.

9781509304523_14_Python_548-569.indd 552 10/29/17 6:39 PM

Send a network message
The best way to find out about networking is to use it to send a message from one program
to another. We can do that from the Python Command Shell in IDLE. So, let’s start that up.
The first thing we need to do is import all the resources from the socket module. Give the
following command and press Enter:

>>> import socket

The socket module contains the socket class that we’ll use to create and manage network
connections. Let’s make an instance of the socket class to receive messages. Type in the state-
ment below and press Enter:

 >>> listen_socket = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

The socket constructor accepts two arguments. The first is the address family that the socket
will use to refer to hosts. In this case, we’ll use the Internet address family, so we use the value
AF_INET from the socket module. The second argument is the type of messages we will send.
We will send datagrams. A datagram is a single, unacknowledged message that’s sent from
one system to another, in the same way that we could flash the lights in our inter-house net-
work to deliver a message to someone who may or may not be watching.

Now that we’ve created our socket, we need to consider the address to which we’ll connect it.
A network address can be written as a tuple. Type in the statement below and press Enter:

>>> listen_address = ('localhost', 10001)

MAKE SOMETHING HAPPEN

553Computer networking

A datagram is a single message sent from one system to another. The sender of a
datagram has no idea that it has been received unless the recipient returns a mes-
sage acknowledging receipt. The internet protocol suite is the set of standards that
describes how the Internet and associated networks work. It is frequently referred to
as the TCP/IP suite. This is because the standard originally described the Transmis-
sion Control Protocol that linked systems on a network and the Internet Protocol that
allowed communications between networks. You can find a good description of how
UDP works here: https://en.wikipedia.org/wiki/User_Datagram_Protocol.

9781509304523_14_Python_548-569.indd 553 10/29/17 6:39 PM

The listen_address tuple holds two values. The first of these is the address of the com-
puter to which we will connect. Initially, we’ll just send the messages to a process on our own
computer so we can use the special address ‘localhost’ to represent the current machine. The
second value in the tuple is the port to which the program will connect. Ports are identified
by numbers. We’ll use port 10001.

The next thing we need to do is bind the socket to the server address from which it will listen.
Once we have done this, the socket can be made to listen for messages on the port given in
the address. The bind method is given the address from which to listen, and it configures the
socket to listen on the address given. Type in the following and press Enter.

>>> listen_socket.bind(listen_address)

Now we can ask our socket to receive some data. We can use the recvfrom method, which
will fetch a single datagram. The method accepts an argument that gives the maximum size
of the datagram that will be accepted. Type the following and press Enter.

>>> result = listen_socket.recvfrom(4096)

Notice that you don’t get the >>> prompt back from this command because the recvfrom
method has not yet returned; it is waiting for a datagram to arrive.

We now need to make a transmitter. We will need another copy of the IDLE Python Com-
mand Shell to do this, so start up another one. As with the listening program, the first thing
we need to do is import the socket module:

>>> import socket

Now we can make a send socket. Type in the statement below and press Enter:

 >>> send_socket = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

Note that send_socket is created in the same way as listen_socket. Next, we need to
create an address to identify the recipient of the message. We’ll send the message back to
ourselves, so we use the same address. Type in the statement below and press Enter:

>>> listen_address = ('localhost', 10001)

554 Chapter 14 Python programs as network clients

9781509304523_14_Python_548-569.indd 554 10/29/17 6:39 PM

And now, for the grand finale, we’ll send a message over the network. Type in the following:

>>> send_socket.sendto(b'hello from me', send_address)

This sends a message from this IDLE Command Shell to anything listing on port 1001, which in
our case is the listener program. Press Enter to send the message:

>>> send_socket.sendto(b'hello from me', send_address)

13

>>>

The sendto method returns the number of data bytes that the method has sent. In this case,
it has sent 13 bytes (the number of characters in the string 'hello from me'. You might be
wondering why the string has the letter b in front of it. This is because Python 3 normally
encodes string characters using a standard called Unicode (see ”Working with Text” in Chap-
ter 4). We can’t send Unicode values over a socket, but we can send bytes. Putting a b in front
of a string tells Python to make this string out of bytes rather than Unicode characters. So,
now that the message has been sent, let’s see if it has been received.

Go back to the IDLE Command Shell where the listener is running. You should see that the
>>> prompt has returned because the recvfrom method has completed and returned a
value into the variable result. We can use the print function to view the result:

>>> print(result)

When you press Enter to perform the print, you’ll see that the contents of the result are a
tuple that contains two items. The first item is a string containing the message sent from the
sender. The second item is another tuple that contains the address of the system that sent the
message. We’ll talk about Internet addresses in the next exercise when we use these functions
to send messages between computers.

>>> print(result)

(b'hello from me', ('127.0.0.1', 51883))

It might not seem like much, but these actions are the basic building blocks of every program
that uses the Internet. Whenever you load a webpage, stream a video, or send an email, the
data is transferred by one process listening for packets of data and another sending packets
of data.

555Computer networking

9781509304523_14_Python_548-569.indd 555 10/29/17 6:39 PM

Sending network messages
You might have some questions about what we’ve just done.

Question: Can we send things other than text?

Answer: Yes. A datagram sends a block of byte values, but these can contain any kind
of data. We are transferring strings, but we could just as easily transfer fashion shop
stock items.

Question: What’s the largest thing you can send?

Answer: We set the maximum size of the incoming message in the recvfrom method.
A program can send a message of around 65,000 bytes. If we want to send larger items,
we must send those as multiple messages. Fortunately, there are more network functions
that can split and reassemble large items. We’ll look at these later.

Question: What happens if we send a message and the listener is not listening?

Answer: Nothing. We’re sending the simplest kind of message, a datagram. The sender
has no way of knowing whether a datagram was received.

Question: Can the listener listen to messages from other computers?

Answer: Yes. As long as the messages are sent to the correct port (in this case, port
10001), the listener will receive them.

Question: Can the sender send messages to other computers?

Answer: Yes. By using a different send address, a socket can send messages to other
ports and machines.

Question: How long would the listener wait before it heard anything?

Answer: It would wait forever. However, the Socket module provides a method called
setdefaulttimeout that can be used to set the number of seconds that a recvfrom
method will wait for an incoming message. If nothing has arrived before the timeout has
elapsed, the recfrom method will raise an exception.

Question: Can using sockets generate exceptions?

Answer: Yes. A program that uses network connections should take care to catch exceptions
that might be raised when a network connection fails or a host disconnects unexpectedly.

CODE ANALYSIS

556 Chapter 14 Python programs as network clients

9781509304523_14_Python_548-569.indd 556 10/29/17 6:39 PM

CODE ANALYSIS

557Computer networking

Send a message to another computer
The sendto and recvfrom methods can be used to send messages to another com-
puter via a local network. You could use these methods to connect two machines you
have at home. To do this, you need to obtain the IP (or Internet protocol) address of
the machine to which you are sending the message. You can think of the IP address
as the “phone number” of your computer on the network. If you don’t have the IP
address of a computer, you can’t send messages to it. The Python socket module
contains functions that can be used to find the IP address of the computer running
the Python program. If you load the program below, it will print the address of the
machine on which it is running. You can then use the address in the sender program.

EG14.01 Receive packets on port 10001 from another machine

import socket

host_name = socket.gethostname()

host_ip = socket.gethostbyname(host_name)

print('The IP address of this computer is:', host_ip)

listen_socket = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

listen_address = (host_ip, 10001)

listen_socket.bind(listen_address)

print('Listening:')

while(True):

 reply = listen_socket.recvfrom(4096)

 print(reply)

When you run the receiver program above, it will print a message giving the IP
address and then state that it is listening for inputs:

The IP address of this computer is: 192.168.1.55

Listening:

Import the socket library

 Get the host name for this computer
 Use the host name to get the IP address

 Print the IP address

 Create the listen socket
 Create the address to listen on this machine

 Bind the socket to the address

 Loop forever
 Wait for an incoming message

 Print the message

9781509304523_14_Python_548-569.indd 557 10/29/17 6:39 PM

558 Chapter 14 Python programs as network clients

 Now you can load the send program on the machine that’s doing the transmitting.

EG14.02 Send packets on port 10001 to another machine

import socket

import time

You will need to change this to the address

of the machine to which you are sending

target_ip = '192.168.1.55'

send_socket = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

destination_address = (target_ip, 10001)

while(True):

 print('Sending:')

 send_socket.sendto(b'hello from me', destination_address)

 time.sleep(2)

You will need to change the value of target_ip in the program to the address that
was printed by the receiver program. When you run the sender program, you should
see messages appearing on the screen of the receiver. You will have to interrupt them
by pressing Ctrl+C or selecting Shell, Interrupt Execution from the IDLE menu.

Route packets
The sample programs above worked for me because both computers were connected
to my home network. However, not everything on the Internet is connected to the
same network. My home network is different from the one operated by my next-door
neighbor. The Internet is a very large number of separate “local” networks that are
connected. To transmit messages from one network to another, we must introduce
the idea of routing.

Going back to the bedroom light network we discussed earlier in this chapter, a
friend who lives further down the street might not be able to see your bedroom light.
However, she might be able to see the light from your friend’s house next door, so you
could ask your friend next door to receive messages and then send them on for you.
Your friend next door would read the address of the message coming in, and if it was
for your friend on the next block, she would transmit it again. Figure 14-3 shows how
this works. Your friend uses the window on the left to talk to you and the window on
the right to relay messages to your more distant friend.

 Import the socket module
 We will use the sleep function

from the time module

 Set the IP address of the
machine to which we are sending

 Create the socket
 Set the destination address

 Loop forever
 Display a message

 Send a message
 Sleep for two seconds

9781509304523_14_Python_548-569.indd 558 10/29/17 6:39 PM

559Computer networking

Your House Friend’s House Distant House

Figure 14-3 Routing from house to house to house

You can think of your friend in the middle as performing a routing role. She has a con-
nection to both “networks”—the people you can see, and the people that your distant
friend can see. She is therefore in a position to take messages from one network and
resend them on the other one. Your connection to the Internet is managed by a router,
which is a computer specially programmed to send and receive messages using the
Internet protocols.

The diagram in Figure 14-4 shows how this all fits together. The machines on the
home network are directly connected. The Desktop PC can send pages straight to
the printer. However, if the Desktop PC needs to load webpages from a web server at
Microsoft, the requests for the pages must leave the local network and travel via the
Internet. Messages that need to go off a local network are sent to the router, which
forwards them to the Internet. The router is also responsible for receiving messages
sent from the Internet to machines on the local network. The router will retransmit
these messages onto the local network, addressed to the correct machine. This pro-
cess is called network address translation, or NAT.

Desktop PC Router Router

MicrosoftPrinter

Phone

Internet

Figure 14-4 Routing and the Internet

9781509304523_14_Python_548-569.indd 559 10/29/17 6:39 PM

Network and firewall problems
I managed to use the sample programs EG14-01 Receive packets on port 10001 from
another machine and EG14-02 Send packets on port 10001 to another machine to send
messages from a Windows PC to an Apple Mac. I was asked by the Windows Firewall to allow
Python programs to use the network, but once I did this, the programs worked fine.

A firewall is a component of the network management software in a computer connected to
a network. It tries to make sure that programs are not using network connections improperly.
If your computer becomes infected by a virus, it’s the job of the firewall to stop the virus pro-
gram from using your network connection to infect other computers. The firewall keeps a list
of programs that are allowed to use the network. If the firewall detects network access from a
program the firewall has not seen before, it will ask the user to confirm that the new program
may use the network.

Once I selected Allow access in the above dialog, my network conversation worked fine.
However, I had more difficulty sending messages from the Mac to the PC. If these programs
don’t work, your network might be restricting programs to a specific set of ports. These pro-
grams will also fail to work if the two machines are on separate networks.

WHAT COULD GO WRONG

560 Chapter 14 Python programs as network clients

9781509304523_14_Python_548-569.indd 560 10/29/17 6:39 PM

WHAT COULD GO WRONG

561Computer networking

Connections and datagrams
The Internet provides two ways for systems to exchange information: connections
and datagrams. A datagram is a single message sent from one system to another.
The Python programs we created earlier use datagrams. However, you can also use
the Internet to create connections between systems on the network. The Transmis-
sion Control Protocol (TCP) is used by the Internet to set up and manage connections
between stations. You can find a good description of the protocol here: https://
en.wikipedia.org/wiki/Transmission_Control_Protocol.

When two systems are connected, they must perform extra work to manage the con-
nection itself. When one system sends a message that’s part of a connection, the net-
work either confirms that the message was successfully transferred (once the network
has received an acknowledgment) or gives an error saying that it could not be delivered.

Connections are used when it’s important that the entire message gets through.
When your browser is loading a webpage, your computer and the web server share a
connection across the network, which ensures that all parts of the webpage are deliv-
ered and that any failed pieces are retransmitted. The transmission, confirmation, and
retransmission process means data is transported more slowly. Managing a connec-
tion places heavier demands on the systems communicating this way. You can regard
a connection to another machine as much like the file object that we use to connect
a program to a file. A program can call methods on a connection to send messages
to the connection and check if anything has been received from the connection. The
connection will remain open until it is closed by one of the systems using it.

Networks and addresses
When we sent and received messages using the test programs above, we used
addresses like 192.168.1.55. Earlier in this chapter, we said that these are called Internet
protocol, or IP, addresses, and that you can think of them as the “telephone number”
of a specific computer on a network.

However, nobody wants to have to remember an IP address like this. People would
much rather use a name like www.robmiles.com to find a site. To solve this problem, a
computer on the Internet will connect to a name server, which will convert hostnames
into IP addresses. The system behind this is called the domain name system, or DNS.
A DNS is a collection of servers that pass naming requests around among themselves
until they find a system with authority for a particular set of addresses that can match
the name with the required address.

We can think of a name server as a kind of “directory inquiries” for computers. In days
past, if I wanted to know the phone number of the local movie house, I would call for
directory assistance. When a computer wants to know the IP address of a website, the
DNS is queried.

9781509304523_14_Python_548-569.indd 561 10/29/17 6:39 PM

562 Chapter 14 Python programs as network clients

Consume the web from Python
The web is one of many services that use the Internet. When a browser wants to read a
webpage, it sets up a connection to the server and requests the page content. The page
content is expressed in Hypertext Markup Language, or HTML. The page content might
contain references to images and sounds that are part of the webpage. The browser will
set up connections to download these too and then draws the page for you on the screen.

Read a webpage
If we wanted, we could write low-level, socket-based code to set up a TCP connection
with a web server and then fetch the data back. However, this is such a common use
for programs that the creators of Python have done this for us. The urllib module
uses the Internet connection to talk to a web server and fetch webpages for our pro-
grams. The URL returns the webpage associated with it.

EG14.03 Webpage reader

import urllib.request

url = 'https://www.robmiles.com'

req = urllib.request.urlopen(url)

for line in req:

 print(line)

If you run this program, it will print the current contents of my blog page. There’s a
lot of it. The urlopen object uses HTTP to request the webpage and then returns an
iterator that we can work through.

Use web-based data
The ability to read from the web can be used for much more than just loading the text
part of a webpage. We can also interact with many other data services. One such service is
RSS (Really Simple Syndication, or Rich Site Summary, depending on which description you
read), which is a format for describing web articles or blog posts. Lots of sites provide RSS
feeds of their content, and programs can connect to and consume their content.

Point the webpage reader program above to https://www.robmiles.com/journal/
rss.xml to download a document that contains my most recent blog posts. The
document is formatted using a standard called XML (eXtensible Markup Language).

 Import the URL reader module

 This is the URL from which the program will read

 Create the web request object
 Work through the web request a line at a time

 Print the line

9781509304523_14_Python_548-569.indd 562 10/29/17 6:39 PM

563Consume the web from Python

The weather snaps that we used in Chapter 5 also fetch the weather information from
a web server. The program downloads the weather information from a server in the
form of an XML document.

The XML document standard
The XML standard allows us to create documents that can contain structured data.
The documents are designed to be easy for computers and people to read. Program-
mers create an XML document to send data from one computer to another. An XML
document contains a number of elements. Each element can have attributes, which
are just like data attributes in a Python class. An element can also contain other ele-
ments. For a full description of XML, visit https://en.wikipedia.org/wiki/XML.

We can use the XML document returned by the RSS feed from my blog to investigate
how XML works. Below, you can see a slightly abridged version of the RSS feed from
my blog. I’ve removed some elements, but this shows the general format of the docu-
ment (and the fact that I’m rather excitable in my blog posts).

<rss version="2.0">

 <channel>

 <title>

 robmiles.com

 </title>

 <item>

 <title>

 Water Meter Day

 </title>

 <category>Life</category>

 <description>

 <![CDATA[We had a new water meter installed yay!]]>

 </description>

 </item>

 <item>

 <title>

 Python now in Visual Studio 2017

 </title>

 <category>Python</category>

 <category>Visual Studio</category>

 <description>

 <![CDATA[Python is now available in Visual Studio 2017 yay!]]>

 </description>

 </item>

 </channel>

</rss>

 RSS element in the document
 Channel element in the RSS element

 Element giving title of the channel
 Title text

 End of title element
 Item in the blog
 Title of the item

 Category of the blog post
 Blog post content

 End of item
 Start of item

 Category of the blog post
 Category of the blog post

 End of item
 End of channel

 End of RSS feed

9781509304523_14_Python_548-569.indd 563 10/29/17 6:39 PM

The XML document format
You might have some questions about the XML format.

Question: How do parent and child elements work in XML?

Answer: A given XML element can contain other elements. These are called child ele-
ments. Child elements can contain other child elements. In the RSS example above, the
channel element contains two item elements as children. Each item has children, which
are the title and description elements.

Don’t get child elements confused with subclasses of superclasses. A subclass is used in
a class hierarchy and picks up all the attributes of a superclass (sometimes confusingly
called a “parent” class). We use subclasses to allow us to customize a superclass to better
fit a particular situation. It is nothing to do with XML documents.

The best way to think of an XML child element is that it is an attribute of the element
(such as a piece of data about the element), which is actually another XML element.

Question: What does CDATA mean?

Answer: When we put strings into a Python program, we can enclose them in triple
quotes ('''). Text enclosed in triple quotes can span several lines of the program source
and can contain any kind of quote characters. The CDATA element in an XML document
works in the same way. Everything between the <![CDATA[and the]]> items is treated
as the text of that element. This behavior allows us to put entire blog posts inside an
element in an XML document.

CODE ANALYSIS

564 Chapter 14 Python programs as network clients

XML documents are organized into elements. An element has a name and can contain
attributes (data about the element, just like a Python class attribute). The first element
in the sample above is called rss and contains an attribute stating which version of
RSS the element contains. This is used in the same way as the version attribute that
we added to the Contact class in the Contacts manager we created in Chapter 10. It
tells programs the version of the RSS element; in the case of my blog, the version is
number 2.0.

<rss version="2.0">

An element can contain other elements; they are enclosed between the <name> and
</name> parts. Above, you can see that the channel element contains two item ele-
ments and that each item contains a title and a description element.

9781509304523_14_Python_548-569.indd 564 10/29/17 6:39 PM

Question: Why does the second item in the document contain two category elements?

Answer: XML doesn’t necessarily enforce a standard on the content or organization
of an XML document (although you can do this using a schema if you want to—but
this is beyond the scope of this book). You can find out more about XML schema here:
http://www.xml.com/pub/a/2000/11/29/schemas/part1.html.

The category elements of an item are used in the same way as we used the tags in the
Fashion Shop application created in Chapter 11. Readers can search for all my posts about
Python, Visual Studio, or life. The RSS standard allows writers to tag an item with as many
category elements as needed.

CODE ANALYSIS

The Python ElementTree
We could write a program that decodes the XML file, but it would be difficult work.
Fortunately, Python provides the ElementTree class, which can be used to work with
XML documents. A program can load an XML document in an instance of ElementTree
and then call methods on the instance to navigate the document.

EG14.04 Python ElementTree

import xml.etree.ElementTree as ElementTree

rss_text = '''

<rss version="2.0">

Sample RSS above goes here

</rss>

'''

doc = ElementTree.fromstring(rss_text)

for item in doc.iter('item'):

 title = item.find('title').text

 print(title.strip())

 description = item.find('description').text

 print(' ',description.strip())

The ElementTree class provides a range of methods that you can use to find and work
through elements in an XML document. The iter method is given the name of an ele-
ment and will generate an iteration you can work through using a for loop. The find
method will search a given element for any child elements with a particular name. The

 Import the module and give it a name

 The sample program holds all the text of the XML example

 Create an ElementTree instance from the RSS string

 Iterate through all the item elements in the document
 Find the title element in the item and get the text out of it

 Strip the title text of extra spaces and print it
 Find the description element in the

item and get the text from it

 Strip the title of extra spaces and print it

565Consume the web from Python

9781509304523_14_Python_548-569.indd 565 10/29/17 6:39 PM

Work with weather data
The weather snaps we used in Chapter 5 decode an XML document from the U.S. Weather
Service. The code to get the temperature for a given location is as follows:

EG14.06 Weather Feed Reader

def get_weather_temp(latitude,longitude):

 address = 'http://forecast.weather.gov/MapClick.php'

 query = '?lat={0}&lon={1}&unit=0&lg=english&FcstType=dwml'.\

 format(latitude,longitude)

 req=urllib.request.urlopen(address+query)

 page=req.read()

 doc=xml.etree.ElementTree.fromstring(page)

 for d in doc.iter('temperature'):

 if d.get('type') == 'apparent':

 text_temp_value = d.find('value').text

 return int(text_temp_value)

You can find this function, along with a sample weather file that was returned by the server,
in the folder EG14-06 Weather Feed Reader in the sample programs for this chapter. Try
changing the methods so that you get the maximum and minimum temperatures and the
forecast values.

 The weather web server
 Web query containing

the latitude and
longitude

 Build a web request
 Read the text from the website

 Create an ElementTree from the text
 Work through all the temperature elements

 Is the type attribute of this element “apparent”?
 Get the content of the value

element, which is a child element of
this temperature

 Return an integer obtained from the
text in the value element

MAKE SOMETHING HAPPEN

566 Chapter 14 Python programs as network clients

text attribute of an element is the actual text payload of the element. The output of
the program is as follows:

Water Meter Day

 We had a new water meter installed yay!

Python now in Visual Studio 2017

 Python is now available in Visual Studio 2017 yay!

There are lots of other methods you can use to work with an XML document. You
can even use the ElementTree class to allow you to edit the contents of elements,
remove them, and even add new ones. However, you should be able to use the above
methods to extract data items from XML feeds on the Internet. The sample program
EG14-05 RSS Feed reader contains a few you can use to get started.

9781509304523_14_Python_548-569.indd 566 10/29/17 6:39 PM

MAKE SOMETHING HAPPEN

567What you have learned

What you have learned
In this chapter, you discovered the fundamentals of network programming and how
networks transfer data from one machine to another. You’ve seen that a protocol
describes how systems can communicate and that the Internet uses protocols that
describe layers of different functionality, with hardware at the bottom and a software
interface at the top. Information is sent between machines in messages called data-
grams, and each machine has a unique IP address on a local network.

You saw that the Internet can be regarded as a large number of local networks that
are connected. A device called a router will take datagrams addressed to remote sites
(machines not connected to the local network) and send them to the Internet. Net-
work connections can either be sent as individual, unacknowledged datagrams or as
part of a connection. A given system can expose connections on one of a number of
different ports. When a program wants to accept connections, it will bind a software
socket to a port on the host machine and accept connections on that port.

Large amounts of data are transferred by the transmission of large numbers of data-
grams. Python provides a socket class that can be used to control a network con-
nection. You used a socket to perform simple communication between two Python
programs. You also used the urllib Python module to connect to a web server and
download the contents of webpages.

Finally, you’ve explored the eXtensible Markup Language (XML) and learned how to
create ElementTree structures from XML documents and extract information from
these documents.

Here are some points to ponder about networking.

Do wireless network devices use a different version of the Internet from
wired ones?

A wireless device uses a different medium from a wired device, but as far as the com-
puter using the connection is concerned, the connections both work in the same way.
The Internet protocols allow the transport method (the means by which data is moved
between devices) to exist as a layer underneath other layers that set up and manage
connections. We’ve done something similar with our software, when we had separate
objects manage the storage of data in the Fashion Shop application in Chapter 12.
As long as the interface between the layers (the method by which one layer talks to
another) is well defined, we can switch the component at one level of the layer with
another component, and the rest of the system would still function.

9781509304523_14_Python_548-569.indd 567 10/29/17 6:39 PM

568 Chapter 14 Python programs as network clients

How big can a datagram get?

The maximum transmission unit (MTU) of a network is the largest message that can
be sent in a single network transaction. The size of the MTU varies depending on the
transmission medium used. You can find out the MTU values for various networks
here: https://en.wikipedia.org/wiki/Maximum_transmission_unit

Do all datagrams follow the same route from one computer to another?

Not necessarily. The Internet is a huge collection of connected networks. A datagram
may have to travel across several networks to get to its destination. Systems that
route datagrams constantly decide on the best way to send them, based on how busy
various parts of the network are and what connections are available. The Internet was
originally designed to be used in a situation where parts of the network could sud-
denly stop working, so this rerouting behavior is built into how it works. It can lead to
some strange effects. Sometimes a datagram sent after another can arrive before the
first one. If we set up a connection using a socket, these effects are hiding from our
program by the network.

Do all datagrams get to their destination?

No. UDP packets are not guaranteed to arrive and are connectionless. TCP packets
are part of a session and are guaranteed to arrive.

What is the difference between XML and HTML?

XML and HTML are both markup languages. That’s what the ML in both of their names
means. HTML and XML look similar internally as they both use the same format for
describing elements and attributes. XML is a standard that describes how to make any
kind of document. I could design an XML document to hold football scores, or types
of cheese, or anything else I want to manipulate and send to other computers. HTML
is a markup language specifically for telling a web browser how to display a webpage.
HTML contains elements that can describe the format of text, the position of images,
and the color of the background, among other things. You can think of HTML as a kind
of XML document specifically for webpages.

What is the difference between HTML and HTTP?

HTML (Hypertext Markup Language) tells a browser what to display on the screen.
HTTP (Hyper Text Transfer Protocol) is how the server and the browser move the page
data (an HTML document) from the server into the browser. We’ll see more of HTTP in
the next chapter.

9781509304523_14_Python_548-569.indd 568 10/29/17 6:39 PM

