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Introduction

ASP.NET Core MVC is Microsoft’s latest web framework for .NET developers. It is the 
next version of the now-familiar MVC Framework and aspires to cross boundaries by 

enabling cross-platform development and deployment. It leverages a wide assortment 
of open source libraries and is, itself built as open source software. ASP.NET Core MVC 
helps developers to separate concerns like business logic, routing, services, and views 
and provides new systems for configuration and extensibility. It uses the C# program-
ming language and the Razor view engine. If you are an experienced .NET developer or 
a newcomer to the .NET platform, ASP.NET Core MVC is likely what your projects will be 
built from.

This book follows the first few sprints of an application being redeveloped by a team 
at a fictional company named Alpine Ski House. Each chapter contains a little bit of infor-
mation about the challenges the team is facing and how they work to overcome them. 
Despite having a short story element to each chapter, the book dives deep to cover not 
only the features of ASP.NET Core MVC, but also the tooling around it that developers 
will use to build, maintain and deploy their applications.

In addition to its story elements and technical information around ASP.NET Core 
MVC, the book discusses the new version of Entity Framework, package management 
systems, and peripheral technologies that are used by modern web developers. Beyond 
the explanatory content, the book also comes with an accompanying project—the very 
same project that the developers at Alpine Ski House have built. 

Who should read this book

The book takes a programmer through all the steps necessary to build a brand new 
application on ASP.NET Core and push it out so it is available on the Internet. There is 
still a great population of programmers who have yet to journey onto the web or have 
done so only using webforms, much less using the full gamut of tooling that is available 
today. This book will help put the skills and confidence needed in place to build modern 
applications on an emerging framework. It will help you explore application architecture, 
deployment and building applications that are designed for the cloud.
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Assumptions
Readers should know how to program at an intermediate to senior level. Readers should 
be proficient in C#, have a background in web development, and understand funda-
mentals of working in Visual Studio. Experience with previous versions of MVC will be 
beneficial, but not required. Familiarity in working with a command line interface will be 
an asset. After completing this book you will be able to build a meaningful and relevant 
database-driven application and deploy it to a cloud-based infrastructure. 

This book might not be for you if…

This book might not be for you if you are an advanced ASP.NET MVC developer who has 
been closely following or contributing to the development of ASP.NET Core MVC.

Organization of this book

This book offers the innovative approach of taking developers through individual sprints 
in the development of an application. It will cover not just the technology, but also the 
process of recovering from mistakes and adjusting to user feedback, starting from a 
blank canvas and ending with a real working product.

This book is divided into four sections: 

■■ Part 1, “Alpine Ski House,”  Covers background information that sets up the ex-
ample app and fictional characters in the story used throughout the book

■■ Part 2, “Sprint Retro: A Journey of 1000 Steps,” focuses on the features required 
to get our application out the door, configuring the pipeline so that deployment 
happens on-the-fly in a way that the whole team understands. 

■■ Part 3, “Sprint Retro: The Belly of the Beast,” focuses on the core features needed 
to get the business running with our sample application. Here we introduce data 
access using the Entity Framework Core, creating views using Razor, Configu-
ration and Logging, Security and User Management, and finally Dependency 
Injection. 

■■ Part 4, “Sprint Retro 3: Home Stretch” covers JavaScript and dependency man-
agement, along with building on top of the previous foundations. 

Postfix covers some important topics such as testing, refactoring and extensibility.



	 Introduction	 xix

Finding your best starting point in this book
The different sections of ASP.NET Core Application Development: Building an applica-
tion in four sprints cover a wide range of technologies associated with the ASP.NET Core 
framework. Depending on your needs, and your existing understanding of Microsoft’s 
web stack, you may wish to focus on specific areas of the book. Use the following table to 
determine how best to proceed through the book.

If you are Follow these steps

New to ASP.NET Core development, or 
an existing ASP.NET Core developer

Focus on Parts I, II and III, or read through the entire book in 
order.

Familiar with earlier releases of ASP.
NET

Briefly skim Chapter 1 and Chapter 2 if you need a refresh on 
the core concepts.
Read up on the new technologies throughout the renaminder 
of the book.

Interested in client side development Read Chapters 15, 16 and 17 in Part IV. 
Skim the section on JavaScript services in Chapter 20.

Interested in cross-platform develop-
ment

The entire book is applicable to cross platform developemnt 
but Chapter 8 and 9 are specifically deidcated to the topic.

Most of the book’s chapters include hands-on samples that let you try out the concepts 
just learned. No matter which sections you choose to focus on, be sure to download and 
install the sample applications on your system.

Conventions and features in this book

This book presents information using conventions designed to make the information 
readable and easy to follow.

■■ The book includes samples for C# programmers and syntaxes such as HTML, CSS, 
SCSS and Razor.

■■ Boxed elements with labels such as “Note” provide additional information or 
alternative methods for completing a step successfully.

■■ A plus sign (+) between two key names means that you must press those keys at 
the same time. For example, “Press Alt+Tab” means that you hold down the Alt 
key while you press the Tab key.

■■ A vertical bar between two or more menu items (e.g. File | Close), means that 
you should select the first menu or menu item, then the next, and so on.
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System requirements

You will need the following hardware and software to run the sample application accom-
panying this book:

■■ .NET Core 1.0 or newer, available cross platform from https://dot.net. 

■■ Your code editor of choice. We use Visual Studio 2015 (any edition) or newer on 
Windows and Visual Studio Code on Windows, Mac and Ubuntu Linux.

■■ SQL Server LocalDB (included with Visual Studio 2015 or newer on Windows). 
Linux or Mac users will need access to a SQL Server database hosted either on a 
Windows machine or in Microsoft Azure.

■■ Computer that has a 1.6GHz or faster processor

■■ At least 1 GB of RAM 

■■ 4 GB of available hard disk space

■■ Internet connection to download software and sample project

Depending on your Windows configuration, you might require Local Administrator 
rights to install or configure Visual Studio 2015.

Downloads: Sample Project

Most of the chapters in this book include snippets from the sample project. The sample 
project is available on GitHub:

https://github.com/AspNetMonsters/AlpineSkiHouse

Follow the instructions on the GitHub repository to download and run the sample project.

Note  In addition to the sample project, your system should have .NET Core 1.0 
or newer installed. 

https://www.dot.net
https://www.github.com/AspNetMonsters/AlpineSkiHouse
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Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. 
You can access updates to this book—in the form of a list of submitted errata and their 
related corrections—at: 

https://aka.ms/ASPCoreAppDev/errata 

If you discover an error that is not already listed, please submit it to us at the same page.

Get all code samples, including complete apps, at: https://aka.ms/ASPCoreAppDev/
downloads.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software and hardware is not offered 
through the previous addresses. For help with Microsoft software or hardware, go to 
http://support.microsoft.com.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks 
from Microsoft Press cover a wide range of topics. These ebooks are available in PDF, 
EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree 

Check back often to see what is new!

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valu-
able asset. Please tell us what you think of this book at: 

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers 
go directly to the editors at Microsoft Press. (No personal information will be requested.) 
Thanks in advance for your input!

https://www.aka.ms/ASPCoreAppDev/errata
https://www.aka.ms/ASPCoreAppDev/downloads
https://www.aka.ms/ASPCoreAppDev/downloads
http://www.support.microsoft.com
http://www.aka.ms/mspressfree
http://www.aka.ms/tellpress
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Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.twitter.com/MicrosoftPress


		  1

PART I

Alpine Ski House

CHAPTER 1	 How We Got Here .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5

CHAPTER 2	 Influencers .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17

CHAPTER 3	 Models, Views, and Controllers .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27

CHAPTER 4	 Scoping the Project .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 37

CHAPTER 5	 Builds .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  45

CHAPTER 6	 Deployment . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57

Here is some background information that introduces the 
fictional aspect covered in this book, including the fictional char-
acters that are creating the Alpine Ski House application.

Even the most fervent riders had to admit it: the season was at an 
end. It hadn’t been the best season in memory but nor had it been 
the worst. It had been, in every way, unremarkable. There had been 
moments, a power outage in late February had forced the dust-
ing off of an emergency plan which had long been practiced but 
never used. There had been reports on the local news station about 
children trapped on gondolas for hours but with the balmy weather 
nobody had ever truly been in danger. A smattering of free passes 
was all that was required to keep the skiers and riders coming.

The spring was a time for the permanent staff to regroup and 
the seasonal staff to return to wherever it is that lefties go in the 
summer. A rumor among the permanent staff was that at least 
half of the seasonal staff were rounded up by immigration as 
soon as they stepped off the hill and sent back to Australia. Dani-
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elle couldn’t imagine why the young seasonal staff would resist 
being sent back to Australia. One thing was for sure, it was much 
more exciting in Australia than in the sleepy mountain town that 
reemerged from hibernation each winter.

It was still too early to plan the next year and Danielle was look-
ing forward to a month or two of down time before the cycle began 
anew. She had been the lone developer for Alpine Ski House for 
close to a decade and every year was about the same. Most of her 
time involved keeping legacy systems running and adjusting what-
ever small things were needed for the next year’s activities. It wasn’t 
the most exciting job in the world but over the winter months it was 
expected that everybody would sneak off for a couple of hours ski-
ing on nice days and that was a perk she thoroughly enjoyed.

Opening the door to the low-rise that Alpine Ski House called 
home she was surprised to see that things were buzzing. People 
she wouldn’t have expected to see in the office for a couple of 
hours were scattered about in huddles throughout the open 
plan office. Confused, Danielle dumped her bag and grabbed a 
coffee before looking for a huddle to join. The rest of the IT staff 
seemed to be orbiting Tim, the portly IT manager and her boss. 
Danielle headed over to join.

“Danielle! What do you think of the news, going to be an 
exciting time if you ask me,” boomed Tim.

“What news is this?” asked Danielle.

“Where have you been?” asked Arjun, “We just bought out 
Thunder Valley and Mount Ballyhoo. They’re merging operations 
and we’re all going to lose our jobs!”

The two other ski areas were a few miles down the road. 
Thunder Valley was a small operation with only three lifts but a 
loyal following of ski bums. It was a favorite for the locals who 
wanted a break from the crowds of tourists in the winter months. 
It couldn’t be more different from Mount Ballyhoo if it had been 
the output of Babbage’s difference machine. Mount Ballyhoo 
was a huge ski hill spanning three mountains with countless lifts 
and enough on hill accommodation to house everybody in town 
twice over. Every weekend they had bands playing on the hill, 
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and it was not uncommon to see famous people like Scott Gu 
and John Skeet there rubbing shoulders with the commoners.

“Now Arjun,” said Tim, “nobody has said anything about 
layoffs or redundancies or anything of the sort. Why at times like 
this the workload for IT usually increases because management 
wants systems integrated right away. We’re just going to have to 
wait and find out what the plans are.”

Danielle had to sit down. She was years still from retirement 
and didn’t want to find another job. How many jobs would there 
be for programmers in a seasonal town like this? “This is silly,” she 
told herself, “there is no use planning a move back to the big city 
based on this sort of uncertainty. Things will shake out in the next 
couple of weeks.”

As it turned out nobody was waiting a couple of weeks.

As soon as lunch, a dandelion and walnut salad, with balsamic 
sweet potato crisps, was over, Tim came knocking at her cubicle.

“We’re gathering in the big conference room. It sounds like 
the programmers from Thunder and Ballyhoo are here.”

Gulping down the rest of her goat’s milk, Danielle grabbed a 
pen and a big yellow legal pad and hurried towards the confer-
ence room. The pad and paper were just for show; she hadn’t 
taken notes at a meeting in years. It was easier to just engage 
people around the small office in person than plan things out 
way in advance on a notepad. Better to make a good impression 
right away with layoffs on the horizon.

The big conference room was rarely used outside of potlucks 
because there simply weren’t enough people to fill it. But today 
it was, if not packed, at least well used. Five young hipster look-
ing individuals sat at one end of the table sipping on all manner of 
exotic looking smoothies. Danielle wondered how one would even 
go about importing rambutan and what sort of carbon footprint it 
would have. Still it was better than that time she had hacked her way 
into a durian only to have to defenestrate the offensive fruit.

Clearly divided from the hipsters were a group guys who 
would have been called “suits” in the big city. Out here they 
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looked like they had just stepped of a golf course. Somehow they 
were already tanned and relaxed looking.

Tim waited for everybody to settle and then addressed the 
room, “Good news, everybody, this is the team we’re moving for-
ward with. If you’ve made it to this room, then your job is safe and 
you can relax. I’m sure you all have questions about that and you 
can come see me individually after this meeting if you want to talk.

“Management has asked me to keep a larger number of 
programmers on staff after the merge because they have some 
exciting new initiatives that they want us to embark upon. Over 
the next few years we’re going to be refreshing all the custom 
systems we have in place to run the hill. They recognize that this 
is a big undertaking and some of them have been reading CIO 
magazine and they’ve learned about agile and microservices. I 
can assure you that I’ve given instructions that all future copies 
of that magazine are to be burned before they reach manage-
ment’s hands but for now we’re stuck with it.”

Tim had always had a bit of a rocky relationship with manage-
ment’s great new ideas. He was the emergency brake on their 
crazy ideas. He continued on. “The first thing management want 
is a way for people to buy their lift tickets online. I’m told that it 
is 2016 and that we should have that in place already and that 
every other hill in the world has it.” Tim seemed exasperated by 
management’s generalizations; it must have been a fun discus-
sion when these orders came down.

“Management wants to see a prototype in a month’s time. I think 
I can buy another week if we can show that we’re making progress.”

A month’s time! Danielle was beside herself. A month was how 
long Danielle liked to spend getting her head around a problem. 
She looked over at the hipster developers hoping they shared her 
ashen face. But the wheatgrass crew were nodding along happily.

Tim looked like he was coming to a conclusion and readying 
to step down from his soapbox. “Look guys, we need this to buy 
us some capital with management. I’ll clear any roadblocks in 
your way. Use whatever technology you think is best buy what-
ever tools you need. I trust you to get this done.”
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C H A P T E R  3

Models, Views, and Controllers

It was a surprise when Adrian popped over to Danielle’s cubicle. Maybe more surprising was the 
furrowed brow he was sporting. “Got a minute?” he asked in a hushed tone, and then walked 
away without waiting for an answer. She nodded a confused yes, mostly to herself, and slowly got 
up to follow him to a side room. She scanned around the development pit, but didn’t see anyone 
watching, much less interested, and couldn’t really get a read on why he was assuming the role of 
secret agent in this software docu-drama.

He closed the door behind her as she stepped into the room. “Look, I’m a CSS guy. I’m not 
going to sugar coat it. I know my way around jQuery well enough to troubleshoot, but I’m no 
programmer.” He looked tense and Danielle wondered what he’d been thinking. “Everyone else 
seems to be buying into this shift over to Core or whatever it’s called...but I’m...I mean, come on, I 
run Linux on my laptop and I don’t even use Office.” The room quickly drew silent.

“Are you still nervous, Adrian? Marc had mentioned that you were worried about the cuts.” 
Danielle was nervous too, truth be told. She had lost some good friends herself when the merge 
went through, but she wasn’t sure that was what he needed to hear at the moment.

“Well yeah, I guess,” he replied. “But my knowledge of MVC is that it stands for Model-View-
Controller, and I haven’t taken a look any deeper than that. And you guys keep referring to it as 
a framework. If it’s a framework, but you have to make your own models, views, and controllers, 
then the MVC part seems more than a little misleading, don’t you think?”

He had a point. “Well, yeah, that’s actually pretty true,” said Danielle. 

“I’m coming from a different view here; I just want to wrap my head around it. I want to learn, 
but I’m not sure I know where to start, either.” Adrian pounded back the rest of his coffee like it 
was about to expire. “I know they said we’re safe if we’re still here, but I don’t want to get caught 
with my feet standing still if they think there’s still room to shrink the team.”

“Okay, look,” said Danielle, “I’ve got a bit of time right now, let’s run through the basics and 
we’ll learn together. We’re all going to be fine.”
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The M, the V, and the C of it

Let’s face it, the MVC Framework is a pretty boring name. The acronym used in the title is from the 
well-known Model-View-Controller pattern, and it helps to organize a project. If you’re familiar 
with it, the name literally spells out some of the original intent to separate concerns, and moves 
away from the other common pattern at the time known as Page-Controller. The name can also 
be misleading. The framework is much more than just models, views and controllers. ASP.NET 
Core MVC has a growing set of tooling and libraries available to that help developers create great 
applications, worthy of the modern web world.

Let’s do a quick recap on the aspects you should already understand, and then move into some 
more interesting aspects of the framework, officially known as ASP.NET Core MVC.

Diving into Models
First up is the letter M, so we’ll start with Models. The model represents the data that we need to 
properly render an experience, or part of an experience, for a customer. Customers are navigating 
to a page in the application that is data-driven, and models are the data part. However, as far as 
intent goes, the model in question is actually what you’ll be using to support the rendering of the 
view, and not the entity or entities in question in which you persist to the database. 

Let’s consider this example from Alpine Ski House’s possible database design that deals with 
user account summaries, as shown in Figure 3-1. When you want to indicate to the user that she 
has a current season pass, you don’t want to return the list of season passes to the view and iterate 
over the collection to see if one exists that has not yet expired.

FIGURE 3-1  A screen shot showing a sampling of tables that might be used to model purchasing season passes



	  Chapter 3  Models, Views, and Controllers	 29

Returning all of this information to the view would be more than is required. Listing 3-1 contains 
a view model that might more closely approximate the information you would want to display to the 
user. As you can see, this is a POCO that sports the properties you can use to satisfy the view require-
ments without the view needing to make any decisions about what to display or any implementation of 
business logic. The view doesn’t need to know what qualifies as a current season pass nor does it need 
to sift through any of the purchase details or iterate through child records in related tables to make 
sense of the data.

LISTING 3-1  The AccountSummaryViewModel Class

public class AccountSummaryViewModel 
{ 
    public Guid UserId { get; set; } 
    public int YearsOfMembership { get; set; } 
    public bool IsCurrentSeasonPassHolder { get; set; } 
    public List<string> IncludedFamilyMembers { get; set; } 
}

The differentiation between what you craft for models on the front end, versus what you store in 
the database, is important not just for separating the concerns of the view and the business logic that 
supports it, but also for helping to prevent certain types of security issues. On the “write” side of things, 
when a view uses a database entity, the application becomes more likely to fall victim to overbinding 
bugs or attacks. Overbinding occurs when fields that weren’t anticipated from an incoming request are 
present in form or querystring parameters. The model binder sees the properties, doesn’t know that 
you hadn’t intended for them to be there, and kindly fills in your data for you. As an example, consider 
the class representing some kind of a digital asset in Listing 3-2.

LISTING 3-2  The AccountSummaryViewModel Class

public class DigitalAsset 
{ 
    public Guid AssetId { get; set; } 
    public Guid AssetOwnerId { get; set; } 
    public string Title { get; set; } 
    public string Description { get; set; } 
    public Uri AccessUri { get; set; } 
}

This type of model can be used to display a list of resources made available to a user, and doing so is 
quite harmless. But, if you use the same object to receive edits for the record, a malicious user can ex-
ploit the fact that AssetOwnerId is a property and use that to take ownership of the asset. In fact, this 
is how Egor Homakov gained administrative privileges for the Ruby on Rails (RoR) repository on GitHub 
in 20121 (The technique in RoR is exploited through improperly checked models that make use of the 

1	  GitHub reinstates Russian who hacked site to expose flaw, John Leyden, March 5, 2012, http://www.theregister.co.uk.

http://www.theregister.co.uk
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mass assignment feature, an analog to automatic model binding in ASP.NET Core MVC. Thankfully, Ho-
makov’s intentions were pure and no harm was done. We have learned from those binding conventions 
and habits of yore though. Today, we have many ways to protect ourselves, which we’ll cover later in 
Chapter 13, “Identity, Security and Rights Management,” but likely the easiest way is to make sure we’re 
using models that are appropriate to the task at hand.

Most of the examples you find for view models will likely use an entity directly as the model type for the 
view; however, the approach does not facilitate other aspects of software development, such as testing, 
nor does it help with separating concerns in your controllers. Using the entity directly in a view means that 
you’ve achieved an undesirable level of coupling from the database all the way up to the view.

A model should be everything you need to render your page after you’ve taken care of business 
logic and often has a flattened view of a denormalized record from several tables in the database. 
For these reasons, and considering the intent of the object you’re building up when you create a 
“model,” you should likely think of it as the “view model” due to its close relationship and responsi-
bility to the view. 

Views
Here, the view in question happens to start with V and is indeed the view we’re talking about in our 
new favorite acronym. Views in ASP.NET Core MVC are the files used to interleave parts of the model 
with the HTML needed in order to present the user with the intended user interface. If you create a new 
project from the default application template you will find all the views in the Views folder, or you can 
search Solution Explorer with the term “.cshtml,” which is the extension used for Razor views.

Using the Razor view engine and syntax you’ve seen through the last few iterations of the MVC 
Framework, you can switch effortlessly between the syntax used to control flow or access our model or 
services, and the markup required to generate HTML.

In Listing 3-3 we have created an unordered list with values from the model’s IncludedFamily-
Members collection. Razor lets you use C# inline with the HTML and is pretty smart about how it inter-
prets what you throw at it. A simple @ character is enough for the parser to know you’re flipping into 
C#, and since angle brackets can’t be used at the start of a valid C# statement, it can tell when you’ve 
switched back to HTML. We’ll be covering Razor in greater detail in Chapter 11, “Razor Views.”

LISTING 3-3  An example of mixing C# and HTML in Razor Syntax.

<ul> 
    @foreach (var familyMember in Model.IncludedFamilyMembers) 
    { 
        <li>@familyMember</li> 
    } 
</ul>
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Partial Views
Toolbars, authentication cues, shopping carts, parts of dashboards, and other similar components of 
your application often find themselves appearing on multiple pages, or even on all pages. In the name 
of Don’t Repeat Yourself (DRY), you can create these components using a partial view, which can in 
turn be used repeatedly from any other page. You’ll also see partial views referred to more simply as 
“partials.” We’ll use those terms interchangeably throughout the book.

Partials are not typically rendered on their own, but are used in composition of other views in your 
project. The first place you see this in any MVC application is likely to be in the _Layout.cshtml, where 
the view relies on partials to render the login status. Other common uses include using a partial view to 
render items in toolbars, shopping cart summaries like those you see at the top of an ecommerce site, 
or side bars with relevant data for the current page. 

Child actions had to be rendered synchronously in previous versions of the MVC Framework, but the 
same ideas that made partials possible can now be used to construct view components and invoked 
asynchronously. We’ll talk about View Components more in Chapter 18, “Reusable Components,” which 
is important in certain scenarios to keep performance in check on the site. Complex generated views 
and partials that interact with services are examples of this, which we’ll talk about later in this chapter.

Before users can get the output of a view, and in order for you to load any kind of model into the 
view engine, we must talk a little bit about Controllers in your project.

Controllers (...and Actions!)
Controllers are the traffic cops of MVC applications, ensuring the right types of bits travel to and from 
the correct places. Controllers typically inherit from the base Controller class, but if you don’t need 
the functionality of the base class, you can also use the convention of ending your class name with 
“Controller,” such as in SeasonPassController.  

The default convention assumes that you are putting your controllers in a folder called “Controllers” 
in the root of the project. This is no longer required because Core MVC actually does an assembly scan 
using the naming and inheritance conventions, but it’s still a recommended practice to organize your 
controllers in a recognized way. This helps other developers, including the future version of yourself, to 
easily manage and maintain the code base down the road.

As software developers, we use controllers as a container for related sets of handlers for incoming 
requests. These handlers are called actions and are implemented as methods in our controller class. 
Each method, or action, can accept zero or more parameters that are automatically filled in by the 
model binding step in the execution pipeline if they are presented by the incoming request. 

As the authors of these “traffic cops,” our goal is to code our controllers using some well-accepted 
practices. The primary responsibility of an action is to process a request, validating the incoming pa-
rameters and creating an appropriate response. 

From time to time, this also requires creating or requesting an instance of a model class, or produc-
ing an appropriate HTTP status code based response. You should try to avoid having any business logic 
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in your controller, which is the responsibility of your model or other components, as well as keeping 
data access or external calls out of your actions, which should be part of your application services. This 
is represented in a high level in Figure 3-2.

FIGURE 3-2  An illustration showing how controllers are responsible for invoking business logic that helps to gener-
ate an appropriate HTTP response

Keeping these services external might seem to make things more complex, or raise questions like, 
“Who will create these services for me?” This is a great question and one that we’ll answer in the “De-
pendency Injection” section later in this chapter.

It’s Not Just About MVC

As discussed earlier, there’s actually a lot more going on than just the models, views and controllers 
themselves in your solution. We’ll continue to explore these throughout the book, but here are some 
important ideas to have in the peripheral as you develop.

Middleware
Here is the secret about middleware in ASP.NET Core MVC: it’s pretty much all middleware. All of it! 
During application start-up you have the opportunity to load your configuration, configure your ser-
vices, and then configure the request pipeline, which is where the concept of middleware is called into 
play. You can see this in the Configure method of the Startup class in the default project template.

Often, the description of middleware and the interpretation by the reader overcomplicates a fairly 
simple premise. The purpose of middleware is to allow an application to say, “Have each request 
processed by the following components in the order that I specify.” Middleware is a simplification over 
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previous incarnations of similar functionality in ASP.NET, namely HTTP Modules and Handlers. Middle-
ware replaces both with a common approach in a fashion that is easier to implement.

There are several pieces of middleware that ship publically to handle most scenarios that you need 
to cover during the execution of your application, both in lower level environments such as staging and 
QA, as well as in production:

■■ Diagnostics: Provides exception handling and runtime helpers like database error pages and 
technical details to developers.

■■ Static files: Allows a short-circuit of the request pipeline to return a file from disk.

■■ Identity and Authentication: Allows applications to protect end points and assets of an  
application.

■■ Routing: Resolves which controller and action should be executed based on the incoming path 
and parameters.

■■ CORS: Handles injecting the correct headers for cross-origin resource sharing.

■■ MVC itself: Usually at the end of the configured middleware pipeline as it consumes requests.

Each middleware component has the option to execute code before and after the next component 
in the chain, or to short-circuit the execution and return a response. The name middleware likely comes 
from the idea that you can execute a piece of software in the middle of something else, as shown in 
Figure 3.3. In this instance, you see a series of different requests that are handled by the various mid-
dleware components in the default project template. In some cases, the request is handled by the static 
files middleware, returning an asset in wwwroot. At other times, the request is allowed to pass all the 
way through to the MVC execution pipeline where your controller is created and you can return a view. 

FIGURE 3-3  An illustration showing examples of different request types as handled by middleware
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You can bring in other middleware from third parties, additional helpers that are provided by 
Microsoft, or you can write your own to handle cross-cutting concerns that are needed throughout 
your application. The middleware pipeline can also be branched based on paths or predicates to allow 
dynamic, flexible rules around processing requests.

Dependency Injection
There are many written volumes covering dependency injection, but we’ll recap the basics here for 
completeness.

Generally speaking, it’s likely going to be a good idea for your code to be obvious about the depen-
dencies that it takes on. In C# you tend to do this by putting the components and services you need in 
your constructor, such that any creator of the class has to provide your dependencies for you. 

Let’s consider the constructor of the HomeController class in Listing 3-3. The class requires that 
any time it is being created an instance of an ILogger implementation would be provided for it. 

LISTING 3-3  The HomeController Class Constructor

public class HomeController{ 
  ILogger _logger 
  public HomeController (ILogger logger)  
  {   
    _logger = logger; 
  } 
}

HomeController doesn’t need to know how to configure or create an ILogger, it doesn’t need to 
know where to log to, or how it is to be done. But from any point after instantiation, HomeController 
is now able to add valuable information to your log files as required. This one simple parameter on 
the constructor explicitly defines your requirements and is referred to as the Explicit Dependencies 
Principle.

For this controller to be created by the pipeline, you need to have something in the runtime aware 
of how to resolve the ILogger requirement. You configure these services and components in a con-
tainer, and then these types of dependencies are injected for you into the constructors at runtime. And 
voila, dependency injection! Being a broader topic, and also by virtue of ASP.NET Core MVC introduc-
ing some new ideas for Dependency I 	 njection (DI), we’re going to take a deeper look at the idea of 
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inverting control in Chapter 14, “Dependency Injection,” where we’ll also explore what is required when 
replacing the default container.

Other Gems
ASP.NET Core MVC contains some great improvements over previous versions and we are going to 
explore them throughout the book.

■■ Configuration and Logging: Long considered afterthoughts in the .NET space, these critical 
application aspects have been revamped, simplified, and made into first-class citizens. Read 
more about these in Chapter 12, “Configuration and Logging.” 

■■ Tag Helpers: Along with a few other aspects of simplifying front end development, in Chapter 
18, “Reusable Components,” we’ll examine Tag Helpers and how they more closely resemble the 
HTML we’re trying to return to the client.

■■ Identity: A user is more than just a name and a password. In Chapter 13, “Identity, Security & 
Rights,” we’ll explore the new features, uses, and components around security and rights man-
agement in ASP.NET Core MVC.

Summary

Each iteration of the MVC Framework has helped shape part of what it’s become today. Some lessons 
learned along the way have helped to bring better assets to developers and the models, views, and 
controllers we have at the heart of our applications today take up only a small part of our development 
efforts. 

Before they knew it, the morning had escaped them and Danielle had all but plastered the white-
board with dry erase marker. Adrian flopped back in his chair and said, “Geez, Danielle. Someone 
should write a book on this.”
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integration tests  50, 324
IntelliSense

for custom tag helpers  300
IntelliTest  359
internal threats  194–195
internal users  197
internationalization  341–352

localizable text  343–348
setting current culture  348–351
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Internet Explorer

Internet Explorer  243
Internet Information Server (IIS)  58, 59, 64

enabling hosting  61–62
reverse proxy and  59–61

Internet of Things (IoT)  41
inversion of control (IoC)  223, 228
Invoke method  302, 303
IParameterModelConvention  326
IQueryable<T>  123
IServiceCollection  227, 228, 229
isolation

performance and  106–107
isomorphic applications  338–339
IStringLocalizer service  344–345
IViewLocalizer  346

J
Jakarta Struts  18
Jasmine  320–321
Jasmine JavaScript unit framework  255
Java  245
JavaScript  , 231–250, 221–230

Angular  23–24
build tools  235–243
Bundler & Minifie  236–237
choosing  243
Grunt  237–238
gulp  239–240
WebPack  240–243

code writing principles in  232–233
external script files  233
files  234
frameworks for  249–250
isomorphic applications and  338–339
mixing with HTML  232
module formats  241
module loading  247–248
need for  233
organization  233–234
popularity of  23
React  23–24
security vulnerabilities  232–233
Single Page Application  234–235
testing  233, 320–323
TypeScript and  243–247
variable scoping in  245

Jenkins  65, 71
jQuery  249, 298

JScript  6
JSON results  11
Just-In-Time compiler  66
Just-In-Time compiler (JITer)  102

K
Karma  321–323
Karma test runner  255, 256
Katana  25
Kestrel  25, 58–59

Nginx and  62–63
NTLM authentication  61
reverse proxy and  59–61

key-value pairs  171
Kubernetes  116, 117

L
labels  116
lambda syntax  244
landing pages  282
layouts  13

foundations of  159–161
working with  158–161

legacy code  358
legacy support  18
LESS  269
let variable scoping operator  245
libraries  251–252

base class  102
client side  260
definition files and  246–247
portable class  102
shared  108

link tag helper  297–299
Linux  93–94

Alpine Ski House on  98–101
code editors  98
SQL Server and  100
Ubuntu  94–98

Linux containers  110–114
load testing  324
localization middleware  348–349
localization, of applications  341–352
logging  35, 92, 177–188, 365

as a service  186–188
as development strategy  179–180
exception handling  178
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Ninject

levels of  180–183
scopes  183–185
structured framework for  185–187
writing helpful log files  177

M
MapRoute  335
MapWhen function  333
Marathon  116
master pages  8–9, 13, 158
MD5 Hashed Passwords  204
mediator class  377–378
mediator pattern  376–380
MediatR  376–380
MediatR library  144
MergeClassAttributeValue extension method  301
Mesosphere  116
micro-ORMs  120
microservices  355
Microsoft Account  199
Microsoft Azure. See Azure
Microsoft Developer Network (MSDN)  51
Microsoft Windows

backward compatibility  18
middleware  13, 32–33, 328–333

as class  331
localization  348–349
pipelines
branching  332–333
configuration  329–330

writing your own  330–332
Migration class  125
migrations

adding  125–127
database providers and  129–130
data types and  127–128
to create and update databases  124–128

mixins  274–275
mkdirp  260
mobile devices  10

browsers on  243
mocking  223
model binding  11
models  12

defining, in Razor  156–157
in MVC framework  28–30

Models folder  381
model state validation  138

Model View Controller (MVC) framework  27–36, 
35–36

controllers  31–32
models  28–30
partial views  31–32
views  30

Model-View-Controller (MVC) framework  10, 11–12
extensibility of  326–340

Model View Controller (MVC) web frameworks
Ruby on Rails  18–21

Model-View-Controller pattern  28
modular applications  22
module formats  241
module loaders  247–248
modules  229
MSBuild file  47
MSTest  308
multi-tenant authentication  197

in Azure Active Directory  197
MvcOptions parameter  212
MyGet  254

N
namespaces  375

lack of, in JavaScript  232
NancyHost  58
NDepend  370
nested master pages  9
.NET Core  15
.NET Core  66, 101–104

dotnet command line interface (CLI)  94–98
installing, on Ubuntu  94

.NET framework  7

.NET framework
internationalization support in  343

.NET framework
cross-platform support for  93–104

.NET Runtime Installer  66

.NET Standard  102–104

.NET Standard Library  66–67
networks

in container environments  109
Next Generation Windows Services (NGWS)  7
Nginx  62–63
nginx.conf file  62
nHibernate  120
nightly builds  48
Ninject  228
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Node.js

Node.js  22–24, 25
npm and  255–258

Nodejs  338, 339
node_modules directory

restoring  259
node services  339
NotFound() method  139, 140
npm  255–258

adding dependencies  255–256
modules, using  256
shortcomings of  259
Visual Studio integration  257–258

npm init command  255
npm install command  255, 256, 257
NPM package manager  22
npm run-script command  256
NTLM authentication  61
NuGet  22, 85, 252–254, 260

feeds  254
installing packages with  252–254
Visual Studio tooling  252–254

.nuget files  67
nuget packages  67
nUnit  308
nvarchar(max) datatype  127

O
object oriented programming  355
Object Relational Mapper (ORM)  120

Entity Framework (EF) Core  120–146
micro-ORMs  120
System.Data  120

Octopus Deploy  67
OmniSharp  98
OneDrive  70
OnModelCreating method  142
OpenID Connect  201
open source  24
Open Web Interface for .NET (OWIN)  24–25, 58
Open Web Interface for .NET (OWIN) standard  13
operating systems  93, 107
options delegates  225
options pattern  176–177
orchestration system

containers  109
Origin headers  218
ORM. See Object Relational Mapping
outbound traffic  92

output caching  283
OWIN (Open Web Interface for .NET)  24–25

P
package.json file  255, 257, 258
package managers  252–262

Bower  260–262
npm  255–258, 259
NuGet  252–254, 260
Yarn  258–260

package restore  49, 55
packages

building  67–68
global installation of  256

Page-Controller pattern  28
parallel structure  375–376
partial views  31–32, 161, 305–306
Pass class  145
pass types  141–142
passwords

encrypted  204
hashing  204–205
storing  204–205
verifying  207

PayPass  39
PayWave  39
PCLs. See portable class libraries (PCLs)
performance

isolation and  106–107
performance testing  50–51
Perl  6
PhantomJS  323
PHP  18
pipelines

branching  332–333
configuration  329–330

Pipes and Filters architecture  328
plain old CLR object (POCO)  12
Plain Old CLR Objects (POCOs)  120
platform as a service (PaaS)  69
Platform as a Service (PaaS)  117
Platform-as-a-Service (PaaS)  80–83, 88–89
platform services  80–82

building applications using  83–89
pods  116
policies

applying globally  212–213
custom authorization  214–215
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relationships

defining for selected use  213–214
for authorization  212–215
limitations of  214–215

portable class libraries  102
portable class libraries (PCLs)  66–67
portable mode  66
POST action  11
POST action method  137, 140
POST method  138
PowerQuest Drive Image  106
pre-processors, CSS  269
principles of least privilege  194–195
production environments  106
production servers

update scripts for  129–130
Program.cs  58
project.json file  47, 252
Project Parsley

admin view  42
API  41–42, 43
ApplicationDbContext  130–133
application integration  42–43
customer view  39–41
deployment  58–74
domain for  43
Entity Framework (EF) Core and  119–146, 120–146, 
147–168
SkiCardContext class  133–140
source code  38

projects
adding services to  225–227
customer view  39–41
keeping code in multiple  374–375
scoping  37–44
structure of  374–382

proxy servers  59, 283, 284
PSake  47
publishing  64–66
publish-subscribe messaging pattern  144
PurchaseCompleted class  145

Q
QueueTriggerAttribute  89

R
R#  370
Rack  25

Radio Frequency Identification (RFID) chips  39–40
Rails. See Ruby on Rails
Razor  11–12, 18

syntax  152, 154–155
Razor views  30, 147–168

advanced functionality  162–166
alternative view engines  167
avoiding duplication in  167
C# features  155–157
code  153–154
compilation  151
defining model  156–157
errors in  150
essentials of  149–155
including sections in  160–161
injecting services into  162
layouts  158–161
localization of  346
markup  154
parser control cheat sheet for  154–155
partial views  161, 305–306
role of  149
style sheets and  268
tag helpers  296
Tag Helpers  163–166
view components and  302
view data  156–157
web development and  148–149
writing expressions  152

React  23–24, 249–250
readme files  374
records

change tracking  124–125
querying for multiple  123
querying for single  122
saving  123

recycleOnFileChange setting  62
redirects  11
Redis  287
refactoring  353–365

data driven changes and  365
defined  354–355
microservices  355
time for  357–358
with safety net  358–365

referential integrity  134–135
RefluxJS  249–250
registers  282
relationships

across context boundaries  134–135
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Remove Additional Files At Destination

Remove Additional Files At Destination  72
repeatable environments  106–110
repetition  21
repository structure  374
representational state transfer (REST)  13–14
requirements

in authorization policies  214
resource files  343

culture-specific  345–346
sharing  347–348

resource groups  72
resources

Azure Resource Explorer  82
cross-origin resource sharing (CORS)  218–219
protection of  215–217

reusable components  , 283–290, 307–324, 310–324, 
325–340, 326–340, 341–352, 343–352

partial views  305–306
tag helpers  296–302
view components  302–305

reverse proxy  59–61
RFID. See Radio Frequency Identification (RFID) chips
RFID scanners  41–42
-r flag  68
rkt  110, 114–115
root directory  374
Roslyn  101
Rosslyn compiler  46
Route attribute  336–337
routing  21, 33, 335–337

advanced  337
attribute  336–337
conventional  336

routing table  10
RT5500s  41–42
Ruby on Rails  18–21, 25

conventions  19–21
directory structure  19

runtime errors  12
RyuJIT project  102

S
SASS. See Syntactically Awesome Style Sheets
SASS script functions  273–274
Sassy CSS (SCSS)  268–275

basics of  269–273
directives  274
imports and partials  270

inheritance  271–272
mixins  274–275
nesting  272–273
variables  270

SaveChanges method  123, 124–125
--save flag  255, 261
scaling

web applications  89–92
Scoped lifetime  226
scopes  183–185
scripts  374
Scripts folder  234
script tag helper  297–299
SCSS. See Sassy CSS
search engine optimization  21
search engine optimization (SEO)  338
sections

from views  160–161
security  193–220

ASP.NET Core Identity  202–205
authentication
Azure-backed  197–202
third-party authentication providers  

208–211
through attributes  210–211

authorization
policies for  212–215

cross-origin resource sharing  218–219
cross-site scripting attacks  232–233
external threats  195
internal threats  194–195
passwords
storing  204–205

resource protection  215–217
through attributes  210–211
user secrets and  195–196, 201

selectors  267–268
self-contained packages  67, 68
Seq  187–188
Serilog library  185–187, 187
server push  22
servers

build  48, 49, 51
proxy  283, 284
source control  49, 51

Server Side Includes  6
server side programming  231, 235–236
Service Locator pattern  224
services  117
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Taglet

adding  225–227
injecting into views  162
lifetime of  226
localization  343–344
logging as  186–188
node  339
option  176–177

SetLanguage action method  349–350
SHA hashing function  204
shared libraries  108
SignalR  22
SignInManager class  206, 207–208, 208
sign up policies  200–201
Silverlight  102
Simple Object Access Protocol (SOAP)  13–14
Single Page Application (SPA)  234–235
single page applications (SPAs)  10, 338
single-tenant authentication  197

in Azure Active Directory  197
SkiCardContext class  133–140
SOAP. See Simple Object Access Protocol
social identity providers  199–200
Socket.io package  22
software

continuous delivery of  49
continuous deployment of  48
inside containers  108

software releases  48
solution files  47
source code  38

repository for  53, 54–55
repository structure  374

source control  70
source control servers  49, 51
SPA. See Single Page Application
SPAs. See single page applications
SpaServices  338
spiky loads  69
Spring framework  18
SQL Server  100

distrubuted cache and  287–289
src property  238
standards  373–374
Startup class  133, 170, 176, 185, 213, 225
static files  33
storage accounts  84–86
storage locations  282
storage queues  87–88
Strahl, Rick  59
streams  239

string localization  344–345
strongly typed languages  245
strongly-typed views  156
structured logging  185–187
StructureMap  228
StyleCop  370
Style folder  234
style sheets  263–280

about  265
creating  266–268
custom  279–280
directives  274
imports and partials  270
inheritance  271–272
mixins  274–275
nesting  272–273
SASS script functions  273–274
SCSS  268–275
variables  270

Stylus  269
Symantec Ghost  106
Syntactically Awesome Style Sheets (SASS)  269
syntax

Razor  152, 154–155
System.Data  120
System.Data.SqlClient  120
system.js module loader  247–248
system layers  108

T
table controls  9
tage helpers  35
tag helpers  296–302

anatomy of  296–297
attributes of  296
cache  298
cache busting  297–298
CDNs and fallbacks  298
creating  299–302
environment  297
glob patterns  297
handling existing attributes and contents  
300–301
link  297–299
script  297–299
testing  316–319

Tag Helpers  163–166
Taglet  23
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tags

tags
custom  23

target element  296
Task Runner Explorer  258
TeamCity  51, 65, 71
Team Foundation Server (TFS)  51–56, 71
technical debt  195
templates

ARM  72–74
Test Explorer  310
testing  49–51, 55, 307–324

automated  358
characterization tests  358–359
continuous  310
controllers  313–316
integration  324
integration tests  50
JavaScript  233, 320–323
load  324
mocking  223
performance  50–51
pyramid  50
refactoring and  358–366
tag helpers  316–319
types of  324
unit tests  49, 50, 55, 224, 308–323
view components  319–320

text
localizable  343–348

TFS. See Team Foundation Server
TFS Build  65
third-party authentication providers  208–211
third-party containers  228–229
third-party CSS frameworks  277–280
threads  106, 107
tightly coupled code  223
tokens  205
tools  374
trace logs  180
transpilers  244–246
Trello  10
triggers

for builds  56
tsconfig.json file  241
Twitter  10, 208, 210
two-factor authentication  208

TypeScript  22, 235, 237, 242, 243–247
as ES2015 to ES5 compiler  243–245
exit costs  247
React and  249
typing system  245–247

TypeScript compiler  255

U
Ubuntu  94–98

dotnet command line interface (CLI)  94–98
installing .NET Core  94

UglifyJsPlugin  242
unit tests  49, 50, 55, 224, 308–323

controllers  313–316
Jasmine  320–321
JavaScript  320–323
Karma  321–323
organizing  311–313, 321
running  309–310, 321–323
tag helpers  316–319
view components  319–320
xUnit  308–310, 316

Update Panels  8
update scripts

for production servers  129–130
Up() method  125–126
URLs  21
UseCors()  218
UseIISIntegration  61
UseMvc()  218
user accounts

ASP.NET Core Identity  206–208
deleting  135
lockout of  208

user controls  9, 12
user experience

with Web Forms  9–10
user identity

options for establishing  202
UserManager class  206
usernames

verifying  207
users

authentication of  207–208
management of  206–207

user-secret command  196
user secrets  195–196, 201
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V
validation

passes and  142–146
variables  270
variable scoping  245
VB.NET  7
VBScript  6
-v flag  113
ViewBag  12
view component class  302
view components  31, 302–305

example  303–304
invoking  303
testing  319–320

view data  156–157
ViewData  12
view engines. See also Razor views

alternative  167
_ViewImports  167
View method  20
view results  11
views  11, 30

admin  42
advanced functionality  162–166
alternative view engines  167
avoiding duplication in  167
C# types in  155
including sections from  160–161
injecting services into  162
loading external  334
localization of  346
partial  31–32, 161
Rails  19
Razor  30, 147–168
strongly typed  156
Tag Helpers  163–166

Views folder  381
ViewState container  10
view templates  12
virtual machines  69, 106, 107, 108

scaling  89–90
Visual Basic  7, 8
Visual Studio  64–66

Bower and  260
Integrated Development Environment (IDE)  257
npm integration with  257–258
NuGet in  252–254
Tag Helpers and  166
Test Explorer  310

Visual Studio Code  22, 98
Visual Studio Code (VS Code)  276–277
Visual Studio Team Services (VSTS)  51–56, 65, 71–72

GitHub and  54
VS Code  276–277
VSTS. See Visual Studio Team Services

W
warning logs  180
WCF. See Windows Communication Foundation
Web API  13–15
web applications

building
using platform services  83–89
with Azure  79–92

caching  92
developing  148–149
layouts for  158–161
outbound traffic  92
platform as a service and  80–83
scaling  89–92

web browsers  243
communication with servers  22

web.config  170
web.config file  61–62
Web Deployment  64
web development  148–149

CSS and  264–280
early days of  6
project build tasks  277
workflow for  275–276

Web development tools  22
WebDriver  324
Web Forms  8–10, 12, 18, 20, 21, 24
WebForms  158, 163, 374
WebHost  59
WebJobs  84, 88–89
WebJobs package  86
WebPack  240–243
web pages

master pages  8–9, 13
Web Forms  8–10

web servers  113
caching on  282–290
choosing  58
communication with browsers  22
IIS  64
Kestrel  58–59
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WebSockets

load on  282
Nginx  62–63
reverse proxy and  59–61

WebSockets  22
Where method  123
Wikipedia  232
wildcard patterns  297
windows authentication tokens  61
Windows Communication Foundation (WCF)  13, 
14–15
Windows containers  114–116
Windows Nano  107

containers  115
Windows Server Containers  115
Windows Server Core

containers  115
WinForms  8
WS-BPEL  13
WS-Security  13
wwwroot  33
wwwroot directory  233–234

X
XSS. See cross-site scripting attacks
xUnit  308–310, 316

Y
Yarn  258–260
yarn.lock file  259
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