
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9781509304066
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9781509304066
https://plusone.google.com/share?url=http://www.informit.com/title/9781509304066
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9781509304066
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9781509304066/Free-Sample-Chapter

ASP.NET Core Application
Development: Building an
application in four sprints
(Developer Reference)

James Chambers
David Paquette
Simon Timms

PUBLISHED BY
Microsoft Press
A division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2017 by James Chambers, David Paquette & Simon Timms

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2016958907
ISBN: 978-1-5093-0406-6

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Support at mspinput@microsoft.com. Please tell us what you think of this
book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information
expressed in this book, including URL and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks
of the Microsoft group of companies. All other marks are property of their respective owners.

Acquisitions Editor: Laura Norman
Developmental Editor: Troy Mott
Editorial Production: Ellie Volckhausen
Technical Reviewer: Rachel Appel
Copyeditor: Rachel Jozsa
Indexer: Julie Grady
Cover: Chuti Prasertsith

http://www.aka.ms/tellpress
http://www.microsoft.com

I would like to dedicate this book to my loving wife. Thank you
for your support and I look forward to spending more time out-
doors with you once I finally emerge from this office.

—David Paquette

I would like to dedicate this book to my children who have been
forced to play without me while I work feverishly pressing buttons
in front of a glowing box and my wife who taught them to sing
Cat’s In The Cradle outside my office door. Without their support I
would be but a quarter of a person. I love them more than I have
words to express.

—Simon Timms

I dedicate this book to my incredible, intelligent and striking
wife who has supported me for over twenty years while I chase
dreams and sometimes our pet dog who gets out in the middle
of the night. I dedicate it to my children that I love endlessly and
completely. I can’t wait to spend more time with them, even if they
need more showers and should ask for rides less.

—James Chambers

This page intentionally left blank

Contents at a Glance

Introduction	 xvii

PART I	 ALPINE SKI HOUSE

HOW WE GOT HERE	 5

INFLUENCERS	 	 17

MODELS, VIEWS, AND CONTROLLERS	 27

SCOPING THE PROJECT	 37

BUILDS	 	 45

DEPLOYMENT	 	 57

PART 2	 SPRINT RETRO: A JOURNEY OF 1000 STEPS

BUILDING WEB APPLICATIONS WITH MICROSOFT AZURE	 79

CROSS-PLATFORM	 93

CONTAINERS	 	 105

ENTITY FRAMEWORK CORE	 119

RAZOR VIEWS	 	 147

CONFIGURATION AND LOGGING	 169

PART 3	 SPRINT RETRO: THE BELLY OF THE BEAST

IDENTITY, SECURITY, AND RIGHTS MANAGEMENT	 193

DEPENDENCY INJECTION	 221

ROLE OF JAVASCRIPT	 231

DEPENDENCY MANAGEMENT	 251

FRONT END WITH STYLE	 263

CACHING	 	 281

vi	

PART 4	 SPRINT RETRO: HOME STRETCH

REUSABLE COMPONENTS	 295

TESTING	 	 307

EXTENSIBILITY	 	 325

INTERNATIONALIZATION	 341

REFACTORING AND IMPROVING CODE QUALITY	 353

ORGANIZING THE CODE	 373

POSTFIX	 	 383

Index	 387

		 vii

Table of Contents

Introduction. xvii

PART I	 ALPINE SKI HOUSE	 1

Chapter 1	 How We Got Here	 5
Active Server Pages. . 6

ASP.NET. . 7

ASP.NET MVC . . 10

Web API . . 13

ASP.NET Core . . 15

Summary . . 16

Chapter 2	 Influencers	 17
Backward compatibility. . 18

Rails	. . 18

Node.js . . 22

Angular and React. . 23

Open source . . 24

OWIN. . 24

Summary . . 26

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can improve our books and learning resources for
you. To participate in a brief survey, please visit:

http://aka.ms/tellpress

http://www.aka.ms/tellpress

viii	 Contents

Chapter 3	 Models, Views, and Controllers	 27
The M, the V, and the C of it. . 28

Diving into Models . . 28

Views. . 30

Partial Views . . 31

Controllers (...and Actions!). . 31

It’s Not Just About MVC. . 32

Middleware. . 32

Dependency Injection. . 34

Other Gems. . 35

Summary . . 35

Chapter 4	 Scoping the Project	 37
Ski Slopes. . 39

The API . . 41

The Admin View. . 42

Pulling the Pieces Together . . 42

Defining our Domain. . 43

Summary . . 44

Chapter 5	 Builds	 45
Command Line Builds. . 46

Build Servers. . 48

The Build Pipeline . . 48

Building Alpine Ski House. . 51

Summary . . 56

Chapter 6	 Deployment	 57
Picking a web server. . 58

Kestrel. . 58

Reverse Proxy. . 59

IIS		 . . 61

	 Contents	 ix

Nginx. . 62

Publishing. . 64

Build Types. . 66

Building A Package. . 67

The Case for Azure . . 68

Azure Deployments . . 70

Container Deployments. . 73

Summary . . 73

PART 2	 SPRINT RETRO: A JOURNEY OF 1000 STEPS	 75

Chapter 7	 Building Web Applications with Microsoft Azure	 79
Thinking of Platform as a Service. . 80

Platform Services. . 80

Scaffolding, Destroying, and Recreating Your Services. 82

Building Applications Using Platform Services. . 83

Creating a Storage Account. . 84

Storing Images in Blob Containers. . 86

Incorporating Storage Queues . . 87

Automating Processing with Azure WebJobs. . 88

Scaling Out Your Applications. . 89

Scaling in Multiple Directions . . 89

Scaling with Elasticity. . 90

Scaling Considerations. . 92

Summary . . 92

Chapter 8	 Cross-Platform	 93
Up and Running on Ubuntu. . 94

Installing .NET Core. . 94

The dotnet CLI. . 94

Choosing a Code Editor. . 98

Alpine Ski House on Linux. . 98

.NET Core. . 101

Summary . . 104

x	 Contents

Chapter 9	 Containers	 105
Repeatable Environments . . 106

Docker. . 110

Windows Containers. . 114

Docker in Production. . 116

On the Cloud. . 117

Summary . . 118

Chapter 10	 Entity Framework Core	 119
Entity Framework Basics . . 120

Querying for a single record . . 122

Querying for multiple records. . 123

Saving Data. . 123

Change Tracking. 124

Using Migrations to Create and Update Databases 124

The ApplicationDbContext. . 130

Extending ApplicationUserContext. . 132

Ski Card Context. . 133

Relationships crossing Context Boundaries. . 134

Wiring up the Controller. . 135

Pass Types. . 141

Passes and Validation. . 142

Events and Event Handlers. . 144

Summary . . 146

Chapter 11	 Razor Views	 147
Creating Web Sites as a Developer Today. . 148

Building on Previous Successes and Learnings. 148

Understanding Razor’s Role. . 149

Mastering Razor Essentials. . 149

Peeking Behind the Curtain. . 150

Writing Expressions with Razor Syntax. . 152

	 Contents	 xi

Switching to Code. . 153

Explicitly Using Markup. . 154

Razor Parser Control Cheat Sheet. . 154

Bringing in More C# Features . . 155

Using C# Types in Your Views. . 155

Defining a Model. . 156

Using View Data. . 156

Working with Layouts. . 158

Foundations of Layouts. . 159

Including Sections from Views. . 160

Defining and Consuming Partial Views . . 161

Enhancing Views with Advanced Razor Functionality. 162

Injecting Services into a View. . 162

Working with Tag Helpers. . 163

Avoiding Duplication in Your Views. . 167

Using Alternate View Engines . . 167

Summary . . 168

Chapter 12	 Configuration and Logging	 169
Moving Away from web.config. . 170

Configuring Your Application . . 170

Using Stock Configuration Providers. . 172

Building a Custom Configuration Provider. . 173

Employing the Options Pattern. . 176

Logging as a First-Class Citizen. . 177

Creating Logs That Provide Clarity. . 177

Setting Expectations for Exceptions. 178

Logging as a Development Strategy. . 179

Logging Levels in ASP.NET Core. . 180

Using Logging Scopes to Augment Logging 183

Using a Structured Logging Framework. . 185

Logging as a Service. . 186

Summary . . 188

xii	 Contents

PART 3	 SPRINT RETRO: THE BELLY OF THE BEAST	 189

Chapter 13	 Identity, Security, and Rights Management	 193
Defense in Depth. . 194

User Secrets. . 195

Azure-Backed Authentication. . 197

Identity in ASP.NET Core MVC. . 202

Local User Accounts . . 206

Other Third-Party Authentication Providers. . 208

Enabling Security Through Attributes . . 210

Using Policies for Authorization . . 212

Applying Policies Globally. . 212

Defining Policies for Selected Use . . 213

Custom Authorization Policies. . 214

Protecting Resources . . 215

Cross-Origin Resource Sharing (CORS). . 218

Summary . . 219

Chapter 14	 Dependency Injection	 221
What is Dependency Injection?. . 222

Resolving Dependencies Manually . . 222

Using a Service Container to Resolve Dependencies. 223

Dependency Injection in ASP.NET Core. . 225

Using The Built-In Container . . 225

Using a third-party container. .228

Summary . . 230

Chapter 15	 Role of JavaScript	 231
Writing Good JavaScript . . 232

Do We Even Need it? . . 233

Organization. . 233

To SPA or not to SPA?. . 234

Building JavaScript . . 235

	 Contents	 xiii

Bundler & Minifier. . 236

Grunt. . 237

gulp . . 239

WebPack. . 240

Which Tool is Right for me? . . 243

TypeScript. . 243

ES2015 to ES5 Compiler. . 243

Typing System. . 245

Module Loading. . 247

Picking a Framework. . 249

Summary . . 250

Chapter 16	 Dependency Management	 251
NuGet. . 252

Installing packages with NuGet. . 252

Adding Dependencies. . 255

Using npm modules . . 256

Visual Studio Integration. . 257

Yarn 258

Bower. . 260

Adding Dependencies. . 261

Referencing Assets from Bower Packages. . 262

Summary . . 262

Chapter 17	 Front End with Style	 263
Building Websites with Style Sheets. .264

Digging up the Past. . 264

Creating Your Own Style Sheet. . 266

Getting Sassy with Your Style. . 268

Basics of SCSS. . 269

Creating Mixins. . 274

Mixing Mixins and Directives. . 274

npm .255

 .

xiv	 Contents

Establishing a Development Workflow. . 275

Using Command Line Tools . . 275

Working in Visual Studio Code . . 276

Modifying the Project Build Tasks . . 277

Using Third Party Frameworks. . 277

Extending a CSS Framework. . 277

Customizing a CSS Framework Footprint. . 278

Leveraging CSS Frameworks for Custom Style Sheets. 279

Alternatives to CSS Frameworks. . 280

Summary . . 280

Chapter 18	 Caching	 281
Cache Control Headers . . 283

Using the Data-Cache . . 285

In Memory Cache. . 285

Distributed Cache . . 287

How Much Cache is Too Much?. . 289

 Summary. . 289

PART 4	 SPRINT RETRO: HOME STRETCH	 291

Chapter 19	 Reusable Components	 295
Tag Helpers. . 296

Anatomy of a Tag Helper. . 296

Scripts, Links, and Environment Tag Helpers. . 297

Cache Tag Helper. . 298

Creating Tag Helpers . . 299

View Components. . 302

Invoking View Components. . 303

Contact Customer Service View Component. 303

Partial Views . . 305

Summary . . 306

	 Contents	 xv

Chapter 20	 Testing	 307
Unit Testing. . 308

XUnit . . 308

JavaScript Testing. . 320

Other Types of Testing. . 324

Summary . . 324

Chapter 21	 Extensibility	 325
Conventions. . 326

Creating Custom Conventions. . 327

Middleware. . 328

Configuring the pipeline. . 329

Writing your own Middleware . . 330

Pipeline Branching. . 332

Loading External Controller and Views. . 334

Loading Views from External Projects. . 334

Loading Controllers from External Assemblies 335

Routing. . 335

Attribute Routing. . 336

Advanced Routing. . 337

Dotnet tools. . 337

JavaScript Services and Isomorphic Applications . . 338

Isomorphic Applications. . 338

Node Services. . 339

Summary . . 339

Chapter 22	 Internationalization	 341
Localizable Text . . 343

String Localization. . 344

View Localization. . 346

Data Annotations. . 346

Sharing Resource Files. . 347

xvi	 Contents

Setting the Current Culture . . 348

Summary . . 351

Chapter 23	 Refactoring and Improving Code Quality	 353
What is refactoring?. . 354

Measuring Quality. . 355

Finding Time to Refactor. . 357

Refactoring with a Safety Net . . 358

Data Driven Changes. . 365

A Code Cleanup Example. . 366

Tools That Want to Help . . 370

Getting to Quality. . 370

Summary . . 370

Chapter 24	 Organizing the Code	 373
Repository Structure . . 374

Inside the Source. . 374

Parallel Structure. . 376

MediatR. .376

A Brief Introduction to the Messaging Pattern. 377

Implementing a Mediator. . 377

Areas . . 381

Summary . . 382

Postfix	 383

Index	 387

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can improve our books and learning resources for
you. To participate in a brief survey, please visit:

http://aka.ms/tellpress

http://www.aka.ms/tellpress

		 xvii

Introduction

ASP.NET Core MVC is Microsoft’s latest web framework for .NET developers. It is the
next version of the now-familiar MVC Framework and aspires to cross boundaries by

enabling cross-platform development and deployment. It leverages a wide assortment
of open source libraries and is, itself built as open source software. ASP.NET Core MVC
helps developers to separate concerns like business logic, routing, services, and views
and provides new systems for configuration and extensibility. It uses the C# program-
ming language and the Razor view engine. If you are an experienced .NET developer or
a newcomer to the .NET platform, ASP.NET Core MVC is likely what your projects will be
built from.

This book follows the first few sprints of an application being redeveloped by a team
at a fictional company named Alpine Ski House. Each chapter contains a little bit of infor-
mation about the challenges the team is facing and how they work to overcome them.
Despite having a short story element to each chapter, the book dives deep to cover not
only the features of ASP.NET Core MVC, but also the tooling around it that developers
will use to build, maintain and deploy their applications.

In addition to its story elements and technical information around ASP.NET Core
MVC, the book discusses the new version of Entity Framework, package management
systems, and peripheral technologies that are used by modern web developers. Beyond
the explanatory content, the book also comes with an accompanying project—the very
same project that the developers at Alpine Ski House have built.

Who should read this book

The book takes a programmer through all the steps necessary to build a brand new
application on ASP.NET Core and push it out so it is available on the Internet. There is
still a great population of programmers who have yet to journey onto the web or have
done so only using webforms, much less using the full gamut of tooling that is available
today. This book will help put the skills and confidence needed in place to build modern
applications on an emerging framework. It will help you explore application architecture,
deployment and building applications that are designed for the cloud.

xviii	 Introduction

Assumptions
Readers should know how to program at an intermediate to senior level. Readers should
be proficient in C#, have a background in web development, and understand funda-
mentals of working in Visual Studio. Experience with previous versions of MVC will be
beneficial, but not required. Familiarity in working with a command line interface will be
an asset. After completing this book you will be able to build a meaningful and relevant
database-driven application and deploy it to a cloud-based infrastructure.

This book might not be for you if…

This book might not be for you if you are an advanced ASP.NET MVC developer who has
been closely following or contributing to the development of ASP.NET Core MVC.

Organization of this book

This book offers the innovative approach of taking developers through individual sprints
in the development of an application. It will cover not just the technology, but also the
process of recovering from mistakes and adjusting to user feedback, starting from a
blank canvas and ending with a real working product.

This book is divided into four sections:

■■ Part 1, “Alpine Ski House,” Covers background information that sets up the ex-
ample app and fictional characters in the story used throughout the book

■■ Part 2, “Sprint Retro: A Journey of 1000 Steps,” focuses on the features required
to get our application out the door, configuring the pipeline so that deployment
happens on-the-fly in a way that the whole team understands.

■■ Part 3, “Sprint Retro: The Belly of the Beast,” focuses on the core features needed
to get the business running with our sample application. Here we introduce data
access using the Entity Framework Core, creating views using Razor, Configu-
ration and Logging, Security and User Management, and finally Dependency
Injection.

■■ Part 4, “Sprint Retro 3: Home Stretch” covers JavaScript and dependency man-
agement, along with building on top of the previous foundations.

Postfix covers some important topics such as testing, refactoring and extensibility.

	 Introduction	 xix

Finding your best starting point in this book
The different sections of ASP.NET Core Application Development: Building an applica-
tion in four sprints cover a wide range of technologies associated with the ASP.NET Core
framework. Depending on your needs, and your existing understanding of Microsoft’s
web stack, you may wish to focus on specific areas of the book. Use the following table to
determine how best to proceed through the book.

If you are Follow these steps

New to ASP.NET Core development, or
an existing ASP.NET Core developer

Focus on Parts I, II and III, or read through the entire book in
order.

Familiar with earlier releases of ASP.
NET

Briefly skim Chapter 1 and Chapter 2 if you need a refresh on
the core concepts.
Read up on the new technologies throughout the renaminder
of the book.

Interested in client side development Read Chapters 15, 16 and 17 in Part IV.
Skim the section on JavaScript services in Chapter 20.

Interested in cross-platform develop-
ment

The entire book is applicable to cross platform developemnt
but Chapter 8 and 9 are specifically deidcated to the topic.

Most of the book’s chapters include hands-on samples that let you try out the concepts
just learned. No matter which sections you choose to focus on, be sure to download and
install the sample applications on your system.

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow.

■■ The book includes samples for C# programmers and syntaxes such as HTML, CSS,
SCSS and Razor.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (e.g. File | Close), means that
you should select the first menu or menu item, then the next, and so on.

xx	 Introduction

System requirements

You will need the following hardware and software to run the sample application accom-
panying this book:

■■ .NET Core 1.0 or newer, available cross platform from https://dot.net.

■■ Your code editor of choice. We use Visual Studio 2015 (any edition) or newer on
Windows and Visual Studio Code on Windows, Mac and Ubuntu Linux.

■■ SQL Server LocalDB (included with Visual Studio 2015 or newer on Windows).
Linux or Mac users will need access to a SQL Server database hosted either on a
Windows machine or in Microsoft Azure.

■■ Computer that has a 1.6GHz or faster processor

■■ At least 1 GB of RAM

■■ 4 GB of available hard disk space

■■ Internet connection to download software and sample project

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2015.

Downloads: Sample Project

Most of the chapters in this book include snippets from the sample project. The sample
project is available on GitHub:

https://github.com/AspNetMonsters/AlpineSkiHouse

Follow the instructions on the GitHub repository to download and run the sample project.

Note  In addition to the sample project, your system should have .NET Core 1.0
or newer installed.

https://www.dot.net
https://www.github.com/AspNetMonsters/AlpineSkiHouse

	 Introduction	 xxi

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content.
You can access updates to this book—in the form of a list of submitted errata and their
related corrections—at:

https://aka.ms/ASPCoreAppDev/errata

If you discover an error that is not already listed, please submit it to us at the same page.

Get all code samples, including complete apps, at: https://aka.ms/ASPCoreAppDev/
downloads.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks
from Microsoft Press cover a wide range of topics. These ebooks are available in PDF,
EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valu-
able asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers
go directly to the editors at Microsoft Press. (No personal information will be requested.)
Thanks in advance for your input!

https://www.aka.ms/ASPCoreAppDev/errata
https://www.aka.ms/ASPCoreAppDev/downloads
https://www.aka.ms/ASPCoreAppDev/downloads
http://www.support.microsoft.com
http://www.aka.ms/mspressfree
http://www.aka.ms/tellpress

xxii	 Introduction

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.twitter.com/MicrosoftPress

		 1

PART I

Alpine Ski House

CHAPTER 1	 How We Got Here . 5

CHAPTER 2	 Influencers . 17

CHAPTER 3	 Models, Views, and Controllers 27

CHAPTER 4	 Scoping the Project . 37

CHAPTER 5	 Builds . 45

CHAPTER 6	 Deployment . . 57

Here is some background information that introduces the
fictional aspect covered in this book, including the fictional char-
acters that are creating the Alpine Ski House application.

Even the most fervent riders had to admit it: the season was at an
end. It hadn’t been the best season in memory but nor had it been
the worst. It had been, in every way, unremarkable. There had been
moments, a power outage in late February had forced the dust-
ing off of an emergency plan which had long been practiced but
never used. There had been reports on the local news station about
children trapped on gondolas for hours but with the balmy weather
nobody had ever truly been in danger. A smattering of free passes
was all that was required to keep the skiers and riders coming.

The spring was a time for the permanent staff to regroup and
the seasonal staff to return to wherever it is that lefties go in the
summer. A rumor among the permanent staff was that at least
half of the seasonal staff were rounded up by immigration as
soon as they stepped off the hill and sent back to Australia. Dani-

2

elle couldn’t imagine why the young seasonal staff would resist
being sent back to Australia. One thing was for sure, it was much
more exciting in Australia than in the sleepy mountain town that
reemerged from hibernation each winter.

It was still too early to plan the next year and Danielle was look-
ing forward to a month or two of down time before the cycle began
anew. She had been the lone developer for Alpine Ski House for
close to a decade and every year was about the same. Most of her
time involved keeping legacy systems running and adjusting what-
ever small things were needed for the next year’s activities. It wasn’t
the most exciting job in the world but over the winter months it was
expected that everybody would sneak off for a couple of hours ski-
ing on nice days and that was a perk she thoroughly enjoyed.

Opening the door to the low-rise that Alpine Ski House called
home she was surprised to see that things were buzzing. People
she wouldn’t have expected to see in the office for a couple of
hours were scattered about in huddles throughout the open
plan office. Confused, Danielle dumped her bag and grabbed a
coffee before looking for a huddle to join. The rest of the IT staff
seemed to be orbiting Tim, the portly IT manager and her boss.
Danielle headed over to join.

“Danielle! What do you think of the news, going to be an
exciting time if you ask me,” boomed Tim.

“What news is this?” asked Danielle.

“Where have you been?” asked Arjun, “We just bought out
Thunder Valley and Mount Ballyhoo. They’re merging operations
and we’re all going to lose our jobs!”

The two other ski areas were a few miles down the road.
Thunder Valley was a small operation with only three lifts but a
loyal following of ski bums. It was a favorite for the locals who
wanted a break from the crowds of tourists in the winter months.
It couldn’t be more different from Mount Ballyhoo if it had been
the output of Babbage’s difference machine. Mount Ballyhoo
was a huge ski hill spanning three mountains with countless lifts
and enough on hill accommodation to house everybody in town
twice over. Every weekend they had bands playing on the hill,

		 3

and it was not uncommon to see famous people like Scott Gu
and John Skeet there rubbing shoulders with the commoners.

“Now Arjun,” said Tim, “nobody has said anything about
layoffs or redundancies or anything of the sort. Why at times like
this the workload for IT usually increases because management
wants systems integrated right away. We’re just going to have to
wait and find out what the plans are.”

Danielle had to sit down. She was years still from retirement
and didn’t want to find another job. How many jobs would there
be for programmers in a seasonal town like this? “This is silly,” she
told herself, “there is no use planning a move back to the big city
based on this sort of uncertainty. Things will shake out in the next
couple of weeks.”

As it turned out nobody was waiting a couple of weeks.

As soon as lunch, a dandelion and walnut salad, with balsamic
sweet potato crisps, was over, Tim came knocking at her cubicle.

“We’re gathering in the big conference room. It sounds like
the programmers from Thunder and Ballyhoo are here.”

Gulping down the rest of her goat’s milk, Danielle grabbed a
pen and a big yellow legal pad and hurried towards the confer-
ence room. The pad and paper were just for show; she hadn’t
taken notes at a meeting in years. It was easier to just engage
people around the small office in person than plan things out
way in advance on a notepad. Better to make a good impression
right away with layoffs on the horizon.

The big conference room was rarely used outside of potlucks
because there simply weren’t enough people to fill it. But today
it was, if not packed, at least well used. Five young hipster look-
ing individuals sat at one end of the table sipping on all manner of
exotic looking smoothies. Danielle wondered how one would even
go about importing rambutan and what sort of carbon footprint it
would have. Still it was better than that time she had hacked her way
into a durian only to have to defenestrate the offensive fruit.

Clearly divided from the hipsters were a group guys who
would have been called “suits” in the big city. Out here they

4

looked like they had just stepped of a golf course. Somehow they
were already tanned and relaxed looking.

Tim waited for everybody to settle and then addressed the
room, “Good news, everybody, this is the team we’re moving for-
ward with. If you’ve made it to this room, then your job is safe and
you can relax. I’m sure you all have questions about that and you
can come see me individually after this meeting if you want to talk.

“Management has asked me to keep a larger number of
programmers on staff after the merge because they have some
exciting new initiatives that they want us to embark upon. Over
the next few years we’re going to be refreshing all the custom
systems we have in place to run the hill. They recognize that this
is a big undertaking and some of them have been reading CIO
magazine and they’ve learned about agile and microservices. I
can assure you that I’ve given instructions that all future copies
of that magazine are to be burned before they reach manage-
ment’s hands but for now we’re stuck with it.”

Tim had always had a bit of a rocky relationship with manage-
ment’s great new ideas. He was the emergency brake on their
crazy ideas. He continued on. “The first thing management want
is a way for people to buy their lift tickets online. I’m told that it
is 2016 and that we should have that in place already and that
every other hill in the world has it.” Tim seemed exasperated by
management’s generalizations; it must have been a fun discus-
sion when these orders came down.

“Management wants to see a prototype in a month’s time. I think
I can buy another week if we can show that we’re making progress.”

A month’s time! Danielle was beside herself. A month was how
long Danielle liked to spend getting her head around a problem.
She looked over at the hipster developers hoping they shared her
ashen face. But the wheatgrass crew were nodding along happily.

Tim looked like he was coming to a conclusion and readying
to step down from his soapbox. “Look guys, we need this to buy
us some capital with management. I’ll clear any roadblocks in
your way. Use whatever technology you think is best buy what-
ever tools you need. I trust you to get this done.”

		 27

C H A P T E R 3

Models, Views, and Controllers

It was a surprise when Adrian popped over to Danielle’s cubicle. Maybe more surprising was the
furrowed brow he was sporting. “Got a minute?” he asked in a hushed tone, and then walked
away without waiting for an answer. She nodded a confused yes, mostly to herself, and slowly got
up to follow him to a side room. She scanned around the development pit, but didn’t see anyone
watching, much less interested, and couldn’t really get a read on why he was assuming the role of
secret agent in this software docu-drama.

He closed the door behind her as she stepped into the room. “Look, I’m a CSS guy. I’m not
going to sugar coat it. I know my way around jQuery well enough to troubleshoot, but I’m no
programmer.” He looked tense and Danielle wondered what he’d been thinking. “Everyone else
seems to be buying into this shift over to Core or whatever it’s called...but I’m...I mean, come on, I
run Linux on my laptop and I don’t even use Office.” The room quickly drew silent.

“Are you still nervous, Adrian? Marc had mentioned that you were worried about the cuts.”
Danielle was nervous too, truth be told. She had lost some good friends herself when the merge
went through, but she wasn’t sure that was what he needed to hear at the moment.

“Well yeah, I guess,” he replied. “But my knowledge of MVC is that it stands for Model-View-
Controller, and I haven’t taken a look any deeper than that. And you guys keep referring to it as
a framework. If it’s a framework, but you have to make your own models, views, and controllers,
then the MVC part seems more than a little misleading, don’t you think?”

He had a point. “Well, yeah, that’s actually pretty true,” said Danielle.

“I’m coming from a different view here; I just want to wrap my head around it. I want to learn,
but I’m not sure I know where to start, either.” Adrian pounded back the rest of his coffee like it
was about to expire. “I know they said we’re safe if we’re still here, but I don’t want to get caught
with my feet standing still if they think there’s still room to shrink the team.”

“Okay, look,” said Danielle, “I’ve got a bit of time right now, let’s run through the basics and
we’ll learn together. We’re all going to be fine.”

28	 PART 1  Sprint Retro: Alpine Ski House

The M, the V, and the C of it

Let’s face it, the MVC Framework is a pretty boring name. The acronym used in the title is from the
well-known Model-View-Controller pattern, and it helps to organize a project. If you’re familiar
with it, the name literally spells out some of the original intent to separate concerns, and moves
away from the other common pattern at the time known as Page-Controller. The name can also
be misleading. The framework is much more than just models, views and controllers. ASP.NET
Core MVC has a growing set of tooling and libraries available to that help developers create great
applications, worthy of the modern web world.

Let’s do a quick recap on the aspects you should already understand, and then move into some
more interesting aspects of the framework, officially known as ASP.NET Core MVC.

Diving into Models
First up is the letter M, so we’ll start with Models. The model represents the data that we need to
properly render an experience, or part of an experience, for a customer. Customers are navigating
to a page in the application that is data-driven, and models are the data part. However, as far as
intent goes, the model in question is actually what you’ll be using to support the rendering of the
view, and not the entity or entities in question in which you persist to the database.

Let’s consider this example from Alpine Ski House’s possible database design that deals with
user account summaries, as shown in Figure 3-1. When you want to indicate to the user that she
has a current season pass, you don’t want to return the list of season passes to the view and iterate
over the collection to see if one exists that has not yet expired.

FIGURE 3-1  A screen shot showing a sampling of tables that might be used to model purchasing season passes

	 Chapter 3  Models, Views, and Controllers	 29

Returning all of this information to the view would be more than is required. Listing 3-1 contains
a view model that might more closely approximate the information you would want to display to the
user. As you can see, this is a POCO that sports the properties you can use to satisfy the view require-
ments without the view needing to make any decisions about what to display or any implementation of
business logic. The view doesn’t need to know what qualifies as a current season pass nor does it need
to sift through any of the purchase details or iterate through child records in related tables to make
sense of the data.

LISTING 3-1  The AccountSummaryViewModel Class

public class AccountSummaryViewModel
{
 public Guid UserId { get; set; }
 public int YearsOfMembership { get; set; }
 public bool IsCurrentSeasonPassHolder { get; set; }
 public List<string> IncludedFamilyMembers { get; set; }
}

The differentiation between what you craft for models on the front end, versus what you store in
the database, is important not just for separating the concerns of the view and the business logic that
supports it, but also for helping to prevent certain types of security issues. On the “write” side of things,
when a view uses a database entity, the application becomes more likely to fall victim to overbinding
bugs or attacks. Overbinding occurs when fields that weren’t anticipated from an incoming request are
present in form or querystring parameters. The model binder sees the properties, doesn’t know that
you hadn’t intended for them to be there, and kindly fills in your data for you. As an example, consider
the class representing some kind of a digital asset in Listing 3-2.

LISTING 3-2  The AccountSummaryViewModel Class

public class DigitalAsset
{
 public Guid AssetId { get; set; }
 public Guid AssetOwnerId { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
 public Uri AccessUri { get; set; }
}

This type of model can be used to display a list of resources made available to a user, and doing so is
quite harmless. But, if you use the same object to receive edits for the record, a malicious user can ex-
ploit the fact that AssetOwnerId is a property and use that to take ownership of the asset. In fact, this
is how Egor Homakov gained administrative privileges for the Ruby on Rails (RoR) repository on GitHub
in 20121 (The technique in RoR is exploited through improperly checked models that make use of the

1	 GitHub reinstates Russian who hacked site to expose flaw, John Leyden, March 5, 2012, http://www.theregister.co.uk.

http://www.theregister.co.uk

30	 PART 1  Sprint Retro: Alpine Ski House

mass assignment feature, an analog to automatic model binding in ASP.NET Core MVC. Thankfully, Ho-
makov’s intentions were pure and no harm was done. We have learned from those binding conventions
and habits of yore though. Today, we have many ways to protect ourselves, which we’ll cover later in
Chapter 13, “Identity, Security and Rights Management,” but likely the easiest way is to make sure we’re
using models that are appropriate to the task at hand.

Most of the examples you find for view models will likely use an entity directly as the model type for the
view; however, the approach does not facilitate other aspects of software development, such as testing,
nor does it help with separating concerns in your controllers. Using the entity directly in a view means that
you’ve achieved an undesirable level of coupling from the database all the way up to the view.

A model should be everything you need to render your page after you’ve taken care of business
logic and often has a flattened view of a denormalized record from several tables in the database.
For these reasons, and considering the intent of the object you’re building up when you create a
“model,” you should likely think of it as the “view model” due to its close relationship and responsi-
bility to the view.

Views
Here, the view in question happens to start with V and is indeed the view we’re talking about in our
new favorite acronym. Views in ASP.NET Core MVC are the files used to interleave parts of the model
with the HTML needed in order to present the user with the intended user interface. If you create a new
project from the default application template you will find all the views in the Views folder, or you can
search Solution Explorer with the term “.cshtml,” which is the extension used for Razor views.

Using the Razor view engine and syntax you’ve seen through the last few iterations of the MVC
Framework, you can switch effortlessly between the syntax used to control flow or access our model or
services, and the markup required to generate HTML.

In Listing 3-3 we have created an unordered list with values from the model’s IncludedFamily-
Members collection. Razor lets you use C# inline with the HTML and is pretty smart about how it inter-
prets what you throw at it. A simple @ character is enough for the parser to know you’re flipping into
C#, and since angle brackets can’t be used at the start of a valid C# statement, it can tell when you’ve
switched back to HTML. We’ll be covering Razor in greater detail in Chapter 11, “Razor Views.”

LISTING 3-3  An example of mixing C# and HTML in Razor Syntax.

 @foreach (var familyMember in Model.IncludedFamilyMembers)
 {
 @familyMember
 }

	 Chapter 3  Models, Views, and Controllers	 31

Partial Views
Toolbars, authentication cues, shopping carts, parts of dashboards, and other similar components of
your application often find themselves appearing on multiple pages, or even on all pages. In the name
of Don’t Repeat Yourself (DRY), you can create these components using a partial view, which can in
turn be used repeatedly from any other page. You’ll also see partial views referred to more simply as
“partials.” We’ll use those terms interchangeably throughout the book.

Partials are not typically rendered on their own, but are used in composition of other views in your
project. The first place you see this in any MVC application is likely to be in the _Layout.cshtml, where
the view relies on partials to render the login status. Other common uses include using a partial view to
render items in toolbars, shopping cart summaries like those you see at the top of an ecommerce site,
or side bars with relevant data for the current page.

Child actions had to be rendered synchronously in previous versions of the MVC Framework, but the
same ideas that made partials possible can now be used to construct view components and invoked
asynchronously. We’ll talk about View Components more in Chapter 18, “Reusable Components,” which
is important in certain scenarios to keep performance in check on the site. Complex generated views
and partials that interact with services are examples of this, which we’ll talk about later in this chapter.

Before users can get the output of a view, and in order for you to load any kind of model into the
view engine, we must talk a little bit about Controllers in your project.

Controllers (...and Actions!)
Controllers are the traffic cops of MVC applications, ensuring the right types of bits travel to and from
the correct places. Controllers typically inherit from the base Controller class, but if you don’t need
the functionality of the base class, you can also use the convention of ending your class name with
“Controller,” such as in SeasonPassController.

The default convention assumes that you are putting your controllers in a folder called “Controllers”
in the root of the project. This is no longer required because Core MVC actually does an assembly scan
using the naming and inheritance conventions, but it’s still a recommended practice to organize your
controllers in a recognized way. This helps other developers, including the future version of yourself, to
easily manage and maintain the code base down the road.

As software developers, we use controllers as a container for related sets of handlers for incoming
requests. These handlers are called actions and are implemented as methods in our controller class.
Each method, or action, can accept zero or more parameters that are automatically filled in by the
model binding step in the execution pipeline if they are presented by the incoming request.

As the authors of these “traffic cops,” our goal is to code our controllers using some well-accepted
practices. The primary responsibility of an action is to process a request, validating the incoming pa-
rameters and creating an appropriate response.

From time to time, this also requires creating or requesting an instance of a model class, or produc-
ing an appropriate HTTP status code based response. You should try to avoid having any business logic

32	 PART 1  Sprint Retro: Alpine Ski House

in your controller, which is the responsibility of your model or other components, as well as keeping
data access or external calls out of your actions, which should be part of your application services. This
is represented in a high level in Figure 3-2.

FIGURE 3-2  An illustration showing how controllers are responsible for invoking business logic that helps to gener-
ate an appropriate HTTP response

Keeping these services external might seem to make things more complex, or raise questions like,
“Who will create these services for me?” This is a great question and one that we’ll answer in the “De-
pendency Injection” section later in this chapter.

It’s Not Just About MVC

As discussed earlier, there’s actually a lot more going on than just the models, views and controllers
themselves in your solution. We’ll continue to explore these throughout the book, but here are some
important ideas to have in the peripheral as you develop.

Middleware
Here is the secret about middleware in ASP.NET Core MVC: it’s pretty much all middleware. All of it!
During application start-up you have the opportunity to load your configuration, configure your ser-
vices, and then configure the request pipeline, which is where the concept of middleware is called into
play. You can see this in the Configure method of the Startup class in the default project template.

Often, the description of middleware and the interpretation by the reader overcomplicates a fairly
simple premise. The purpose of middleware is to allow an application to say, “Have each request
processed by the following components in the order that I specify.” Middleware is a simplification over

	 Chapter 3  Models, Views, and Controllers	 33

previous incarnations of similar functionality in ASP.NET, namely HTTP Modules and Handlers. Middle-
ware replaces both with a common approach in a fashion that is easier to implement.

There are several pieces of middleware that ship publically to handle most scenarios that you need
to cover during the execution of your application, both in lower level environments such as staging and
QA, as well as in production:

■■ Diagnostics: Provides exception handling and runtime helpers like database error pages and
technical details to developers.

■■ Static files: Allows a short-circuit of the request pipeline to return a file from disk.

■■ Identity and Authentication: Allows applications to protect end points and assets of an
application.

■■ Routing: Resolves which controller and action should be executed based on the incoming path
and parameters.

■■ CORS: Handles injecting the correct headers for cross-origin resource sharing.

■■ MVC itself: Usually at the end of the configured middleware pipeline as it consumes requests.

Each middleware component has the option to execute code before and after the next component
in the chain, or to short-circuit the execution and return a response. The name middleware likely comes
from the idea that you can execute a piece of software in the middle of something else, as shown in
Figure 3.3. In this instance, you see a series of different requests that are handled by the various mid-
dleware components in the default project template. In some cases, the request is handled by the static
files middleware, returning an asset in wwwroot. At other times, the request is allowed to pass all the
way through to the MVC execution pipeline where your controller is created and you can return a view.

FIGURE 3-3  An illustration showing examples of different request types as handled by middleware

34	 PART ##  Part Title

You can bring in other middleware from third parties, additional helpers that are provided by
Microsoft, or you can write your own to handle cross-cutting concerns that are needed throughout
your application. The middleware pipeline can also be branched based on paths or predicates to allow
dynamic, flexible rules around processing requests.

Dependency Injection
There are many written volumes covering dependency injection, but we’ll recap the basics here for
completeness.

Generally speaking, it’s likely going to be a good idea for your code to be obvious about the depen-
dencies that it takes on. In C# you tend to do this by putting the components and services you need in
your constructor, such that any creator of the class has to provide your dependencies for you.

Let’s consider the constructor of the HomeController class in Listing 3-3. The class requires that
any time it is being created an instance of an ILogger implementation would be provided for it.

LISTING 3-3  The HomeController Class Constructor

public class HomeController{
 ILogger _logger
 public HomeController (ILogger logger)
 {
 _logger = logger;
 }
}

HomeController doesn’t need to know how to configure or create an ILogger, it doesn’t need to
know where to log to, or how it is to be done. But from any point after instantiation, HomeController
is now able to add valuable information to your log files as required. This one simple parameter on
the constructor explicitly defines your requirements and is referred to as the Explicit Dependencies
Principle.

For this controller to be created by the pipeline, you need to have something in the runtime aware
of how to resolve the ILogger requirement. You configure these services and components in a con-
tainer, and then these types of dependencies are injected for you into the constructors at runtime. And
voila, dependency injection! Being a broader topic, and also by virtue of ASP.NET Core MVC introduc-
ing some new ideas for Dependency I 	 njection (DI), we’re going to take a deeper look at the idea of

	 Chapter 3  Models, Views, and Controllers	 35

inverting control in Chapter 14, “Dependency Injection,” where we’ll also explore what is required when
replacing the default container.

Other Gems
ASP.NET Core MVC contains some great improvements over previous versions and we are going to
explore them throughout the book.

■■ Configuration and Logging: Long considered afterthoughts in the .NET space, these critical
application aspects have been revamped, simplified, and made into first-class citizens. Read
more about these in Chapter 12, “Configuration and Logging.”

■■ Tag Helpers: Along with a few other aspects of simplifying front end development, in Chapter
18, “Reusable Components,” we’ll examine Tag Helpers and how they more closely resemble the
HTML we’re trying to return to the client.

■■ Identity: A user is more than just a name and a password. In Chapter 13, “Identity, Security &
Rights,” we’ll explore the new features, uses, and components around security and rights man-
agement in ASP.NET Core MVC.

Summary

Each iteration of the MVC Framework has helped shape part of what it’s become today. Some lessons
learned along the way have helped to bring better assets to developers and the models, views, and
controllers we have at the heart of our applications today take up only a small part of our development
efforts.

Before they knew it, the morning had escaped them and Danielle had all but plastered the white-
board with dry erase marker. Adrian flopped back in his chair and said, “Geez, Danielle. Someone
should write a book on this.”

This page intentionally left blank

Index

	 387

Symbols
37 Signals 18
201 status code 14
.aspx extension 8
@ character 152
@inject directive 346
_Layout.cshtml 31
.NET Base Class Library 22
.NET Core 23–24
@type/chartjs package 258
@types/lodash 258

A
Access-Control-Allow-Origin headers 218
access keys 85
access rights 195
access tokens 194, 205
AccountController class 211
account lockouts 208
action methods 136–140
ActionResult 20
ActionResults 11–12
Active Directory (AD) 197
ActiveRecord 21
Active Scripting 6–7
Active Server Pages 18
Active Server Pages (ASP) 6–7
adapter pattern 43
AddConsole extension method 182
AddDbContext method 226
Add* extension method 225
AddMvc() 212
AddPolicy() 218
addTagHelper directive 300
admin view 42

AJAX 8
Alpine Ski House

build 51–56
AMD modules 241
Angular 23–24
anti-corruption layer 43
Any method 138
Apache 2.0 license 15
Apache Mesos 116
API keys

developer-level 194
ApplicationDbContext class 130–133
Application Lifecycle Management group 65
ApplicationModel 327
applications

configuration of 169–177
deployment 57–74, 106
hosting 68
in containers 108–118
internationalization of 341–352
isolating 106–107
isomorphic 338–339
MVC 10–13
packaging 67–68
portable mode 66
publishing 64–66
running inside of Linux container 110–114
self-contained mode 67
single page 10, 338
web. See web applications

ApplicationUser class 130–131, 132
ApplicationUserContext class 132–133
Apply method 327
App Services 70–73
appSettings.Development.json file 100
appsettings.json file 201
app.UseIdentity() 206

388

AppVeyor

AppVeyor 65
areas 381–382
asm.js 235
.asmx files 13
AsNoTracking() method 124
ASP. See Active Server Pages
ASP.NET 7, 7–9, 18

Web Forms 8–10
ASP.NET Core 15–16

adding services in 225–227
backward compatibility 18
built-in container 225–227
configuration in 170–177
dependency injection in 225–229
development of 15
extensibility of 326–340
logging in 177–188
middleware 329–334
routing in 335–337
using third-party containers with 228–229

ASPNETCORE_ENVIRONMENT variable 99
ASP.NET Core Identity

 202–205
app.UseIdentity() 206
claims in 205
custom authorization policies 214–215
local user accounts 206–208
password hashing and 205
referencing 205–206

AspNetCoreModule 61
ASP.NET Core MVC

conventions 326–328
MVC framework 28–36

ASP.NET MVC 10–13, 18, 20
conventions 20–21
directory structure 20, 373–382
routing 21

ASP.NET Web Forms 18
async/await 137
Atlassian 51
attribute routing 336–337
attributes

enabling security through 210–211
Atwood, Jeff 22
authentication 33, 195

ASP.NET Core Identity 202–205
Azure-backed 197–202
middleware 201
NTLM 61

of users 207–208
sign up policies 200–201
third-party authentication providers 208–211
through attributes 210–211
two-factor 208

authorization
claims and 205
policies for 212–215
resource protection using 215–217

AuthorizationHandler 216–217
AuthorizationPolicyBuilder 213–214
Authorize attribute 211
autocomplete 246
Autofac 228–229
automated testing 358
Azure

building web applications with 79–92
cloud offerings in 81
deployments 68–73
resource groups 72
storage queues 87–88
WebJobs 84, 88–89

Azure Active Directory
options for authentication in 197

Azure Active Directory B2C 198–202
adding social idenity to 199–200
adding user-specific attributes 199–200
creating B2C directory 198–199
registering application in 200–201

Azure App Services 70–74
Azure-backed authentication 197–202

configuration options 197
external users and 197–201

Azure Portal 82–83
Azure Resource Explorer 82
Azure Resource Manager (ARM) templates 72–74
Azure Storage Tools 170

B
B2C directory

creating 198–199
backward compatibility 10, 18
Bamboo 51
Base Class Library 22
base class library (BCL) 102
Base Class Library (BCL) 7
BCL. See Base Class Library
binary large objects (blobs) 83–84, 86–87

	 389

command line tools

bin deployment 67
bin folder 234
BlobAttribute 89
blobs (binary large objects) 83–84, 86–87
block level scoping 245
Bootstrap 298
Bootstrap CSS framework 264, 277–280
bounded contexts 42, 43
Bower 260–262

adding dependencies 261–262
referencing assets from 262

bower install command 261
bower.json file 261
build environments 106
build pipeline 48–51
builds 45–56

Alpine Ski House 51–56
build definition page 53
command line 46–47
continuous integration and 48
JavaScript 235–243
modifying project build tasks 277
nightly 48
pipelines 239
triggers for 56

build scripts 374
build servers 48, 49, 51
build types 66–67
Bundler & Minifier tool 236–237

C
C# 7, 232, 245

Razor and 148, 149, 151, 153, 155–157
types 155

C++ 235
cache busting 297–298
cache tag helper 298
caching 92, 281–290

amount of 289
cache control headers 283–285
cache levels 282
data-cache 285
distributed 287–289
in memory 285–286
output 283

Can I Use website 232, 236, 241, 245, 249, 255, 257,
282

CaptureStartupErrors(true) directive 59
Cascading Style Sheet (CSS) 264–269.
See also CSS framework

creating 266–268
modules 266
nesting 272–273
pre-processors 269
Sassy 268–275

C# code 46
CDNs. See Content Delivery Networks
change tracking 124–125
characterization tests 358–359
child actions 303
claims 205
ClaimsPrincipal 207
classes

lack of, in JavaScript 232
Client ID 199
client side libraries 260
client side programming 231, 235
cloud

containers on the 117–118
cloud computing 69, 80–92

service offerings 81
code

cleanup 366–370
tools for 370

cyclometric complexity of 356–357
legacy 358
organization of 373–382
quality 367–370
measuring 355–357

Razor 153–154
readability 356
refactoring 353–365
source. See source code
testing 49–51, 55
tightly coupled 223

code behind model 10
code duplication 295
code editors 98
CodePlex 24
CodeRush 367, 370
CoffeeScript 21, 235, 243
COM. See Component Object Model
command line builds 46–47
Command Line Interface (CLI)

user secret commands 196
command line tools 68, 275

390

commands

commands 377, 378
Common Gateway Interface (CGI) scripts 6
CommonJS modules 241
compilers 46
compile time errors 12
ComponentModel namespace 12
Component Object Model (COM) 6–7
components

large number of 251
reusable , 283–290, 307–324, 310–324, 325–340,
326–340, 341–352, 343–352
partial views 305–306
tag helpers 296–302
view 302–305

view 31
computer language 45–46
configuration 35, 169–177

custom providers 173–175
hosting options 59
options services 176–177
order of loading and 171–172
pipeline 329–330
stock providers for 172–174
web.config 170

Configuration.Azure.KeyVault 172
ConfigurationBuilder 170
Configuration.CommandLine 172
Configuration.EnvironmentVariables 173
Configuration.Ini 173
Configuration.Json 173
Configuration.Xml 173
ConfigureServices method 133, 176, 212, 213, 215,
225, 227, 228
Connected Service Wizard 84–85
constructor injection 224–225, 227
container deployments 73
containers 105–118

advantages of 107–110
base layer 107
data storage 113
Docker 110–117
list of running 112
Microsoft supplied 111
networks in 109
on the cloud 117–118
orchestration system 109
pausing 112
repeatable environments 106–110
resuming 112
sharing 114–115

shutting down 112
third-party 228–229
Windows 114–116

Content Delivery Networks (CDNs) 262, 298
Content-Security Policy headers 232
context boundaries

relationships across 134–135
continuous delivery 49
continuous deployment 48
continuous integration 48
continuous testing 310
Controller class 31
controllers 11, 31–32, 116

loading external 334–335
Rails 19
testing 313–316
wiring up 135–140

Controllers folder 326, 381
conventions 326

ASP.NET MVC 20–21
custom 21, 327–328
default 326
routing 336
Ruby on Rails 19–21

cookies 212
CoreOS Linux distribution 107
CORS. See cross-origin resource sharing
Create action methods 137–139
CreateInitialSchema class 126–127
Create/Read/Update/Delete (CRUD) applications 81
critical logs 180
cross-origin resource sharing (CORS) 33, 218–219
cross-platform support 93–104
cross-site scripting attacks (XSS) 232–233
CSS files 233–234
CSS framework 263–280

alternatives to 280
Bootstrap 264, 277–280
customizing 278–279
custom style sheets and 279–280
extending 277
Foundation 278–279
third-party 277–280

culture 342, 343
setting current 348–351

culture-specific resource files 345–346
CurrentCulture 343
CurrentUICulture 343
custom conventions 21, 327–328
customer experience 39–41

	 391

domain class

custom style sheets 279–280
custom tag helpers 299–302
custom tags 23
cyclometric complexity 356–357

D
Dapper 120
data

change tracking 124–125
deleting 124
saving 123
view 156–157

data annotations 346–347
database providers

migrations and 129–130
databases

creating 124–125
creating and updating
using migrations 124–128

migrations 124–130
relationships crossing context boundaries
134–135

database servers 113
data-cache 285
datacenters 68, 69
data driven changes 365
data retrieval 119

EF Core
querying for single record 122

Entity Framework (EF) Core
querying for multiple records 123

data storage 119, 282
containers 113

data types 127–128
DbContext 226
DbContext classes 123, 125, 131, 143
DbSet.Find method 122
DbSet.Remove method 124
debug logs 180, 181
definition files 246–247
dependencies 261

adding 255–256, 261–262
errors resolving 227
manual resolution of 222–223
restoring all, in package 255
service containers to resolve 223–224

dependency injection 136, 162, 379
alternative patterns 224

constructor injection 224–225
in ASP.NET Core 225–229
service containers 223–224
third-party containers 228–229
vs. manually resolving dependencies 222–223

dependency injection (DI) 34
dependency management 124, 251–262

package managers for 252–262
Bower 260–262
npm 255–258, 259
NuGet 252–254, 260
Yarn 258–260

deployment 57–74
Azure 68–73
bin 67
building packages 67–68
build types 66–67
container 73
Kestrel 58–59
Nginx 62–63
publishing 64–66
reverse proxy 59–61
tools 67
web server for 58

deployment pipeline 49
desktop applications 7
developer-level API keys 194
development environments 106
development workflow 275–276
--dev flag 259
devops scripts 374
diagnostics 33
directives 274
directory structure 20, 233–234, 373–382

ASP.NET MVC 20
Rails 19

Dispose method 122
distributed cache 287–289
Docker 110–114

in production 116–117
on Windows 114–116

Docker Registry 110, 114
Docker Swarm 116
documentation 374
document object model (DOM) 235
DOM. See document object model
domain

defining 43
domain class

adding properties to 127

392

Don’t Repeat Yourself (DRY)

Don’t Repeat Yourself (DRY) 31, 295
dotnet build command 96–97
dotnet command line interface (CLI) 94–98
dotnet command line tool 67, 309
dotnet command line tools 337
dotnet ef command 124, 125, 337
dotnet ef database update command 124, 125, 128,
129, 133
dotnet ef migrations add command 126, 128
dotnet ef migrations script command 129
dotnet new command 95
dotnet publish 55
dotnet restore command 96, 252
dotnet run command 97
Down() method 125–126
drag and drop functionality 8
Dropbox 70
duplication

code 295
dynamically types languages 245

E
ECMAScript 243–245
Edge browser 243
Edit action methods 139–140
editor templates 12
EF. See Entity Framework (EF) Core
elastic computing 69
elastic scale 90–91
Electron 22
encrypted passwords 204
Entity Framework 21
Entity Framework (EF) Core 119–146, 120–146,
147–168

ApplicationDbContext 130–133
basics of 120–122
change tracking 124–125
data types 127–128
events and event handlers 144–146
mapping conventions in 121
migrations
adding 125–127
database providers and 129–130
to create and update databases 124–128

passes and validation 142–146
pass types 141–142
querying for multiple records 123
querying for single record 122
saving data 123

SkiCardContext class 133–140
System.Data 120

environment tag helper 268, 297
error logs 180
errors

dependency resolution 227
ES2015 to ES5 compiler 243–245
ES2016 243
event handler model 7
event handlers 135, 144–146, 378, 379–380
events 144–146, 377
exception handling 178
exceptions 59, 178, 365
exit costs

new technology adoption and 247
extensibility 325–340

conventions and 326–328
dotnet command line tools and 337
isomorphic applications and 338–339
loading external controller and views 334–335
middleware 328–333
routing 335–337

extension methods 226–227
external login providers 208–211
external threats 195

F
F# 245
façade pattern 43
Facebook 199–200, 208, 210
failed login attempts 208
failing fast 50
FAKE 47
fallbacks 298
F# code 46
feature folders 381–382
FileConfigurationSource 174
files property 322
filters 12
First method 122
folder structure

within areas 381–382
foreign keys

referential integrity without 134–135
Foundation 277
Freya 25
function level scoping 245
functions

style sheet 273–274

	 393

internationalization

G
Gartner’s Magic Quadrant Reports 69
GET action 11
GET action method 137
GET requests 41, 60, 283
GitHub 15, 24, 261

VSTS and 54
global filters 210
globalization, of applications 342–343
glob patterns 297
Gmail 10
Google

containers 116–118
grunt 255

unit testing and 323
Grunt 22, 237–238
Gruntfile.js 238
grunt-ts library 238
gulp 239–240, 255
Gulp 22

unit testing and 323
gulp-karma plugin 323

H
hashing passwords 204–205
headers

Content-Security Policy 232
heat mapping 365
helper templates 12–13
Homakov, Egor 29
hosted services 69
hosting

elastic 69
external 69
internal 68

hosting configuration options 59
HTML 148, 149, 153, 154

JavaScript and 232
HTML content

of tag helpers 301
HTTP protocol 283
HTTPRrequest object 18
Hub 114
Hyper-V containers 115
HyperV hypervisor 110, 114

I
IConfigurationBuilder 175
IConfigurationProvider 174
IConfigurationSource 174
IControllerModelConvention 326
IDataReader 120
IDbCommand 120
IDbConnection 120
IDbTransaction 120
identity 33, 35

ASP.NET Core 202–205
IdentityRoles 205
IdentityRoleUserClaims 205
IdentityUserClaim 205
IdentityUser class 130–131, 203
IdentityUserLogin 205
IdentityUserTokens 205
IgnoreBody 160
IIS. See Internet Information Server (IIS)
image files 234
ImageProcessing library 89
images

optimization of 240
storing in blob containers 86–87

Index action method 136–137, 138, 140
Index method 20
information

protection of sensitive 85
information logs 180
infrastructure as a service (IaaS) 69
inheritance 271–272
INotificationHandler<PurchaseCompleted> interface
145
INotification interface 144
input tag helpers 296
installation

packages
with NuGet 252–254

integration tests 50, 324
IntelliSense

for custom tag helpers 300
IntelliTest 359
internal threats 194–195
internal users 197
internationalization 341–352

localizable text 343–348
setting current culture 348–351

394

Internet Explorer

Internet Explorer 243
Internet Information Server (IIS) 58, 59, 64

enabling hosting 61–62
reverse proxy and 59–61

Internet of Things (IoT) 41
inversion of control (IoC) 223, 228
Invoke method 302, 303
IParameterModelConvention 326
IQueryable<T> 123
IServiceCollection 227, 228, 229
isolation

performance and 106–107
isomorphic applications 338–339
IStringLocalizer service 344–345
IViewLocalizer 346

J
Jakarta Struts 18
Jasmine 320–321
Jasmine JavaScript unit framework 255
Java 245
JavaScript , 231–250, 221–230

Angular 23–24
build tools 235–243
Bundler & Minifie 236–237
choosing 243
Grunt 237–238
gulp 239–240
WebPack 240–243

code writing principles in 232–233
external script files 233
files 234
frameworks for 249–250
isomorphic applications and 338–339
mixing with HTML 232
module formats 241
module loading 247–248
need for 233
organization 233–234
popularity of 23
React 23–24
security vulnerabilities 232–233
Single Page Application 234–235
testing 233, 320–323
TypeScript and 243–247
variable scoping in 245

Jenkins 65, 71
jQuery 249, 298

JScript 6
JSON results 11
Just-In-Time compiler 66
Just-In-Time compiler (JITer) 102

K
Karma 321–323
Karma test runner 255, 256
Katana 25
Kestrel 25, 58–59

Nginx and 62–63
NTLM authentication 61
reverse proxy and 59–61

key-value pairs 171
Kubernetes 116, 117

L
labels 116
lambda syntax 244
landing pages 282
layouts 13

foundations of 159–161
working with 158–161

legacy code 358
legacy support 18
LESS 269
let variable scoping operator 245
libraries 251–252

base class 102
client side 260
definition files and 246–247
portable class 102
shared 108

link tag helper 297–299
Linux 93–94

Alpine Ski House on 98–101
code editors 98
SQL Server and 100
Ubuntu 94–98

Linux containers 110–114
load testing 324
localization middleware 348–349
localization, of applications 341–352
logging 35, 92, 177–188, 365

as a service 186–188
as development strategy 179–180
exception handling 178

	 395

Ninject

levels of 180–183
scopes 183–185
structured framework for 185–187
writing helpful log files 177

M
MapRoute 335
MapWhen function 333
Marathon 116
master pages 8–9, 13, 158
MD5 Hashed Passwords 204
mediator class 377–378
mediator pattern 376–380
MediatR 376–380
MediatR library 144
MergeClassAttributeValue extension method 301
Mesosphere 116
micro-ORMs 120
microservices 355
Microsoft Account 199
Microsoft Azure. See Azure
Microsoft Developer Network (MSDN) 51
Microsoft Windows

backward compatibility 18
middleware 13, 32–33, 328–333

as class 331
localization 348–349
pipelines
branching 332–333
configuration 329–330

writing your own 330–332
Migration class 125
migrations

adding 125–127
database providers and 129–130
data types and 127–128
to create and update databases 124–128

mixins 274–275
mkdirp 260
mobile devices 10

browsers on 243
mocking 223
model binding 11
models 12

defining, in Razor 156–157
in MVC framework 28–30

Models folder 381
model state validation 138

Model View Controller (MVC) framework 27–36,
35–36

controllers 31–32
models 28–30
partial views 31–32
views 30

Model-View-Controller (MVC) framework 10, 11–12
extensibility of 326–340

Model View Controller (MVC) web frameworks
Ruby on Rails 18–21

Model-View-Controller pattern 28
modular applications 22
module formats 241
module loaders 247–248
modules 229
MSBuild file 47
MSTest 308
multi-tenant authentication 197

in Azure Active Directory 197
MvcOptions parameter 212
MyGet 254

N
namespaces 375

lack of, in JavaScript 232
NancyHost 58
NDepend 370
nested master pages 9
.NET Core 15
.NET Core 66, 101–104

dotnet command line interface (CLI) 94–98
installing, on Ubuntu 94

.NET framework 7

.NET framework
internationalization support in 343

.NET framework
cross-platform support for 93–104

.NET Runtime Installer 66

.NET Standard 102–104

.NET Standard Library 66–67
networks

in container environments 109
Next Generation Windows Services (NGWS) 7
Nginx 62–63
nginx.conf file 62
nHibernate 120
nightly builds 48
Ninject 228

396

Node.js

Node.js 22–24, 25
npm and 255–258

Nodejs 338, 339
node_modules directory

restoring 259
node services 339
NotFound() method 139, 140
npm 255–258

adding dependencies 255–256
modules, using 256
shortcomings of 259
Visual Studio integration 257–258

npm init command 255
npm install command 255, 256, 257
NPM package manager 22
npm run-script command 256
NTLM authentication 61
NuGet 22, 85, 252–254, 260

feeds 254
installing packages with 252–254
Visual Studio tooling 252–254

.nuget files 67
nuget packages 67
nUnit 308
nvarchar(max) datatype 127

O
object oriented programming 355
Object Relational Mapper (ORM) 120

Entity Framework (EF) Core 120–146
micro-ORMs 120
System.Data 120

Octopus Deploy 67
OmniSharp 98
OneDrive 70
OnModelCreating method 142
OpenID Connect 201
open source 24
Open Web Interface for .NET (OWIN) 24–25, 58
Open Web Interface for .NET (OWIN) standard 13
operating systems 93, 107
options delegates 225
options pattern 176–177
orchestration system

containers 109
Origin headers 218
ORM. See Object Relational Mapping
outbound traffic 92

output caching 283
OWIN (Open Web Interface for .NET) 24–25

P
package.json file 255, 257, 258
package managers 252–262

Bower 260–262
npm 255–258, 259
NuGet 252–254, 260
Yarn 258–260

package restore 49, 55
packages

building 67–68
global installation of 256

Page-Controller pattern 28
parallel structure 375–376
partial views 31–32, 161, 305–306
Pass class 145
pass types 141–142
passwords

encrypted 204
hashing 204–205
storing 204–205
verifying 207

PayPass 39
PayWave 39
PCLs. See portable class libraries (PCLs)
performance

isolation and 106–107
performance testing 50–51
Perl 6
PhantomJS 323
PHP 18
pipelines

branching 332–333
configuration 329–330

Pipes and Filters architecture 328
plain old CLR object (POCO) 12
Plain Old CLR Objects (POCOs) 120
platform as a service (PaaS) 69
Platform as a Service (PaaS) 117
Platform-as-a-Service (PaaS) 80–83, 88–89
platform services 80–82

building applications using 83–89
pods 116
policies

applying globally 212–213
custom authorization 214–215

	 397

relationships

defining for selected use 213–214
for authorization 212–215
limitations of 214–215

portable class libraries 102
portable class libraries (PCLs) 66–67
portable mode 66
POST action 11
POST action method 137, 140
POST method 138
PowerQuest Drive Image 106
pre-processors, CSS 269
principles of least privilege 194–195
production environments 106
production servers

update scripts for 129–130
Program.cs 58
project.json file 47, 252
Project Parsley

admin view 42
API 41–42, 43
ApplicationDbContext 130–133
application integration 42–43
customer view 39–41
deployment 58–74
domain for 43
Entity Framework (EF) Core and 119–146, 120–146,
147–168
SkiCardContext class 133–140
source code 38

projects
adding services to 225–227
customer view 39–41
keeping code in multiple 374–375
scoping 37–44
structure of 374–382

proxy servers 59, 283, 284
PSake 47
publishing 64–66
publish-subscribe messaging pattern 144
PurchaseCompleted class 145

Q
QueueTriggerAttribute 89

R
R# 370
Rack 25

Radio Frequency Identification (RFID) chips 39–40
Rails. See Ruby on Rails
Razor 11–12, 18

syntax 152, 154–155
Razor views 30, 147–168

advanced functionality 162–166
alternative view engines 167
avoiding duplication in 167
C# features 155–157
code 153–154
compilation 151
defining model 156–157
errors in 150
essentials of 149–155
including sections in 160–161
injecting services into 162
layouts 158–161
localization of 346
markup 154
parser control cheat sheet for 154–155
partial views 161, 305–306
role of 149
style sheets and 268
tag helpers 296
Tag Helpers 163–166
view components and 302
view data 156–157
web development and 148–149
writing expressions 152

React 23–24, 249–250
readme files 374
records

change tracking 124–125
querying for multiple 123
querying for single 122
saving 123

recycleOnFileChange setting 62
redirects 11
Redis 287
refactoring 353–365

data driven changes and 365
defined 354–355
microservices 355
time for 357–358
with safety net 358–365

referential integrity 134–135
RefluxJS 249–250
registers 282
relationships

across context boundaries 134–135

398

Remove Additional Files At Destination

Remove Additional Files At Destination 72
repeatable environments 106–110
repetition 21
repository structure 374
representational state transfer (REST) 13–14
requirements

in authorization policies 214
resource files 343

culture-specific 345–346
sharing 347–348

resource groups 72
resources

Azure Resource Explorer 82
cross-origin resource sharing (CORS) 218–219
protection of 215–217

reusable components , 283–290, 307–324, 310–324,
325–340, 326–340, 341–352, 343–352

partial views 305–306
tag helpers 296–302
view components 302–305

reverse proxy 59–61
RFID. See Radio Frequency Identification (RFID) chips
RFID scanners 41–42
-r flag 68
rkt 110, 114–115
root directory 374
Roslyn 101
Rosslyn compiler 46
Route attribute 336–337
routing 21, 33, 335–337

advanced 337
attribute 336–337
conventional 336

routing table 10
RT5500s 41–42
Ruby on Rails 18–21, 25

conventions 19–21
directory structure 19

runtime errors 12
RyuJIT project 102

S
SASS. See Syntactically Awesome Style Sheets
SASS script functions 273–274
Sassy CSS (SCSS) 268–275

basics of 269–273
directives 274
imports and partials 270

inheritance 271–272
mixins 274–275
nesting 272–273
variables 270

SaveChanges method 123, 124–125
--save flag 255, 261
scaling

web applications 89–92
Scoped lifetime 226
scopes 183–185
scripts 374
Scripts folder 234
script tag helper 297–299
SCSS. See Sassy CSS
search engine optimization 21
search engine optimization (SEO) 338
sections

from views 160–161
security 193–220

ASP.NET Core Identity 202–205
authentication
Azure-backed 197–202
third-party authentication providers

208–211
through attributes 210–211

authorization
policies for 212–215

cross-origin resource sharing 218–219
cross-site scripting attacks 232–233
external threats 195
internal threats 194–195
passwords
storing 204–205

resource protection 215–217
through attributes 210–211
user secrets and 195–196, 201

selectors 267–268
self-contained packages 67, 68
Seq 187–188
Serilog library 185–187, 187
server push 22
servers

build 48, 49, 51
proxy 283, 284
source control 49, 51

Server Side Includes 6
server side programming 231, 235–236
Service Locator pattern 224
services 117

	 399

Taglet

adding 225–227
injecting into views 162
lifetime of 226
localization 343–344
logging as 186–188
node 339
option 176–177

SetLanguage action method 349–350
SHA hashing function 204
shared libraries 108
SignalR 22
SignInManager class 206, 207–208, 208
sign up policies 200–201
Silverlight 102
Simple Object Access Protocol (SOAP) 13–14
Single Page Application (SPA) 234–235
single page applications (SPAs) 10, 338
single-tenant authentication 197

in Azure Active Directory 197
SkiCardContext class 133–140
SOAP. See Simple Object Access Protocol
social identity providers 199–200
Socket.io package 22
software

continuous delivery of 49
continuous deployment of 48
inside containers 108

software releases 48
solution files 47
source code 38

repository for 53, 54–55
repository structure 374

source control 70
source control servers 49, 51
SPA. See Single Page Application
SPAs. See single page applications
SpaServices 338
spiky loads 69
Spring framework 18
SQL Server 100

distrubuted cache and 287–289
src property 238
standards 373–374
Startup class 133, 170, 176, 185, 213, 225
static files 33
storage accounts 84–86
storage locations 282
storage queues 87–88
Strahl, Rick 59
streams 239

string localization 344–345
strongly typed languages 245
strongly-typed views 156
structured logging 185–187
StructureMap 228
StyleCop 370
Style folder 234
style sheets 263–280

about 265
creating 266–268
custom 279–280
directives 274
imports and partials 270
inheritance 271–272
mixins 274–275
nesting 272–273
SASS script functions 273–274
SCSS 268–275
variables 270

Stylus 269
Symantec Ghost 106
Syntactically Awesome Style Sheets (SASS) 269
syntax

Razor 152, 154–155
System.Data 120
System.Data.SqlClient 120
system.js module loader 247–248
system layers 108

T
table controls 9
tage helpers 35
tag helpers 296–302

anatomy of 296–297
attributes of 296
cache 298
cache busting 297–298
CDNs and fallbacks 298
creating 299–302
environment 297
glob patterns 297
handling existing attributes and contents
300–301
link 297–299
script 297–299
testing 316–319

Tag Helpers 163–166
Taglet 23

400

tags

tags
custom 23

target element 296
Task Runner Explorer 258
TeamCity 51, 65, 71
Team Foundation Server (TFS) 51–56, 71
technical debt 195
templates

ARM 72–74
Test Explorer 310
testing 49–51, 55, 307–324

automated 358
characterization tests 358–359
continuous 310
controllers 313–316
integration 324
integration tests 50
JavaScript 233, 320–323
load 324
mocking 223
performance 50–51
pyramid 50
refactoring and 358–366
tag helpers 316–319
types of 324
unit tests 49, 50, 55, 224, 308–323
view components 319–320

text
localizable 343–348

TFS. See Team Foundation Server
TFS Build 65
third-party authentication providers 208–211
third-party containers 228–229
third-party CSS frameworks 277–280
threads 106, 107
tightly coupled code 223
tokens 205
tools 374
trace logs 180
transpilers 244–246
Trello 10
triggers

for builds 56
tsconfig.json file 241
Twitter 10, 208, 210
two-factor authentication 208

TypeScript 22, 235, 237, 242, 243–247
as ES2015 to ES5 compiler 243–245
exit costs 247
React and 249
typing system 245–247

TypeScript compiler 255

U
Ubuntu 94–98

dotnet command line interface (CLI) 94–98
installing .NET Core 94

UglifyJsPlugin 242
unit tests 49, 50, 55, 224, 308–323

controllers 313–316
Jasmine 320–321
JavaScript 320–323
Karma 321–323
organizing 311–313, 321
running 309–310, 321–323
tag helpers 316–319
view components 319–320
xUnit 308–310, 316

Update Panels 8
update scripts

for production servers 129–130
Up() method 125–126
URLs 21
UseCors() 218
UseIISIntegration 61
UseMvc() 218
user accounts

ASP.NET Core Identity 206–208
deleting 135
lockout of 208

user controls 9, 12
user experience

with Web Forms 9–10
user identity

options for establishing 202
UserManager class 206
usernames

verifying 207
users

authentication of 207–208
management of 206–207

user-secret command 196
user secrets 195–196, 201

	 401

web servers

V
validation

passes and 142–146
variables 270
variable scoping 245
VB.NET 7
VBScript 6
-v flag 113
ViewBag 12
view component class 302
view components 31, 302–305

example 303–304
invoking 303
testing 319–320

view data 156–157
ViewData 12
view engines. See also Razor views

alternative 167
_ViewImports 167
View method 20
view results 11
views 11, 30

admin 42
advanced functionality 162–166
alternative view engines 167
avoiding duplication in 167
C# types in 155
including sections from 160–161
injecting services into 162
loading external 334
localization of 346
partial 31–32, 161
Rails 19
Razor 30, 147–168
strongly typed 156
Tag Helpers 163–166

Views folder 381
ViewState container 10
view templates 12
virtual machines 69, 106, 107, 108

scaling 89–90
Visual Basic 7, 8
Visual Studio 64–66

Bower and 260
Integrated Development Environment (IDE) 257
npm integration with 257–258
NuGet in 252–254
Tag Helpers and 166
Test Explorer 310

Visual Studio Code 22, 98
Visual Studio Code (VS Code) 276–277
Visual Studio Team Services (VSTS) 51–56, 65, 71–72

GitHub and 54
VS Code 276–277
VSTS. See Visual Studio Team Services

W
warning logs 180
WCF. See Windows Communication Foundation
Web API 13–15
web applications

building
using platform services 83–89
with Azure 79–92

caching 92
developing 148–149
layouts for 158–161
outbound traffic 92
platform as a service and 80–83
scaling 89–92

web browsers 243
communication with servers 22

web.config 170
web.config file 61–62
Web Deployment 64
web development 148–149

CSS and 264–280
early days of 6
project build tasks 277
workflow for 275–276

Web development tools 22
WebDriver 324
Web Forms 8–10, 12, 18, 20, 21, 24
WebForms 158, 163, 374
WebHost 59
WebJobs 84, 88–89
WebJobs package 86
WebPack 240–243
web pages

master pages 8–9, 13
Web Forms 8–10

web servers 113
caching on 282–290
choosing 58
communication with browsers 22
IIS 64
Kestrel 58–59

402

WebSockets

load on 282
Nginx 62–63
reverse proxy and 59–61

WebSockets 22
Where method 123
Wikipedia 232
wildcard patterns 297
windows authentication tokens 61
Windows Communication Foundation (WCF) 13,
14–15
Windows containers 114–116
Windows Nano 107

containers 115
Windows Server Containers 115
Windows Server Core

containers 115
WinForms 8
WS-BPEL 13
WS-Security 13
wwwroot 33
wwwroot directory 233–234

X
XSS. See cross-site scripting attacks
xUnit 308–310, 316

Y
Yarn 258–260
yarn.lock file 259

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	PART 1 ALPINE SKI HOUSE
	Chapter 3 Models, Views, and Controllers
	The M, the V, and the C of it
	Diving into Models
	Views
	Partial Views
	Controllers (. . . and Actions!)

	It’s Not Just About MVC
	Middleware
	Dependency Injection
	Other Gems

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

