
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9781509302000
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9781509302000
https://plusone.google.com/share?url=http://www.informit.com/title/9781509302000
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9781509302000
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9781509302000/Free-Sample-Chapter

T-SQL Fundamentals,
Third Edition

Itzik Ben-Gan

PUBLISHED BY
Microsoft Press
A division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2016 by Itzik Ben-Gan

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2015955815
ISBN: 978-1-5093-0200-0

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Support at mspinput@microsoft.com. Please tell us what you think of this
book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information
expressed in this book, including URL and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks
of the Microsoft group of companies. All other marks are property of their respective owners.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Carol Dillingham
Project Editor: Carol Dillingham
Editorial Production: Christian Holdener; S4Carlisle Publishing Services
Technical Reviewer: Bob Beauchemin; Technical Review services provided by Content Master, a member of
CM Group, Ltd.
Copyeditor: Roger Leblanc
Indexer: Maureen Johnson, MoJo’s Indexing Services
Cover: Twist Creative • Seattle and Joel Panchot

mailto:mspinput@microsoft.com
http://aka.ms/tellpress
http://www.microsoft.com
http://aka.ms/tellpress
http://www.microsoft.com

To Dato,
To live in hearts we leave behind,

Is not to die.
—THOMAS CAMPBELL

This page intentionally left blank

Contents at a glance

Introduction xix

CHAPTER 1 Background to T-SQL querying and programming 1

CHAPTER 2 Single-table queries 27

CHAPTER 3 Joins 103

CHAPTER 4 Subqueries 133

CHAPTER 5 Table expressions 161

CHAPTER 6 Set operators 193

CHAPTER 7 Beyond the fundamentals of querying 213

CHAPTER 8 Data modification 249

CHAPTER 9 Temporal tables 297

CHAPTER 10 Transactions and concurrency 319

CHAPTER 11 Programmable objects 361

Appendix: Getting started 395

Index 415

This page intentionally left blank

vii

Contents

Introduction .xix

Chapter 1 Background to T-SQL querying and programming 1
Theoretical background . 1

SQL . 2

Set theory . 3

Predicate logic . 4

The relational model . 4

Types of database systems . 10

SQL Server architecture . 12

The ABCs of Microsoft RDBMS flavors. 12

SQL Server instances . 14

Databases . 15

Schemas and objects . 18

Creating tables and defining data integrity . 19

Creating tables . 20

Defining data integrity . 22

Conclusion . 25

Chapter 2 Single-table queries 27
Elements of the SELECT statement . 27

The FROM clause . 29

The WHERE clause . 31

The GROUP BY clause . 32

The HAVING clause . 35

The SELECT clause . 36

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can improve our books and learning resources for
you. To participate in a brief survey, please visit:

http://aka.ms/tellpress

http://aka.ms/tellpress
http://aka.ms/tellpress

viii Contents

The ORDER BY clause . 41

The TOP and OFFSET-FETCH filters .43

A quick look at window functions . 47

Predicates and operators .49

CASE expressions . 52

NULLs . 54

All-at-once operations . 58

Working with character data . 60

Data types . 60

Collation . 61

Operators and functions . 63

The LIKE predicate . 71

Working with date and time data . 73

Date and time data types . 74

Literals . 74

Working with date and time separately . 78

Filtering date ranges . 79

Date and time functions . 80

Querying metadata . 89

Catalog views .90

Information schema views . 91

System stored procedures and functions . 91

Conclusion . 93

Exercises . 93

Exercise 1 . 93

Exercise 2 . 93

Exercise 3 .94

Exercise 4 .94

Exercise 5 . 95

Exercise 6 . 95

Exercise 7 . 95

Exercise 8 . 96

Exercise 9 . 96

Exercise 10 . 97

Contents ix

Solutions . 97

Exercise 1 . 98

Exercise 2 . 98

Exercise 3 . 99

Exercise 4 . 99

Exercise 5 . 99

Exercise 6 . 100

Exercise 7 . 101

Exercise 8 . 102

Exercise 9 . 102

Exercise 10 . 102

Chapter 3 Joins 103
Cross joins . 103

ISO/ANSI SQL-92 syntax . 104

ISO/ANSI SQL-89 syntax . 105

Self cross joins . 105

Producing tables of numbers . 106

Inner joins . 107

ISO/ANSI SQL-92 syntax . 107

ISO/ANSI SQL-89 syntax . 108

Inner join safety . 109

More join examples . 109

Composite joins . 110

Non-equi joins .111

Multi-join queries . 113

Outer joins . 113

Fundamentals of outer joins . 114

Beyond the fundamentals of outer joins . 116

Conclusion . 123

Exercises . 123

Exercise 1-1 . 123

Exercise 1-2 (optional, advanced) . 124

Exercise 2 . 125

x Contents

Exercise 3 . 125

Exercise 4 . 126

Exercise 5 . 126

Exercise 6 . 127

Exercise 7 (optional, advanced) . 127

Exercise 8 (optional, advanced) . 128

Exercise 9 (optional, advanced) . 128

Solutions . 129

Exercise 1-1 . 129

Exercise 1-2 . 129

Exercise 2 . 129

Exercise 3 . 130

Exercise 4 . 130

Exercise 5 . 131

Exercise 6 . 131

Exercise 7 . 131

Exercise 8 . 132

Exercise 9 . 132

Chapter 4 Subqueries 133
Self-contained subqueries . 133

Self-contained scalar subquery examples . 134

Self-contained multivalued subquery examples 136

Correlated subqueries . 139

The EXISTS predicate . 141

Beyond the fundamentals of subqueries . 143

Returning previous or next values . 143

Using running aggregates. 144

Dealing with misbehaving subqueries . 145

Conclusion . 149

Exercises . 150

Exercise 1 . 150

Exercise 2 (optional, advanced) . 150

Exercise 3 . 151

Contents xi

Exercise 4 . 151

Exercise 5 . 152

Exercise 6 . 152

Exercise 7 (optional, advanced) . 153

Exercise 8 (optional, advanced) . 153

Exercise 9 . 154

Exercise 10 (optional, advanced) . 154

Solutions . 154

Exercise 1 . 154

Exercise 2 . 155

Exercise 3 . 155

Exercise 4 . 155

Exercise 5 . 156

Exercise 6 . 156

Exercise 7 . 156

Exercise 8 . 157

Exercise 9 . 157

Exercise 10 . 158

Chapter 5 Table expressions 161
Derived tables . 161

Assigning column aliases . 163

Using arguments . 164

Nesting . 165

Multiple references . 166

Common table expressions . 167

Assigning column aliases in CTEs . 167

Using arguments in CTEs . 168

Defining multiple CTEs . 168

Multiple references in CTEs . 169

Recursive CTEs . 169

Views . 171

Views and the ORDER BY clause . 172

View options . 175

xii Contents

Inline table-valued functions . 178

The APPLY operator . 180

Conclusion . 183

Exercises . 183

Exercise 1 . 183

Exercise 2-1 . 184

Exercise 2-2 . 184

Exercise 3-1 . 184

Exercise 3-2 . 185

Exercise 4 (optional, advanced) . 185

Exercise 5-1 . 186

Exercise 5-2 (optional, advanced) . 187

Exercise 6-1 . 187

Exercise 6-2 . 188

Solutions . 188

Exercise 1 . 188

Exercise 2-1 . 189

Exercise 2-2 . 189

Exercise 3-1 . 189

Exercise 3-2 . 189

Exercise 4 . 190

Exercise 5-1 . 190

Exercise 5-2 . 191

Exercise 6-1 . 191

Exercise 6-2 . 192

Chapter 6 Set operators 193
The UNION operator . 194

The UNION ALL operator . 194

The UNION (DISTINCT) operator . 195

The INTERSECT Operator . 196

The INTERSECT (DISTINCT) operator . 196

The INTERSECT ALL operator . 197

The EXCEPT operator . 199

Contents xiii

The EXCEPT (DISTINCT) operator . 199

The EXCEPT ALL operator .200

Precedence . 201

Circumventing unsupported logical phases .203

Conclusion .204

Exercises .204

Exercise 1 .204

Exercise 2 .205

Exercise 3 .205

Exercise 4 .206

Exercise 5 .207

Exercise 6 (optional, advanced) .207

Solutions .208

Exercise 1 .208

Exercise 2 .208

Exercise 3 .209

Exercise 4 . 210

Exercise 5 . 210

Exercise 6 . 211

Chapter 7 Beyond the fundamentals of querying 213
Window functions . 213

Ranking window functions . 216

Offset window functions . 219

Aggregate window functions . 221

Pivoting data .224

Pivoting with a grouped query .226

Pivoting with the PIVOT operator .227

Unpivoting data .230

Unpivoting with the APPLY operator . 231

Unpivoting with the UNPIVOT operator .233

Grouping sets .234

The GROUPING SETS subclause .236

The CUBE subclause .236

xiv Contents

The ROLLUP subclause .236

The GROUPING and GROUPING_ID functions 238

Conclusion .240

Exercises . 241

Exercise 1 . 241

Exercise 2 . 241

Exercise 3 .242

Exercise 4 .242

Exercise 5 .243

Exercise 6 .244

Solutions .245

Exercise 1 .245

Exercise 2 .245

Exercise 3 .245

Exercise 4 .246

Exercise 5 .247

Exercise 6 .247

Chapter 8 Data modification 249
Inserting data .249

The INSERT VALUES statement .249

The INSERT SELECT statement . 251

The INSERT EXEC statement . 251

The SELECT INTO statement .252

The BULK INSERT statement .253

The identity property and the sequence object.254

Deleting data .262

The DELETE statement .263

The TRUNCATE statement .264

DELETE based on a join .265

Updating data .266

The UPDATE statement .267

UPDATE based on a join .268

Assignment UPDATE . 270

Contents xv

Merging data . 271

Modifying data through table expressions .276

Modifications with TOP and OFFSET-FETCH . 278

The OUTPUT clause .280

INSERT with OUTPUT . 280

DELETE with OUTPUT . 282

UPDATE with OUTPUT . 283

MERGE with OUTPUT . 284

Nested DML .285

Conclusion .287

Exercises .287

Exercise 1 .287

Exercise 2 .288

Exercise 3 .288

Exercise 4 .288

Exercise 5 .290

Exercise 6 .290

Solutions . 291

Exercise 1 . 291

Exercise 2 .293

Exercise 3 .293

Exercise 4 .294

Exercise 5 .294

Exercise 6 .295

Chapter 9 Temporal tables 297
Creating tables .298

Modifying data . 301

Querying data .304

Conclusion . 311

Exercises . 311

Exercise 1 . 311

Exercise 2 . 311

xvi Contents

Exercise 3 . 312

Exercise 4 . 313

Solutions . 313

Exercise 1 . 313

Exercise 2 . 314

Exercise 3 . 316

Exercise 4 . 317

Chapter 10 Transactions and concurrency 319
Transactions . 319

Locks and blocking .322

Locks .322

Troubleshooting blocking .325

Isolation levels .332

The READ UNCOMMITTED isolation level .333

The READ COMMITTED isolation level .334

The REPEATABLE READ isolation level .335

The SERIALIZABLE isolation level .337

Isolation levels based on row versioning .339

Summary of isolation levels .345

Deadlocks .345

Conclusion .348

Exercises .348

Exercise 1-1 .349

Exercise 1-2 .349

Exercise 1-3 .349

Exercise 1-4 .349

Exercise 1-5 .350

Exercise 1-6 .350

Exercise 2-1 .350

Exercise 2-2 . 351

Exercise 2-3 .352

Exercise 2-4 .353

Exercise 2-5 .354

Contents xvii

Exercise 2-6 .356

Exercise 3-1 .357

Exercise 3-2 .358

Exercise 3-3 .358

Exercise 3-4 .358

Exercise 3-5 .358

Exercise 3-6 .358

Exercise 3-7 .359

Chapter 11 Programmable objects 361
Variables . 361

Batches .363

A batch as a unit of parsing .364

Batches and variables .365

Statements that cannot be combined in the same batch365

A batch as a unit of resolution .366

The GO n option .366

Flow elements .367

The IF . . . ELSE flow element .367

The WHILE flow element .368

Cursors .370

Temporary tables . 374

Local temporary tables . 374

Global temporary tables .376

Table variables .377

Table types .378

Dynamic SQL .379

The EXEC command .380

The sp_executesql stored procedure .380

Using PIVOT with Dynamic SQL . 381

Routines .383

User-defined functions .383

Stored procedures .385

Triggers .387

xviii Contents

Error handling .390

Conclusion .394

Appendix: Getting started 395

Index 415

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can improve our books and learning resources for
you. To participate in a brief survey, please visit:

http://aka.ms/tellpress

http://aka.ms/tellpress
http://aka.ms/tellpress

xix

Introduction

This book walks you through your first steps in T-SQL (also known as Transact-SQL),
which is the Microsoft SQL Server dialect of the ISO and ANSI standards for SQL.

You’ll learn the theory behind T-SQL querying and programming and how to develop
T-SQL code to query and modify data, and you’ll get an overview of programmable
objects.

Although this book is intended for beginners, it’s not merely a set of procedures for
readers to follow. It goes beyond the syntactical elements of T-SQL and explains the logic
behind the language and its elements.

Occasionally, the book covers subjects that might be considered advanced for
readers who are new to T-SQL; therefore, you should consider those sections to be
optional reading. The text will indicate when a section is considered more advanced
and is provided as optional reading. If you feel comfortable with the material discussed
in the book up to that point, you might want to tackle these more advanced subjects;
otherwise, feel free to skip those sections and return to them after you gain more
experience.

Many aspects of SQL are unique to the language and very different from other
programming languages. This book helps you adopt the right state of mind and gain a
true understanding of the language elements. You learn how to think in relational terms
and follow good SQL programming practices.

The book is not version specific; it does, however, cover language elements that were
introduced in recent versions of SQL Server, including SQL Server 2016. When I discuss
language elements that were introduced recently, I specify the version in which they
were added.

Besides being available as a box product, SQL Server is also available as a cloud-based
service called Microsoft Azure SQL Database, or in short, just SQL Database. The code
samples in this book were tested against both a box SQL Server product and Azure SQL
Database. The book’s companion content (available at http://aka.ms/T-SQLFund3e/
downloads) provides information about compatibility issues between the flavors.

To complement the learning experience, the book provides exercises you can use
to practice what you learn. The book occasionally provides optional exercises that are
more advanced. Those exercises are intended for readers who feel comfortable with the
material and want to challenge themselves with more difficult problems. The optional
exercises for advanced readers are labeled as such.

http://aka.ms/T-SQLFund3e/downloads
http://aka.ms/T-SQLFund3e/downloads
http://aka.ms/T-SQLFund3e/downloads
http://aka.ms/T-SQLFund3e/downloads

xx Introduction

Who should read this book

This book is intended for T-SQL developers, database administrators (DBAs), business
intelligence (BI) practitioners, data scientists, report writers, analysts, architects, and SQL
Server power users who just started working with SQL Server and who need to write
queries and develop code using Transact-SQL.

Assumptions
To get the most out of this book, you should have working experience with Microsoft
Windows and with applications based on Windows. You should also be familiar with
basic concepts of relational database management systems.

This book might not be for you if…

Not every book is aimed at every possible audience. This book covers fundamentals. It’s
mainly aimed at T-SQL practitioners with little or no experience. This book might not be
for you if you’re an advanced T-SQL practitioner with many years of experience. With
that said, several readers of the previous editions of this book have mentioned that—
even though they already had years of experience—they still found the book useful for
filling gaps in their knowledge.

Organization of this book

This book starts with a theoretical background to T-SQL querying and programming
in Chapter 1, laying the foundations for the rest of the book, and basic coverage of
creating tables and defining data integrity. The book moves on to various aspects of
querying and modifying data in Chapters 2 through 9, and then moves to a discussion
of concurrency and transactions in Chapter 10. Finally, it provides an overview of
programmable objects in Chapter 11.

Here’s a list of the chapters along with a short description of the content in each chapter:

 ■ Chapter 1, “Background to T-SQL querying and programming,” provides the
theoretical background for SQL, set theory, and predicate logic. It examines the
relational model, describes SQL Server’s architecture, and explains how to create
tables and define data integrity.

Introduction xxi

 ■ Chapter 2, “Single-table queries,” covers various aspects of querying a single
table by using the SELECT statement.

 ■ Chapter 3, “Joins,” covers querying multiple tables by using joins, including cross
joins, inner joins, and outer joins.

 ■ Chapter 4, “Subqueries,” covers queries within queries, otherwise known as
subqueries.

 ■ Chapter 5, “Table expressions,” covers derived tables, Common Table Expressions
(CTEs), views, inline table-valued functions, and the APPLY operator.

 ■ Chapter 6, “Set operators,” covers the set operators UNION, INTERSECT, and EXCEPT.

 ■ Chapter 7, “Beyond the fundamentals of querying,” covers window functions,
pivoting, unpivoting, and working with grouping sets.

 ■ Chapter 8, “Data modification,” covers inserting, updating, deleting, and merging data.

 ■ Chapter 9, “Temporal tables,” covers system-versioned temporal tables.

 ■ Chapter 10, “Transactions and concurrency,” covers concurrency of user connec-
tions that work with the same data simultaneously; it covers transactions, locks,
blocking, isolation levels, and deadlocks.

 ■ Chapter 11, “Programmable objects,” provides an overview of the T-SQL program-
ming capabilities in SQL Server.

 ■ The book also provides an appendix, “Getting started,” to help you set up your
environment, download the book’s source code, install the TSQLV4 sample data-
base, start writing code against SQL Server, and learn how to get help by working
with SQL Server Books Online.

System requirements

The Appendix, “Getting started,” explains which editions of SQL Server 2016 you can use to
work with the code samples included with this book. Each edition of SQL Server might have
different hardware and software requirements, and those requirements are well documented
in SQL Server Books Online under “Hardware and Software Requirements for Installing SQL
Server 2016” at the following URL: https://msdn.microsoft.com/en-us/library/ms143506.aspx.
The Appendix also explains how to work with SQL Server Books Online.

If you’re connecting to Azure SQL Database, hardware and server software are
handled by Microsoft, so those requirements are irrelevant in this case.

https://msdn.microsoft.com/en-us/library/ms143506.aspx
https://msdn.microsoft.com/en-us/library/ms143506.aspx

xxii Introduction

You will need SQL Server Management Studio (SSMS) to run the code samples against
both SQL Server 2016 and Azure SQL Database. You can download SSMS and find
information about the supported operating systems at the following URL: https://msdn.
microsoft.com/en-us/library/mt238290.aspx.

Installing and using the source code

Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All source code, including exercises and solutions, can
be downloaded from the following webpage:

http://aka.ms/T-SQLFund3e/downloads

Follow the instructions to download the TSQLFundamentalsYYYYMMDD.zip file,
where YYYYMMDD reflects the last update date of the source code.

Refer to the Appendix, “Getting started,” for details about the source code.

Acknowledgments

A number of people contributed to making this book a reality, either directly or
indirectly, and deserve thanks and recognition. It’s certainly possible I omitted some
names unintentionally, and I apologize for this ahead of time.

To Lilach: You’re the one who makes me want to be good at what I do. Besides being
my inspiration in life, you always take an active role in my books, helping to review the
text for the first time.

To my mom, Mila, and to my siblings, Mickey and Ina: Thank you for the constant
support and for accepting the fact that I’m away. To my dad, Gabi, who loved puzzles,
logic, and numbers: I attribute my affinity to SQL to you; we all miss you a lot.

To the technical reviewer of the book, Bob Beauchemin: You’ve been around in
the SQL Server community for many years. I was always impressed by your extensive
knowledge and was happy that you agreed to work with me on this book.

To Steve Kass, Dejan Sarka, Gianluca Hotz, and Herbert Albert: Thanks for your valuable
advice during the planning phases of the book. I had to make some hard decisions in terms
of what to include and what not to include in the book, and your advice was very helpful.

Many thanks to the book’s editors. To Devon Musgrave, who played the acquisitions
editor role: You are the one who made this book a reality and handled all the initial

https://msdn.microsoft.com/en-us/library/mt238290.aspx
https://msdn.microsoft.com/en-us/library/mt238290.aspx
http://aka.ms/T-SQLFund3e/downloads
https://msdn.microsoft.com/en-us/library/mt238290.aspx
https://msdn.microsoft.com/en-us/library/mt238290.aspx
http://aka.ms/T-SQLFund3e/downloads

Introduction xxiii

stages. I realize that this book is likely one of many you were responsible for, and I’d like
to thank you for dedicating the time and effort that you did. To Carol Dillingham, the
book’s developmental editor and project editor, many thanks for your excellent han-
dling; I always enjoy working with you on my books. Also thanks to Roger LeBlanc for his
fine copy edits, and to Christian Holdener for his project management.

To SolidQ, my company for over a decade: It’s gratifying to be part of such a great
company that evolved into what it is today. The members of this company are much
more than colleagues to me; they are partners, friends, and family. To Fernando G.
Guerrero, Antonio Soto, and Douglas McDowell: thanks for leading the company. To my
many colleagues: It’s an honor to be part of this amazingly talented group.

To members of the Microsoft SQL Server development team, past and present: Tobias
Ternstrom, Lubor Kollar, Umachandar Jayachandran (UC), Boris Baryshnikov, Conor
Cunningham, Kevin Farlee, Josde Bruijn, Marc Friedman, Drazen Sumic, Borko Novakovic,
Milan Stojic, Milan Ruzic, Jovan Popovic, Lindsey Allen, Craig Freedman, Campbell Fraser,
Eric Hanson, Mark Souza, Dave Campbell, César Galindo-Legaria, Pedro Lopes, and I’m
sure many others. Thanks for creating such a great product, and thanks for all the time
you spent meeting with me and responding to my emails, addressing my questions, and
answering my requests for clarification.

To members of the SQL Server Pro editorial team, Tim Ford and Debra Donston-
Miller: I’ve been writing for the magazine for almost two decades, and I’m grateful for
the opportunity to share my knowledge with the magazine’s readers.

To Data Platform MVPs, past and present: Paul White, Alejandro Mesa, Erland
Sommarskog, Aaron Bertrand, Tibor Karaszi, Benjamin Nevarez, Simon Sabin, Darren
Green, Allan Mitchell, Tony Rogerson, and many others—and to the Data Platform MVP
lead, Jennifer Moser. This is a great program that I’m grateful for and proud to be part of.
The level of expertise of this group is amazing, and I’m always excited when we all get to
meet, both to share ideas and just to catch up at a personal level over beers.

Finally, to my students: Teaching about T-SQL is what drives me. It’s my passion.
Thanks for allowing me to fulfill my calling and for all the great questions that make me
seek more knowledge.

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content.
You can access updates to this book—in the form of a list of submitted errata and their
related corrections—at:

xxiv Introduction

http://aka.ms/T-SQLFund3e/errata

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks
from Microsoft Press cover a wide range of topics. These ebooks are available in PDF,
EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers
go directly to the editors at Microsoft Press. (No personal information will be requested.)
Thanks in advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

mailto:mspinput@microsoft.com
http://support.microsoft.com
http://aka.ms/mspressfree
http://twitter.com/MicrosoftPress
http://aka.ms/T-SQLFund3e/errata
http://aka.ms/tellpress
http://aka.ms/T-SQLFund3e/errata
http://support.microsoft.com
http://aka.ms/mspressfree
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

1

C H A P T E R 1

Background to T-SQL querying and
programming

You’re about to embark on a journey to a land that is like no other—a land that has its own set of
laws. If reading this book is your first step in learning Transact-SQL (T-SQL), you should feel like

Alice—just before she started her adventures in Wonderland. For me, the journey has not ended;
instead, it’s an ongoing path filled with new discoveries. I envy you; some of the most exciting
discoveries are still ahead of you!

I’ve been involved with T-SQL for many years: teaching, speaking, writing, and consulting about it.
For me, T-SQL is more than just a language—it’s a way of thinking. In my first few books about T-SQL,
I’ve written extensively on advanced topics, and for years, I have postponed writing about fundamen-
tals. This is not because T-SQL fundamentals are simple or easy—in fact, it’s just the opposite. The
apparent simplicity of the language is misleading. I could explain the language syntax elements in a
superficial manner and have you writing queries within minutes. But that approach would only hold
you back in the long run and make it harder for you to understand the essence of the language.

Acting as your guide while you take your first steps in this realm is a big responsibility. I wanted
to make sure that I spent enough time and effort exploring and understanding the language before
writing about fundamentals. T-SQL is deep; learning the fundamentals the right way involves much
more than just understanding the syntax elements and coding a query that returns the right output.
You pretty much need to forget what you know about other programming languages and start
thinking in terms of T-SQL.

Theoretical background

SQL stands for Structured Query Language. SQL is a standard language that was designed to query
and manage data in relational database management systems (RDBMSs). An RDBMS is a database
management system based on the relational model (a semantic model for representing data), which in
turn is based on two mathematical branches: set theory and predicate logic. Many other programming
languages and various aspects of computing evolved pretty much as a result of intuition. In contrast,
to the degree that SQL is based on the relational model, it is based on a firm foundation—applied
mathematics. T-SQL thus sits on wide and solid shoulders. Microsoft provides T-SQL as a dialect of, or
extension to, SQL in Microsoft SQL Server data-management software, its RDBMS.

2 CHAPTER 1 Background to T-SQL querying and programming

This section provides a brief theoretical background about SQL, set theory and predicate logic, the
relational model, and types of database systems. Because this book is neither a mathematics book nor
a design/data-modeling book, the theoretical information provided here is informal and by no means
complete. The goals are to give you a context for the T-SQL language and to deliver the key points that
are integral to correctly understanding T-SQL later in the book.

Language independence
The relational model is language independent. That is, you can apply data management and
manipulation following the relational model’s principles with languages other than SQL—for
example, with C# in an object model. Today it is common to see RDBMSs that support languages
other than a dialect of SQL, such as the CLR integration in SQL Server, with which you can handle
tasks that historically you handled mainly with SQL, such as data manipulation.

Also, you should realize from the start that SQL deviates from the relational model in several
ways. Some even say that a new language—one that more closely follows the relational model—
should replace SQL. But to date, SQL is the industrial language used by all leading RDBMSs in
practice.

See Also For details about the deviations of SQL from the relational model, as well as how to use SQL in a
relational way, see this book on the topic: SQL and Relational Theory: How to Write Accurate SQL Code, Third
Edition by C. J. Date (O’Reilly Media, 2015).

SQL
SQL is both an ANSI and ISO standard language based on the relational model, designed for querying
and managing data in an RDBMS.

In the early 1970s, IBM developed a language called SEQUEL (short for Structured English QUEry
Language) for its RDBMS product called System R. The name of the language was later changed
from SEQUEL to SQL because of a trademark dispute. SQL first became an ANSI standard in 1986, and
then an ISO standard in 1987. Since 1986, the American National Standards Institute (ANSI) and the
International Organization for Standardization (ISO) have been releasing revisions for the SQL standard
every few years. So far, the following standards have been released: SQL-86 (1986), SQL-89 (1989),
SQL-92 (1992), SQL:1999 (1999), SQL:2003 (2003), SQL:2006 (2006), SQL:2008 (2008), and SQL:2011
(2011). The SQL standard is made of multiple parts. Part 1 (Framework) and Part 2 (Foundation) pertain
to the SQL language, whereas the other parts define standard extensions, such as SQL for XML and
SQL-Java integration.

Interestingly, SQL resembles English and is also very logical. Unlike many programming languages,
which use an imperative programming paradigm, SQL uses a declarative one. That is, SQL requires
you to specify what you want to get and not how to get it, letting the RDBMS figure out the physical
mechanics required to process your request.

SQL has several categories of statements, including Data Definition Language (DDL), Data
Manipulation Language (DML), and Data Control Language (DCL). DDL deals with object definitions

CHAPTER 1 Background to T-SQL querying and programming 3

and includes statements such as CREATE, ALTER, and DROP. DML allows you to query and modify
data and includes statements such as SELECT, INSERT, UPDATE, DELETE, TRUNCATE, and MERGE. It’s a
common misunderstanding that DML includes only data-modification statements, but as I mentioned,
it also includes SELECT. Another common misunderstanding is that TRUNCATE is a DDL statement, but
in fact it is a DML statement. DCL deals with permissions and includes statements such as GRANT and
REVOKE. This book focuses on DML.

T-SQL is based on standard SQL, but it also provides some nonstandard/proprietary extensions.
Moreover, T-SQL does not implement all of standard SQL. In other words, T-SQL is both a subset and a
superset of SQL. When describing a language element for the first time, I’ll typically mention whether it
is standard.

Set theory
Set theory, which originated with the mathematician Georg Cantor, is one of the mathematical
branches on which the relational model is based. Cantor’s definition of a set follows:

By a “set” we mean any collection M into a whole of definite, distinct objects m (which
are called the “elements” of M) of our perception or of our thought.

—Joseph W. Dauben and Georg Cantor (Princeton University Press, 1990)

Every word in the definition has a deep and crucial meaning. The definitions of a set and set
membership are axioms that are not supported by proofs. Each element belongs to a universe, and
either is or is not a member of the set.

Let’s start with the word whole in Cantor’s definition. A set should be considered a single entity.
Your focus should be on the collection of objects as opposed to the individual objects that make up
the collection. Later on, when you write T-SQL queries against tables in a database (such as a table of
employees), you should think of the set of employees as a whole rather than the individual employees.
This might sound trivial and simple enough, but apparently many programmers have difficulty
adopting this way of thinking.

The word distinct means that every element of a set must be unique. Jumping ahead to tables in a
database, you can enforce the uniqueness of rows in a table by defining key constraints. Without a key,
you won’t be able to uniquely identify rows, and therefore the table won’t qualify as a set. Rather, the
table would be a multiset or a bag.

The phrase of our perception or of our thought implies that the definition of a set is subjective.
Consider a classroom: one person might perceive a set of people, whereas another might perceive a set
of students and a set of teachers. Therefore, you have a substantial amount of freedom in defining sets.
When you design a data model for your database, the design process should carefully consider the
subjective needs of the application to determine adequate definitions for the entities involved.

As for the word object, the definition of a set is not restricted to physical objects, such as cars or
employees, but rather is relevant to abstract objects as well, such as prime numbers or lines.

4 CHAPTER 1 Background to T-SQL querying and programming

What Cantor’s definition of a set leaves out is probably as important as what it includes. Notice that
the definition doesn’t mention any order among the set elements. The order in which set elements are
listed is not important. The formal notation for listing set elements uses curly brackets: {a, b, c}. Because
order has no relevance, you can express the same set as {b, a, c} or {b, c, a}. Jumping ahead to the set
of attributes (called columns in SQL) that make up the heading of a relation (called a table in SQL), an
element is supposed to be identified by name—not by ordinal position.

Similarly, consider the set of tuples (called rows by SQL) that make up the body of the relation; an
element is identified by its key values—not by position. Many programmers have a hard time adapting
to the idea that, with respect to querying tables, there is no order among the rows. In other words, a
query against a table can return table rows in any order unless you explicitly request that the data be
sorted in a specific way, perhaps for presentation purposes.

Predicate logic
Predicate logic, whose roots reach back to ancient Greece, is another branch of mathematics on which
the relational model is based. Dr. Edgar F. Codd, in creating the relational model, had the insight to
connect predicate logic to both the management and querying of data. Loosely speaking, a predicate
is a property or an expression that either holds or doesn’t hold—in other words, is either true or false.
The relational model relies on predicates to maintain the logical integrity of the data and define its
structure. One example of a predicate used to enforce integrity is a constraint defined in a table called
Employees that allows only employees with a salary greater than zero to be stored in the table. The
predicate is “salary greater than zero” (T-SQL expression: salary > 0).

You can also use predicates when filtering data to define subsets, and more. For example, if you
need to query the Employees table and return only rows for employees from the sales department,
you use the predicate “department equals sales” in your query filter (T-SQL expression: department =
‘sales’).

In set theory, you can use predicates to define sets. This is helpful because you can’t always define a
set by listing all its elements (for example, infinite sets), and sometimes for brevity it’s more convenient
to define a set based on a property. As an example of an infinite set defined with a predicate, the set
of all prime numbers can be defined with the following predicate: “x is a positive integer greater than
1 that is divisible only by 1 and itself.” For any specified value, the predicate is either true or not true.
The set of all prime numbers is the set of all elements for which the predicate is true. As an example
of a finite set defined with a predicate, the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} can be defined as the set of all
elements for which the following predicate holds true: “x is an integer greater than or equal to 0 and
smaller than or equal to 9.”

The relational model
The relational model is a semantic model for data management and manipulation and is based on
set theory and predicate logic. As mentioned earlier, it was created by Dr. Edgar F. Codd, and later
explained and developed by Chris Date, Hugh Darwen, and others. The first version of the relational
model was proposed by Codd in 1969 in an IBM research report called “Derivability, Redundancy, and

CHAPTER 1 Background to T-SQL querying and programming 5

Consistency of Relations Stored in Large Data Banks.” A revised version was proposed by Codd in 1970
in a paper called “A Relational Model of Data for Large Shared Data Banks,” published in the journal
Communications of the ACM.

The goal of the relational model is to enable consistent representation of data with minimal or
no redundancy and without sacrificing completeness, and to define data integrity (enforcement of
data consistency) as part of the model. An RDBMS is supposed to implement the relational model
and provide the means to store, manage, enforce the integrity of, and query data. The fact that the
relational model is based on a strong mathematical foundation means that given a certain data-model
instance (from which a physical database will later be generated), you can tell with certainty when a
design is flawed, rather than relying solely on intuition.

The relational model involves concepts such as propositions, predicates, relations, tuples, attributes,
and more. For nonmathematicians, these concepts can be quite intimidating. The sections that follow
cover some key aspects of the model in an informal, nonmathematical manner and explain how they
relate to databases.

Propositions, predicates, and relations
The common belief that the term relational stems from relationships between tables is incorrect.
“Relational” actually pertains to the mathematical term relation. In set theory, a relation is a
representation of a set. In the relational model, a relation is a set of related information, with the
counterpart in SQL being a table—albeit not an exact counterpart. A key point in the relational model
is that a single relation should represent a single set (for example, Customers). Note that operations on
relations (based on relational algebra) result in a relation (for example, a join between two relations).

Note The relational model distinguishes between a relation and a relation variable, but
to keep things simple, I won’t get into this distinction. Instead, I’ll use the term relation for
both cases. Also, a relation is made of a heading and a body. The heading consists of a
set of attributes (called columns in SQL), where each element is identified by an attribute
name and a type name. The body consists of a set of tuples (called rows in SQL), where each
element is identified by a key. To keep things simple, I’ll refer to a table as a set of rows.

When you design a data model for a database, you represent all data with relations (tables). You
start by identifying propositions that you will need to represent in your database. A proposition is
an assertion or a statement that must be true or false. For example, the statement, “Employee Itzik
Ben-Gan was born on February 12, 1971, and works in the IT department” is a proposition. If this
proposition is true, it will manifest itself as a row in a table of Employees. A false proposition simply
won’t manifest itself. This presumption is known as the closed-world assumption (CWA).

The next step is to formalize the propositions. You do this by taking out the actual data (the body
of the relation) and defining the structure (the heading of the relation)—for example, by creating
predicates out of propositions. You can think of predicates as parameterized propositions. The heading
of a relation comprises a set of attributes. Note the use of the term “set”; in the relational model,

6 CHAPTER 1 Background to T-SQL querying and programming

attributes are unordered and distinct. An attribute is identified by an attribute name and a type name.
For example, the heading of an Employees relation might consist of the following attributes (expressed
as pairs of attribute names and type names): employeeid integer, firstname character string, lastname
character string, birthdate date, and departmentid integer.

A type is one of the most fundamental building blocks for relations. A type constrains an attribute to
a certain set of possible or valid values. For example, the type INT is the set of all integers in the range
–2,147,483,648 to 2,147,483,647. A type is one of the simplest forms of a predicate in a database because it
restricts the attribute values that are allowed. For example, the database would not accept a proposition
where an employee birth date is February 31, 1971 (not to mention a birth date stated as something like
“abc!”). Note that types are not restricted to base types such as integers or character strings; a type also
can be an enumeration of possible values, such as an enumeration of possible job positions. A type can
be simple or complex. Probably the best way to think of a type is as a class—encapsulated data and the
behavior supporting it. An example of a complex type is a geometry type that supports polygons.

Missing values
One aspect of the relational model is the source of many passionate debates—whether predicates
should be restricted to two-valued logic. That is, in two-valued predicate logic, a predicate is either
true or false. If a predicate is not true, it must be false. Use of two-valued predicate logic follows a
mathematical law called “the law of excluded middle.” However, some say that there’s room for three-
valued (or even four-valued) predicate logic, taking into account cases where values are missing. A
predicate involving a missing value yields neither true nor false—it yields unknown.

Take, for example, a mobile phone attribute of an Employees relation. Suppose that a certain
employee’s mobile phone number is missing. How do you represent this fact in the database? In a
three-valued logic implementation, the mobile phone attribute should allow the use of a special
marker for a missing value. Then a predicate comparing the mobile phone attribute with some specific
number will yield unknown for the case with the missing value. Three-valued predicate logic refers to
the three possible logical values that can result from a predicate—true, false, and unknown.

Some people believe that three-valued predicate logic is nonrelational, whereas others believe
that it is relational. Codd actually advocated for four-valued predicate logic, saying that there were
two different cases of missing values: missing but applicable (A-Values marker), and missing but
inapplicable (I-Values marker). An example of “missing but applicable” is when an employee has a
mobile phone, but you don’t know what the mobile phone number is. An example of “missing but
inapplicable” is when an employee doesn’t have a mobile phone at all. According to Codd, two
special markers should be used to support these two cases of missing values. SQL implements three-
valued predicate logic by supporting the NULL marker to signify the generic concept of a missing
value. Support for NULLs and three-valued predicate logic in SQL is the source of a great deal of
confusion and complexity, though one can argue that missing values are part of reality. In addition, the
alternative—using only two-valued predicate logic—is no less problematic.

CHAPTER 1 Background to T-SQL querying and programming 7

Note As mentioned, a NULL is not a value but rather a marker for a missing value.
Therefore, though unfortunately it’s common, the use of the terminology “NULL value” is
incorrect. The correct terminology is “NULL marker” or just “NULL.” In the book, I chose to
use the latter because it’s more common in the SQL community.

Constraints
One of the greatest benefits of the relational model is the ability to define data integrity as part of the
model. Data integrity is achieved through rules called constraints that are defined in the data model
and enforced by the RDBMS. The simplest methods of enforcing integrity are assigning an attribute
type with its attendant “nullability” (whether it supports or doesn’t support NULLs). Constraints
are also enforced through the model itself; for example, the relation Orders(orderid, orderdate,
duedate, shipdate) allows three distinct dates per order, whereas the relations Employees(empid) and
EmployeeChildren(empid, childname) allow zero to countable infinity children per employee.

Other examples of constraints include candidate keys, which provide entity integrity, and foreign
keys, which provide referential integrity. A candidate key is a key defined on one or more attributes that
prevents more than one occurrence of the same tuple (row in SQL) in a relation. A predicate based on
a candidate key can uniquely identify a row (such as an employee). You can define multiple candidate
keys in a relation. For example, in an Employees relation, you can define candidate keys on employeeid,
on SSN (Social Security number), and others. Typically, you arbitrarily choose one of the candidate keys
as the primary key (for example, employeeid in the Employees relation) and use that as the preferred
way to identify a row. All other candidate keys are known as alternate keys.

Foreign keys are used to enforce referential integrity. A foreign key is defined on one or more
 attributes of a relation (known as the referencing relation) and references a candidate key in another (or
possibly the same) relation. This constraint restricts the values in the referencing relation’s foreign-key
attributes to the values that appear in the referenced relation’s candidate-key attributes. For example,
suppose that the Employees relation has a foreign key defined on the attribute departmentid, which
 references the primary-key attribute departmentid in the Departments relation. This means that
the values in Employees.departmentid are restricted to the values that appear in Departments.
departmentid.

Normalization
The relational model also defines normalization rules (also known as normal forms). Normalization is
a formal mathematical process to guarantee that each entity will be represented by a single relation.
In a normalized database, you avoid anomalies during data modification and keep redundancy to
a minimum without sacrificing completeness. If you follow Entity Relationship Modeling (ERM), and
represent each entity and its attributes, you probably won’t need normalization; instead, you will apply
normalization only to reinforce and ensure that the model is correct. You can find the definition of ERM
in the following Wikipedia article: https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model.

http://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

8 CHAPTER 1 Background to T-SQL querying and programming

The following sections briefly cover the first three normal forms (1NF, 2NF, and 3NF) introduced by
Codd.

1NF The first normal form says that the tuples (rows) in the relation (table) must be unique and
attributes should be atomic. This is a redundant definition of a relation; in other words, if a table truly
represents a relation, it is already in first normal form.

You achieve unique rows in SQL by defining a unique key for the table.

You can operate on attributes only with operations that are defined as part of the attribute’s
type. Atomicity of attributes is subjective in the same way that the definition of a set is subjective.
As an example, should an employee name in an Employees relation be expressed with one attribute
(fullname), two (firstname and lastname), or three (firstname, middlename, and lastname)? The answer
depends on the application. If the application needs to manipulate the parts of the employee’s name
separately (such as for search purposes), it makes sense to break them apart; otherwise, it doesn’t.

In the same way that an attribute might not be atomic enough based on the needs of the
applications that use it, an attribute might also be subatomic. For example, if an address attribute is
considered atomic for the applications that use it, not including the city as part of the address would
violate the first normal form.

This normal form is often misunderstood. Some people think that an attempt to mimic arrays
violates the first normal form. An example would be defining a YearlySales relation with the following
attributes: salesperson, qty2014, qty2015, and qty2016. However, in this example, you don’t really violate
the first normal form; you simply impose a constraint—restricting the data to three specific years: 2014,
2015, and 2016.

2NF The second normal form involves two rules. One rule is that the data must meet the first normal
form. The other rule addresses the relationship between nonkey and candidate-key attributes. For
every candidate key, every nonkey attribute has to be fully functionally dependent on the entire
candidate key. In other words, a nonkey attribute cannot be fully functionally dependent on part of a
candidate key. To put it more informally, if you need to obtain any nonkey attribute value, you need to
provide the values of all attributes of a candidate key from the same tuple. You can find any value of
any attribute of any tuple if you know all the attribute values of a candidate key.

As an example of violating the second normal form, suppose that you define a relation called Orders
that represents information about orders and order lines. (See Figure 1-1.) The Orders relation contains
the following attributes: orderid, productid, orderdate, qty, customerid, and companyname. The primary
key is defined on orderid and productid.

CHAPTER 1 Background to T-SQL querying and programming 9

FIGURE 1-1 Data model before applying 2NF.

The second normal form is violated in Figure 1-1 because there are nonkey attributes that depend
on only part of a candidate key (the primary key, in this example). For example, you can find the
orderdate of an order, as well as customerid and companyname, based on the orderid alone.

To conform to the second normal form, you would need to split your original relation into two
relations: Orders and OrderDetails (as shown in Figure 1-2). The Orders relation would include the
attributes orderid, orderdate, customerid, and companyname, with the primary key defined on orderid.
The OrderDetails relation would include the attributes orderid, productid, and qty, with the primary key
defined on orderid and productid.

FIGURE 1-2 Data model after applying 2NF and before 3NF.

3NF The third normal form also has two rules. The data must meet the second normal form. Also, all
nonkey attributes must be dependent on candidate keys nontransitively. Informally, this rule means
that all nonkey attributes must be mutually independent. In other words, one nonkey attribute cannot
be dependent on another nonkey attribute.

The Orders and OrderDetails relations described previously now conform to the second normal
form. Remember that the Orders relation at this point contains the attributes orderid, orderdate,
customerid, and companyname, with the primary key defined on orderid. Both customerid and
companyname depend on the whole primary key—orderid. For example, you need the entire primary
key to find the customerid representing the customer who placed the order. Similarly, you need the
whole primary key to find the company name of the customer who placed the order. However, custom-
erid and companyname are also dependent on each other. To meet the third normal form, you need to
add a Customers relation (shown in Figure 1-3) with the attributes customerid (as the primary key) and
companyname. Then you can remove the companyname attribute from the Orders relation.

10 CHAPTER 1 Background to T-SQL querying and programming

FIGURE 1-3 Data model after applying 3NF.

Informally, 2NF and 3NF are commonly summarized with the sentence, “Every non-key attribute is
dependent on the key, the whole key, and nothing but the key—so help me Codd.”

There are higher normal forms beyond Codd’s original first three normal forms that involve
compound primary keys and temporal databases, but they are outside the scope of this book.

Note SQL, as well as T-SQL, permit violating all the normal forms in real tables. It’s the data
modeler’s prerogative and responsibility to design a normalized model.

Types of database systems
Two main types of systems, or workloads, use SQL Server as their database and T-SQL to manage and
manipulate the data: online transactional processing (OLTP) and data warehouses (DWs). Figure 1-4
illustrates those systems and the transformation process that usually takes place between them.

FIGURE 1-4 Classes of database systems.

CHAPTER 1 Background to T-SQL querying and programming 11

Here’s a quick description of what each acronym represents:

 ■ OLTP: online transactional processing

 ■ DSA: data-staging area

 ■ DW: data warehouse

 ■ ETL: extract, transform, and load

Online transactional processing
Data is entered initially into an online transactional processing system. The primary focus of an OLTP
system is data entry and not reporting—transactions mainly insert, update, and delete data. The
relational model is targeted primarily at OLTP systems, where a normalized model provides both good
performance for data entry and data consistency. In a normalized environment, each table represents
a single entity and keeps redundancy to a minimum. When you need to modify a fact, you need to
modify it in only one place. This results in optimized performance for data modifications and little
chance for error.

However, an OLTP environment is not suitable for reporting purposes because a normalized model
usually involves many tables (one for each entity) with complex relationships. Even simple reports
require joining many tables, resulting in complex and poorly performing queries.

You can implement an OLTP database in SQL Server and both manage it and query it with T-SQL.

Data warehouses
A data warehouse (DW) is an environment designed for data-retrieval and reporting purposes. When
it serves an entire organization, such an environment is called a data warehouse; when it serves only
part of the organization (such as a specific department) or a subject matter area in the organization, it
is called a data mart. The data model of a data warehouse is designed and optimized mainly to support
data-retrieval needs. The model has intentional redundancy, fewer tables, and simpler relationships,
ultimately resulting in simpler and more efficient queries than an OLTP environment.

The simplest data-warehouse design is called a star schema. The star schema includes several
dimension tables and a fact table. Each dimension table represents a subject by which you want to
analyze the data. For example, in a system that deals with orders and sales, you will probably want to
analyze data by dimensions such as customers, products, employees, and time.

In a star schema, each dimension is implemented as a single table with redundant data. For example,
a product dimension could be implemented as a single ProductDim table instead of three normalized
tables: Products, ProductSubCategories, and ProductCategories. If you normalize a dimension table,
which results in multiple tables representing that dimension, you get what’s known as a snowflake
dimension. A schema that contains snowflake dimensions is known as a snowflake schema. A star
schema is considered a special case of a snowflake schema.

The fact table holds the facts and measures, such as quantity and value, for each relevant
combination of dimension keys. For example, for each relevant combination of customer, product,

12 CHAPTER 1 Background to T-SQL querying and programming

employee, and day, the fact table would have a row containing the quantity and value. Note that data
in a data warehouse is typically preaggregated to a certain level of granularity (such as a day), unlike
data in an OLTP environment, which is usually recorded at the transaction level.

Historically, early versions of SQL Server mainly targeted OLTP environments, but eventually SQL
Server also started targeting data-warehouse systems and data-analysis needs. You can implement a
data warehouse as a SQL Server database and manage and query it with T-SQL.

The process that pulls data from source systems (OLTP and others), manipulates it, and loads it into
the data warehouse is called extract, transform, and load, or ETL. SQL Server provides a tool called
Microsoft SQL Server Integration Services (SSIS) to handle ETL needs.

Often the ETL process will involve the use of a data-staging area (DSA) between the OLTP and the
DW. The DSA usually resides in a relational database, such as a SQL Server database, and is used as the
data-cleansing area. The DSA is not open to end users.

SQL Server architecture

This section will introduce you to the SQL Server architecture, the different RDBMS flavors that
Microsoft offers, the entities involved—SQL Server instances, databases, schemas, and database
objects—and the purpose of each entity.

The ABCs of Microsoft RDBMS flavors
Initially, Microsoft offered mainly one enterprise-level RDBMS—an on-premises flavor called Microsoft
SQL Server. These days, Microsoft offers an overwhelming plethora of options as part of its data
platform, which constantly keeps evolving. Within its data platform, Microsoft offers three main
RDBMS flavors, which you can think of as the ABC flavors: A for Appliance, B for Box (on-premises), and
C for Cloud.

Box
The box, or on-premises RDBMS flavor, that Microsoft offers is called Microsoft SQL Server, or just
SQL Server. This is the traditional flavor, usually installed on the customer’s premises. The customer is
responsible for everything—getting the hardware, installing the software, patching, high availability
and disaster recovery, security, and everything else.

The customer can install multiple instances of the product on the same server (more on this in the
next section) and can write queries that interact with multiple databases. It is also possible to switch the
connection between databases, unless one of them is a contained database (defined later).

The querying language used is T-SQL. You can run all the code samples and exercises in this book on
an on-premises SQL Server implementation, if you want. See the Appendix for details about obtaining
and installing an evaluation edition of SQL Server, as well as creating the sample database.

CHAPTER 1 Background to T-SQL querying and programming 13

Appliance
The idea behind the appliance flavor is to provide the customer a complete turnkey solution with
preconfigured hardware and software. Speed is achieved by things being co-located, with the storage
being close to the processing. The appliance is hosted locally at the customer site. Microsoft partners
with hardware vendors such as Dell and HP to provide the appliance offering. Experts from Microsoft
and the hardware vendor handle the performance, security, and availability aspects for the customer.

There are several appliances available today, one of which is the Microsoft Analytics Platform
System (APS), which focuses on data warehousing and big data technologies. This appliance includes
a data-warehouse engine called Parallel Data Warehouse (PDW), which implements massively parallel
processing (MPP) technology. It also includes HDInsight, which is Microsoft’s Hadoop distribution (big
data solution). APS also includes a querying technology called PolyBase, which allows using T-SQL
queries across relational data from PDW and nonrelational data from HDInsight.

Cloud
Cloud computing provides computing resources on demand from a shared pool of resources.
Microsoft’s RDBMS technologies can be provided both as private-cloud and public-cloud services. A
private cloud is cloud infrastructure that services a single organization and usually uses virtualization
technology. It’s typically hosted locally at the customer site, and maintained by the IT group in the
organization. It’s about self-service agility, allowing the users to deploy resources on demand. It
provides standardization and usage metering. The database engine is usually a box engine (hence the
same T-SQL is used to manage and manipulate the data).

As for the public cloud, the services are provided over the network and available to the public.
Microsoft provides two forms of public RDBMS cloud services: infrastructure as a service (IaaS) and
platform as a service (PaaS). With IaaS, you provision a virtual machine (VM) that resides in Microsoft’s
cloud infrastructure. As a starting point, you can choose between several preconfigured VMs that
already have a certain version and edition of SQL Server (box engine) installed on them. The hardware
is maintained by Microsoft, but you’re responsible for maintaining and patching the software.
It’s essentially like maintaining your own SQL Server installation—one that happens to reside on
Microsoft’s hardware.

With PaaS, Microsoft provides the database cloud platform as a service. It’s hosted in Microsoft’s
data centers. Hardware, software installation and maintenance, high availability and disaster recovery,
and patching are all responsibilities of Microsoft. The customer is still responsible for index and query
tuning, however.

Microsoft provides a number of PaaS database offerings. For OLTP systems, it offers the Azure SQL
Database service. It’s also referred to more shortly as just SQL Database. The customer can have multiple
databases on the cloud server (a conceptual server, of course) but cannot switch between databases.

Interestingly, Microsoft uses the same code base for SQL Database and SQL Server. So most of the T-SQL
language surface is exposed (eventually) in both environments in the same manner. Therefore, most of the
T-SQL you’ll learn about in this book is applicable to both environments. You can read about the differences
that do exist here: https://azure.microsoft.com/en-us/documentation/articles/sql-database-transact-sql-

https://azure.microsoft.com/en-us/documentation/articles/sql-database-transact-sql-information
https://azure.microsoft.com/en-us/documentation/articles/sql-database-transact-sql-information

14 CHAPTER 1 Background to T-SQL querying and programming

information. You should also note that the update and deployment rate of new versions of SQL Database
are faster than that of the on-premises SQL Server. Therefore, some T-SQL features might be exposed in SQL
Database before they show up in the on-premises SQL Server version.

Microsoft also provides a PaaS offering for data-warehouse systems called Microsoft Azure SQL
Data Warehouse (also called Azure SQL Data Warehouse or just SQL Data Warehouse). This service
is basically PDW/APS in the cloud. Microsoft uses the same code base for both the appliance and the
cloud service. You manage and manipulate data in APS and SQL Data Warehouse with T-SQL, although
it’s not the same T-SQL surface as in SQL Server and SQL Database, yet.

Microsoft also offers other cloud data services, such as Data Lake for big data–related services,
Azure DocumentDB for NoSQL document database services, and others.

Confused? If it’s any consolation, you’re not alone. Like I said, Microsoft provides an overwhelming
plethora of database-related technologies. Curiously, the one thread that is common to many of them
is T-SQL.

SQL Server instances
In the box product, an instance of SQL Server, as illustrated in Figure 1-5, is an installation of a SQL
Server database engine or service. You can install multiple instances of on-premises SQL Server on the
same computer. Each instance is completely independent of the others in terms of security and the
data that it manages, and in all other respects. At the logical level, two different instances residing on
the same computer have no more in common than two instances residing on two separate computers.
Of course, same-computer instances do share the server’s physical resources, such as CPU, memory,
and disk.

FIGURE 1-5 Multiple instances of SQL Server on the same computer.

You can set up one of the multiple instances on a computer as the default instance, whereas all
 others must be named instances. You determine whether an instance is the default or a named one
upon installation; you cannot change that decision later. To connect to a default instance, a client
 application needs to specify the computer’s name or IP address. To connect to a named instance, the
client needs to specify the computer’s name or IP address, followed by a backslash (\), followed by
the instance name (as provided upon installation). For example, suppose you have two instances of
SQL Server installed on a computer called Server1. One of these instances was installed as the default

https://azure.microsoft.com/en-us/documentation/articles/sql-database-transact-sql-information
https://azure.microsoft.com/en-us/documentation/articles/sql-database-transact-sql-information

CHAPTER 1 Background to T-SQL querying and programming 15

 instance, and the other was installed as a named instance called Inst1. To connect to the default
instance, you need to specify only Server1 as the server name. However, to connect to the named
 instance, you need to specify both the server and the instance name: Server1\Inst1.

There are various reasons why you might want to install multiple instances of SQL Server on the
same computer, but I’ll mention only a couple here. One reason is to save on support costs. For
example, to test the functionality of features in response to support calls or reproduce errors that users
encounter in the production environment, the support department needs local installations of SQL
Server that mimic the user’s production environment in terms of version, edition, and service pack of
SQL Server. If an organization has multiple user environments, the support department needs multiple
installations of SQL Server. Rather than having multiple computers, each hosting a different installation
of SQL Server that must be supported separately, the support department can have one computer
with multiple installed instances. Of course, you can achieve a similar result by using multiple virtual
machines.

As another example, consider people like me who teach and lecture about SQL Server. For us, it is
convenient to be able to install multiple instances of SQL Server on the same laptop. This way, we can
perform demonstrations against different versions of the product, showing differences in behavior
between versions, and so on.

As a final example, providers of database services sometimes need to guarantee their customers
complete security separation of their data from other customers’ data. At least in the past, the database
provider could have a very powerful data center hosting multiple instances of SQL Server, rather than
needing to maintain multiple less-powerful computers, each hosting a different instance. More recently,
cloud solutions and advanced virtualization technologies make it possible to achieve similar goals.

Databases
You can think of a database as a container of objects such as tables, views, stored procedures, and
other objects. Each instance of SQL Server can contain multiple databases, as illustrated in Figure
1-6. When you install an on-premises flavor of SQL Server, the setup program creates several system
databases that hold system data and serve internal purposes. After the installation of SQL Server, you
can create your own user databases that will hold application data.

FIGURE 1-6 An example of multiple databases on a SQL Server instance.

16 CHAPTER 1 Background to T-SQL querying and programming

The system databases that the setup program creates include master, Resource, model, tempdb, and
msdb. A description of each follows:

 ■ master The master database holds instance-wide metadata information, the server
configuration, information about all databases in the instance, and initialization information.

 ■ Resource The Resource database is a hidden, read-only database that holds the definitions
of all system objects. When you query system objects in a database, they appear to reside in
the sys schema of the local database, but in actuality their definitions reside in the Resource
database.

 ■ model The model database is used as a template for new databases. Every new database you
create is initially created as a copy of model. So if you want certain objects (such as data types)
to appear in all new databases you create, or certain database properties to be configured
in a certain way in all new databases, you need to create those objects and configure those
properties in the model database. Note that changes you apply to the model database will not
affect existing databases—only new databases you create in the future.

 ■ tempdb The tempdb database is where SQL Server stores temporary data such as work tables,
sort and hash table data, row versioning information, and so on. With SQL Server, you can
create temporary tables for your own use, and the physical location of those temporary tables
is tempdb. Note that this database is destroyed and re-created as a copy of the model database
every time you restart the instance of SQL Server.

 ■ msdb The msdb database is used mainly by a service called SQL Server Agent to store its data.
SQL Server Agent is in charge of automation, which includes entities such as jobs, schedules,
and alerts. SQL Server Agent is also the service in charge of replication. The msdb database also
holds information related to other SQL Server features, such as Database Mail, Service Broker,
backups, and more.

In an on-premises installation of SQL Server, you can connect directly to the system databases
master, model, tempdb, and msdb. In SQL Database, you can connect directly only to the system
database master. If you create temporary tables or declare table variables (more on this topic in
Chapter 11, “Programmable objects”), they are created in tempdb, but you cannot connect directly to
tempdb and explicitly create user objects there.

You can create multiple user databases (up to 32,767) within an instance. A user database holds
objects and data for an application.

You can define a property called collation at the database level that will determine default language
support, case sensitivity, and sort order for character data in that database. If you do not specify a
collation for the database when you create it, the new database will use the default collation of the
instance (chosen upon installation).

To run T-SQL code against a database, a client application needs to connect to a SQL Server instance
and be in the context of, or use, the relevant database. The application can still access objects from
other databases by adding the database name as a prefix.

CHAPTER 1 Background to T-SQL querying and programming 17

In terms of security, to be able to connect to a SQL Server instance, the database administrator
(DBA) must create a login for you. The login can be tied to your Microsoft Windows credentials, in
which case it is called a Windows authenticated login. With a Windows authenticated login, you can’t
provide login and password information when connecting to SQL Server because you already provided
those when you logged on to Windows. The login can be independent of your Windows credentials,
in which case it’s called a SQL Server authenticated login. When connecting to SQL Server using a SQL
Server authenticated login, you will need to provide both a login name and a password.

The DBA needs to map your login to a database user in each database you are supposed to have
access to. The database user is the entity that is granted permissions to objects in the database.

SQL Server supports a feature called contained databases that breaks the connection between a
database user and an instance-level login. The user (Windows or SQL authenticated) is fully contained
within the specific database and is not tied to a login at the instance level. When connecting to
SQL Server, the user needs to specify the database he or she is connecting to, and the user cannot
subsequently switch to other user databases.

So far, I’ve mainly mentioned the logical aspects of databases. If you’re using SQL Database, your
only concern is that logical layer. You do not deal with the physical layout of the database data and
log files, tempdb, and so on. But if you’re using a box version of SQL Server, you are responsible for the
physical layer as well. Figure 1-7 shows a diagram of the physical database layout.

FIGURE 1-7 Database layout.

The database is made up of data files, transaction log files, and optionally checkpoint files holding
memory-optimized data (part of a feature called In-Memory OLTP, which I describe shortly). When
you create a database, you can define various properties for data and log files, including the file name,
location, initial size, maximum size, and an autogrowth increment. Each database must have at least
one data file and at least one log file (the default in SQL Server). The data files hold object data, and the
log files hold information that SQL Server needs to maintain transactions.

18 CHAPTER 1 Background to T-SQL querying and programming

Although SQL Server can write to multiple data files in parallel, it can write to only one log file at a
time, in a sequential manner. Therefore, unlike with data files, having multiple log files does not result
in a performance benefit. You might need to add log files if the disk drive where the log resides runs
out of space.

Data files are organized in logical groups called filegroups. A filegroup is the target for creating
an object, such as a table or an index. The object data will be spread across the files that belong to
the target filegroup. Filegroups are your way of controlling the physical locations of your objects.
A database must have at least one filegroup called PRIMARY, and it can optionally have other user
filegroups as well. The PRIMARY filegroup contains the primary data file (which has an .mdf extension)
for the database, and the database’s system catalog. You can optionally add secondary data files (which
have an .ndf extension) to PRIMARY. User filegroups contain only secondary data files. You can decide
which filegroup is marked as the default filegroup. Objects are created in the default filegroup when
the object creation statement does not explicitly specify a different target filegroup.

File extensions .mdf, .ldf, and .ndf
The database file extensions .mdf and .ldf are quite straightforward. The extension .mdf stands
for Master Data File (not to be confused with the master database), and .ldf stands for Log Data
File. According to one anecdote, when discussing the extension for the secondary data files, one
of the developers suggested, humorously, using .ndf to represent “Not Master Data File,” and the
idea was accepted.

The SQL Server database engine includes a memory-optimized engine called In-Memory OLTP.
You can use this feature to integrate memory-optimized objects, such as memory-optimized tables
and natively compiled procedures, into your database. To do so, you need to create a filegroup in the
database marked as containing memory-optimized data and, within it, at least one path to a folder.
SQL Server stores checkpoint files with memory-optimized data in that folder, and it uses those to
recover the data every time SQL Server is restarted.

Schemas and objects
When I said earlier that a database is a container of objects, I simplified things a bit. As illustrated in
Figure 1-8, a database contains schemas, and schemas contain objects. You can think of a schema as a
container of objects, such as tables, views, stored procedures, and others.

CHAPTER 1 Background to T-SQL querying and programming 19

FIGURE 1-8 A database, schemas, and database objects.

You can control permissions at the schema level. For example, you can grant a user SELECT
permissions on a schema, allowing the user to query data from all objects in that schema. So security is
one of the considerations for determining how to arrange objects in schemas.

The schema is also a namespace—it is used as a prefix to the object name. For example, suppose
you have a table named Orders in a schema named Sales. The schema-qualified object name (also
known as the two-part object name) is Sales.Orders. You can refer to objects in other databases by
 adding the database name as a prefix (three-part object name), and to objects in other instances by
adding the instance name as a prefix (four-part object name). If you omit the schema name when
referring to an object, SQL Server will apply a process to resolve the schema name, such as checking
whether the object exists in the user’s default schema and, if the object doesn’t exist, checking whether
it exists in the dbo schema. Microsoft recommends that when you refer to objects in your code you
always use the two-part object names. There are some relatively insignificant extra costs involved in
 resolving the schema name when you don’t specify it explicitly. But as insignificant as this extra cost
might be, why pay it? Also, if multiple objects with the same name exist in different schemas, you might
end up getting a different object than the one you wanted.

Creating tables and defining data integrity

This section describes the fundamentals of creating tables and defining data integrity using T-SQL. Feel
free to run the included code samples in your environment.

More Info If you don’t know yet how to run code against SQL Server, the Appendix will help
you get started.

As mentioned earlier, DML rather than DDL is the focus of this book. Still, you need to understand
how to create tables and define data integrity. I won’t go into the explicit details here, but I’ll provide a
brief description of the essentials.

Before you look at the code for creating a table, remember that tables reside within schemas, and
schemas reside within databases. The examples use the book’s sample database, TSQLV4, and a schema
called dbo.

20 CHAPTER 1 Background to T-SQL querying and programming

More Info See the Appendix for details on creating the sample database.

The examples here use a schema named dbo that is created automatically in every database and is
also used as the default schema for users who are not explicitly associated with a different schema.

Creating tables
The following code creates a table named Employees in the dbo schema in the TSQLV4 database:

USE TSQLV4;

DROP TABLE IF EXISTS dbo.Employees;

CREATE TABLE dbo.Employees
(
 empid INT NOT NULL,
 firstname VARCHAR(30) NOT NULL,
 lastname VARCHAR(30) NOT NULL,
 hiredate DATE NOT NULL,
 mgrid INT NULL,
 ssn VARCHAR(20) NOT NULL,
 salary MONEY NOT NULL
);

The USE statement sets the current database context to that of TSQLV4. It is important to
incorporate the USE statement in scripts that create objects to ensure that SQL Server creates the
objects in the specified database. In an on-premises SQL Server implementation, the USE statement
can actually change the database context from one to another. In SQL Database, you cannot switch
between different databases, but the USE statement will not fail as long as you are already connected
to the target database. So even in SQL Database, I recommend having the USE statement to ensure
that you are connected to the right database when creating your objects.

The DROP IF EXISTS command drops the table if it already exists. Note that this command was
introduced in SQL Server 2016. If you’re using earlier versions of SQL Server, use the following
statement instead:

IF OBJECT_ID(N'dbo.Employees', N'U') IS NOT NULL DROP TABLE dbo.Employees;

The IF statement invokes the OBJECT_ID function to check whether the Employees table already exists
in the current database. The OBJECT_ID function accepts an object name and type as inputs. The type
U represents a user table. This function returns the internal object ID if an object with the specified input
name and type exists, and NULL otherwise. If the function returns a NULL, you know that the object doesn’t
exist. In our case, the code drops the table if it already exists and then creates a new one. Of course, you can
choose a different treatment, such as simply not creating the object if it already exists.

The CREATE TABLE statement is in charge of defining what I referred to earlier as the heading of
the relation. Here you specify the name of the table and, in parentheses, the definition of its attributes
(columns).

CHAPTER 1 Background to T-SQL querying and programming 21

Notice the use of the two-part name dbo.Employees for the table name, as recommended earlier. If
you omit the schema name, for ad-hoc queries SQL Server will assume the default schema associated
with the database user running the code. For queries in stored procedures, SQL Server will assume the
schema associated with the procedure’s owner.

For each attribute, you specify the attribute name, data type, and whether the value can be NULL
(which is called nullability).

In the Employees table, the attributes empid (employee ID) and mgrid (manager ID) are each defined
with the INT (four-byte integer) data type; the firstname, lastname, and ssn (US Social Security number)
are defined as VARCHAR (variable-length character string with the specified maximum supported
number of characters); and hiredate is defined as DATE and salary is defined as MONEY.

If you don’t explicitly specify whether a column allows or disallows NULLs, SQL Server will have to
rely on defaults. Standard SQL dictates that when a column’s nullability is not specified, the assumption
should be NULL (allowing NULLs), but SQL Server has settings that can change that behavior. I
recommend that you be explicit and not rely on defaults. Also, I recommend defining a column as NOT
NULL unless you have a compelling reason to support NULLs. If a column is not supposed to allow
NULLs and you don’t enforce this with a NOT NULL constraint, you can rest assured that NULLs will
occur. In the Employees table, all columns are defined as NOT NULL except for the mgrid column. A
NULL in the mgrid column would represent the fact that the employee has no manager, as in the case
of the CEO of the organization.

Coding style
You should be aware of a few general notes regarding coding style, the use of white spaces
(space, tab, new line, and so on), and semicolons. I’m not aware of any formal coding styles. My
advice is that you use a style that you and your fellow developers feel comfortable with. What
ultimately matters most is the consistency, readability, and maintainability of your code. I have
tried to reflect these aspects in my code throughout the book.

T-SQL lets you use white spaces quite freely in your code. You can take advantage of white
space to facilitate readability. For example, I could have written the code in the previous section
as a single line. However, the code wouldn’t have been as readable as when it is broken into
multiple lines that use indentation.

The practice of using a semicolon to terminate statements is standard and, in fact, is a
requirement in several other database platforms. SQL Server requires the semicolon only in
particular cases—but in cases where a semicolon is not required, using one doesn’t cause
problems. I recommend that you adopt the practice of terminating all statements with a
semicolon. Not only will doing this improve the readability of your code, but in some cases it can
save you some grief. (When a semicolon is required and is not specified, the error message SQL
Server produces is not always clear.)

22 CHAPTER 1 Background to T-SQL querying and programming

Note The SQL Server documentation indicates that not terminating T-SQL statements with
a semicolon is a deprecated feature. This means that the long-term goal is to enforce use
of the semicolon in a future version of the product. That’s one more reason to get into the
habit of terminating all your statements, even where it’s currently not required.

Defining data integrity
As mentioned earlier, one of the great benefits of the relational model is that data integrity is
an integral part of it. Data integrity enforced as part of the model—namely, as part of the table
definitions—is considered declarative data integrity. Data integrity enforced with code—such as with
stored procedures or triggers—is considered procedural data integrity.

Data type and nullability choices for attributes and even the data model itself are examples of
declarative data integrity constraints. In this section, I will describe other examples of declarative
constraints: primary key, unique, foreign key, check, and default constraints. You can define such
constraints when creating a table as part of the CREATE TABLE statement, or you can define them for
already-created tables by using an ALTER TABLE statement. All types of constraints except for default
constraints can be defined as composite constraints—that is, based on more than one attribute.

Primary-key constraints
A primary-key constraint enforces the uniqueness of rows and also disallows NULLs in the constraint
attributes. Each unique set of values in the constraint attributes can appear only once in the table—in
other words, only in one row. An attempt to define a primary-key constraint on a column that allows
NULLs will be rejected by the RDBMS. Each table can have only one primary key.

Here’s an example of defining a primary-key constraint on the empid attribute in the Employees
table that you created earlier:

ALTER TABLE dbo.Employees
 ADD CONSTRAINT PK_Employees
 PRIMARY KEY(empid);

With this primary key in place, you can be assured that all empid values will be unique and known.
An attempt to insert or update a row such that the constraint would be violated will be rejected by the
RDBMS and result in an error.

To enforce the uniqueness of the logical primary-key constraint, SQL Server will create a unique
index behind the scenes. A unique index is a physical mechanism used by SQL Server to enforce
uniqueness. Indexes (not necessarily unique ones) are also used to speed up queries by avoiding
unnecessary full table scans (similar to indexes in books).

CHAPTER 1 Background to T-SQL querying and programming 23

Unique constraints
A unique constraint enforces the uniqueness of rows, allowing you to implement the concept of
alternate keys from the relational model in your database. Unlike with primary keys, you can define
multiple unique constraints within the same table. Also, a unique constraint is not restricted to columns
defined as NOT NULL.

The following code defines a unique constraint on the ssn column in the Employees table:

ALTER TABLE dbo.Employees
 ADD CONSTRAINT UNQ_Employees_ssn
 UNIQUE(ssn);

As with a primary-key constraint, SQL Server will create a unique index behind the scenes as the
physical mechanism to enforce the logical unique constraint.

According to standard SQL, a column with a unique constraint is supposed to allow multiple NULLs
(as if two NULLs were different from each other). However, SQL Server’s implementation rejects
duplicate NULLs (as if two NULLs were equal to each other). To emulate the standard unique constraint
in SQL Server you can use a unique filtered index that filters only non-NULL values. For example,
suppose that the column ssn allowed NULLs, and you wanted to create such an index instead of a
unique constraint. You would have used the following code:

CREATE UNIQUE INDEX idx_ssn_notnull ON dbo.Employees(ssn) WHERE ssn IS NOT NULL;

The index is defined as a unique one, and the filter excludes NULLs from the index, so duplicate
NULLs will be allowed, whereas duplicate non-NULL values won’t be allowed.

Foreign-key constraints
A foreign-key enforces referential integrity. This constraint is defined on one or more attributes in
what’s called the referencing table and points to candidate-key (primary-key or unique-constraint)
attributes in what’s called the referenced table. Note that the referencing and referenced tables can be
one and the same. The foreign key’s purpose is to restrict the values allowed in the foreign-key columns
to those that exist in the referenced columns.

The following code creates a table called Orders with a primary key defined on the orderid column:

DROP TABLE IF EXISTS dbo.Orders;

CREATE TABLE dbo.Orders
(
 orderid INT NOT NULL,
 empid INT NOT NULL,
 custid VARCHAR(10) NOT NULL,
 orderts DATETIME2 NOT NULL,
 qty INT NOT NULL,
 CONSTRAINT PK_Orders
 PRIMARY KEY(orderid)
);

24 CHAPTER 1 Background to T-SQL querying and programming

Suppose you want to enforce an integrity rule that restricts the values supported by the empid
column in the Orders table to the values that exist in the empid column in the Employees table. You can
achieve this by defining a foreign-key constraint on the empid column in the Orders table pointing to
the empid column in the Employees table, like the following:

ALTER TABLE dbo.Orders
 ADD CONSTRAINT FK_Orders_Employees
 FOREIGN KEY(empid)
 REFERENCES dbo.Employees(empid);

Similarly, if you want to restrict the values supported by the mgrid column in the Employees table
to the values that exist in the empid column of the same table, you can do so by adding the following
foreign key:

ALTER TABLE dbo.Employees
 ADD CONSTRAINT FK_Employees_Employees
 FOREIGN KEY(mgrid)
 REFERENCES dbo.Employees(empid);

Note that NULLs are allowed in the foreign-key columns (mgrid in the last example) even if there are
no NULLs in the referenced candidate-key columns.

The preceding two examples are basic definitions of foreign keys that enforce a referential action
called no action. No action means that attempts to delete rows from the referenced table or update the
referenced candidate-key attributes will be rejected if related rows exist in the referencing table. For
example, if you try to delete an employee row from the Employees table when there are related orders
in the Orders table, the RDBMS will reject such an attempt and produce an error.

You can define the foreign key with actions that will compensate for such attempts (to delete rows
from the referenced table or update the referenced candidate-key attributes when related rows exist
in the referencing table). You can define the options ON DELETE and ON UPDATE with actions such
as CASCADE, SET DEFAULT, and SET NULL as part of the foreign-key definition. CASCADE means that
the operation (delete or update) will be cascaded to related rows. For example, ON DELETE CASCADE
means that when you delete a row from the referenced table, the RDBMS will delete the related rows
from the referencing table. SET DEFAULT and SET NULL mean that the compensating action will set the
foreign-key attributes of the related rows to the column’s default value or NULL, respectively. Note that
regardless of which action you choose, the referencing table will have only orphaned rows in the case
of the exception with NULLs that I mentioned earlier. Parents with no children are always allowed.

Check constraints
You can use a check constraint to define a predicate that a row must meet to be entered into the table
or to be modified. For example, the following check constraint ensures that the salary column in the
Employees table will support only positive values:

ALTER TABLE dbo.Employees
 ADD CONSTRAINT CHK_Employees_salary
 CHECK(salary > 0.00);

CHAPTER 1 Background to T-SQL querying and programming 25

An attempt to insert or update a row with a nonpositive salary value will be rejected by the
RDBMS. Note that a check constraint rejects an attempt to insert or update a row when the predicate
evaluates to FALSE. The modification will be accepted when the predicate evaluates to either TRUE or
UNKNOWN. For example, salary –1000 will be rejected, whereas salaries 50000 and NULL will both
be accepted (if the column allowed NULLs). As mentioned earlier, SQL is based on three-valued logic,
which results in two actual actions. With a check constraint, the row is either accepted or rejected.

When adding check and foreign-key constraints, you can specify an option called WITH NOCHECK
that tells the RDBMS you want it to bypass constraint checking for existing data. This is considered a
bad practice because you cannot be sure your data is consistent. You can also disable or enable existing
check and foreign-key constraints.

Default constraints
A default constraint is associated with a particular attribute. It’s an expression that is used as the default
value when an explicit value is not specified for the attribute when you insert a row. For example, the
following code defines a default constraint for the orderts attribute (representing the order’s time
stamp):

ALTER TABLE dbo.Orders
 ADD CONSTRAINT DFT_Orders_orderts
 DEFAULT(SYSDATETIME()) FOR orderts;

The default expression invokes the SYSDATETIME function, which returns the current date and time
value. After this default expression is defined, whenever you insert a row in the Orders table and do not
explicitly specify a value in the orderts attribute, SQL Server will set the attribute value to SYSDATETIME.

When you’re done, run the following code for cleanup:

DROP TABLE IF EXISTS dbo.Orders, dbo.Employees;

Conclusion

This chapter provided a brief background to T-SQL querying and programming. It presented a
theoretical background, explaining the strong foundations that T-SQL is based on. It gave an overview
of the SQL Server architecture and concluded with sections that demonstrated how to use T-SQL to
create tables and define data integrity. I hope that by now you see that there’s something special about
SQL, and that it’s not just a language that can be learned as an afterthought. This chapter equipped
you with fundamental concepts—the actual journey is just about to begin.

This page intentionally left blank

Index

415

Symbols and Numbers
- (negative), 51–52
- (subtraction), 51–52
% (percent) wildcard, 71–72
(), parentheses, 51–52
* (asterisk), SELECT clauses and, 41
* (multiplication), 51–52
, , = (comparison operators), 51–52
.ldf (Log Data File), 18
.mdf (Master Data File), 18
.ndf (Not Master Data File), 18
@@ identity, 255–257
_ (underscore) wildcard, 72
+ (addition), 51–52
+ (concatenation), 51–52
+ (positive), 51–52
= (assignment), 51–52
[̂ character list or range] wildcard, 73
[character-character] wildcard, 72–73
[list of characters] wildcard, 72
1NF, 8
2NF, 8–10
3NF, 9–10

A
ABC flavors (Appliance, Box, Cloud), 12–14
accent sensitivity, character data, 61
ACID (automaticity, consistency, isolation, and

durability), 320–322
addition (+), 51–52
administrative tasks, dynamic SQL and, 379–383
aggregate functions. See also COUNT; also pivoting data;

also window functions
aggregate window functions, 221–224
NULLs and, 33–35
running aggregates, subqueries and, 144–145

aliases
common table expressions (CTEs), assigning in, 167–168
cross joins and, 104
derived tables and, 162–164
derived tables, nesting and, 165–166
inline table-valued functions (TVFs), 179
ORDER BY clause and, 42
SELECT clauses and, 36–41
self joins and, 106

ALL, duplicates and, 194
all-at-once operations, 58–59
ALTER DATABASE, quoted identifiers, 62–63
ALTER PROC, 385
ALTER SEQUENCE, 259
ALTER TABLE

defining data integrity, 22–25
sequence objects and, 261–262

ALTER TABLE ADD CONSTRAINT, 264–266
ALTER TABLE DROP CONSTRAINT, 264–266
ALTER VIEW, 172
American National Standards Institute (ANSI), 2
AND

MERGE and, 275
precedence, 51–52
predicates and, 49
use of, 50

ANSI (American National Standards Institute), 2
Appliance, Box, Cloud (ABC flavors), 12–14
application-time period tables, 297. See also temporal

tables
APPLY

table expressions, overview, 180–183
unpivoting data, 231–233

arguments, derived table queries and, 164–165
arithmetic operators, 50–52
AS clause, 36–41

derived tables and, 161–162

416

assignment (=)

assignment (=), 51–52
asterisk (*), SELECT clauses and, 41
AT TIME ZONE, 84–85

temporal table queries, 310
attributes

filtering in outer joins, 118–119
normalization forms, 7–10
propositions, predicates, and relations, 5–6

auditing, DDL triggers (data definition events),
388–390. See also temporal tables

automaticity, transactions, 320–322
automating administrative tasks, dynamic SQL and,

379–383
autonumbering

assignment UPDATE and, 270–271
AVG, 33–35. See also window functions
Azure SQL Data Warehouse, 14
Azure SQL Database

ABC flavors (Appliance, Box, Cloud), 13–14
global temporary tables, 376
isolation, overview, 332–333
locks and blocking, 322–323
READ COMMITTED SNAPSHOT, 343
row-versioning-based isolation, 339
source code, downloading of, 402–404
website link and access information, 395–396

B
bag, 3
batches

as unit of parsing, 364
as unit of resolution, 366
dynamic SQL, 379–383
overview of, 363–364
variables and, 361, 365
vs. transactions, 363

BEGIN, 368
BEGIN TRAN (TRANSACTION), 319–322
BETWEEN

precedence, 51–52
temporal table queries, 308
use of, 49

binding, batches and, 366
bitemporal, 297. See also temporal tables
blocking. See isolation, transactions; locks
blocking chain, 328
blocking_session_id, 330–331
BULK INSERT, 253

C
CACHE, sequence objects and, 258–259
Cancel Executing Query, 331–332
candidate keys. See also constraints

normalization forms, 8–9
overview of, 7

Cantor, Georg, 3
CASCADE, 24
CASE expressions

overview of, 52–54
pivoting with grouped queries, 226–227

case sensitivity, character data, 61
CAST

correlated subqueries and, 141
date and time functions, 81–83
date and time literals, 77–78

catalog views, metadata queries, 89–91
CATCH, error handling, 390–394
change management, DDL triggers (data definition

events), 388–390
CHAR, 50, 60–61
character data

collation, 61–63
data types, overview, 60–61
quoted identifiers, 62–63

CHARINDEX, 66
CHECK

CASE expressions, overview of, 52–54
working with date and time separately, 78–79

CHECK OPTION, views and, 177–178
CHOOSE, CASE expressions, 54
closed-world assumption, 5
cloud computing, ABC flavors (Appliance, Box,

Cloud), 13–14
COALESCE, CASE expressions, 54
Codd, Edgar F., 4–5
code samples, resources for getting started

Azures SQL Database, getting started, 395–396
source code, downloading of, 402–404
SQL Server Books Online, 410–413
SQL Server installation, 396–401
SQL Server Management Studio, working with,

404–410
coding style, T-SQL, 21–22
COLLATE, 61–62
collation, 16, 61–63
column names

aliases, assigning in common table expressions
(CTEs), 167–168

417

database user, SQL Server logins

derived tables and, 162
identifier names, 30
subquery substitution errors, 147–149

COLUMNPROPERTY, 92
COMMIT TRAN

lock modes and compatibility, 322–324
transactions, overview of, 319–322

common table expressions (CTEs)
arguments, using, 167–168
column aliases, assigning, 167–168
defining multiple CTEs, 168–169
exercises, 183–188
exercises, solutions for, 188–192
multiple references in, 169
overview of, 167
recursive CTEs, 169–171

comparison operators, 50–52
composite joins, 110–111

exercises, 123–128
exercises, solutions for, 129–132

COMPRESS, 70
compression, character data and, 60–61
CONCAT, 63–65
concatenation (+), 51–52
concurrency, transactions overview, 319–322
conflict detection, SNAPSHOT and, 341–343
consistency, transactions, 320–322. See also isolation,

transactions
CONSTRAINT, 264–266
constraints

check constraints, defining, 24–25
default constraints, defining, 25
foreign-key constraints, defining, 23–24
overview of, 7
primary-key constraints, defining, 22
unique constraints, defining, 23

contained databases, SQL Server architecture, 17
CONTINUE, 369–370
CONVERT

date and time functions, 81–83
date and time literals, 77–78
working with date and time separately, 79

correlated subqueries. See also subqueries
EXISTS and, 141–143
overview of, 139–141

COUNT. See also window functions
GROUP BY and, 33–35
outer joins, use with, 121–123

CREATE DATABASE, DDL triggers (data definition
events), 388–390

CREATE DEFAULT, 365
CREATE FUNCTION, 365
CREATE PROCEDURE, 365
CREATE RULE, 365
CREATE SCHEMA, 365
CREATE SEQUENCE, 258–259
CREATE TABLE

DDL triggers (data definition events), 388–390
defining data integrity, 22–25
use of, 20

CREATE TRIGGER, 365
CREATE VIEW, 365
CROSS APPLY

JOIN and, 180
overview of, 180–183
unpivoting data, 232–233

cross-joins
CROSS APPLY and, 180
exercises, 123–128
exercises, solutions for, 129–132
overview of, 103–107

CUBE, 235–236
CURRENT_TIMESTAMP, 80–81
cursors, 42

as programmable objects, 370–373
custom sequence, assignment UPDATE and, 270–271
CYCLE, sequence objects and, 258–259

D
Darwen, Hugh, 4–5
data definition events (DDL triggers), 387–390
data definition language (DDL), batches and, 366
data integrity

constraints and, 7
defining, 22–25

Data Lake, 14
data manipulation events (DML triggers), 387–388
Data Manipulation Language (DML), 249

batches and, 366
nested DML, 285–287

data marts, overview of, 11–12
data types

character data, 60–61
N prefix, use of, 50
operands, precedence of, 50–52

data warehouses (DWs), 10–12
database system types, 10–12
database user, SQL Server logins, 17

418

DATABASEPROPERTYEX

DATABASEPROPERTYEX, 92
databases, SQL Server

architecture overview, 15–18
file extensions (.mdf, .ldf, .ndf), 18
schemas and objects, 18–19

DATALENGTH, 65–66
DATE

data types, 73–74
literals, 74–78
working with date and time separately, 78–79

date and time data
aggregate window functions, 223–224
AT TIME ZONE, 84–85
CAST, CONVERT, and PARSE, 81–83
current date and time functions, 80–81
DATEADD, 85
DATEDIFF and DATEDIFF_BIG, 86–87
DATENAME, 88
DATEPART, 87
EOMONTH, 89
filtering date ranges, 79–80
FROMPARTS, 88–89
ISDATE, 88
literals, 74–78
missing values, in outer joins, 116–118
SWITCHOFFSET, 83
types of, 73–74
working with separately, 78–79
YEAR, MONTH, and DAY, 87–88

Date, Chris, 4–5
DATEADD, 85
DATEDIFF and DATEDIFF_BIG, 86–87
DATEFORMAT, 75
DATENAME, 88
DATEPART, 87
DATETIME

data types, 73–74
literals, 74–78
working with date and time separately, 78–79

DATETIME2
data types, 73–74
literals, 74–78
temporal tables, creating, 298–301

DATETIMEOFFSET
data types, 73–74
literals, 74–78
SWITCHOFFSET and, 83

DAY, 87–88
DBCC CHECKIDENT, 257
DDL triggers (data definition events), 387–390

DEADLOCK_PRIORITY, 345
deadlocks, 337, 345–348
deadly embrace deadlock, 347
declarative data integrity, 22–25
DECLARE

temporary table variables, 377–378
variables and, 361

DECOMPRESS, 70
default constraints, defining, 25
DELETE

DML triggers (data manipulation events),
387–388

exercises, 287–291
exercises, solutions for, 291–295
joins and, 265–266
OUTPUT and, 282–283
overview of, 262–266
row-versioning isolation and, 339
table expressions, modifying data with, 276–278
views and, 172

DENSE_RANK, window function ranking, 216–219
derived tables

arguments, use of, 164–165
column aliases, assigning, 163–164
exercises, 183–188
exercises, solutions for, 188–192
multiple references, 166
nesting, 165–166
overview of, 161–162

DESC, 43
dictionary sorting, character data, 61
dirty reads. See isolation, transactions
DISTINCT

aggregate functions and, 34–35
duplicates and, 39–41, 194
EXCEPT (DISTINCT), 199–200
INTERSECT (DISTINCT), 196–197
multivalued subqueries and, 138
ORDER BY clause and, 43
UNION (DISTINCT), 194–196
window functions, ranking of, 218–219

distinct, defined, 3
DML. See Data Manipulation Language (DML)
DML triggers (data manipulation events), 387–388
DROP CONSTRAINT, sequence objects and, 261–262
DROP IF EXISTS, table creation, 20
duplicates, DISTINCT and, 39–41, 194
durability, transactions, 320–322
DWs (data warehouses), 10–12
dynamic SQL, 379–383

419

filters. See also subqueries

E
ELSE

CASE expressions, overview of, 52–54
IF . . . ELSE flow element, 367–368

ELSE NULL, CASE expressions, 52–54
ENCRYPTION, views and, 175–176
END, 368
Entity Relationship Modeling (ERM), 7
EOMONTH, 89
equi and non-equi joins, 111–112

exercises, 123–128
exercises, solutions for, 129–132

error handling
deadlocks and, 347–348
programmable objects and, 390–394
stored procedures and, 385
transactions, overview of, 320–322

ERROR_LINE, 391
ERROR_MESSAGE, 391
ERROR_NUMBER, 391
ERROR_PROCEDURE, 391
ERROR_SEVERITY, 391
ERROR_STATE, 391
ESCAPE character, 73
ETL (extract, transform, and load), 12
EVENTDATA, DDL triggers (data definition events),

388–390
EXCEPT

exercises, 204–208
exercises, solutions for, 208–211
precedence and, 201–202
use of, 199–201

EXCEPT (DISTINCT), 199–200
EXCEPT ALL, 199–201
exclusive locks, 322–324
EXEC

dynamic SQL, 379–381
INSERT EXEC, 251–252

execution plan, SQL server, 380–381
exercises

DELETE, 287–291
DELETE, solutions for, 291–295
grouping set, 241–244
grouping set, solutions for, 245–248
INSERT, 287–291
INSERT, solutions for, 291–295
JOIN, 123–128
JOIN, solutions for, 129–132
MERGE, 287–291

MERGE, solutions for, 291–295
OFFSET-FETCH, 287–291
OFFSET-FETCH, solutions for, 291–295
OUTPUT, 287–291
OUTPUT, solutions for, 291–295
pivoting and unpivoting data, 241–244
pivoting and unpivoting data, solutions for,

245–248
SELECT statements, 93–97
SELECT statements, solutions for, 97–102
subqueries, 150–154
subqueries, solutions for, 154–159
table expressions, 183–188, 287–291
table expressions, solutions for, 188–192, 291–295
temporal tables, 311–313
temporal tables, solutions for, 313–317
TOP, 287–291
TOP, solutions for, 291–295
transactions, isolation and locks, 348–359
UPDATE, 287–291
UPDATE, solutions for, 291–295
windows functions, 241–244
windows functions, solutions for, 245–248

exercises, resources for getting started
Azures SQL Database, getting started, 395–396
source code, downloading of, 402–404
SQL Server Books Online, 410–413
SQL Server installation, 396–401
SQL Server Management Studio, working with,

404–410
EXISTS

correlated subqueries and, 141–143
subqueries, NULL trouble and, 147

extract, transform, and load (ETL), 12

F
FALSE

check constraints and, 24–25
IF . . . ELSE flow element, 367–368
NULLs, overview of, 54–58
subqueries, NULL trouble and, 146–147
WHERE and, 32
WHILE flow element, 368–370

filters. See also subqueries
date ranges, 79–80
deadlocks, avoiding, 347
HAVING, overview of, 35–36
OFFSET-FETCH, overview of, 46–47

420

FIRST_VALUE

filters. See also subqueries continued
predicate logic, overview of, 4
TOP filters, overview of, 44–46
WHERE, overview of, 31–32
WITH TIES and, 46

FIRST_VALUE, offset window functions, 219–221
flow elements, 367–370

IF . . . ELSE flow element, 367–368
WHILE flow element, 368–370

fn_helpcollations, 61–63
FOR SYSTEM_TIME CONTAINED IN, 308–310
FOR SYSTEM_TIME, temporal table queries, 304–310
FOR XML, views and ORDER BY clause, 173–174
foreign-key constraints. See also constraints

data integrity, defining, 23–24
overview of, 7

FORMAT, 69
FROM. See also JOIN

derived tables and, 161–162
logical query processing order, 28
overview of, 29–30

FROMPARTS, 88–89
functions

CHARINDEX, 66
COMPRESS and DECOMPRESS, 70
CONCAT, string concatenation, 63–65
date and time functions, 80–89
FORMAT, 69
LEFT and RIGHT, 65
LEN and DATALENGTH, 65–66
PATINDEX, 66
REPLACE, 66–67
REPLICATE, 67–68
RTRIM and LTRIM, 69
STRING_SPLIT, 71
STUFF, 68
SUBSTRING, 65
UPPER and LOWER, 68–69

G
generate globally unique identifiers (GUIDs), INSERT

SELECT and, 251
GENERATED ALWAYS AS ROW END, 298–301
GENERATED ALWAYS AS ROW START, 298–301
GETDATE, 80–81
GETUTCDATE, 80–81
global temporary tables, 376–377
GO, 363–367

GROUP BY. See also grouping sets
CUBE, 236
derived tables, assigning aliases, 163–164
GROUPING SETS, 235–236
HAVING and, 35–36
logical query processing order, 28
overview of, 32–35
pivoting with grouped queries, 226–227
ROLLUP, 236–237

GROUPING, 235, 238–240
grouping sets. See also GROUP BY

CUBE, 236
exercises, 241–244
exercises, solutions for, 245–248
GROUPING and GROUPING_ID functions, 238–240
GROUPING SETS subclause, 235–236
overview, 234–235
ROLLUP, 236–237

GROUPING SETS, 235–236
GROUPING_ID, 235, 238–240
GZIP algorithm, 70

H
HAVING

CASE expressions, overview of, 52–54
GROUP BY and, 33
logical query processing order, 28
overview of, 35–36

HDInsight, 13
historical data. See temporal tables
HOLDLOCK, 332

I
IaaS (infrastructure as a service)

ABC flavors (Appliance, Box, Cloud), 13–14
IDENT_CURRENT, 255–257
identifier names

delimiting of, 30
quoted identifiers, 62–63

identity property, 254–257
IDENTITY_INSERT, 256–257
IF . . . ELSE flow element, 367–368
IIF, CASE expressions, 54
IMPLICIT_TRANSACTIONS, 319–320
IN

multivalued subquery examples, 136–139
precedence, 51–52

421

language independence

subqueries, NULL trouble and, 146–147
use of, 49

inconsistent analysis, 335, 344–345
INCREMENT BY, sequence objects and, 258–259
information schema views, metadata queries, 91
INFORMATION_SCHEMA, 91
infrastructure as a service (Iaas), 13–14
inline table-valued functions (TVFs)

exercises, 183–188
exercises, solutions for, 188–192
overview of, 171–172, 178–180

In-Memory OLTP, 18
inner joins, 107–109

exercises, 123–128
exercises, solutions for, 129–132

INSERT
DML triggers (data manipulation events), 387–388
exercises, 287–291
exercises, solutions for, 291–295
identity property and, 254–257
MERGE and, 274
OUTPUT and, 280–282
row-versioning isolation and, 339
table expressions, modifying data with, 276–278
views and, 172

INSERT EXEC, 251–252
INSERT SELECT, 251
INSERT VALUES, 249–251
INT, 51
integer sequences, cross joins and, 106–107
International Organization for Standardization (ISO), 2
INTERSECT

exercises, 204–208
exercises, solutions for, 208–211
precedence and, 201–202
use of, 196–199

INTERSECT (DISTINCT), 196–197
INTERSECT ALL, 196–199
INTO, SELECT INTO, 252–253
IS NOT NULL, 55–58
IS NULL

CASE expressions and, 54
overview of, 55–58

ISDATE, 88
ISO (International Organization for Standardization), 2
ISO/ANSI SQL-89 syntax

cross joins, 105
inner joins, 108–109

ISO/ANSI SQL-92 syntax
cross joins, 104

inner joins, 107–108
isolation, transactions, 320–322

deadlocks, 345–348
exercises, 348–359
overview of, 332–333
READ COMMITTED, 334–337
READ COMMITTED SNAPSHOT, 343–345
READ UNCOMMITTED, 333–334
REPEATABLE READ, 335–337
SERIALIZALBE, 337–338
SNAPSHOT, 339–343
SNAPSHOT, conflict detection, 341–343

J
JOIN

composite joins, 110–111
CROSS APPLY and, 180
cross-joins, 103–107
DELETE and, 265–266
derived tables, multiple references, 166
exercises, 123–128
exercises, solutions for, 129–132
inner joins, 107–109
multi-join queries, 113
natural joins, 111
non-equi joins, 111–112
OUTER APPLY and, 181
outer joins

COUNT aggregate, use of, 121–123
filtering attributes from nonpreserved side,

118–119
fundamentals of, 113–116
in multi-join queries, 119–121
missing values, inclusion of, 116–118

overview of, 103
self joins, 105–106
UPDATE and, 268–270
vs. subqueries, 137

K
keys, SQL queries and, 39–41

L
LAG, 378

offset window functions, 219–221
language independence, 2

422

language standards organizations

language standards organizations, 2
LANGUAGE/DATEFORMAT, 75–76
LAST_VALUE, offset window functions, 219–221
LEAD, offset window functions, 219–221
LEFT, 65
LEN, 65–66
LIKE

precedence, 51–52
use of, 50, 71–73

linked history tables, 298–301
literals, date and time data, 74–78
local temporary tables, 374–375
LOCK_ESCALATION, 325
LOCK_TIMEOUT, 331–332
locks. See also isolation, transactions

deadlocks, 337, 345–348
exercises, 348–359
lockable resource types, 324–325
modes and compatibility, 322–324
troubleshooting, 325–332

logical operators, 50
login, SQL Server databases, 17
loops, WHILE element and, 368–370
LOWER, 68–69
LTRIM, 69

M
massively parallel processing (MPP), 13
master database, SQL Server architecture, 16–18
MAX, 33–35, 61
MAXVALUE, sequence objects and, 258–259
MERGE

DML triggers (data manipulation events), 387–388
exercises, 287–291
exercises, solutions for, 291–295
merging data overview, 271–275
OUTPUT and, 284–285
table expressions, modifying data with, 276–278

metadata, querying of, 89–92
Microsoft Analytics Platform System (APS), 13–14
Microsoft Azure SQL Data Warehouse, 14
Microsoft Azure SQL Database. See Azure SQL

Database
Microsoft SQL Server. See SQL Server
MIN, 33–35
MINVALUE, sequence objects and, 258–259
missing values, 6–7

in outer joins, 116–118

model database, SQL Server architecture, 16–18
MONTH, 79–80, 87–88
msdb database, SQL Server architecture, 16–18
MTD, aggregate window functions, 223–224
multi-join queries

exercises, 123–128
exercises, solutions for, 129–132
outer joins in, 119–121
use of, 113

multiplication (*), 51–52
multiset, 3
multi-statement table-valued function (TVF), 178
multivalued subqueries

defined, 133
self-contained subquery examples, 136–139

N
N (National), data type prefix, 50, 60–61
names, schemas and objects, 18–19. See also aliases
natural joins, 111
NCHAR, 50, 60–61
negative (-), 51–52
nested DML, 285–287
nested queries, 133

derived tables and, 165–166
NEWID, 251, 383
NEXT VALUE FOR, 259–262
next values, subquery returns, 143–144
no action, foreign-key constraints, 24
NOLOCK, 332
non-equi joins. See equi and non-equi joins
nonkey attributes, normalization forms, 8–10
nonrepeatable reads, 335, 344–345
normal forms. See normalization
normalization, overview, 7–10
NOT

combining logical expressions, 50
multivalued subqueries and, 137
precedence, 51–52
subqueries, NULL trouble and, 146–147

NOT EXISTS, NULL trouble and, 147
NOT IN, NULL trouble and, 146–147
NOT NULL, grouping and, 238–240
NTILE, window function ranking, 216–219
NULL

aggregate functions and, 34–35
CASE expressions and, 226
data integrity and, 22–25

423

OVER

DISTINCT and duplicates, 194
GROUPING and GROUPING_ID functions and,

238–240
IF . . . ELSE flow element, 367–368
INSERT VALUES and, 250
INTERSECT and, 197
missing values, overview, 6–7
multivalued subqueries and, 137
outer joins, filtering attributes, 118–119
outer joins, fundamentals of, 115–116
outer joins, in multi-join queries, 119–121
overview of, 54–58
scalar subqueries and, 135
SET NULL and, 24
string concatenation and, 63–65
subqueries, troubles with, 145–147
tables, creating, 21
variable values and, 363

NUMERIC, 51
NVARCHAR, 50, 60–61

O
object names, schema qualifying of, 29
object, defined, 3
OBJECT_ID, table creation, 20
OBJECTPROPERTY, 92
objects, SQL Server architecture, 18–19. See also

programmable objects
offset window functions, 219–221
OFFSET-FETCH

data modification with, 278–280
derived tables and, 162
exercises, 287–291
exercises, solutions for, 291–295
overview of, 46–47
views and ORDER BY clause, 173–174

OLTP (online transactional processing) databases,
10–12

ON
outer joins, fundamentals of, 115–116
outer joins, in multi-join queries, 119–121

ON DELETE CASCADE, 24
online transactional processing (OLTP) databases,

overview, 10–12
operators. See also APPLY; also JOIN; also PIVOT; also

UNPIVOT
compound operators, UPDATE and, 267–268
overview of, 49–52

precedence rules, 51–52
string concatenation, 63–65

OR
combining logical expressions, 50
precedence, 51–52
predicates and, 49

ORDER BY
CASE expressions, overview of, 52–54
circumventing unsupported logical phrases,

203–204
derived tables and, 162
GROUP BY and, 33
INTERSECT ALL and, 197–199
logical query processing order, 28
offset window functions and, 220–221
OFFSET-FETCH, overview of, 46–47
overview of, 41–43
set operators and, 193
TOP filters and, 45–46
views, table expressions, 172–174
window functions, overview of, 47–49, 214–215

ordinal positions, ORDER BY clause and, 43
OUTER APPLY

JOIN and, 181
overview of, 180–183

outer joins
COUNT aggregate, use of, 121–123
exercises, 123–128
exercises, solutions for, 129–132
filtering attributes from nonpreserved side,

118–119
fundamentals of, 113–116
in multi-join queries, 119–121
missing values, inclusion of, 116–118

outer queries, 133. See also subqueries; also table
expressions

OUTPUT
DELETE and, 282–283
exercises, 287–291
exercises, solutions for, 291–295
INSERT and, 280–282
MERGE and, 284–285
nested DML, 285–287
overview of, 280
UPDATE and, 283–284

OVER
empty parens () and, 221–222
sequence objects and, 260–262
window functions, overview of, 47–49, 213–216

424

PaaS (platform as a service)

P
PaaS (platform as a service)

ABC flavors (Appliance, Box, Cloud), 13–14
Parallel Data Warehouse (PDW), 13
parentheses, (), 51–52
PARSE

date and time functions, 81–83
date and time literals, 77–78

parsing, batches and, 364
PARTITION BY

INTERSECT ALL and, 197–199
window functions, overview of, 47–49, 215

partitions, offset window functions, 219–221
PATINDEX, 66
percent (%) wildcard, 71–72
PERCENT, TOP filters and, 45
performance

dynamic SQL and, 379–383
object names, schema qualifying, 29
query filters and, 32
row-versioning isolation and, 339
sp_executesql stored procedure, 380–381
SQL Server architecture, physical layout, 17–18
stored procedures and, 385

PERIOD FOR SYSTEM_TIME, temporal table creation,
298–301

permissions, database schemas and objects, 18–19
phantom reads, 337–338

SNAPSHOT and, 339
PIVOT

dynamic SQL and, 379, 381–383
pivoting data, overview, 227–229

pivoting data
exercises, 241–244
exercises, solutions for, 245–248
overview of, 224–226
unpivoting data, 230–234
with PIVOT operator, 227–229
within grouped queries, 226–227

platform as a service (PaaS), 13–14
point-in-time analysis. See temporal tables
policy enforcement, DDL triggers (data definition

events), 388–390
PolyBase, 13
positive (+), 51–52
predicates. See also specific predicate names

LIKE predicate, 71–73
NULLs, overview of, 54–58
overview of, 49–52

predicate logic, 4
relational model, overview, 5–6

previous table versions. See temporal tables
previous values, subquery returns, 143–144
primary-key constraints, data integrity, 22
private cloud, ABC flavors (Appliance, Box, Cloud),

13–14
procedural data integrity, 22–25
programmable objects

batches and, 363–367
cursors, 370–373
dynamic SQL, 379–383
error handling, 390–394
flow element, 367–370
routines, 383

stored procedures, 385–386
triggers, 387–390
user-defined functions, 383–384

temporary tables, 374–379
variables, 361–363

propositions, relational model overview, 5–6
public cloud, ABC flavors (Appliance, Box, Cloud), 13–14

Q
queries. See also SELECT statement; also subqueries;

also table expressions
aliases, use of, 36–41
all-at-once operations, 58–59
CASE expressions, overview of, 52–54
character data, working with, 60–63
date and time data, working with, 73–89
exercises, 93–97
exercises, solutions for, 97–102
FROM clauses, overview of, 29–30
GROUP BY clause, overview of, 32–35
HAVING clause, overview of, 35–36
identifier names, delimiting of, 30
in temporal tables, 304–310
LIKE predicate, 71–73
logical query processing, overview, 27–29
nested and outer queries, defined, 133
NULLs, overview of, 54–58
of metadata, 89–92
OFFSET-FETCH filter, overview of, 46–47
operators and functions, overview of, 63–73
ORDER BY clause, overview of, 41–43
predicates and operators, overview of, 49–52
query clause, defined, 29

425

security

query phrase, defined, 29
scalar subqueries, 133
SELECT clause, overview of, 36–41
TOP filters, overview of, 44–46
WHERE clause, overview of, 31–32
window functions, overview of, 47–49

quoted identifiers, 62–63

R
RAND, 383
RANK, window function ranking, 216–219
RDBMSs (relational database management systems)

ABC flavors (Appliance, Box, Cloud), 12–14
defined, 1
language independence, 2
relational model, overview, 4–10

READ COMMITTED
conflict detection, SNAPSHOT, 341–343
default isolation levels, 323
isolation, overview of, 332–337, 345
SNAPSHOT and, 340, 343

READ COMMITTED LOCKS, 343
READ COMMITTED SNAPSHOT

conflict detection, SNAPSHOT, 341–343
default isolation levels, 323, 332–333
isolation, overview, 339, 343–345

READ UNCOMMITTED, isolation overview, 332–334, 345
referenced table, foreign-key constraints, 23–24
referencing table, foreign-key constraints, 23–24
relation variable, use of term, 5
relational database management systems (RDBMSs)

ABC flavors (Appliance, Box, Cloud), 12–14
defined, 1
language independence, 2
relational model, overview, 4–10

relational model
constraints, 7
missing values, 6–7
normalization, 7–10
overview of, 4–10
propositions, predicates, and relations, 5–6

REPEATABLE READ, 332–333, 335–337, 345
REPLACE, 66–67
REPLICATE, 67–68
resolution, batches and, 366
Resource database, SQL Server architecture, 16
resource types, locking of, 324–325
RESTART WITH, sequence objects and, 259

restoring tables. See temporal tables
RIGHT, 65
ROLLBACK TRAN (TRANSACTION)

lock modes and compatibility, 322–324
overview of, 319–322
triggers and, 387

ROLLUP, 235–237
routines

overview of, 383
stored procedures, 385–386
triggers, 387–390
user-defined functions, 383–384

row constructors, 270
row versioning

isolation and, 320–321
READ COMMITTED SNAPSHOT, 343–345
SNAPSHOT, 339–343

ROW_NUMBER
EXCEPT ALL and, 200–201
INTERSECT ALL and, 197–199
window functions, overview of, 47–49
window functions, ranking of, 216–219

rows, 4
ROWS BETWEEN

offset window functions, 220–221
window functions, overview of, 215

RTRIM, 69
running aggregates, subqueries and, 144–145

S
scalar subqueries

defined, 133
scalar variables and, 361–363
self-contained subquery examples, 134–135

scalar UDFs (user-defined functions), 383–384
scalar variables, 361–363
SCHEMABINDING, views and, 176–177
schemas

dbo-schema, 20
identifier names, 30
information schema views, metadata queries, 91
object names, qualifying of, 29
SQL Server architecture, 18–19

SCOPE_IDENTITY, 255–257
searched CASE expressions, 52–54
security

database schemas and objects, SQL Server, 18–19
stored procedures, 385

426

SELECT

SELECT
INSERT SELECT, 251
pivoting with grouped queries, 226–227
variables and, 362–363
window functions, overview of, 215–216
window functions, ranking of, 218–219

SELECT * FROM, views and, 172
SELECT *, views and, 172
SELECT INTO, 252–253
SELECT statement. See also table expressions

all-at-once operations, 58–59
CASE expressions, overview of, 52–54
character data, working with, 60–63
date and time data, working with, 73–89
derived tables, assigning aliases, 163–164
elements of, 27–29
exercises, 93–97
exercises, solutions for, 97–102
FROM, overview, 29–30
GROUP BY, overview of, 32–35
HAVING, overview of, 35–36
LIKE predicate, 71–73
logical query processing order, 28
metadata, querying of, 89–92
NULLs, overview of, 54–58
OFFSET-FETCH filter, overview of, 46–47
operators and functions, overview of, 63–71
ORDER BY, overview of, 41–43
predicates and operators, overview of, 49–52
SELECT, overview of, 36–41
TOP filters, overview of, 44–46
views and, 172
WHERE, overview of, 31–32
window functions, overview of, 47–49

self joins, 105–106
self-contained subqueries

defined, 133
multivalued subquery examples, 136–139
scalar subquery examples, 134–135

semicolon, use in statements, 29
SEQUEL (Structured English QUEry Language), 2
sequence object, 258–262
SERIALIZALBE

isolation, overview, 332–333, 337–338, 345
SNAPSHOT and, 340

SERVERPROPERTY, 92
session ID, troubleshooting blocks, 326–332
SET

quoted identifiers, 62–63
UPDATE and, 267–268

variables and, 361–363
set attributes

normalization forms, 7–10
propositions, predicates, and relations, 5–6
use of term, 5

SET DEFAULT, 24
SET NOCOUNT ON, 386
SET NULL, 24
set operators

EXCEPT, 199–201
exercises, 204–208
exercises, solutions for, 208–211
INTERSECT, 196–199
overview of, 193–194
precedence and, 201–202
UNION, 194–196
unsupported logical phrases, circumventing,

203–204
set theory

overview of, 3
predicate logic and, 4

simple CASE expressions, 52–54
skipping option, OFFSET-FETCH, 46–47
SMALLDATETIME

data types, 73–74
literals, 74–78
working with date and time separately, 78–79

SNAPSHOT
conflict detection, 341–343
isolation, overview of, 339–343, 345
READ COMMITTED SNAPSHOT, 343–345

snowflake dimension, 11
solutions. See exercises
sorting, ORDER BY clause and, 41–43
sp_columns, 92
sp_executesql stored procedure, 380–381
sp_help, 91–92
sp_helpconstraint, 92
sp_tables, 91
SQL (Structured Query Language), overview of, 1–3

database system types, 10–12
history and use of, 2–3
predicate logic, 4

relational model, overview of, 4–10
constraints, 7
missing values, 6–7

normalization, 7–10
propositions, predicates, and relations, 5–6

relational models, language independence, 2
set theory, overview of, 3

427

table expressions

standards for use, 2
statement termination, semicolons, 29

SQL Data Warehouse, 14
SQL Server

architecture overview, 12–19
ABC flavors (Appliance, Box, Cloud), 12–14
databases, 15–18
instances, 14–15
physical layout, 17–18
schemas and objects, 18–19

box product installation, 396–401
database engine installation, 396–401
file extensions, 18
operator precedence rules, 51–52
source code, downloading of, 402–404
SQL Server Books Online, 410–413
unique index, 22–23

SQL Server authenticated login, 17
SQL Server Management Studio (SSMS)

download and installation of, 402
getting started with, 404–410
session ID, troubleshooting blocks, 326–332
temporal tables, creating, 299

SQL_VARIANT, 262
star schema, overview of, 11–12
START WITH, sequence objects and, 258–259
storage, character data and, 60–61
stored procedures, 385–386

triggers, 387–390
string concatenation, 63–65
STRING_SPLIT, 71
Structured Query Language (SQL), overview of, 1–3
STUFF, 68
subqueries. See also table expressions

column names, substitution errors, 147–149
correlated subqueries

EXISTS and, 141–143
overview of, 139–141

exercises, 150–154
exercises, solutions for, 154–159
multivalued subqueries, defined, 133
NULL trouble, 145–147
overview of, 133
previous or next values, returning, 143–144
running aggregates and, 144–145
scalar subqueries, defined, 133
self-contained

defined, 133
multivalued subquery examples, 136–139
scalar subquery examples, 134–135

table subqueries, defined, 133
vs. joins, 137
window functions, overview of, 214

SUBSTRING, 65
subtraction (-), 51–52
SUM, 33–35. See also window functions
surrogate keys, identity property and, 254–257
SWITCHOFFSET, 83
syntax

batch as unit of parsing, 364
cross joins, 104–105
inner joins, 107–109

sys.dm_as_waiting_tasks, 330–331
sys.dm_exec_connections, 328
sys.dm_exec_input_buffer, 329
sys.dm_exec_requests, 330–331
sys.dm_exec_sessions, 329
sys.dm_exec_sql_text, 328
sys.dm_tran_locks, 328
SYSDATETIME

current date and time functions, 80–81
default constraints, defining, 25
INSERT SELECT and, 251

SYSDATETIMEOFFSET, 80–81
system versioned temporal tables. See temporal tables
SYSTEM_TIME, temporal table queries, 304–310
SYSTEM_VERSIONING, temporal table creation,

298–301
SYSUTCDATETIME, 80–81

T
table expressions

APPLY operator, 180–183
common table expressions (CTEs)

arguments, using, 167–168
column aliases, assigning, 167–168
defining multiple CTEs, 168–169
multiple references in, 169
overview, 167
recursive CTEs, 169–171

derived tables
arguments, use of, 164–165
column aliases, assigning, 163–164
multiple references, 166
nesting, 165–166
overview of, 161–162

exercises, 183–188, 287–291
exercises, solutions for, 188–192, 291–295

428

table subqueries

table expressions continued
inline table-valued functions (TVFs), overview of,

171–172, 178–180
modifying data with, 276–278
overview of, 161
views

CHECK OPTION, 177–178
ENCRYPTION, 175–176
ORDER BY, 172–174
overview of, 171–172
SCHEMABINDING, 176–177

table subqueries, defined, 133. See also table expressions
tables

check constraints, defining, 24–25
creating tables, 19–22
defining data integrity, 22–25
foreign-key constraints, defining, 23–24
identifier names, 30
primary-key constraints, defining, 23
unique key constraints, defining, 23

table-valued functions (TVFs), inline, 171–172
table-valued parameters (TVPs), 378–379
table-valued UDFs (user-defined functions), 383–384
tempdb, SQL Server

architecture overview, 16–18
local temporary tables, 374–375
SNAPSHOT, 339–343
temporary table variables, 377–378

temporal tables
creating, 298–301
exercises, 311–313
exercises, solutions for, 313–317
modifying data, 301–304
overview of, 297
querying data, 304–310

temporary tables
global temporary tables, 376–377
local temporary tables, 374–375
overview of, 374
table types, 378–379
table variables, 377–378

THEN, CASE expressions, 53–54
tiebreakers, ORDER BY clause and, 45–46
TIME

data types, 73–74
literals, 74–78
working with date and time separately, 78–79

time data
aggregate window functions, 223–224
AT TIME ZONE, 84–85

CAST, CONVERT, and PARSE, 81–83
current date and time functions, 80–81
DATEADD, 85
DATEDIFF and DATEDIFF_BIG, 86–87
DATENAME, 88
DATEPART, 87
EOMONTH, 89
FROMPARTS, 88–89
ISDATE, 88
literals, 74–78
missing values, in outer joins, 116–118
SWITCHOFFSET, 83
types of, 73–74
working with date and time separately, 78–79
YEAR, MONTH, and DAY, 87–88

TODATETIMEOFFSET, 83–84
TOP (100) PERCENT, views and, 173–174
TOP filters

data modification with, 278–280
derived tables and, 162
exercises, 287–291
exercises, solutions for, 291–295
overview of, 44–46
views and ORDER BY clause, 173–174

transaction log, durability and, 321
transactions

deadlocks, 345–348
exercises, 348–359
isolation

overview of, 332–333
READ COMMITTED, 334–337
READ COMMITTED SNAPSHOT, 343–345
READ UNCOMMITTED, 333–334
REPEATABLE READ, 335–337
SERIALIZALBE, 337–338
SNAPSHOT, 339–343
SNAPSHOT, conflict detection, 341–343
summary of, 345

locks and blocking, 322–325
locks and blocking, troubleshooting, 325–332
overview of, 319–322
vs. batches, 363

triggers, 387–390
troubleshooting

locks and blocking, 325–332
OUTPUT, use of, 280
table expressions, modifying data with, 276–278

TRUE
check constraints and, 24–25
IF . . . ELSE flow element, 367–368

429

WHEN NOT MATCHED THEN

meaning of, 32
NULLs, overview of, 54–58
WHILE flow element, 368–370

TRUNCATE, 262–266
TRY . . . CATCH, error handling, 390–394
TRY_, date and time functions, 81–83
T-SQL

coding style, 21–22
database system types, 10–12
language independence, 2
predicate logic, 4
relational model, overview of, 4–10

constraints, 7
missing values, 6–7
normalization, 7–10
propositions, predicates, and relations, 5–6

set theory, 3–4
SQL standards and, 3
SQL, background information, 1–3
whole, use of, 3

tuples, 4–5
type; propositions, predicates, and relations, 6

U
UDF (user-defined functions), routines, 383–384
uncommitted reads, 333–334
underscore (_) wildcard, 72
Unicode data types, 50

character data, 60–61
UNION

exercises, 204–208
exercises, solutions for, 208–211
precedence and, 201–202
use of, 194–196

UNION (DISTINCT), 194–196
UNION ALL, 194–195
unique constraint, data integrity, 23
unique index, SQL Server

primary-key constraints and, 22
unique constraints, defining, 23

UNIQUE, NULLs and, 58
UNKNOWN

check constraints and, 24–25
IF . . . ELSE flow element, 367–368
meaning of, 32
NULLs, overview of, 54–58
outer joins, filtering attributes, 118–119
outer joins, in multi-join queries, 119–121
scalar subqueries and, 135

subqueries, NULL trouble and, 146–147
WHILE flow element, 368–370

unknown, missing values, 6–7
UNPIVOT, 233–234
unpivoting data, 230–234

exercises, 241–244
with APPLY, 231–233
with UNPIVOT, 233–234

UPDATE
assignment UPDATE, 270–271
based on a join, 268–270
DML triggers (data manipulation events), 387–388
exercises, 287–291
exercises, solutions for, 291–295
MERGE and, 274
OUTPUT and, 283–284
overview of, 266–268
row-versioning isolation and, 339
table expressions, modifying data with, 276–278
views and, 172

UPPER, 68–69
USE, table creation, 20
user-defined functions (UDF), routines, 383–384

V
VALUES, 250–251
VAR element, 60–61
VARCHAR, 21, 50, 60–61
variables, as programmable objects

batches and, 365
overview of, 361–363
temporary table variables, 377–378

vector expressions, 270
views, table expressions

CHECK OPTION, 177–178
ENCRYPTION, 175–176
exercises, 183–188
exercises, solutions for, 188–192
ORDER BY and, 172–174
overview of, 171–172
SCHEMABINDING, 176–177

virtual machine (VM), ABC flavors (Appliance, Box,
Cloud), 13–14

W
WHEN MATCHED THEN, 273–275
WHEN NOT MATCHED THEN, 273–275

430

WHEN, CASE expressions

WHEN, CASE expressions, 53–54
WHERE

CASE expressions, overview of, 52–54
derived tables, arguments, 164–165
derived tables, assigning aliases, 163
logical query processing order, 28
outer joins, filtering attributes, 118–119
outer joins, fundamentals of, 115–116
overview of, 31–32
UPDATE and, 267–268
UPDATE based on a join, 268–270

WHILE flow element, 368–370
whole, defined, 3
wildcards

% (percent) wildcard, 71–72
_ (underscore) wildcard, 72
[̂ character list or range] wildcard, 73
[character-character] wildcard, 72–73
[list of characters] wildcard, 72
LIKE predicate and, 71–73

window functions

aggregate window functions, 221–224
exercises, 241–244
exercises, solutions for, 245–248
offset functions, 219–221
overview of, 47–49, 213–216
ranking of, 216–219

Windows authenticated login, SQL Server databases, 17
WITH NOCHECK, 25
WITH TIES, ORDER BY clause and, 45–46
WITH, common table expressions (CTEs), 167

X
XACT_ABORT, 320

Y
YEAR, 87–88

filtering date ranges, 79–80
YTD, aggregate window functions, 223–224

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Chapter 1 Background to T-SQL querying and programming
	Theoretical background
	SQL
	Set theory
	Predicate logic
	The relational model
	Types of database systems

	SQL Server architecture
	The ABCs of Microsoft RDBMS flavors
	SQL Server instances
	Databases
	Schemas and objects

	Creating tables and defining data integrity
	Creating tables
	Defining data integrity

	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

