
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9781509301881
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9781509301881
https://plusone.google.com/share?url=http://www.informit.com/title/9781509301881
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9781509301881
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9781509301881/Free-Sample-Chapter

Programming
Microsoft Azure
Service Fabric

Haishi Bai

PUBLISHED BY
Microsoft Press
A division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2016 by Haishi Bai

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2015953291
ISBN: 978-1-5093-0188-1

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Support at mspinput@microsoft.com. Please tell us what you think of this
book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information
expressed in this book, including URL and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks
of the Microsoft group of companies. All other marks are property of their respective owners.

Acquisitions Editor: Karen Szall
Developmental Editor: Karen Szall
Editorial Production: Cohesion
Technical Reviewer: John McCabe; Technical Review services provided by Content Master, a member of
CM Group, Ltd.
Copyeditor: Ann Weaver
Indexer: Lucie Haskins
Cover: Twist Creative • Seattle

http://aka.ms/tellpress
http://www.microsoft.com

Contents at a glance

Introduction xv

PART I FUNDAMENTALS

CHAPTER 1 Hello, Service Fabric! 3

CHAPTER 2 Stateless services 29

CHAPTER 3 Stateful services 53

CHAPTER 4 Actor pattern 69

CHAPTER 5 Service deployments and upgrades 95

CHAPTER 6 Availability and reliability 117

CHAPTER 7 Scalability and performance 145

PART II SERVICE LIFECYCLE MANAGEMENT

CHAPTER 8 Managing Service Fabric with Windows PowerShell 167

CHAPTER 9 Managing Service Fabric with management portal 189

CHAPTER 10 Diagnostics and monitoring 203

CHAPTER 11 Testing 227

PART III PATTERNS AND SCENARIOS

CHAPTER 12 Web applications 253

CHAPTER 13 Internet of Things 275

CHAPTER 14 Real-time data streaming 303

CHAPTER 15 Multitenancy and hosting 325

CHAPTER 16 Multiplayer gaming 345

PART IV ADVANCED TOPICS

CHAPTER 17 Advanced service hosting 371

CHAPTER 18 Modeling complex systems 393

iv Contents at a Glance

PART V APPENDICES

Appendix A: Service Fabric subsystems and
system services 421
Appendix B: Using Microsoft Azure PowerShell
commands 425
Appendix C: Microsoft and containers 433
Appendix D: Pattern index 441

Index 445

 v

Table of contents

Introduction .xv

PART I FUNDAMENTALS

Chapter 1 Hello, Service Fabric! 3
A modern PaaS . 3

Designed for agility . 3

Designed for QoS . 5

Separation of workload and infrastructure . 6

Service Fabric concepts . 7

Architecture . 7

Nodes and clusters . 9

Applications and services . 10

Partitions and replicas . 10

Programming modes . 10

Stateless vs . stateful . 10

Getting started .11

Setting up a development environment . 12

Provisioning a Service Fabric cluster on Azure . 12

Hello, World . 17

Managing your local cluster . 22

Visual Studio Server Explorer . 22

Visual Studio Cloud Explorer . 23

Service Fabric Explorer . 24

Windows PowerShell . 27

Additional information . 28

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

vi Contents

Chapter 2 Stateless services 29
Implement ASP .NET 5 applications . 29

Scalability and availability of a stateless service . 32

Availability . 32

Scalability . 32

Implement communication stacks . 33

Default communication stack . 33

WCF communication stack . 41

Custom communication stack .43

Additional information . 51

Chapter 3 Stateful services 53
Service Fabric state management . 53

Architecture of stateful services . 53

Reliable collections .54

Reliable State Manager .54

Transactional Replicator . 55

Logger . 55

Consistency . 55

The Simple Store application . 56

The shopping cart service . 56

The Simple Store client . 59

Service partition . 61

UniformInt64Partition . 61

NamedPartition .64

Partitions and replicas . 65

Replica roles . 65

Scaling . 67

Additional information . 68

Chapter 4 Actor pattern 69
Service Fabric Reliable Actors . 70

Actors . 70

 Contents vii

Actor lifetime . 70

Actor states . 71

Actor communications . 71

Concurrency . 71

An actor-based tic-tac-toe game . 72

Actor models . 72

Create the application . 73

Define actor interfaces . 73

Implement the Game actor . 74

Implement the Player actor . 76

Implement the test client . 76

Test it . 78

Additional thoughts . 78

Timers, reminders, and events . 79

Actor timers . 79

Actor reminders .80

Actor events . 81

Actor internals . 82

Actor diagnostics and performance monitoring 82

Actors and Reliable Services . 89

Actor state providers . 91

Additional information . .94

Chapter 5 Service deployments and upgrades 95
Service Fabric application deployment process . 95

Package . 95

Upload . 99

Register/provision . 100

Create/replace/upgrade . 100

Health model . 100

Health entities . 101

Health states . 102

Health policy . 102

Health reporting and aggregation . 103

viii Contents

Rolling upgrade . 104

Fault domains and update domains . 104

Upgrade process . 105

Upgrade modes and upgrade parameters . 107

Multiple environments . 110

Application parameters and parameter files . 110

Application publish profiles . 110

Using implicit hosts .111

Defining implicit hosts .111

RunAs policies . 112

Hosting a Node .js application . 114

Chapter 6 Availability and reliability 117
Service availability and reliability . 117

A broken service . 117

Improving availability . 118

Improving reliability . 118

Service Fabric services availability . 119

Service placements . 119

Service failovers . 127

Routing and load balancing . 128

Advanced rolling upgrades . 128

Service Fabric services reliability . 131

Event Tracing for Windows . 132

Azure Diagnostics . 133

Chaos tests . 137

Service state backup and restore . 142

Chapter 7 Scalability and performance 145
Scalability concepts . 145

Vertical scaling vs . horizontal scaling . 145

Scaling stateless services vs . scaling stateful services 146

Homogeneous instances vs . heterogeneous instances 146

Single-tenancy vs . multitenancy . 147

 Contents ix

Manual scaling vs . autoscaling . 148

Scaling a Service Fabric cluster . 148

Manually scaling a Service Fabric cluster . 149

Autoscaling a Service Fabric cluster . 149

Scaling with Content Delivery Network . 153

Resolving bottlenecks . 154

State bottlenecks . 155

Communication bottlenecks . 159

Orchestration bottlenecks . 160

PART II SERVICE LIFECYCLE MANAGEMENT

Chapter 8 Managing Service Fabric with Windows PowerShell 167
Creating a secured Service Fabric cluster . 167

Protecting your cluster by using a certificate . 167

Client authentication using a certificate . 171

Publishing applications from Visual Studio . 172

Cluster management commands . 172

Queries . 172

Node operations . 181

Additional cluster management commands . 183

Application management commands . 184

Deploying an application . 184

Upgrading an application . 185

Rolling back an application . 186

Decommissioning an application . 187

Additional information . 187

Chapter 9 Managing Service Fabric with management portal 189
Anatomy of a Service Fabric cluster . 189

Availability set . 190

Virtual machines and NICs . 191

Virtual network . 193

Load balancer . 193

x Contents

Storage accounts . 196

Advanced Service Fabric cluster configuration . 197

Role-Based Access Control . 197

Network Security Groups . 199

Additional information . .202

Chapter 10 Diagnostics and monitoring 203
Diagnostics .203

Configuring Service Fabric Diagnostics .203

Using Elasticsearch and Kibana .208

Azure Operations Management Suite . 216

Monitoring . 219

Service Fabric Explorer .220

Visual Studio Application Insights . 221

Additional information . .225

Chapter 11 Testing 227
Software testability .227

Controllability .228

Observability .228

Isolateability .229

Clarity .230

Writing basic test cases .230

Setting up continuous integration .232

Preparing the Visual Studio Team Services project 232

Preparing the build machine .237

Creating a build definition .239

Running tests upon code check-ins .242

Running load tests with VSTS .244

Testability subsystem .246

Testability actions .247

Invoking testability actions using PowerShell .248

Additional information . .250

 Contents xi

PART III PATTERNS AND SCENARIOS

Chapter 12 Web applications 253
Azure PaaS ecosystem .253

App Services .253

Cloud Services .256

Service Fabric .257

Choosing PaaS platforms .258

Azure Services for your web applications . .259

Scenarios and patterns .260

E-commerce websites .260

Mass-source websites .264

Enterprise portals .268

Additional information . 274

Chapter 13 Internet of Things 275
Azure IoT solutions .275

Data generation and feedback .276

Command and control .276

Data ingress .277

Data transformation and analysis .277

Storage .278

Presentation and actions .278

Scenarios and patterns .279

Remote monitoring .279

Other scenarios .299

Additional information . 301

Chapter 14 Real-time data streaming 303
Real-time data streaming on Azure .303

Five Vs of big data .303

Azure Stream Analytics .304

Big data storages .306

Scenarios and patterns .307

xii Contents

A big data solution .308

Responsive website with live data stream processing 317

Additional information . .323

Chapter 15 Multitenancy and hosting 325
Multitenancy on Azure .325

Multitenancy vs . single tenancy .326

Azure multitenant support .327

Building multitenant systems with Service Fabric .330

Pattern: Tenant Manager . 331

Pattern: Cross-tenant aggregation .332

Pattern: Self-service .333

Tenant by partitions .334

Pattern: Metadata-driven system .335

Hosting multitenant systems .339

Hosting service processes .339

Pattern: Throttling Actor .340

Chapter 16 Multiplayer gaming 345
Messy Chess .345

Chessboard and game goal .346

Challenges .347

Game board .348

Game pieces .352

Players .355

Game hosting .357

A .I . Quests .358

Game world .358

Player interactions .363

PART IV ADVANCED TOPICS

Chapter 17 Advanced service hosting 371
A canonical PaaS platform . 371

 Contents xiii

Application package format .372

Resource orchestration . 374

Application gallery .375

Hosting guest applications .375

High availability .376

Health monitoring .376

Application lifecycle management . 376

Density .377

Hosting a simple guest application .377

Container integration .383

History of containers .383

Service Fabric and containers .385

Container types .388

Deploy anywhere .389

Deploy stand-alone clusters .389

Deploy on Azure Stack .389

Deploy on Amazon Web Services (AWS) .390

Service Fabric standalone package .390

Chapter 18 Modeling complex systems 393
Adaptive complex systems .393

Complex systems and complicated systems .394

Emergence .394

A simple model .396

Modeling and computational modeling .396

The termite model .397

Set up the solution .397

Implement the Box service .398

Implement the termite actor . 400

Implement the test client . .402

Test and analysis .403

Service Fabric for complex systems . 404

Distributed data structures .405

Actor Swarms .407

xiv Contents

The spatial segregation model .409

Set up the solution .409

Implement shared array with proposal supports 409

Implement the virtual actor . 412

Implement the Actor Swarm . 414

Implement the test client . 416

Test the model . 417

Future works . 418

PART V APPENDICES

Appendix A: Service Fabric subsystems and system services 421

Appendix B: Using Microsoft Azure PowerShell commands 425

Appendix C: Microsoft and containers 433

Appendix D: Pattern index 441

Index 445

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xv

Introduction

Azure Service Fabric is Microsoft’s new platform as a service (PaaS) offering for
developers to build and host available and scalable distributed systems . Microsoft

has used Service Fabric internally for years to support some of Microsoft’s cloud-scale
applications and Azure services such as Skype for Business, Cortana, Microsoft Intune,
Azure SQL Database, and Azure DocumentDB . The same platform is now available to you
to write your own highly available and highly scalable services .

Programming Microsoft Azure Service Fabric is designed to get you started and
productive with Azure Service Fabric quickly . The book covers fundamentals, practical
architectures, and design patterns for various scenarios such as the Internet of Things
(IoT), big data, and distributed computing . For fundamentals, the book provides detailed
step-by-step walkthroughs that guide you through typical DevOps tasks . For design
patterns, the book focuses on explaining the design philosophy and best practices with
companion samples to get you started and moving in the right direction .

Instead of teaching you how to use Azure Service Fabric in isolation, the book encour-
ages developers to make smart architecture choices by incorporating existing Azure ser-
vices. When appropriate, the book briefly covers other Azure services that are relevant to
particular scenarios .

Who should read this book

This book is intended to help new or experienced Azure developers get started with
Azure Service Fabric . This book is also useful for architects and technical leads to use
Azure Service Fabric and related Azure services in their application architecture .

Most of the book was written while the service was still in preview . So, this book is
most suitable for readers who want to keep on the edge of Azure development . As one
of the earliest Service Fabric books on the market, this book provides some early insights
into a new service that is still under active development . Although the precise opera-
tional steps and programming APIs might change, the design patterns presented in this
book should remain relevant into the foreseeable future .

xvi Introduction

Assumptions
This book expects that you are proficient in .NET, especially C# development. This book
covers a broad range of topics and scenarios, especially in later chapters . Prior under-
standing of DevOps, application lifecycle management (ALM), IoT, big data, and big
compute will help you understand these chapters .

Although no prior Azure knowledge is required, experience with the Azure software
development kit (SDK), Azure management portal, Azure PowerShell, Azure command-
line interface (CLI), and other Azure services definitely will be helpful.

This book might not be for you if…
This book might not be for you if you are a beginner in programming . This book assumes
you have previous experience in C# development and ASP.NET development. Although
this book covers topics in service operations, its primary audience is developers and
architects, not IT pros .

Organization of this book

This book is divided into four sections, each of which focuses on a different aspect of
Azure Service Fabric . Part I, “Fundamentals,” provides complete coverage of designing
and developing Service Fabric applications using stateless services, stateful services, and
Reliable Actors . Part II, “Service lifecycle management,” focuses on the operations side
and introduces how to manage Service Fabric clusters and how to manage, test, and
diagnose Service Fabric applications . Part III, “Patterns and scenarios,” introduces practi-
cal design patterns and best practices in implementing typical application scenarios
including scalable web applications, IoT, big data, multitenant applications, and gaming .
Finally, Part IV, “Advanced topics,” covers two advanced topics: advanced service hosting
and modeling complex systems using Service Fabric .

Finding your best starting point in this book
This book is an introduction to Service Fabric . It’s recommended that you read the chap-
ters in the first two parts sequentially. Then, you can pick the topics that interest you Part
III and Part IV .

 Introduction xvii

If you are Follow these steps

New to Service Fabric Read through Part I and Part II in order .

Interested in applying Service Fabric
in IoT scenarios

Focus on Chapter 13 and Chapter 14 .

Interested in building scalable web
applications

Focus on Chapters 12, 14, and 15 . You may also want to skim
through other chapters in Part III to discover some patterns
that may be applicable to your scenarios .

Interested in gaming Focus on Chapter 16 . Also read Chapter 14, especially the sec-
tion about the Web Socket communication stack, which pro-
vides satisfactory performance in many web-based multiplayer
gaming scenarios .

Interested in operating a Service
Fabric cluster

Chapters 8, 9, 10, and 11 introduce related tools and services .
You may also want to browse through Chapters 5, 6, and 7 to
understand application lifecycle management topics .

Interested in the Actor programming
model

Focus on Chapter 4 . Also browse through chapters in Part III
because these chapters cover a number of Actor-based design
patterns .

Interested in Service Fabric container
integration

Focus on Chapter 17 . Appendix C also gives you great back-
ground information on container integrations .

Interested in modeling complex sys-
tems with Service Fabric

Focus on Chapter 18 .

Some of the book’s chapters include hands-on samples that let you try out the con-
cepts just learned . No matter which sections you choose to focus on, be sure to down-
load and install the sample applications on your system .

System requirements

You will need the following hardware and software to run the sample code in this book:

 ■ Windows 7, Windows 8/Windows 8 .1, Windows Server 2012 R2, or Windows 10 .

 ■ Visual Studio 2015 .

 ■ Latest Service Fabric runtime, SDK, and tools for Visual Studio 2015 (install via
Web PI) .

 ■ Latest version of Azure SDK (2 .8 or above, install via Web PI) .

 ■ Latest version of Azure PowerShell (1 .0 or above, install via Web PI) .

xviii Introduction

 ■ Latest version of Azure CLI .

 ■ 4 GB (64-bit) RAM .

 ■ 30 GB of available hard disk space .

 ■ An active Microsoft Azure subscription . You can get a free trial from
www .azure .com .

 ■ Internet connection to use Azure and to download software or chapter examples .

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2015 and related SDKs and tools.

Downloads: Code samples

Most of the chapters in this book include sample code that lets you interactively try out
new material learned in the main text . All sample projects can be found on the book’s
download webpage:

http://aka .ms/asf/downloads

Using the code samples
The book’s webpage contains all samples in this book, organized in correspond-
ing chapter folders . It also contains two additional folders: ComplexSystems and
AdditionalSamples . The AdditionalSamples folder contains additional sample scenarios .
The ComplexSystems folder contains frameworks and sample scenarios of complex
systems .

 ■ Chapter 1 This folder contains samples from Chapter 1 .

HelloWordApplication: The hello world application .

 ■ Chapter 2 This folder contains samples from Chapter 2 .

CalculatorApplication: The calculator application used in the communicate stack
samples .

 ■ Chapter 3 This folder contains samples from Chapter 3 .

SimpleStoreApplication: The simple store application .

SimpleStoreApplication-NamedPartitions: The simple store application using
named partitions .

http://www.azure.com
http://aka.ms/asf/downloads

 Introduction xix

 ■ Chapter 4 This folder contains samples from Chapter 4 .

ActorTicTacToeApplication: The tic-tac-toe game using Actors .

 ■ Chapter 5 This folder contains samples from Chapter 5 .

ConsoleRedirectTestApplication: The sample application used in package format
samples .

 ■ Chapter 13 This folder contains samples from Chapter 13 .

SensorAggregationApplication-Pull: The IoT scenario that aggregates sensor
states using pull mode .

SensorAggregationApplication-Push: The IoT scenario that aggregates sensor
states using push mode .

IoTE2E End-to-end: The IoT sample scenario .

 ■ Chapter 14 This folder contains samples from Chapter 14 .

NumberConverterApp: The number converter service .

ECommerceApplication: The sample e-commerce application .

 ■ Chapter 15 This folder contains samples from Chapter 15 .

MetadataDrivenApplication: The sample metadata-driven application (shows
actor polymorphism) .

ThrottlingActorApplication: The sample application shows the Throttling Actor
pattern .

 ■ Chapter 16 This folder contains samples from Chapter 16 . Both scenarios are
under development . Please see release announcements in the repository for
releasable versions .

MessyChess: The Messy Chess sample (under development) .

AIQuest: The A .I . Quest sample (under development) .

 ■ Chapter 17 This folder contains samples from Chapter 17 .

GuestApplication: A simple guest application sample with a watchdog .

 ■ Chapter 18 This folder contains samples from Chapter 18 .

TermiteModel: A simulation of termites moving and collecting wood chips .

xx Introduction

ActorSwarmApplication: A simulation of people moving closer to neighbors with
similar attributes . This sample shows a preliminary implementation of an actor
swarm .

AdditionalSamples: This folder contains additional sample scenarios (see
README .md under the folder) .

ComplexSystems: This folder contains frameworks and samples for modeling
complex systems .

To complete an exercise, access the appropriate chapter folder in the root folder and
open the project file. If your system is configured to display file extensions, C# project
files use .csproj as the file extension.

Acknowledgments

I’d like to thank my wonderful editor Karen Szall who has guided me through every
single step along the way to get this book published . I’d also like to thank John McCabe
for his insightful reviews . Especially, I’d like to thank Boris Scholl who, regardless of his
busy schedule to get the service released on time, has helped me tremendously review-
ing the book and providing me insights into container integrations .

I’d also like to thank the amazing team behind Service Fabric . I’ve personally worked
with many of the team members including Mark Fussell, Matthew Snider, Vaclav Turecek,
and Sean McKenna . The creativity and dedication of the team has inspired me while writ-
ing this book . I also gained a lot of knowledge from the Microsoft internal community,
including the www .azure .com author group and the Yammer group .

Last but not least, I’d like to thank my wife Jing and my daughter Sabrina who have
tolerated my late hours and busy weekends in the past six months . I couldn’t do this
without your support .

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks
from Microsoft Press cover a wide range of topics . These ebooks are available in PDF,
EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka .ms/mspressfree

Check back often to see what is new!

http://www.azure.com
http://aka.ms/mspressfree

 Introduction xxi

Quick access to online references

Throughout this book are addresses to webpages that the author has recommended you
visit for more information . Some of these addresses (also known as URLs) can be pains-
taking to type into a web browser, so we’ve compiled all of them into a single list that
readers of the print edition can refer to while they read .

The list is included in the companion content, which you can download here:

http://aka .ms/asf/downloads .

The URLs are organized by chapter and heading . Every time you come across a URL in
the book, find the hyperlink in the list to go directly to the webpage.

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content .
You can access updates to this book—in the form of a list of submitted errata and their
related corrections—at:

http://aka .ms/asf/errata

If you discover an error that is not already listed, please submit it to us at the same page .

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft .com .

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses . For help with Microsoft software or hardware, go to
http://support .microsoft .com .

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valu-
able asset . Please tell us what you think of this book at:

http://aka .ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions . Your answers
go directly to the editors at Microsoft Press . (No personal information will be requested .)
Thanks in advance for your input!

http://aka.ms/asf/downloads
http://aka.ms/asf/errata
http://support.microsoft.com
http://aka.ms/tellpress

xxii Introduction

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter .com/MicrosoftPress

http://twitter.com/MicrosoftPress

 1

PART I

Fundamentals

CHAPTER 1 Hello, Service Fabric! . 3

CHAPTER 2 Stateless services . 29

CHAPTER 3 Stateful services . 53

CHAPTER 4 Actor pattern . 69

CHAPTER 5 Service deployments and upgrades 95

CHAPTER 6 Availability and reliability .117

CHAPTER 7 Scalability and performance . 145

This page intentionally left blank

 3

C H A P T E R 1

Hello, Service Fabric!

This book is about Microsoft Azure Service Fabric, a distributed systems platform that makes it easy
to build large-scale, highly available, low-latency, and easily manageable services . Service Fabric

brings you the same technology that empowers cloud-scale applications such as Cortana, Skype for
Business, and SQL databases so that you can easily design, implement, scale, and manage your own
services leveraging the power of next-generation distributed computing .

Before you embark on the journey with Service Fabric, let’s reflect on what makes a great platform
as a service (PaaS) and why you need a new PaaS to build the next generation of cloud-based services .

A modern PaaS

A PaaS is designed with agility, scalability, availability, and performance in mind . Microsoft Azure
Service Fabric is a PaaS that is built from the ground up to support large-scale, highly available cloud
applications .

Designed for agility
The software industry is all about agility . Developers have the privilege to work in a virtual world with-
out physical constraints to drag us down . Innovations can happen at a speed that is unimaginable to
other fields. And as a group, we’ve been in a relentless pursuit for speed: from software frameworks to
automation tools, from incremental development to Heroku’s 12-factor methodology (Wiggins 2012),
from minimum viable product (MVP) to continuous delivery . Agility is the primary goal so that devel-
opers can innovate and improve continuously .

Microservices
The essence of Microservices is to decompose complex applications into independent services . Each
service is a self-contained, complete functional unit that can be evolved or even reconstructed without
necessarily impacting other services .

All software can be abstracted as components and communication routes between them .
 Monolithic applications are hard to maintain or revise . An overly decomposed system, in contrast, is
hard to understand and often comes with unnecessary overhead due to the complex interaction paths

4 PART I Fundamentals

across different components . To a great extent, the art of a software architect is to strike a balance
between the number of components and the number of communication paths .

A PaaS designed for Microservices encourages separation of concerns, emphasizes loose coupling,
and facilitates flexible inter-component communication. While allowing other architectural choices,
Service Fabric is designed for and recommends Microservices . A Service Fabric application is made up
of a number of services . Each service can be revised, scaled, and managed as an independent com-
ponent, and you still can manage the entire application as a complete logical unit . The Service Fabric
application design is discussed in Chapter 2, “Stateless services,” Chapter 3, “Stateful services,” and
Chapter 4, “Actor pattern .” We’ll review several application patterns and scenarios in Part III .

Note Architecture choices

Microservices is strongly recommended but not mandatory . You can choose to use other
architectures such as n-tiered architecture, data-centric architecture, and single-tiered web
applications or APIs .

Simplicity
A PaaS platform is not just about scheduling resources and hosting applications . It needs to provide
practical support to developers to complete the tasks at hand without jumping through hoops .

At a basic level, a PaaS platform helps developers deal with cross-cutting concerns such as logging,
monitoring, and transaction processing . Taking it a step further, a PaaS platform provides advanced
nonfunctional features such as service discovery, failover, replication, and load balancing . All these
nonfunctional requirements are essential to a scalable and available system . And providing built-in
constructs to satisfy these requirements leads to a significant productivity boost. Because PaaS takes
care of all these troubles, developers can focus on building up core business logic . To achieve this,
these nonfunctional features should be available without getting in the way . As you progress through
this chapter and book, you’ll see how Service Fabric enables you to focus on business logic and to
incorporate these features whenever you need them .

Can you go a step further? What if a PaaS platform provides easy programming models that help
you tackle complex problems? And what if the PaaS platform also provides guidance and patterns
for typical scenarios? We’ll come back to this in the discussion of different service types in Chapter 2,
Chapter 3, and Chapter 4 .

Comprehensive application lifetime management
Continuous improvement is at the core of the agile software movement and the Lean movement in
various industries . The faster you can iterate through revision cycles, the quicker you can innovate,
reduce waste, and create additional value . A mature PaaS platform has to offer comprehensive ap-
plication lifecycle management (ALM) functionalities to keep the innovation engine running without
friction .

 CHAPTER 1 Hello, Service Fabric! 5

Because more companies are adopting continuous delivery, software is being released at a faster
pace than in the past . Some companies claim they do hundreds of deployments on a daily basis . This
calls for automated testing, continuous integration, rapid deployments, robust version management,
and fast rollbacks . Only when a PaaS platform provides all these features can developers and indepen-
dent software vendors (ISVs) realize such continuous delivery scenarios .

A comprehensive ALM strategy is critical to DevOps . If you look carefully, you’ll see that a lot of
so-called friction between development and operations is rooted in discrepancies among different
environments . PaaS platforms such as Service Fabric allow applications to be placed in self-contained
packages that can be deployed consistently to different environments—such as development, test, QA,
and production .

Part II of this book is dedicated to ALM .

Designed for QoS
A successful cloud service is based on a healthy partnership between the service developer and the
cloud platform . The service developer brings business know-how and innovation, and the cloud plat-
form brings Quality of Service (QoS) opportunities such as scalability, availability, and reliability .

Scalability
Through innovation, you can do unprecedented things . However, the increasing complexity of prob-
lems constantly challenges developers to improve methodologies to maintain momentum . A PaaS
platform should be designed with scalability in mind so that applications can be scaled out naturally
without much effort from the developers .

Increasing complexity and scale
Increasing complexity can be demonstrated easily with some examples . According to the “NASA
Study on Flight Software Complexity” (NASA Office of Chief Engineer, 2009), flight software
complexity has been increasing exponentially with a growth rate of a factor of 10 approximately
every 10 years . Apollo 8 had about 8,500 lines of code in 1968 . In contrast, the International Space
Station (ISS) was launched with 1 .5 million lines of code in 1989 .

Besides software complexity, the sheer volume of data presents a new set of problems . Ac-
cording to Twitter statistics (Company Facts at https://about .twitter .com/company), Twitter is
handling 500 million tweets every day . Data ingress, transformation, storage, and analysis at such
a scale is an unprecedented challenge . Modern services also need to deal with the potential for
rapid growth. Over the past five years or so, Azure Storage has grown into a service that needs to
handle 777 trillion transactions per day (Charles Babcock, “Microsoft Azure: More Mature Cloud
Platform,” InformationWeek, Sept 30, 2015, http://aka .ms/asf/maturecloud) .

https://about.twitter.com/company
http://aka.ms/asf/maturecloud

6 PART I Fundamentals

On a cloud platform, scaling up, which means increasing the processing power of a single host, is
a less preferable approach. Typically, virtual machines are offered with preconfigured sizes. To scale
up, you’ll need to migrate your workload to a virtual machine with a bigger size . This is a long and
disruptive process because services need to be brought down, migrated, and relaunched on the new
machine, causing service interruptions. Furthermore, because there are finite choices of machine sizes,
scaling options run out quickly . Although Azure provides a large catalog of virtual machine sizes,
including some of the largest virtual machines in the cloud, large-scale workloads still can exceed the
processing power of a single machine .

In contrast, scaling out dynamically adjusts system capacity by adding more service instances to
share the workload . This kind of scaling is not disruptive because it doesn’t need to shut down existing
services . And theoretically, there’s no limit to how much you can scale because you can add as many
instances as you need .

When scaling out, there are two fundamental ways to distribute workloads . One way is to distribute
the workloads evenly across all available instances . The other way is to partition the workloads among
service instances . Service Fabric supports both options, which we’ll discuss in detail in Chapter 7, “Scal-
ability and performance .”

Availability
Availability commonly is achieved by redundancy—when a service fails, a backup service takes over to
maintain business continuity. Although the idea sounds simple, difficulties can be found in the details.
For example, when a service fails, what happens to its state that it has been maintaining locally? How
do you ensure that the replacement service can restore the state and pick up wherever it left off? In a
different case, when you apply updates, how do you perform a zero-downtime upgrade? And how do
you safely roll back to previous versions if the new version turns out to be broken? The solution to these
questions involves many parts such as health monitoring, fault detection, failover, version manage-
ment, and state replication . Only a carefully designed PaaS can orchestrate these features into a com-
plete and intuitive availability solution . Reliability and availability is the topic of Chapter 6, “Availability
and reliability .”

Reliability
Reliability is compromised by system faults . However, in a large-scale, distributed system, monitoring,
tracing, and diagnosing problems often are challenging . If a PaaS doesn’t have a robust health sub-
system that can monitor, report, and react to possible system-level and application-level problems,
detecting and fixing system defects becomes incredibly difficult.

We’ll examine what Service Fabric has to offer in terms of reliability in Chapter 6 .

Separation of workload and infrastructure
The cloud era brings new opportunities and new challenges . One advantage of cloud infrastructure as
a service (IaaS) is that it shields you from the complexity of physical or virtualized hardware manage-
ment—and that’s only the starting point. To enjoy the benefits of the cloud fully, you need PaaS to

 CHAPTER 1 Hello, Service Fabric! 7

help you forget about infrastructure altogether . After all, for a program to run, all you need are some
compute and storage resources such as CPU, memory, and disk space . Do you really need to control
which host is providing these resources? Does it really matter if your program stays on the same host
throughout its lifetime? Should it make a difference if the program is running on a local server or in the
cloud? A modern PaaS such as Service Fabric provides a clear separation of workload and infrastruc-
ture. It automatically manages the pool of resources, and it finds and assigns resources required by
your applications as needed .

Placement constraints
Sometimes, you do care how components in your application are laid out on a PaaS cluster . For
example, if your cluster comprises multiple node types with different capacities, you might want
to put certain components on specific nodes. In this case, your application can dictate where
PaaS places different components by defining placement constraints. In addition, if you want to
minimize the latency between two components that frequently interact with each other, you can
suggest that PaaS keep them in close proximity . In some other cases, you might want to distrib-
ute the components far apart so that a failing host won’t bring down all the components . We’ll
discuss placement constraints later in this book .

Such clear separation of concerns brings several significant benefits. First, it enables workloads to
be transferred from host to host as needed . When a host fails, the workloads on the failing host can be
migrated quickly to another healthy host, providing fast failovers . Second, it allows higher compute
density because independent workloads can be packed into the same host without interfering with
one another . Third, as launching and destroying application instances usually is much faster than boot-
ing up and shutting down machines, system capacity can be scaled dynamically to adapt to workload
changes . Fourth, such separation also allows applications to be architected, developed, and operated
without platform lock-in . You can run the same application on-premises or in the cloud, as long as
these environments provide the same mechanism to schedule CPU, memory, and disk resources .

Service Fabric concepts

In this section, you first briefly review the architecture of Service Fabric. Then, you learn about some of
the key concepts of Service Fabric in preparation for service development .

Architecture
An overview of Service Fabric architecture is shown in Figure 1-1 . As you can see, Service Fabric is a
comprehensive PaaS with quite a few subsystems in play . The discussion here gives you a high-level
overview of these subsystems . We’ll go into details of each of the subsystems throughout this book, so
don’t worry if you are not familiar with some of the terms .

8 PART I Fundamentals

FIGURE 1-1 Service Fabric architecture

The subsystems shown in Figure 1-1 are as follows:

 ■ Transport subsystem The transport subsystem is a Service Fabric internal subsystem that
provides secured point-to-point communication channels within a Service Fabric cluster and
between a Service Fabric cluster and clients .

 ■ Federation subsystem The federation subsystem provides failure detection, leader elec-
tion, and consistent routing, which form the foundation of a unified cluster. We’ll examine these
terms in upcoming chapters .

 ■ Reliable subsystem The reliable subsystem manages state replication, failovers, and load
balancing, which a highly available and reliable system needs .

 ■ Management subsystem The management subsystem provides full application lifetime
management, including services such as managing application binaries; deploying, updating
and deprovisioning applications; and monitoring application health .

 ■ Hosting subsystem The hosting subsystem is responsible for managing application life
cycles on a cluster node .

 ■ Communication subsystem The primary task of the communication subsystem is service
discovery . With complete separation of workloads and infrastructure, service instances may
migrate from host to host . The communication subsystem provides a naming service for clients
to discover and connect to service instances .

 ■ Testability subsystem The idea of test in production was popularized by the Netflix Chaos
Monkey (and later the Netflix Simian Army). The testability subsystem can simulate various fail-
ure scenarios to help developers shake out design and implementation flaws in the system.

 CHAPTER 1 Hello, Service Fabric! 9

Nodes and clusters
To understand Service Fabric clusters, you need to know about two concepts: node and cluster .

 ■ Node Technically, a node is just a Service Fabric runtime process . In a typical Service Fabric
deployment, there’s one node per machine . So you can understand a node as a machine (physi-
cal or virtual) . A Service Fabric cluster allows heterogeneous node types with different capaci-
ties and configurations.

 ■ Cluster A cluster is a set of nodes that are connected to form a highly available and reliable
environment for running applications and services . A Service Fabric cluster can have thousands
of nodes .

Figure 1-2 is a simple illustration of a Service Fabric cluster . Notice that all nodes are equal peers;
there are no master nodes or subordinate nodes . Also notice that although in the diagram the nodes
are arranged in a ring, all the nodes can communicate directly with each other via the transport
 subsystem .

FIGURE 1-2 A Service Fabric cluster

Note Node and containers

In addition to physical machines and virtual machines, nodes can reside in Windows-based
Docker containers, which are part of Windows Server 2016 . Containerization is described in
more detail in Chapter 17, “Advanced service hosting .”

A Service Fabric cluster provides an abstraction layer between your workloads and the underly-
ing infrastructure . Because you can run Service Fabric clusters on both physical machines and virtual
machines, either on-premises or in the cloud, you can run your Service Fabric applications without
modifications in a variety of environments such as on-premises datacenters and Microsoft Azure.

10 PART I Fundamentals

Applications and services
A Service Fabric application is a collection of services . A service is a complete functional unit that deliv-
ers certain functionalities .

You author a Service Fabric application by defining the Application Type and associated Service
Types . When the application is deployed to a Service Fabric cluster, these types are instantiated into
application instances and service instances, respectively .

An application defines an isolation unit in Service Fabric. You can deploy and manage multiple ap-
plications independently on the same cluster. Service Fabric keeps their code, configuration, and data
isolated from one another . You can deploy multiple versions of an application on the same cluster .

Partitions and replicas
A service can have one or more partitions . Service Fabric uses partitions as the scaling mechanism to
distribute workloads to different service instances .

A partition can have one or more replicas . Service Fabric uses replicas as the availability mechanism .
A partition has one primary replica and may have multiple secondary replicas . The states of replicas are
synchronized automatically . When a primary replica fails, a secondary replica automatically is pro-
moted to primary to keep service availability . And the number of secondary replicas is brought back to
desired level to keep enough redundancy .

We’ll introduce partitions and replicas in more detail in Chapter 2, Chapter 3, and Chapter 7 .

Programming modes
Service Fabric provides two high-level frameworks to build applications: the Reliable Service APIs and
the Reliable Actor APIs .

 ■ The Reliable Service APIs provide direct access to Service Fabric constructs such as reliable col-
lections and communication stacks .

 ■ The Reliable Actor APIs provide a high-level abstraction layer so that you can model your ap-
plications as a number of interacting actors .

With Reliable Service APIs, you can add either stateless services or stateful services to a Service
Fabric application . The key difference between the two service types is whether service state is saved
locally on the hosting node .

Stateless vs. stateful
Some services don’t need to maintain any states across requests . Let’s say there’s a calculator service
that provides both an Add operation and a Subtract operation . For each of the service calls, the service
takes in two operands and generates a result . The service doesn’t need to maintain any contextual
information between calls because every call can be carried out based solely on given parameters . The

 CHAPTER 1 Hello, Service Fabric! 11

service behavior is not affected by any contextual information; that is, adding 5 and 3 always yields 8,
and subtracting 6 from 9 always yields 3 .

The majority of services, in contrast, need to keep some sort of states . A typical example of such
a service is a shopping cart service . As a user adds items to the cart, the state of the cart needs to be
maintained across different requests so that the user doesn’t lose what she has put in the cart .

Services that don’t need to maintain states or don’t save states locally are called stateless services .
Services that keep local states are called stateful services . The only distinction between a stateful ser-
vice and a stateless service is whether the state is saved locally . Continuing with the previous shopping
cart example, the service can be implemented as a stateless service that saves shopping cart states in
external data storage or as a stateful service that saves shopping cart states locally on the node .

Note “Has state” and “stateful”

Most services have states . However, this doesn’t mean they are stateful . The only difference
between stateful services and stateless services is where states are stored .

A stateful service can cause some problems . When a service is scaled out, multiple instances share
the total workload . For a stateless service, requests can be distributed among the instances because it
doesn’t matter which instance handles the specific request. For a stateful service, because each service
instance records its own state locally, a user session needs to be routed to the same instance to ensure
a consistent experience for the user . Another problem with a stateful service is reliability . When a ser-
vice instance goes down, it takes all its state with it, which causes service interruptions for all the users
who are being served by the instance .

To solve these problems, a stateful service can be transformed into a stateless service by external-
izing the state . However, this means every service call will incur additional calls to an external data
source, increasing system latency . Fortunately, Service Fabric provides a way to escape this dilemma,
which we’ll discuss in Chapter 3 .

Getting started

To get started with Service Fabric development, you need two things:

 ■ A development environment

 ■ A Service Fabric cluster

In this section, first you’ll set up a local development, which includes a local multinode cluster that
allows you to deploy and test your applications . Then, you’ll provision a managed Service Fabric cluster
on Microsoft Azure. This book primarily focuses on developments using C# in Visual Studio 2015. How-
ever, we’ll briefly cover developments using other languages such as Node.js.

12 PART I Fundamentals

Setting up a development environment
To set up a development environment, you’ll need Visual Studio 2015 and Service Fabric SDK . You can
install Service Fabric SDK via Microsoft Web Platform Installer (Web PI, https://www .microsoft .com
/web/downloads/platform .aspx) . Just follow the installation wizard and accept all default options to
complete the installation . This book uses the Preview 2 .0 .135 version .

In addition, install the following tools:

 ■ Latest version of Microsoft Azure SDK for .NET (using Web PI, this book uses 2 .8 .1)

 ■ Latest version of Microsoft Azure PowerShell (using Web PI, this book uses 1 .0)

Service Fabric SDK provides a local multinode Service Fabric cluster to which you can deploy and
test your applications .

Provisioning a Service Fabric cluster on Azure
Although you can use the local cluster provided by Service Fabric SDK for local development and tests,
you’ll want a hosted cluster on Azure for your production deployments .

Note Microsoft Azure subscription

To use Microsoft Azure, you need a Microsoft Azure subscription . If you don’t have one, you
can apply for a free one-month trial at https://azure .microsoft .com/pricing/free-trial/ .

You can follow these steps to create a new Service Fabric cluster .

Microsoft Azure management portal terms
As you click links in the portal, the display areas that expand to the right are called blades . You
also may see the following terms used in talks and articles:

 ■ Hub A hub gathers and displays information from multiple data sources . For instance, all
notifications from different services are displayed in a centralized notification hub, which
can be brought up by the Bell icon on the top command bar .

 ■ Dashboard The home page after you log in is called a dashboard, where you can pin vari-
ous types of resources for quick access .

 ■ Tile Each item you pin on the dashboard is represented by a tile .

 ■ Journey As you go through a workflow, your navigation steps are recorded as a journey.
You can see the history of your journey at the top of the page, and you can click any of the
steps to track back or to jump ahead . Journeys are recorded automatically, and you can ac-
cess previous journeys by clicking the down arrow icon beside the Microsoft Azure label, as
shown in the following figure.

https://www.microsoft.com/web/downloads/platform.aspx
https://www.microsoft.com/web/downloads/platform.aspx
https://azure.microsoft.com/pricing/free-trial/

 CHAPTER 1 Hello, Service Fabric! 13

To provision a Service Fabric cluster, complete the following steps:

1. Sign in to Microsoft Azure management portal (https://portal .azure .com) .

2. Click the New icon in the upper-left corner of the home page . Then, click Marketplace, as
shown in Figure 1-3 .

FIGURE 1-3 Create a new resource on Microsoft Azure

https://portal.azure.com

14 PART I Fundamentals

3. Under the Everything category, type service fabric in the Search box and press Enter . You’ll
see a Service Fabric Cluster entry, as shown in Figure 1-4 . Click the entry to create a new Service
Fabric cluster .

FIGURE 1-4 Service Fabric in Marketplace

4. On the Service Fabric Cluster blade, click the Create button to continue, as shown in Figure 1-5 .

FIGURE 1-5 Service Fabric template blade

 CHAPTER 1 Hello, Service Fabric! 15

5. On the Basics blade, enter a Cluster Name . Enter the user credentials for VM . Select the Azure
Subscription you want to use, and type a name for the new Resource Group . Then, pick an
Azure Location where you want the cluster to be hosted, and click OK to continue, as shown in
Figure 1-6 .

FIGURE 1-6 Service Fabric Cluster creation blade

Note Azure resource groups

A resource group is a collection of resources on Azure . On Azure, every resource,
such as a virtual machine or a virtual network, belongs to a resource group . A re-
source group defines a management boundary and a security boundary. You can
provision and deprovision all resources in a resource group as a logical unit . And
you can apply group-level Role-Based Access Control (RBAC) policies, which are
inherited by all members in the group .

16 PART I Fundamentals

6. Click Node Type and create a new node type configuration. (You’ll find more information about
types of nodes later in this book.) In the Node Type Configuration blade, enter a name for the
node type and pick a virtual machine size . Type 80 for the Custom Endpoints value, and then
click OK , as shown in Figure 1-7 .

FIGURE 1-7 Service Fabric Cluster settings blade

7. Change the Security mode to Unsecure, and follow the creation wizard to complete provision-
ing the cluster .

8. The provisioning process takes a few minutes . Once that is done, you’ll have a new tile on your
dashboard to access the cluster. Figure 1-8 shows the cluster blade, on which you can find the
cluster public address (in the format of <cluster name> .<region> .cloudapp .azure .com) and the
port number (the default is 19000) . You’ll need this information to connect to the cluster later .

 CHAPTER 1 Hello, Service Fabric! 17

FIGURE 1-8 Service Fabric cluster blade

Hello, World

This is the moment you’ve been waiting for—a chance to implement the beloved “Hello, World” in a
new way .

A tribute to Hello, World
The following code was my first “Hello, World” program, which was written in BASIC about 27
years ago:

10 PRINT "Hello, World"
20 END

What’s yours? I’m glad to see that such simplicity and elegance is being carried over through-
out the years collectively by the community to get developers started with new languages and
platforms . Of course, because Service Fabric is designed to tackle complex problems, you need
to inherit some established frameworks and structures from the platform . However, as you’ll see
in a moment, the “Hello, World” program still calls for only a couple lines of changes .

18 PART I Fundamentals

Now you are ready to create your first Service Fabric application. This application contains a state-
less service that generates a time stamped “Hello World” string every five seconds.

1. Launch Visual Studio 2015 as an administrator .

Note Launching Visual Studio as an administrator

You need to launch Visual Studio as an administrator in this case because you are
going to test the application with a local test cluster, which needs administrative
rights to be launched .

2. Create a new project named HelloWorldApplication using the Cloud\Service Fabric Application
template, as shown in Figure 1-9 .

FIGURE 1-9 New Project dialog box

3. In the New Service Fabric Service dialog box, select the Stateless Service template, enter
 HelloWorldService as the Service Project Name, and then click OK to create the Hello World
service, as shown in Figure 1-10 .

 CHAPTER 1 Hello, Service Fabric! 19

FIGURE 1-10 New Service Fabric Service dialog box

Now, in the solution you have two projects: A HelloWorldApplication project for the Service
Fabric application and a HelloWorldService project for the stateless service . You’ll go through
the rest of the solutions in a moment . For now, focus on the HelloWorldService class in the
service project:

internal sealed class HelloWorldService : StatelessService
{
 public HelloWorldService(StatelessServiceContext context)
 : base(context)
 { }
 protected override IEnumerable<ServiceInstanceListener>
CreateServiceInstanceListeners()
 {
 return new ServiceInstanceListener[0];
 }
 protected override async Task RunAsync(CancellationToken cancellationToken)
 {
 long iterations = 0;
 while (true)
 {
 cancellationToken.ThrowIfCancellationRequested();
 ServiceEventSource.Current.ServiceMessage(this, "Working-{0}", ++iterations);
 await Task.Delay(TimeSpan.FromSeconds(1), cancellationToken);
 }
 }
}

20 PART I Fundamentals

4. To implement a stateless service, your service class needs to inherit from the StatelessService
base class . Service Fabric doesn’t mandate a communication protocol . Instead, you can plug
in different communication stacks by providing an ICommunicationListener implementation .
You’ll see a number of communication stack implementations throughout this book . For this
example, you’ll skip the communication stack, which means your service is a background ser-
vice that doesn’t take any client requests .

5. Modify the RunAsync method to implement your service logic .

protected override async Task RunAsync(CancellationToken cancellationToken)
{
 while (!cancellationToken.IsCancellationRequested)
 {
ServiceEventSource.Current.ServiceMessage(this, "Hello World at " +
DateTime.Now.ToLongTimeString());
 await Task.Delay(TimeSpan.FromSeconds(5), cancellationToken);
 }
}

As you can see in this code snippet, to implement a background service, all you need to do is
override the RunAsync method and construct your processing loop .

Note Cancellation token

In the .NET asynchronous programming pattern, the CancellationToken structure
is used to propagate notification that operations should be canceled. Because a
cancellation token can be passed to multiple threads, thread pool work items, and
Task objects, it can be used to coordinate cancellation across these boundaries .

When the token’s IsCancellationRequested property is set to True, the owning
object has requested cancellation of associated tasks . You should stop processing
when receiving the notification. If you are calling downstream tasks in your code,
you should pass the cancellation token along so that the downstream tasks can be
cancelled, like the Task .Delay call in the previous code sample .

6. Service Fabric SDK automatically generates an Event Tracing for Windows (ETW) event source
implementation for you to generate trace events . Examine the generated ServiceEventSource
class if you are interested .

 CHAPTER 1 Hello, Service Fabric! 21

Note Use ETW for tracing and logging

It’s recommended to use ETW for tracing and logging because ETW is fast and
has minimum impact on your code performance . Furthermore, because Service
Fabric also uses ETW for internal tracing, you can view your application logs inter-
leaved with Service Fabric traces, making it easier to understand the relationships
between your applications and Service Fabric . Last but not least, because ETW
tracing works both in local environment and in the cloud, you can use the same
tracing mechanism across different environments .

7. Now, you can press F5 to run the application . Visual Studio will launch a test cluster, deploy the
application, and start the services . Once the service is launched, you can see the “Hello World”
output in the Diagnostic Events window, as shown in Figure 1-11 .

FIGURE 1-11 Diagnostic Events window

Note Bring up the Diagnostic Events view

If you don’t see the Diagnostic Events view, you can bring it up by using the View\
Other Windows\Diagnostic Event Viewer menu .

8. Click Stop Debugging on the Visual Studio toolbar or press Shift+F5 to stop the debugging
session . If you bring back the Diagnostic Event view, you can see the “Hello World” strings are
still coming in . This is because the Stop Debugging button only stops your debugging session;
it doesn’t stop the service .

Congratulations! You’ve implemented, deployed, and tested your first Service Fabric application.
Next, you’ll take a peek into the local cluster .

22 PART I Fundamentals

Managing your local cluster

There are multiple ways to manage your local cluster . You can use Visual Studio Server Explorer, Cloud
Explorer, Service Fabric Local Cluster Manager, or PowerShell . You’ll walk through all the options in this
section .

Visual Studio Server Explorer
You can bring up Server Explorer from the Visual Studio View\Server Explorer menu . Under the Azure
node, you’ll see a Service Fabric Cluster (Local) node, along with other Azure resource types if you
have Azure SDK installed. Figure 1-12 shows that on my cluster I have five nodes, and I have a single
Hello World application deployed . You should note that applications and cluster nodes are presented
separately, showing the clear separation between workloads and cluster resources that was introduced
earlier in this chapter .

FIGURE 1-12 Server Explorer

The Nodes view in Figure 1-12 seems straightforward—it shows a cluster that consists of five nodes.
The application view, however, needs some explanation . What do those levels of nodes mean? Don’t
worry, you’ll go through each of them next .

 CHAPTER 1 Hello, Service Fabric! 23

Application Type node
At the top level, there is an Application Type node that represents an application type, which in this
case is HelloWorldApplicationType. When you write your application code in Visual Studio, you define
an application type . When the application is deployed, you get an application instance on the cluster .
This relationship is similar to the relationship between a class and an object in Object Oriented Pro-
gramming (OOP) .

Application Instance node
Below the Application Type node is the Application Instance node, which is identified by the appli-
cation’s name (fabric:/HelloWorldApplication in this case) . By default, an application is named after
the corresponding application type name . But you can change to any other name in the format of
fabric:/<string>; for example, fabric:/MyApplication .

Service Type node
Under the Application Instance node, you have Service Type nodes . Each node represents a registered
service type, such as the HelloServiceType in this example . Each service in a Service Fabric application is
named as fabric:<application name>/<service name> . This name also is the address of the service . Ser-
vice Fabric built-in naming service resolves this name to the actual service instance address at run time .

Partition node
A partition is identified by a GUID, suggesting it’s not something that a client would use to address
a partition directly. Instead, the Service Fabric naming service will figure out the correct partition to
which a service request should be sent .

Replica node
Figure 1-12 shows that by default, Service Fabric maintains multiple replicas for a partition for high
availability. In this case, the Hello World service has a single partition with five replicas.

Note Replica and service instance

A replica is a service instance . The term service instance often is used in logical descriptions
of deployment topologies, and the term replica often is used when explicit replica behaviors
or concepts are being discussed .

Visual Studio Cloud Explorer
Microsoft Azure SDK comes with a Visual Studio extension named Cloud Explorer, which you can access
by the View\Cloud Explorer menu . Cloud Explorer is similar to Server Explorer in terms of Service Fabric
cluster management functionalities, as shown in Figure 1-13 .

24 PART I Fundamentals

FIGURE 1-13 Cloud Explorer

Service Fabric Explorer
Neither Server Explorer nor Cloud Explorer is designed as a full-fledged management tool. They are
designed for you to navigate and view your cloud resources and server resources easily and with lim-
ited management functionality .

Service Fabric SDK provides a powerful tool named Service Fabric Explorer . To bring up the manage-
ment UI, you can use any browser and navigate to http://localhost:19080/Explorer .

The left panel of the Service Fabric Explorer looks much like Server Explorer or Cloud Explorer . How-
ever, the tool also has a details panel to the right providing very detailed information on the currently
selected item, as shown in Figure 1-14 .

http://localhost:19080/Explorer

 CHAPTER 1 Hello, Service Fabric! 25

FIGURE 1-14 Local Cluster Manager

The management tool is loaded with features . You’ll use this tool frequently throughout this book
for different scenarios . For now, perform a little exercise to familiarize yourself with the tool . In this
exercise, you’ll delete the Hello World application from the cluster .

1. In the Service Fabric Explorer, select the fabric:/HelloWorldApplicationnode in the left pane .
Then, in the right pane, click the Actions button and then click the Delete Application menu, as
shown in Figure 1-15 .

FIGURE 1-15 Deleting a new application instance

2. In the Confirm Application Deletion dialog box, shown in Figure 1-16, click the Delete Applica-
tion button to continue .

26 PART I Fundamentals

FIGURE 1-16 Confirm Application Deletion dialog box

3. The UI refreshes itself every few seconds . Once the UI is refreshed, you can see the application
instance has been removed, as shown in Figure 1-17 .

FIGURE 1-17 Two application instances

Note Resetting the cluster

Service Fabric SDK installs a Service Fabric icon on your taskbar, which provides a couple of
shortcut menus for some cluster-level operations . This comes in handy when you want to
reset everything and make a fresh start . To reset the cluster, right-click the Service Fabric
icon on the taskbar and select the Reset Cluster menu .

 CHAPTER 1 Hello, Service Fabric! 27

Windows PowerShell
Windows PowerShell is a powerful automation and configuration management framework. Service
Fabric SDK installs a number of PowerShell cmdlets for you to manage your applications and clusters
using command lines or automation scripts .

If you look under the Scripts folder of the HelloWorldApplication, you can find a Deploy-FabricAp-
plication .ps1, which in turn calls a number of prebuilt scripts under your Service Fabric SDK folder (C:\
Program Files\Microsoft SDKs\Service Fabric\Tools\Scripts by default) to deploy, upgrade, and remove
your applications .

To get started, open a new Windows PowerShell window and use the Connect- ServiceFabricCluster
cmdlet to connect to the local cluster, as shown in Figure 1-18 .

FIGURE 1-18 Connect-ServiceFabricCluster cmdlet

Next, try a few commands . You’ll be introduced to more cmdlets as you go through the chapters .

 ■ List application instances .

To list application instances on the cluster, type the following cmdlet:

Get-ServiceFabricApplication

The above cmdlet generates the following output on my environment (before the application
instance is removed . To restore the instance, press F5 in Visual Studio to redeploy application):

ApplicationName : fabric:/HelloWorldApplication
ApplicationTypeName : HelloWorldApplicationType
ApplicationTypeVersion : 1.0.0.0

 ApplicationStatus : Ready
 HealthState : Ok
 ApplicationParameters : { "HelloWorldService_InstanceCount" = "-1" }

28 PART I Fundamentals

 ■ List cluster node names and statuses .

To list all the nodes and their current statuses, use the following cmdlet:

Get-ServiceFabricNode | Format-Table NodeName, NodeStatus

A healthy cluster would look like this:

NodeName NodeStatus
-------- ----------
Node.1 Up
Node.2 Up
Node.3 Up
Node.4 Up
Node.5 Up

Additional information

At the time of this writing, Service Fabric is still in preview . It’s likely that service APIs, tooling experi-
ences, and management UIs will change over time . However, key concepts covered in Part I and Part II
of this book and the patterns and applicable scenarios in Part III and Part IV of this book should remain
valid in future releases .

For up-to-date Service Fabric documentations, please visit https://azure .microsoft .com
/documentation/services/service-fabric/ .

https://azure.microsoft.com/documentation/services/service-fabric/
https://azure.microsoft.com/documentation/services/service-fabric/

Index

 445

A
Abort() method, 44
access control lists (ACLs), 113
ACLs (access control lists), 113
Active Secondary replica role, 65
Actor programming model

about, 69, 257
actor polymorphism, 442
Aggregation pattern, 160–162
communication considerations, 71, 159
diagnostics and performance monitoring, 82–89
events, 81–82
modeling complex systems, 69–70
processing topologies with actors pattern, 314–317,
441
Reliable Actors API, 70–72
Reliable Services API, 89–90
reminders, 80–81
responsive website scenario, 318–320
state providers, 90–94, 156–157
termite model, 400–402
tic-tac-toe game, 72–79, 230–231
timers, 79–80

actor proxy, 71, 82, 229
Actor Swarm, 407–408, 414–416
ActorMethodCallsWaitingForLock event, 83
ActorMethodStart event, 83
ActorMethodStop event, 83
ActorMethodThrewException event, 83
ActorProxy class, 71, 82
ActorSaveStateStart event, 83
ActorSaveStateStop event, 83
adaptive complex systems

about, 393

complicated systems and, 394
computational modeling, 396–397
emergence, 394–395
simple model, 396

Add-AzureKeyVaultKey cmdlet, 169
Add Outbound Security Rule dialog box, 201
administrators, launching Visual Studio, 18
Administrators user group, 113, 116
Advanced Message Queue Protocol (AMQP), 277
affinity (service), 124–125
agents . See Actor programming model
Aggregation pattern

about, 159–160, 281–286, 443
cross-tenant, 332–333, 442
global view and, 362–363
online voting system, 160–162

agile software movement, 4
agility

application lifetime management, 4–5
design considerations, 3
Microservices, 3–4
simplicity, 4

A .I . Quests (game)
about, 358
Aggregation pattern, 362
Coverage Map pattern, 366–367, 442
describing game world, 358–360
dynamic clustering, 367
Dynamic Game Room pattern, 363–366, 442
global map, 362–363
Partitioned world pattern, 360–361
player interactions, 363–367
spatial interpolation, 366
spatial model, 360

446

allow rules, 199–202
ALM (application lifecycle management), 4–5,
371–372, 376
Amazon Glacier cold storage, 278
Amazon Web Services (AWS), 371, 389–391
AMQP (Advanced Message Queue Protocol), 277
Apache ActiveMQ message broker, 277
Apache HBase database, 278
Apache Kafka message broker, 277
API Management service, 268
App Services

about, 253–256
choosing, 258–259

application deployment process
about, 95
creating/replacing/upgrading, 100
implicit hosts, 111–116
multiple environments, 110–111
packaging, 95–99
PowerShell commands, 184–185
provisioning, 100
registering, 100
uploading, 99–100

application galleries, 375
Application Insights (Visual Studio)

about, 84, 259
alert rules, 223–225
creating instances, 221–222, 254
sending events, 222–223

Application Instance node, 23
application lifecycle management (ALM), 4–5,
371–372, 376
Application Manager, 142
application manifest files

about, 37–39, 96
diff packages, 131
modifying replica size, 88
multiple environment deployment, 110
service affinity, 124
upgrade process, 105, 185

application packages
deployment process, 95–99, 142
format considerations, 372–374
rolling upgrades, 129–131
service manifests, 37–38
as services, 378–379

application publish profiles, 110–111
Application Type node, 23
application view (Server Explorer), 22–23
ApplicationParameters folder, 110
applications (Service Fabric) . See also web
applications

about, 10
ASP .NET 5, 29–31
containerized, 384
decommissioning, 187
health model, 101
hosting guest applications, 375–383
launching, 18–21
managing, 184–187
model overview, 36–38
PowerShell commands, 184–187
programming modes, 10
publishing from Visual Studio, 172
query commands, 177–178
rolling back, 186
sample health policy, 103
Simple Store example, 56–65
tic-tac-toe game, 72–79, 230–231
tuning, 88
upgrading, 100, 104–110, 185–186

architecture
OWIN, 44
pattern index, 444
Service Fabric, 7–8

Arguments element, 98
ARM templates

about, 150
authoring, 150, 428–429
defining custom event source, 204–207
deploying clusters using, 430–431

ASA (Azure Stream Analytics)
about, 298, 304
defining jobs, 305
query language, 305
Service Fabric integration, 305–306

ASP .NET Web API, 29–31, 43–44
aura-nimbus model, 361
authentication

claim-based, 269–271, 444
client, 171–172

automated build process, 131

allow rules

 447

automated players (bots), 355–356
automated test cases, 228
autoscaling rules, 148–153, 256
availability (service) . See also reliability (service)

advanced rolling upgrades, 128–131
bottlenecks and, 154–155
broken service, 117–118
CAP theorem, 53
design considerations, 6
Failover Manager, 36, 120, 421
guest applications, 376
improving, 118
redundancy and, 6, 10, 118–119
Resource Balancer, 120–123, 421
routing and load balancing, 128
service failovers, 119, 127–128
service placements, 119–126
stateful services, 146
stateless services, 32, 146

availability sets, 190–191
Average milliseconds per invocation performance
counter, 84
Average Milliseconds Per Save State Operation
performance counter, 85–88, 93–94
AWS (Amazon Web Services), 371, 389–391
Azure AD (Active Directory), 259, 269–271, 327–328
Azure Backup, 278, 329
Azure Billing API, 327–329
Azure Blob service, 278, 307
Azure Cache, 307
Azure CLI, 435
Azure Cloud Services

about, 34, 256
choosing as platform, 258–259

Azure Container Service, 253, 387, 439
Azure Content Delivery Network service, 153–154,
259
Azure Data Lake database, 278, 307, 329
Azure Diagnostics

about, 133–136, 203
capturing events, 229
configuring, 203–208

Azure DocumentDB database, 307
Azure Event Hubs, 286, 309–312
Azure Functions, 306, 408
Azure Insights Autoscale, 149, 151–153

Azure IoT Hub
about, 277, 279
Azure Stream Analytics service, 298
event ingress, 286–288
registering a device, 288–289
saving sensor data, 293

Azure Key Vault service, 168, 259
Azure Marketplace, 258
Azure Operational Insights, 216
Azure Operations Management Suite

about, 216
linking to data source, 217–219
provisioning workspace, 216–217

Azure PowerShell
about, 187
application management commands, 184–187
cluster management commands, 172–183
creating secured clusters, 167–172
discovering commands, 427
installing, 425
invoking testability actions, 248–250
managing resource groups, 427–431
signing in, 167, 425–426

Azure Quickstart Templates, 150, 428–430, 439
Azure RateCard API, 328–329
Azure Resource Explorer, 206–207
Azure Resource Manager API, 151, 427
Azure Service Bus Queue, 160
Azure Service Fabric

about, 3, 28, 257
applications and services, 10
architectural overview, 7–8
ASA integration, 305–306
choosing as platform, 258–259
for complex systems, 404–408
containers and, 385–388
Hello, World, 17–21
managing local clusters, 22–28
multitenancy support, 331–338
nodes and clusters, 9
partitions and replicas, 10
programming modes, 10
provisioning clusters, 12–17
setting up development environment, 11–12
stateless vs . stateful, 10–11

Azure Service Management API, 142, 151, 427

Azure Service Management API

448

Azure SQL Database, 306
Azure Stack, 389–390
Azure Storage, 5, 259, 310, 329
Azure Stream Analytics (ASA)

about, 298, 304
defining jobs, 305
query language, 305
Service Fabric integration, 305–306

Azure Table Storage, 278, 307
Azure Traffic Manager, 259, 357
Azure Usage API, 328–329
Azure Virtual Machine Scale Sets

autoscaling clusters, 149–153
managing clusters, 191–192, 374–375, 387
storage accounts, 197

azure vm docker command, 435
azure vm image list command, 435
Azure Websites service, 253–254

B
BackupAsync() method, 142
backups, server state, 142–143
BatchAcknowledgementInterval configuration
setting, 92, 94
batched data analytics, 277
batching pattern, 160, 443
BDD (Behavior-Driven Development) process, 260
Behavior-Driven Development (BDD) process, 260
BI (Business Intelligence), 268
big data

composable data processing units pattern,
308–313, 441
processing topologies with actors pattern,
314–317, 441
storage considerations, 278, 306–307
value, 304
variety, 304
velocity, 304
veracity, 304
volume, 303

blades (Microsoft Azure management portal), 12, 431
bots (automated players), 355–356
bottlenecks

about, 154–155
communication, 159–160

orchestration, 160–164
state, 155–159

broken service, 117–118
build machine

creating build definition, 239–242
preparing, 237–239

Business Intelligence (BI), 268

C
C# language, chaos tests, 138–141
CA (certificate authority), 167
calculator service examples

custom communication stack, 43–50
default communication stack, 33–41
WCF communication stack, 41–43

Call of Duty (game), 363
CancellationToken structure, 20
CAP theorem, 53
capacity planning, 148
CDN (Content Delivery Network) service, 153–154,
259, 268
CEP (Complex Event Processing), 278
certificate authority (CA), 167
certificates

client authentication, 171–172
protecting clusters, 167–171
X509, 91

certmgr tool, 169
Chacko, Daniel, 187
Chaos Monkey (Netflix), 137
chaos swarm, 408
chaos tests

about, 137, 247
graceful and ungraceful faults, 141–142
performing, 138–141
performing failover tests, 141
testing in production, 137–138

checkpoints (snapshots), 142
chessboard layouts

designing, 346
handling updates, 348–350

Chocolatey package manager, 114
CI (continuous integration)

about, 232
automated build process, 131

Azure SQL Database

 449

automated test cases, 228
creating build definition, 239–242
preparing build machine, 237–239
preparing VSTS project, 232–236
running load tests, 244–246
running testing upon code check-ins, 242–244
setting up, 232–246

claim-based authentication pattern, 269–271, 444
clarity (testing), 230
CleanTestState testability action, 247
CleanTestStateAsync API, 247
client authentication, 171–172
CloseAsync() method, 44
Cloud Explorer (Visual Studio), 23–24
cloud gateways, 277
Cloud Services (Azure)

about, 34, 256
choosing as platform, 258–259

Cluster Manager (system cluster manager service), 36,
142, 194–195, 422
cluster manifest

defining health policy, 102
defragmentation metrics, 126
image store location, 99–100
validating, 183
viewing contents, 173

cluster nodes
about, 9
containers and, 9
fault domains and update domains, 105
health model, 101
node operation commands, 181–183
placement constraints, 122–123
query commands, 176–177, 180–181
restarting nodes, 138–142
sample health policy, 102–103
scaling process, 67–68

clusters
about, 9, 202
administrative rights, 18
advanced configuration, 197–202
anatomy of, 189–197
Cluster Manager, 36, 142, 194–195, 422
creating, 195
creating secured, 167–172
customizing, 192

deploying, 389, 430–431
deploying stand-alone, 389
dynamic clustering, 367
enabling Azure Diagnostics on, 204–205
health model, 101
heterogeneous, 146, 257
homogeneous, 146
local, 12–18, 22–28
managing with Azure VM Scale Sets, 191–192,
374–375
managing with Service Fabric Explorer, 167, 171,
194, 220–221, 389
protecting with certificates, 167–171
provisioning, 12–17, 122
query commands, 172–176
resetting, 26, 62
resource orchestration and, 374–375
sample health policy, 102–103
scaling, 67–68, 148–154
storage accounts, 196–197

code folder, 96
code packages

deploying, 96–98, 142
rolling upgrades, 129
service manifests, 37–38

CodePackage element, 37–38, 97
Command and Control scenario, 299–300
Command pattern, 356
CommitAsync() method, 58
communication patterns, 71, 159–160
communication stacks

custom, 43–50
default, 33–41
flexible, 257
WCF, 41–43, 56–59

communication subsystem
about, 8, 423
Naming Service, 36, 128, 195, 423

competing consumers pattern, 162–163, 272, 441
Complex Event Processing (CEP), 278
complex systems

adaptive, 393–397
complicated systems and, 394
computational modeling, 396–397
emergence, 394–395
future works, 418

complex systems

450

modeling, 69–70, 393
Service Fabric support, 404–408
simple model, 396
spatial segregation model, 409–418
termite model, 397–404

complicated systems, 394
composable data processing units pattern

about, 308–309, 441
creating converter service, 310–312
creating test client, 312–313
provisioning event hubs, 309–310
provisioning storage account, 310
testing solution, 313

computational modeling, 396–397
concurrency mode (actors), 71–72
ConfigPackage element, 38
configuration folder, 96
configuration packages

deployment process, 98–99
rolling upgrades, 129
service manifests, 38

Confirm Application Deletion dialog box, 25–26
Connect-ServiceFabricCluster cmdlet, 27, 170–171, 248
ConsiderWarningAsError flag, 103, 109
consistency (CAP theorem), 53, 55–56
Container Service (Azure), 253, 387, 439
ContainerHost element, 385
containerized applications, 384
containers

guest, 385–386
history of, 383–385
nodes and, 9
orchestrating, 384, 438–439
Service Fabric support, 385
types supported, 388
Windows, 439–440

Content Delivery Network (CDN) service, 153–154,
259, 268
continuous integration (CI)

about, 232
automated build process, 131
automated test cases, 228
creating build definition, 239–242
preparing build machine, 237–239
preparing VSTS project, 232–236
running load tests, 244–246

running testing upon code check-ins, 242–244
setting up, 232–246

Contributor role, 197
controllability (testing), 228, 246
ConvertTo-SecureString cmdlet, 168
coordination pattern

about, 160, 162
competing consumers, 162–163
distributed computing, 163–164
self-driven workflows, 162

Copy-ServiceFabricApplicationPackage cmdlet,
184–185
Count metric, 120
coupling pattern, 159–160, 444
Coverage Map pattern, 366–367, 442
CPU usage performance counter, 152
Create Agent Pool dialog box, 236
Create Network Security Group dialog box, 200
Create New Build Definition dialog box, 239
Create New Team Project dialog box, 233
CreateReliableStateManager() method, 143, 159
creating application instances, 100
CRM (Customer Relation Management), 268, 273
cross-queries on cluster nodes, 180–181
cross-tenant aggregation pattern, 332–333, 442
CRUD operations, 427
custom communication stack, 43–50
Customer Relation Management (CRM), 268, 273

D
dashboard (Microsoft Azure management portal), 12
data folder, 96
data manipulation

data collection, 276–277
data generation and feedback, 276–277
data ingress, 277, 286–288
data presentation and actions, 278–279
data storage, 278, 290–292, 310
data transformation and analysis, 277–278
end-to-end scenario, 286–299

data packages
deployment process, 99
rolling upgrades, 129
service manifests, 38

complicated systems

 451

DataContractSerializer class, 71, 157–158
DataPackage element, 38, 99
deadlocks, 156
decommissioning applications, 187
dedicated logs, 55
dedicated resources, 326
default communication stack, 33–41
DefaultRunAsPolicy element, 113
DefaultServices element, 38, 121–122, 124
DefaultServiceTypeHealthPolicy upgrade parameter,
109
defragmentation (service), 125–126
Deis container orchestration, 439
deny rules, 199–202
dependency injection technique, 229
dependent variables, 229
DeployedApplication entity, 102
DeployedServicePackage entity, 102
deployment process

about, 95
on Amazon AWS, 390
on Azure Stack, 389–390
creating/replacing/upgrading, 100
implicit hosts, 111–116
multiple environments, 110–111
packaging, 95–99, 142
provisioning, 100
registering, 100
stand-alone clusters, 389
stand-alone package, 390–391
uploading, 99–100

development environment
improving reliability, 118
setting up, 11–12

device orchestration, 300
DHTs (distributed hash tables), 423
Diagnostic Events Viewer

chaos test example, 140
EventSource events, 84
Hello, World output, 21
service replica migration, 127
simulated device messages, 296
viewing diagnostic events, 129–131, 382
viewing logged file content, 99

Diagnostics (Azure)

about, 133–136, 203
capturing events, 229
configuring, 203–208

diagnostics and performance monitoring
about, 219–220, 225
Actor pattern, 82–89
Azure Diagnostics, 133–136, 203–208, 229
Azure Operations Management Suite, 216–219
broken service and, 117–118
communication bottlenecks, 159–160
data presentation and actions, 278–279
Elasticsearch engine, 208–215
game performance, 347
health monitoring, 376, 380–383
Kibana platform, 208, 212–213
monitoring sensor data, 298–299
orchestration bottlenecks, 160–164
pattern index, 443
performance counters, 84–85, 93–94
Service Fabric Explorer, 220–221
state bottlenecks, 155–159
Visual Studio Application Insights, 84, 221–225,
254
Windows Performance Monitor, 85–88, 94

diff packages, 131
Disable-ServiceFabricNode cmdlet, 181–182
DiskInMb metric, 121
distributed computing patterns, 163–164, 441
distributed data structures, 405–406
distributed file systems, 278
distributed hash tables (DHTs), 423
dizziness test, 227
Docker Containers, 388
Docker engine

Azure CLI, 435
Docker Machine tool, 435–436
Docker VM extension, 434–435
pre-built image, 433–434

Docker Hub, 375, 385, 437
Docker Machine tool, 435–436
Docker Swarm container orchestration, 387, 439
Docker Trusted Registry, 437–438
DocumentDB database, 259, 278, 307, 329
dynamic clustering, 367
Dynamic Game Room pattern, 363–366, 442

Dynamic Game Room pattern

452

E
e-commerce website scenarios

about, 260
live data stream processing, 317–323
Mock-based Service Design pattern, 260–261, 444
persistent shopping cart pattern, 263–264, 443
Personalization Actor pattern, 261–263, 444

Edit Upgrade Settings dialog box, 106–107
Elastic Database feature, 306
Elasticsearch engine, 208–215
Enable-ServiceFabricNode cmdlet, 182
EnabledForDeployment flag, 168
encryption, state serialization and, 157
end-to-end scenario

about, 286
defining device data storage, 290–292
event ingress, 286–288
monitoring sensor data, 298–299
registering a device, 288–289
saving sensor data, 292–297
simulating device data, 289–290

End-User License Agreement (EULA), 327
EndpointBindingPolicy element, 113–114
endpoints

ACLs and, 113
adding to profiles, 153–154
binding listeners to, 321
configuring, 47–48
HTTP, 113, 115
load balancing rules, 195–196
registering multiple, 357
replicator, 92
Tenant Manager, 331

Enter-PSSession cmdlet, 440
enterprise portal scenarios

about, 268–269
claim-based authentication pattern, 269–271, 444
Finite State Machine Actor pattern, 272–274, 443
message-based integration pattern, 271–272, 441

Enterprise Resource Planning (ERP), 268, 273–274
Enterprise Service Bus (ESB), 272
ERP (Enterprise Resource Planning), 268, 273–274
Error health state, 102
ESB (Enterprise Service Bus), 272

ESP (Event Stream Processing), 278
ETW (Event Tracing for Windows), 20–21, 132
EULA (End-User License Agreement), 327
Event Hubs (Azure), 286, 309–312
Event Stream Processing (ESP), 278
Event Tracing for Windows (ETW), 20–21, 132
EventProcessorHost class, 310
events (Actor pattern), 81–82
EventSource attribute, 82–84, 132, 205–208
Excel (Microsoft), 148, 279
Exceptions thrown/Sec performance counter, 84

F
FabricBackupInProgressException exception, 142
FabricClient class, 142
FABRIC_PARTITION_SCHEME_SINGLETON partition
scheme, 125
Failover Manager, 36, 120, 421
failover mechanisms

about, 127–128
allocating node buffers, 126
cloud gateways, 277
container isolation, 384
enterprise bus, 272
Failover Manager, 36, 120, 421
performing tests, 141
relocating replicas, 67
service availability and, 119
shared nodes, 326
stateless services, 41
Tenant Manager, 331

FailureAction upgrade parameter, 108
Fan-out indexes pattern, 265–266, 443
fault domains, 104–105, 190–191
federation subsystem, 8, 423
field gateways, 277, 299
file links, adding, 35
finite state machine (FSM), 273–274
Finite State Machine Actor pattern, 272–274, 443
first-person shooter (FPS) games, 363
Flyweight pattern, 408
ForceRestart upgrade parameter, 109–110
FPS (first-person shooter) games, 363
FSM (finite state machine), 273–274

e-commerce website scenarios

 453

G
game board

Aggregation pattern, 362
describing world, 358–360
designing, 346
global map, 362–363
handling updates, 348–350
Partitioned world pattern, 360–361

Game Piece Dispenser pattern, 353–355, 442
game pieces

about, 352
actor polymorphism, 353
Game Piece Dispenser pattern, 353–355, 442

games and simulation
A .I . Quests, 358–367
Messy Chess, 345–357
pattern index, 442–443
simulating device data, 289–290
tic-tac-toe game, 72–79, 230–246

garbage collection, 70, 80
Gateway service, 128
Get-AzureRm* cmdlets, 427
Get-AzureRmOperationalInsightsWorkspace cmdlet,
218
Get-AzureRmResourceGroup cmdlet, 428
Get-AzureRmStorageAccount cmdlet, 218
Get-AzureRmStorageAccountKey cmdlet, 218
Get-AzureRmSubscription cmdlet, 426
Get-AzureRmVMExtension cmdlet, 434–435
Get-AzureRmVMExtensionImage cmdlet, 434
Get-ContainerImage cmdlet, 440
Get-Help cmdlet, 427
Get-ServiceFabricApplication cmdlet, 27, 177, 186
Get-ServiceFabricApplicationHealth cmdlet, 178, 185
Get-ServiceFabricApplicationManifest cmdlet, 177
Get-ServiceFabricApplicationType cmdlet, 177,
184–185
Get-ServiceFabricApplicationUpgrade cmdlet, 178,
186
Get-ServiceFabricClusterConnection cmdlet, 172
Get-ServiceFabricClusterHealth cmdlet, 173–174
Get-ServiceFabricClusterLoadInformation cmdlet, 175
Get-ServiceFabricClusterManifest cmdlet, 173
Get-ServiceFabricClusterUpgrade cmdlet, 175
Get-ServiceFabricDeployedApplication cmdlet,
180–181

Get-ServiceFabricDeployedApplicationHealth cmdlet,
181
Get-ServiceFabricDeployedCodePackage cmdlet, 181
Get-ServiceFabricDeployedReplica cmdlet, 181
Get-ServiceFabricDeployedReplica Detail cmdlet, 181
Get-ServiceFabricDeployedService

PackageHealth cmdlet, 181
Type cmdlet, 181

Get-ServiceFabricDeployedServicePackage cmdlet,
181
Get-ServiceFabricNode cmdlet, 28, 176, 182, 248–249
Get-ServiceFabricNodeConfiguration cmdlet, 176
Get-ServiceFabricNodeHealth cmdlet, 176–177
Get-ServiceFabricNodeLoadInformation cmdlet, 177
Get-ServiceFabricPartition cmdlet, 180, 249
Get-ServiceFabricPartitionHealth cmdlet, 180
Get-ServiceFabricPartitionLoadInformation cmdlet,
180
Get-ServiceFabricRegisteredClusterConfigurationVer
sion cmdlet, 176
Get-ServiceFabricReigsteredClusterCodeVersion
cmdlet, 176
Get-ServiceFabricReplica cmdlet, 180, 249–250
Get-ServiceFabricReplicaHealth cmdlet, 180
Get-ServiceFabricReplicaLoadInformation cmdlet,
180
Get-ServiceFabricService cmdlet, 179
Get-ServiceFabricServiceDescription cmdlet, 179
Get-ServiceFabricServiceHealth cmdlet, 179
Get-ServiceFabricServiceManifest cmdlet, 179
Get-ServiceFabricServiceType cmdlet, 179
GetConfigurationPackageObject() method, 98–99
GetDataPackageObject() method, 99
GetEvent() method, 82
GetReminder() method, 81
gossiping agents, 407
graceful faults, 141–142
guest applications

about, 375–376
application lifecycle management, 376
density, 377
health monitoring, 376, 380–383
high availability, 376
simple, 377–383

guest containers, 385–386

guest containers

454

H
Hadoop Distributed File System (HDFS), 278
HDFS (Hadoop Distributed File System), 278
Health Manager, 422
health model

about, 100–101
health entities, 101–102
health monitoring, 376, 380–383
health policy, 102–103
health reporting and aggregation, 103
health states, 102

HealthCheckRetryTimeoutSec upgrade parameter,
108
HealthCheckStableDurationSec upgrade parameter,
108
HealthCheckWaitDurationSec upgrade parameter,
108
Hello, World program, 17–21, 96, 114–116
heterogeneous clusters, 257
heterogeneous instances, 146–147
high availability, 376
homogeneous clusters, 146–147
horizontal scaling, 145–146
hosted clusters, provisioning, 12–17
hosting guest applications

about, 375–376
application lifecycle management, 376
density, 377
health monitoring, 376
high availability, 376
simple, 377–383

hosting subsystem
about, 8, 422
game hosting, 357
hosting guest applications, 375–383

HTTP protocol, 195, 277
HttpListener class, 44
hub (Microsoft Azure management portal), 12
Hyper-V, 384
Hyper-V Containers, 388–389

I
IaaS (infrastructure as a service), 5–6
IActor interface, 70

IActorEventPublisher interface, 81
IActorEvents interface, 81
IActorTimer interface, 79–80
IAppBuilder interface, 44–45
ICommunicationListener interface

implementing communication stack, 20, 33,
44–45
stateful services, 53
stateless services, 44–45

Idle Secondary replica role, 65
image store, 99–100, 422
images, accessing from Docker Hub, 375, 437
implicit hosts

defining, 111–112
hosting Node .js applications, 114–116
RunAs policies, 112–114

Import-PfxCertificate cmdlet, 171
independent variables, 229
infrastructure as a service (IaaS), 5–6
InstanceCount property, 124
International Space Station (ISS), 5
Internet of Things (IoT)

about, 275–276, 301
command and control, 276–277
Command and Control scenario, 299–300
data generation and feedback, 276
data ingress, 277
data transformation and analysis, 277–278
device orchestration scenario, 300
presentation and actions, 278–279
remote monitoring scenario, 279–299
storage, 278

Invocations/Sec performance counter, 84
Invoke-ServiceFabricPartitionDataLoss cmdlet, 247
Invoke-ServiceFabricQuorumLoss cmdlet, 247
InvokeDataLoss testability action, 247
InvokeDataLossAsync API, 247
InvokeDataLossAsync() method, 144
InvokeQuorumLoss testability action, 247
InvokeQuromLossAsync API, 247
IoT (Internet of Things)

about, 275–276, 301
command and control, 276–277
Command and Control scenario, 299–300
data generation and feedback, 276
data ingress, 277

Hadoop Distributed File System (HDFS)

 455

data transformation and analysis, 277–278
device orchestration scenario, 300
presentation and actions, 278–279
remote monitoring scenario, 279–299
storage, 278

IoT Hub (Azure)
about, 277, 279
Azure Stream Analytics service, 298
event ingress, 286–288
registering a device, 288–289
saving sensor data, 293

IReliableDictionary interface, 54
IReliableStateManager interface, 142–143
IRemindable interface, 80
IsCancellationRequested property, 20
IService interface, 33
isolateability (testing), 229–230
isolation levels, 155–156
ISS (International Space Station), 5
IStateSerializer interface, 158

J
Java framework, 384
journey (Microsoft Azure management portal), 12

K
Katana Project, 44
key-value store (KVS) state provider, 91
Key Vault service (Azure), 168, 259
Kibana platform, 208, 212–213
Kubernetes container orchestration, 439
KVS (key-value store) state provider, 91

L
latency, stateless services, 11
Lean movement, 4
leasing manager, 293
licensing, perpetual vs . subscription, 326–327
Linux platform, 391
load balancing

availability and, 119
endpoints, 195

Gateway service, 128
scaling clusters, 149
service defragmentation, 125–126
stateless service, 32
virtual machines and, 193–194

load metrics reports, 122
load tests, 244–246
Local Cluster Manager, 97–98
local clusters

administrative rights, 18
managing, 22–28
provisioning, 12–17

local store settings, 92
loggers and log files

Azure Diagnostics, 133
reporting to Elasticsearch, 213–215
Transactional Replicator, 55

Login-AzureRmAccount cmdlet, 425
loose coupling pattern, 160, 444

M
management portal (Azure)

about, 12
accessing Docker images, 437
Applications Insight instance, 221–223
configuring continuous deployment, 254
configuring placement properties, 123
preparing build machine, 237–239
scaling clusters, 149

management subsystem
about, 8, 422
Cluster Manager, 36, 142, 194–195, 422
Health Manager, 422
image store, 99–100, 422

manual scaling, 148–149
Manual upgrade mode, 108
Marketplace (Azure), 258
mass-source website scenarios

about, 264
Fan-out indexes pattern, 265–266, 443
Service API pattern, 266–267, 444

Massive Multiplayer Online Game (MMOG)
about, 358
Aggregation pattern, 362
Coverage Map pattern, 366–367, 442

Massive Multiplayer Online Game (MMOG)

456

describing game world, 358–360
dynamic clustering, 367
Dynamic Game Room pattern, 363–366, 442
global map, 362–363
Partitioned world pattern, 360–361
player interactions, 363–367
spatial interpolation, 366
spatial model, 360

MaxAsyncCommitDelay local store setting, 92
MaxPercentUnhealthyDeployedApplications upgrade
parameter, 109
MaxPrimaryReplicationQueueSize configuration
setting, 92
MaxReplicationMessageSize configuration setting, 92
MaxSecondaryReplicationQueueSize configuration
setting, 92
MaxVerPages local store setting, 92
mean time to repair (MTTR), 219–220
MemoryInMb metric, 122
Mesos container orchestration, 387
message-based integration pattern, 271–272, 441
Messy Chess (game)

about, 345
challenges, 347–348
chessboard and game goal, 346–347
game board, 348–352
game hosting, 357
game pieces, 352–355
game rules, 346–347
Observer pattern, 351–352, 443
players, 355–357

metadata-driven system pattern, 335–338, 442
metrics

App Services view, 254–255
batching load reports, 122
resource balancing, 120–122

Microservices
about, 385
additional services, 267–268
design considerations, 3–4
loose coupling, 160
reliability and, 118

Microsoft account, 216, 232, 238, 425
Microsoft Azure management portal . See
management portal (Azure)
Microsoft Azure products . See beginning with Azure

Microsoft Azure Service Fabric
about, 3, 28
applications and services, 10
architectural overview, 7–8
Hello, World, 17–21
managing local clusters, 22–28
nodes and clusters, 9
partitions and replicas, 10
programming modes, 10
provisioning clusters, 12–17
setting up development environment, 11–12
stateless vs . stateful, 10–11

Microsoft CDN service, 268
Microsoft Excel, 148, 279
Microsoft-ServiceFabric-Actors event source
provider, 82, 133, 205
Microsoft-ServiceFabric-Services event source
provider, 133–134, 206
Microsoft Web Platform Installer (Web PI), 12
Microsoft .Azure .ServiceFabric .ServiceFabricNode,
192
Microsoft .Diagnostic .Listeners library, 213
Microsoft .Owin .Host .HttpListener namespace, 45
Microsoft .ServiceFabric .Services .Remoting
namespace, 33
MMOG (Massive Multiplayer Online Game)

about, 358
Aggregation pattern, 362
Coverage Map pattern, 366–367, 442
describing game world, 358–360
dynamic clustering, 367
Dynamic Game Room pattern, 363–366, 442
global map, 362–363
Partitioned world pattern, 360–361
player interactions, 363–367
spatial interpolation, 366
spatial model, 360

Mock-based Service Design pattern, 260–261, 444
modeling complex systems, 69–70
Mona Lisa (painting), 394–395
Monitored upgrade mode, 107, 110–111
monitoring . See diagnostics and performance
monitoring
Monte Carlo simulation, 163–164
Move Primary testability action, 247
Move-ServiceFabricPrimaryReplica cmdlet, 247, 250

MaxAsyncCommitDelay local store setting

 457

Move-ServiceFabricSecondaryReplica cmdlet, 247
MoveNextApplicationUpgradeDomainAsync()
method, 108
MovePrimaryAsync API, 247
MoveSecondaryAsync API, 247
MQTT protocol, 277
MTTR (mean time to repair), 219–220
multiplayer gaming

about, 345
A .I . Quests, 358–367
Messy Chess, 345–357

multiple environment deployment, 110–111
multiple partitions, 61
multitenancy

about, 325
Azure support, 327–330
cross-tenant aggregation pattern, 332–333, 442
data architectures, 329–330
hosting service processes, 339–340
metadata-driven system pattern, 335–338, 442
pattern index, 442
scalability and, 147
self-service pattern, 333–334, 442
Service Fabric support, 330–338
single tenancy versus, 147, 326–327
tenant by partitions, 334–335
Tenant Manager pattern, 331–332, 442
Throttling Actor pattern, 340–344, 442

N
NamedPartition element, 61, 64–65
naming conventions

configuration sections, 91
performance counters, 85
service names, 147

Naming Service (system naming service), 36, 128, 195,
423
NAT rules, 193–194
nearest-neighbor interpolation, 366
 .NET Framework, 384
Netflix Chaos Monkey, 137
network interface cards (NICs), 193
Network Security Groups (NSGs), 199–202
New-AzureResourceGroupDeployment cmdlet, 429
New-AzureRm* cmdlets, 427

New-AzureRmKeyVault cmdlet, 168
New-AzureRmOperationalInsightsStorageInsight
cmdlet, 218
New-AzureRmResourceGroup cmdlet, 168, 428
New-AzureRmResourceGroupDeployment cmdlet,
208
New-AzureRmVirtualNetwork cmdlet, 427
New-AzureRmVM cmdlet, 427
New-AzureVM cmdlet, 427
New-Container cmdlet, 440
New Project dialog box, 18
New-SelfSignedCertificate cmdlet, 168
New Service Fabric Service dialog box, 18–19
New-ServiceFabricApplication cmdlet, 184
New-ServiceFabricNodeConfiguration cmdlet, 183
NICs (network interface cards), 193
Node Type Configurations blade, 122–123
Node Type Properties blade, 122–123
Node .js-based applications

defining implicit hosts, 111–112
hosting, 114–116

nodes (cluster)
about, 9
containers and, 9
fault domains and update domains, 105
health model, 101
node operation commands, 181–183
placement constraints, 122–123
query commands, 176–177, 180–181
restarting, 138–142
sample health policy, 102–103
scaling process, 67–68

Nodes view (Server Explorer), 22
NodeTypeName property, 122–123
None replica role, 65
Notification Hubs service, 268
npm gallery, 375
NSGs (Network Security Groups), 199–202
NuGet for .NET gallery, 375
NuGet packages

Microsoft .AspNet .WebApi .OwinSelfHost, 45
Microsoft .Azure .Devices .Client, 289
Microsoft .Azure .ServiceBus .EventProcessorHost,
310, 312
Microsoft .ServiceFabric .Actors, 73, 231, 295, 338,
343, 397, 409

NuGet packages

458

Microsoft .ServiceFabric .Services, 59, 397
Microsoft .ServiceFabric .Telemetry .
ApplicationInsights, 222
Microsoft .ServiceFabric .Testability, 138
Package Manager, 34–35
WindowsAzure .ServiceBus, 293, 295

of actor calls waiting for actor lock performance
counter, 85

O
observability (testing), 228–229
Observer pattern, 351–352, 443
Ok health state, 102
OMS (Operations Management Suite)

about, 216
linking to data source, 217–219
provisioning workspace, 216–217

OnActiveAsync() method, 74, 79
OnActiveSync() method, 70–71
onDataLossEvent event, 143–144
OnDeactiveAsync() method, 70
online voting system, 161–162
OPC (Open Platform Communication), 301
Open Platform Communication (OPC), 301
Open Web Interface for .NET (OWIN), 43–45
OpenAsync() method, 44
Operational Insights (Azure), 216
Operations Management Suite (OMS)

about, 216
linking to data source, 217–219
provisioning workspace, 216–217

orchestration bottlenecks
Aggregation pattern, 159–162
coordination pattern, 160, 162–164

orchestration engine, 374–375
OWIN (Open Web Interface for .NET), 43–45
Owner role, 197

P
PaaS (platform as a service)

about, 3, 371–372
agility, 3–5
application gallery, 374–375

application package format, 372–374
Azure ecosystem, 253–259
choosing platforms, 258–259
hosting guest applications, 375–383
placement constraints, 7
Quality of Service, 5–6
separation of workload and infrastructure, 6–7
stateless services, 146
upgrade process, 107

PackageRoot folder, 37, 39
packaging applications

application package format, 372–374
deployment process, 95–99, 142
rolling upgrades, 129–131
service manifests, 37–38
as services, 378–379

partial updates, 257
Partition node, 23
partition tolerance (CAP theorem), 53
Partitioned world pattern, 360–361
partitions and partitioning

about, 10
actor states, 90, 156–157
cloud gateways, 277
health model, 101
implementing tenants, 334–335
local environment constraints, 62
multiple, 61
multitenancy and, 147
Partitioned world pattern, 360–361
query commands, 180
scaling by, 257
Simple Store application, 61–65
stateful services, 65–68, 146
stateless services, 32

PartitionSelector class, 141
Paxos algorithm, 65, 68
performance counters, 84–85, 93–94
Performance Monitor (Windows), 85–88, 94
performance monitoring . See diagnostics and
performance monitoring
perpetual licensing, 326–327
persistent shopping cart pattern, 263–264, 443
Personalization Actor pattern, 261–263, 444
.pfx file extension, 169
placement constraints (nodes), 122–123

of actor calls waiting for actor lock performance counter

 459

Placement Properties blade, 122–123
platform as a service (PaaS)

about, 3, 371–372
agility, 3–5
application gallery, 374–375
application package format, 372–374
Azure ecosystem, 253–259
choosing platforms, 258–259
placement constraints, 7
Quality of Service, 5–6
separation of workload and infrastructure, 6–7
stateless services, 146
upgrade process, 107

players (games)
about, 355
automated, 355–356
Command pattern, 356
coordinating, 356–357
Coverage Map pattern, 366–367, 442
dynamic clustering, 367
Dynamic Game Room pattern, 363–366, 442
staging area, 361
Throttling Actor pattern, 357

Power BI tool, 279, 298–299
PowerShell (Azure)

about, 187
application management commands, 184–187
cluster management commands, 172–183
creating secured clusters, 167–172
discovering commands, 427
installing, 425
invoking testability actions, 248–250
managing resource groups, 427–431
signing in, 167, 425–426

PowerShell (Windows)
about, 27–28, 187
application management commands, 184–187
application upgrades, 105
chaos tests, 138
cluster management commands, 172–183
creating secured clusters, 167–172
invoking testability actions, 248–250
Windows containers, 439–440

Preview Database Update dialog box, 292
Primary Count metric, 120
primary replica, 10, 65, 83

Primary replica role, 65
Principals element, 112–113
probes (load balancing rules), 195–196
processing topologies with actors pattern, 314–317,
441
programming modes (applications), 10
Project Katana, 44
publish profiles, 50, 110–111
Publish Service Fabric Application dialog box, 34, 50,
106, 130, 172
publishing applications from Visual Studio, 172
PublishProfiles folder, 50
pull aggregation, 285–286, 443
push aggregation, 283–285
Python Package Index, 375

Q
QoS (Quality of Service)

about, 5, 259
availability and, 6
performance tuning, 88
reliability and, 6
scalability and, 5–6

Quality of Service (QoS)
about, 5, 259
availability and, 6
performance tuning, 88
reliability and, 6
scalability and, 5–6

queries (ASA), 305
queries (PowerShell cmdlets)

application-level, 177–178
cluster-level, 172–176
on cluster nodes, 180–181
node-level, 176–177
partition-level, 180
replica-level, 180
service-level, 179

Quickstart Templates (Azure), 150, 428–430, 439

R
RabbitMQ message broker, 277
RBAC (Role-Based Access Control), 197–198

RBAC (Role-Based Access Control)

460

RBAC (Role-Based Access Control) policies, 15
RDFE (Azure Service Management), 427
read isolation level, 155–156
Reader role, 197
ReadOnly property, 72, 75, 80–81
real-time data streaming

about, 303, 323
Azure Stream Analytics, 298, 304–306
big data, 303–304, 306–307
composable data processing units pattern,
308–314, 441
processing topologies with actors pattern,
314–317, 441
responsive website scenario, 317–323

ReceiveReminderAsync() method, 80
Redis Cache, 259
redundancy, 6, 10, 118–119
Reentrant attribute, 72
Register-ServiceFabricApplicationType cmdlet,
184–185
Register-ServiceFabricClusterPackage cmdlet, 183
registering applications, 100
RegisterReminder() method, 80
RegisterTimer() method, 79
Registry Editor, 237
relational databases, 259, 278, 290–292, 298, 329–330
reliability (service) . See also availability (service)

about, 131–132
Azure Diagnostics, 133–136
broken service, 117–118
chaos tests, 137–142
design considerations, 6, 132
Event Tracing for Windows, 132
improving, 118
pattern index, 443
response time, 89
server state backups, 142–143
server state restore, 143–144
stateful services, 11

reliability subsystem
about, 8, 421–422
Failover Manager, 36, 120, 421
Resource Balancer, 120–123, 421
Transactional Replicator, 53, 55, 421

Reliable Actors API, 10, 70–72, 99, 111

reliable collections
about, 54
isolation levels, 155–156

Reliable Dictionary, 54–55, 90, 155
Reliable Queue, 54, 155, 160
Reliable Services API, 10, 89–90, 111
Reliable State Manager

about, 53–55
service state backups, 142
state serialization, 157–159

relying parties, 269
reminders (Actor pattern), 80–81
Remote Desktop, 192
remote monitoring scenario

about, 279
Aggregation pattern, 159–162, 281–286, 443
end-to-end scenario, 286–299
Sensor Actor pattern, 279–281, 444

Removable Storage Management (RSM), 273–274
Remove-AzureRm* cmdlets, 427
Remove-AzureRmResourceGroup cmdlet, 428
Remove-ServiceFabricApplication cmdlet, 187
Remove-ServiceFabricApplicationPackage cmdlet,
187
Remove-ServiceFabricClusterPackage cmdlet, 183
Remove-ServiceFabricNodeConfiguration cmdlet,
183
Remove-ServiceFabricNodeState cmdlet, 182–183
Remove-ServiceFabricReplica cmdlet, 248
Remove-ServiceFabricTestsState cmdlet, 247
RemoveReplica testability action, 248
RemoveReplicaAsync API, 248
repeatable read isolation level, 155–156
replacing applications, 100
Replica Count metric, 120
Replica node, 23
ReplicaChangeRoleFromPrimary event, 83
ReplicaChangeRoleToPrimary event, 83
replicas

about, 23
availability and, 146
creating, 119
data changes, 55
distributing, 120, 125–126
events supported, 83
health model, 101

RBAC (Role-Based Access Control) policies

 461

query commands, 180
removing, 142
replacing, 119
roles supported, 65–67
scaling process and, 67–68
service defragmentation, 125–126

replicator configuration, 91–92
ReplicatorEndpoint configuration setting, 92
resetting clusters, 26, 62
Resource Balancer, 120–123, 421
Resource Explorer (Azure), 206–207
resource groups

about, 15, 150, 202
creating, 168
defining, 428–429
deploying, 429–430
modifying with Azure Resource template, 204

Resource Manager API (Azure), 151, 427
resource scheduling system, 146
resources

about, 15, 150, 202
creating in Microsoft Azure, 13
dedicated, 326
orchestrating, 374–375
scheduling, 146
shared, 326

response time
bottlenecks and, 154–155
state providers and, 89, 92–93

responsive website scenario
about, 317–318
Country/Region Actor, 319
gateway implementation, 320–321
Global Actor, 319–320
Product Actor, 318–319
test client, 322–323
Web Socket listener, 321

REST API, 220
Restart-ServiceFabricDeployedCodePackage cmdlet,
248
Restart-ServiceFabricNode cmdlet, 248–249
Restart-ServiceFabricPartition cmdlet, 248
Restart-ServiceFabricReplica cmdlet, 248
RestartDeployedCodePackage testability action, 248
RestartDeployedCodePackageAsync API, 248
RestartNode testability action, 248

RestartNodeAsync API, 248
RestartPartition testability action, 248
RestartPartitionAsync API, 248
RestartReplica testability action, 248
RestartReplicaAsync API, 248
restore, server state, 143–144
RestoreAsync() method, 143
Resume-ServiceFabricClusterUpgrade cmdlet, 183
RetryInterval configuration setting, 92
Role-Based Access Control (RBAC), 197–198
Role-Based Access Control (RBAC) policies, 15
rolling back applications, 186
rolling upgrades

about, 100, 104, 257
configuration and data changes, 129–131
with diff packages, 131
fault domains, 104–105
update domains, 104–105
upgrade modes, 107–108
upgrade parameters, 108–110
upgrade process, 105–107

RPC Proxy, 33
RSM (Removable Storage Management), 273–274
RunAs policies, 112–114
RunAsync() method, 20, 34, 99

S
scalability

autoscaling, 148–153
broken service and, 117–118
complexity and, 5
design considerations, 5–6
heterogeneous instances, 146–147
homogeneous instances, 146–147
horizontal, 145–146
manual scaling, 148–149
multitenancy, 147
pattern index, 443
resolving bottlenecks, 154–164
scaling clusters, 148–154
single-tenancy, 147
stateful services, 146
stateless services, 32, 146
vertical, 145–146

scalability

462

scale sets . See Azure Virtual Machine Scale Sets
scaling process

relocating replicas, 67–68
scaling out approach, 6, 11, 146, 156, 257
scaling up approach, 6

secondary replicas, 10, 65
security tokens, 269–270
self-adapting actors, 443
self-adaptive scaling, 408
self-driven workflow pattern, 162, 441
self-service pattern, 333–334, 442
self-signed certificates, 167–171
Send-ServiceFabricClusterHealthReport cmdlet, 183
Sensor Actor pattern, 279–281, 444
Server Explorer (Visual Studio), 22–23
service affinity, 124–125
Service API pattern, 266–267, 444
service availability . See availability (service)
Service Bus Queue (Azure), 160
service defragmentation, 125–126
service discovery process, 128
Service Fabric (Azure)

about, 3, 28, 257
applications and services, 10
architectural overview, 7–8
ASA integration, 305–306
choosing as platform, 258–259
for complex systems, 404–408
containers and, 385–388
Hello, World, 17–21
managing local clusters, 22–28
multitenancy support, 331–338
nodes and clusters, 9
partitions and replicas, 10
programming modes, 10
provisioning clusters, 12–17
setting up development environment, 11–12
stateless vs . stateful, 10–11

Service Fabric Actor Method performance counters,
84
Service Fabric Actor performance counters, 85
Service Fabric Cluster blade, 122–123
Service Fabric Explorer

about, 24–26
application view, 30, 338

cluster map, 191
failover tests, 127–128
managing clusters, 167, 171, 194, 220–221, 389
partition view, 119, 122
service instances, 382
system services, 424
tree view, 66, 90
viewing replicas, 36, 40
Visual Studio Application Insights, 254
Web Socket port, 323

Service Fabric node runtime, 192
Service Fabric Reliable Actors API, 10, 70–72, 99, 111
Service Fabric Reliable Services API, 10, 89–90, 111
Service Fabric SDK, 12, 24
service failovers . See failover mechanisms
service instances

about, 23
multiple environment deployment, 110
scaling, 145–146
stateless actor events, 83
testability considerations, 229

service-level queries, 179
Service Management API (Azure), 142, 151, 427
service manifest files

about, 37–39, 96–97
configuring endpoint, 47
defining custom metrics, 121
diff packages, 131
guest containers, 385
implicit hosts, 111, 115
upgrade process, 105, 185

service placements
about, 119
batching load reports, 122
Failover Manager, 120
placement constraints, 122–123
Resource Balancer, 120
resource balancing metrics, 120–122
service affinity, 124–125
service defragmentation, 125–126

service proxy, 229
service reliability . See reliability (service)
service replicas . See replicas
Service Type node, 23
ServiceCorrelation element, 124

scale sets

 463

ServiceEventSource class, 20, 134
ServiceFabricReliableActorEventTable table, 133, 205
ServiceFabricReliableServiceEventTable table, 133,
206
ServiceFabricSystemEventTable table, 133
ServiceInitializationParameters attribute, 38, 48
ServiceInstanceClose event, 83
ServiceInstanceOpen event, 83
ServiceManifestImport element, 38
ServiceTemplates element, 121
ServiceTypeHealthPolicyMap upgrade parameter, 109
ServiceTypeRegistered event, 132
ServiceTypes element, 37
Set-AzureRm* cmdlets, 427
Set-AzureRmContext cmdlet, 426
Set-AzureRmKeyVaultAccessPolicy cmdlet, 168
Set-AzureRmVMExtension cmdlet, 435
Settings.xml file

about, 36, 38
actor state providers, 91
custom sections and parameters, 99
response time, 92

SetupEntryPoint element, 112–113
shared data structures, 443
shared locks, 156
shared logs, 55
shared resources, 326
shared-state swarm, 408
Simian Army tools, 137
Simple Store application

about, 56
client, 59–61
partitions, 61–65
shopping cart service, 56–59

simulated errors, 246–247
single points of failure (SPoF), 132
Single Sign-On (SSO), 269, 327
single-tenancy, 147, 325–327, 330
SingletonPartition element, 61
Smith, Adam, 395
snapshot isolation level, 155–156
snapshots (checkpoints), 142
software testability

about, 227
clarity, 230

controllability, 228, 246
isolateability, 229–230
observability, 228–229
writing test cases, 230–231

solid-state drives (SSDs), 192
spatial segregation model

about, 409
Commit phase, 410
Conflict resolution phase, 410
implementing Actor Swarm, 414–416
implementing shared array, 409–412
implementing test client, 416–417
implementing virtual actor, 412–414
Proposal phase, 409
Read phase, 409
setting up solution, 409
testing model, 417
Think phase, 409

spatial swarm, 408
SPoF (single points of failure), 132
SQL Data Warehouse, 259, 329
SQL Database, 259, 278, 290–292, 298, 329
SQL Server Object Explorer, 292
SSDs (solid-state drives), 192
SSO (Single Sign-On), 269, 327
Start-Container cmdlet, 440
Start-ServiceFabricApplicationRollback cmdlet, 186
Start-ServiceFabricApplicationUpgrade cmdlet, 186
Start-ServiceFabricClusterRollback cmdlet, 183
Start-ServiceFabricClusterUpgrade cmdlet, 183
Start-ServiceFabricNode cmdlet, 248
StartNode testability action, 248
StartNodeAsync API, 248
state management

actors, 70–71, 90
application deployment, 111
events supported, 83
performance monitoring, 85–89
Reliable State Manager, 53–55
replica roles, 65–67
resolving bottlenecks, 155–159
state serialization, 157–159

state providers
about, 91
actor states, 91–94, 156–157

state providers

464

in-memory, 87
reliable collections, 54

stateful actors
about, 70–71
events supported, 83
tic-tac-toe game, 73–76

stateful services
about, 10–11, 53, 65–68, 257
architectural overview, 53–56
big data storage, 307
partitions and replicas, 65–68, 146
Reliable Services APIs, 10
scalability, 146
service affinity, 124
Simple Store application, 56–65
state management, 53

StatefulActor class, 70
StatefulService class, 143
StatefulServiceBase class, 58
stateless actors

about, 70–71
events supported, 83
tic-tac-toe game, 72

stateless services
about, 10–11, 29, 51
application deployment, 111
ASP .NET 5 applications, 29–31
availability, 32
implementing, 20
implementing communication stacks, 33–50
latency, 11
partitioning, 32
Reliable Services APIs, 10
scalability, 32, 146
service affinity, 124

StatelessActor class, 70
StatelessService class, 20, 38
Stop-ServiceFabricNode cmdlet, 248
StopNode testability action, 248
StopNodeAsync API, 248
storage accounts, 196–197
storage tables, 133, 135–136
streamed data analytics, 277
SubscribeAsync() method, 82
subscription licensing, 326–327

system architecture pattern index, 444
system cluster manager service (Cluster Manager), 36,
142, 194–195, 422
system naming service (Naming Service), 36, 128, 195,
423
system services, 424
System .Diagnostics .Tracing .EventSource class, 82–84,
132
System .Runtime .Serialization .DataContractSerializer
class, 71

T
TCP protocol, 195, 277
TDD (Test-Driven Development) process, 260
Team Explorer, 234–236
Team Foundation Server (TFS), 232
Team Foundation Service (TFS), 232
Tenant Manager pattern, 331–332, 442
termite model

about, 396–397
implementing Box service, 398–400
implementing termite actor, 400–402
implementing test client, 402–403
setting up solution, 397
test and analysis, 403–404

test cases
automated, 228
clarity of, 230
writing, 230–231

Test-Driven Development (TDD) process, 260
Test Explorer, 231
Test-ServiceFabricApplication cmdlet, 248
Test-ServiceFabricClusterManifest cmdlet, 183
Test-ServiceFabricService cmdlet, 248
testability subsystem

about, 8, 227, 246–250, 423
continuous integration, 131, 228, 232–246
player simulation, 348
software testability, 227–230
writing basic test cases, 230–231

testing in production technique, 137–138
TFS (Team Foundation Server), 232
TFS (Team Foundation Service), 232
The Theory of Moral Sentiments (Smith), 395

stateful actors

 465

Throttling Actor pattern, 340–344, 357, 442
throughput

batching requests, 160
latency and, 94
real-time data streaming and, 303
resolving bottlenecks, 154, 162–163
response time and, 154, 162
virtual machine size and, 192

thumbprint (certificates), 169–171
tic-tac-toe game

actor models, 72–73
creating application, 73
defining actor interfaces, 73
implementing Game actor, 74–76
implementing Player actor, 76
implementing test client, 76–78
improving, 78–79
setting up continuous integration, 232–246
testing, 78
writing test cases for, 230–231

tile (Microsoft Azure management portal), 12
time-to-live (TTL) limit, 273
timeouts, transaction, 156
TimeoutSec upgrade parameter, 109
timers (Actor pattern), 79–80
Traffic Manager (Azure), 259, 357
Transactional Replicator, 53, 55, 421
transport subsystem, 8, 423
troubleshooting tools, 254
TryAddStateSerializer() method, 159
TTL (time-to-live) limit, 273
Turecek, Vaclav, 45

U
Ubuntu Server, 433–434
UDFs (user-defined functions), 306
ungraceful faults, 141–142
UniformInt64Partition element, 61–64
Unknown health state, 102
Unknown replica role, 65
UnmonitoredAuto upgrade mode, 107
Unregister-ServiceFabricApplicationType cmdlet, 187
Unregister-ServiceFabricClusterPackage cmdlet, 183
UnregisterReminder() method, 81

UnRegisterTimer() method, 79
UnsubscribeAsync() method, 82
update domains, 104–105, 190–191
update locks, 156
Update-ServiceFabricClusterUpgrade cmdlet, 183
Update-ServiceFabricNodeConfiguration cmdlet, 183
UpgradeDomainTimeoutSec upgrade parameter, 109
UpgradeReplicaSetCheckTimeout upgrade
parameter, 109
upgrading applications, 100, 104–110, 185–186
uploading applications, 99–100
UseImplicitHost flag, 111
User Access Administrator role, 197
user-defined functions (UDFs), 306
user groups, 113

V
ValidateApplication testability action, 248
ValidateApplicationAsync API, 248
ValidateService testability action, 248
ValidateServiceAsync API, 248
value (big data), 304
variety (big data), 304
velocity (big data), 304
veracity (big data), 304
vertical scaling, 145–146
virtual machines

availability sets and, 191
Azure Diagnostics extension, 205
Azure Virtual Machine Scale Sets, 149–153,
191–192, 197, 374–375, 387
load balancing and, 193–194
modifying configurations, 192
NAT rules, 193–194
NICs and, 191–193
virtual networks, 193

virtual networks, 193
virtualization technologies, 383–384
Visual Studio

launching as administrator, 18
publishing applications, 172
upgrade process, 105–106

Visual Studio Application Insights
about, 84, 259

Visual Studio Application Insights

466

alert rules, 223–225
creating instances, 221–222, 254
sending events, 222–223

Visual Studio Cloud Explorer, 23–24
Visual Studio Online (VSO), 232
Visual Studio Server Explorer, 22–23
Visual Studio Team Services (VSTS), 232–236

about, 259
creating build definition, 239–242
preparing build machine, 237–239
running load tests, 244–246
running testing upon code check-ins, 242–244

Visual Studio Unit Test Framework, 230–231
VolatileActorStateProvider attribute, 87, 156
volume (big data), 303
Voronoi diagram, 365–367
VSO (Visual Studio Online), 232
VSTS (Visual Studio Team Services)

about, 232, 259
creating build definition, 239–242
preparing build machine, 237–239
preparing project, 232–236
running load tests, 244–246
running testing upon code check-ins, 242–244

W
WADServiceFabricReliableServiceEventTable table,
135
Warning health state, 102
watchdogs, 103, 380–383
WCF communication stack, 41–43

Simple Store application, 56–59
web applications

about, 253, 274
Azure PaaS ecosystem, 253–259
e-commerce websites, 260–264
enterprise portals, 268–274
mass-source websites, 264–268

Web Jobs, 255
Web PI (Web Platform Installer), 12
Web Platform Installer (Web PI), 12
web servers, console-based, 377–378
Web Socket listener, 318, 321
WebUser account, 113
Windows Performance Monitor, 85–88, 94

Windows PowerShell
about, 27–28, 187
application management commands, 184–187
application upgrades, 105
chaos tests, 138
cluster management commands, 172–183
creating secured clusters, 167–172
invoking testability actions, 248–250
Windows containers, 439–440

Windows Server Containers, 388, 439–440
workflows, self-driven, 162, 441
WorkingDirectory element, 98
WorkingFolder element, 98
workloads

distributing, 6
separating infrastructure and, 5–6

writing test cases, 230–231

X
X509 certificates, 91

Z
Zen of Cloud (Bai), 195
zero-downtime upgrades, 100, 104–110

Visual Studio Cloud Explorer

	Cover

	Title Page
	Copyright Page
	Acknowledgments
	Table of Contents
	Introduction

	PART I: FUNDAMENTALS
	Chapter 1 Hello, Service Fabric!
	A modern PaaS
	Designed for agility
	Designed for QoS
	Separation of workload and infrastructure

	Service Fabric concepts
	Architecture
	Nodes and clusters
	Applications and services
	Partitions and replicas
	Programming modes
	Stateless vs . stateful

	Getting started
	Setting up a development environment
	Provisioning a Service Fabric cluster on Azure

	Hello, World
	Managing your local cluster
	Visual Studio Server Explorer
	Visual Studio Cloud Explorer
	Service Fabric Explorer
	Windows PowerShell

	Additional information

	Index

	A

	B

	C

	D

	E

	F

	G

	H

	I

	J

	K

	L

	M

	N

	O

	P

	Q

	R

	S�
	T

	U

	V

	W

	X

	Z

