
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9781509301157
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9781509301157
https://plusone.google.com/share?url=http://www.informit.com/title/9781509301157
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9781509301157
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9781509301157/Free-Sample-Chapter

Begin
to Code
with
C#

Rob Miles

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2016 by Rob Miles.
All rights reserved.

No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Control Number: 2015942036
ISBN: 978-1-5093-0115-7

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide.
If you need support related to this book, email Microsoft Press Support at mspinput@micro-
soft.com. Please tell us what you think of this book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the authors’ views and opinions. The views,
opinions, and information expressed in this book, including URL and other Internet website
references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious.
No real association or connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks”
webpage are trademarks of the Microsoft group of companies. All other marks are the
property of their respective owners.

Acquisitions and Developmental Editor: Devon Musgrave
Project Editor: John Pierce
Editorial Production: Rob Nance and John Pierce
Technical Reviewer: Lance McCarthy; Technical Review services provided by Content

Master, a member of CM Group, Ltd.
Copyeditor: John Pierce
Indexer: Christina Palaia, Emerald Editorial Services
Cover: Twist Creative • Seattle

http://aka.ms/tellpress
http://www.microsoft.com

To Mary

Contents at a glance
Part 1: Programming fundamentals

Chapter 1 Starting out . 2

Chapter 2 What is programming? . 18

Chapter 3 Writing programs . 42

Chapter 4 Working with data in a program . 68

Chapter 5 Making decisions in a program . 100

Chapter 6 Repeating actions with loops . 134

Chapter 7 Using arrays . 172

Part 2: Advanced programming
Chapter 8 Using methods to simplify programs 212

Chapter 9 Creating structured data types . 246

Chapter 10 Classes and references . 288

Chapter 11 Making solutions with objects . 336

Part 3: Making games
Chapter 12 What makes a game? . 374

Chapter 13 Creating gameplay . 394

Chapter 14 Games and object hierarchies . 416

Chapter 15 Games and software components 446

iv iv

This page intentionally left blank

Contents
Introduction . xvi

Part 1: Programming fundamentals

1 Starting out . 2
Building a place to work . 4
Getting the tools and demos . 4
Using the tools . 5

Visual Studio projects and solutions . 6
Running a program with Visual Studio 7
Stopping a program running in Visual Studio 10
The MyProgram application . 11

What you have learned . 15

2 What is programming? . 18
What makes a programmer? . 20

Programming and party planning . 20

Give us feedback
Tell us what you think of this book and help
Microsoft improve our products for you. Thank
you!
http://aka.ms/tellpress

vi vi

http://aka.ms/tellpress

Programming and problems . 21
Programmers and people . 22

Computers as data processors . 23
Machines and computers and us . 23
Making programs work . 26
Programs as data processors . 27

Data and information . 35
What you have learned . 39

3 Writing programs . 42
C# program structure . 44

Identify resources . 44
Start a class defi nition . 45
Declare the StartProgram method 46
Set the title and display a message 47

Extra Snaps . 50
SpeakString . 50

Creating new program fi les . 52
Extra Snaps . 61

Delay . 61
SetTextColor . 61
SetTitleColor . 62
SetBackgroundColor . 63

Creating your own colors . 63
What you have learned . 66

4 Working with data in a program 68
Starting with variables . 70

Variables and computer storage . 71

 vii vii

Declaring a variable . 71
Simple assignment statements . 73

Using a variable in a program . 74
Assigning values in a declaration . 76
Adding strings together . 77

Working with numbers . 80
Whole numbers and real numbers . 80
Performing calculations . 83

Working with different types of data . 85
Converting numbers into text . 86

Whole numbers and real numbers in programs 89
Variable types and expressions . 89
Precision and accuracy . 91
Converting types by casting . 92
Using casting on operands in an expression 93
Types and errors . 94

Extra Snaps . 95
Weather snaps . 95
ThrowDice . 96

What you have learned . 97

5 Making decisions in a program 100
Understanding the Boolean type . 102

Declaring a Boolean variable . 102
Boolean expressions . 103

Using if constructions and operators . 104
Relational operators . 106
Equality operators . 107
Comparing strings . 109

Creating blocks of statements . 110

viii viii

Local variables in blocks of code . 111
Creating complex conditions using logical operators 113

Working with logic . 116
Adding comments to make a program clearer 117
Funfair rides and programs . 119

Reading in numbers . 122
Building logic using if conditions 124
Completing the program . 125

Working with program assets . 127
Asset management in Visual Studio 127
Playing sound assets . 128
Displaying image content . 129

What you have learned . 132

6 Repeating actions with loops 134
Using a loop to make a pizza picker . 136

Counting selections . 136
Displaying the totals . 139
Getting user options . 139
Adding a while loop . 142

Performing input validation with a while loop 149
Using Visual Studio to follow the execution of your programs . . 151
Counting in a loop to make a times-table tutor 157
Using a for loop construction . 160
Breaking out of loops . 163
Going back to the top of a loop by using continue 165
Extra Snaps . 168

Voice input . 168
Secret data entry . 169

What you have learned . 170

 ix ix

7 Using arrays . 172
Have an ice cream . 174

Storing the data in single variables . 175
Making an array . 176

Using an index . 177
Working with arrays . 179
Displaying the contents of the array by using a
for loop . 184
Displaying a user menu . 186
Sorting an array using the Bubble Sort 187
Finding the highest and lowest sales values 194
Working out the total and the average sales 196
Completing the program . 198

Multiple dimensions in arrays . 199
Using nested for loops to work with two-dimensional
arrays . 201
Making test versions of programs . 203
Finding the length of an array dimension 204

Using arrays as lookup tables . 206
What you have learned . 208

Part 2: Advanced programming

8 Using methods to simplify programs 212
What makes a method? . 214

Adding a method to a class . 215
Feeding information to methods by using
parameters . 217
Returning values from method calls 222

x x

Making a tiny contacts app . 224
Reading in contact details . 227
Storing contact information . 228
Using Windows local storage . 229
Using reference parameters to deliver results from a
method call . 231
Displaying the contact details . 237

Adding IntelliSense comments to your methods 241
What you have learned . 243

9 Creating structured data types 246
Storing music notes by using a structure . 248

Creating and declaring a structure 250
Creating arrays of structure values 252
Structures and methods . 253
Constructing structure values . 256
Making a music recorder . 260
Creating preset arrays . 262

Objects and responsibilities: Making a SongNote play itself . . . 263
Protecting values held in a structure . 264
Making a drawing program with Snaps . 267

Drawing dots on the screen . 268
Using the DrawDot Snap to draw a dot on the screen . 269
The SnapsCoordinate structure . 270
Using the GetDraggedCoordinate Snap to detect
a drawing position . 272
Using the SetDrawingColor Snap to set the
drawing color . 274
Using the ClearGraphics Snap to clear the screen . . . 276
The SnapsColor structure . 277

Creating enumerated types . 278

 xi xi

Making decisions with the switch construction 280
Extra Snaps . 282

GetTappedCoordinate . 282
DrawLine . 283
GetScreenSize . 284
PickImage . 285

What you have learned . 285

10 Classes and references . 288
Making a time tracker . 290

Creating a structure to hold contact information 290
Using the this reference when working with objects . 292
Managing lots of contacts . 294
Making test data . 296
Designing the Time Tracker user interface 297
Structuring the Time Tracker program 298
Creating a new contact . 299
Finding customer details . 300
Adding minutes to a contact . 302
Display a summary . 304

Structures and classes . 306
Sorting and structures . 306
Sorting and references . 307
Reference and value types . 308
References and assignments . 311
Classes and constructors . 316
Arrays of class references . 317

From arrays to lists . 319
Working through lists of data . 321
Lists and the index value . 322

xii xii

Lists of structures . 322
Storing data using JSON . 323

The Newtonsoft JSON library . 324
Storing and recovering lists . 326

Fetching data using XML . 329
What you have learned . 334

11 Making solutions with objects 336
Creating objects with integrity . 338

Protecting data held inside an object 338
Providing Get and Set methods for private data 341
Providing methods that refl ect the use of an object . . . 343

Using properties to manage access to data 346
Using properties to enforce business rules 349

Managing the object construction process . 351
Catching and dealing with exceptions 353
Creating user-friendly applications 355

Saving drawings in fi les . 356
SaveGraphicsImageToFileAsPNG 357
SaveGraphicsImageToLocalStoreAsPNG 358
LoadGraphicsPNGImageFromLocalStore 358
The DateTime structure . 359
Getting the current date and time 360
Fading date and time displays . 360
Using the date and time to make a fi le name 361
Creating a Drawing class . 362
Creating a list of drawings . 364
Making the drawing diary methods 365

What you have learned . 368

 xiii xiii

Part 3: Making games

12 What makes a game? . 374
Creating a video game . 376

Games and game engines . 376
Games and sprites . 378

What you have learned . 392

13 Creating gameplay . 394
Creating a player-controlled paddle . 396
Adding sound to games . 401
Displaying text in a game . 403

Making a complete game . 408
What you have learned . 414

14 Games and object hierarchies 416
Games and objects: Space Rockets in Space 418

Constructing a star sprite that moves 419
Allowing methods to be overridden 427
Creating a moving star fi eld . 428
Creating a rocket based on a MovingSprite 430
Adding some aliens . 432

Designing a class hierarchy . 440
What you have learned . 443

xiv xiv

15 Games and software components 446
Games and objects . 448

Creating cooperating objects . 448
Objects and state . 456
Interfaces and components . 465

What you have learned . 471

Index .474

 xv xv

 Introduction
I think that programming is the most creative thing you can learn how
to do. If you learn to paint, you can make pictures. If you learn the violin,
you can make music. But if you learn to program, you can create experi-
ences that are entirely new (and you can make pictures and music too if
you want to). Once you have started on the programming path, there’s
no limit to where you can go. There are always new devices, technologies,
and marketplaces where you can use your programming skills.

You can think of this book as your first step on a journey to programming
enlightenment. The best journeys are undertaken with a destination in
mind, and this one is no different. I’d like to describe the destination as
“usefulness.” By the end of this book you won’t be the best programmer
in the world (unless I retire, of course), but you will have enough skills and
knowledge to write properly useful programs. And maybe you can have
at least one of your programs available worldwide for download from the
Microsoft Store.

However, before we start off, I’d like to issue a small word of warning. In
the same way that a guide would want to tell you about the lions, tigers,
and crocodiles that you might encounter if you went on a safari adven-
ture, I feel that I must let you know that our journey might not be all
smooth sailing. Programmers have to learn to think slightly differently
about problem solving because a computer just doesn’t work the same
way that we do. Humans can do complex things rather slowly. Computers
can do simple things really quickly. It is the job of the programmer to har-
ness the simple abilities of the machine to solve complicated problems.
This is what we are going to learn how to do.

The key to success as a programmer is pretty much the same as for lots of
other endeavors. If you want to become a world-renowned violin player,
you will have to practice a lot. The same is true for programming. You
will have to spend quite a bit of time working on your programs to get
code-writing skills. But the good news is that, just as a violin player really
enjoys making the instrument sing, making a computer do exactly what
you want turns out to be a really satisfying experience. And it gets even
more enjoyable when you see other people using programs that you
have written and finding them useful and fun to use.

xvi Introduction

How this book fits together
I’ve organized this book in four parts. Each part builds on the previous
one with the aim of turning you into a successful programmer. We start
off considering the low-level programing instructions that programs use
to tell the computer what to do, and we finish by looking at professional
software practices.

Part 1: Coding fundamentals
The first part gets you started. It points you to where you will install and
use the programming tools that you will need, and it introduces you to
the fundamental elements of the C# programming language that are
used by all programs.

Part 2: Advanced programming
Part 2 describes the features of the C# programming language that are
used to create more complex applications. It shows you how to break
large programs into smaller elements and how you can create custom
data types that reflect the specific problem being solved. You’ll also
find out how programs can maintain data in storage when they are not
running.

Part 3: Making games
Making games is great fun. And it turns out that it is also a great way to
learn how to use object-oriented programming techniques. In this part,
you’ll build some playable games and at the same time learn the funda-
mentals of how to extend programming objects through inheritance and
component-based software design.

Part 4: Creating applications
Part 4 is where you find out how to create fully fledged applications.
You’ll discover how to design graphical user interfaces and how to con-
nect program code to the elements on the display. You’ll also learn how
modern applications are structured. Part 4 doesn’t appear in this printed

 Introduction xvii

book but is available as an ebook, free to download from this book’s
webpage at https://aka.ms/BeginCodeCSharp/downloads.

How you will learn
In each chapter, I will tell you a bit more about programming. I’ll show
you how to do something, and then I’ll invite you make something of
your own by using what you’ve learned. You’ll never be more than a page
or so away from doing something or making something unique and
personal. In each chapter we will use Snaps, prebuilt bits of functionality
that I’ll show you how to use. After that, it’s up to you to make something
amazing!

You can read the book straight through if you like, but you’ll learn much
more if you slow down and work with the practical parts along the way.
This book can’t really teach you how to program, any more than a book
about bicycles can teach you how to ride a bike. You have to put in the
time and practice to learn how to do it. But this book will give you the
knowledge and confidence to try your hand at programming, and it will
also be around to help you if your programming doesn’t turn out as you
expected. Here are the elements in the book that will help you really
learn, by doing!

Yes, the best way to learn things is by doing, so you’ll find “Make Something
Happen” elements throughout the text. These elements offer ways for you to
practice your programming skills. Each of them starts with an example and
then introduces some steps you can try on your own. Everything you create will
run on a Windows PC, tablet, or phone. You can even publish your creations to
the whole wide world via the Windows Store.

A great way to learn how to program is by looking at code written by other
people and working out what it does (and sometimes why it doesn’t do what
it should). In this book’s “Code Analysis” challenges, you’ll use your deduc-
tive skills to figure out the behavior of a program, fix bugs, and suggest
improvements.

MAKE SOMETHING HAPPEN

CODE ANALYSIS

xviii Introduction

https://aka.ms/BeginCodeCSharp/downloads

If you don’t already know that programs can fail, you will learn this hard lesson
very soon after you start writing your first program. To help you deal with this
in advance, I’ve included “What Could Go Wrong?” elements, which antici-
pate problems you might have and provide solutions to those problems. For
example, when I introduce something new, I’ll sometimes spend some time
considering how it can fail and what you need to worry about when you use the
new feature.

PROGRAMMER’S POINTS

I’ve spent a lot of my time teaching programming. But I’ve also written many
programs and sold a few to paying customers. I’ve learned some things the
hard way that I really wish I’d known right at the start. The aim of “Program-
mer’s Points” is to give you this information up front so that you can start
taking a professional view of software development as you learn how to do it.

“Programmer’s Points” cover a wide range of issues, from programming to
people to philosophy. I’d strongly advise you to read and absorb these points
carefully—they can save you a lot of time in the future!

Programs and Snaps
Nobody builds programs from scratch any more. All software is built
using pieces of software that have already been built. If one program
wants to display text, make a sound, or play some video, it simply asks
another program to do it. Every popular computer language is under-
pinned by a huge library of existing code, and one of the things that a
programmer needs to understand is how to use these libraries and soft-
ware written by other people.

I’ve created the Snaps library specially for this book. It provides a set of
functional behaviors that are easy to use and fit together. You will use
the Snaps library in your first programs. Later in the book you’ll discover
other libraries of functionality that you can use to build programs.

Programs that use Snaps run inside the Snaps engine, which is a self-
contained environment in which programs can speak messages, get
input from a user, draw images, make sounds, and even find out what the
weather is like.

WHAT COULD GO WRONG

 Introduction xix

I’ll provide examples of how the Snaps work and then leave it up to you
to see what you can come up with. The principle we’ll follow is this: “If
you can’t use programming to impress your friends and family, what’s the
point of it?” I really hope you’ll come up with some impressive programs
of your own and maybe even publish them for other people to enjoy.

PROGRAMMER’S POINT

Everything is built on someone else’s code
It seems fitting that the first Programmer’s Point is about how “creatively
lazy” a good programmer can be. They’ll never write a program if they
can find a way to use one that has already been written. (Why reinvent the
wheel?) The Snaps that I’ve provided are an example of this. You’ll take a
look inside some of them later in the book and discover that they themselves
make use of other libraries.

Software and hardware
You’ll need a computer and some software to work with the programs in
the book. I’m afraid I can’t provide you with a computer, but in the first
chapter you will find out where you can get Visual Studio 2015 Commu-
nity Edition, the free software that you’ll use to create your programs.
You’ll also learn where to download the Snaps library and the demonstra-
tion code we’ll examine and use.

The computer you use must run the 64-bit version of the Windows 10
operating system. Here are the other requirements:

 ● A 1 Ghz or faster processor, preferably an Intel i5 or better.

 ● At least 4 gigabytes (GB) of memory (RAM), but preferably 8 GB or
more.

 ● The full Visual Studio 2015 Community installation takes about 8 GB
of hard disk space.

There are no special requirements for the graphics display, although a
higher resolution screen will enable you to see more when you are writ-
ing your programs. The Snaps library works with touchscreens, a mouse,

xx Introduction

pen input devices, and the Xbox One and Xbox 360 controllers for the
games you’ll develop in Part 3.

Visual Studio 2015 Community Edition is a freely available applica-
tion that can be used to create C# programs on a Windows 10 PC. If
you have an earlier version of Visual Studio on your computer already
(Visual Studio 2013, for example), I’m afraid that you can’t use it with this
book. However, the 2015 version of Visual Studio will work quite happily
alongside existing installations. In Chapter 1, I provide a link to detailed
instructions for how to install Visual Studio and get it going. To make use
of Visual Studio, it’s best to have a Microsoft account so that a develop-
ment license can be assigned to you.

Downloads
In every chapter in this book, I’ll demonstrate and explain programs that
teach you how to begin to program—and that you can then use to create
programs of your own. You can download the Snaps library, this book’s
sample code, installation and setup instructions for Visual Studio, and the
ebook for Part 4, “Creating applications,” from the following page:

https://aka.ms/BeginCodeCSharp/downloads

Follow the instructions you’ll find in Chapter 1 and in the setup document
to install the sample programs and code.

Acknowledgments
I really like to write books. Huge thanks to Devon Musgrave and the
folks at Microsoft Press for giving me the chance to write another one,
to Rob Nance for the wonderful artwork, and to John Pierce and Lance
McCarthy for doing such fantastic work on the text. It turns out that the
acknowledgment is the olny part of the buk that they don’t see, and I
must give them both greatful thanks for making sure that all my text
reads rightly.

 Introduction xxi

https://aka.ms/BeginCodeCSharp/downloads

Errata, updates, & book
support
We’ve made every effort to ensure the accuracy of this book and its com-
panion content. You can access updates to this book—in the form of a list
of submitted errata and their related corrections—at:

https://aka.ms/BeginCodeCSharp/errata

If you discover an error that is not already listed, please submit it to us at
the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware
is not offered through the previous addresses. For help with Microsoft
software or hardware, go to http://support.microsoft.com.

You’ll also find “author’s notes” about this book, including other projects
and information about the Snaps library at:

http://www.robmiles.com/begintocode

Free ebooks from Microsoft
Press
From technical overviews to in-depth information on special topics, the
free ebooks from Microsoft Press cover a wide range of topics. These
ebooks are available in PDF, EPUB, and Mobi for Kindle formats, ready for
you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

xxii Introduction

https://aka.ms/BeginCodeCSharp/errata
http://support.microsoft.com
http://www.robmiles.com/begintocode
http://aka.ms/mspressfree

We want to hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback
our most valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions.
Your answers go directly to the editors at Microsoft Press. (No personal
information will be requested.) Thanks in advance for your input!

Stay in touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/
MicrosoftPress.

 Introduction xxiii

http://aka.ms/tellpress
http://twitter.com/MicrosoftPress
http://twitter.com/MicrosoftPress

Part 1
Programming
fundamentals

Let’s begin traveling toward programming enlightenment. You’ll start by
installing the programming tools you need. Next you’ll discover what a
computer actually does and what a programming language is. You’ll also
take your first small steps in using the C# language to tell a computer
to do things for you, and you’ll find out how to work with Snaps,

small helpers I’ve created for you to use in your first programs.

The aim of Part 1 is to introduce you to fundamental elements of the C#
programming language that are used by all programs. Then, in Part 2,
you’ll look at how a modern programming language like C# builds on these

programming fundamentals to make it easier to create applications.

1

3
Writing programs

What you will learn
Now that you know a bit about computers, programs, and programmers,
you can start to think about writing program code.

In this chapter, you’ll closely examine some C# programs to fi nd out how
they run. I call these programs “Snaps applications” because they use the
Snaps library, a simple collection of programming resources that help you
get things done “in a snap.” By analyzing how these programs use various
Snaps—discrete pieces of programming functionality or behaviors provided
by the library—you’ll learn some fundamentals of C# programming. Along
the way you’ll learn more about using Visual Studio to create and manage
the code elements in the BeginToCodeWithCSharp solution and what to
do when the compiler complains that your program doesn’t make sense as
far as it is concerned.

At the end of this chapter, you will be creating programs that provide simple
solutions to some realistic problems.

C# program structure .44

Extra Snaps. .50

Creating new program files .52

Extra Snaps. .61

Creating your own colors .63

What you have learned .66

43

C# program structure
Let’s take a very detailed look at some Snaps applications to understand their ele-
ments and the organization of those elements. The welcome that you witness when
you first run the BeginToCodeWithCSharp solution isn’t complicated, but it’s a
good place for us to start. We quickly examined the code that creates that experience
when we analyzed MyProgram.cs in Chapter 2. Take a look now at the file named
Ch03_01_WelcomeProgram.cs. (In case you’ve forgotten: use Solution Explorer to
navigate through the solution’s chapter folders to find the file, and then select the file
to show its code in the editor window.)

Notice that the code is almost exactly the same as the code as in MyProgram.cs, so
this program should give us the same experience, right? Let’s check that. Go ahead
and run the solution again, select Chapter 03 in the Folder list and Ch03_01_Wel-
comeProgram is the Snaps apps list, and then run the app. Yep, same experience,
which makes perfect sense. Now let’s really break down this program to figure out
how it’s working. Its code is shown next, and I’ve indicated each part of the program
with a callout. We’ll examine these parts line by line in the following sections.

using SnapsLibrary;

public class Ch03_01_WelcomeProgram

{

public void StartProgram()

 {

SnapsEngine.SetTitleString("Begin to Code with C#");

SnapsEngine.DisplayString("Welcome to the world of Snaps");

 }

}

Identify resources
using SnapsLibrary;

I described the C# compiler in Chapter 2. This is a program that converts a high-level
C# program (like the one we’re analyzing) into machine code that can run inside your
computer. When you run your C# code, the compiler built into Visual Studio converts
the program into machine code so that it can be run. A C# program can contain lines
called directives that give the compiler instructions. This first line of the program is a
using directive.

 Identify resources.

 Start a class defi nition.

 Declare the
StartProgram method.

SnapsEngine.SetTitleString("Begin to Code with C#");

SnapsEngine.DisplayString("Welcome to the world of Snaps"); Set the title
and display
a message.

44 Chapter 3 Writing programs

As a programmer, you will frequently want to use prebuilt pieces of software, in the
same way that a cook will sometimes use readymade pastry. Readymade C# programs
are packaged as libraries of components that can be added to a Visual Studio solution.
As I’ve mentioned, the Snaps library is an example of such a library that I’ve provided
to help you get started. The using directive here identifies the library as a resource
that has been added to our solution and, as you’ll see in a moment, this program is
going to use something from it, specifically the SnapsEngine. This using directive
says to the compiler, “If I mention something you haven’t seen before, go and look in
SnapsLibrary to see if you can find it there.” This is a bit like saying to our cook, “If you
need to use some pastry, take a look in the fridge.” The first programs that we’re going
to write in this book use only items in SnapsLibrary. Later on we will create programs
that use other libraries.

Using the using directive
In some “Code Analysis” sections, like this one, you don’t need to look at any code to consider
some code-related questions.

Question: Does the using directive actually fetch the library that a program wants to use?

Answer: No. This might sound confusing, but the using directive just tells the compiler
where to look for the items that are available for use in a program. The resources avail-
able to a program are set up in the Visual Studio project. We can change the using direc-
tive to direct the compiler to use code from different places. This would be like telling the
cook, “If you need to use some pastry, check by the sink” so that he would use a resource
from a different location.

Question: If I add lots of using directives, will this make my program bigger?

Answer: No. The directive just tells the compiler where to look for things. It doesn’t add
anything to the size of the program.

Start a class definition
public class Ch03_01_WelcomeProgram

C# can be called an object-oriented programming language. This is because, in the
universe of C#, everything is an object. Objects in a C# program can be as simple as
a single number or as complex as an entire video game. An object can contain other

CODE ANALYSIS

45C# program structure

objects. Anything that is contained within another object is called a member of that
object.

We can express an object design in the form of a C# class definition. A C# class
definition can describe data members (values that the object can hold) and behavior
members (things you can ask the object to do for you). When you design an object,
you write C# that specifies these two things. This line of the program tells the compiler
that we are expressing the design of a class named Ch03_01_WelcomeProgram.

You’ll find out much more about classes and objects later in the book.

Classes and objects
Question: Is a class definition the only way to define an object?

Answer: No. There are other kinds of C# objects, which you will see later.

Question: Does defining a class actually create an object?

Answer: No. Think of the class as the blueprint or design of an object, just like you might
have plans for a treehouse. In the same way as having the plans for a treehouse doesn’t
actually give you a treehouse, having a class definition doesn’t actually give you an
object.

Question: Do all classes have to contain both data and behaviors?

Answer: No. Some classes contain just data members, and others contain only behavior
members. For example, the Math library, which we haven’t seen yet, contains classes that
can perform mathematical functions.

Question: When does the program actually make an object based on the class
Ch03_01_WelcomeProgram?

Answer: This happens automatically. The sequence goes like this: The user is running the
BeginToCodeWithCSharp application and then selects Ch03_01_WelcomeProgram
and runs it. The BeginToCodeWithCsharp application creates an object based on the
Ch03_01_WelomeProgram class and then runs the StartProgram behavior inside this
object.

Declare the StartProgram method
public void StartProgram()

CODE ANALYSIS

46 Chapter 3 Writing programs

Behaviors in an object are expressed in the form of methods. A method is a piece of C#
code that is given a name. A program can run the code in a method simply by giving
the name of the method—this is known as calling the method. You are going to start
by calling methods that have already been written (by me), but later you will create
methods of your own.

This program’s single class—Ch03_01_WelcomeProgram—has just a single behavior, a
method called StartProgram. The declaration public void StartProgram() marks
the beginning of the StartProgram method. (The method modifier public and the
return type void tell us about the nature of this method, but these are details we don’t
need to get into at the moment.) The StartProgram method is special. It is the entry
point for a Snaps application. In other words, to start running a Snaps application, the
StartProgram method is called.

This program’s class does not contain any data members but later we will design some
objects that do contain data.

Declaring methods in classes
Question: What is the difference between a behavior and a method?

Answer: A behavior is an action that an object can perform. The method is the actual C#
code that delivers that behavior.

Question: Can a class contain more than one method?

Answer: Yes. A programmer decides how many behaviors a class should provide, and she
writes a method for each one. The demo program we’ve been looking at has only one
behavior: to start the demo. Later on we’ll create classes with many methods in them.

Question: How does the StartProgram method get used?

Answer: StartProgram is a special method, in that it defines the starting point for any
Snaps application. While we’re working in the Snaps environment provided by the Snaps
library, we will always call the StartProgram method to start a program running.

Set the title and display a message
SnapsEngine.SetTitleString("Begin to Code with C#");

SnapsEngine.DisplayString("Welcome to the world of Snaps");

CODE ANALYSIS

47C# program structure

The first of these two lines of code is the first C# statement in the StartProgram
method. Statements are the parts of a program that get things done. A statement
might call a method, make a decision, or manipulate some data. Statements are held
inside methods and are performed when the method is used. The StartProgram
method contains only two statements; larger programs will contain many more. The
two statements within the StartProgram method do indeed call other methods.

Each statement in a method is performed in sequence, starting with the first one and
then moving on to the next. There are several types of statements that you can use,
and you’ll find out about these as you learn the C# language. The semicolon (;) char-
acter marks the end of each statement.

This first statement sets the title of our program to “Begin to Code with C#”. It uses the
SnapsEngine class to do this. The SnapsEngine class is part of the Snaps library—the
resource we identified in the first line of this program—and the class provides lots of
behaviors that we can use in our programs. You can think of SnapsEngine as a kind of
“program butler” that can do things for programs that you write.

Each SnapsEngine behavior is provided as a C# method that our programs can call. In
this example, you can see how to use the SetTitleString method in the SnapsEngine.
Then, in the same way that a “Get me a drink” command to a butler needs to be
accompanied by the type of drink you want, the SetTitleString method needs to be
given the string of text to be used as the title of the program. A C# string is given in
parentheses after the name of the method that we’re calling. Information added to a
call of a method is called an argument to the method.

Regarding the string itself, the double quotation mark characters (") in the statement
mark the start and end of the string—the string starts immediately after the first dou-
ble quotation mark and ends immediately before the second one. It’s a convention in
C# that whenever you want to specify a string of text, you enclose it in double quota-
tion marks like this. If we added spaces in the string text—for example, " Welcome to
Snaps "—those spaces would also be displayed in the program’s title (although a user
might not notice them).

The second statement works in the same way as the previous one. It calls a method in
the SnapsEngine class that displays a string as a message on the screen of the Snaps
application (rather than setting a string as a title on the screen). When you saw the
DisplayString method name, did you expect to see quotation marks and string text
within the method’s parentheses? Good!

48 Chapter 3 Writing programs

Calling methods in classes
Question: Where is the SetTitleString method declared?

Answer: The SetTitleString method is declared in the SnapsEngine class in exactly
the same way as the StartProgram method is declared in the Ch03_01_WelcomePro-
gram class. Later you will discover how to create your own methods in classes.

Question: What happens if I don’t give SetTitleString a string to work on?

Answer: The design of SetTitleString specifies that a string will be supplied when
it is called. The compiler will complain that a program is invalid if the program doesn’t
provide a string argument to the method call.

Question: Why do we have to put parentheses around the string that we're providing to
SetTitleString? Surely the compiler can figure out that the string to be displayed will start
with a double quotation mark character.

Answer: The reason why we need to include the parentheses is to tell the compiler the
start and end of the list of arguments being fed into the method. SetTitleString has
only one item being fed into it, but other methods might have lots of items. If you look at
the text of the program, you’ll find that the StartProgram method has been specified to
accept an “empty” list of arguments, which means that it doesn’t work on any items. The
designers of the C# language have used different characters to define the limits of (or
delimit) different elements of the program. As we’ve seen, strings are delimited by double
quotation mark characters. Lists of arguments are delimited by open and close paren-
theses: (and). The contents of a class and the body of a method are delimited by curly
brackets: { and }. As you might expect, the compiler is very careful to make sure that the
use of these delimiters “makes sense,” and it will reject any program that has mismatched
delimiters.

You can think of the two statements we just analyzed—which set the screen’s title
and display a message—as the “payload” of the sample program. The rest of the code
around those statements provides the structure around those actions. To write larger
programs, you just have to replicate this structure and add more statements. Now that
you know how a simple program fits together, you can start to make your own, using
the Snaps applications as a starting point. For example, you could make a program
that displays two message strings rather than a title and a message, like I’ve done with
Ch03_02_MoreStatements.cs:

using SnapsLibrary;

CODE ANALYSIS

49C# program structure

public class Ch03_02_MoreStatements

{

 public void StartProgram()

 {

 SnapsEngine.DisplayString("Hello world");

 SnapsEngine.DisplayString("Goodbye chickens");

 }

}

In this program, SetTitleString isn’t called and two statements call the Display-
String method so that the program displays one message followed by a second
message. You can put a very large number of statements in a program. You could
write a program that displays the Gettysburg Address (or any other long text) one
string at a time simply by adding more statements. It’s important to remember that
each statement is obeyed in order when the program runs. The preceding program
will always display “Hello world” before it displays “Goodbye chickens”. (Let me point
out just one more time that the program doesn’t display the double quotation marks
you see in the previous sentence because no quotation marks appear in the string's
text itself between the double quotation marks that delimit it. The double quotation
marks I use in this paragraph are there only for clarity’s sake, as I describe the text the
program displays.)

So when you display a string via the DisplayString method, it replaces the string that
was displayed by a previous call of DisplayString, if any. In our example, this is why
“Hello world” is replaced by “Goodbye chickens”. Later you‘ll discover how to build up
multiple lines of text on the screen. Also, you can use DisplayString to display very
long messages if you want to; the text is automatically wrapped if it extends over the
edge of the screen. If you display a message that is extremely long, you’ll find that it
extends off the bottom of the screen and the user won’t be able to read all of it.

Extra Snaps
Every now and then I will introduce other Snaps—behaviors enabled by the Snaps
library—that you can play with. You can use these in your programs just like the pro-
grams we’ve been analyzing use DisplayString.

SpeakString
You can make programs that speak text instead of displaying it. Here’s an example:

First statement
Second statement

50 Chapter 3 Writing programs

using SnapsLibrary;

class Ch03_03_Speaking

{

 public void StartProgram()

 {

 SnapsEngine.SpeakString("Hi there. I'm your friendly computer.");

 }

}

The SpeakString method is used in the same way as the DisplayString method, but it
causes the computer to speak the text provided instead of displaying it on the screen.
This is a useful method because it makes it easy to create programs that can talk.

Speak and display
Let’s take a look at some code and try to work out why it doesn’t do what it should. Let’s say
that your younger brother wrote this program. He wanted something that displays “Com-
puter Running” and then says “Computer Running,” but he complains that the visual message
doesn’t appear until after the computer has finished speaking.

using SnapsLibrary;

class Ch03_04_DoubleOutput

{

 public void StartProgram()

 {

 SnapsEngine.SpeakString("Computer Running");

 SnapsEngine.DisplayString("Computer Running");

 }

}

Question: Why does the message appear on the screen after the computer finishes
speaking?

Answer: When you are trying to work out what a program does, it is often useful to
“behave like the computer” and work through the statements one at a time in sequence.
The computer speaks before the message is displayed because it strictly follows the
sequence of the statements. The DisplayString method doesn’t run until after the
SpeakString method has completed. This problem is fixed by reversing the order of the
statements. Take a look at Ch03_05_DoubleOututFixed.cs in Visual Studio to see that.

CODE ANALYSIS

51Extra Snaps

Creating new program files
Programming is very creative, and you’ll create your own programs as we go through
the book. What I’m really hoping is that you’ll have your own ideas for programs and
build those along with the ones that I suggest. Each new program that you create will
be a new Snaps application that other learners can analyze or use.

You can create a new Snaps app by using the MyProgram.cs program file as a start-
ing point. Begin (like we always do) by opening the BeginToCodeWithSharp solution
file, and then in Solution Explorer find the file in the My Snaps apps folder in the
BeginToCodeWithCSharp project. Right-click the file in Solution Explorer to open
the context menu, and then select Copy, as shown in Figure 3-1.

Figure 3-1 Copying a program.

Now paste this copy into the My Snaps apps folder by right-clicking the folder and
selecting Paste, as shown in Figure 3-2.

52 Chapter 3 Writing programs

Figure 3-2 Pasting the program.

Figure 3-3 shows the copy, called MyProgram - Copy.cs, in the folder.

Figure 3-3 The copied program appears in the folder.

53Creating new program fi les

Let’s rename this new file to reflect the new Snaps app you’re going to build. Right-
click the file (the one that includes “Copy” in its name) in Solution Explorer to open the
context menu again, and select Rename. (I won’t show this step because I’m sure you
know what to do!) Now you can enter the new name for your application, as shown in
Figure 3-4.

Figure 3-4 Entering the new name.

Change the name of the program to “Countdown”. Be very careful not to remove “.cs”
at the end of the name. If you remove this part of the file name, Visual Studio will not
know the file is a C# program and will not work correctly when you try to run the pro-
gram. When you have finished entering the name, press Enter. You now have a copy of
the original program in a file called Countdown.cs. The reason I chose this name will
become apparent soon.

The next thing we need to do is rename the class that holds our program. Click the
Countdown.cs file in Solution Explorer so that its code appears in the editor window,
as shown in Figure 3-5.

54 Chapter 3 Writing programs

Figure 3-5 The Countdown.cs file open in the Visual Studio editor.

Looking at Figure 3-5, you can see that Visual Studio is trying to tell us something.
The wavy red lines indicate that Visual Studio thinks some elements of the program’s
code are wrong. Visual Studio is unhappy in this case because our BeginToCode-
WithCSharp solution contains two versions of the MyProgram class—the original
in MyProgram.cs and now another in Countdown.cs. We can fix this problem by
giving the class a new name.

In Figure 3-6, I’ve changed the name of the class to Countdown and also changed
what the program does by altering one statement (the one that calls SetTitleString)
and by deleting the other statement (the one that was calling DisplayString). The
program now just sets its title to “Countdown”. You can put whatever you want in the
string, of course, but be sure that it has a double quotation mark at each end; other-
wise, your program won’t compile.

Figure 3-6 Defining a Countdown class.

Visual Studio is happy now because we removed the duplicate of the MyProgram class.
You should now be able to run the program by using the run button (the green arrow).

55Creating new program fi les

Class names and file names
A C# solution can be spread over a large number of separate program files. It is worth giving
some thought to how this works.

Question: Why do we have to change the name of the class when we have already changed
the name of the file?

Answer: To answer this question, you have to understand the difference between logical
and physical names in a program. You can think of the names of the files that hold our
programs as physical names because a file name is connected to an actual file that is
stored on the computer. However, the names of the elements in a program are not tied to
the physical file that holds the program’s text. They exist in a “logical” namespace that is
defined by the programmer.

When the C# compiler is compiling a program, it reads all the source files and builds up a
list of all the different items that are defined in the program. This is the logical namespace
of the program. Each of the items in this logical namespace must have a unique name.
If we create two items with the same name, the compiler will complain, and that is what
happened earlier when we copied the MyProgram.cs file. After the copy, there were two
classes with the name MyProgram. We fixed the problem by changing the name of one of
the items to a new, unique name.

Question: Does the name of a program’s source file (the physical name) and the name of a
class (the logical name) in that source file have to match?

Answer: No. It is often convenient to make the two names match because it can make it
easier to find particular items, but the C# compiler does not enforce this.

Question: What would have happened if the program already contained a class named
Countdown and we added another one?

Answer: You can probably guess what would happen. The compiler would complain
because it doesn’t like having two items with the same name.

By the way, perhaps you were expecting the Countdown app to run immediately
when you clicked the run button? Whenever the BeginToCodeWithCSharp applica-
tion is first run, the Snaps environment looks for a class named MyProgram and then
calls the StartProgram method in that class. This means that whenever you start the
BeginToCodeWithCSharp application, it will first run the original program: MyPro-
gram.cs. Then you use the Folder and Snaps apps lists to select other apps you want
to run.

You can follow this copy, paste, and revise process each time you want to make
a new application and add it to our Snaps environment. Or, now that you know

CODE ANALYSIS

56 Chapter 3 Writing programs

that MyProgram is the app that runs automatically when the Snaps environment
starts up, here’s a tip that can make things easier: start by editing the content of the
 MyProgram.cs file. This way, the code you’ve created will run without you having
to find and select the new app in the environment (like we just had to do to run the
Countdown app).

Remember: as long as the class in MyProgram.cs is called MyProgram, this pro-
gram will run first in the environment. When you finish building your new app in the
MyProgram.cs file, you can copy and paste the program code into a new source
file (a new .cs file), give that new source file a unique name, and rename the new
program’s class so that Visual Studio won’t wave red lines at you and prevent your
program from compiling. And, at this point, if you really want the MyProgram app to
function as it has in these first three chapters—setting the same title and displaying
the same message we’ve seen in these chapters—you know how to get it back to that
state.

Is it obvious now why I’ve called this source file MyProgram.cs? It’s ready for you to
use to build lots of programs!

Build a Countdown announcer
This “Make Something Happen” is quite momentous. It represents a very important mile-
stone on your journey toward programming enlightenment. Up until now you’ve been
modifying or fixing existing programs, which is a great way to get started, but at some point
you’re going to have to create your own program from scratch. That time is now. If you think
about it, even Bill Gates had to start somewhere. But I’m fairly sure that his first program
wasn’t able to speak to its users. Making computers speak was very difficult at the time Bill
Gates was learning to write code, but he would have felt the same sense of excitement as you
are about to.

After you build this application, you’ll have written your first program. You can make the pro-
gram more personal by using whatever messages you want to, and in the next section you’ll
discover some more Snaps that you can use to make the program even more interesting.

You should already have an “empty” app named Countdown. At the moment it does almost
nothing—it only sets a title string in the state we last saw it—but now you’re going to write
your own statements to give it life. You can use the SpeakString, DisplayString, and Set-
TitleString methods provided by the SnapsEngine class to create your program.

All you have to do is make a program that counts down from 10 to 0. A clue: your program
will contain at least 10 statements. Improve the program so that it displays the numbers on
the screen as well as speaks them. This should double the number of statements in your
program.

MAKE SOMETHING HAPPEN

57Creating new program fi les

Compilation errors
Before a program can run, it must be checked by the compiler. You can think of this process
as a bit like the preflight checks performed on aircraft. Before a flight, the captain must walk
around the plane, count the wings, ensure that all the tires have air in them, and be sure that
the craft is safe to fly. In the same way, the compiler performs preflight checks on a program
before it can run. If the program doesn’t adhere to the rules of C#, the compiler will generate
errors that you, the programmer, need to fix.

Unfortunately, the compiler is much pickier about errors than humans are. I can walk up to
someone and ask “What you doing?” I’ll get an answer, even though the question I asked is
not properly formed English. However, if I try to compile the following program, I will get
errors:

using SnapsLibrary;

public class BadBrackets

{

 public void StartProgram()

 (

 SnapsEngine.SpeakString("Hello world");

 SnapsEngine.SpeakString("Goodbye chickens");

)

}

This code looks very similar to a program that we know works, but there are two tiny mistakes
in the text. The bad news is that they generate 11 highly confusing errors, as shown in this
screenshot.

The hard part about this state of affairs is that none of these messages actually tell you what
you did wrong (and some of them look really scary). The compiler is a very clever program,
but it’s not smart enough to say, “You’ve used parentheses where you should have used curly

WHAT COULD GO WRONG

58 Chapter 3 Writing programs

brackets.” Update this code so that the statements are preceded by an open curly bracket ({)
and followed by a closed curly bracket (}), and the program will run. When you mark the start
and end of parts of a program, you must always use curly brackets. Parentheses are used for
something else.

PROGRAMMER’S POINT

A good programmer has to be able deal with details
Humans are incredibly good at dealing with noise. We can pick out our name from back-
ground chatter and recognize our mother in a sea of faces. Computer programs have to
work very hard to extract meaning from data. The compiler will become confused by one
tiny, incorrect detail in a program. This means that to become a great programmer, you’ll
need to learn how to examine things in great detail, in some cases character by character,
to discover what is wrong with them.

The best way to deal with mistakes like this is, of course, not to make them in the first place.
But because we are human, this is impossible. Here are my tips for dealing with compilation
errors:

1. Start from a program that compiles, or runs successfully. (Remember: compilers take our
high-level code and generate the machine code that enables a computer to perform the
actions we want it to perform. This is why we say that a program that runs successfully
without errors compiles.) Visual Studio provides software wizards that can be used to
make a program that doesn’t do much but that does compile.

2. Compile often (in Visual Studio with the run button). If the number of changes you have
made since the last successful compilation is small, you can isolate the error to just a few
places.

3. Look for the three classic compilation mistakes:

a. Missing something—for example, not putting a semicolon at the end of a statement.

b. Using the wrong character—for example, using [rather than }.

c. Spelling something incorrectly—for example, writing “startProgram” rather than
“StartProgram”. In the world of C#, it matters whether you use capital letters or
lowercase letters.

4. Don’t expect the error to be where the compiler has detected it. Some mistakes—for
example, a missing curly bracket—may be detected many lines further down the
program.

5. Use the color highlighting to help you. Words that are part of C# are shown in blue.
Strings of text are red. If a word is not the color you think it should be, you might have
typed it incorrectly.

6. Fix all the errors that you can see, and then compile again. Sometimes the compiler
becomes confused and reports errors on lines that are sensible. Once you have fixed all
the errors you can see, compile again and see if that works.

59Creating new program fi les

7. Use Undo and Redo. Visual Studio contains a very powerful editor with an Undo button
(or Ctrl+Z) and a Redo button (Ctrl+Y), which you can use to step backward and forward
through the changes you have made to your code. You can use these commands and the
wavy red lines Visual Studio uses to highlight errors to find out where the mistakes are.

Find the compilation errors
This program produces 20 errors when it is compiled. See if you can find all the mistakes.

using SnapsLibrary;

public Class MyProgram

{

public void StartProgram()

 {

SnapsEngine.SetTitleString("Begin to Code with C#");

SnapsEngine.DisplayString(Welcome to the world of Snaps");

 }

}

Here are the errors:

using SnapsLibrary;

public Class MyProgram

{

public void StartProgram()

 {

SnapsEngine.SetTitleString("Begin to Code with C#");

SnapsEngine.DisplayString(Welcome to the world of Snaps");

 }

}

If you fix these two mistakes, we have a program that compiles just fine.

CODE ANALYSIS

Class Class should use a
lowercase c

Welcome Missing
the double
quotation

mark
before

Welcome

60 Chapter 3 Writing programs

Extra Snaps
At the end of some chapters, I will introduce extra Snaps that you can play with. You
can use these in your programs just like you used the SpeakString Snap earlier.

Delay
You might want to make your program delay for a while with the Delay Snap:

using SnapsLibrary;

class Ch03_06_TenSecondTimer

{

 public void StartProgram()

 {

 SnapsEngine.DisplayString("Start");

 SnapsEngine.Delay(10);

 SnapsEngine.DisplayString("End");

 }

}

This program displays “Start”, pauses for 10 seconds, and then displays “End”. The
Delay method is different from DisplayString in the type of data you provide to it.
You give the DisplayString method the string that you want the program to display.
You give the Delay method the number of seconds you want the program to pause.
This number can be a fraction if you want the program to pause for less than a second:

SnapsEngine.SpeakString("Tick");

SnapsEngine.Delay(0.5);

SnapsEngine.SpeakString("Tock");

You can use Delay to make a program look like it is thinking about something or to
give the user time to read some information on the screen.

SetTextColor
This Snap lets you set the color of the text in the message on the screen:

 Delays 10 seconds

Delays the program
for half a second

61Extra Snaps

using SnapsLibrary;

class Ch03_07_BlueText

{

 public void StartProgram()

 {

 SnapsEngine.SetTextColor(SnapsColor.Blue);

 SnapsEngine.DisplayString("Blue Monday");

 }

}

You can also call this method to change the color of the text already on the screen.

using SnapsLibrary;

class Ch03_08_DelayedBlueText

{

 public void StartProgram()

 {

 SnapsEngine.DisplayString("Blue Monday");

 SnapsEngine.Delay(2);

 SnapsEngine.SetTextColor(SnapsColor.Blue);

 }

}

This program displays “Blue Monday” in the default color to start with. After two
 seconds, it changes the text’s color to blue.

SetTitleColor
This Snap lets you set the color of the text in the title message on the screen:

using SnapsLibrary;

class Ch03_09_GreenSystemStarting

{

 public void StartProgram()

 {

 SnapsEngine.SetTitleColor(SnapsColor.Green);

Built-in Snaps color
that represents the

color blue

62 Chapter 3 Writing programs

 SnapsEngine.SetTitleString("System Starting");

 }

}

This program sets the title text to green and then displays “System Starting” as the
title of the page. Generally, it’s best to set the color of titles and messages before they
are displayed; otherwise, they will “flick” into the requested color once they come into
view. Reverse the order of the statements in Ch03_09_GreenSystemStarting.cs to
see what I mean. This effect was minimized in Ch03_08_DelayedBlueText.cs because
of the delay.

SetBackgroundColor
This Snap lets you set the background color of the screen. You can use this to indicate
alarms or other conditions.

using SnapsLibrary;

class Ch03_10_RedScreen

{

 public void StartProgram()

 {

 SnapsEngine.SetBackgroundColor(SnapsColor.Red);

 }

}

Creating your own colors
The Snaps library includes a number of built-in colors that you can use in your pro-
grams. You can see these SnapsColor values in the examples we've been looking at:
SnapsColor.Blue, SnapsColor.Green, and SnapsColor.Red. However, you might want
to use colors that are not in the library. For example, I like the color lilac. When you
describe a color to a computer, you have to use numbers because, as we know, com-
puters only really work with numeric values. To describe a particular color, we can use
three values: the amount of red, the amount of green, and the amount of blue in that
color. In the case of Snaps (and lots of other computer platforms, including Windows),
each of the numbers that describes a color level is in the range 0 to 255.

63Creating your own colors

You can go online and look up the amount of red, green, and blue in particular colors.
It turns out that lilac is made up of 200 red, 162 green, and 200 blue. Here’s how you
use these kinds of values in the Snaps that deal with colors:

using SnapsLibrary;

class Ch03_11_LilacScreen

{

public void StartProgram()

 {

SnapsEngine.SetBackgroundColor(red:200,green:162,blue:200);

 }

}

The SetBackbroundColor method can be given one or three items to work on. It can
be given one SnapsColor value, or it can be given values for red, green, and blue.
Each of the color intensity values are identified by name, which makes it easier for the
programmer to see which of the values is being used for which purpose.

When a method is designed, the programmer has to decide how much information
the method needs to do its work and what form the information should take. In the
case of SetBackgroundColor, this version of the method needs to be told the amount
of red, green, and blue to be used. The items supplied to the method are given as a list
in which each item is separated from the next by a comma. If you omit an item or list
too many, the compiler will complain when it tries to create the program.

SnapsEngine.SetBackgroundColor(red:255,green:255);

Error 1 No overload for method 'SetBackgroundColor' takes 2 arguments

The compiler doesn’t like this statement because SetBackgroundColor in the Snaps
library hasn’t been created (by me) to accept only two items.

Bad color schemes
You will not get any errors if you write a program that displays red text on a red background,
but what will your program’s users say? I personally like using default colors (that is, the ones
that you get when you start the program running). If you want to show your creative side, you

(red:200,green:162,blue:200) Amount of
red, green,
and blue to

make the
color lilac.

WHAT COULD GO WRONG

64 Chapter 3 Writing programs

can pick other colors, but make sure you test your color scheme on many different devices
because some machines can display colors much better than others. You should also make
sure to check your proposed color scheme with your customer, if you have one, because
colors are one thing that customers have very strong opinions about. Also, different people
see different colors with varying degrees of success. Don’t assume that others see colors the
way you do!

Build an egg timer
You can now use your programming skills to make a program that will time how long to cook
an egg. By using the Delay method from the Snaps library, you can make the program pause
while the egg is cooking and then announce when the egg is ready. My tests indicate that to
get a perfect egg, you should cook it for five minutes (or 300 seconds). This code serves as
a good starting point—copy this code rather than copying or editing MyProgram.cs when
you make your egg timer:

using SnapsLibrary;

class Ch03_12_EggTimerStart

{

 public void StartProgram()

 {

 SnapsEngine.SetTitleString("Egg Timer");

 SnapsEngine.DisplayString("There are five minutes left");

 SnapsEngine.Delay(60);

 SnapsEngine.DisplayString("There are four minutes left");

 }

}

I think this is another important milestone for you as a developer. Unlike the countdown
timer you created before, this program has all the makings of a proper product. Your mom
would find this program useful. The Windows Store has quite a few products that work as
timers, and there’s no reason why a timer that you’ve made could not be one of them.

You could add extra features to your timer to do things like change the screen color when the
egg is nearly ready and even provide a 30-second warning before the timer expires—and
maybe a “ten, nine, eight” style countdown right at the end. You could also make the timer
speak how much time is left as well as display it.

MAKE SOMETHING HAPPEN

65Creating your own colors

You can also use this design to make timers that could be useful in lots of other situations.
Here are four that I can think of:

 ● Your best friend has discovered a passion for developing her own photographs and
wants a timer she can use in the dark. The timer should just announce how many seconds
have gone by every five seconds.

 ● You and your coworkers have started a quiz club and want to control how long each
team has to answer a question. Each team gets 10 seconds.

 ● Your brother has a game where each player has to use a toothpick to eat as many baked
beans as they can in thirty seconds (I didn’t say it was a sensible game), and he needs a
timer for that.

 ● Your mom is into exercise and needs something to time each stage of her workout and
tell her what the next activity is. There are five activities: jogging in place, push-ups,
jumping jacks, stand and sit, and squat thrusts. Each activity should be performed for 30
seconds, followed by a 10-second rest period.

Try your hand at making these timers and any other ones that you might think of. In the next
chapter, you’ll discover how a program can get input from a user so that you can make even
better timers that allow the user to set the length of time the timer should run.

What you have learned
In this chapter, you’ve become more familiar with the Visual Studio environment in
which you’re creating your programs. You’ve seen that a C# program is expressed as a
sequence of statements that are performed in order when the program runs. You’ve
also seen the high-level C# that you and I have written converted into lower-level
computer instructions by a program called the compiler. Sometimes the code has
compiled, so the program runs successfully, and sometime the code hasn’t compiled
because of errors.

You’ve seen that the compiler ensures that the program conforms to the rules of the
C# language. The compiler will reject programs that don’t have statements that are
completely correct. Whereas a human reader will tolerate missing or incorrect punc-
tuation, the compiler will reject anything that does not obey the rules of the program-
ming language.

The programs that we have written so far make use of a set of Snaps provided by the
Snaps library that let us do things such as speak messages, display colors, and delay
the execution of the program for a while. These components are provided as methods

66 Chapter 3 Writing programs

that are passed data to tell them what to do. For example, the SpeakString method is
given the text of the string that is to be spoken.

Here are some questions you might like to ponder about programs, statements, and
compilers.

Does the user of the program need to have a copy of Visual Studio to run the
program?

No. Visual Studio can produce a program file that users can run without Visual Studio.

Do I have to know how every Visual Studio command works?

No. You can get along by working with just a few of the buttons to start with. You will
discover more features as you go through the book.

Is the compiler incompetent because it is confused by invalid program code?

You might think that the compiler is a bit silly, because sometimes it does things like
complain when it has seen the wrong character. You would be forgiven for wondering
why the compiler doesn’t just substitute the right character and keep going. However,
it turns out there is a very good reason for the compiler not to do this. If the compiler
inserts things that it thinks are missing, it is making an assumption about what you,
the programmer, were actually trying to do. We have already seen that assumptions
are dangerous. It is much safer for the compiler to insist that you express exactly and
correctly what you want the program to do.

Can any C# method accept any number of things to tell it what to do?

No. Each method is custom-made to accept a specific set of information. The Delay
method needs to be told how many seconds to delay for. The SpeakString method
needs a string of text to speak. The compiler knows what a method was built to
accept, and it will feed only that kind of data into it. If you attempt to feed a string to
Delay, the program will not compile.

Are the statements in a program always performed in the order they are writ-
ten in the program?

Yes. You can think of a program as a story or recipe or a sequence of instructions. It
would be meaningless for the steps to be performed in any order other than the one
that has been set out.

Are the Snaps part of the C# language?

No. The Snaps library and these methods have been provided to help you learn how
to program and to create simple applications. They are not part of C#, but they were
created with C#. You will learn about other library classes and methods supplied with
C# a little later in the book.

67What you have learned

Index
Symbols and numbers
/* and */ characters, 118
// characters, 117
& (ampersand), 114–115
&& (AND) logical operator, 114–115, 276
<> (angle brackets), 320
{} (curly brackets), 49, 58–59, 111, 215, 324
/ (division operator), 84–85
“ “ (double quotation marks), 48, 74, 324
= (equal), 73, 311–312
== (equal to), 107–108
\ (escape character), 228, 324
^ (exclusive OR) operator, 114
> (greater than operator), 104, 107
>= (greater than or equal to operator), 107
< (less than operator), 104, 106–107
<= (less than or equal to operator), 107
– (minus and unary minus sign), 84
* (multiplication operator), 84
! (not), 103–104, 131
!= (not equal to), 107–108
| (OR) operator, 114
() (parentheses), 48–49, 84, 98, 215
+ (plus sign), 77–78, 84, 88, 183
; (semicolon), 48
|| (short-circuit OR) operator, 114

A
abstraction, 460–462, 467–468
access to data, 346–351, 369
addition operator (+), 77–78, 84, 88, 183
AddLineToTextDisplay method, 139, 332
Alert method, 218–222
algorithms, 187
alphabetical sorting, 193–194
ampersand (&) logical operator, 114–115
AND (&&) logical operator, 276
angle brackets (<>), 320
animated behaviors in UI, 380, 414
announcer programs, 76–77, 79

applications (apps). See also programs
building, 8
continuously running, 10
data-processing, 25
game elements, 380, 414
images, displaying, 358–359
vs. programs, 15
running, 7–10
running again, 10
starting, 7–8
stopping, 10–11
user-friendly, 355–356

arguments, 48–49, 86, 218, 221–222
named, 96, 220–221
number of, 64
order of, 220

arrays, 176–179
of class references, 317–318
collections, storing, 294–296
contents, displaying, 184–186
elements, 177, 188–189, 294–295
error detection, 209
filling up, 295–296
functionality, 208
GetLength method, 204
highest and lowest values, 194–196
indexes, 177, 182–183, 200–201
Length property, 180–181, 204, 322
as lookup tables, 206–207
multiple dimensions, 199–205
multiple value types, 260–261
preset, 262–263
sizing, 319
sorting, 187–194
of structure values, 252–253
three-dimensional, 205
total value, 196–198
two-dimensional, 200
values, holding, 249

aspect ratio, 385
asset management, 127–132
assignment operator (=), 73, 311–312
assignment statements, 73–74, 158–159, 347
asterisk (*), 84, 118

474 Index

B
backslash (/), 84–85, 117–118, 228
base classes, 424. See also inheritance
BeginToCodeWithCSharp folder, 5
BeginToCodeWithCSharp project, 7, 127
BeginToCodeWithCSharp solution, 11–15
behavior members of classes, 46–47. See also methods
bits and bit patterns, 36
black-box testing, 32–34
blocks of statements, 110–113

copying, 138–139
local variables, 111–113
in loops, 143–144
methods, 214. See also methods
repeat conditions, 149–151

Boolean expressions, 103–104
Boolean (bool) type, 102–104
break statements, 163–168, 280
breakpoints, 151–155
bubble sorting, 187–194, 307
bugs, 138, 151–155
business rules, enforcing, 349–350

C
C# language

case sensitivity, 59, 74
clarity of, 12–13
decision process, 102–104, 133
keywords, 72. See also keywords
program structure, 44–50

calculations, performing, 83–85
calling methods, 47, 49
camera, opening, 368
carriage return (\r) escape sequence, 228
case statements, 281
casting, 90, 92–94, 197–198
catch blocks, 353–354
catching exceptions, 353
central processing units (CPUs), 26
character codes, mapping to numeric values, 38
check codes, 370
child classes, 422–423. See also inheritance

customizing, 426–427
method overrides, 426–428

class definitions, 46
object design, 310
starting, 44–46

class diagrams, 441–442
class hierarchies, 429, 433–434. See also inheritance

designing, 440–444

width and depth, 444–445
class instances, 310. See also objects
class references as parameters, 318
class variables, managing by reference, 306
classes

abstract, 462
base, 424
constructors, 316–317
extending, 422. See also inheritance
fully qualified names, 319
helper, 319
interfaces, implementing, 469–470
methods, adding, 215–217
methods, declaring, 47
in namespaces, 320
naming, 55–56
partial, 411
property behaviors, 382–384
references, 311–318
structures and, 306–318

ClearGraphics method, 276
ClearScreenTappedFlag method, 164
ClearTextDisplay method, 139
clock programs, 87–88, 360–361
cloud storage, 240
code. See also programs

colored display, 14
comments, 117–119, 125–126, 142, 241–243
context, 341, 419
debugging, 151–155
indenting, 106
inputs, 29–32
low-level vs. higher-level instructions, 26–27
machine, 26
patterns, 78–79
personalizing, 35
pseudocode, 194
reading, 39
refactoring, 224, 244
reusability, 147

code blocks, 110–113, 138–139, 143–144, 149–151. See
also methods

code design, 463. See also design patterns
class hierarchies, 440–444
for debugging, 155
lots of methods, 367
object interaction, 448–456
object-oriented design, 440

code development. See programming
code review, 34
coding. See programming
collections, 195, 323. See also arrays; lists
Collections namespace, 319–320

 Index 475

colors, 63
of code display, 13
creating, 63–66
drawing with, 274–276
of screen background, 63
storing values, 287
structure for, 277
of text, 61–62
of titles, 62–63

command processing, 366–367
comments, 117–119, 125–126, 142, 241–243
Compare method, 193
compilation errors, 58–60
compiler, 27, 39, 44, 67

precision of operands, 90, 95
static analysis, 209
type checking, 85, 89, 94–95

computers, 23–35
data processing, 23–29, 39–40
inputs and outputs, 24–25, 27–28
as machines, 24–25
system requirements, 4
understanding of data, 40
workings of, 39–40

concatenation, 183
conditional expressions

Boolean expressions, 103–104
logical expressions, 105, 142–143, 155–156
while loops, 142–151

conditions, 105, 110–113
constructors, 256–260, 290–291

in classes, 316–317
exceptions in, 258–259
invalid data in, 258
validation behavior, 351–353

context, code, 341, 419
context menus, 52
continue keyword, 165–169
Copy command, 52–53
Count property, 321–322
count variable, 179–180
counting, 136–139, 147–148, 261

with for loops, 161–163
resetting, 139–141
with while loops, 157–160

curly brackets ({}), 49, 58–59, 111, 215, 324
customer requirements, 21–22

business rules, 349–350
design specifications, 22, 174, 301

D
data

bits and bit patterns, 36
built-in, 70
defined, 36
fetching, 229–231, 235–236, 329–333, 357
vs. information, 35–40
loss in type conversions, 90, 92, 94
structured, 291. See also structures

data access, 346–351, 369
data members of classes, 46
data processing, 25, 27–28, 39–40
data protection, 264–267, 338–349, 369
data storage, 37–39, 71, 295–296. See also storage

in arrays, 176–207
enumerated types, 278–279
in lists, 319–323
in single variables, 175–176
in structures, 249–278

data-driven applications, 207
dates, 360–362
DateTime structure, 359–360
debugging, 151–155
decimal type, 82
declarations, 71–73, 76–77
defensive programming, 259, 340
Delay method, 61, 65, 132, 360
delimiters, 49
DeserializeObject method, 325–328
design patterns, 78–79, 185, 199, 298–299, 329, 344,

349–350. See also code design
design specification, 22, 301

storyboarding, 174
development. See programming
devices, 24–26, 240
directives, using, 44–45, 320, 359
display, 304–305. See also viewports

of array contents, 184–186
building, 139
fade in behavior, 360–361
of images, 129–130, 358–359
of messages, 44, 47–50
multiline, 332
origin, 390, 393
of strings, 48–50, 360–361

displayCount variable, 184
DisplayDrawings method, 365
DisplayHelp method, 365–366
DisplayImageFromUrl method, 129–131, 357
DisplayString method, 48–50, 360–361
divide by zero error, 85

476 Index

division operator (/), 84–85
documents, XML schema, 330
double quotation marks (“ “), 48, 74, 324
double type, 82, 90–92, 98
DrawDot method, 269–270
DrawDotsUntilDrawInLeftCorner method, 366
DrawGamePage method, 378
drawing, 267–278

clearing screen, 276
in color, 274–276
coordinates, 272–273

Drawing class, 362–363
drawing program, 267–278
drawings diary, 356–368
DrawLine method, 283–284

E
egg timer, 65
elements in arrays, 177

null values, 294–295
swapping, 188–189

else statements, 105–106, 114–115, 122
encryption, 369
enum keyword, 279
enumerated types, 278–282, 457–458
enumeration, 195
equal sign (=), 73, 107–108, 311–312
equal to operator (==), 107–108
equality operators, 107–108
error detection, 209
error reporting, 353
errors

compilation, 58–60
divide by zero, 85
with loops, 171
stack overflow, 217
“unreachable code detected,” 106
“variable undefined,” 309–310

escape character (\), 324
escape sequences, 228
exception handlers, 353–355
Exception type, 259–260
exceptions, 178–179

catching, 353–354
in constructors, 258–259
error reporting, 353
index out of range, 322
invalid input, 258–259, 261–262, 349
null references, 235–236
prevention of execution, 349, 354

exclusive OR (̂) operator, 114

execution, path of, 151–155
expressions

evaluation, 84
numeric, 83–85
string, 77–78

F
fade-in behavior, 360–361
failure behaviors, 156
FallingSprite class, 422–427
false keyword, 103
faults, guarding against, 34
fetching data, 229–231, 235–236, 329–333, 357
FetchStringFromLocalStorage method, 229–231,

235–236
fields, structure, 250
file extensions, 54
file names, 56, 359, 361–362
finding data, 300–302
flags

setting, checking, and clearing, 164, 192–193
test, 203–204

float type, 82, 91–92, 94
floating-point values, 91, 197–198
FontFamily string, 403
FontSize value, 403
for loops, 160–163

displaying array contents, 184–186
for two-dimensional arrays, 201–203

foreach loops, 195–196, 262–263
fortune-teller program, 126
forward slash (/), 84–85, 117–118
fractional numbers, 80. See also real numbers
frames per second, 377, 381, 389, 404, 406, 421
fully qualified names, 319
functional design specification (FDS), 22
Funfair program, 119–126

G
game engines, 376–377

hardware and, 393
MonoGame, 393
sprites, adding to, 381–382

games
clamping values, 399–400
creation, 414
ending, 453–454
frames per second, 377, 381, 389, 404, 406, 421
game loop, 377–378, 389, 398

 Index 477

games, continued
game object, 452–453
infinite loops, 378
intersection of sprites, 400–401, 449–451
Keep Up!, 408–413
methods controlling actions, 397–399
parallax effects, 430
particle effects, 430
physics, 434–437
player-controlled paddle, 396–401
procedural generation, 412
randomness, adding, 410–413, 425
rate of updating, 399
resetting, 460–462
screen mode, 377
Snaps gamepad, 397–399, 431
sound, adding, 401–402
Space Rockets in Space, 418–440, 448–471
sprites, 378–392
state management, 456–465
stopping, 455–456
text, displaying, 403–413

GameViewportWidth property, 386–387
garbage collector, 312–313
generic methods, 325
get method, 341–343, 347–348, 369
GetDayOfWeekName method, 78–79
GetDraggedCoordinate method, 272–273
GetHourValue method, 86
GetLength method, 204
GetMinuteValue method, 87–88
GetScreenSize method, 284, 387
GetTappedCoordinate method, 282
GetTodayTemperatureInFahrenheit method, 95–96
GetWeatherConditionsDescription method, 96
GetWebPageAsString method, 330
graphics. See also images

origin, 390, 393
saving in files, 356–368

greater than operator (>), 104, 107
greater than or equal to operator (>=), 107

H
hackers, 258
hardware, 26
help, displaying, 365–366
helper classes, 319
hiding member variables, 293

I
identifiers, 72–73, 266
identifying resources, 44–45
if constructions, 34, 104–110, 121, 124

else statements, 105–106, 114–115, 122
random data in, 126

images. See also drawing; graphics
adding to application, 379
aspect ratio, 385
displaying, 129–130, 358–359
fetching from Web, 357
file names, 359
placeholders, 130–131
resizing, 130
saving, 356–368
scaling, 383–384

ImageSprite class, 380–381, 420. See also sprites
increment operations, 137
indenting code, 106
index out of range exceptions, 322
index value for arrays, 177, 182–183, 200–201
index value for lists, 322
infinite loops, 378
information

vs. data, 35–40
defined, 37

inheritance, 422–427
base classes, 424
class diagrams, 441–442
intermediate types, 434
object construction and, 423–424
overriding methods, 426–428
virtual methods, 427–428

injection attacks, 324
input, invalid, 258–259, 261–262, 339, 345, 353
input sanitization, 238–240
input validation, 149–151, 342–345
inputs, 29–34
instances. See objects
int type, 81, 136–137
integers, 90, 410–411
integrity of objects, 338–345, 369
IntelliSense comments, 241–243
interfaces, 465–471
intermediate types, 434
IntersectsWith method, 400–401, 449–451
invalid input, 258–259, 261–262, 339

exceptions thrown, 353
managing risk, 345

inverting method results, 131–132

478 Index

J
JavaScript Object Notation (JSON), 323–328

invalid strings, 326
lists, storing and recovering, 326–328
storing data, 323–329
storing lists, 363–364

JsonConvert class, 325

K
Keep Up! game, 408–413
keywords, 72

continue, 165–169
enum, 279
false, 103
new, 256–257, 310
throw, 259
true, 102–103
value, 347

L
Language Integrated Query (LINQ), 330–331
Length property, 180–181, 204, 322
less than operator (<), 104, 106–107
less than or equal to operator (<=), 107
libraries, 45
LINQ (Language Integrated Query), 330–331
List class, 319–323
lists, 319–323

animating, 429
counting items, 321–322
creating, 364–365, 428–429
index value, 322
of interfaces, 469–470
recovering, 326–328
storing, 326–327
structure values, 322–323

literal values, 70, 90, 94, 103
LoadGraphicsPNGImageFromLocalStore method,

358–359
local storage, 229–231, 358

fetching from, 229–231, 235–236
loading graphics from, 358–359

local variables, 111–113
logical expressions

faulty, 155–156
if constructions, 34, 104–110, 121, 124
in loops, 142–143

logical namespaces, 56

logical operators, 113–117
long type, 81
lookup tables, 206–207
loops, 38, 135–171

for, 160–163
breaking out, 163–165
for bubble sorting, 187–194, 307
continuing, 165–168
counting in, 157–160
errors with, 171
faulty expressions, 155–156
foreach, 195–196
infinite, 148–149, 378
nesting, 159–160, 198–199
while, 142–151, 157–160

M
machine code, 26–27
malware, 339–340
mathematical calculations, 83–85
members, 46, 250

hiding, 293
naming conventions, 292–294
private, 265–267, 338–345
specifying, 292

memory, random access, 71
menus, displaying, 275–276
message passing between objects, 448–456, 459
messages, displaying, 44, 47–50
method calls, 222–224
methods, 47, 214–243

abstract, 460–462
adding to classes, 215–217
arguments, 48, 67
body, 215
Boolean return values, 236
business rules, enforcing, 349–350
for button behaviors, 298–299
calling, 47, 49
calling other methods, 216–217
constructor, 256–260
counting, 302–304
designing with, 224, 226
displaying information, 304–305
finding stored data, 300–302
generic, 325
headers, 214, 234
identifiers, 214
modifiers, 214
naming, 244
overloading, 271, 283

 Index 479

methods, continued
overriding, 426–428, 462
parameters, 215, 217–222
performance and, 244
placeholder, 228–229, 244
with private data, 343–344
results, inverting, 131–132
return types, 214–215
returning structures, 254
returning values, 222–224
single-line, 321
statements in, 48
static, 351
stepping into, over, and out of, 154
storing data items, 299–300
in structures, 256, 263–264
virtual, 427–428, 462

Microsoft Windows 10 64-bit version, 4
minus sign (-), 84
MonoGame, 393
moving objects, 380, 414, 418–427

direction, 390–392
speed, 389–390

MovingSprite class, 418–427
multiplication operator (*), 84
music recorder, 260–262
mustache editing program, 367–368
MyProgram application, 11–15
MyProgram.cs, 54–57

N
named arguments, 96, 168, 220–221
namespaces, 56, 271, 320, 325
naming conventions, 12–13

for classes, 55–56
for interfaces, 470
for members, 292–294
for methods, 244
for parameters, 292–294
for source files, 56

nested loops, 201–203
new keyword, 256–257, 310
new line (\n) escape sequence, 228
Newton-King, James, 325
Newtonsoft JSON library, 323–326
Next method, 410
nonexistent items, reading, 235
not equal to operator (!=), 107–108
not operator (!), 103–104, 131
NuGet, 325
null values, 235, 294–295

numbers, 80–84
reading in, 122–123
sorting, 187–194
whole and real, 80

numeric operators, 83–84
numeric types, 81–82. See also individual numeric type

names
accuracy and precision, 91–92, 98
character codes mapping, 38
converting between real and whole numbers,

89–90
converting to text, 86–87

O
object-oriented design, 440
object-oriented programming languages, 45
objects, 45. See also sprites

accessing data in, 382–384
vs. components, 472
construction, 423–424
constructor code, 316–317
cooperating, 448–456
creating, 46, 310, 351–356
defining, 46
for images, 380–381
integrity, 338–345, 369
interfaces, 465–471
managing with references, 311
members, 46
message passing, 448–456
moving, 388–392
multiple references, 311–312
with no references, 312–313
performance and, 472
private data, getting and setting, 341–343
private data with public methods, 343–344
protecting data, 338–345
releasing, 312–313
reset behaviors, 462–464
state, 456–465
strings, converting into, 323–328
this references, 454–455
XML, converting into, 330–331

open-source projects, 325
operands, 77–78, 93
operators

equality, 107–108
in expressions, 77–78
invalid, 78
logical, 113–117
numeric, 83–84

480 Index

precedence (priority), 83–85
relational, 106–107

OR (|) operator, 114
out parameters, 233–234
outputs, identifying, 29
overloaded methods, 271, 283
override methods, 426–428, 462

P
Paint.Net, 130, 380
parallax effects, 430
parameters, 215, 217–222

class references, 318
hiding member variables, 293
multiple, 219–220
naming conventions, 292–294
out, 233–234
passing by value, 231, 233, 254
reference, 231–233
structure variables as, 253–255
value of arguments, 221–222

parent classes, 422–423. See also inheritance
parentheses (), 84, 98

for method parameters, 215
for strings, 48–49

partial classes, 411
particle effects, 430
password protection, 169–170
patterns, design, 78–79, 185, 199, 298–299, 329, 344,

349–350
performance

casting and, 93
methods and, 244
objects and, 472
structures and, 286

 PickImage method, 285
pixels, 268, 386
Pizza Picker program, 136–148, 328–329
placeholder methods, 228–229, 244
PlayGameSoundEffect method, 128, 402
PlayNote method, 248
PlaySoundEffect method, 128
plus sign (+), 77–78, 84, 88, 183
PNG (portable network graphics) files, 356–357
precision of numeric values, 82–83, 91–92, 98
preset arrays, 206–207, 262–263
private members, 250, 265–267, 286

get and set methods, 341–343
lowercase names, 266, 347
with public methods, 343–344

procedural generation, 412

ProcessCommand method, 366–367
professional development, 14–15. See also

programming
programmers

communication skills, 23
job of, 20–23, 39–40

programming
computer system requirements, 4
customer requirements, 21–22
defensive, 259, 340
design patterns, 78–79, 185, 199, 298–299, 329,

344, 349–350
making assumptions, 40
object-oriented design, 440
organizational tasks, 20
professional, 14–15
prototyping, 22
riches from, 335
risk management, 345
self-contained objects, 264

programming languages, 15–16
clarity of, 12–13
higher-level, 27
object-oriented, 45

programs. See also applications (apps); code
vs. applications, 15
asset management, 127–132
assumptions vs. understanding in, 40
breaking, 16
breakpoints, 151–153
comments, 117–119, 125–126, 142, 241–243
compilation errors, 58–60
compilers, 27. See also compiler
components, 12, 472
continuously running, 10
copying code into, 52–53
creating, 52–60
data processing, 27–28
delaying, 61, 360
error reporting, 353
logical and physical names, 56
managing, 11–12
patterns, 78–79. See also design patterns
refactoring, 224, 244
as sequential instructions, 25, 39, 67
as solutions to problems, 20–22
stopping, 10–11
stopping by exceptions, 349, 354
test versions, 203–204
testing, 32–35. See also testing
titles, setting, 48
tracking execution, 151–155
variables in, 74–79. See also variables

 Index 481

programs, continued
viewing code, 12–13

projects
vs. solutions, 15
Visual Studio, 6

properties, 346–351, 369
protecting data, 264–267, 338–349, 369

check codes, 370
encryption, 369

prototyping, 22
pseudocode, 194
pseudo-random number generator, 411
public methods, 214

with private data, 343–344
uppercase names, 266

public modifier, 250
public properties, 347

Q
quotation marks, 13

R
\r (carriage return), 228
random access memory (RAM), 71
Random class, 410
randomness, 96–97, 126, 133, 410–413, 425
range of numeric values, 81–82
ReadInteger method, 122–123, 154, 175–176
ReadPassword method, 169–170
ReadString method, 75–76
real numbers, 80, 82

comparing, 108–109
converting to whole numbers, 89–90

Really Simple Syndication (RSS), 330–333
recursion, 217
refactoring, 224, 244
references, 176–177, 231–233, 308–310, 313–316, 334

arrays of, 317–318
assigning, 311–312
class variables, managing, 306
to interfaces, 469
lists of, 319–323
objects, managing, 311, 359
out of scope, 313
releasing, 312–313
sorting by, 308
this, 454–455
values, managing by, 311, 359

relational operators, 106–107
Rename command, 54

repeat conditions of loops, 149–151
rerunning programs, 10
reset behaviors, 462–464
resources, 6

identifying, 44–45
locating, 129

return statements, 222–224, 236–237
risk management, 345
roaming storage, 240
RotationAngle property, 405–407
RSS (Really Simple Syndication), 330–333
run button, 55–56
running programs, 7–10

S
sanitizing input, 238–240. See also validation
SaveGraphicsImageToFileAsPNG method, 357–358
SaveGraphicsImageToLocalStoreAsPNG method, 358
SaveStringToLocalStorage method, 229
ScaleSpriteHeight method, 384–386
ScaleSpriteWidth method, 384–386
scope of variables, 111–113
screen color, 63
screen coordinates, 268
screen size, 386–387
screen-tap methods, 163–165, 255
searches, sanitizing input for, 238–240
secret data entry, 169–170
security. See also data protection

active and passive, 266–267
private members, 250, 266–267

SelectFrom5Buttons methods, 119–120, 137
SelectFromButtons methods, 186
SelectFromFiveSpokenPhrases method, 168–169
self-contained objects, 264
semicolon (;), 48
serialization, 323, 363
SerializeObject method, 325–328
set method, 341–343, 369

invalid values, 348–349
on public properties, 347
validate method in, 350

SetBackgroundColor method, 63–64, 274
SetDisplayStringSize method, 88–89
SetDrawingColor method, 274–276
SetTextColor method, 61–62
SetTitleColor method, 62–63
SetTitleString method, 48
short type, 81
short-circuit AND (&&) operator, 114–115
short-circuit OR (||) operator, 114

482 Index

ShowStored Graphics method, 363
single stepping through code, 151–155
64-bit version of Windows 10, 4
Snaps applications, 43, 47. See also individual method

names
Snaps game engine, 376–377, 393
Snaps gamepad, 397–399, 431
Snaps library, 45, 67
Snaps types, 270
SnapsColor structure, 277
SnapsColor values, 63
SnapsCoordinate structure, 270–272
SnapsEngine class, 48
software components, 12–13, 472
Solution Explorer, 7, 11–12
solutions, 6–7

Assets folder, 127
vs. projects, 15

SongNote structure, 250–267
sorting

arrays, 187–194
bubble sorting, 187–194, 307
efficiency of, 191–192
by references, 308
strings, 193–194
structure variables, 306–307

sound assets, 128–129
sound effects, 128, 401–402
source file naming, 56
Space Rockets in Space game, 418–440, 448–471
spaces, trimming, 238
speaking text, 50–51
SpeakString method, 50–51, 215
speed of moving objects, 389–390
spelunking, 39
sprites, 378–392

acceleration, 434–437
adapting to screen size, 386–388
adding, 379–380, 396
adding to game engine, 381–382
bouncing, 390–392
ImageSprite class, 380–381
interaction, 400–401, 449–451
lists of, 465
moving, 388–390, 418–427
positioning, 388, 396
removing, 381
reset behaviors, 462–464
scaling, 384–386
sizing, 382–384
speed, 420–421
updating position, 421–422
user-controlled, 396–401, 431–432

width, 396
stack overflow errors, 217
StarMaker program, 284
StartProgram method, 44, 46–47, 214, 452
state management, 456–465
statements, 48

blocks, 110–113, 143–144, 149–151
breakpoints, 151–153
controlling loops, 143–144
copying, 138–139
number of, 50
sequence, 51, 67, 141
stepping through, 151–155

static analysis of programs, 209
static methods, 351
static variables, 426
stopping loops, 163–165
stopping programs, 10–11, 354, 359
storage, 71

of data, 37–39
failures, 295–296
graphics, 356–368
JSON, 323–329
local, 229–231, 235–236, 358–359
roaming, 240
of variables, 71

StoreDrawing method, 365
storyboarding, 174, 225
strings, 48

case of characters, 110
combining, 77–78
comparing, 109–110
converting numeric types into, 86–87
double quotation marks, 13, 48
JSON, 323–328
as literal values, 70
lowercase versions, 238
parentheses, 48–49
sorting, 193–194
text size, 88–89
XML text to XML element conversion, 330–331

structure variables, 251–252
creating, 256–260
managing by value, 306
as parameters, 253–255
reference types, converting, 322–323
sorting, 306–307

structures, 249, 291, 359
arrays of values, 252–253
classes and, 306–318
constructor methods, 256–260
for contact information, 290–291
contents, setting, 292

 Index 483

structures, continued
for counting, 302–304
Date/Time, 359
declaring, 250
empty, 294–295
fields, 250
members, 250
as method returns, 254
methods in, 256, 263–264
nesting, 287
null values, 294–295
performance and, 286
protecting values, 264–267
for screen positions, 270–272

subscripts, 177
swapping elements, 188–189
switch construction, 280–282, 287, 298
synchronization across roaming storage, 240
System namespace, 359, 410

T
TakePhotograph method, 368
temp variable, 189
temperature-conversion program, 89–91
test data, creating, 296–297
testing, 34–35, 138–139, 203–204

automating, 204
black-box, 32–34
enumerated type values, 279
failure behaviors, 156
white-box, 34

text. See also strings
color, 61–62
converting numeric types into, 86–87
displaying, 403–413
fonts, 407
positioning, 404–405
rotating, 405–407
size, 88–89
speaking, 50–51
type sizes, 403

TextBlockSprite sprite, 403–413
this references, 292–294, 454–455
three-dimensional arrays, 205
throw keyword, 259
ThrowDice method, 96–97, 126, 214, 410
TidyInput method, 238–240
time, 359–362
time display programs, 87–88
time trackers, 65–66, 290–305, 338–345
times-table tutor, 157–165

title messages, 62–63
titles, 44, 47–50
ToFileTime method, 361
ToLower method, 110, 238
ToString method, 86–87, 360
ToUpper method, 110
true keyword, 102–103
try/catch blocks, 353, 355
two-dimensional arrays, 200–203
type checking, 85, 89, 94–95
type conversion with casting, 92–94
types, 85–89, 98

Boolean, 102–104
decimal, 82
double, 82, 90–92, 98
enumerated, 278–282, 457–458
Exception, 259–260
float, 82, 91–92, 94
int, 81, 136–137
intermediate, 434
long, 81
numeric, 81–82
reference, 313–316
return, 214–215
short, 81
Snaps, 270
value, 136–139, 313–316, 334, 346–349
variable, 81–82, 85–90, 98, 102–104

U
unary minus sign (-), 84
Unicode, 38
uniform resource locators (URLs), 129
Universal Windows Applications, 358
“unreachable code detected” errors, 106
Update method, 421–422, 426–427, 431
user input, 70. See also inputs
user interface

animated behaviors, 414
designing, 297

user-friendly applications, 355–356
using directives, 44–45, 320, 359

V
validation, 349–350

check codes, 370
in constructor, 351–353
input, 149–151, 342–345
in set method, 350

484 Index

timing of, 355–356
with while loop, 149–151

value, 347
objects, managing by, 359
parameters, passing by, 231, 233, 254
structures, managing by, 306, 359

value types, 313–316, 334
incrementing, 136–139
protecting, 346–349
resetting to zero, 139–141
totals, displaying, 139

variable types, 85–89, 98
Boolean, 102–104
casting, 90
converting, 86–87
numeric, 81–82

“variable undefined” errors, 309–310
variables, 70–79

assigning values, 73, 76–77
class, 306
contents, viewing, 153
declaring, 71–73, 175
enumerated types, 457–458
identifiers, 72–73
local, 111–113
null value, 235
in programs, 74–79
range and precision, 81–83
reference, 176–177
scope, 111–113
static, 426
storage, 71
string versions, 86–87
structure, 251–252, 256–260, 306

video games, 376–392
viewing code, 12–13
viewports

adapting programs to, 386–387
clamping values in, 399–400
visible area, 390
width, 387

virtual methods, 427–428, 462
Visual Studio

asset management, 127–132
building applications, 8
color display of code, 14
debugger, 151–155
editor, 12, 14
images, adding, 379
indenting code, 106
installing, 5
NuGet, 325
projects, 6

Redo button, 60
run button, 7–8
running programs, 7–10
64-bit version of Windows 10, 4
Solution Explorer, 7
solutions, 6
stop button, 10
Undo button, 60
wavy red lines, 55

voice input, 168–169

W
WaitForButton method, 160
while loops, 142–151

counting in, 157–160
input validation, 149–151

white-box testing, 34
whole numbers, 80–82

converting to real numbers, 89–90
Windows 10 64-bit version, 4
Windows local storage, 229–231, 235–236, 358–359
Windows Presentation Foundation (WPF) applications,

449
Windows Store, 4

X
XML (Extensible Markup Language), 323, 329–333

 Index 485

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Part 1: Programming fundamentals
	3 Writing programs
	C# program structure
	Identify resources
	Start a class definition
	Declare the StartProgram method
	Set the title and display a message

	Extra Snaps
	SpeakString

	Creating new program files
	Extra Snaps
	Delay
	SetTextColor
	SetTitleColor
	SetBackgroundColor

	Creating your own colors
	What you have learned

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

