Microsoft
Visual C#
Step by Step

Eighth Edition

John Sharp

o Microsoft

Microsoft Visual C#
Step by Step, 8th Edition

JOHN SHARP

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2015 by CM Group, Ltd. All rights reserved.

No part of the contents of this book may be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Control Number: 2015940217
ISBN: 978-1-5093-0104-1

Printed and bound in the United States of America.
First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Support at mspinput@microsoft.com. Please tell us what you think of this
book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information
expressed in this book, including URL and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fctitious. No real association or
connection is intended or should be inferred.

Microsoft and the trademarks listed at www.microsoft.com on the “Trademarks” webpage are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

Acquisitions and Developmental Editor: Devon Musgrave
Project Editor: John Pierce

Editorial Production: Rob Nance and John Pierce
Technical Reviewer: Marc Young

Copyeditor: John Pierce

Indexer: Christina Yeager, Emerald Editorial Services

Cover: Twist Creative « Seattle and Joel Panchot

Contents at a glance

Introduction Xix

PART | INTRODUCING MICROSOFT VISUAL C# AND MICROSOFT
VISUAL STUDIO 2015

CHAPTER 1 Welcome to C# 3
CHAPTER 2 Working with variables, operators, and expressions 33
CHAPTER 3 Writing methods and applying scope 59
CHAPTER 4 Using decision statements 87
CHAPTER 5 Using compound assignment and iteration statements 107
CHAPTER 6 Managing errors and exceptions 127
PART Il UNDERSTANDING THE C# OBJECT MODEL
CHAPTER 7 Creating and managing classes and objects 153
CHAPTER 8 Understanding values and references 177
CHAPTER 9 Creating value types with enumerations and structures 201
CHAPTER10 Using arrays 221
CHAPTER11 Understanding parameter arrays 243
CHAPTER12 Working with inheritance 255
CHAPTER13 Creating interfaces and defining abstract classes 277
CHAPTER 14 Using garbage collection and resource management 305
PART 1l DEFINING EXTENSIBLE TYPES WITH C#
CHAPTER 15 Implementing properties to access fields 329
CHAPTER16 Using indexers 353
CHAPTER 17 Introducing generics 369
CHAPTER18 Using collections 399
CHAPTER 19 Enumerating collections 423
CHAPTER20 Decoupling application logic and handling events 439
CHAPTER21 Querying in-memory data by using query expressions 469

CHAPTER22 Operator overloading 493

iv

PART IV

BUILDING UNIVERSAL WINDOWS PLATFORM APPLICATIONS

WITH C#

CHAPTER 23
CHAPTER 24

CHAPTER 25

CHAPTER 26

CHAPTER 27

Contents at a Glance

Improving throughput by using tasks
Improving response time by performing asynchronous
operations

Implementing the user interface for a Universal Windows
Platform app

Displaying and searching for data in a Universal Windows
Platform app

Accessing a remote database from a Universal Windows
Platform app

Index

517

559

601

651

697

749

Contents

INtroduction XiX
PART I INTRODUCING MICROSOFT VISUAL C# AND MICROSOFT
VISUAL STUDIO 2015

Chapter 1 Welcome to C# 3
Beginning programming with the Visual Studio 2015 environment. 3

Writing your first program 8

USING NAMESPACES . .« o v vttt e e 14

Creating a graphical application i 17

Examining the Universal Windows Platform app................ 26

Adding code to the graphical application...................... 29

SUMMIAIY. .« et e e e e e e e e e e e e e 32

Quick Referencet 32

Chapter 2 Working with variables, operators, and expressions 33

Understanding statements 33
Using identifierso 34
Identifying keywords. 34
Using variables. 36
Naming variables...... 36
Declaring variables. 37
Working with primitive datatypes oL 37
Unassigned local variables.............., 38
Displaying primitive data typevalues 38
Using arithmeticoperators.............o i 45
Operators and typeso 45
Examining arithmetic operators o ol 47
Controlling precedence ..o 52

Using associativity to evaluate expressions. 53

Associativity and the assignment operator..................... 53

Incrementing and decrementing variables. oL 54
Prefix and postfix...........o i i 55
Declaring implicitly typed local variables. 56
SUMMAIY. .« ettt e e e e e e e 57
Quick Reference 58
Chapter 3 Writing methods and applying scope 59
Creatingmethods. ... 59
Declaringamethod. o i 60
Returning data fromamethod 61
Using expression-bodied methods. 62
Callingmethods....... ... 63
ApPPlYiNg SCOPE . oo 66
Defining local scopeo 66
Defining class scope ... 67
Overloading methods.......... ... i, 68
Writing methods. 68
Using optional parameters and named arguments 77
Defining optional parameters il 79
Passing named arguments. o i 79
Resolving ambiguities with optional parameters and named argu-
MENES L o 80
SUMMANY. .« e et e e e e e e e e e e 85
Quick reference. 86
Chapter 4 Using decision statements 87
Declaring Boolean variables oo 87
Using Boolean operators.t 88
Understanding equality and relational operators 88
Understanding conditional logical operators................... 89
Short Circuitingo 90
Summarizing operator precedence and associativity 90

vi Contents

Chapter 5

Chapter 6

Using if statements to make decisions, 91

Understanding if statement syntax. 91
Using blocks to group statements 93
Cascading if statements 94
Using switch statements ... 99
Understanding switch statementsyntax 100
Following the switch statementrules......................... 101
SUMMIATY. .« et et e e e e e e 104
Quick reference. 105

Using compound assignment and iteration

statements 107
Using compound assignment operators.coveeeannn. 107
Writing while statements. 108
Writing for statements. 114

Understanding for statement scope.......................... 115
Writing do statements 116
SUMMATY. .« et e e e e e e e e e e 125
Quick reference. ... 125
Managing errors and exceptions 127
Coping With errors 127
Trying code and catching exceptions, 128

Unhandled exceptions. i i 129

Using multiple catch handlers......... 130

Catching multiple exceptions. oL 131

Propagating exceptions i i 136
Using checked and unchecked integer arithmetic 138

Writing checked statements.o 139

Writing checked expressions, 140
Throwing eXceptionsouuuuue it 143
Using afinallyblock 148

Contents

vii

viii

Contents

SUMIMATY. .« ottt e e e e e e e 149
Quick reference.ot 150
PART Il UNDERSTANDING THE C# OBJECT MODEL
Chapter 7 Creating and managing classes and objects 153
Understanding classification................ i i 153
The purpose of encapsulation i 154
Definingand usingaclass.ooiiiiiii i 154
Controlling accessibility. ... 156
Working with constructors.o 157
Overloading constructors. ..., 158
Understanding static methodsanddata 167
Creatingasharedfield 168
Creating a static field by using the const keyword. 169
Understanding staticclasses ... 169
Static using statements 170
ANONYMOUS Classesvvuu e 172
SUMIMIATY. et e ettt e e e e e e e e e 174
Quick reference. 174
Chapter 8 Understanding values and references 177
Copying value type variables and classes. 177
Understanding null values and nullable types. 183
Using nullable types ... i 185
Understanding the properties of nullable types 186
Using ref and out parameters.t 187
Creating ref parameters ...t 188
Creating out parameters.ouuiiiieiiiiii i, 188
How computer memoryisorganized...................cciiiiia.. 190
Using the stack andtheheap 192
The System.Object class, 193
BOXING . . oot 194

UNDOXING oo 194

Castingdatasafely 196
The is Operator. ...t 196
Theasoperatoro i 197

SUMIMATY. .« ottt e e e e e e e e 199

Quick reference.o 199

Chapter 9 Creating value types with enumerations
and structures 201

Working with enumerations.......... i i 201
Declaring an enumeration ...t 202
Using an enumeration.oouieeeiiiiiiien. 202
Choosing enumeration literal values 203
Choosing an enumeration’s underlyingtype 204

Working with structures 206
Declaring astructure. ... 208
Understanding differences between structures and classes 209
Declaring structure variables.............., 210
Understanding structure initialization 211
Copying structure variables 215

SUMMATY. « ottt et e e 219

Quick reference. 219

Chapter 10 Using arrays 221

Declaring and creatinganarray.............coouiiiiiiineennnnnn. 221
Declaring array variables. o o 221
Creatinganarray instance ..., 222

Populating and usinganarraycooiiiiiiiiiiii 223
Creating an implicitly typed array............... ...t 224
Accessing an individual array element............ 225
Iterating throughanarray oo it 225

Passing arrays as parameters and return values for a method . ..227

COPYING @ITAYS. . . ettt et ettt e e e e 228

Contents

ix

X

Contents

Using multidimensional arrays. ..., 230

Creatingjagged arrayscoouuiiiie e, 231

SUMMATY. et e e et 241

Quick reference. 242

Chapter 11 Understanding parameter arrays 243
Overloading—a recapo oo 243

Using array arguments.oottni e 244
Declaringaparamsarray ..o, 245

Using params object[]....... ... 247

USINg @ params array.c.oouunuuieeeennniieeeen.. 249

Comparing parameter arrays and optional parameters 252

SUMIMANY. .« et e e 254

Quick reference. 254

Chapter 12 Working with inheritance 255
What is inheritance?. 255

Using inheritance 256

The System.Object class revisited 258

Calling base-class constructors..................... ..., 258

ASSIgNING Classesttt 259

Declaringnew methods i i 261

Declaring virtual methodsol 262

Declaring override methods..............., 263

Understanding protected access, 265

Understanding extension methods..................... 271

SUMMATY. .« ettt et e e e e e e e 275

Quick reference. ... 276

Chapter 13 Creating interfaces and defining abstract classes 277
Understanding interfaces i 277
Defininganinterface.......... i i 278

Implementing aninterface................ 279

Referencing a class through its interface. 280

Working with multiple interfaces 281
Explicitly implementing aninterface, 282
Interface restrictions 283
Defining and using interfaces 284
Abstract classes. 293
Abstract methods. 295
Sealed classes. 295
Sealed methods ... 295
Implementing and using an abstractclass 296
SUMMIAIY. .« ettt e e e e e e e e e e 302
Quick reference. 303
Chapter 14 Using garbage collection and resource management 305
The life and timesof anobject........ L. 305
Writing destructors 306
Why use the garbage collector? 308
How does the garbage collectorwork?....................... 310
Recommendations. i 310
Resource managementiiiiii 311
Disposal methods. 311
Exception-safe disposal. 312
The using statement and the IDisposable interface............. 312
Calling the Dispose method from a destructor................. 314
Implementing exception-safe disposal 316
SUMMATY. .« ottt e e 325
Quick reference. ... 325
PART IlI DEFINING EXTENSIBLE TYPES WITH C#
Chapter 15 Implementing properties to access fields 329
Implementing encapsulation by using methods..................... 329
What are properties?t e 331

Contents

xi

USiNg properties. 333

Read-only properties. ... 334
Write-only properties 334
Property accessibility. 335
Understanding the property restrictions 336
Declaring interface properties 337
Replacing methods with properties 339
Generating automatic properties. o o i i 343
Initializing objects by using properties. 345
SUMIMATY. .« ottt e e e e e e e 349
Quick reference.o 350
Chapter 16 Using indexers 353
Whatisanindexer?. ... i 353
An example that doesn't use indexers........................ 353

The same example using indexersccoiiuuo... 355
Understanding indexer accessors............c.ouviiieenen... 357
Comparing indexersand arrays.cooeiiiiinneee... 358
Indexers ininterfaces....... 360
Using indexers in a Windows application........................... 361
SUMMAATY. .« o e e e e 367
Quick reference. 368
Chapter 17 Introducing generics 369
The problem with the objecttypeccooi ... 369
The generics solution. ... i 373
Generics vs. generalized classes i 375
Generics and constraints. o 375
Creatinga generic class. ...t 376
The theory of binarytrees i it 376
Building a binary tree class by using generics 379
Creatingagenericmethod i 389

xii Contents

Defining a generic method to build a binary tree.............. 389

Variance and genericinterfaces......... i 391
Covariantinterfaces. i 393
Contravariantinterfaces i 395

SUMIMATY. .« ottt e e e e e e 397

Quick reference.t 397

Chapter 18 Using collections 399

What are collection classes? il 399
The List<T> collectionclass 401
The LinkedList<T> collectionclass.ot 403
The Queue<T> collectionclass, 404
The Stack<T> collectionclass.t 405
The Dictionary<TKey, TValue> collectionclass................. 407
The SortedList<TKey, TValue> collectionclass 408
The HashSet<T> collectionclass 409

Using collection initializers o i i 411

The Find methods, predicates, and lambda expressions.............. 411
The forms of lambda expressions 413

Comparing arrays and collectionso o 415
Using collection classesto play cards. 416

SUMMATY. .« ot e 420

Quick reference. 420

Chapter 19 Enumerating collections 423

Enumerating the elements in a collection 423
Manually implementing an enumerator 425
Implementing the /Enumerable interface 429

Implementing an enumerator by using an iterator 431
Asimpleiterator. ... 432

Defining an enumerator for the Tree<TItem> class by
using aniterator. 434

Contents Xxiii

SUMIMATY. .« ottt e e e e e e e 436

Quick reference.ot 437

Chapter 20 Decoupling application logic and handling events 439

Understanding delegates 440
Examples of delegates in the .NET Framework class library. 441
The automated factory scenario................ccoviinn... 443
Implementing the factory control system without using
delegates. 443
Implementing the factory by using a delegate 444
Declaring and using delegates 447
Lambda expressions and delegates. i 455
Creating a method adapter, 455
Enabling notifications by usingevents 456
Declaringanevent. i 456
Subscribingtoanevent......... .. i 457
Unsubscribing fromanevent.............. L. 457
Raisinganevent......... ... 458
Understanding user interfaceevents, 458
USING @VENTS .« .\ttt et e e 460
SUMMATY. .« ettt e 466
Quick reference. 466

Chapter 21 Querying in-memory data by using

query expressions 469
What is LINQ? 469
Using LINQ in a C# application i, 470

Selectingdata. ... 472
Filteringdata. ... 474
Ordering, grouping, and aggregatingdata 475
Joiningdata. ... 477
Using query operators.oouuutieeeeennniiiieeann. 479
Querying data in Tree<Tltem> objects. 481
LINQ and deferred evaluation............................... 487

xiv Contents

SUMIMATY. .« ottt e e e e e e e 491

Quick reference.o 491
Chapter 22 Operator overloading 493
Understanding operatorsoiiiii 493
Operator constraints et 494
Overloaded operators.ooiiiiiiee i 494
Creating symmetricoperators.covviiiiiineen... 496
Understanding compound assignment evaluation................... 498
Declaring increment and decrement operators 499
Comparing operators in structures and classes. 500
Defining operator pairs ... 500
Implementing operators 501
Understanding conversion operatorsooiiieeiinn.. 508
Providing built-in conversions............o 508
Implementing user-defined conversion operators 509
Creating symmetric operators, revisited 510
Writing conversion operators ..., 511
SUMMATY. .« ottt e e e e e e e 513
Quick reference. 514
PART IV BUILDING UNIVERSAL WINDOWS PLATFORM APPLICA-
TIONS WITH C#
Chapter 23 Improving throughput by using tasks 517
Why perform multitasking by using parallel processing? 517
The rise of the multicore processor 518

Implementing multitasking by using the Microsoft .NET Framework. . .519

Tasks, threads, and the ThreadPool. 520
Creating, running, and controlling tasks 521
Using the Task class to implement parallelism 524
Abstracting tasks by using the Parallel class. 536
When not to use the Parallel/ class 541

Contents

Xv

xvi

Contents

Canceling tasks and handling exceptions. 543
The mechanics of cooperative cancellation 543
Using continuations with canceled and faulted tasks........... 556

SUMMATY. ..o 557

Quick reference.o 557

Chapter 24 Improving response time by performing
asynchronous operations 559

Implementing asynchronous methods............................. 560
Defining asynchronous methods: The problem................ 560
Defining asynchronous methods: The solution 564
Defining asynchronous methods that return values 569
Asynchronous method gotchas. 570
Asynchronous methods and the Windows Runtime APIs. 572

Using PLINQ to parallelize declarative data access................... 575
Using PLINQ to improve performance while iterating
through a collection o i 576
Cancelinga PLINQ QUery ...t 580

Synchronizing concurrent accesstodata........... ... 581
Lockingdata. ... 584
Synchronization primitives for coordinating tasks.............. 584
Canceling synchronization................ 587
The concurrent collectionclasses 587
Using a concurrent collection and a lock to implement
thread-safe dataaccess.coo i 588

SUMMATY. .« et e e e e e e e e e e 598

Quick reference. 599

Chapter 25 Implementing the user interface for a Universal
Windows Platform app 601
Features of a Universal Windows Platformapp...................... 602
Using the Blank App template to build a Universal Windows
Platform app.o 605

Implementing a scalable user interface....................... 607

Applying stylestoa Ul ... 638
SUMMATY. et e e e e e e e e e 649
Quick reference. 649

Chapter 26 Displaying and searching for data in a Universal

Windows Platform app 651
Implementing the Model-View-ViewModel pattern 651
Displaying data by using data binding........................ 652
Modifying data by using data binding. 659
Using data binding with a ComboBox control 663
Creatinga ViewModel. i 665
Adding commands to a ViewModel............ 669
Searching fordatausingCortanac i, 680
Providing a vocal response to voice commands 692
SUMMIAIY. et e e e e e e e e e e e e e e 695
Quick reference. 696

Chapter 27 Accessing a remote database from a Universal

Windows Platform app 697
Retrieving data fromadatabase 698
Creatinganentitymodel il 703
Creating and using a REST web service 712
Inserting, updating, and deleting data through a REST web service. ...728
Reporting errors and updating the Ul 738
SUMMATY. .« ettt e e e e e e e 746
Quick reference. ... 747
Index 749

Contents xvii

Introduction

M icrosoft Visual C# is a powerful but simple language aimed primarily at develop-
ers who create applications built on the Microsoft .NET Framework. Visual C#
inherits many of the best features of C++ and Microsoft Visual Basic, but few of the
inconsistencies and anachronisms, which results in a cleaner and more logical lan-
guage. C# 1.0 made its public debut in 2001. With the advent of C# 2.0 with Visual
Studio 2005, several important new features were added to the language, including
generics, iterators, and anonymous methods. C# 3.0, which was released with Visual
Studio 2008, added extension methods, lambda expressions, and most famously of

all, the Language-Integrated Query facility, or LINQ. C# 4.0, was released in 2010 and
provided further enhancements that improved its interoperability with other languages
and technologies. These features included support for named and optional arguments
and the dynamic type, which indicates that the language runtime should implement
late binding for an object. An important addition to the .NET Framework, and released
concurrently with C# 4.0, were the classes and types that constitute the Task Parallel
Library (TPL). Using the TPL, you can build highly scalable applications that can take full
advantage of multicore processors. C# 5.0 added native support for asynchronous task-
based processing through the async method modifier and the await operator. C# 6.0

is an incremental upgrade with features that are intended to make life simpler for de-
velopers. These features include items such as string interpolation (you need never use
String.Format again!), enhancements to the ways in which properties are implemented,
expression-bodied methods, and others. They are all described in this book.

Another important event for Microsoft is the launch of Windows 10. This new ver-
sion of Windows combines the best (and most loved) aspects of previous versions of
the operating system and supports highly interactive applications that can share data
and collaborate as well as connect to services running in the cloud. The key notion in
Windows 10 is Universal Windows Platform (UWP) apps—applications designed to run
on any Windows 10 device, whether a fully fledged desktop system, a laptop, a tablet, a
smartphone, or even an loT (Internet of Things) device with limited resources. Once you
have mastered the core features of C#, gaining the skills to build applications that can
run on all these platforms is important.

Voice activation is another feature that has come to the fore, and Windows 10
includes Cortana, your personal voice-activated digital assistant. You can integrate
your own apps with Cortana to allow them to participate in data searches and other
operations. Despite the complexity normally associated with natural-language speech
analysis, it is surprisingly easy to enable your apps to respond to Cortana’s requests,
and | cover this in Chapter 26. Additionally, the cloud has become such an important

Xix

element in the architecture of many systems, ranging from large-scale enterprise ap-
plications to mobile apps running on users smartphones, that | decided to focus on this
aspect of development in the final chapter of the book.

The development environment provided by Visual Studio 2015 makes these features
easy to use, and the many new wizards and enhancements included in the latest version
of Visual Studio can greatly improve your productivity as a developer. | hope you have
as much fun working through this book as | had writing it!

Who should read this book

This book assumes that you are a developer who wants to learn the fundamentals of
programming with C# by using Visual Studio 2015 and the .NET Framework version
4.6. By the time you complete this book, you will have a thorough understanding of C#
and will have used it to build responsive and scalable applications that can run on the
Windows 10 operating system.

Who should not read this book

This book is aimed at developers new to C# but not completely new to program-
ming. As such, it concentrates primarily on the C# language. This book is not intended
to provide detailed coverage of the multitude of technologies available for build-

ing enterprise-level applications for Windows, such as ADO.NET, ASP.NET, Windows
Communication Foundation, or Windows Workflow Foundation. If you require more
information on any of these items, you might consider reading some of the other titles
available from Microsoft Press.

Organization of this book

This book is divided into four sections:

m Partl, “Introducing Microsoft Visual C# and Microsoft Visual Studio 2015,"
provides an introduction to the core syntax of the C# language and the Visual
Studio programming environment.

m Part ll, "Understanding the C# object model,” goes into detail on how to create
and manage new types in C# and how to manage the resources referenced by
these types.

XX Introduction

m Part lll, “Defining extensible types with C#" includes extended coverage of the
elements that C# provides for building types that you can reuse across multiple

applications.

m Part IV, "Building Universal Windows Platform applications with C#" describes
the universal Windows 10 programming model and how you can use C# to build
interactive applications for this new model.

Finding your best starting point in this book

This book is designed to help you build skills in a number of essential areas. You can
use this book if you are new to programming or if you are switching from another
programming language such as C, C++, Java, or Visual Basic. Use the following table

to find your best starting point.

If you are

New to object-oriented programming

Familiar with procedural programming
languages such as C but new to C#

Migrating from an object-oriented
language such as C++ or Java

Follow these steps

1.

Install the practice files as described in the
upcoming section, “Code samples.”

Work through the chapters in Parts |, I, and Il
sequentially.

Complete Part IV as your level of experience and
interest dictates.

Install the practice files as described in the
upcoming section, “Code samples.”

Skim the first five chapters to get an overview of
C# and Visual Studio 2015, and then concentrate
on Chapters 6 through 22.

Complete Part IV as your level of experience and
interest dictates.

Install the practice files as described in the
upcoming section, “Code samples.”

Skim the first seven chapters to get an overview of
C# and Visual Studio 2015, and then concentrate
on Chapters 8 through 22.

For information about building Universal
Windows Platform applications, read Part IV.

Introduction

If you are Follow these steps

Switching from Visual Basic to C# 1. Install the practice files as described in the
upcoming section, “Code samples.”

2. Work through the chapters in Parts |, I, and IlI
sequentially.

3. For information about building Universal
Windows Platform applications, read Part IV.

4. Read the Quick Reference sections at the end of
the chapters for information about specific C#
and Visual Studio 2015 constructs.

Referencing the book after working through | 1. Use the index or the table of contents to find
the exercises information about particular subjects.

2. Read the Quick Reference sections at the end of
each chapter to find a brief review of the syntax
and techniques presented in the chapter.

Most of the book’s chapters include hands-on samples that let you try out the
concepts you just learned. No matter which sections you choose to focus on, be sure to
download and install the sample applications on your system.

Conventions and features in this book

This book presents information by using conventions designed to make the information
readable and easy to follow.

m Each exercise consists of a series of tasks, presented as numbered steps (1, 2,
and so on) listing each action you must take to complete the exercise.

m Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

m Text that you type (apart from code blocks) appears in bold.

m A plussign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

xxii Introduction

System requirements

You will need the following hardware and software to complete the practice exercises in
this book:

® Windows 10 Professional (or above) edition.

m Visual Studio Community 2015 edition, Visual Studio Professional 2015 edition,
or Visual Studio Enterprise 2015 edition.

v Important You must install the Windows 10 developer tools with
Visual Studio 2015.

m Computer that has a 1.6 GHz or faster processor (2 GHz recommended).

m 1 GB (32-bit) or 2 GB (64-bit) RAM (add 512 MB if running in a virtual machine).
m 10 GB of available hard disk space.

m 5400 RPM hard-disk drive.

m DirectX 9—capable video card running at 1024 x 768 or higher resolution dis-
play.

m DVD-ROM drive (if installing Visual Studio from a DVD).
m Internet connection to download software or chapter examples.

Depending on your Windows configuration, you might require local Administrator
rights to install or configure Visual Studio 2015.

You also need to enable developer mode on your computer to be able to create
and run UWP apps. For details on how to do this, see “Enable Your Device for Develop-
ment,” at https.//msdn.microsoft.com/library/windows/apps/dn706236.aspx.

Code samples

Most of the chapters in this book include exercises with which you can interactively try
out new material learned in the main text. You can download all the sample projects, in
both their preexercise and postexercise formats, from the following page:

http.//aka.ms/sharp8e/companioncontent

Introduction

xxiii

Note In addition to the code samples, your system should have Visual Studio
2015 installed. If available, install the latest service packs for Windows and

Visual Studio.

Installing the code samples

Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book.

1. Unzip the CSharpSBS.zip file that you downloaded from the book's website,
extracting the files into your Documents folder.

2. If prompted, review the end-user license agreement. If you accept the terms,
select the Accept option, and then click Next.

Note If the license agreement doesn't appear, you can access it from the
same webpage from which you downloaded the CSharpSBS.zip file.

Using the code samples

Each chapter in this book explains when and how to use any code samples for that
chapter. When it's time to use a code sample, the book will list the instructions for how
to open the files.

v Important Many of the code samples have dependencies on NuGet pack-
ages that are not included with the code. These packages are downloaded
automatically the first time you build a project. As a result, if you open a
project and examine the code before doing a build, Visual Studio may report
a large number of errors for unresolved references. Building the project will
cause these references to be resolved, and the errors should disappear.

xxiv Introduction

For those of you who like to know all the details, here’s a list of the sample Visual
Studio 2015 projects and solutions, grouped by the folders where you can find them.
In many cases, the exercises provide starter files and completed versions of the same
projects that you can use as a reference. The completed projects for each chapter are
stored in folders with the suffix “- Complete”.

Project/Solution
Chapter 1

TextHello

Hello

Chapter 2

PrimitiveDataTypes

MathsOperators

Chapter 3
Methods

DailyRate

DailyRate Using Optional Parameters

Chapter 4

Selection

SwitchStatement

Chapter 5

WhileStatement

DoStatement

Description

This project gets you started. It steps through the creation
of a simple program that displays a text-based greeting.

This project opens a window that prompts the user for his
or her name and then displays a greeting.

This project demonstrates how to declare variables by us-
ing each of the primitive types, how to assign values to
these variables, and how to display their values in a
window.

This program introduces the arithmetic operators (+ - * /
%).

In this project, you'll reexamine the code in the
MathsOperators project and investigate how it uses meth-
ods to structure the code.

This project walks you through writing your own methods,
running the methods, and stepping through the method
calls by using the Visual Studio 2015 debugger.

This project shows you how to define a method that takes
optional parameters and call the method by using named
arguments.

This project shows you how to use a cascading if state-
ment to implement complex logic, such as comparing the
equivalence of two dates.

This simple program uses a switch statement to convert
characters into their XML representations.

This project demonstrates a while statement that reads
the contents of a source file one line at a time and displays
each line in a text box on a form.

This project uses a do statement to convert a decimal
number to its octal representation.

Introduction

XXV

Project/Solution
Chapter 6

MathsOperators

Chapter 7

Classes

Chapter 8

Parameters

Chapter 9

StructsAndEnums

Chapter 10
Cards

Chapter 11

ParamsArray

Chapter 12

Vehicles

ExtensionMethod

Chapter 13

Drawing

Drawing Using Interfaces

Xxvi Introduction

Description

This project revisits the MathsOperators project from
Chapter 2 and shows how various unhandled exceptions
can make the program fail. The try and catch keywords
then make the application more robust so that it no longer
fails.

This project covers the basics of defining your own classes,
complete with public constructors, methods, and private
fields. It also shows how to create class instances by using
the new keyword and how to define static methods and
fields.

This program investigates the difference between value
parameters and reference parameters. It demonstrates how
to use the ref and out keywords.

This project defines a struct type to represent a calendar
date.

This project shows how to use arrays to model hands of
cards in a card game.

This project demonstrates how to use the params keyword
to create a single method that can accept any number of
int arguments.

This project creates a simple hierarchy of vehicle classes
by using inheritance. It also demonstrates how to define a
virtual method.

This project shows how to create an extension method for
the int type, providing a method that converts an integer
value from base 10 to a different number base.

This project implements part of a graphical drawing pack-
age. The project uses interfaces to define the methods that
drawing shapes expose and implement.

This project acts as a starting point for extending the
Drawing project to factor common functionality for shape
objects into abstract classes.

Project/Solution

Chapter 14

GarbageCollectionDemo

Chapter 15

Drawing Using Properties

AutomaticProperties

Chapter 16

Indexers

Chapter 17

BinaryTree

BuildTree

Chapter 18

Cards

Chapter 19

BinaryTree

IteratorBinaryTree

Chapter 20

Delegates

Chapter 21

QueryBinaryTree

Description

This project shows how to implement exception-safe
disposal of resources by using the Dispose pattern.

This project extends the application in the Drawing project
developed in Chapter 13 to encapsulate data in a class by
using properties.

This project shows how to create automatic properties for a
class and use them to initialize instances of the class.

This project uses two indexers: one to look up a person'’s
phone number when given a name and the other to look
up a person’s name when given a phone number.

This solution shows you how to use generics to build a
type-safe structure that can contain elements of any type.

This project demonstrates how to use generics to imple-
ment a type-safe method that can take parameters of any

type.

This project updates the code from Chapter 10 to show
how to use collections to model hands of cards in a card
game.

This project shows you how to implement the generic
IEnumerator<T> interface to create an enumerator for the
generic Tree class.

This solution uses an iterator to generate an enumerator
for the generic Tree class.

This project shows how to decouple a method from the
application logic that invokes it by using a delegate. The
project is then extended to show how to use an event to
alert an object to a significant occurrence, and how to
catch an event and perform any processing required

This project shows how to use LINQ queries to retrieve data
from a binary tree object.

Introduction

XXVii

Project/Solution

Chapter 22

ComplexNumbers

Chapter 23

GraphDemo

Parallel GraphDemo

GraphDemo With Cancellation

ParallelLoop

Chapter 24

GraphDemo

PLINQ

CalculatePI

Chapter 25

Customers

Chapter 26

DataBinding

ViewModel

Cortana

xxviii Introduction

Description

This project defines a new type that models complex
numbers and implements common operators for this type.

This project generates and displays a complex graph
on a UWP form. It uses a single thread to perform the
calculations.

This version of the GraphDemo project uses the Parallel
class to abstract out the process of creating and managing
tasks.

This project shows how to implement cancellation to halt
tasks in a controlled manner before they have completed.

This application provides an example showing when you
should not use the Parallel class to create and run tasks.

This is a version of the GraphDemo project from Chapter
23 that uses the async keyword and the await operator
to perform the calculations that generate the graph data
asynchronously.

This project shows some examples of using PLINQ to query
data by using parallel tasks.

This project uses a statistical sampling algorithm to
calculate an approximation for pi. It uses parallel tasks.

This project implements a scalable user interface that can
adapt to different device layouts and form factors. The user
interface applies XAML styling to change the fonts and
background image displayed by the application.

This is a version of the Customers project that uses data
binding to display customer information retrieved from a
data source in the user interface. It also shows how to im-
plement the INotifyPropertyChanged interface so that the
user interface can update customer information and send
these changes back to the data source.

This version of the Customers project separates the user
interface from the logic that accesses the data source by
implementing the Model-View-ViewModel pattern.

This project integrates the Customers app with Cortana. A
user can issue voice commands to search for customers by
name.

Project/Solution Description
Chapter 27
Web Service This solution includes a web application that provides an
ASP.NET Web API web service that the Customers appli-
cation uses to retrieve customer data from a SQL Server
database. The web service uses an entity model created
with the Entity Framework to access the database.
Acknowledgments

Despite the fact that my name is on the cover, authoring a book such as this is far from
a one-man project. I'd like to thank the following people who have provided unstinting
support and assistance throughout this exercise.

First, Devon Musgrave at Microsoft Press, who awoke me from my interedition
slumber. (I was actually quite busy writing material for Microsoft Patterns & Practices
but managed to take a sabbatical to work on this edition of the book.) He prodded,
cajoled, and generally made sure | was aware of the imminent arrival of Windows 10
and Visual Studio 2015, drew up the contract, and made sure that | signed it in blood,
with agreed delivery dates!

Next, Jason Lee, my former underling and now immediate boss at Content Master
(it's a somewhat complicated story, but he seems to have found some interesting
photographic negatives | left lying carelessly around). He took on much of the initial
donkey work generating new screen shots and making sure that the code for the first
20 or so chapters was updated (and corrected) for this edition. If there are any errors, |
would like to point the finger at him, but of course any issues and mistakes are entirely
my responsibility for missing them during review.

| also need to thank Marc Young, who had the rather tedious task of examining my
code to make sure it stood a decent chance of compiling and running. His advice was
extremely useful.

Of course, like many programmers, | might understand the technology, but my
prose is not always as fluent or clear as it could be. | would like to show my gratitude
to John Pierce for correcting my grammar, fixing my speling, and generally making my
material much easier to understand.

Finally, | must thank my long-suffering wife, Diana, who thought | was going slowly
mad (maybe | was) when | started uttering peculiar phrases at my laptop to try to coax
Cortana into understanding my application code. She thought | was continually on the
phone to Orlando Gee (one of the sample customers used in the exercises toward the

Introduction XXix

XXX

end of the book) because | kept repeating his name quite loudly. Sadly, because of my
accent, Cortana kept thinking | was asking for Orlando T, Orlando Key, or even Orlando
Quay, so | subsequently changed the example to refer to Brian Johnson instead. At one
point | overheard a conversation Diana was having with our decorator, Jason (who was
painting our hallway at the time), about whether he would be able to convert one of
the bedrooms into a padded cell, such was her concern with my state of mind! Still, that
is now all water under the bridge, or “water under the breach” if you are Cortana trying
to recognize my hybrid Gloucestershire/Kentish mode of speech.

And finally, finally, my daughter Francesca would be frightfully upset if | didn't men-
tion her. Although she still lives at home, she is all grown up and now works for a soft-
ware development company in Cam, Gloucestershire (they didn't offer me any freebies,
so | am not going to mention their name).

Errata and book support

We've made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site at:

http://aka.ms/sharp8e/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

Introduction

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback is our most
valuable asset. Please tell us what you think of this book at:

http.//aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let's keep the conversation going! We're on Twitter: http://twitter.com/MicrosoftPress

Introduction Xxxi

Using decision statements

After completing this chapter, you will be able to:

m Declare Boolean variables.

m Use Boolean operators to create expressions whose outcome is either true or false.
m Write if statements to make decisions based on the result of a Boolean expression.
m Write switch statements to make more complex decisions.

Chapter 3, "Writing methods and applying scope,” shows how to group related statements into
methods. It also demonstrates how to use parameters to pass information to a method and how to
use return statements to pass information out of a method. Dividing a program into a set of discrete
methods, each designed to perform a specific task or calculation, is a necessary design strategy. Many
programs need to solve large and complex problems. Breaking up a program into methods helps you
to understand these problems and focus on how to solve them, one piece at a time.

The methods in Chapter 3 are very straightforward, with each statement executing sequentially
after the previous statement completes. However, to solve many real-world problems, you also need
to be able to write code that selectively performs different actions and that takes different paths
through a method depending on the circumstances. In this chapter, you'll learn how to accomplish
this task.

Declaring Boolean variables

In the world of C# programming (unlike in the real world), everything is black or white, right or
wrong, true or false. For example, if you create an integer variable called x, assign the value 99 to it,
and then ask whether x contains the value 99, the answer is definitely true. If you ask if x is less than
10, the answer is definitely false. These are examples of Boolean expressions. A Boolean expression
always evaluates to true or false.

87

Note The answers to these questions are not necessarily definitive for all other program-
ming languages. An unassigned variable has an undefined value, and you cannot, for
example, say that it is definitely less than 10. Issues such as this one are a common source
of errors in C and C++ programs. The Microsoft Visual C# compiler solves this problem
by ensuring that you always assign a value to a variable before examining it. If you try to
examine the contents of an unassigned variable, your program will not compile.

Visual C# provides a data type called bool. A bool variable can hold one of two values: true or false.
For example, the following three statements declare a bool variable called areYouReady, assign true to
that variable, and then write its value to the console:

bool areYouReady;
areYouReady = true;
Console.WriteLine(areYouReady); // writes True to the console

Using Boolean operators

88

A Boolean operator is an operator that performs a calculation whose result is either true or false. C#
has several very useful Boolean operators, the simplest of which is the NOT operator, represented by
the exclamation point (!). The / operator negates a Boolean value, yielding the opposite of that value.
In the preceding example, if the value of the variable areYouReady is true, the value of the expression
lareYouReady is false.

Understanding equality and relational operators

Two Boolean operators that you will frequently use are equality (==) and inequality (/=). These are
binary operators with which you can determine whether one value is the same as another value of
the same type, yielding a Boolean result. The following table summarizes how these operators work,
using an int variable called age as an example.

Operator Meaning Example Outcome if age is 42
== Equal to age == 100 false
= Not equal to age !=0 true

Don't confuse the equality operator == with the assignment operator =. The expression x==y com-
pares x with y and has the value true if the values are the same. The expression x=y assigns the value
of y to x and returns the value of y as its result.

Closely related to == and /= are the relational operators. You use these operators to find out
whether a value is less than or greater than another value of the same type. The following table shows
how to use these operators.

Introducing Microsoft Visual C# and Microsoft Visual Studio 2015

Operator

Meaning

Less than

Less than or equal to
Greater than

Greater than or equal to

Example
age < 21
age <= 18
age > 16

age >= 30

Outcome if age is 42
false
false
true

true

Understanding conditional logical operators

C# also provides two other binary Boolean operators: the logical AND operator, which is represented

by the && symbol, and the logical OR operator, which is represented by the || symbol. Collectively,

these are known as the conditional logical operators. Their purpose is to combine two Boolean

expressions or values into a single Boolean result. These operators are similar to the equality and
relational operators in that the value of the expressions in which they appear is either true or false,

but they differ in that the values on which they operate must also be either true or false.

The outcome of the && operator is true if and only if both of the Boolean expressions it's evaluat-
ing are true. For example, the following statement assigns the value true to validPercentage if and only

if the value of percent is greater than or equal to 0 and the value of percent is less than or equal to

100:

bool validPercentage;
(percent >= 0) && (percent <= 100);

validPercentage =

Tip A common beginner’s error is to try to combine the two tests by naming the percent

variable only once, like this:

percent >= 0 & <= 100 // this statement will not compile

Using parentheses helps to avoid this type of mistake and also clarifies the purpose of the

expression. For example, compare

validPercentage

and

validPercentage

Both expressions return the same value because the precedence of the && operator is less

percent >= 0 & percent <= 100

(percent >= 0) && (percent <= 100)

than that of >= and <=. However, the second expression conveys its purpose in a more

readable manner.

Using decision statements

89

20

The outcome of the || operator is true if either of the Boolean expressions it evaluates is true. You
use the || operator to determine whether any one of a combination of Boolean expressions is true. For
example, the following statement assigns the value true to invalidPercentage if the value of percent is
less than 0 or the value of percent is greater than 100:

bool invalidPercentage;
invalidPercentage = (percent < 0) || (percent > 100);

Short circuiting

The && and || operators both exhibit a feature called short circuiting. Sometimes, it is not necessary to
evaluate both operands when ascertaining the result of a conditional logical expression. For example,
if the left operand of the && operator evaluates to false, the result of the entire expression must be
false, regardless of the value of the right operand. Similarly, if the value of the left operand of the ||
operator evaluates to true, the result of the entire expression must be true, irrespective of the value of
the right operand. In these cases, the && and || operators bypass the evaluation of the right operand.
Here are some examples:

(percent >= 0) & & (percent <= 100)

In this expression, if the value of percent is less than 0, the Boolean expression on the left side of
&& evaluates to false. This value means that the result of the entire expression must be false, and the
Boolean expression to the right of the && operator is not evaluated.

(percent < 0) || (percent > 100)

In this expression, if the value of percent is less than 0, the Boolean expression on the left side of
|| evaluates to true. This value means that the result of the entire expression must be true, and the
Boolean expression to the right of the || operator is not evaluated.

If you carefully design expressions that use the conditional logical operators, you can boost the
performance of your code by avoiding unnecessary work. Place simple Boolean expressions that can
be evaluated easily on the left side of a conditional logical operator, and put more complex expres-
sions on the right side. In many cases, you will find that the program does not need to evaluate the
more complex expressions.

Summarizing operator precedence and associativity

The following table summarizes the precedence and associativity of all the operators you have
learned about so far. Operators in the same category have the same precedence. The operators in
categories higher up in the table take precedence over operators in categories lower down.

Category Operators Description Associativity
Primary O Precedence override Left
++ Post-increment

-- Post-decrement

Introducing Microsoft Visual C# and Microsoft Visual Studio 2015

Category
Unary

Multiplicative

Additive

Relational

Equality

Conditional AND
Conditional OR

Assignment

Operators
!

+

++

Description

Logical NOT

Returns the value of the operand unchanged
Returns the value of the operand negated
Pre-increment

Pre-decrement

Multiply

Divide

Division remainder (modulus)

Addition

Subtraction

Less than

Less than or equal to
Greater than

Greater than or equal to
Equal to

Not equal to

Conditional AND
Conditional OR

Assigns the right-hand operand to the left and
returns the value that was assigned

Associativity

Left

Left

Left

Left

Left

Left
Left

Right

Notice that the && operator and the || operator have a different precedence: && is higher than ||.

Using if statements to make decisions

In a method, when you want to choose between executing two different statements depending on

the result of a Boolean expression, you can use an if statement.

Understanding if statement syntax

The syntax of an if statement is as follows (if and else are C# keywords):

if (booleanExpression)

statement-1;

else

statement-2;

If booleanExpression evaluates to true, statement-1 runs; otherwise, statement-2 runs. The
else keyword and the subsequent statement-2 are optional. If there is no else clause and the

booleanExpression is false, execution continues with whatever code follows the if statement. Also,

Using decision statements

91

notice that the Boolean expression must be enclosed in parentheses; otherwise, the code will not
compile.

For example, here's an if statement that increments a variable representing the second hand of
a stopwatch. (Minutes are ignored for now.) If the value of the seconds variable is 59, it is reset to 0;
otherwise, it is incremented by using the ++ operator:

int seconds;

if (seconds == 59)
seconds = 0;
else
seconds++;

Boolean expressions only, please!

The expression in an if statement must be enclosed in parentheses. Additionally, the expression
must be a Boolean expression. In some other languages—notably C and C++—you can write an
integer expression, and the compiler will silently convert the integer value to true (nonzero) or
false (0). C# does not support this behavior, and the compiler reports an error if you write such
an expression.

If you accidentally specify the assignment operator (=) instead of the equality test operator
(==) in an if statement, the C# compiler recognizes your mistake and refuses to compile your
code, such as in the following example:

int seconds;
if (seconds = 59) // compile-time error
if (seconds == 59) // ok

Accidental assignments were another common source of bugs in C and C++ programs, which
would silently convert the value assigned (59) to a Boolean expression (with anything nonzero
considered to be true), with the result being that the code following the if statement would be
performed every time.

Incidentally, you can use a Boolean variable as the expression for an if statement, although it
must still be enclosed in parentheses, as shown in this example:

bool inWord;
if (inWord == true) // ok, but not commonly used

if (inWord) // more common and considered better style

92 Introducing Microsoft Visual C# and Microsoft Visual Studio 2015

Using blocks to group statements

Notice that the syntax of the if statement shown earlier specifies a single statement after the

if (booleanExpression) and a single statement after the else keyword. Sometimes, you'll want to
perform more than one statement when a Boolean expression is true. You could group the state-
ments inside a new method and then call the new method, but a simpler solution is to group the
statements inside a block. A block is simply a sequence of statements grouped between an opening
brace and a closing brace.

In the following example, two statements that reset the seconds variable to 0 and increment the
minutes variable are grouped inside a block, and the entire block executes if the value of seconds is
equal to 59:

int seconds = 0;
int minutes = 0

if (seconds == 59)

{
seconds = 0;
minutes++;

}

else

{
seconds++;

}

Important If you omit the braces, the C# compiler associates only the first statement
(seconds = 0;) with the if statement. The subsequent statement (minutes++,) will not be
recognized by the compiler as part of the if statement when the program is compiled.
Furthermore, when the compiler reaches the else keyword, it will not associate it with the
previous if statement; instead, it will report a syntax error. Therefore, it is good practice to
always define the statements for each branch of an if statement within a block, even if a
block consists of only a single statement. It might save you some grief later if you want to
add additional code.

A block also starts a new scope. You can define variables inside a block, but they will disappear at
the end of the block. The following code fragment illustrates this point:

if (...)
{
int myVar = 0;
... // myVar can be used here
} // myVar disappears here
else
{

// myVar cannot be used here

}

// myVar cannot be used here

Using decision statements 93

94

Cascading if statements

You can nest if statements inside other if statements. In this way, you can chain together a sequence
of Boolean expressions, which are tested one after the other until one of them evaluates to true. In
the following example, if the value of day is 0, the first test evaluates to true and dayName is assigned
the string “Sunday”. If the value of day is not O, the first test fails and control passes to the else clause,
which runs the second if statement and compares the value of day with 1. The second if statement
executes only if the first test is false. Similarly, the third if statement executes only if the first and
second tests are false.

if (day == 0)
{

dayName = "Sunday";
}
else if (day == 1)
{

dayName = "Monday";
}
else if (day == 2)
{

dayName = "Tuesday";
}
else if (day == 3)
{

dayName = "Wednesday";
}
else if (day == 4)
{

dayName = "Thursday";
}
else if (day == 5)
{

dayName = "Friday";
}
else if (day == 6)
{

dayName = "Saturday";
}
else
{

dayName = "unknown";
}

In the following exercise, you'll write a method that uses a cascading if statement to compare two
dates.
Write if statements

1. Start Microsoft Visual Studio 2015 if it is not already running.

2. Open the Selection project, which is located in the \Microsoft Press\VCSBS\Chapter 4\
Selection folder in your Documents folder.

Introducing Microsoft Visual C# and Microsoft Visual Studio 2015

3.

5.

6.

7.

On the Debug menu, click Start Debugging.

Visual Studio 2015 builds and runs the application. The form displays two DatePicker controls,
called firstDate and secondDate. Both controls display the current date.

Click Compare.

The following text appears in the text box in the lower half of the window:

firstDate
firstDate
firstDate
firstDate
firstDate
firstDate

secondDate : False
secondDate : True
secondDate : False
secondDate : False
secondDate : True
secondDate : True

The Boolean expression, firstDate == secondDate, should be true because both firstDate and

secondDate are set to the current date. In fact, only the less-than operator and the greater-
than-or-equal-to operator seem to be working correctly. The following image shows the

application running.

Selection

First:

Second:

| 24 May

2015 |

| 24 May

2015 |

Compare

firstDate == secondDate : False
firstDate = secondDate : True
firstDate < secondDate : False
firstDate <= secondDate : False
firstDate > secondDate : True
firstDate >= secondDate : True

Return to Visual Studio 2015. On the Debug menu, click Stop Debugging.

Display the code for the MainPage.xaml.cs file in the Code and Text Editor window.

Locate the compareClick method, which should look like this:

Using decision statements

95

10.

private void compareClick(object sender, RoutedEventArgs e)

{
int diff = dateCompare(firstDate.Date.LocalDateTime, secondDate.Date.LocalDateTime);
info.Text = "";
show("firstDate == secondDate", diff == 0);
show("firstDate != secondDate", diff != 0);
show("firstDate < secondDate", diff < 0);
show("firstDate <= secondDate", diff <= 0);
show("firstDate > secondDate", diff > 0);
show("firstDate >= secondDate", diff >= 0);
}

This method runs whenever the user clicks the Compare button on the form. The expressions
firstDate.Date.LocalDateTime and secondDate.Date.LocalDateTime hold DateTime values; they
represent the dates displayed in the firstDate and secondDate controls on the form elsewhere
in the application. The DateTime data type is just another data type, like int or float, except
that it contains subelements with which you can access the individual pieces of a date, such as
the year, month, or day.

The compareClick method passes the two DateTime values to the dateCompare method. The
purpose of this method is to compare dates and return the int value 0 if they are the same,
-1 if the first date is less than the second, and +1 if the first date is greater than the second.
A date is considered greater than another date if it comes after it chronologically. You will
examine the dateCompare method in the next step.

The show method displays the results of the comparison in the info text box control in the
lower half of the form.

Locate the dateCompare method, which should look like this:

private int dateCompare(DateTime TeftHandSide, DateTime rightHandSide)
{

// TO DO

return 42;

3

This method currently returns the same value whenever it is called—rather than 0, -1, or +1—
regardless of the values of its parameters. This explains why the application is not working as
expected. You need to implement the logic in this method to compare two dates correctly.

Remove the // TO DO comment and the return statement from the dateCompare method.

Add the following statements shown in bold to the body of the dateCompare method:

private int dateCompare(DateTime TeftHandSide, DateTime rightHandSide)
{

int result = 0;

if (leftHandSide.Year < rightHandSide.Year)
{
result = -1;
}
else if (leftHandSide.Year > rightHandSide.Year)

Introducing Microsoft Visual C# and Microsoft Visual Studio 2015

result = 1;

Note Don't try to build the application yet. The dateCompare method is not
complete and the build will fail.

If the expression leftHandSide.Year < rightHandSide.Year is true, the date in leftHandSide
must be earlier than the date in rightHandSide, so the program sets the result variable to —1.
Otherwise, if the expression leftHandSide.Year > rightHandSide.Year is true, the date in
leftHandSide must be later than the date in rightHandSide, and the program sets the result
variable to 1.

If the expression leftHandSide.Year < rightHandSide.Year is false and the expression
leftHandSide.Year > rightHandSide.Year is also false, the Year property of both dates must
be the same, so the program needs to compare the months in each date.

11. Add the following statements shown in bold to the body of the dateCompare method. Type
them after the code you entered in the preceding step:

private int dateCompare(DateTime TeftHandSide, DateTime rightHandSide)

{
else if (leftHandSide.Month < rightHandSide.Month)
{
result = -1;
}
else if (leftHandSide.Month > rightHandSide.Month)
{
result = 1;
}
}

These statements compare months following a logic similar to that used to compare years in
the preceding step.

If the expression leftHandSide.Month < rightHandSide.Month is false and the expression
leftHandSide.Month > rightHandSide.Month is also false, the Month property of both dates
must be the same, so the program finally needs to compare the days in each date.

12. Add the following statements to the body of the dateCompare method after the code you

entered in the preceding two steps:

private int dateCompare(DateTime TeftHandSide, DateTime rightHandSide)

{
else if (leftHandSide.Day < rightHandSide.Day)
{
result = -1;
}

Using decision statements 97

98

13.

14

15.

16.

else if (leftHandSide.Day > rightHandSide.Day)
{
result = 1;

}

else

{
result = 0;

}

return result;

}
You should recognize the pattern in this logic by now.

If leftHandSide.Day < rightHandSide.Day and leftHandSide.Day > rightHandSide.Day both are
false, the value in the Day properties in both variables must be the same. The Month values
and the Year values must also be identical, respectively, for the program logic to have reached
this point, so the two dates must be the same, and the program sets the value of result to 0.

The final statement returns the value stored in the result variable.
On the Debug menu, click Start Debugging.

The application is rebuilt and runs.

Click Compare.

The following text appears in the text box:

firstDate == secondDate : True

firstDate != secondDate : False

firstDate < secondDate: False

firstDate <= secondDate: True

firstDate > secondDate: False

firstDate >= secondDate: True

These are the correct results for identical dates.

Use the DatePicker controls to select a later date for the second date and then click Compare.
The following text appears in the text box:

firstDate == secondDate: False

firstDate != secondDate: True

firstDate < secondDate: True

firstDate <= secondDate: True

firstDate > secondDate: False

firstDate >= secondDate: False

Again, these are the correct results when the first date is earlier than the second date.

Test some other dates, and verify that the results are as you would expect. Return to Visual
Studio 2015 and stop debugging when you have finished.

Introducing Microsoft Visual C# and Microsoft Visual Studio 2015

Comparing dates in real-world applications

Now that you have seen how to use a rather long and complicated series of if and else state-
ments, | should mention that this is not the technique you would employ to compare dates in

a real-world application. If you look at the dateCompare method from the preceding exercise,
you will see that the two parameters, leftHandSide and rightHandSide, are DateTime values. The
logic you have written compares only the date part of these parameters, but they also contain
a time element that you have not considered (or displayed). For two DateTime values to be
considered equal, they should have not only the same date but also the same time. Comparing
dates and times is such a common operation that the DateTime type actually has a built-in
method called Compare for doing just that: it takes two DateTime arguments and compares
them, returning a value indicating whether the first argument is less than the second, in which
case the result will be negative; whether the first argument is greater than the second, in which
case the result will be positive; or whether both arguments represent the same date and time, in
which case the result will be 0.

Using switch statements

Sometimes when you write a cascading if statement, each of the if statements look similar because
they all evaluate an identical expression. The only difference is that each if compares the result of the
expression with a different value. For example, consider the following block of code that uses an if
statement to examine the value in the day variable and work out which day of the week it is:

if (day == 0)
{
dayName = "Sunday";
}
else if (day == 1)
{
dayName = "Monday";
}
else if (day == 2)
{
dayName = "Tuesday";
}
else if (day == 3)
{
}
else
{
dayName = "Unknown";
}

Often in these situations, you can rewrite the cascading if statement as a switch statement to make
your program more efficient and more readable.

Using decision statements

929

100

Understanding switch statement syntax

The syntax of a switch statement is as follows (switch, case, and default are keywords):

switch (controllingExpression)
{
case constantExpression :
statements
break;
case constantExpression :
statements
break;
default :
statements
break;

The controllingExpression, which must be enclosed in parentheses, is evaluated once. Control then
jumps to the block of code identified by the constantExpression whose value is equal to the result
of the controllingExpression. (The constantExpression identifier is also called a case label.) Execution
runs as far as the break statement, at which point the switch statement finishes and the program
continues at the first statement that follows the closing brace of the switch statement. If none of the
constantExpression values is equal to the value of the controllingExpression, the statements below the
optional default label run.

Note Each constantExpression value must be unique so that the controllingExpression
will match only one of them. If the value of the controllingExpression does not match any
constantExpression value and there is no default label, program execution continues with
the first statement that follows the closing brace of the switch statement.

So, you can rewrite the previous cascading if statement as the following switch statement:

switch (day)
{
case 0 :
dayName = "Sunday";
break;
case 1 :
dayName = "Monday";
break;
case 2 :
dayName = "Tuesday";
break;
default :
dayName = "Unknown";
break;

Introducing Microsoft Visual C# and Microsoft Visual Studio 2015

Following the switch statement rules

The switch statement is very useful, but unfortunately, you can't always use it when you might like to.
Any switch statement you write must adhere to the following rules:

®m You can use switch only on certain data types, such as int, char, or string. With any other types
(including float and double), you must use an if statement.

m The case labels must be constant expressions, such as 42 if the switch data type is an int, '4' if
the switch data type is a char, or "42" if the switch data type is a string. If you need to calculate
your case label values at run time, you must use an if statement.

m The case labels must be unique expressions. In other words, two case labels cannot have the
same value.

®m You can specify that you want to run the same statements for more than one value by
providing a list of case labels and no intervening statements, in which case the code for the
final label in the list is executed for all cases in that list. However, if a label has one or more
associated statements, execution cannot fall through to subsequent labels; in this case, the
compiler generates an error. The following code fragment illustrates these points:

switch (trumps)
{
case Hearts :
case Diamonds : // Fall-through allowed - no code between Tlabels
color = "Red"; // Code executed for Hearts and Diamonds
break;
case Clubs :
color = "Black";
case Spades : // Error - code between labels
color = "Black";
break;

Note The break statement is the most common way to stop fall-through, but you can also
use a return statement to exit from the method containing the switch statement or a throw
statement to generate an exception and abort the switch statement. The throw statement
is described in Chapter 6, “Managing errors and exceptions.”

switch fall-through rules

Because you cannot accidentally fall through from one case label to the next if there is any
intervening code, you can freely rearrange the sections of a switch statement without affecting
its meaning (including the default label, which by convention is usually—but does not have to
be—placed as the last label).

C and C++ programmers should note that the break statement is mandatory for every case

Using decision statements 101

in a switch statement (even the default case). This requirement is a good thing—it is common in
C or C++ programs to forget the break statement, allowing execution to fall through to the next
label and leading to bugs that are difficult to spot.

If you really want to, you can mimic C/C++ fall-through in C# by using a goto statement to
go to the following case or default label. Using goto in general is not recommended, though,
and this book does not show you how to do it.

In the following exercise, you will complete a program that reads the characters of a string and
maps each character to its XML representation. For example, the left angle bracket character (<) has
a special meaning in XML (it's used to form elements). If you have data that contains this character,
it must be translated into the text entity &/t; so that an XML processor knows that it is data and not
part of an XML instruction. Similar rules apply to the right angle bracket (>), ampersand (&), single
quotation mark ('), and double quotation mark (“) characters. You will write a switch statement that
tests the value of the character and traps the special XML characters as case labels.

Write switch statements

1. Start Visual Studio 2015 if it is not already running.

2. Open the SwitchStatement project, which is located in the \Microsoft Press\VCSBS\Chapter 4\
SwitchStatement folder in your Documents folder.

3. On the Debug menu, click Start Debugging.

Visual Studio 2015 builds and runs the application. The application displays a form containing
two text boxes separated by a Copy button.

4. Type the following sample text into the upper text box:
inRange = (lo <= number) && (hi >= number);
5. Click Copy.

The statement is copied verbatim into the lower text box, and no translation of the <, &, or >
characters occurs, as shown in the following screen shot.

102 Introducing Microsoft Visual C# and Microsoft Visual Studio 2015

SwitchStatement

inRange = (lo <= number) && (hi >= number);

Copy

inRange = (lo <= number) && (hi >= number);

6. Return to Visual Studio 2015 and stop debugging.

7. Display the code for MainPage.xaml.cs in the Code and Text Editor window and locate the
copyOne method.

The copyOne method copies the character specified as its input parameter to the end of the
text displayed in the lower text box. At the moment, copyOne contains a switch statement
with a single default action. In the following few steps, you will modify this switch statement
to convert characters that are significant in XML to their XML mapping. For example, the <
character will be converted to the string &/t;.

8. Add the following statements shown in bold to the switch statement after the opening brace
for the statement and directly before the default label:

switch (current)
{
case '<' :
target.Text += "&1t;";
break;
default:
target.Text += current;

break;

CHAPTER 4 Using decision statements 103

10.

11

12

13

14.

If the current character being copied is a left angle bracket (<), the preceding code appends
the string “&It;” to the text being output in its place.

Add the following statements to the switch statement after the break statement you have just
added and above the default label:

case '>
target.Text += ">";
break;

case '&' :
target.Text += "&";
break;

case "\"' :
target.Text += """;
break;

case "\'' :
target.Text += "'";
break;

Note The single quotation mark (') and double quotation mark (*) have a spe-
cial meaning in C#—they are used to delimit character and string constants. The
backslash (\) in the final two case labels is an escape character that causes the C#
compiler to treat these characters as literals rather than as delimiters.

On the Debug menu, click Start Debugging.

Type the following text into the upper text box:
inRange = (lo <= number) && (hi >= number);
Click Copy.

The statement is copied into the lower text box. This time, each character undergoes the XML
mapping implemented in the switch statement. The target text box displays the following text:

inRange = (lo <= number) && (hi >= number);

Experiment with other strings, and verify that all special characters (<, >, & ", and ') are
handled correctly.

Return to Visual Studio and stop debugging.

Summary

In this chapter, you learned about Boolean expressions and variables. You saw how to use Boolean
expressions with the if and switch statements to make decisions in your programs, and you combined
Boolean expressions by using the Boolean operators.

104

Introducing Microsoft Visual C# and Microsoft Visual Studio 2015

m If you want to continue to the next chapter, keep Visual Studio 2015 running and turn to
Chapter 5, "Using compound assignment and iteration statements.”

m [f you want to exit Visual Studio 2015 now, on the File menu, click Exit. If you see a Save dialog
box, click Yes and save the project.

Quick reference

To

Determine whether two values are
equivalent

Compare the value of two expressions

Declare a Boolean variable

Create a Boolean expression that is
true only if two conditions are both
true

Create a Boolean expression that is
true if either of two conditions is true

Run a statement if a condition is true

Run more than one statement if a
condition is true

Associate different statements with
different values of a controlling
expression

Do this

Use the == operator or the != operator.
Use the <, <=, >, or >= operator.

Use the bool keyword as the type of the
variable.

Use the && operator.

Use the || operator.

Use an if statement.

Use an if statement and a block.

Use a switch statement.

Example

answer == 42

age >= 21
bool inRange;

inRange = (1o <= number)
&& (number <= hi);

outOfRange = (number < 10)

if (inRange)
process();

if (seconds == 59)

{
seconds = 0;
minutes++;
}
switch (current)
{
case 0:
break;
case 1:
break;
default :
break;
}

Using decision statements

|| Chi < number);

105

Index

Symbols

& (ampersand)
& (AND) operator, 354
&& (logical AND) operator, 89-90, 105
< > (angle brackets)
=> operator, 62
=> operator in lambda expressions, 413
> (greater than) operator, 89
>= (greater than or equal to) operator, 89
< (less than) operator, 89
<= (less than or equal to) operator, 89
* (asterisk), 11, 45, 198, 504
@ (at symbol), 178
\ (backslash), 104
{} (braces or curly brackets), 53, 60
. (colon), 79
$ (dollar sign), 46
= (equal sign), 37, 53-54, 91
== (equal to) operator, 88-89, 505
associativity and, 53-54
I (exclamation point)
1= (inequality) operator, 505
I (NOT operator), 88
/ (forward slash), 11, 45, 504
- (minus sign), 45, 503-504
-= (compound subtraction) operator, 108, 125
-- (decrement) operator, 55
-= (subtraction and assignment) operator, 457
(parentheses), 53, 60, 413
in Boolean expressions, 92
in expressions, 89
in method calls, 64, 66
precedence override, 90
| (pipe symbol)
| (OR) operator, 354
|| (logical OR) operator, 89-90

—
~

+ (plus sign), 45, 54, 495, 503
++ operator, 55
+= (compound addition) operator, 108, 125

+= (compound assignment) operator, 108, 125, 444,

457
++ (increment) operator, 54-55, 499
with delegates, 444
? (question mark)
? : operator, 365-366
null-conditional operator, 184-186
% (remainder operator), 46
. (semicolon), 278
in for statements, 115
in return statements, 61
in statements, 33
[1 (square bracket notation), 221, 357, 401, 407
_ (underscore character), 36

[S)

A

abstract classes, 258, 277, 293-295, 303
implementing, 296-300
abstract keyword, 294
abstract methods, 295, 303
access modifiers
destructors and, 307
interfaces and, 283
access to data, 581-598
accessibility
class, 156-167
of properties, 335-336
accessor methods, 330-331. See also get accessors;
set accessors
for indexers, 357-358
Action delegates, 443, 521-522, 563, 670-671
Activated events, 685
Adams, Douglas, 214

749

adapters

750

adapters, 455
Add method, 401, 409, 446
initializing collections, 411
Add Scaffold wizard, 712-713, 728, 747
AddAfter method, 403
AddBefore method, 403
AddCount method, 586
AddFirst method, 403
additive operators, 91
AddLast method, 403
AddParticipant method, 586
addresses in memory, 177
AddToAccumulator method, 542
addValues method, 50-51, 62-64
AggregateException class, 554-556, 558
aggregating data, 475-477
Allow Unsafe Code option, 198
AND (&) operator, 354
angle brackets (< >)
< (less than) operator, 89
<= (less than or equal to) operator, 89
for type parameters, 373
anonymous arrays, 245
anonymous classes, 172-173
anonymous methods, 415
anonymous types, 224-225
"App capability declarations” page, 605
App class, 686
App.config (application configuration) file, 8
application logic, 69
decoupling from applications, 439-467
application window, 687
applications
with asynchronous methods, 566-569
building, 12-13, 32
CIL instructions, 218
console, 3-17
deadlocks, 571-572
debugging, 13-14, 32
designing for multitasking, 519-520
fields vs. properties, 343-344
graphical, 17-32. See also Universal Windows
Platform (UWP) apps
indexers in, 361-367
LINQ in, 470-472
multitasking, 517-519, 533-543. See also
multitasking
parallel processing, 517, 594-596. See also
parallelization; Task objects

partitioning into tasks, 521, 534-536.
See also tasks
responsiveness, 559. See also responsiveness
running without debugging, 32, 73
single-threaded, 517, 590-594
solution files, 7
threads, 310
thread-safe, 596-597
App.xaml file, 27
updating, 639-640
App.xaml.cs file, 27-29
OnlLaunched method, 29
ArgumentException exceptions, 229, 239, 245,
249-250
argumentList, 64
ArgumentOutOfRangeException exceptions,
143-144, 229
arguments
in arrays, 244-245
modifying, 187-190
omitting, 80
passing to methods, 187
references, 188
sequence, 79
variable numbers, 245-247. See also parameter
arrays
arithmetic operations, 47-48
on complex numbers, 502
types of results, 46
arithmetic operators, 45-54
precedence, 53
array instances, 228
copying, 229
creating, 222-223, 242
array notation
for collection classes, 401-403
for collection lookups, 411
array properties, 358-359
array variables, 228
declaring, 221-222, 242
plural names, 222
arrays, 227-228
accessing elements, 225, 242
anonymous, 245
arguments, 244-245
of arrays, 232
associative, 407
of bool variables, 356-357
vs. collections, 415
copying, 228-230, 359

creating, 232-241
defined, 221
implicitly typed, 224-225
indexers, 353-368
indexes, 225, 235
initializing elements, 222-224, 242
inserting elements, 401
iterating, 225-227, 242
jagged, 231-232, 242
limitations, 399, 401
memory allocation, 222-223
multidimensional, 230-242
null elements, 237-238
number of elements, 225-226, 242
parameter, 243-254
as parameters, 227-228
passing as return values, 227
populating, 223-228, 239-240, 526, 533-534
rectangular, 231
removing elements, 237-238, 401
resizing, 401
retrieving specific data, 472-474
size, 222-223
storing items, 239
Art of Computer Programming, Volume 3: Sorting
and Searching, The (Knuth), 376
as operator, 197, 260-261
AsParallel method, 575, 577, 580, 599
ASP.NET Web API template, 705, 712-713, 747
ASP.NET Web client libraries, 748
assemblies, 7-8, 16-17, 301
adding to project references, 386
class libraries, 379
namespaces and, 17
referencing, 17
AssemblylInfo.cs file, 7
assigning
definite assignment rule, 38
objects to variables, 259-261
structure variables to structure variables, 215-216
assignment operator (=), 37, 91
associativity and, 53-54
assignment operators, compound, 107-108
associative arrays, 407
associativity, 53, 90-91, 493-494
assignment operator and, 53-54
of compound assignment operators, 108
asterisk (*), 11, 45, 198, 504
async modifier, 560, 599, 685

binary operators

considerations, 570-572
AsyncCallback delegates, 574
asynchronicity, 560
asynchronous methods, 460, 560-575, 723

await operator, 547

defining, 560-572

implementing, 566-569, 599

for /O operations, 573-574

parallelization, 565-566

return values, 569-570

Windows Runtime APIs and, 572-575

for writing to streams, 573-574
asynchronous operations, 559-600

enabling, 685

status, 574
attached properties, 623-624
automatic properties, 343-345, 351

object initializers, 347-349
Average method, 441-442
await operator, 547, 552, 556, 560, 564-566, 599

for asynchronous methods with return values,

570

considerations, 570-572
awaitable objects, 564
Azure, 697, 705
“Azure Active Directory” page, 705
Azure SQL Databases, 699

connections, 706-707, 710

creating, 699-701

removing columns, 702-703

background activation, 680
background images, 640-641
background threads, 561
backslash (\), 104
Barrier class, 586
base classes, 256, 276. See also inheritance
constructors, 258-259, 276
sealed, 295
virtual methods, 262-263
base keyword, 258-259, 263
BasedOn property, 642
BeginWrite method, 574
bidirectional data binding, 659-663
bin folder, 14
binary operators, 494-497
infix notation, 495

751

binary trees

binary operators, continued decoupling from applications, 439-467
naming convention, 495 exposing to view, 666. See also ViewModel
binary trees separation from Ul and data, 651-652, 696
building, 377-378 in ViewModel, 652
building with generic methods, 389-391 busy indicators, 726-728
building with generics, 379-388 Button class, 458-459
creating and populating, 430-431 Button controls, 24, 524
displaying contents, 378-379 adding to UWP apps, 677-680
inserting items, 377, 380-381 coding, 30-32
theory, 376-379 Command property, 678
traversing, 384-385 byte arrays, 525

traversing with enumerator, 425-429
traversing with enumerator implemented by
iterator, 434-436 C
binary values, 356 c#
B!narySearch m?thOd’ 396 L case sensitivity, 8, 34
binding expressions, 654-655. See also data binding . .
compiler. See compiler

E!tArray class, 400 4 creating projects in Visual Studio 2015, 3. See also
itwise operators, 354-355 Visual Studio 2015

Blank App t.emplate, _18_19 displaying code files, 26-27
Blend for Visual Studio 2015, 648 L
) ; . keyword combinations, 302
blocking wait operations, 600 |
ayout style, 34
blocks of memory, 177-178 . | . 280
blocks of statements, 93 positional notation,
! primitive data types, 37-44
for statements, 114 .
hil 100 source files, 8
whi e.statements, statements, 33—-34. See also statements
bool variables, 88 R
f 356357 syntax and semantics, 33-58
alrrays Ot 356 o if type-checking rules, 259
Boolean eﬁpressg)zns. See also if statements variables, 36-37, 54-57. See also variables
Pareﬁ eses, 109 white space characters, 34
8 Iln while statemeg;s,gl 105 cached collections, 487-490
Boolea” °p|erat°rs' 7 calculateClick method, 65, 137, 144-145
oolean _/a ue1586 callback methods, 574
negatlhg, 217 camelCase notation, 36
returnlr:jg]; lse. 356 Cancel method, 543
true an . alse, canceling tasks, 543-554, 558
Boolean variables, 87-88 .
bottlenecks, CPU, 530-533 cancellation
bOtF enelcgj 200 ’247 - of blocking wait operations, 600
oxing, ! ! of PLINQ queries, 580

overhead, 372 ¢ hronizati
. ly brackets (1), 53, 60 of synchronization, 587
ra:es or CUUI’ 5 I" > 223 cancellation tokens, 543-549, 558
or array element initialization, creating, 543-544

for cla.ss definitions, 15943 registering callback methods, 544
grouping statements, task status, 551-552

b f<|)(r scope defmllt:)%n,li)Gz—(;; CancellationToken objects, 543-544, 551
reak statements, it for PLINQ queries, 580

in iteration statements, 116 CancellationTokenSource objects, 544, 558, 580

Build Solution command, 12-13, 32 CanExecute method, 669, 671-672, 679
business logic, 69

752

CanExecuteChanged events, 670, 672-673, 679
canExecuteChangedEventTimer_Tick method,
672-673
Canvas class, 285
canvas controls, 284
Carroll, Lewis, 433
case keyword, 100
case labels, 100-101
casting, 195-198, 200
explicit, 372
catch handlers, 128-129, 150. See also try/catch
blocks
matching exceptions to, 132-133
missing, 129
multiple, 130-131
placement in try blocks, 132
catchall handlers, 147, 150
catching exceptions, 128-129, 146-148, 152
characters, unique codes, 119
checked expressions, 140-143
checked keyword, 139-143
checked statements, 139-140
CIL (Common Intermediate Language), 218
Circle class, 154-155
Circle objects, 168
Circle variables, 177
class hierarchies, 266-271
class keyword, 154
class libraries, 379, 382
.NET Framework, 17, 399-400, 441-443, 587-588
class methods, 168
class scope, 66—-67
class type variables, 155
class types, 177
classes, 8. See also objects
abstract, 258, 277, 293-300
accessibility, 156-167
anonymous, 172-173
bringing into scope, 170
collection, 277-278, 399-410, 587-598. See also
collections
comparing operators, 500
compatibility with WinRT, 218-219
constructed types, 375
constructors, 157-164, 258
copying, 217-218
creating, 286-290
declaring, 160-161, 174
defining, 154-155

derived and base, 256
event sources, 456
field initialization, 209-210
fields, 153, 155. See also fields
generic, 373-388, 397
inheritance, 255-276
interfaces, 277-278. See also interfaces
keyword combinations, 302
methods, 153. See also methods
namespaces, 14-15, 301. See also namespaces
partial, 159-160, 711
private data, 180
referencing through interfaces, 280-281
rules for, 301-302
sealed, 256, 295-302
static, 169
static methods and data, 167-173
vs. structures, 209-210
synchronization primitives, 584-586
testing, 290-293
classification, 153-154
inheritance, 255-256
Click events, 458—-459
Clone method, 179-180, 229-230
copying arrays, 359
Close button, 26
Close method, 311
cloud, deploying web services to, 719-721
“Cloud Service Fundamentals Data Access Layer—
Transient Fault Handling” page, 715-716
CLR. See common language runtime (CLR)
code
accessing, 40-41
blocking, 571
commenting out, 488
deadlocks, 571-572
design and properties, 337
displaying files, 26-27
duplication, 293-294, 298-300. See also
abstract classes
ensuring it will run, 148-149
execution, 129, 439-440, 460, 517
failures, 127
flow of control, 148
managed, 218-219
native, 218
parallelizing, 537-540
refactoring, 73

code

753

Code and Text Editor window

Code and Text Editor window. See also
Visual Studio 2015
generating and editing code shortcut menu,
69-70
Quick Actions option, 70
“Code First to an Existing Database” page, 704
code-first entity modeling approach, 704
codes for characters, 119
Collect method, 309
collection classes, 277-278, 399-410
thread-safe, 587-598
collections
adding elements, 401, 421
AggregateException exceptions, 555
vs. arrays, 415
BitArray class, 400
collection classes, 399-410. See also collection
classes
counting elements, 403, 421
creating, 420
data integrity, 478
defining type, 474
Dictionary<TKey, TValue> class, 407-408
enumerating elements, 423-431
finding elements, 421
HashSet<T> class, 409-410
implementing, 416-420
initializers, 411-413
inserting elements into middle, 401
inserting items, 403
iterating, 401, 403, 421
iterating in parallel, 576-578
joining, 578-580
lambda expressions, 413-415
LinkedList<T> class, 403-404
List<T> class, 401-403
nongeneric, 400
predicates, 411-413
Queue<T> class, 404-405
removing elements, 401, 403, 421
sizing, 416
SortedList<TKey, TValue> class, 408-409
sorting elements, 401
Stack<T> class, 405-406
storing and retrieving data, 587-588
thread-safe, 400
colon (;) in named parameters, 79
Colors class, 291
ColumnarHeaderStyle style, 643

COM (Component Object Model), 77
ComboBox controls
adding to page, 613-614
adding values, 614-615
data binding with, 663-665
ComboBoxlItem controls, 614-615
command buttons, 233
command Mode property, 692
Command pattern, 669-680
Command Prompt windows, 3
Command property, 678
command sets, Cortana, 682—-683
CommandBar controls, 678
CommandPrefix element, 682
commands. See also names of individual commands
activating with Cortana, 680-695
adding to ViewModel, 669-680
binding control action to, 669-670
spoken or typed, 692
comments, 11
commenting out code, 488
TODO comments, 161
Common Intermediate Language (CIL), 218
common language runtime (CLR), 77, 218, 300-301
catching all exceptions, 142-143, 146
object destruction, 306. See also garbage
collection
Compare method, 99, 395-396
compareClick method, 95-96
CompareTo method, 380-381, 384
default implementation, 482
compiler
destructor conversion, 308
memory allocation for class types, 177
memory allocation for value types, 177
property generation, 344-345
resolving method calls, 80-85
type checking, 374
compile-time errors, 68
compiling code, 12
complex numbers, 501-502
Complex type, 502
Component Object Model (COM), 77
compound addition (+=) operator, 108
compound assignment evaluation, 498-499
compound assignment operators, 107-108, 119
compound subtraction (-=) operator, 108
computer memory, 184, 190-193, 198, 206, 305
concurrency, 519. See also multitasking
synchronizing access to data, 581-598

concurrent operations. See also parallelization

data corruption, 583

parallelized, 594-596

scheduling, 581

tasks for, 517-558, 560-561
ConcurrentBag<T> class, 587, 596-597
ConcurrentDictionary<TKey, TValue> class, 587-588
ConcurrentQueue<T> class, 588
ConcurrentStack<T> class, 588
conditional logical operators, 89-91
ConfigureAwait(false) method, 571
connection strings, passwords in, 711
Console Application template, 5
console applications, 3-17

creating in Visual Studio 2015, 3-8, 32

defined, 3
Console class, 8-9
Console.Write method, 71
Console.WriteLine method, 166, 214

overloading, 243-244, 248
const keyword, 169
constantExpression identifier, 100
constraints

generics and, 375

placement, 429
constructed types, 375
constructors, 26-27, 156-164

base class, 258-259

calling, 162, 174

creating, 317

declaring, 161-162, 174-175

default, 158-159, 162, 183, 209, 235

in derived classes, 258

field initialization, 211-212, 258-259

initializing objects, 345-346

interfaces and, 283

invoking, 162

overloading, 158-159

protected, 301

public and private, 158

public default, 259

ViewModel, 687-688

writing, 160-164
containers

Grid controls, 608-609

StackPanel controls, 609
ContainsKey method, 407
continuations, 522-523, 556, 561-564
continue statements, 116-117

CountdownEvent class

ContinueWith method, 522-523, 556, 558
contravariance, 395-398
controllingExpression identifier, 100
controls
adding to forms, 20-21
aligning on form, 23
anchoring to edges, 610-611
binding action to commands, 669-670, 696
binding expressions, 654-655. See also data
binding
connectors, 610
default properties, 22-23
Document Outline window, 49
event handlers, 30
font styles, 641-642
header styles, 642-643
label styles, 644-646
Name property, 613
naming, 23
properties, 21-23
repositioning, 21
resizing, 23
scaling, 623-630, 649
text wrapping, 613
width, 613
XAML descriptions, 21
conversion operators, 508-514
implicit and explicit, 509-510
user-defined, 509-510
writing, 511-513
Convert.ToChar method, 119
cooperative cancellation, 543-549
Copy method, 229-230
copying
arrays, 228-230, 359
classes, 217-218
deep and shallow, 179
reference types, 179-180
structure variables, 215-218
value type constant to nullable type, 186
value type variable to nullable type, 186
value types, 177-183
CopyTo method, 229-230
Cortana, 680-696
enabling, 680-681
registering voice commands, 681, 685-686
Count method, 442, 480
Count property, 403, 419, 676
CountdownEvent class, 585-586, 599

755

covariance

756

covariance, 394, 396, 398

CPU utilization
identifying bottlenecks, 530-533
multitasking applications, 535-536
parallelized applications, 540
single-threaded applications, 529-530

“Create a Windows app” page, 697

.csproj suffix, 39

Current property, 424, 426, 428, 667-669, 674

CurrentCount property, 586

D

dangling references, 309

data
corruption, 583
deleting, 729
displaying using data binding, 652-659
enumerating in specific order, 491
filtering, 474-475, 491
inserting, updating, and deleting, 728-746
joining, 477-478
modeling. See classes; structures
ordering, grouping, aggregating, 475-477,

491-492

privacy, 179-180
querying. See query operators
retrieving, 712
retrieving from cloud, 720-726
retrieving from databases, 698-728
searching with Cortana, 680-695
selecting, 472-474
shared, 577
storing. See arrays; collections
validating, 739-740
views of, 652

data access
concurrent, 581-598
locking data, 584
to resource pools, 585
response time, 575
thread-safe, 588-598

data binding, 635, 652-665, 696
bidirectional, 652, 659-663
with ComboBox controls, 663—-665
displaying data, 652-659
Mode parameter, 659-663
modifying data, 659-663
syntax, 654

"Data Consistency Primer” page, 729
data model
connection to view, 666. See also ViewModel
controlled access, 668
data sources
for data binding, 652-665
relational databases, 698
data types
numeric, 47
operators and, 45-47
switch statements and, 101
ToString methods, 43
database-first entity modeling approach, 704
databases. See also Azure SQL Databases
accessing, 697
data validation, 739-740
entity models, 698. See also entity models
error reporting, 738-741
GUIDs, 737
inserting, updating, and deleting data, 728-746
retrieving data from, 698-728
DataContext property, 656
dateCompare method, 96-99
dates, comparing, 94-99
DateTime data type, 96, 99
DbContext class, 710
DbSet generic type, 710-711
deadlocks, 571-572
Debug folder, 14
Debug mode, 13-14, 32
exceptions, viewing, 134-135
frame rate, 25
stepping through iteration statements, 120-124
for Universal Windows Platform apps, 25
debug targets, Device and Local Machine options, 24
Debug toolbar, 74-77, 86, 120-124
decimal numbers, converting to octal, 117-119
decision statements, 42, 87-105
Boolean operators, 88-91
Boolean variables, 87-88
if statements, 91-99
switch statements, 99-104
declaring methods, 60-61
decrement (--) operator, 55, 499
deep copying, 179
of arrays, 230
default constructors, 158-159
initializing values, 183
invoking, 162

for structures, 209
writing, 235
default keyword, 100, 426, 429
deferred evaluation, 487-490
definite assignment rule, 38
delegate keyword, 415
delegates, 439-454
accessing, 445-446
async modifier, 566
in Barrier constructor, 586
declaring, 447-451, 466
events, 456-465
examples, 441-443
implementing, 444-446, 451-454
initializing, 444-445, 466
invoking, 445, 456
lambda expressions and, 455-456
method adapters, 455
multiple methods, 445
public, 445
removing methods, 445
signatures, 455
DELETE requests, 728
delimiter characters, 104
dependencies, eliminating, 651-652, 698
Dequeue method, 370-372, 399-400, 404
derived classes, 256, 276. See also inheritance
abstract method overrides, 295, 298
override methods, 263-264
Deserialize Object method, 723
design
application, 337
code, 337
for multitasking, 519-520
design patterns
Command pattern, 669-680
Model-View-ViewModel pattern, 651-680
Design Patterns: Elements of Reusable Object-

Oriented Software (Gamma et al.), 455

Design View window, 21, 24. See also
Visual Studio 2015
destroying objects, 306
destructors, 306
calling Dispose method from, 314-316
creating, 317-318
finalization, 310
interfaces and, 284
overhead, 310-311
overlap, 311

Ellipse class

restrictions on, 307
suppressing, 321
timing of running, 309-310
writing, 306-308, 325
developer mode for Windows 10, 18-19
devices. See also Universal Windows Platform (UWP)
apps
families, 602, 631
layout for narrow views, 632-635
Dictionary class, 375
Dictionary<TKey, TValue> class, 400, 407-408, 416
thread-safe version, 587-588
Dispatcher objects, 563
DispatcherTimer class, 672
DispatcherTimer objects, 673
displayData method, 111-112
disposal methods, 311-324
exception-safe, 312, 316-324
in using statements, 312-314
Dispose method, 314, 319, 427-428
calling from destructor, 314-316
calling once, 320-323
thread safety and, 322-323
disposed field, 320-323
DistanceTo method, 165-166
Distinct method, 477, 480, 484
DivideByZeroException exceptions, 147, 555-556
dlg.ShowAsync method, 572
do statements, 116-125
stepping through, 120-124
writing, 117-119
doCancellationWork method, 556
documentation, comments, 11
Documents folder, 5
dolncrement method, 187-188
dollar sign ($), 46
dot notation, 158, 272
dot operator (), 306
double quotation mark ("), 104
double.Parse method, 71
doubly linked lists, 403-404
doWork method, 161, 166, 181
duplicate code, 293-294. See also abstract classes
removing, 298-300
duplicate values, ignoring, 477, 480

Ellipse class, 289

757

else keyword

else keyword, 91
encapsulation, 154, 439
Add/Remove approach, 446
with methods, 329-331
EndWrite method, 574
Enqueue method, 370-372, 399, 404
EnterReadLock method, 586, 600
EnterWriteLock method, 586, 600
Entity Data Model Wizard, 706-709
Entity Framework, 698
creating entity models, 703-711, 747
ignoring columns, 701
partial classes, 711
"Entity Framework” page, 699
entity models
code-first approach, 704
creating, 703-711, 747
data connections, 706-707, 710
database-first approach, 704
editing, 709
passwords in connection strings, 711
remote database access, 747
web service access, 705
for web services, 698
enum keyword, 202
enum types, 201. See also enumerations
Enumerable class, 473
extension methods, 472-479
enumerable collections, 423-431. See also collections
cached version, 487-490
combining, 480-481
Count method, 480
defining type, 474
enumerating data in specific order, 491
enumeration of, 487
filtering data, 474—-475, 479, 485, 491
grouping data, 476, 479-480, 485
joining data, 477-478
ordering data, 479
projecting fields, 474, 491
retrieving data, 475-476, 479
selecting specific data, 472-474
sorting data, 484
summary functions, 480
enumeration variables, 202
assigning values, 202, 220
converting to strings, 202-203
declaring, 219
displaying, 202

nullable, 202
enumerations, 201-206
creating, 204-206
declaring, 202, 219
LINQ and, 471
literal names, 202
literal values, 203, 205
underlying types, 204
enumerator objects, 424
enumerators
for collections, 423-431
implementing with iterators, 431-437
manually implementing, 425-429, 437
equality operators, 91
= operator, 37, 53-54, 91
== operator, 88-89, 505
implementing, 505-508
overriding, 501
Equals method, 505
overriding, 501, 506
for structures, 208
equals operator, 480
equi-joins, 480
Error List window, 12-13
error reporting, 738-741
errors. See also exception handling; exceptions
managing, 127-128
event handlers, 290
adding to controls, 30
single-threaded nature, 547
event keyword, 456
event sources, 456
events, 440
declaring, 456-457, 466
defined, 30
enabling notifications, 456-458
raising, 458, 461-465, 467
security feature, 458
subscribers, 456
subscribing, 457, 465, 467
unsubscribing, 457, 467
user interface, 458-465
waiting for, 585
exception classes, 143, 302
Exception exception family, 131-132
exception filters, 132-133
exception handling
debugging, 142-143
task cancellation exceptions, 552-554
task exceptions, 554-556, 558

exception objects, 144
exceptions
AggregateException, 554-556
catching, 128-129, 146-148, 150
catching multiple, 131-132
finally blocks, 148-149
flow of control and, 148
inheritance hierarchies, 131-132
matching to catch handlers, 132-133
Message property, 129
multiple catch handlers, 130-131
propagating, 129-130
propagating to calling method, 136-138
task, 554-556
throwing, 143-148, 150
tracing back to initial exception, 135
try/catch statement blocks, 133-136
unhandled, 129-130, 133
exception-safe disposal, 312, 316-324, 326
ExceptWith method, 409-410
Execute method, 670-671
execution
asynchronous methods, 460
flow of control, 148
interrupting flow to perform tasks, 439-440
parallel paths, 517. See also Task objects
single-threaded, 517
in try/catch blocks, 129
Exists method, 418, 441
ExitReadLock method, 586, 600
ExitWriteLock method, 586, 600
explicit keyword, 509, 514
expression-bodied methods, 62-63, 72, 413
expressions
associativity of operators, 53
converting to another type, 508-513
precedence of operators, 52-53
Extensible Application Markup Language (XAML), 18
extension methods, 271-276
Extract Method command, 73

F

F10 key, 75

F11 key, 75

fast lookup of items, 409-411
Feedback element, 684
fields, 67, 153, 155

accessibility, 156-167. See also properties
hiding, 329-331, 343. See also properties
initializing, 156, 209-211, 258-259
interfaces and, 283
naming, 157, 333
private, 156, 265-266, 329
projecting, 474, 491
protected, 265-266
public, 156, 265-266, 343-344
static, 167-169
variables as, 164
file handles, 148
FileOpenPicker class, 111, 572-573
files
reading characters from, 111
resources, releasing, 112
FillList method, 432
filtering data, 474-475
finalization, 310
suppressing, 321
Finalize method, 308
finally blocks, 148-150
disposal method calls, 312
Find method, 411-412, 417, 441
First property, 403
float values, 42-43
flow of control. See also execution
after exceptions, 148
interrupting to perform tasks, 439-440
FontSize property, 22
FontStyle style, 641-642
for statements, 114-116, 437
initialization, 114-115
iterating arrays, 225-226
scope, 115-116
foreach statements, 250
iterating arrays, 226
iterating binary trees, 430-431
iterating collections, 401, 407
listing items in arrays, 423
foreground activation, 680
FormatException exceptions, 128-129, 131, 135-136
forms
add and edit functionality, 732, 741-743
busy indicators, 726-728
controls, adding, 20-21
defined, 20
discarding data, 733-734
displaying data, 725-726

forms

759

forward slash

forms, continued
Grid elements, 22
properties, specifying, 21-23
saving data, 734
testing, 743-746
XAML description, 21
forward slash (/), 45, 504
forward slashes (//), 11
Frame objects, 29
frame rate in Debug mode, 25
freachable queue, 310
from query operator, 479, 486
FromAsync method, 575
Func<T, TResult> delegate, 442
Func delegates, 441-442, 473, 670-671

G

Gamma, Erich, 455
garbage collection, 184, 306, 308-311
execution of, 310
finalization, 310, 321
invoking, 309, 325
timing, 309, 318
GC class, 321
GC.Collect method, 309
GC.SuppressFinalize method, 316
Generate Method command, 71
Generate Method Stub Wizard, 69-73, 86
generic IComparable<T> interface, 381
generic Swap<T> method, 389
generics, 373-375
classes, creating, 376-388, 397
collection classes, 399-400
constraints, 375, 397
contravariance, 395-398
covariance, 394, 396, 398
vs. generalized classes, 375
IEnumerable<T> interface, 424
|IEnumerator<T> interface, 424
interfaces, 391-397
methods, creating, 389-391, 397
type parameters, 373-375, 389, 397
gestures, 602-603
get accessors, 332, 334, 336, 343
accessibility, 335-336
implementing properties, 338
for indexers, 363-364
in indexers, 356-358

760

get blocks, 332
get keyword, 332, 360
GET requests, 736
GetAsync method, 736, 748
GetAwaiter method, 564
GetData method, 392, 727
GetDataAsync method, 723-725, 727, 730, 738-739
GetEnumerator method, 424, 429-430
implementing with iterator, 432-433
GetHashCode method, 395
overriding, 501, 506-507
GetPosition method, 291
GetType method, 132
GetTypeName method, 265
global resource dictionary, 639-640, 649
globally unique identifiers (GUIDs), 737
goto statements, 102
graphical applications, 17-32. See also Universal
Windows Platform (UWP) apps
adding code, 29-32
creating in Visual Studio 2015, 18-26
MainPage.xaml file, 19-20
Model-View-ViewModel design pattern, 651-680
separation of Ul design from data and business
logic, 651-652
views of, 18
graphical user interface (GUI), 602-603. See also
user interface (Ul)
greater than expression, 377
Grid controls, 49, 524, 608-609
defining rows and columns, 623-626
positioning TextBlock controls, 623-624
referencing from XAML markup, 632
for scalable Ul, 649
tabular layouts, 621-630
Grid elements, 22
GridStyle style, 640
GroupBy method, 476, 485, 492
groupby query operator, 479, 492
grouping data, 475-477
GUI (graphical user interface), 602-603. See also
user interface (Ul)
“Guide to Universal Windows Platform (UWP) apps”
page, 602
"Guidelines for app suspend and resume” page, 603
GUIDs (globally unique identifiers), 737

H

handheld devices. See Universal Windows Platform
(UWP) apps
Handle method, 555, 558
handleException method, 555-556
HashSet<T> class, 400, 409-410
Haskell, 412
HasValue property, 186-187
HeaderStyle style, 642-643
heap, 191-193
allocating memory from, 306
array elements, 222
boxing and unboxing requirements, 196
deallocating memory, 306. See also garbage
collection
freachable queue, 310
object references, 194
Helm, Richard, 455
hidden code, 27
hill-climbing algorithm, 521
HorizontalAlignment property, 21
HTTP PUT, POST, and DELETE requests, 728
HttpClient class, 720, 748
HttpResponseMessage class, 720
HttpResponseMessage objects, 736, 748
Hungarian notation, 36

|ActivatedEventArgs type, 686
IAsyncResult design pattern, 574-575
|ICommand interface, 669-670

implementing, 670-673
|ICommandBarElement interface, 679
IComparable interface, 279, 380-381, 482
IComparable<T> interface, 381
IComparer interface, 395-396
IComparer<T> objects, 396
icons

IntelliSense, 11

in UWP apps, 678, 689-690
idempotency, 728
identifiers, 34-35

keywords, 34-35

naming, 157

overloading, 68

scope, 66

syntax, 34
IDisposable interface, 314, 326, 427
implementing, 314-316, 319-320
|IEnumerable interface, 424-431
implementing, 429-431, 437
for LINQ, 471
IEnumerable<T> interface, 424
covariance, 394
for LINQ, 471
IEnumerable<TIltem> interface, 434-436
|IEnumerable objects, 582
IEnumerable.GetEnumerator method, 429-430,
434-436
|IEnumerable<TItem>.GetEnumerator method,
429-430, 434-436
|IEnumerator interface, 424
IEnumerator<T> interface, 424-429
if statements, 91-99, 105. See also Boolean
expressions
cascading, 94-99
grouping statements, 93
rewriting as switch statements, 99
writing, 94-99
if-else statements, 383-384
Image controls, 524, 526
ImageBrush resource, 639
immutable properties, 345
Implement Interface Explicitly command, 287, 427,
429, 482
Implement Interface Wizard, 280
implicit keyword, 509, 514
implicitly typed arrays, 224-225
implicitly typed variables, 56-57
in qualifier, 396
increment (++) operator, 54-55, 499
indexers, 353-368
as[], 494
accessing array elements, 359-360
accessor methods, 357-358, 363-364, 368
vs. arrays, 358-360
calling, 365-366
creating, 368
defined, 353
explicit implementations, 361, 368
in interfaces, 360-361, 368
notation, 411
overloading, 363-364
range checks on index values, 357
read/write context, 358

indexers

761

indexes for arrays

762

indexers, continued
virtual implementations, 360-361
in Windows applications, 361-367
writing, 363-364
indexes for arrays, 225
IndexOf method, 363
IndexOutOfRangeException exceptions, 555-556
indirect unmanaged resources, 307
inequality (!=) operator, 88-89
infinite values, 47
infix notation, 495
information hiding, 154
inheritance, 193, 255-276
from abstract classes, 277
abstract classes and, 293-295
assigning classes, 259-261
base-class constructors, 258-259
class hierarchies, 266-271
declaring, 256-257
declaring new methods, 261-262
declaring override methods, 263-265
declaring virtual methods, 262-263
extension methods, 271-275
hierarchies of exceptions, 131-132
from interfaces, 279
interfaces and, 283
from managed types, 301
protected access, 265-266
public nature of, 257
from System.Object class, 258
initialization
collection class, 411-413
in constructors, 258-259
fields, 156
initializeComponent method, 26-27
INotifyPropertyChanged interface, 660-661,
673-674, 696
Insert method, 383
InsertintoTree method, 389-391
InstallCommandDefinitionsFromStorageFileAsync
method, 685
instance methods, 164, 181
writing, 165-167
instances, 165
int keyword, 387
int parameters, 181-182
int types, 204
as array indexes, 235
as array of bits, 353-357

binary representation, 353-355
parameter arrays of, 244-247, 249-251
int values
adding, 63
arithmetic operations, 47-48
containers for, 353. See also int types
converting strings to, 45, 58
of enumeration literals, 203, 205
int variables
declaring, 165, 178
memory allocation for values, 177
Int32.Parse method, 45
integer arithmetic, 119
checked and unchecked, 138-143
overflow checking, 139, 150
integer division, 147
integer indexes, 407
IntelliSense, 9
icons, 11
interface extension, 280
interface keyword, 278
interface properties, 337-339, 350
interfaces, 277-278, 337-338
checking objects for implementation, 281
for collectable objects, 277-278
contravariant, 395-397
covariant, 393-394
defined, 277
defining, 278-279, 284-286
explicitly implementing, 282-283, 291
fields vs. properties, 344
generic, 391-397
| prefix, 279
implementing, 279-280, 286-290, 303, 338-339
indexers in, 360-361, 368
invariant, 393
keyword combinations, 302
methods in, 278
multiple, 281
references to, 291
referencing classes through, 280-281
restrictions, 283-284
IntersectWith method, 409-410
int.MinValue and int.MaxValue properties, 138
int.Parse method, 50, 72, 128, 207
Invalidate method, 526
InvalidCastException exceptions, 195-196, 393
InvalidOperationException exceptions, 145-146, 428
catch handler, 146
invariant interfaces, 393

1/0 operations

asynchronous methods for, 573-574

responsiveness, 517
IRetrieveWrapper<T> interface, 393-394
is operator, 196-197, 281

in class assignments, 260-261
ISAtEnd property, 675
IsAtStart property, 675, 679
IsBusy property, 727
IsCancellationRequested property, 543-544
IsChecked property, 145
IsNullOrEmpty method, 365
IsProperSubsetOf method, 409-410
IsProperSupersetOf method, 409-410
IsSubsetOf method, 409-410
IsSupersetOf method, 409-410
IStoreWrapper<T> interface, 393-394
iteration statements, 107

break statements in, 116

continue statements in, 116-117

control variable updates, 109, 114

do statements, 116-124

for statements, 114-116

while statements, 108-114
iterators, 431-436

implementing, 432-433

implementing enumerators, 434-436
IWrapper interface, 392-393

J

jagged arrays, 231-232, 242

JavaScript Object Notation (JSON), 712, 723
Johnson, Ralph, 455

Join method, 477-478, 492

join query operator, 480, 492

joining data, 477-478

JsonConvert class, 723

Json.NET package, 721

K

Key field, 476
Key property, 408
key/value pairs, 407-409
keyword combinations, 302
keywords, 34-35

list of, 35

lock statements

Knuth, Donald E., 376

L

LabelStyle style, 644-646
lambda calculus, 413-414
lambda expressions
anonymous methods and, 415
delegates and, 455-456
elements of, 412
forms of, 413-415
syntax, 413
language interoperability, 498
Language-Integrated Query (LINQ), 469-470
in applications, 470-472
converting to PLINQ queries, 575
deferred evaluation, 487-490
equi-joins, 480
filtering data, 474-475
forcing evaluation, 487-488, 492
iterating collections, 576-578
joining collections, 578-580
joining data, 477-478
ordering, grouping, aggregating data, 475-477
parallelizing queries, 576-580
query operators, 479-487
query response time, 559-560
selecting data, 472-474
Last property, 403
“Launch a background app with voice commands”
page, 684
left-shift (<<) operator, 354
Length property, 225-226, 242, 403
libraries of compiled code, 7-8. See also assemblies
LinkedList<T> class, 400, 403-404
LINQ. See Language-Integrated Query (LINQ)
List<T> class, 396, 400-403, 441
List<T> collections, 418
ListCustomer object, 667
ListBox controls, 40
ListenFor element, 684
lists, enumerating, 424
local scope, 66-67
local variables, 66
declaring, 165
displaying values, 121-123
life span, 191
lock statements, 322-323, 584, 597-599

763

locking data

764

locking data, 584
serializing method calls, 597-598
synchronization primitives, 584-586
logic, 69. See also business logic
decoupling from applications, 439-467
logical AND (&&) operator, 89-90, 105
logical OR (||) operator, 89-90
loops. See also for statements; foreach statements;
while statements
canceling, 549
dependencies of iterations, 541-543
independent iterations, 534
iterating arrays, 533-534
parallel iterations, 537, 539-540

M

Main method, 8-10, 27
array parameters, 228
MainPage.xaml file, 19-20
for device families, 631
displaying, 687
MainPage.xaml.cs file, 19, 26, 606-607
managed applications, 300
managed code, 218-219
managed execution environment, 218
managed resources, 306
managed types, 301
Manifest Designer, 604
ManualResetEventSlim class, 585, 599
mapping elements, 407-408. See also indexers
Margin property, 21
matched character pairs, 10
Math class, 154, 167
Max method, 442
memory, computer, 190-193
garbage collection, 184
managing with structures, 206
for method calls, 191
for objects, 191
reclaiming for value types, 305
unsafe code and, 198
memory allocation
for arrays, 222-223
for class types, 177
for value types, 177
memory blocks, referencing, 177-178
MemoryStream class, 574
Message property, 129

MessageDialog objects, 31, 572
method adapters, 455
method calls, 65-66
compiler resolution of, 80-85
independent, 543
memory acquisition, 191-193
methods with optional parameters, 79
parallel running, 537-538
Peek Definition command, 82
serializing, 597-598
syntax, 63-64
through delegates, 440-441
method parameters
life span, 191
value vs. reference types, 179
method scope, 66—67
method signatures
separating from method implementation, 277.
See also interfaces
of virtual and override methods, 264
methodName, 60, 64
methods
abstract, 295
accepting multiple arguments of any type,
247-248, 254
accepting multiple arguments of given type,
244-247, 254
accessor, 330-331
adding to events, 457
anonymous, 415
arguments, 64, 79, 187-190
arrays as parameters or return values, 227-228
asynchronous, 460, 560-575
body statements, 60
calling, 63-66
constructors, 157-164. See also constructors
creating, 59-66
declaring, 60-61, 86
definitions, 62-63
disposal, 311-324
encapsulation with, 329-331
expression-bodied, 62, 86, 413
extension, 271-275
Extract Method command, 73
Generate Method Stub Wizard, 69-73, 86
generic, 389-391, 397
hiding, 260-263
if statements, 91
initializing parameters, 188-189
instance, 164-167

invoking through delegates, 440-441

keyword combinations, 302

length of, 63

methodName, 60

modifier, 330-331

named arguments, 77-85

named parameters, 86

naming conventions, 157

optional parameters, 77-86, 252-254

overloading, 10, 68, 243-244

override, 295-296

parameter arrays for. See parameter arrays

parameterList, 60, 252

parentheses for parameters, 413

passing arguments, 187

passing objects as arguments to, 183

Peek Definition command, 82

private, 265-266, 675-676

private qualifier, 71

propagating exceptions back to, 137-138

protected, 265-266

public, 265-266

public and private keywords, 156

referencing, 440. See also delegates

replacing with properties, 339-343

return types, 60, 73

return values, 86, 237

returning data from, 61-62, 86

returnType, 60

scope, 66-68

sealed, 295-296

sharing information between, 67

signatures, 261-262

statements in, 33

stepping through, 74-77, 86

subscribers, 456

summary, 476-477

System.Threading.CancellationToken parameter,

543

unsafe keyword, 198

variable number of object arguments, 247-248

virtual, 295

writing, 6877
Microsoft Azure, 697, 705
Microsoft Azure SQL Database, 699
Microsoft Blend for Visual Studio 2015, 648
Microsoft .NET Framework. See .NET Framework
Microsoft Patterns & Practices Git repository, 560
Min method, 245-246
minus sign (-), 45, 503-504

Name property

-- (decrement) operator, 55
-= (compound subtraction) operator, 108, 125
-= (subtraction and assignment) operator, 457
Mobile Services, 697
Mode parameter, 659-663
modeling data. See classes; structures
Model-View-ViewModel (MVVM) design pattern,
651-680
data binding, 652-665
data binding with ComboBox controls, 663-665
displaying data, 652-659
modifying data, 659-663
ViewModel, 665-680
modifier methods, 330-331
Moore, Gordon E., 518
Moore's Law, 518
mouse position, 291
MoveNext method, 424, 426-428
mscorlib.dll, 17
multicore processors, 518-519
multidimensional arrays, 230-242. See also arrays
accessing elements, 230
jagged, 231-232
memory requirements, 230
number of dimensions, 230
params keyword and, 246
rectangular, 231
multiplicative operators, 91
precedence, 53
multitasking, 517-519. See also tasks
canceling, 543-554
continuations, 556
implementing, 519-543
Parallel class, 536-543
responsiveness and, 517
scalability and, 518
Task class, 524-536
tasks, 520-524
threads, 520-521
multithreading, 560. See also asynchronous methods;
threads
storing and retrieving data in collections,
587-588
MyFileUtil application, 228

N

\n (newline character), 238
Name property, 613

765

named arguments

named arguments, 77-85 nullable types, 183-187
ambiguities, resolving, 80-81 heap memory, 191
passing, 79-80 retrieving values of, 186
named parameters, 79 nullable values, 145
nameof operator, 663 null-conditional operator, 184-185
namespace keyword, 15 NullReferenceException exceptions, 185, 445, 458
namespaces, 14-17 numbers, converting to string representation,
assemblies and, 17 117-119
bringing into scope, 15-16 NumdCircles field, 168
vs. longhand names, 16 numeric types, 47

XAML namespace declarations, 606
naming identifiers, 157
NaN (not a number) value, 47 O
narrowing conversions, 509
native code, 218
Navigate method, 684, 639
.NET Framework
exception classes, 143
IAsyncResult design pattern, 574-575
multitasking capabilities, 519-520
primitive type equivalents, 207
synchronization primitives, 584-586
.NET Framework class library, 17
collection classes, 399-400
delegates, 441-443
thread-safe collection classes, 587-588
new keyword, 155, 191
for anonymous classes, 172-173
for array instances, 222-223
creating objects, 305-306
initializing delegates, 444-445
memory allocation for objects and, 177
in method signatures, 262
new methods, 261-262
New Project dialog box, 4
newline character (n), 238
Next method, 223, 236, 675-676
serializing calls to, 597-598
Next property, 403
NodeData property, 435
nongeneric collections, 400
not a number (NaN) value, 47
NOT (!) operator, 88, 186
NOT (~) operator, 354
notifications, 456-458
NotimplementedException exceptions, 71, 236, 287,
427
null elements in arrays, 237-238
null values, 183-185, 199

obj folder, 14

Object class, 193, 392

Object Collection Editor, 614-615

object initializers, 347-349

object keyword, 193

object references, 400

object types, 72, 194, 369-372, 375
holding values and references, 391-392
parameter arrays of, 247-248

object variables, 194, 260

Object.Finalize method, 308

objects, 155. See also classes
accessing members, 306
casting, 196-198
comparing, 278
constructors, 157-164. See also constructors
creating, 160-164, 305-306
dangling references, 309
destroying, 306. See also garbage collection
destructors, 306-308
displaying on canvas, 288
enumerator, 424
finalization, 310
initializing with properties, 345-349
lifetime, 305-311
locking, 584
memory allocation for, 177
memory requirements, 191
passing as arguments to methods, 183
private data, 165
read and write locks, 586
referencing through interfaces, 280-281
storing references to, 183-184
unmanaged, 198
unreachable, 310
verifying type, 196-197

766

okClick method, 30-31
on clause of equals operator, 480-481
OnActivated method, 685-687
OnLaunched method, 29, 684-685
OnPropertyChanged method, 661, 674
openfFileClick method, 111
operands, 45
OperationCanceledException exceptions, 551, 556,
558, 580
catching and handling, 552-554
operator !=, 500-501
operator ==, 500-501
operator+, 497
operator keyword, 494, 509, 514
operator overloading, 444, 493-514
operators, 493-494
arguments, 495
arithmetic, 45-54
associativity, 53, 90-91, 493-494
binary, 494
Boolean, 88-91
comparing, 500
compound assignment, 107-108, 498-499
conditional logical, 89-90
constraints, 494
conversion, 508-514
data types and, 45-47
equality, 501
implementing, 501-508, 514
increment and decrement, 499
for int type bits, 354-355
language interoperability and, 498
null-conditional, 184-186
overloaded, 494-496
pairs, 500-501
parameter types, 495-496
precedence, 52-53, 58, 90-91, 493-494
prefix and postfix forms, 55, 499
public, 495
static, 495
structures and, 208
symmetric, 496-497
unary, 55, 493
optional parameters, 77-85
ambiguities, resolving, 80-81
defining, 79
vs. parameter arrays, 252-254
OR (|) operator, 354
OrderBy Descending method, 476

Parallel.Invoke method

OrderBy method, 475-476, 491
orderby query operator, 479, 491
ordering data, 475-477
out keyword, 189, 394
out parameters, 187-190, 199
params keyword and, 247
OutOfMemoryException exceptions, 192
Output window, 12
overflow checking, 139
checked expressions, 140-143
OverflowException exceptions, 129, 131
catch handler for, 141-142
in checked statements, 139-140
overloading, 10, 68
constructors, 158-159
operators, 444, 493-514
vs. parameter arrays, 243-244
params keyword and, 246-247
override keyword, 263-265
override methods, 295-296
declaring, 263-265, 276
rules for, 264
writing, 269-270
overriding vs. hiding, 262-263

P

Pack class, 235

Package.appxmanifest file, 604

Page tag, 607

paging, 721

Parallel class, 536-543
abstracting tasks, 536-540
considerations for, 541-543
degree of parallelization, 538
ParallelLoopState objects, 549
scheduling tasks, 542

Parallel LINQ (PLINQ), 560, 575-580, 599
canceling queries, 580, 599
iterating collections, 576-578

Parallel.For method, 537, 539-543, 558
canceling, 549
lock statements, 597
unpredictable behavior, 582-583

Parallel.ForEach method, 542-543, 558
canceling, 549

Parallel.ForEach<T> method, 537

Parallel.Invoke method, 537-538, 541, 543

767

parallelization

768

parallelization, 536-540. See also concurrent
operations; multitasking; tasks; threads
in asynchronous methods, 565-566
degree of, 520
implementing, 538-540
iterating collections, 576-578
joining collections, 578-580
of query operations, 575-580
scheduling, 581
units of, 520
ParallelLoopState objects, 537, 549
ParallelQuery objects, 575, 582
parameter arrays, 243-254. See also arrays
declaring, 245-247
elements of any type, 254
elements of given type, 254
int types, 244-247, 249-251
number of, 247
object types, 247-248
vs. optional parameters, 252-254
params object[], 247-248
priority of, 247
writing, 249-251
parameterList, 60
parameters
adding to class, 238-239
arrays as, 227-228
destructors and, 307
determining minimum value, 244-246
in lambda expressions, 414
naming, 72, 86
optional, 77-86, 252-254
parentheses for, 413
specifying, 79, 86
type, 373-375
types, 60
variable numbers of, 243-244. See also parameter
arrays
variables as, 164
params keyword, 244-246. See also parameter arrays
overloading and, 246-247
params object[], 247-248
parentheses, 53, 60, 413
in Boolean expressions, 92
in expressions, 89
in method calls, 64, 66
precedence override, 90
Parse method, 65, 207
partial classes, 159-160, 711

partial keyword, 160
ParticipantCount property, 586
ParticipantsRemaining property, 586
Pass.Reference method, 182-183
Pass.Value method, 181
Patterns & Practices Git repository, 560
Peek Definition command, 82
performance, parallelization and, 540-541
Performance Explorer, 530-533
PhraseTopic element, 684
Pl field, 169
PickMultipleFilesAsync method, 573
PickSingleFileAsync method, 573
PLINQ. See Parallel LINQ (PLINQ)
plus sign (+), 45, 54, 495, 503
++ (increment) operator, 54-55, 499
with delegates, 444
pointers, 197-198
polymorphism
testing, 270-271
virtual methods and, 264-265
Pop method, 399
positional notation, 280
POST requests, 728, 735-736, 748
PostAsync method, 735, 748
precedence, 90-91, 493-494
of compound assignment operators, 108
overriding, 52-53, 58, 90
predicates, 411-413, 418
prefixing and postfixing operators, 55, 499
Previous method, 675-676
Previous property, 403
primitive types, 37-44. See also value types
displaying values, 38-40
fixed size, 138-139
list of, 38
.NET Framework type equivalents, 207
private data, 165
private fields, 163-164, 265-266, 301, 329
privacy of, 180
properties, accessing with, 179
private keyword, 71, 156, 180
private methods, 265-266, 675-676
private static fields, 170-172
processing power
increasing, 518-519
maximizing, 517. See also Task objects
processors
displaying utilization, 529
multicore, 518-519

number of, 521
Program class, 8, 161, 576
Program.cs file, 8
programs. See also applications; code
attributes, 7
testing, 73-74
ProgressRing control, 726-728
project files, 7
project solution files, 7
projecting fields, 474
propagating exceptions, 136-138
properties, 331-333
accessibility, 335-336
accessing private fields, 179
attached, 623-624
automatic, 343-345, 351
binding control properties to object properties,
652. See also data binding
declaring, 331-332
defined, 331
immutable, 345
initializing, 345
initializing objects with, 345-349, 351
interface, 337-339, 350
naming, 333
of nullable types, 186-187
reading values, 333-334
read-only, 334
replacing methods with, 339-343
restrictions on, 336-337
simulating assignment, 494
virtual, 338
write-only, 334-335
Properties folder, 7
property getters and setters, 331
PropertyChanged events, 660-661, 674
protected access, 264-266
protected keyword, 266
pseudorandom number generator, 223
public const int fields, 235, 238
public constructors, 213. See also constructors
default, 259
public events, 458
public fields, 265-266, 301, 343-344
public keyword, 156, 514
public methods, 180, 182, 265-266, 301
writing, 171-172
Publish Web wizard, 718-721
Push method, 399

reference types

PUT requests, 728, 735
PutAsync method, 735, 748

Q

query operations, parallelizing, 575-580
query operators, 479-487
retrieving data, 486-487
querying data, 469
Queue class, 374
object-based version, 369-374
Queue<T> class, 399-400, 404-405
thread-safe version, 588
queues, storing values in, 426-427
Quick Find functionality, 41
"Quickstart: Translating Ul resources (XAML)" page,
678

R

Random class, 223, 235, 597
random number generator, 236
read locks, 586
read operations, 586, 600
ReadAsStringAsync method, 723-724, 736, 748
reader.Dispose method, 148-149
reader.ReadLine method, 71, 112, 311
ReaderWriterLockSlim class, 586, 600
readint method, 71
ReadLine method, 71, 112, 311
read-only fields, 234
read-only indexers, 358
read-only properties, 334, 344-345, 350
Rectangle class, 286
Rectangle controls, 653
rectangular arrays, 231
ref parameters, 187-190, 199

params keyword and, 247
refactoring code, 73
reference types

arrays, 222. See also arrays

Clone methods, 179

copying, 179-180, 199, 208

covariance, 394

dangling references, 309

declaring, 178

defined, 177

destructors, 307. See also destructors

769

references

770

reference types, continued
heap memory, 191
initializing, 183
null values, 184
number, 308
ref and out modifiers, 190
string type, 178
System.Object class, 193
references
to arguments, 188
to memory blocks, 177-178
References folder, 7-8
optional assemblies, 17
Regex class, 731
Register method, 544
regular expression matching, 731
“The Regular Expression Object Model” page, 731
relational databases, 698. See also databases
connecting to, 698. See also entity models
relational operators, 88-89, 91
remainder (modulus) operator (%), 46
Remove method, 401, 409, 446
RemoveParticipant method, 586
RenderTransform property, 644
Representational State Transfer (REST) model, 697,
712
Reset method, 585
resource dictionary, 639-640, 649
resource management, 311-316
exception-safe disposal, 312-314, 316-324
object lifetimes, 305-311
resource pools, 585, 599

resource release, 112, 312-314, 325. See also garbage

collection
preventing multiple releases, 320-323
resources, styles, 638
response time
asynchronous operations and, 559-600
data access operations, 575
responsiveness, 559
asynchronous APl and, 572-574
improving, 517
user interface, 561, 567-568
REST (Representational State Transfer) model, 697,
712

REST (Representational State Transfer) web services,

697
adding data items, 748
consuming in UWP apps, 748

creating, 712-721
idempotency, 728
remote database access, 747
retrieving data in UWP apps, 748
updating data from UWP apps, 748
result = clauses, 64
Result property, 569

retrieving data. See arrays; collections; generics

return keyword, 61
return statements, 61-62, 101
return types, 60, 73
return values, 237, 414

arrays as, 227

of asynchronous methods, 569-570
returnType, 60
Reverse property, 433
right-shift operator (>>), 354
RightTapped events, 292
RoutedEventHandler delegate, 458-459
run method, 69
Run method, 522, 560
Run To Cursor command, 120
RunAsync method, 563
runtime

casting checks, 196

memory management, 191-192

S

SaveAsync method, 740-741
saving, 13
scalability
asynchronicity and, 560
improving, 518
scalable user interfaces, 621-630
scope
blocks and, 93
class, 66—-67
local, 66-67
method, 66-67
for statements, 115-116
of variables, 66
sealed classes, 256, 295-303
sealed keyword, 295
sealed methods, 295-296
searching
with Cortana, 680-695
Quick Find, 41
voice responses, 692-695

security, unsafe code, 198
Segoe Print font, 642, 646
Select method, 472-474, 491

invoking, 484

specifying fields, 475

summary methods over results, 476-477
select operator, 479, 486, 490
selecting data, 472-474
SelectionChanged events, 40
selector parameter, 473-474
semaphores, 584
SemaphoreSlim class, 585, 599

cancellation token, 587
semicolon (;)

in interfaces, 278

in return statements, 61

in statements, 33

in for statements, 115
serializing method calls, 597-598
set accessors, 332, 334-336

accessibility, 335-336

OnPropertyChanged method calls, 661-662

set accessors, 343
implementing properties, 338
in indexers, 356-358
set blocks, 332
set keyword, 332, 360
Set method, 585
SetColor method, 291-292
SetData method, 392
Setter elements, 637
in styles, 639
shallow copying, 179
of arrays, 230
shared data. See also synchronization
synchronizing access, 577, 599
Shift+F11, 76
short circuiting, 90
short types, 204
Show All Files button, 13-14
show method, 96
ShowAsync method, 572
showBoolValue method, 44
showDoubleValue method, 44
showFloatValue method, 42-43
showlIntValue method, 43
showResult method, 63
showStepsClick method, 118, 120
SignalAndWait method, 586

static properties

signatures, method, 261-262
Simulator, 618-621
running, 627-630
single quotation mark ('), 104
single-threaded applications, 517, 590-594
creating, 524-530
.sIn suffix, 39
solution files, 7-8
Sort method, 396, 401
SortedList<TKey, TValue> class, 400, 408-409
SortedSet<T> collection type, 410
sorting data, 377
source files, 6-7
source parameter, 473-474
SpeechSynthesizer class, 695
spinning, 577
Split method, 579, 688
SQL (Structured Query Language), 470
Sgrt method, 165-167
square bracket notation, 357
for array elements, 401
for arrays, 221
for key/value pairs, 407
stack, 191-193
structures, 206
Stack<T> class, 399-400, 405-406
thread-safe version, 588
StackOverflowException exceptions, 333
StackPanel control, 609
Start Debugging command, 13-14, 32
Start method, 522, 560

Start Without Debugging command, 13-14, 32, 73

state information, 574. See also visual state
transitions
statements, 33-34
blocks, 93, 116
making run, 148-149
semantics, 33
syntax, 33
static classes, 169
static fields, 167-168, 175, 180
creating, 169
static keyword, 514
static methods, 8, 167-173
bringing into scope, 170
calling, 167-168, 174
declaring, 167, 174
implementing and testing, 249-251
static properties, 334

771

static using statements

static using statements, 170
static void methods, 390
Status property, 548
stepping into and out of methods, 74-77, 86
Stopwatch objects, 526
StorageFile class, 573
storing data. See arrays; collections; generics
StreamReader class, 311
String class, 392, 579
string concatenation, 45-46
string interpolation, 46, 50, 248
string type, 178
string values
converting to integers, 45, 58
representing values in variables, 43-44, 50
for variable names, 663
StringReader class, 311
strings
appending to strings, 108
converting enumeration variables, 202-203
converting to integers, 128-129
determining if empty, 365
splitting, 579, 688
wrapping, 392
struct keyword, 208
structs, 8
structure variables
copying, 215-218
declaring, 210-211, 220
initializing, 211-212, 220
nullable, 211
Structured Query Language (SQL), 470
structures, 8, 206-219
vs. classes, 209-210
comparing operators, 500
compatibility with WinRT, 218-219
creating, 212-215
declaring, 208-209, 220
default constructors, 209, 212-213
field initialization, 209, 211-212
fields, 208
inheritance and, 257-258
interface implementation, 279
keyword combinations, 302
operators for, 208
public constructors, 213
types, 206-207
Style elements, 639, 649

styles

BasedOn property, 642

defining, 639, 649

Microsoft Blend, 648

Setter elements in, 639

for user interface, 638—-648
subscribers, 456
subtractValues method, 51
summary functions, 480
summary methods, 476-477
SuppressFinalize method, 321-322
Swap<T> method, 389
switch keyword, 100
switch statements, 99-105, 687

fall-through, 101-102

rules, 101-102

syntax, 100

writing, 102-104
symmetric operators, 496-497, 510-511
synchronization

canceling, 587

locking data, 584

for shared data access, 577

task, 581-598

of tasks, 581-599

threads, 585, 599
synchronization primitives, 584-586
synchronous 1/0O, 560
System.Array class, 225, 228-229, 424
System.Collections namespace, 400

System.Collections.Concurrent namespace, 400, 587

System.Collections.Generic namespace, 374-376,
395, 399, 410, 424

System.Collections.|[Enumerable interface, 423-431
System.Diagnostics.Stopwatch objects, 526
System.Exception exceptions, 131, 563
System.IComparable interface, 380-381
System.IComparable<T> interface, 381
System.Int32 structure, 65, 206-207
System.Int32 type, 387
System.Int64 structure, 206-207
System.InvalidCastException exceptions, 372
System.Ling namespace, 473
System.Object class, 193

inheritance from, 258

overriding methods, 301
System.Random class, 223
System.Single structure, 206-207

System.String class, 178

System.Threading namespace, 520, 584

System.Threading.CancellationTokenSource objects,
543

System.Threading.Tasks namespace, 519, 537

System.Threading.Tasks.TaskStatus enumeration, 548

System.ValueType class, 258

T

tablets. See Universal Windows Platform (UWP) apps
TabularHeaderStyle style, 643
Tapped events, 290
TappedRoutedEventArgs parameter, 291
Task class, 519, 524-536
cancellation strategy, 543-549
parallelization, 524-543
threading, 520
wait methods, 554-556, 561-562
Task<TResult> class, 569-570
Task constructor, 521
Task objects, 520
Action delegate, 521
creating, 521
implementing, 533-543
of Parallel class, 536-540
responsiveness and, 561-562
running, 522
TaskCanceledException exceptions, 556
TaskContinuationOptions value, 523
TaskContinuationOptions.OnlyOnFaulted value, 556
TaskCreationOptions object, 522
TaskFactory class, 575
tasks, 517-558. See also multitasking
abstracting, 536-540
asynchronous, 559
awaitable objects, 565
blocking, 585
canceled vs. allowed to run to completion, 551
canceling, 543-554, 558
checking cancellation, 552-554
compute-bound, 559
continuations, 522-523, 558, 561-564
cooperative cancellation, 543-549
creating, 521-522, 557
exceptions handling, 554-556, 558
global queue, 520
halting execution, 586

throughput, improving

handling cancellation exceptions, 552-554
handling exceptions, 554-556
overhead, 541
parallel, 536-540, 558
PLINQ queries, 575-580
results, 569-570
status, 548-552, 554
synchronization primitives, 584-586
synchronizing, 523, 581-599
synchronizing concurrent access to data, 581-598
waiting for, 523, 547, 557, 561-562, 572
waiting for events, 585
Task.WaitAll method, 547
templates, choosing, 4. See also Visual Studio 2015
ternary operators, 365-366
testing programs, 73-74
text boxes, displaying values in, 43
text files, iterating through, 110-113
Text property, 21-23
TextBlock controls, 20-21, 524, 609-610
adding to page, 464, 611-612, 615-616
TextBox controls, 23
adding to page, 612-613, 615-616
TextReader class, 111, 311
ThenBy method, 476
ThenByDescending method, 476
this keyword, 164, 272, 356-357
Thread objects, 520
thread pools, 520
thread safety, 596-597
collection classes, 587-598
collections, 400
Dispose method and, 322-323
overhead, 588
ThreadPool class, 520
threads, 520-521
asynchronous methods, 560. See also
asynchronous methods
deadlocks, 571-572
defined, 310
hill-climbing algorithm, 521
number, 521
scheduling, 520
sleep, 542
synchronizing, 585, 599
waiting for, 585-586, 599
Thread.Sleep method, 542
throughput, improving, 517-558

773

throw statements

throw statements, 101, 143-144 U
objects for, 144
ThrowlfCancellationRequested method, 551, 553 unary operators, 55, 91, 493
throwing exceptions, 143-148 unassigned local variables, 38
tilde (~), 307 unboxing, 194-196, 200
ToArray method, 415, 487-488, 490, 492 overhead, 372
TODO comments, 161, 180 unchecked keyword, 139-143
ToList method, 487, 492 underscore character (_), 36
ToString method, 43, 203, 482 unhandled exceptions, 129-130, 133. See also
formatting output, 238, 240 exceptions
overriding, 234, 503 catching, 147-148
overriding default behavior, 213-214, 262 UnionWith method, 409-410
of structures, 207 Universal Windows Platform (UWP) apps, 18,
touch user experience, 602 601-602. See also graphical applications
TResult parameter, 473-474 adapting layout, 630-637
triggers for visual state transitions, 635-637 adding buttons, 677-680
try/catch blocks, 128 adding voice activation icons, 689-690
catch handler placement, 132 app layout and Ul styling, 607
writing, 133-136 app-wide and local resources, 638
try/finally blocks Blank App template, 605-607
for resource release, 312 busy indicators, 726-728
TSource parameter, 473-474 command bars, 677-678
type checking, 374 command buttons, 233
type mismatches, 195 creating in Visual Studio 2015, 18-26, 32, 649
type nesting, 283 data binding, 635
type parameters, 373-375, 397, 425 Debug mode, 25
for collection classes, 399-400 features, 602-605
constraints, 375 handling voice activation, 681, 686—-689
for generic methods, 389 icons, 678, 689-690
initializing variables defined with, 429 inserting, updating, and deleting data, 728-746
out keyword, 394 layout for narrow views, 632-635, 649
in qualifier, 396 lifetime, 603
type safety MainPage.xaml files for device families, 631
contravariance and, 396 MainPage.xaml.cs file, 26
of type parameters, 394 managing state information, 603
type-checking rules, 259 mobility, 603
types Model-View-ViewModel design pattern, 651-680
anonymous, 224-225 packaging, 603-604
casting, 196-198 pages, 20
converting, 508-513 retrieving from databases, 698-728
definitions vs. instances of, 155 scalable user interfaces, 607-637
enum, 201. See also enumerations scaling to device form factors, 603, 617-618, 649
extending, 272-275 styles for Ul, 638-649
integer, 204 switching between views, 631, 635
interoperability, 301 tabular layout, 621-630
new, defining, 271-272 Task class, 520
of structures, 206-207 testing, 618-621, 690-691
typeSelectionChanged method, 40-42 touch interaction, 602

Visual State Manager for, 631-637
vocal responses, 692-695

774

voice activation, 680-695
WindowsRT compatibility, 301
unmanaged applications, 300
unmanaged resources, 306
unreachable objects, 310
unsafe code, 198
unsafe keyword, 198
user interface (Ul)
creating, 20-26
data binding and, 635, 652-665
designing, 18
Dispatcher objects, 563
displaying data, 652-659
events, 458-465
PropertyChanged events, 660
responding to gestures, 602—-603
responsiveness, 559, 561, 567-568, 570
scalable to device form factors, 607-618
single-threaded nature, 547
styles, 638-648
tabular layouts, 621-630
for UWP apps, 607-648
using directives, 15-16
using statements, 323-324
resource lifetime control, 312-314, 316-324
static, 170

\'

value keyword, 358

Value property, 186-187

value types. See also primitive types
copying, 177-183, 199, 208

views

assigning values, 53-54, 58

Boolean, 87-88

of class types, 155

creating, 66

declaring, 37, 58, 199

declaring and initializing in same statement, 56,
58

defined with type parameter, initializing, 429

displaying to screen, 71

displaying values, 76

fields, 67

implicitly typed, 56-57, 173

incrementing and decrementing, 54-55, 58

initializing, 50, 183, 429

initializing to same value, 54

life span, 191

local, 66

naming, 36, 333

pointers, 197-198

qualifying as parameters or fields, 164

reference types, 177. See also reference types

returning names of, 663

scope, 66-67, 115-116

for sets of items, 221. See also arrays

storing references to objects, 183-184

string representation of values, 43-44, 50, 58

structure, 210-211

testing for initialization, 184

of type object, 194

type of, 56

unassigned, 38

value types. See value types

values, 43, 50, 58

values as arguments, 64

defined, 177 icalAli

enumerations, 201-206. See also enumerations Vgrtlca Alignment property, 21 . .

T ViewModel, 652. See also Model-View-ViewModel
initializing, 183

memory reclamation, 305

nullable, 185-187

ref and out modifiers, 190

stack memory, 191

structures, 206-219. See also structures
values

determining minimum, 244-246

returning, 414. See also lambda expressions
ValueType class, 258
var keyword, 56-57, 173, 474
variables, 36-37

adding values, 108, 125

arrays, 221-222. See also arrays

(MVVM) design pattern
adding commands, 669-680
Adding mode, 729-730, 733
Browsing mode, 729-730, 733
Command pattern, 669-680
constructor, 687-688
creating, 665-669
discarding changes, 733-734
Editing mode, 730, 733
error-reporting capabilities, 738-741
tracking state, 675
validating and saving changes, 734

views

Command pattern, 669-680

775

virtual directories

776

views, continued
connection to model, 666. See also ViewModel
of data, 652
referencing data, 674
virtual directories, 706
virtual indexer implementations, 360-361
virtual keyword, 263, 338
virtual machines, 218
virtual methods, 268, 295
declaring, 262-263, 276
polymorphism and, 264-265
rules for, 264
virtual properties, 338
Visual C# syntax and semantics, 33-58. See also C#
Visual State Manager, 618, 630-637
triggers, 635-637
visual state transitions, 636
Visual Studio 2015, 3
Allow Unsafe Code option, 198
ASP.NET Web API template, 712-713
Class Library template, 382
Close button, 26
Code and Text Editor window, 6
Console Application template, 5
console applications, 3-17
Debug toolbar, 74-77
default development environment settings, 4
default method implementation, 70
design surface form factor options, 607-608
Design View window, 21, 24
Document Outline window, 49
Entity Data Model Wizard, 706-709
environment, 3-8
Error List window, 12-13
Exceptions Settings, 553
Generate Method Stub Wizard, 69-73
generated code, 26-29
graphical applications, 17-32
Implement Interface Explicitly command, 287,
427,429
Implement Interface Wizard, 280
Interface template, 285
LINQ documentation, 481
Manifest Designer, 604
Microsoft Blend, 648
namespaces, 14-17
Object Collection Editor, 614-615
Output window, 12
project files, 7

projects, 385-386
Properties folder, 7
Properties window, 21-23
Publish Web wizard, 718
Reference Manager dialog box, 386
References folder, 7-8
Simulator, 618-621, 627-630
Solution Explorer, 6-7
solution files, 7-8
solutions, 385
Start page, 3-4
starter code, 6
Task List window, 161
Toolbox, 20-21
Universal Windows Platform apps, 18-26, 32, 649
Visual State Manager, 618, 630-637
warnings, 31
web service templates and tools, 698
Windows Phone SDK 8.0, 601
writing programs, 8-14
XAML pane, 21
Visual Studio 2015 debugger
Breakpoints Window button, 121
exception handling, 142-143
exceptions, 129-130
Exceptions Settings pane, 142-143
Locals window, 121-123
Visual Studio Performance Explorer and Profiler,
530-533
Vlissides, John, 455
voice activation, 680-696
command sets, 682
Feedback element, 684
handling in apps, 681, 686-689
language and locale settings, 683
ListenFor element, 684
Navigate element, 684
PhraseTopic element, 684
testing, 690-691
voice commands
registering with Cortana, 681, 685-686
vocal responses, 692-695
voice-command definition (VCD) files, 681-684, 696
VoiceCommandDefinitionManager manager, 685
void keyword, 60-61, 73

w

Wait method, 523, 555, 557, 561-562, 585

blocking current thread, 571
canceling, 600
WaitAll method, 523, 547, 555, 557
WaitAny method, 523, 555
WalkTree method, 384-385, 387
web apps
creating, 705-706
running, 706
web services, 698
controller classes, 713-716
creating, 712-721
deploying to cloud, 719-721
edit functionality, 730, 733, 737-738
failed connection attempts, 715-716
RESTful, 697
retrieving data, 712
retrieving data from cloud, 720-726
when keyword, 132
Where method, 474-475, 485, 491
where query operator, 479, 491
while statements, 108-114, 125, 236
sentinel variable, 109
terminating, 109
writing, 110-113
white space characters, 34
widening conversions, 508
Win32 APIs, 218
windows, defined, 20
Windows 10, 300-301
apps for. See Universal Windows Platform (UWP)
apps
Cortana, 680-695
developer mode, 18-19
devices, 602
speech synthesis features, 692
Windows Phone Runtime, 601
Windows Phone SDK 8.0, 601
Windows Runtime (WinRT), 218-219, 300-301, 601
app adaptation to device form factors, 601
asynchronous methods and, 572-575
hill-climbing algorithm, 521
thread management, 520
Windows Store apps, 601, 603
Windows Universal template, 18
Windows.Media.SpeechSynthesis namespace, 695
Windows.Ul namespace, 291
Windows.Ul.Popups namespace, 31
Windows.Ul.Xam| namespace, 672
Windows.Ul.Xaml.Media.Imaging namespace, 525

yield keyword

WithCancellation method, 580, 599

WrappedInt class, 181-183

WrappedInt objects, 183

Wrapper<T> class, 392-393

write locks, 586

Write method, 573

write operations, 586, 600

WriteableBitmap objects, 525, 573
populating, 526

WriteAsync method, 573-574

WriteLine method, 9-10, 68, 71, 167
format string argument with numeric

placeholders, 248

overloading, 243-244, 248

write-only indexers, 358

write-only properties, 334-335, 341, 350

writing to streams, 573-574

X

XAML (Extensible Application Markup Language), 18
namespace declarations, 606
XAML files for device families, 631

XOR (7) operator, 354

Y

yield keyword, 432

777

About the author

John Sharp is a principal technologist for CM Group Ltd, a software
development and consultancy company in the United Kingdom. He is
well versed as a software consultant, developer, author, and trainer, with
nearly 30 years of experience, ranging from Pascal programming on
CP/M and C/Oracle application development on various flavors of UNIX
to the design of C# and JavaScript distributed applications and develop-
ment on Windows 10 and Microsoft Azure. He is an expert on building
applications with the Microsoft .NET Framework and is also the author of
Windows Communication Foundation 4 Step By Step (Microsoft Press).

	Contents
	Introduction
	CHAPTER 4: Using decision statements
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

