
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780789760357
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780789760357
https://plusone.google.com/share?url=http://www.informit.com/title/9780789760357
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780789760357
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780789760357/Free-Sample-Chapter

CompTIA® PenTest+
Cert Guide

Omar Santos
Ron Taylor

CompTIA® PenTest+ Cert Guide
Omar Santos
Ron Taylor

Copyright © 2019 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

ISBN-13: 978-0-7897-6035-7
ISBN-10: 0-7897-6035-5

Library of Congress Control Number: 2018956261

01 18

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been appropriately
capitalized. Pearson IT Certifi cation cannot attest to the accuracy of this information. Use of a term in this
book should not be regarded as affecting the validity of any trademark or service mark.

MICROSOFT® WINDOWS®, AND MICROSOFT OFFICE® ARE REGISTERED TRADEMARKS
OF THE MICROSOFT CORPORATION IN THE U.S.A. AND OTHER COUNTRIES. THIS
BOOK IS NOT SPONSORED OR ENDORSED BY OR AFFILIATED WITH THE MICROSOFT
CORPORATION.

Warning and Disclaimer
This book is designed to provide information about the CompTIA PenTest+ exam. Every effort has been
made to make this book as complete and accurate as possible, but no warranty or fi tness is implied. The
 information provided is on an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the supplemental online content or programs accompanying it.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN THE DOCUMENTS
AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY
PURPOSE. ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED “AS
IS” WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE
SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD
TO THIS INFORMATION, INCLUDING ALL WARRANTIES AND CONDITIONS OF
MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR
A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL
MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF INFORMATION AVAILABLE
FROM THE SERVICES.

THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD
INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR
ITS RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED HEREIN AT ANY TIME. PARTIAL
SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

Editor-in-Chief

Mark Taub

Product Line Manager

Brett Bartow

Acquisitions Editor

Paul Carlstroem

Managing Editor

Sandra Schroeder

Development Editor

Christopher Cleveland

Project Editor

Mandie Frank

Copy Editor

Kitty Wilson

Technical Editors

Chris McCoy

Benjamin Taylor

Editorial Assistant

Vanessa Evans

Designer

Chuti Prasertsith

Composition

codemantra

Indexer

Erika Millen

Proofreader

Christopher Morris

Contents at a Glance

 Introduction xxiii

CHAPTER 1 Introduction to Ethical Hacking and Penetration Testing 3

CHAPTER 2 Planning and Scoping a Penetration Testing Assessment 25

CHAPTER 3 Information Gathering and Vulnerability Identifi cation 63

CHAPTER 4 Social Engineering Attacks 121

CHAPTER 5 Exploiting Wired and Wireless Networks 143

CHAPTER 6 Exploiting Application-Based Vulnerabilities 207

CHAPTER 7 Exploiting Local Host and Physical Security Vulnerabilities 277

CHAPTER 8 Performing Post-Exploitation Techniques 333

CHAPTER 9 Penetration Testing Tools 361

CHAPTER 10 Understanding How to Finalize a Penetration Test 471

CHAPTER 11 Final Preparation 505

APPENDIX A Answers to the “Do I Know This Already?” Quizzes and
Q&A Sections 511

 Index 541

iv CompTIA® PenTest+ Cert Guide

Contents

 Introduction xxiii

Chapter 1 Introduction to Ethical Hacking and Penetration Testing 3

“Do I Know This Already?” Quiz 3

Understanding Ethical Hacking and Penetration Testing 6

What Is the Difference Between Ethical Hacking and Nonethical
Hacking? 6

Why Do We Need to Do Penetration Testing? 7

Understanding the Current Threat Landscape 7

Ransomware 8

IoT 8

Threat Actors 9

Exploring Penetration Testing Methodologies 10

Why Do We Need to Follow a Methodology for Penetration
Testing? 10

Penetration Testing Methods 11

Surveying Penetration Testing Methodologies 13

Building Your Own Lab 16

Requirements and Guidelines for Penetration Testing Labs 18

What Tools Should You Use in Your Lab? 18

What if You Break Something? 19

Review All Key Topics 20

Define Key Terms 20

Q&A 21

Chapter 2 Planning and Scoping a Penetration Testing Assessment 25

“Do I Know This Already?” Quiz 25

Explaining the Importance of the Planning and Preparation Phase 29

Understanding the Target Audience 29

Rules of Engagement 30

Communication Escalation Path 31

Confidentiality of Findings 32

Budget 32

Point-in-Time Assessment 33

Contents v

Impact Analysis and Remediation Timelines 34

Disclaimers 38

Technical Constraints 39

Support Resources 40

Understanding the Legal Concepts of Penetration Testing 41

Contracts 41

Written Authorization 42

SOW 42

MSA 42

NDA 43

Export Restrictions 43

Corporate Policies 43

Learning How to Scope a Penetration Testing Engagement Properly 44

Scope Creep 44

Types of Assessment 45

Special Scoping Considerations 45

Target Selection 46

Strategy 47

Risk Acceptance, Tolerance, and Management 47

Understanding Risk Management 48

Risk Acceptance 48

Risk Mitigation 48

Risk Transfer, Avoidance, and Sharing 49

Risk Appetite and Tolerance 49

Learning the Key Aspects of Compliance-Based Assessments 50

Rules for Completing Compliance-Based Assessments 50

Regulations in the Financial Sector 50

Regulations in the Healthcare Sector 52

Payment Card Industry Data Security Standard (PCI DSS) 53

Key Technical Elements in Regulations You Should Consider 56

Limitations When Performing Compliance-Based Assessments 57

Review All Key Topics 58

Define Key Terms 59

Q&A 59

vi CompTIA® PenTest+ Cert Guide

Chapter 3 Information Gathering and Vulnerability Identification 63

“Do I Know This Already?” Quiz 63

Understanding Information Gathering and Reconnaissance 67

Understanding Active Reconnaissance vs. Passive Reconnaissance 70

Understanding Active Reconnaissance 71

Nmap Scan Types 73

TCP Connect Scan (-sT) 73

UDP Scan (-sU) 74

TCP FIN Scan (-sF) 76

Ping scan (-sn) 77

Exploring the Different Types of Enumeration 78

Host Enumeration 78

User Enumeration 80

Group Enumeration 81

Network Share Enumeration 82

Web Page Enumeration/Web Application Enumeration 83

Service Enumeration 85

Exploring Enumeration via Packet Crafting 85

Understanding Passive Reconnaissance 87

Domain Enumeration 88

Packet Inspection and Eavesdropping 90

Understanding Open Source Intelligence (OSINT) Gathering 90

Exploring Reconnaissance with Recon-ng 90

Understanding the Art of Performing Vulnerability Scans 103

How a Typical Automated Vulnerability Scanner Works 103

Understanding the Types of Vulnerability Scans 104

Unauthenticated Scans 104

Authenticated Scans 105

Discovery Scans 106

Full Scans 106

Stealth Scans 108

Compliance Scans 109

Challenges to Consider When Running a Vulnerability Scan 110

Considering the Best Time to Run a Scan 110

Contents vii

Determining What Protocols Are in Use 110

Network Topology 110

Bandwidth Limitations 111

Query Throttling 111

Fragile Systems/Nontraditional Assets 111

Understanding How to Analyze Vulnerability Scan Results 112

US-CERT 113

The CERT Division of Carnegie Mellon University 113

NIST 114

JPCERT 114

CAPEC 114

CVE 114

CWE 115

How to Deal with a Vulnerability 115

Review All Key Topics 116

Define Key Terms 117

Q&A 117

Chapter 4 Social Engineering Attacks 121

“Do I Know This Already?” Quiz 121

Understanding Social Engineering Attacks 125

Phishing 126

Pharming 126

Malvertising 127

Spear Phishing 128

SMS Phishing 134

Voice Phishing 135

Whaling 135

Elicitation, Interrogation, and Impersonation (Pretexting) 135

Social Engineering Motivation Techniques 137

Shoulder Surfing 137

USB Key Drop and Social Engineering 138

Review All Key Topics 138

Define Key Terms 139

Q&A 139

viii CompTIA® PenTest+ Cert Guide

Chapter 5 Exploiting Wired and Wireless Networks 143

“Do I Know This Already?” Quiz 143

Exploiting Network-Based Vulnerabilities 148

Exploring Windows Name Resolution and SMB Attacks 148

NetBIOS Name Service and LLMNR 148

SMB Exploits 151

DNS Cache Poisoning 155

SNMP Exploits 157

SMTP Exploits 159

SMTP Open Relays 160

Useful SMTP Commands 160

Using Known SMTP Server Exploits 163

FTP Exploits 166

Pass-the-Hash Attacks 168

Kerberos and LDAP-Based Attacks 169

Understanding Man-in-the-Middle Attacks 173

Understanding ARP Spoofing and ARP Cache Poisoning 173

Downgrade Attacks 175

Route Manipulation Attacks 175

Understanding Denial-of-Service (DoS) and Distributed
Denial-of-Service (DDoS) Attacks 176

Direct DoS Attacks 176

Reflected DDoS Attacks 178

Amplification DDoS Attacks 178

Network Access Control (NAC) Bypass 179

VLAN Hopping 181

DHCP Starvation Attacks and Rogue DHCP Servers 183

Exploiting Wireless and RF-Based Attacks and Vulnerabilities 185

Installing Rogue Access Points 185

Evil Twin Attacks 185

Deauthentication Attacks 186

Attacking the Preferred Network Lists 189

Jamming Wireless Signals and Causing Interference 189

War Driving 190

Contents ix

Initialization Vector (IV) Attacks and Unsecured Wireless
Protocols 190

Attacking WEP 190

Attacking WPA 192

KRACK Attacks 196

Attacking Wi-Fi Protected Setup (WPS) 197

KARMA Attacks 197

Fragmentation Attacks 197

Credential Harvesting 199

Bluejacking and Bluesnarfing 199

Radio-Frequency Identification (RFID) Attacks 200

Review All Key Topics 200

Define Key Terms 202

Q&A 202

Chapter 6 Exploiting Application-Based Vulnerabilities 207

“Do I Know This Already?” Quiz 207

Overview of Web Applications for Security Professionals 213

The HTTP Protocol 213

Understanding Web Sessions 221

How to Build Your Own Web Application Lab 224

Understanding Injection-Based Vulnerabilities 227

Exploiting SQL Injection Vulnerabilities 228

A Brief Introduction to SQL 228

SQL Injection Categories 232

Fingerprinting a Database 234

Surveying the UNION Exploitation Technique 235

Using Booleans in SQL Injection Attacks 237

Understanding Out-of-Band Exploitation 237

Exploring the Time-Delay SQL Injection Technique 239

Surveying a Stored Procedure SQL Injection 239

Understanding SQL Injection Mitigations 240

HTML Injection Vulnerabilities 241

Command Injection Vulnerabilities 241

Exploiting Authentication-Based Vulnerabilities 242

x CompTIA® PenTest+ Cert Guide

Exploring Credential Brute Forcing 243

Understanding Session Hijacking 245

Understanding Redirect Attacks 249

Taking Advantage of Default Credentials 249

Exploiting Kerberos Vulnerabilities 250

Exploiting Authorization-Based Vulnerabilities 250

Understanding Parameter Pollution 250

Exploiting Insecure Direct Object Reference Vulnerabilities 251

Understanding Cross-Site Scripting (XSS) Vulnerabilities 252

Reflected XSS Attacks 253

Stored XSS Attacks 255

DOM-Based XSS Attacks 256

XSS Evasion Techniques 257

XSS Mitigations 258

Understanding Cross-Site Request Forgery Attacks 260

Understanding Clickjacking 261

Exploiting Security Misconfigurations 262

Exploiting Directory Traversal Vulnerabilities 262

Understanding Cookie Manipulation Attacks 263

Exploiting File Inclusion Vulnerabilities 264

Local File Inclusion Vulnerabilities 264

Remote File Inclusion Vulnerabilities 264

Exploiting Insecure Code Practices 265

Comments in Source Code 265

Lack of Error Handling and Overly Verbose Error Handling 266

Hard-Coded Credentials 266

Race Conditions 266

Unprotected APIs 267

Hidden Elements 270

Lack of Code Signing 270

Review All Key Topics 271

Define Key Terms 272

Q&A 273

Contents xi

Chapter 7 Exploiting Local Host and Physical Security Vulnerabilities 277

“Do I Know This Already?” Quiz 277

Exploiting Local Host Vulnerabilities 281

Insecure Service and Protocol Configurations 281

Local Privilege Escalation 285

Understanding Linux Permissions 286

Understanding SUID or SGID and Unix Programs 291

Insecure SUDO Implementations 294

Ret2libc Attacks 298

Windows Privileges 299

CPassword 299

Clear-Text Credentials in LDAP 300

Kerberoasting 301

Credentials in Local Security Authority Subsystem Service (LSASS) 301

SAM Database 302

Understanding Dynamic Link Library Hijacking 303

Exploitable Services 304

Insecure File and Folder Permissions 305

Understanding Windows Group Policy 305

Keyloggers 306

Scheduled Tasks 307

Escaping the Sandbox 308

Virtual Machine Escape 310

Understanding Container Security 310

Mobile Device Security 314

Understanding Android Security 316

Understanding Apple iOS Security 323

Understanding Physical Security Attacks 326

Understanding Physical Device Security 326

Protecting Your Facilities Against Physical Security Attacks 327

Review All Key Topics 328

Define Key Terms 329

Q&A 329

xii CompTIA® PenTest+ Cert Guide

Chapter 8 Performing Post-Exploitation Techniques 333

“Do I Know This Already?” Quiz 333

Maintaining Persistence After Compromising a System 337

Creating Reverse and Bind Shells 338

Command and Control (C2) Utilities 344

Creating and Manipulating Scheduled Jobs and Tasks 346

Creating Custom Daemons, Processes, and Additional Backdoors 346

Creating New Users 346

Understanding How to Perform Lateral Movement 347

Post-Exploitation Scanning 347

Using Remote Access Protocols 348

Using Windows Legitimate Utilities 349

Using PowerShell for Post-Exploitation Tasks 349

Using PowerSploit 351

Using the Windows Management Instrumentation for Post-Exploitation
Tasks 354

Using Sysinternals and PSExec 355

Understanding How to Cover Your Tracks and Clean Up Systems After a
Penetration Testing Engagement 356

Review All Key Topics 357

Define Key Terms 358

Q&A 358

Chapter 9 Penetration Testing Tools 361

“Do I Know This Already?” Quiz 361

Understanding the Different Use Cases of Penetration Testing Tools and
How to Analyze Their Output 365

Penetration Testing–Focused Linux Distributions 365

Kali Linux 366

Parrot 367

BlackArch Linux 367

CAINE 369

Security Onion 369

Common Tools for Reconnaissance and Enumeration 370

Tools for Passive Reconnaissance 370

Tools for Active Reconnaissance 390

Contents xiii

Common Tools for Vulnerability Scanning 400

Common Tools for Credential Attacks 420

John the Ripper 420

Cain and Abel 424

Hashcat 425

Hydra 428

RainbowCrack 429

Medusa and Ncrack 430

CeWL 431

Mimikatz 432

Patator 432

Common Tools for Persistence 433

Common Tools for Evasion 434

Veil 434

Tor 438

Proxychains 439

Encryption 439

Encapsulation and Tunneling Using DNS and Other Protocols Like NTP 440

Exploitation Frameworks 442

Metasploit 442

BeEF 449

Common Decompilation, Disassembling, and Debugging Tools 450

The GNU Project Debugger (GDB) 450

Windows Debugger 452

OllyDbg 452

edb Debugger 452

Immunity Debugger 454

IDA 454

Objdump 455

Common Tools for Forensics 457

Common Tools for Software Assurance 458

Findbugs, Findsecbugs, and SonarQube 458

Fuzzers and Fuzz Testing 458

Peach 459

xiv CompTIA® PenTest+ Cert Guide

Mutiny Fuzzing Framework 459

American Fuzzy Lop 459

Wireless Tools 459

Leveraging Bash, Python, Ruby, and PowerShell in Penetration Testing
Engagements 460

Introducing the Bash Shell 460

A Brief Introduction to Python 461

A Brief Introduction to Ruby 461

A Brief Introduction to PowerShell 462

Review All Key Topics 462

Define Key Terms 465

Q&A 465

Chapter 10 Understanding How to Finalize a Penetration Test 471

“Do I Know This Already?” Quiz 471

Explaining Post-Engagement Activities 474

Surveying Report Writing Best Practices 475

Understanding the Importance of a Quality Report 475

Discussing Best Practices of Writing a Penetration Testing Report 476

Knowing Your Audience 476

Avoiding Cutting and Pasting 477

Relating the Findings to the Environment 477

Starting the Report While You Are Testing 478

Exploring Tools for Collecting and Sharing Information 478

Using Dradis for Effective Information Sharing and Reporting 478

Steps in Using the Dradis Framework CE on Kali Linux 479

Exploring the Common Report Elements 490

PCI Data Security Standard Reporting Guidelines 491

Expanding on the Common Report Elements 493

Executive Summary 493

Methodology 494

Finding Metrics and Measurements 494

Findings and Recommendations for Remediation 495

Contents xv

Understanding Report Handling and Communications Best Practices 499

Understanding Best Practices in Report Handling 499

Correctly Classifying Report Contents 499

Controlling Distribution Method and Media 499

Explaining the Importance of Appropriate Communication 500

Review All Key Topics 501

Define Key Terms 502

Q&A 502

Chapter 11 Final Preparation 505

Tools for Final Preparation 505

Pearson Cert Practice Test Engine and Questions on the Website 505

Accessing the Pearson Test Prep Software Online 506

Accessing the Pearson Test Prep Software Offline 506

Customizing Your Exams 507

Updating Your Exams 508

Premium Edition 508

Chapter-Ending Review Tools 509

Suggested Plan for Final Review/Study 509

Summary 509

Appendix A Answers to the “Do I Know This Already?” Quizzes and
Q&A Sections 511

Index 541

xvi CompTIA® PenTest+ Cert Guide

About the Authors

Omar Santos is a principal engineer in the Cisco Product Security Incident
Response Team (PSIRT) within Cisco’s Security Research and Operations. He
mentors and leads engineers and incident managers during the investigation and
resolution of security vulnerabilities in all Cisco products, including cloud services.
Omar has been working with information technology and cybersecurity since the
mid-1990s. He has designed, implemented, and supported numerous secure
networks for Fortune 100 and 500 companies and the U.S. government. Prior to
his current role, he was a technical leader within the Worldwide Security Practice
and the Cisco Technical Assistance Center (TAC), where he taught, led, and
mentored many engineers within both organizations.

Omar is an active member of the security community, where he leads several indus-
trywide initiatives and standards bodies. His active role helps businesses, academic
institutions, state and local law enforcement agencies, and other participants that are
dedicated to increasing the security of the critical infrastructure.

Omar often delivers technical presentations at many cybersecurity conferences. He
is the author of more than 20 books and video courses. You can follow Omar on any
of the following:

 ■ Personal website: omarsantos.io and theartofhacking.org

 ■ Twitter: @santosomar

 ■ LinkedIn: https://www.linkedin.com/in/santosomar

Ron Taylor has been in the information security field for almost 20 years, 10 of which
were spent in consulting. In 2008, he joined the Cisco Global Certification Team as
an SME in information assurance. In 2012, he moved into a position with the Security
Research & Operations group, where his focus was mostly on penetration testing of
Cisco products and services. He was also involved in developing and presenting secu-
rity training to internal development and test teams globally. In addition, he provided
consulting support to many product teams as an SME on product security testing. He
then spent some time as a consulting systems engineer specializing in Cisco’s security
product line. In his current role, he works in the Cisco Product Security Incident
Response Team (PSIRT). He has held a number of industry certifications, including
GPEN, GWEB, GCIA, GCIH, GWAPT, RHCE, CCSP, CCNA, CISSP, and MCSE.
Ron is also a Cisco Security Blackbelt, SANS mentor, cofounder and president of the
Raleigh BSides Security Conference, and an active member of the Packet Hacking
Village team at Defcon.

You can follow Ron on any of the following:

 ■ Twitter: @Gu5G0rman

 ■ LinkedIn: www.linkedin.com/in/-RonTaylor

http://omarsantos.io
http://theartofhacking.org
https://www.linkedin.com/in/santosomar
http://www.linkedin.com/in/-RonTaylor

Dedication xvii

Dedication

I would like to dedicate this book to my lovely wife, Jeannette, and my two beautiful children,
Hannah and Derek, who have inspired and supported me throughout the development of this book.

I also dedicate this book to my father, Jose, and to the memory of my mother, Generosa. Without
their knowledge, wisdom, and guidance, I would not have the goals that I strive to achieve today.

—Omar

The most important thing in life is family:

To my wife of 17 years: Kathy, without your support and encouragement, I would not be where
I am today.

To my kids, Kaitlyn, Alex, and Grace: You give me the strength and motivation to do what I do.

To my parents: It was your example that instilled in me the drive and work ethic that has gotten
me this far.

—Ron

Acknowledgments
This book is a result of concerted efforts of various individuals whose help brought
this book to reality. We would like to thank the technical reviewers, Chris McCoy
and Ben Taylor, for their significant contributions and expert guidance.

We would also like to express our gratitude to Chris Cleveland, Kitty Wilson,
 Mandie Frank, Paul Carlstroem, and Brett Bartow for their help and continuous
support throughout the development of this book.

About the Technical Reviewers
Chris McCoy is a technical leader in the Cisco Advanced Security Initiatives
Group (ASIG). He has more than 20 years of experience in the networking and
security industry. He has a passion for computer security, finding flaws in mission-
critical systems, and designing mitigations to thwart motivated and resourceful adver-
saries. He was formerly with Spirent Communications and the U.S. Air Force. Chris
is CCIE certified in the Routing & Switching and Service Provider tracks, which he
has held for more than 10 years. You can follow Chris on Twitter@chris_mccoy.

Benjamin Taylor is a security researcher currently working in the Cisco Security and
Trust Organization. He has worked in the security industry for more than 10 years.
His work spans numerous architectures and operating systems. His background and
experience include security evaluations, penetration testing, security architecture
reviews, product security compliance, digital forensics, and reverse engineering.

xviii CompTIA® PenTest+ Cert Guide

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.
We value your opinion and want to know what we’re doing right, what we could
do better, what areas you’d like to see us publish in, and any other words of wisdom
you’re willing to pass our way.

We welcome your comments. You can email to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them
with the author and editors who worked on the book.

Credits xix

Credits

Cover: GlebSStock/Shutterstock

NIST Computer Security Resource Center defines the term Hacker

Sun Tzu, The Art of War

High Level Organization of the Standard by The Penetration Testing Execution
Standard

PCI Security Standard council, Information Supplement: Penetration Testing
Guidance

Penetration Testing Framework 0.59 by VulnerabilityAssessment.co.uk

Open Source Security Testing Methodology Manual (OSSTMM), Contemporary
Security testing and analysis

GLBA (12 U.S.C. § 1843(k))

NY DFS Cybersecurity Regulation

Covered Entities and Business Associates, The HIPAA Rules apply to covered
entities and business associates.

Payment Card Industry (PCI) Data Security Standard (DSS) and
Payment Application Data Security Standard (PA-DSS), April 2016.

Elaine Barker, NIST Special Publication 800-57 Part 1 Revision 4
Recommendation for Key Management Part 1: General, January 2016.

Figure Credits
Figure 2-1 Screenshot of Gantt Chart © 2018 Microsoft Corporation
Figure 3-2 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-4 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-6 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-8 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-10 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-12 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-13 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-14 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-15 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-16 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-17 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-18 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-19 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-20 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-21 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-22 Screenshot of Kali Linux © 2018 Kali Linux

http://VulnerabilityAssessment.co.uk

xx CompTIA® PenTest+ Cert Guide

Figure 3-23 Screenshot of Google © 2018 Google, LLC.
Figure 3-24 Screenshot of DNSdumpster © 2018 Hacker Target Pty Ltd
Figure 3-25 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-26 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-27 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-28 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-29 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-30 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-31 Screenshot of Shodan © 2013-2018 Shodan®
Figure 3-32 Screenshot of Shodan © 2013-2018 Shodan®
Figure 3-33 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-34 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-35 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-36 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-37 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-38 Screenshot of Kali Linux © 2018 Kali Linux
Figure 3-39 Omar Santos
Figure 3-41 Screenshot of Kali Linux © 2018 Kali Linux
Figure 4-3 Screenshot of Kali Linux © 2018 Kali Linux
Figure 4-4 Screenshot of Kali Linux © 2018 Kali Linux
Figure 4-5 Screenshot of Kali Linux © 2018 Kali Linux
Figure 4-6 Screenshot of Kali Linux © 2018 Kali Linux
Figure 4-7 Screenshot of Kali Linux © 2018 Kali Linux
Figure 4-8 Screenshot of Kali Linux © 2018 Kali Linux
Figure 4-9 Screenshot of Kali Linux © 2018 Kali Linux
Figure 4-10 Screenshot of Kali Linux © 2018 Kali Linux
Figure 4-11 Screenshot of Kali Linux © 2018 Kali Linux
Figure 5-15 Screenshot of Kali Linux © 2018 Kali Linux
Figure 5-18 Screenshot of Kali Linux © 2018 Kali Linux
Figure 5-19 Screenshot of Kali Linux © 2018 Kali Linux
Figure 5-20 Screenshot of Kali Linux © 2018 Kali Linux
Figure 5-23 Screenshot of Kali Linux © 2018 Kali Linux
Figure 5-24 Screenshot of Kali Linux © 2018 Kali Linux
Figure 5-25 Screenshot of Kali Linux © 2018 Kali Linux
Figure 5-26 Screenshot of Kali Linux © 2018 Kali Linux
Figure 6-3 Screenshot of Wireshark © The Wireshark team
Figure 6-4 Screenshot of Wireshark © The Wireshark team
Figure 6-7 Screenshot of WebGoat © OWASP
Figure 6-9 Screenshot of W3school © 1999-2018 by Refsnes Data
Figure 6-11 Screenshot of WebGoat © OWASP
Figure 6-12 Screenshot of WebGoat © OWASP
Figure 6-13 Screenshot of WebGoat © OWASP
Figure 6-14 Screenshot of DVWA © 2014-2017 Dewhurst Security

Credits xxi

Figure 6-16 Screenshot of DVWA © 2014-2017 Dewhurst Security
Figure 6-18 Screenshot of Wireshark © The Wireshark team
Figure 6-21 Screenshot of DVWA © 2014-2017 Dewhurst Security
Figure 6-22 Screenshot of DVWA © 2014-2017 Dewhurst Security
Figure 6-23 Screenshot of DVWA © 2014-2017 Dewhurst Security
Figure 6-24 Screenshot of DVWA © 2014-2017 Dewhurst Security
Figure 6-25 Screenshot of DVWA © 2014-2017 Dewhurst Security
Figure 7-5 Screenshot of Unix Permission Calculator © 2017 Dan’s Tools
Figure 7-6 Screenshot of Unix Permission Calculator © 2017 Dan’s Tools
Figure 7-7 Screenshot of Visudo Command Man Page © Visudo
Figure 7-9 Screenshot of Microsoft Excel © 2018 Microsoft Corporation
 Mobile Top 10 2016-Top 10 by OWASP
Figure 7-13 Screenshot of Android Studio © Google, LLC.
Figure 7-14 Screenshot of Android Studio © Google, LLC.
Figure 7-15 Screenshot of Kali Linux © 2018 Kali Linux
Figure 8-4 Screenshot of Kali Linux © 2018 Kali Linux
Figure 8-6 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-1 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-2 Screenshot of Parrot Linux © 2013-2018 Lorenzo Faletra
Figure 9-3 Screenshot of BlackArch Linux © 2013-2018 BlackArch Linux
Figure 9-4 Screenshot of BlackArch Linux © 2013-2018 BlackArch Linux
Figure 9-5 Screenshot of Caine © Caine
Figure 9-6 Screenshot of Security Onion © Security Onion Solutions, LLC
Figure 9-7 Screenshot of Shodan © 2013-2018 Shodan®
Figure 9-8 Screenshot of Maltego © Paterva
Figure 9-9 Screenshot of Maltego © Paterva
Figure 9-10 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-11 Screenshot of Censys © 2018 Censys
Figure 9-12 Screenshot of Zenmap © Nmap
Figure 9-13 Screenshot of Zenmap © Nmap
 Category: Vulnerability Scanning Tools by OWASP
Figure 9-14 Screenshot of Greenbone © 2017 Greenbone Networks
Figure 9-15 Screenshot of Greenbone © 2017 Greenbone Networks
Figure 9-16 Screenshot of Greenbone © 2017 Greenbone Networks
Figure 9-17 Screenshot of Greenbone © 2017 Greenbone Networks
 OWASP Zed Attack Proxy Project by OWASP
Figure 9-18 Screenshot of OWASP ZAP © OWASP
Figure 9-19 Screenshot of OWASP ZAP © OWASP
Figure 9-20 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-21 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-22 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-23 Screenshot of Kali Linux © 2018 Kali Linux

xxii CompTIA® PenTest+ Cert Guide

Figure 9-24 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-25 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-26 Screenshot of the art of hacking © 2018 Omar Santos
Figure 9-27 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-28 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-29 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-30 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-31 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-32 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-33 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-34 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-35 Screenshot of BeEF Exploitation Framework © Beef
Figure 9-36 Screenshot of OllyDbg © 2000-2014 Oleh Yuschuk
Figure 9-37 Screenshot of Kali Linux © 2018 Kali Linux
Figure 9-38 Screenshot of IDA © 2017 Hex-Rays SA.
Figure 9-39 Screenshot of IDA © 2017 Hex-Rays SA.
Figure 10-1 Screenshot of Kali Linux © 2018 Kali Linux
Figure 10-2 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-3 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-4 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-5 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-6 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-7 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-8 Screenshot of Kali Linux © 2018 Kali Linux
Figure 10-9 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-10 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-11 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-12 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-13 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-14 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-15 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-16 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-17 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-18 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-19 Screenshot of Dradis © 2012-2018 Dradis Framework
Figure 10-21 Screenshot of SQLMap © 2006-2018 by Bernardo Damele

Assumpcao Guimaraes
Figure 10-22 Screenshot of SQLMap © 2006-2018 by Bernardo Damele

Assumpcao Guimaraes ISO 31000
Chapter Opener images: Charlie Edwards/Gettyimages

Introduction xxiii

Introduction

CompTIA PenTest+ is a security penetration testing certification that focuses on
performance-based and multiple-choice questions, as well as simulations that require
a candidate to demonstrate the hands-on ability to complete a penetration testing
engagement. PenTest+ candidates must demonstrate their skills in planning and
 scoping a penetration testing engagement. Candidates are also required to know how
to mitigate security weaknesses and vulnerabilities, as well as how to exploit them.

CompTIA PenTest+ is an intermediate-level cybersecurity career certification. His-
torically, the only intermediate-level cybersecurity certification was the CompTIA
Cybersecurity Analyst (CySA+). Today, PenTest+ provides an alternate path from
those who want to specialize in security penetration testing (ethical hacking).

CompTIA PenTest+ and CySA+ can be taken in any order. Either exam typically
follows the skills learned in Security+. The main difference between CySA+ and
PenTest+ is that CySA+ focuses on defensive security (including incident detection
and response), whereas PenTest+ focuses on offensive security (ethical hacking or
penetration testing).

NOTE CompTIA PenTest+ is a globally recognized certification that demonstrates
the holder’s knowledge and skills across a broad range of security topics.

The Goals of the CompTIA PenTest+ Certification

The CompTIA PenTest+ certification was created and is managed by one of the most
prestigious organizations in the world and has a number of stated goals. Although not
critical for passing the exam, having knowledge of the organization and of these goals
is helpful in understanding the motivation behind the creation of the exam.

Sponsoring Bodies

The Computing Technology Industry Association (CompTIA) is a vendor-neutral
IT certification body that is recognized worldwide. CompTIA has been in existence
for more than 20 years. It develops certificate programs for IT support, networking,
security, Linux, cloud, and mobility. CompTIA is a nonprofit trade association.

PenTest+ is one of a number of security-related certifications offered by CompTIA.
Other certifications offered by this organization include the following:

 ■ CompTIA Security+

 ■ CompTIA Cybersecurity Analyst (CySA+)

 ■ CompTIA Advanced Security Practitioner (CASP)

xxiv CompTIA® PenTest+ Cert Guide

CompTIA offers certifications in other focus areas, including the following:

 ■ CompTIA IT Fundamentals

 ■ CompTIA A+

 ■ CompTIA Network+

 ■ CompTIA Cloud Essentials

 ■ CompTIA Cloud+

 ■ CompTIA Linux+

 ■ CompTIA Server+

 ■ CompTIA Project+

 ■ CompTIA CTT+

Stated Goals

The goal of CompTIA in its administration of the PenTest+ certification is to pro-
vide a reliable instrument to measure an individual’s knowledge of cybersecurity
penetration testing (ethical hacking). This knowledge is not limited to technical
skills alone but extends to all aspects of a successful penetration testing engagement.

The Exam Objectives (Domains)

The CompTIA PenTest+ exam is broken down into five major domains. This book
covers all the domains and the subtopics included in them. The following table lists
the breakdown of the domains represented in the exam:

Domain Percentage of
Representation in Exam

1.0 Planning and Scoping 15%

2.0 Information Gathering and Vulnerability Identification 22%

3.0 Attacks and Exploits 30%

4.0 Penetration Testing Tools 17%

5.0 Reporting and Communication 16%

Total 100%

1.0 Planning and Scoping

The Planning and Scoping domain, which is covered in Chapter 2, discusses the
importance of good planning and scoping in a penetration testing or ethical hacking

Introduction xxv

engagement. Comprising 15% of the exam, it covers several key legal concepts and
the different aspects of compliance-based assessment. It Covers topics including the
following:

 ■ Explain the importance of planning for an engagement.

 ■ Explain key legal concepts.

 ■ Explain the importance of scoping an engagement properly.

 ■ Explain the key aspects of compliance-based assessments.

2.0 Information Gathering and Vulnerability Identification

The Information Gathering and Vulnerability Identification domain, which is cov-
ered in Chapter 3, starts out by discussing in general what reconnaissance is and
the difference between passive and active reconnaissance methods. It touches on
some of the common tools and techniques used. From there it covers the process of
vulnerability scanning and how vulnerability scanning tools work, including how to
analyze vulnerability scanning results to provide useful deliverables and the process
of leveraging the gathered information in the exploitation phase. Finally, it discusses
some of the common challenges to consider when performing vulnerability scans.
This domain accounts for 22% of the exam. Topics include the following:

 ■ Given a scenario, conduct information gathering using appropriate techniques.

 ■ Given a scenario, perform a vulnerability scan.

 ■ Given a scenario, analyze vulnerability scan results.

 ■ Explain the process of leveraging information to prepare for exploitation.

 ■ Explain weaknesses related to specialized systems.

3.0 Attacks and Exploits

The Attacks and Exploits domain is covered throughout Chapters 4 through 8.
These chapters include topics such as social engineering attacks, exploitation of
wired and wireless networks, application-based vulnerabilities, local host and physi-
cal security vulnerabilities, and post-exploitation techniques. It encompasses 30% of
the exam. Topics include the following:

 ■ Compare and contrast social engineering attacks.

 ■ Given a scenario, exploit network-based vulnerabilities.

 ■ Given a scenario, exploit wireless and RF-based vulnerabilities.

 ■ Given a scenario, exploit application-based vulnerabilities.

xxvi CompTIA® PenTest+ Cert Guide

 ■ Given a scenario, exploit local host vulnerabilities.

 ■ Summarize physical security attacks related to facilities.

 ■ Given a scenario, perform post-exploitation techniques.

4.0 Penetration Testing Tools

The Penetration Testing Tools domain is covered in Chapter 9. In this chapter, you
will learn different use cases for penetration testing tools. You will also learn how to
analyze the output of some of the most popular penetration testing tools to make
informed assessments. At the end of the chapter, you will learn how to leverage the
bash shell, Python, Ruby, and PowerShell to perform basic scripting. This domain
accounts for 17% of the exam. The topics include the following:

 ■ Given a scenario, use Nmap to conduct information gathering exercises.

 ■ Compare and contrast various use cases of tools.

 ■ Given a scenario, analyze tool output or data related to a penetration test.

 ■ Given a scenario, analyze a basic script (limited to bash, Python, Ruby, and
PowerShell).

5.0 Reporting and Communication

The Reporting and Communication domain is covered in Chapter 10, which starts
out by discussing post-engagement activities, such as cleanup of any tools or shells
left on systems that were part of the test. From there it covers report writing best
practices, including the common report elements as well as findings and recommen-
dations. Finally, it touches on report handling and proper communication best prac-
tices. This domain makes up 16% of the exam. Topics include the following:

 ■ Given a scenario, use report writing and handling best practices.

 ■ Explain post-report delivery activities.

 ■ Given a scenario, recommend mitigation strategies for discovered
vulnerabilities.

 ■ Explain the importance of communication during the penetration testing
process.

Steps to Earning the PenTest+ Certification

To earn the PenTest+ certification, a test candidate must meet certain prerequisites
and follow specific procedures. Test candidates must qualify for and sign up for
the exam.

Introduction xxvii

Recommended Experience

There are no prerequisites for the PenTest+ certification. However, CompTIA
 recommends that candidates possess Network+, Security+, or equivalent knowledge.

NOTE Certifications such as Cisco CCNA CyberOps can help candidates and can
be used as an alternative to Security+.

CompTIA also recommends a minimum of three to four years of hands-on
 information security or related experience.

Signing Up for the Exam

The steps required to sign up for the PenTest+ exam are as follows:

 1. Create a Pearson Vue account at pearsonvue.com and schedule your exam.

 2. Complete the examination agreement, attesting to the truth of your assertions
regarding professional experience and legally committing to the adherence to
the testing policies.

 3. Review the candidate background questions.

 4. Submit the examination fee.

The following website presents the CompTIA certification exam policies:
https://certification.comptia.org/testing/test-policies.

Facts About the PenTest+ Exam

The PenTest+ exam is a computer-based test that focuses on performance-based and
multiple-choice questions. There are no formal breaks, but you are allowed to bring
a snack and eat it at the back of the test room; however, any time used for breaks
counts toward 165 minutes allowed for the test. You must bring a government-
issued identification card. No other forms of ID will be accepted. You may be
required to submit to a palm vein scan.

http://pearsonvue.com
https://certification.comptia.org/testing/test-policies

xxviii CompTIA® PenTest+ Cert Guide

About the CompTIA® PenTest+ Cert Guide

This book maps to the topic areas of the CompTIA® PenTest+ exam and uses a
 number of features to help you understand the topics and prepare for the exam.

Objectives and Methods

This book uses several key methodologies to help you discover the exam topics on
which you need more review, to help you fully understand and remember those
details, and to help you prove to yourself that you have retained your knowledge
of those topics. This book does not try to help you pass the exam only by memo-
rization; it seeks to help you truly learn and understand the topics. This book is
designed to help you pass the PenTest+ exam by using the following methods:

 ■ Helping you discover which exam topics you have not mastered

 ■ Providing explanations and information to fill in your knowledge gaps

 ■ Supplying exercises that enhance your ability to recall and deduce the answers
to test questions

 ■ Providing practice exercises on the topics and the testing process via test
 questions on the companion website

Introduction xxxi

Customizing Your Exams

In the exam settings screen, you can choose to take exams in one of three modes:

 ■ Study mode: Allows you to fully customize your exams and review answers
as you are taking the exam. This is typically the mode you would use first to
assess your knowledge and identify information gaps.

 ■ Practice Exam mode: Locks certain customization options, as it is presenting
a realistic exam experience. Use this mode when you are preparing to test your
exam readiness.

 ■ Flash Card mode: Strips out the answers and presents you with only the
question stem. This mode is great for late-stage preparation, when you really
want to challenge yourself to provide answers without the benefit of see-
ing multiple-choice options. This mode does not provide the detailed score
reports that the other two modes do, so it will not be as helpful as the other
modes at helping you identify knowledge gaps.

xxxii CompTIA® PenTest+ Cert Guide

In addition to choosing among these three modes, you will be able to select the
source of your questions. You can choose to take exams that cover all the chapters, or
you can narrow your selection to just a single chapter or the chapters that make up
specific parts in the book. All chapters are selected by default. If you want to narrow
your focus to individual chapters, simply deselect all the chapters and then select
only those on which you wish to focus in the Objectives area.

You can also select the exam banks on which to focus. Each exam bank comes
 complete with a full exam of questions that cover topics in every chapter. The two
exams printed in the book are available to you, as are two additional exams of unique
questions. You can have the test engine serve up exams from all four banks or just
from one individual bank by selecting the desired banks in the exam bank area.

There are several other customizations you can make to your exam from the exam
settings screen, such as the time of the exam, the number of questions served up,
whether to randomize questions and answers, whether to show the number of cor-
rect answers for multiple-answer questions, and whether to serve up only specific
types of questions. You can also create custom test banks by selecting only questions
that you have marked or questions on which you have added notes.

Updating Your Exams

If you are using the online version of the Pearson Test Prep software, you should
always have access to the latest version of the software as well as the exam data. If
you are using the Windows desktop version, every time you launch the software
while connected to the Internet, it checks whether there are any updates to your
exam data and automatically downloads any changes made since the last time you
used the software.

Sometimes, due to many factors, the exam data may not fully download when you
activate your exam. If you find that figures or exhibits are missing, you may need to
manually update your exams. To update a particular exam you have already activated
and downloaded, simply click the Tools tab and click the Update Products button.
Again, this is only an issue with the desktop Windows application.

If you wish to check for updates to the Pearson Test Prep exam engine software,
Windows desktop version, simply click the Tools tab and click the Update
 Application button. By doing so, you ensure that you are running the latest version
of the software engine.

This page intentionally left blank

CHAPTER 7

Exploiting Local Host
and Physical Security
Vulnerabilities

In this chapter you will learn about exploiting local host vulnerabilities, as well
as physical security flaws. This chapter provides details on how to take advan-
tage of insecure services and protocol configurations during a penetration test-
ing engagement. You will also learn how to perform local privilege escalation
attacks as part of penetration testing. This chapter provides details to help you
gain an understanding of Set-UID, Set-GID, and Unix programs, as well as
ret2libc attacks. This chapter also covers privilege escalation attacks against
Windows systems and the security flaws of Android and Apple iOS mobile
devices. In this chapter you will also gain an understanding of physical security
attacks such as piggybacking, tailgating, fence jumping, dumpster diving, lock
picking, and badge cloning.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should
read this entire chapter thoroughly or jump to the “Exam Preparation Tasks”
section. If you are in doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire chapter. Table 7-1
lists the major headings in this chapter and their corresponding “Do I Know
This Already?” quiz questions. You can find the answers in Appendix A,
“Answers to the ‘Do I Know This Already?’ Quizzes and Q&A Sections.”

Table 7-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Exploiting Local Host Vulnerabilities 1–8

Understanding Physical Security Attacks 9–10

278 CompTIA® PenTest+ Cert Guide

CAUTION The goal of self-assessment is to gauge your mastery of the topics in
this chapter. If you do not know the answer to a question or are only partially sure
of the answer, you should mark that question as incorrect for purposes of the self-
assessment. Giving yourself credit for an answer you correctly guess skews your self-
assessment results and might provide you with a false sense of security.

 1. Which of the following is not an insecure service or protocol?

 a. Cisco Smart Install

 b. Telnet

 c. Finger

 d. Windows PowerSploit

 2. Consider the following example:
 omar@ares:~$ ls -l topsecret.txt
 -rwxrwxr-- 1 omar omar 15 May 26 21:15 topsecret.txt

 What permissions does the user omar have in the topsecret.txt file?

 a. Read only

 b. Write only

 c. Read, write, execute

 d. Write, execute

 3. Which of the following is not true about sticky bits?

 a. A restricted deletion flag, or sticky bit, is a single bit whose interpreta-
tion depends on the file type.

 b. For directories, the sticky bit prevents unprivileged users from removing
or renaming a file in the directory unless they own the file or the direc-
tory; this is called the restricted deletion flag for the directory, and is
commonly found on world-writable directories such as /tmp.

 c. If the sticky bit is set on a directory, files inside the directory cannot be
renamed or removed by the owner of the file, the owner of the directory,
or the superuser (even though the modes of the directory might allow
such an operation).

 d. For regular files on some older systems, the sticky bit saves the program’s
text image on the swap device so it will load more quickly when run.

279Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

 4. Which of the following is a type of attack in which a subroutine return
address on a call stack is replaced by an address of a subroutine that is already
present in the executable memory of the process?

 a. Ret2libc

 b. ASLR bypass

 c. CPassword

 d. Sticky-bit attack

 5. Which of the following is a component of Active Directory’s Group
Policy Preferences that allows administrators to set passwords via Group
Policy?

 a. Ret2libc

 b. CPassword

 c. Sticky-bit

 d. GPO crack

 6. Which of the following tools allows an attacker to dump the LSASS
process from memory to disk?

 a. John the Ripper

 b. SAMsploit

 c. Sysinternals ProcDump

 d. Windows PowerShell

 7. The SELinux and AppArmor security frameworks include enforcement
rules that attempt to prevent which of the following attacks?

 a. Lateral movement

 b. Sandbox escape

 c. Cross-site request forgery (CSRF)

 d. Cross-site scripting (XSS)

280 CompTIA® PenTest+ Cert Guide

 8. Which of the following is not one of the top mobile security threats and
vulnerabilities?

 a. Cross-site request forgery (CSRF)

 b. Insecure data storage

 c. Insecure communication

 d. Insecure authentication

 9. Which of the following is an attack in which the attacker tries to
retrieve encryption keys from a running operating system after using a
system reload?

 a. Hot-boot

 b. Rowhammer

 c. Cold boot

 d. ASLR bypass

 10. Which of the following is the term for an unauthorized individual
following an authorized individual to enter a restricted building or
facility?

 a. Lockpicking

 b. Dumpster diving

 c. Badge cloning

 d. Tailgating

281Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

 Foundation Topics

Exploiting Local Host Vulnerabilities
Threat actors take advantage of numerous local host vulnerabilities to carry out dif-
ferent attacks. In this section, you will learn about exploits against local host vulner-
abilities such as taking advantage of specific operating system flaws, escalating local
privileges, stealing credentials, installing key loggers, and abusing physical device
security. You will also learn about different virtual machine and container vulner-
abilities, and you will learn about cold boot attacks, JTAG debugging, and different
attacks that can be carried out over the serial console of a device.

Insecure Service and Protocol Configurations

Many attacks materialize because unused or insecure protocols, services, and asso-
ciated ports, which are low-hanging fruit opportunities for attackers. In addition,
many organizations don’t patch vulnerabilities for the services, protocols, and ports
they don’t use—despite the fact that vulnerabilities may still be present for months
or even years.

TIP A best practice is to clearly define and document the services, protocols, and
ports that are necessary for business. An organization should ensure that all other ser-
vices, protocols, and ports are disabled or removed. As a penetration tester, you should
always go after insecure protocols, services, and associated ports.

Some protocols should never be used, such as Telnet and Cisco Smart Install. Telnet
is a clear-text protocol that exposes the entire contents of any session to anyone who
can gain access to the traffic. Secure Shell (SSH) should be used instead. If a switch
is running the Cisco Smart Install protocol, any unauthenticated attacker can modify
the configuration and fully compromise the switch.

NOTE You can obtain more information about Smart Install and related features
from the following Cisco security advisory: https://tools.cisco.com/security/center/
content/CiscoSecurityAdvisory/cisco-sa-20180409-smi.

Other protocols, like Telnet, transfer sensitive data in clear text. Examples of these
clear-text protocols include SNMP (versions 1 and 2), HTTP, syslog, IMAP, POP3,
and FTP.

https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180409-smi
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180409-smi

282 CompTIA® PenTest+ Cert Guide

TIP In some cases, there is no secure alternative to otherwise insecure management
protocols. In such a case, it is very important to understand what is at risk and what
mitigation techniques could be implemented.

All insecure protocols are subject to man-in-the-middle (MITM) attacks or to IP
traffic capture (sniffing). Example 7-1 shows how easy it is to capture a password
from an FTP transaction by just sniffing the traffic using the Linux Tcpdump tool.

Example 7-1 Capturing Passwords and Sniffing Traffic from Clear-Text Protocols by

Using Tcpdump

root@kube1:~# tcpdump -nnXSs 0 host 10.1.1.12

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on ens160, link-type EN10MB (Ethernet), capture size 262144
bytes

22:50:23.958387 IP 10.1.1.12.50788 > 10.1.1.11.21: Flags [S], seq
314242458, win 29200, options [mss 1460,sackOK,TS val 1523378506 ecr
0,nop,wscale 7], length 0

 0x0000: 4500 003c 1cd0 4000 4006 07d4 0a01 010c E..<..@.@.......

 0x0010: 0a01 010b c664 0015 12ba f59a 0000 0000 d..........

 0x0020: a002 7210 acf1 0000 0204 05b4 0402 080a ..r.............

 0x0030: 5acc e94a 0000 0000 0103 0307 Z..J........
22:50:23.958455 IP 10.1.1.11.21 > 10.1.1.12.50788: Flags [S.], seq
4230935771, ack 314242459, win 28960, options [mss 1460,sackOK,TS val
1523511322 ecr 1523378506,nop,wscale 7], length 0

 0x0000: 4500 003c 0000 4000 4006 24a4 0a01 010b E..<..@.@.$.....

 0x0010: 0a01 010c 0015 c664 fc2e f4db 12ba f59b d........

 0x0020: a012 7120 1647 0000 0204 05b4 0402 080a ..q..G..........

 0x0030: 5ace f01a 5acc e94a 0103 0307 Z...Z..J....
22:50:23.958524 IP 10.1.1.12.50788 > 10.1.1.11.21: Flags [.], ack
4230935772, win 229, options [nop,nop,TS val 1523378506 ecr 1523511322],
length 0

 0x0000: 4500 0034 1cd1 4000 4006 07db 0a01 010c E..4..@.@.......

 0x0010: 0a01 010b c664 0015 12ba f59b fc2e f4dc d..........

 0x0020: 8010 00e5 10e4 0000 0101 080a 5acc e94a Z..J

 0x0030: 5ace f01a Z...

22:50:23.961422 IP 10.1.1.11.21 > 10.1.1.12.50788: Flags [P.], seq
4230935772:4230935792, ack 314242459, win 227, options [nop,nop,TS val
1523511323 ecr 1523378506], length 20: FTP: 220 (vsFTPd 3.0.3)

 0x0000: 4500 0048 04c6 4000 4006 1fd2 0a01 010b E..H..@.@.......

 0x0010: 0a01 010c 0015 c664 fc2e f4dc 12ba f59b d........

 0x0020: 8018 00e3 1653 0000 0101 080a 5ace f01b S......Z...

 0x0030: 5acc e94a 3232 3020 2876 7346 5450 6420 Z..J220.(vsFTPd.

 0x0040: 332e 302e 3329 0d0a 3.0.3)..

283Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

22:50:23.961485 IP 10.1.1.12.50788 > 10.1.1.11.21: Flags [.], ack
4230935792, win 229, options [nop,nop,TS val 1523378507 ecr 1523511323],
length 0

 0x0000: 4510 0034 1cd2 4000 4006 07ca 0a01 010c E..4..@.@.......

 0x0010: 0a01 010b c664 0015 12ba f59b fc2e f4f0 d..........

 0x0020: 8010 00e5 10ce 0000 0101 080a 5acc e94b Z..K

 0x0030: 5ace f01b Z...

22:50:26.027005 IP 10.1.1.12.50788 > 10.1.1.11.21: Flags [P.], seq
314242459:314242470, ack 4230935792, win 229, options [nop,nop,TS val
1523379024 ecr 1523511323], length 11: FTP: USER omar

 0x0000: 4510 003f 1cd3 4000 4006 07be 0a01 010c E..?..@.@.......

 0x0010: 0a01 010b c664 0015 12ba f59b fc2e f4f0 d..........

 0x0020: 8018 00e5 6a32 0000 0101 080a 5acc eb50 j2......Z..P

 0x0030: 5ace f01b 5553 4552 206f 6d61 720d 0a Z...USER.omar..

22:50:26.027045 IP 10.1.1.11.21 > 10.1.1.12.50788: Flags [.], ack
314242470, win 227, options [nop,nop,TS val 1523511839 ecr 1523379024],
length 0

 0x0000: 4500 0034 04c7 4000 4006 1fe5 0a01 010b E..4..@.@.......

 0x0010: 0a01 010c 0015 c664 fc2e f4f0 12ba f5a6 d........

 0x0020: 8010 00e3 163f 0000 0101 080a 5ace f21f ?......Z...

 0x0030: 5acc eb50 Z..P

22:50:26.027343 IP 10.1.1.11.21 > 10.1.1.12.50788: Flags [P.], seq
4230935792:4230935826, ack 314242470, win 227, options [nop,nop,TS val
1523511839 ecr 1523379024], length 34: FTP: 331 Please specify the
password.

 0x0000: 4500 0056 04c8 4000 4006 1fc2 0a01 010b E..V..@.@.......

 0x0010: 0a01 010c 0015 c664 fc2e f4f0 12ba f5a6 d........

 0x0020: 8018 00e3 1661 0000 0101 080a 5ace f21f a......Z...

 0x0030: 5acc eb50 3333 3120 506c 6561 7365 2073 Z..P331.Please.s

 0x0040: 7065 6369 6679 2074 6865 2070 6173 7377 pecify.the.

 0x0050: 6f72 642e 0d0a password...

22:50:26.027393 IP 10.1.1.12.50788 > 10.1.1.11.21: Flags [.], ack
4230935826, win 229, options [nop,nop,TS val 1523379024 ecr 1523511839],
length 0

 0x0000: 4510 0034 1cd4 4000 4006 07c8 0a01 010c E..4..@.@.......

 0x0010: 0a01 010b c664 0015 12ba f5a6 fc2e f512 d..........

 0x0020: 8010 00e5 0c98 0000 0101 080a 5acc eb50 Z..P

 0x0030: 5ace f21f Z...

22:50:30.053380 IP 10.1.1.12.50788 > 10.1.1.11.21: Flags [P.], seq
314242470:314242485, ack 4230935826, win 229, options [nop,nop,TS val
1523380030 ecr 1523511839], length 15: FTP: PASS badpass1

 0x0000: 4510 0043 1cd5 4000 4006 07b8 0a01 010c E..C..@.@.......

 0x0010: 0a01 010b c664 0015 12ba f5a6 fc2e f512 d..........

 0x0020: 8018 00e5 c455 0000 0101 080a 5acc ef3e U......Z..>

 0x0030: 5ace f21f 5041 5353 2062 6164 7061 7373 Z...PASS.badpass

 0x0040: 310d 0a 1..

284 CompTIA® PenTest+ Cert Guide

22:50:30.085058 IP 10.1.1.11.21 > 10.1.1.12.50788: Flags [P.], seq
4230935826:4230935849, ack 314242485, win 227, options [nop,nop,TS val
1523512854 ecr 1523380030], length 23: FTP: 230 Login successful.

 0x0000: 4500 004b 04c9 4000 4006 1fcc 0a01 010b E..K..@.@.......

 0x0010: 0a01 010c 0015 c664 fc2e f512 12ba f5b5 d........

 0x0020: 8018 00e3 1656 0000 0101 080a 5ace f616 V......Z...

 0x0030: 5acc ef3e 3233 3020 4c6f 6769 6e20 7375 Z..>230.Login.

 0x0040: 6363 6573 7366 756c 2e0d 0a successful...

In Example 7-1 a host at IP address 10.1.1.12 initiates an FTP connection to an
FTP server with IP address 10.1.1.11. In the packet capture, you can see the initial
login transaction where the user (omar) successfully logs in using the password (bad-
pass1), as demonstrated in the highlighted lines in Example 7-1. It is possible to use
similar utilities, such as Tshark, to capture data from a live network (see https://
www.wireshark.org/docs/man-pages/tshark.html).

The following are also some of the services that are considered insecure:

 ■ Rlogin: https://linux.die.net/man/1/rlogin

 ■ Rsh: https://linux.die.net/man/1/rsh

 ■ Finger: https://linux.die.net/man/1/finger

The following services should be carefully implemented and not exposed to
untrusted networks:

 ■ Authd (or Identd): https://linux.die.net/man/3/ident

 ■ Netdump: https://linux.die.net/man/8/netdump

 ■ Netdump-server: https://linux.die.net/man/8/netdump-server

 ■ Nfs: https://linux.die.net/man/5/nfs

 ■ Rwhod: https://linux.die.net/man/8/rwhod

 ■ Sendmail: https://linux.die.net/man/8/sendmail.sendmail

 ■ Samba: https://linux.die.net/man/7/samba

 ■ Yppasswdd: https://linux.die.net/man/8/yppasswdd

 ■ Ypserv: https://linux.die.net/man/8/ypserv

 ■ Ypxfrd: https://linux.die.net/man/8/ypxfrd

TIP RedHat provides a great resource that goes over Linux server security; see
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/
html/Security_Guide/ch-server.html.

https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://linux.die.net/man/1/rlogin
https://linux.die.net/man/1/rsh
https://linux.die.net/man/1/finger
https://linux.die.net/man/3/ident
https://linux.die.net/man/8/netdump
https://linux.die.net/man/8/netdump-server
https://linux.die.net/man/5/nfs
https://linux.die.net/man/8/rwhod
https://linux.die.net/man/8/sendmail.sendmail
https://linux.die.net/man/7/samba
https://linux.die.net/man/8/yppasswdd
https://linux.die.net/man/8/ypserv
https://linux.die.net/man/8/ypxfrd
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Security_Guide/ch-server.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Security_Guide/ch-server.html

285Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

Local Privilege Escalation

Privilege escalation is the process of elevating the level of authority (privileges) of
a compromised user or a compromised application. This is done to further perform
actions on the affected system or any other systems in the network, typically post-
exploitation (that is, after gaining a foothold in the target system and exploiting a
vulnerability).

NOTE In Chapter 8, “Performing Post-Exploitation Techniques,” you will learn
about additional post-exploitation methodologies and tactics.

The main focus of the post-exploitation phase is to maintain access to the compro-
mised systems and move around in the network while remaining undetected. In
many cases, privilege escalation is required to perform those tasks.

It is possible to perform privilege escalation in a few different ways. An attacker may
be able to compromise a system by logging in with a non-privileged account. Sub-
sequently, the attacker can go from that unprivileged (or less privileged) account to
another account that has greater authority, as shown in Figure 7-1.

user: admin_user

user: omar

Attacker goes from a less-
privileged account
to another account that has
greater authority.

FIGURE 7-1 Privilege Escalation from One Account to Another

It is also possible to perform privilege escalation by “upgrading,” or elevating, the
privileges of the same account, as shown in Figure 7-2.

user: omar
(group: eng, admin)

user: omar
(group: eng)

The same account is used, but the attacker manipulates the
system to increase the account privilege.

FIGURE 7-2 Privilege Escalation Using the Same Account

286 CompTIA® PenTest+ Cert Guide

In Figure 7-2, the user (omar) belongs to the engineering group (eng) and does not
have administrative rights on the system. The attacker then exploits a vulnerabil-
ity and is able to manipulate the system to put the same user (omar) in the admin
group, subsequently giving the user administrative rights on the system.

Understanding Linux Permissions

This book assumes that you have familiarity with Linux and user accounts. As a
refresher, in some cases users must be able to accomplish tasks that require privileges
(for example, when installing a program or adding another user). This is why sudo
exists. Example 7-2 shows the first few lines and description of the sudo man page.

Example 7-2 The Linux sudo Command

 sudo, sudoedit — execute a command as another user

SYNOPSIS

 sudo -h | -K | -k | -V

 sudo -v [-AknS] [-a type] [-g group] [-h host] [-p prompt] [-u user]

 sudo -l [-AknS] [-a type] [-g group] [-h host] [-p prompt] [-U user]
[-u user] [command]

 sudo [-AbEHnPS] [-a type] [-C num] [-c class] [-g group] [-h host]
[-p prompt] [-r role] [-t type] [-u user] [VAR=value] [-i | -s] [command]

 sudoedit [-AknS] [-a type] [-C num] [-c class] [-g group] [-h host]
[-p prompt] [-u user] file ...

DESCRIPTION

 sudo allows a permitted user to execute a command as the superuser
or another user, as specified by the security policy. The invoking user's
real (not effective) user ID is used to determine the user name with which
to query the security policy.

 sudo supports a plugin architecture for security policies and input/
output logging. Third parties can develop and distribute their own policy
and I/O logging plug-ins to work seamlessly with the sudo front end. The
default security policy is sudoers, which is configured via the file /etc/
sudoers, or via LDAP. See the Plugins section for more information.

 The security policy determines what privileges, if any, a user has
to run sudo. The policy may require that users authenticate themselves
with a password or another authentication mechanism. If authentication
is required, sudo will exit if the user's password is not entered within
a configurable time limit. This limit is policy-specific; the default
password prompt timeout for the sudoers security policy is unlimited.

 Security policies may support credential caching to allow the user
to run sudo again for a period of time without requiring authentication.
The sudoers policy caches credentials for 15 minutes, unless overridden
in sudoers(5). By running sudo with the -v option, a user can update the
cached credentials without running a command.

287Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

 When invoked as sudoedit, the -e option (described below), is implied.

 Security policies may log successful and failed attempts to use sudo.
If an I/O plugin is configured, the running command's input and output may
be logged as well.

. . . <output omitted for brevity>. . .

On Unix-based systems, you can use the chmod command to set permissions values
on files and directories.

NOTE You can set permissions of a file or directory (folder) to a given user, a group
of users, and others.

With Linux you can set three basic permissions:

 ■ Read (r)

 ■ Write (w)

 ■ Execute (x)

You can apply these permissions to any type of files or to directories. Example 7-3
shows the permissions of a file called omar_file.txt. The user executes the ls -l com-
mand, and in the portion of the output on the left, you see -rw-rw-r--, which indi-
cates that the current user (omar) has read and write permissions.

Example 7-3 Linux File Permissions

omar@dionysus:~$ ls -l omar_file.txt

-rw-rw-r-- 1 omar omar 15 May 26 23:45 omar_file.txt

Figure 7-3 explains the Linux file permissions.

- r w - r w - r - -

- : file
d : directory
l : link

Read, write, and
execute permissions

for the group members
owning the file.

Read, write, and
execute permissions

for the owner
of the file.

Read, write, and
execute permissions

for other users.

FIGURE 7-3 Explaining Linux File Permissions

288 CompTIA® PenTest+ Cert Guide

Example 7-4 shows how a user belonging to any group can change the permissions
of the file to be read, write, executable by using the chmod 0777 command.

Example 7-4 Changing File Permissions

omar@dionysus:~$ chmod 0777 omar_file.txt

omar@dionysus:~$ ls -l omar_file.txt

-rwxrwxrwx 1 omar omar 15 May 26 23:45 omar_file.txt

omar@dionysus:~$

As documented in the chmod man pages, the restricted deletion flag, or sticky bit, is
a single bit whose interpretation depends on the file type. For directories, the sticky
bit prevents unprivileged users from removing or renaming a file in the directory
unless they own the file or the directory; this is called the restricted deletion flag for
the directory, and it is commonly found on world-writable directories such as /tmp.
For regular files on some older systems, the sticky bit saves the program’s text image
on the swap device so it will load more quickly when run.

TIP The sticky bit is obsolete with files, but it is used for directories to indicate that
files can be unlinked or renamed only by their owner or the superuser. Sticky bits
were used with files in very old Unix machines due to memory restrictions. If the
sticky bit is set on a directory, files inside the directory may be renamed or removed
only by the owner of the file, the owner of the directory, or the superuser (even
though the modes of the directory might allow such an operation); on some systems,
any user who can write to a file can also delete it. This feature was added to keep an
ordinary user from deleting another’s files from the /tmp directory.

There are two ways that you can use the chmod command:

 ■ Symbolic (text) method

 ■ Numeric method

When you use the symbolic method, the structure includes who has access and the
permission given. The indication of who has access to the file is as follows:

 ■ u: The user that owns the file

 ■ g: The group that the file belongs to

 ■ o: The other users (that is, everyone else)

 ■ a: All of the above (that is, use a instead of ugo)

289Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

Example 7-5 shows how to remove the execute permissions for all users by using
the chmod a-x omar_file.txt command.

Example 7-5 Symbolic Method Example

omar@dionysus:~$ ls -l omar_file.txt

-rwxrwxrwx 1 omar omar 15 May 26 23:45 omar_file.txt

omar@dionysus:~$ chmod a-x omar_file.txt

omar@dionysus:~$ ls -l omar_file.txt

-rw-rw-rw- 1 omar omar 15 May 26 23:45 omar_file.txt

omar@dionysus:~$

The chmod command allows you to use + to add permissions and - to remove per-
missions. The chmod commands clears the set-group-ID (SGID or setgid) bit of a
regular file if the file’s group ID does not match the user’s effective group ID or one
of the user’s supplementary group IDs, unless the user has appropriate privileges.
Additional restrictions may cause the set-user-ID (SUID or setuid) and set-group-
ID bits of MODE or FILE to be ignored. This behavior depends on the policy and
functionality of the underlying chmod system call. When in doubt, check the under-
lying system behavior. This is clearly explained in the man page of the chmod com-
mand (man chmod). In addition, the chmod command retains a directory’s SUID
and SGID bits unless you explicitly indicate otherwise.

You can also use numbers to edit the permissions of a file or directory (for the
owner, group, and others), as well as the SUID, SGID, and sticky bits. Example 7-4
shows the numeric method. The three-digit number specifies the permission, where
each digit can be anything from 0 to 7. The first digit applies to permissions for
the owner, the second digit applies to permissions for the group, and the third digit
applies to permissions for all others.

Figure 7-4 demonstrates how the numeric method works.

Permission

- r w x
Binary-to-decimal conversion

000=0
001=1
010=2
011=3

100=4
101=5
110=6
111=71 1 1

FIGURE 7-4 Explaining the Linux File Permission Numeric Method

290 CompTIA® PenTest+ Cert Guide

As shown in Figure 7-4, a binary number 1 is put under each permission granted
and a 0 under each permission not granted. On the right in Figure 7-4, the
binary-to-decimal conversion is done. This is why in Example 7-4, the numbers 777
make the file omar_file.txt world-writable (which means any user has read, write,
and execute permissions).

A great online tool that you can use to practice setting the different parameters of
Linux permissions is the Permissions Calculator, at http://permissions-calculator.org
(see Figure 7-5).

FIGURE 7-5 Permissions Calculator Online Tool

The Permissions Calculator website also provides several examples using PHP,
Python, and Ruby to change file and directory permissions programmatically, as
shown in Figure 7-6.

http://permissions-calculator.org

291Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

FIGURE 7-6 Changing Permissions Programmatically

Understanding SUID or SGID and Unix Programs

A program or a script in which the owner is root (by setting its Set-UID bit) will
execute with superuser (root) privileges. This introduces a security problem: If the
system is compromised and that program is manipulated (as in the case of mono-
lithic embedded devices), an attacker may be able to run additional executions as
superuser (root).

Modern Unix and Linux-based systems ignore the SUID and SGID bits on shell
scripts for this reason.

292 CompTIA® PenTest+ Cert Guide

TIP An example of a SUID-based attack is the vulnerability that existed in the pro-
gram /usr/lib/preserve (or /usr/lib/ex3.5preserve). This program, which is used by the
vi and ex editors, automatically made a backup of the file being edited if the user was
unexpectedly disconnected from the system before writing out changes to the file.
The system wrote the changes to a temporary file in a special directory. The system
also sent an email to the user using /bin/mail with a notification that the file had been
saved. Because users could have been editing a file that was private or confidential,
the directory used by the older version of the Preserve program was not accessible by
most users on the system. Consequently, to let the Preserve program write into this
directory and let the recovery program read from it, these programs were made
SUID root.

You can find all the SUID and SGID files on your system by using the command
shown in Example 7-6.

Example 7-6 Finding All the SUID and SGID Files on a System

omar@dionysus:~$ sudo find / \(-perm -004000 -o -perm -002000 \)
-type f -print

[sudo] password for omar: ************

find: '/proc/3491/task/3491/fdinfo/6'/usr/sbin/postqueue

/usr/sbin/postdrop

/usr/lib/eject/dmcrypt-get-device

/usr/lib/dbus-1.0/dbus-daemon-launch-helper

/usr/lib/policykit-1/polkit-agent-helper-1

/usr/lib/x86_64-linux-gnu/utempter/utempter

/usr/lib/x86_64-linux-gnu/lxc/lxc-user-nic

/usr/lib/snapd/snap-confine

/usr/lib/openssh/ssh-keysign

/usr/bin/dotlock.mailutils

/usr/bin/pkexec

/usr/bin/chfn

/usr/bin/screen

/usr/bin/newgrp

/usr/bin/crontab

/usr/bin/at

/usr/bin/chsh

/usr/bin/ssh-agent

/usr/bin/gpasswd

/usr/bin/expiry

293Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

/usr/bin/wall

/usr/bin/sudo

/usr/bin/bsd-write

/usr/bin/mlocate

/usr/bin/newgidmap

/usr/bin/chage

/usr/bin/newuidmap

find: '/proc/3491/fdinfo/5': No such file or directory

/sbin/mount.cifs

/sbin/unix_chkpwd

/sbin/pam_extrausers_chkpwd

/sbin/mount.ecryptfs_private

/bin/fusermount

/bin/ping6

/bin/mount

/bin/umount

/bin/ntfs-3g

/bin/su

/bin/ping

In Example 7-6, the find command starts in the root directory (/) and looks for all
files that match mode 002000 (SGID) or mode 004000 (SUID). The -type f option
limits the search to files only.

TIP Security Enhanced Linux (SELinux) is a collection of kernel modifications and
user-space tools that are now part of several Linux distributions. It supports access
control security policies, including mandatory access controls. SELinux aims to pro-
vide enforcement of security policies and simplify the amount of software required
to accomplish such enforcement. Access can be constrained on variables such as
which users and applications can access which resources. In addition, SELinux access
controls are determined by a policy loaded on the system that cannot be changed
by uneducated users or insecure applications. SELinux also allows you to configure
more granular access control policies. For instance, SELinux lets you specify who can
unlink, append only, or move a file instead of only being able to specify who can read,
write, or execute a file. It also allows you to configure access to many other resources
in addition to files. For example, it allows you to specify access to network resources
and interprocess communication (IPC).

294 CompTIA® PenTest+ Cert Guide

Insecure SUDO Implementations

Sudo, which stands for “super user do,” Is a Linux utility that allows a system admin-
istrator to give certain users or groups of users the ability to run some or all com-
mands as root or superuser. The Sudo utility operates on a per-command basis, and
it is not a replacement for the shell. You can also use the Sudo utility to restrict the
commands a user can run on a per-host basis, to restrict logging of each command
to have an audit trail of who did what, and to restrict the ability to use the same con-
figuration file on different systems.

Example 7-7 shows the Linux command groups being used. The command shows
the group that the user omar belongs to. You can see in this example that sudo is one
of the groups that the user omar belongs to.

Example 7-7 The groups Command

omar@dionysus:~$ groups

omar adm cdrom sudo dip plugdev lxd sambashare lpadmin

Another command you can use to see the groups a user belongs to is the id command,
as shown in Example 7-8.

Example 7-8 The id Command

omar@dionysus:~$ id

uid=1000(omar) gid=1000(omar) groups=1000(omar),4(adm),24(cdrom),
27(sudo),30(dip),46(plugdev),110(lxd),113(sambashare),117(lpadmin)

Example 7-9 shows the same commands used when a different user (ron) is logged
in. In this case, you can see that ron belongs only to the group ron.

Example 7-9 The Groups to Which User ron Belongs

ron@dionysus:~$ groups

ron

ron@dionysus:~$ id

uid=1001(ron) gid=1001(ron) groups=1001(ron)

ron@dionysus:~$

Certain Linux systems call this group the “wheel” group. If you want to add an exist-
ing user to the wheel (or sudo) group, you can use the usermod command with the

295Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

-G option. You might also want to use the -a option, to avoid removing the user
from other groups to which he or she belongs, as shown in Example 7-10.

Example 7-10 The usermod Command

$ sudo usermod -a -G wheel ron

You can also add a user account to the wheel group as you create it, as shown in
Example 7-11.

Example 7-11 Adding a User to the wheel Group at Creation

$ sudo useradd -G wheel chris

In many different Linux systems, you can also use the visudo command. Figure 7-7
shows the first few lines of the description of the visudo man page (man visudo).

FIGURE 7-7 The visudo Command Man Page

296 CompTIA® PenTest+ Cert Guide

Example 7-12 shows the contents of the sudoers file after the visudo command is
invoked.

Example 7-12 The sudoers File

This file MUST be edited with the 'visudo' command as root.

#

Please consider adding local content in /etc/sudoers.d/ instead of

directly modifying this file.

#

See the man page for details on how to write a sudoers file.

#

Defaults env_reset

Defaults mail_badpass

Defaults secure_path="/usr/local/sbin:/usr/local/bin:/usr/
 sbin:/usr/bin:/sbin:/bin:/snap/bin"

Host alias specification

User alias specification

Cmnd alias specification

User privilege specification

root ALL=(ALL:ALL) ALL

Members of the admin group may gain root privileges

%admin ALL=(ALL) ALL

Allow members of group sudo to execute any command

%sudo ALL=(ALL:ALL) ALL

See sudoers(5) for more information on "#include" directives:

#includedir /etc/sudoers.d

The first highlighted line in Example 7-12 means that the root user can execute
commands from ALL terminals, acting as ALL (that is, any) users, and can run the
ALL command (any commands). The second highlighted line specifies that mem-
bers of the admin group may gain root privileges and can also execute commands
from all terminals, acting as ALL (any) users, and can run the ALL command (any
commands). The third highlighted line specifies the same for any members of the
group sudo.

297Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

A huge mistake that some people make is to copy and paste the root privileges and
assign them to a user, as shown in Example 7-13.

Example 7-13 Improper sudoers File Entry

ben ALL=(ALL:ALL) ALL

In Example 7-13 the user ben has been assigned all the privileges of root. Attackers
can take advantage of misconfigured sudoers files, like this one, to cause severe neg-
ative effects on a system. In most cases, you probably want a specific user to power
off the system or just execute certain commands that will be required for the user
to do certain tasks. Example 7-14 shows a better setup than Example 7-13: Because
ben only needs to be able to power off the system, he has only been given that sudo
capability.

Example 7-14 Allowing ben to Power Off the System

ben ALL= /sbin/poweroff

As demonstrated in Example 7-15, you can also create aliases for users (User_Alias),
run commands as other users (Runas_Alias), specify the host or network from which
they can log in (Host_Alias), and specify the command (Cmnd_Alias).

Example 7-15 sudoers File Using Aliases

User_Alias COOLGUYS = ben, chris, ron

Runas_Alias LESSCOOL = root, operator

Host_Alias COOLNET = 192.168.78.0/255.255.255.0

Cmnd_Alias PRINT = /usr/sbin/lpc, /usr/bin/lprm

omar ALL=(LESSCOOL) ALL

The user omar can run any command from any terminal as any user in
the LESSCOOL group (root or operator).

trina COOLNET=(ALL) ALL

The user trina may run any command from any machine in the COOLNET
network, as any user.

ben ALL=PRINT

The user ben may run lpc and lprm from any machine.

298 CompTIA® PenTest+ Cert Guide

In Example 7-15 the alias COOLGUYS includes the users ben, chris, and ron. The
alias LESSCOOL includes the users root and operator. The alias COOLNET
includes the network 192.168.78.0/24, and the command alias PRINT includes the
commands lpc and lprm.

TIP Sudo has been affected by several vulnerabilities that allow users to overwrite
system configurations, run additional commands that should not be authorized,
among other things. You can stay informed of any new vulnerabilities in Sudo at
https://www.sudo.ws/security.html.

Ret2libc Attacks

A “return-to-libc” (or ret2libc) attack typically starts with a buffer overflow. In this
type of attack, a subroutine return address on a call stack is replaced by an address of
a subroutine that is already present in the executable memory of the process. This is
done to potentially bypassing the no-execute (NX) bit feature and allow the attacker
to inject his or her own code.

Operating systems that support non-executable stack help protect against code
execution after a buffer overflow vulnerability is exploited. On the other hand, non-
executable stack cannot prevent a ret2libc attack because in this attack, only exist-
ing executable code is used. Another technique, called stack-smashing protection, can
prevent or obstruct code execution exploitation because it can detect the corruption
of the stack and can potentially “flush out” the compromised segment.

A technique called ASCII armoring can be used to mitigate ret2libc attacks. When
you implement ASCII armoring, the address of every system library (such as libc)
contains a NULL byte (0x00) that you insert in the first 0x01010101 bytes of mem-
ory. This is typically a few pages more than 16 MB and is called the ASCII armor

region because every address up to (but not including) this value contains at least one
NULL byte. When this methodology is implemented, an attacker cannot place code
containing those addresses using string manipulation functions such as strcpy().

Of course, this technique doesn’t protect the system if the attacker finds a way to
overflow NULL bytes into the stack. A better approach is to use the address space
layout randomization (ASLR) technique, which mitigates the attack on 64-bit sys-
tems. When you implement ASLR, the memory locations of functions are random.
ASLR is not very effective in 32-bit systems, though, because only 16 bits are avail-
able for randomization, and an attacker can defeat such a system by using brute-
force attacks.

https://www.sudo.ws/security.html

299Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

Windows Privileges

The following sections cover several methodologies and attacks for performing
privilege escalation in Windows systems.

CPassword

Legacy Windows operating systems were susceptible to CPassword attacks.
CPassword was a component of Active Directory’s Group Policy Prefer-
ences that allowed administrators to set passwords via Group Policy. Micro-
soft patched this vulnerability in MS14-025 (see https://docs.microsoft.
com/en-us/security-updates/securitybulletins/2014/ms14-025). Microsoft
also released a document explaining the vulnerability details, as well as well-
known mitigations (see https://support.microsoft.com/en-us/help/2962486/
ms14-025-vulnerability-in-group-policy-preferences-could-allow-elevati).

If administrators use CPassword to perform common tasks (such as changing the
local administrator account), any user with basic read rights to the SYSVOL direc-
tory can obtain the authentication key and crack it by using tools such as John the
Ripper and Hashcat.

TIP A CPassword attack is also referred to as a GPP attack. To test and find vulner-
able systems, you can just perform a keyword search for “cpassword” through all
the files in the SYSVOL directory and modify or remove any Group Policy Objects
(GPOs) that reference them. A GPO is a virtual compilation of policy settings. Each
GPO is configured with a unique name, such as a GUID. You can obtain more infor-
mation about GPOs at https://msdn.microsoft.com/en-us/library/aa374162(v=vs.85).
aspx. Microsoft has also published an article describing the SYSVOL implementation
at https://social.technet.microsoft.com/wiki/contents/articles/24160.active-directory-
back-to-basics-sysvol.aspx.

You can automatically decrypt passwords that are stored in the Group Policy
Preferences by using Metasploit, and you can use the Meterpreter post-exploitation
module to obtain and decrypt CPassword from files stored in the SYSVOL directory.
In addition, a number of PowerShell scripts can be used to perform this type of
attack, such as the ones at https://github.com/PowerShellMafia/PowerSploit/blob/
master/Exfiltration/Get-GPPPassword.ps1.

https://docs.microsoft.com/en-us/security-updates/securitybulletins/2014/ms14-025
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2014/ms14-025
https://support.microsoft.com/en-us/help/2962486/ms14-025-vulnerability-in-group-policy-preferences-could-allow-elevati
https://support.microsoft.com/en-us/help/2962486/ms14-025-vulnerability-in-group-policy-preferences-could-allow-elevati
https://msdn.microsoft.com/en-us/library/aa374162(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa374162(v=vs.85).aspx
https://social.technet.microsoft.com/wiki/contents/articles/24160.active-directory-back-to-basics-sysvol.aspx
https://social.technet.microsoft.com/wiki/contents/articles/24160.active-directory-back-to-basics-sysvol.aspx
https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Get-GPPPassword.ps1
https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Get-GPPPassword.ps1

300 CompTIA® PenTest+ Cert Guide

Clear-Text Credentials in LDAP

Unfortunately, many organizations still configure their Windows domain control-
lers to receive credentials in clear text over the network. One easy way to determine
whether a system is affected by sending credentials in the clear is to look for event
IDs 2886 and 2887 in the Active Directory Service log. Example 7-16 shows an
example of Event 2886.

Example 7-16 Directory Service Event 2886

Log Name: Directory Service

Source: Microsoft-Windows-ActiveDirectory_DomainService

Date: 6/12/2018 3:08:11 AM

Event ID: 2886

Task Category: LDAP Interface

Level: Warning

Keywords: Classic

User: hacker

Computer: omar_workstation.sd.lan

Description:

The security of this directory server can be significantly enhanced
by configuring the server to reject SASL (Negotiate, Kerberos,
NTLM, or Digest) LDAP binds that do not request signing (integrity
verification) and LDAP simple binds that are performed on a cleartext
(non-SSL/TLS-encrypted) connection. Even if no clients are using such
binds, configuring the server to reject them will improve the security
of this server.

Some clients may currently be relying on unsigned SASL binds or LDAP
simple binds over a non-SSL/TLS connection, and will stop working
if this configuration change is made. To assist in identifying these
clients, if such binds occur this directory server will log a summary
event once every 24 hours indicating how many such binds occurred. You
are encouraged to configure those clients to not use such binds. Once no
such events are observed for an extended period, it is recommended that
you configure the server to reject such binds.

If any domain controller has the 2886 event present, this indicates that LDAP sign-
ing is not being enforced by the domain controller, and it is possible to perform a
simple (clear-text) LDAP bind over a non-encrypted connection.

301Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

TIP The tool at https://github.com/russelltomkins/Active-Directory/blob/master/
Query-InsecureLDAPBinds.ps1 can be used to query logs for insecure LDAP binds
and clear-text passwords. Furthermore, the following post includes additional infor-
mation about how such an attack could be performed: https://www.harmj0y.net/blog/
powershell/kerberoasting-without-mimikatz.

Kerberoasting

Kerberoast is a series of tools for attacking Microsoft Kerberos implementations
and Windows service accounts. The tool can be obtained from https://github.com/
nidem/kerberoast.

TIP The post https://www.blackhillsinfosec.com/a-toast-to-kerberoast/ provides
step-by-step instructions for remotely running a Kerberoast attack over an established
Meterpreter session to a command and control server and cracking the ticket offline
using Hashcat.

You will learn more about Meterpreter and Hashcat in Chapter 9, “Penetration
Testing Tools.”

Credentials in Local Security Authority Subsystem Service (LSASS)

Another attack commonly performed against Windows systems involves obtain-
ing user and application credentials from the Local Security Authority Subsystem
Service (LSASS). It is possible to dump the LSASS process from memory to disk
by using tools such as Sysinternals ProcDump. Attackers have been successful using
ProcDump because it is a utility digitally signed by Microsoft. Therefore, this type
of attack can evade many antivirus programs. ProcDump creates a minidump of
the target process. An attacker can then use tools such as Mimikatz to mine user
credentials

TIP You can use the VMware tool vmss2core to dump memory from a suspended
virtual machine (VM). You can easily identify a suspended VM by the file extension
.vmss. You can also use the VMware tool vmss2core to dump memory from
snapshotted VMs (*.vmsn). You can then use the Volatility Framework to extract the
hashes. For more information about the Volatility Framework, see http://
www.volatilityfoundation.org.

https://github.com/russelltomkins/Active-Directory/blob/master/Query-InsecureLDAPBinds.ps1
https://github.com/russelltomkins/Active-Directory/blob/master/Query-InsecureLDAPBinds.ps1
https://www.harmj0y.net/blog/powershell/kerberoasting-without-mimikatz
https://www.harmj0y.net/blog/powershell/kerberoasting-without-mimikatz
https://github.com/nidem/kerberoast
https://github.com/nidem/kerberoast
https://www.blackhillsinfosec.com/a-toast-to-kerberoast/
http://www.volatilityfoundation.org
http://www.volatilityfoundation.org

302 CompTIA® PenTest+ Cert Guide

The following are additional resources related to the aforementioned attacks:

 ■ ProcDump and Windows Sysinternals: https://docs.microsoft.com/en-us/
sysinternals/downloads/procdump

 ■ Mimikatz: http://blog.gentilkiwi.com/mimikatz

 ■ The Volatility Foundation: http://www.volatilityfoundation.org

 ■ Vmss2core: https://labs.vmware.com/flings/vmss2core

 ■ VMware Snapshot and Saved State Analysis: http://volatility-labs.blogspot.be/
2013/05/movp-ii-13-vmware-snapshot-and-saved.html

SAM Database

Microsoft Active Directory plays an important role in many organizations. Active
Directory provides a directory service for managing and administering different
domain activities. Active Directory is based on a client/server architecture. Under-
standing how Active Directory works and the underlying architecture is very impor-
tant for any pen tester tasked with testing Windows environments.

Of course, one of the common tasks in a penetration testing engagement is to
retrieve passwords from a Windows system and ultimately try to get domain admin-
istrator access. In Chapter 5, “Exploiting Wired and Wireless Networks,” you
learned about the pass-the-hash attack technique and other attacks against Windows
systems. As a refresher, Windows stores password hashes in three places:

 ■ The Security Account Manager (SAM) database

 ■ The LSASS

 ■ The Active Directory database

All versions of Windows store passwords as hashes, in a file called the Security
Accounts Manager (SAM) database.

NOTE The SAM database stores only hashes the passwords. Windows itself does not
know what the passwords are.

The SAM database stores usernames and NT hashes in a %SystemRoot%/
system32/config/SAM file. This file contains all the hash values for accounts that
are local to the computer.

Microsoft created its own hash process for its Windows operating systems. This
is where the NT LAN Manager (NTLM) comes into play. NTLM is a suite of

https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
http://blog.gentilkiwi.com/mimikatz
http://www.volatilityfoundation.org
https://labs.vmware.com/flings/vmss2core
http://volatility-labs.blogspot.be/2013/05/movp-ii-13-vmware-snapshot-and-saved.html
http://volatility-labs.blogspot.be/2013/05/movp-ii-13-vmware-snapshot-and-saved.html

303Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

Microsoft security protocols that have been proven to be vulnerable and used by
many penetration testers as well as threat actors to compromise machines. Because
password hashes cannot be reversed, instead of trying to figure out a user’s password,
you (or an attacker) can just use a password hash collected from a compromised
system and then use the same hash to log in to another client or server system. This
technique, called pass-the-hash, is illustrated in Figure 7-8.

Attacker steals user hash
from Server 1.

hansolo:1010:aabb23430c9b98437128ea:bc32193819d9aa302b1:::hansolo:1010:aabb23430c9b98437128ea:bc32193819d9aa302b1:::

Attacker

Attacker user hash
from Server 1 to
log in to Server 2.

Server 1 Server 2

1 2

FIGURE 7-8 Pass-the-Hash Attack Example

Microsoft now uses Kerberos in Windows domains, but NTLM is still used when
the client is authenticating to a server in a different Active Directory forest that has
a legacy NTLM trust instead of a transitive inter-forest trust. NTLM is also used
when the client is authenticating to a server that doesn’t belong to a domain and
when Kerberos is blocked by a firewall or a similar device.

Understanding Dynamic Link Library Hijacking

Dynamic link libraries (DLLs) are common components in all versions of Windows.
Some DLLs are loaded into applications when they start (if needed). DLLs inter-
act with APIs and other operating system procedures. If you tamper with a system
in order to control which DLL an application loads, you may be able to insert a
malicious DLL during the DLL loading process to compromise the system. An
application can decide the order of the directories to be searched for a DLL to load,
depending on the configuration of the system. The following list shows the order of
the Windows DLL search process:

Step 1. Windows searches the working directory from which the application is
loaded.

Step 2. Windows searches the current directory (from which the user is working).

304 CompTIA® PenTest+ Cert Guide

Step 3. Windows searches the system directory (typically \Windows\System32\).
The GetSystemDirectory function is called to obtain this directory.

Step 4. Windows searches the 16-bit system directory.

Step 5. Windows searches the Windows directory. The GetWindowsDirectory
function is called to obtain this directory.

Step 6. Windows searches directories that are listed in the PATH environment
variable.

In this process, the attack relies on a program making a decision to load a DLL from
the current directory (step 2). An attacker can manipulate that step and perform
a DLL hijacking attack. For instance, if the user is opening an Excel spreadsheet,
Microsoft Office attempts to load its DLL component from the location of that
document file. An attacker can put a malicious DLL in that directory. Subsequently,
Microsoft Office can carelessly load the malicious DLL.

TIP DLL hijack attacks are not as effective as they used to be. This is because
Microsoft has released several patches and features that help prevent these types of
attacks. The following article explains some of the mitigations: https://docs.microsoft
.com/en-us/windows/desktop/dlls/dynamic-link-library-search-order.

Exploitable Services

You as a pen tester can take advantage of exploitable services such as the following:

 ■ Unquoted service paths: If an executable (application binary) is enclosed
in quotation marks (“”), Windows knows where to find it. On the contrary, if
the path where the application binary is located doesn’t contain any quotation
marks, Windows will try to locate it and execute it inside every folder of this
path until it finds the executable file. An attacker can abuse this functionality
to try to elevate privileges if the service is running under SYSTEM privileges.
A service is vulnerable if the path to the executable has a space in the filename
and the filename is not wrapped in quotation marks; exploitation requires
write permissions to the path before the quotation mark.

 ■ Writable services: Administrators often configure Windows services that
run with SYSTEM privileges. This could lead to a security problem because
an attacker may obtain permissions over the service or over the folder where

https://docs.microsoft.com/en-us/windows/desktop/dlls/dynamic-link-library-search-order
https://docs.microsoft.com/en-us/windows/desktop/dlls/dynamic-link-library-search-order

305Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

the binary of the service is stored (or both). Services configured this way are
also often found in third-party software (TPS) and may be used for privilege
escalation.

Insecure File and Folder Permissions

An attacker can take advantage of unsecured and misconfigured file and folder per-
missions. Files and folders in Windows can have read and write permissions. These
permissions are established strictly to specific users or groups. In contrast, Unix and
Linux-based systems grant file and folder permissions to the owner, the group owner,
or everybody. Windows uses specific permissions to allow users to access folder con-
tent. Windows does not use execute permissions on files. Windows uses the filename
extension to determine whether a file (including a script file) can be run.

TIP For details on how Windows file security and access rights work, see https://
docs.microsoft.com/en-us/windows/desktop/fileio/file-security-and-access-rights.
Microsoft has also published a detailed document explaining Windows access
control lists at https://docs.microsoft.com/en-us/windows/desktop/secauthz/
access-control-lists.

Table 7-2 compares the permissions between Unix/Linux systems and Windows.

Table 7-2 A Comparison Between Permissions for Unix/Linux-Based Systems and

Windows Systems

Unix/Linux Windows

Read and write permissions on a folder in Unix is the same as the read and write permissions
in Windows.

The read and execute permissions on a file in Unix are the same as the read and execute
permissions in Windows.

Write permission on a file Modify permission on a file

Execute permission on a folder List Folder Contents permission

Read, write, and execute permissions on a file
or folder

Full Control permission

Understanding Windows Group Policy

In Windows, Group Policy is a centralized administration feature for systems
belonging to a Windows domain. This functionality allows you to create poli-
cies in Active Directory and assign them to users or systems. You create policies to

https://docs.microsoft.com/en-us/windows/desktop/fileio/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/fileio/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/secauthz/access-control-lists
https://docs.microsoft.com/en-us/windows/desktop/secauthz/access-control-lists

306 CompTIA® PenTest+ Cert Guide

configure specific settings and permissions within the Windows operating system.
The item inside Active Directory that contains these settings is called a Group
Policy Object (GPO). GPOs can be used for user accounts, for client computer set-
tings, or for configuring policies in servers. Typically, the goal is to configure GPOs
in such a way that they cannot be overridden by users.

TIP Microsoft provides a series of spreadsheets and other documentation to help
manage GPOs; see http://www.microsoft.com/en-us/download/details.aspx?id=25250.
These spreadsheets list the policy settings for computer and user configurations that
are included in the Administrative template files delivered with the specified Win-
dows operating system. You can configure these policy settings when you edit GPOs.
A brief example of one of these spreadsheets is shown in Figure 7-9.

FIGURE 7-9 Group Policy Settings Reference for Windows and Windows Server

Keyloggers

An attacker may use a keylogger to capture every key stroke of a user in a system
and steal sensitive data (including credentials). There are two main types of
keyloggers: keylogging hardware devices and keylogging software. A hardware
(physical) keylogger is usually a small device that can be placed between a user’s
keyboard and the main system. Software keyloggers are dedicated programs
designed to track and log user keystrokes.

http://www.microsoft.com/en-us/download/details.aspx?id=25250

307Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

NOTE Keyloggers are legal in some countries and designed to allow employers to
oversee the use of their computers. However, recent regulations like GDPR have
made keyloggers a very sensitive and controversial topic. Threat actors use keyloggers
for the purpose of stealing passwords and other confidential information.

There are several categories of software-based keyloggers:

 ■ Kernel-based keylogger: A program on the machine obtains root access to
hide itself in the operating system and intercepts keystrokes that pass through
the kernel. This method is difficult both to write and to combat. Such keylog-
gers reside at the kernel level, which makes them difficult to detect, especially
for user-mode applications that don’t have root access. They are frequently
implemented as rootkits that subvert the operating system kernel to gain unau-
thorized access to the hardware. This makes them very powerful. A keylogger
using this method can act as a keyboard device driver, for example, and thus
gain access to any information typed on the keyboard as it goes to the
operating system.

 ■ API-based keylogger: With this type of keylogger, compromising APIs reside
inside a running application. Different types of malware have taken advantage
of Windows APIs, such as GetAsyncKeyState() and GetForeground
Window(), to perform keylogging activities.

 ■ Hypervisor-based keylogger: This type of keylogger is effective in virtual
environments, where the hypervisor could be compromised to capture sensi-
tive information.

 ■ Web form–grabbing keylogger: Keyloggers can steal data from web form
submissions by recording the web browsing on submit events.

 ■ JavaScript-based keylogger: Malicious JavaScript tags can be injected into
a web application and then capture key events (for example, the onKeyUp()
JavaScript function).

 ■ Memory-injection-based keylogger: This type of keylogger tampers with
the memory tables associated with the browser and other system functions.

Scheduled Tasks

Threat actors can take advantage of the Windows Task Scheduler to bypass User
Account Control (UAC) if the user has access to its graphical interface. This is pos-
sible because the security option runs with the system’s highest privileges. When a
Windows user creates a new task, the system typically doesn’t require the user to

308 CompTIA® PenTest+ Cert Guide

authenticate with an administrator account. You can also use this functionality for
post-exploitation and persistence.

NOTE You can access the scheduled tasks of a Windows system by navigating to
Start -> Programs -> Accessories -> System Tools -> Scheduled Tasks.

Escaping the Sandbox

The term sandbox can mean different things depending on to the field. In cyberse-
curity, a sandbox allows you to isolate running applications to minimize the risk of
software vulnerabilities spreading from one application to another. Figure 7-10 illus-
trates this sandboxing concept.

Operating System

Application Sandbox 1 Application Sandbox 2

Attack or
Vulnerability

FIGURE 7-10 Sandboxes

Sandboxes can also be used to run untested or untrusted software from unverified or
untrusted third parties, suppliers, users, or websites. In addition, they can be used to
test malware without allowing the software to compromise the host system.

TIP Sandbox implementations typically operate and provide a controlled set of
resources for guest applications to run in. These resources include a “scratch space”
on disk and memory. Typically, network access is disallowed or highly restricted.

In web development, a sandbox is a mirrored production environment that developers
use to create an application before migrating it to a production environment. Compa-
nies like Amazon, Google, and Microsoft, among others, provide sandboxing services.

NOTE For the purpose of this book, we of course concentrate on sandboxes related
to cybersecurity.

309Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

The following are examples of sandbox implementations:

 ■ A jail: This implementation is commonly used in mobile devices where there is
restricted filesystem namespace and rule-based execution to not allow untrusted
applications to run in the system. This is where the term jail-braking comes in.
Users may “jail-break” their phones to be able to install games and other applica-
tions. With a jail-broken phone, an attacker can more easily impersonate applica-
tions and deliver malware to the user because a jail-broken device does not have
the security controls in place to prevent malware from running on the system.

 ■ Rule-based execution in SELinux and AppArmor security frameworks:
This implementation restricts control over what processes are started, spawned
by other applications, or allowed to inject code into the system. These imple-
mentations can control what programs can read and write to the file system.

 ■ Virtual machines: Virtual machines can be used to restrict a guest operating
system to run sandboxed so that the applications do not run natively on the
host system and can only access host resources through the hypervisor.

 ■ Sandboxing on native hosts: Security researchers may use sandboxing to ana-
lyze malware behavior. Even commercial solutions such as Cisco’s ThreatGrid
use sandbox environments that mimic or replicate the victim system to evalu-
ate how malware infects and compromises such a system.

 ■ Secure Computing Mode (seccomp) and seccomp-bpf (seccomp
extension): These are sandboxes built in the Linux kernel to only allow the
write(), read(), exit(), and sigreturn() system calls.

 ■ Software fault isolation (SFI): This implementation uses sandboxing methods
in all store, read, and jump assembly instructions to isolated segments of memory.

 ■ Web browsers: Browsers provide sandboxing capabilities to isolate extensions
and plugins.

 ■ HTML5: HTML5 has a sandbox attribute for use with iframes.

 ■ Java virtual machines: These VMs include a sandbox to restrict the actions of
untrusted code, such as a Java applet.

 ■ .NET Common Language Runtime: This implementation enforces restric-
tions on untrusted code.

 ■ Adobe Reader: This implementation runs PDF files in a sandbox to prevent
them from escaping the PDF viewer and tampering with the rest of the computer.

 ■ Microsoft Office: Office has a sandbox mode to prevent unsafe macros from
harming the system.

310 CompTIA® PenTest+ Cert Guide

If an attacker finds a way to bypass (escape) the sandbox, he or she can then compro-
mise other applications and potentially implement a full system compromise. Several
sandbox escape vulnerabilities in the past have allowed attackers to do just that.

Virtual Machine Escape

In the previous section, you learned that VMs can be used to restrict a guest operat-
ing system to run sandboxed. This is because the applications do not run natively on
the host system and can only access host resources through the hypervisor.

If an attacker finds a way to escape the VM, he or she can then compromise other
VMs and potentially compromise the hypervisor. This is catastrophic in cloud envi-
ronments, where multiple customers can be affected by these types of attacks. A VM
escape attack is illustrated in Figure 7-11.

Hypervisor

Attacker Compromises VM3.

VM 1 VM 2 VM 3

1

Attacker compromises
other VMs on the system.

3

Attacker exploits VM
escape vulnerability and
compromises the
hypervisor.

2

FIGURE 7-11 VM Escape

Understanding Container Security

A lot of people immediately think about Docker when they hear the word containers,
but there are other container technologies out there. Linux Containers (LXC) is a
well-known set of tools, templates, and library and language bindings for Linux con-
tainers. It’s pretty low level and very flexible, and it covers just about every contain-
ment feature supported by the upstream kernel.

NOTE You can learn more about LXC at https://linuxcontainers.org.

Docker is really an extension of LXC’s capabilities. A high-level API provides a
lightweight virtualization solution to run different processes in isolation. Docker was
developed in the Go language and utilizes LXC, cgroups, and the Linux kernel itself.

https://linuxcontainers.org

311Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

NOTE You can learn more about Docker at https://www.docker.com.

Another popular container technology or package is rkt (or Rocket). rkt aims to
provide a feature and capability that its creators call “secure-by-default.” It includes
a number of security features such as support for SELinux, TPM measurement, and
running app containers in hardware-isolated VMs.

NOTE You can learn more about Rocket at https://github.com/rkt/rkt.

Cri-o is a lightweight container technology used and designed with Kubernetes. It
provides support for containers based on the Open Container Initiative specifica-
tions (see https://www.opencontainers.org), a set of two specifications: the Runtime
Specification (runtime-spec) and the Image Specification (image-spec). The
 runtime-spec outlines how to run a filesystem bundle that is unpacked on disk.

NOTE You can learn more about Cri-o at http://cri-o.io.

Another container package is called OpenVz. It is not as popular as Docker or
Rocket, but it is making the rounds.

NOTE You can learn more about OpenVz at https://openvz.org.

What is a container? A container image is a lightweight, standalone, executable
package of a piece of software that includes everything you need to run it, including
code, the runtime, system tools, system libraries, and settings. Containers are avail-
able for Linux, Mac OS X, and Windows applications.

NOTE Containerized software will always run the same, regardless of the
environment.

Containers isolate software from its surroundings and help reduce conflicts between
teams running different software on the same infrastructure.

So what is the difference between a container and a virtual machine? Figure 7-12
provides a comparison.

https://www.docker.com
https://github.com/rkt/rkt
https://www.opencontainers.org
http://cri-o.io
https://openvz.org

312 CompTIA® PenTest+ Cert Guide

App

VM1

Guest
OS

App

VM2

Virtual Machines Containers

Guest
OS

App

VM3

Guest
OS

Hypervisor

Host Operating System

Host Hardware

Docker Engine

Host Operating System

Host Hardware

App 1 App 2 App 3 App 4

FIGURE 7-12 VMs vs. Containers

Figure 7-12 shows the architectural differences between container and VM environ-
ments. A VM generally includes an entire operating system along with the applica-
tion. It also needs a hypervisor running along with it to control the VM. VMs tend
to be pretty big in size, since they include whole operating systems. Because of this,
they take up several minutes to boot up the operating system and initialize the appli-
cation they are hosting. Containers are much smaller; they perform much better
than VMs and can start almost instantly.

One of the biggest advantages of container technologies is that containers can be
created much faster than VM instances. Their lightweight footprint means less over-
head in terms of performance and size. Containers increase developer productivity
by removing cross-service dependencies and conflicts. Each container can be seen as
a different microservice, and you can very easily upgrade them independently.

Each image of a container can be version controlled, so you can track different ver-
sions of a container. Containers encapsulate all the relevant details, such as appli-
cation dependencies and operating systems. This makes them extremely portable
across systems.

Docker and container technologies are supported by all major cloud providers,
including Amazon Web Services (AWS), Google Cloud Platform, and Microsoft
Azure. In addition, Docker can be integrated with tools like Ansible, Chef, Pup-
pet, Jenkins, Kubernetes, OpenStack, Vagrant, and dozens of other tools and
infrastructures.

313Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

TIP Of course, this is not a book about Docker and containers. However, if you have
never played with containers, you can easily download your favorite Linux distribu-
tion and install Docker. For example, in Ubuntu or even Kali Linux, you can simply
install Docker with the apt install docker.io command.

Some of the most challenging issues with containers and DevOps are operational
in nature. For example, due to the convenience and agility that containers bring to
the table, developers often pull Docker containers from community repositories and
stores not knowing what vulnerabilities they are inheriting in those containers. Asset
discovery and container vulnerability management are therefore very important.

The following are a few examples of tools and solutions that have been developed
throughout the years for container security:

 ■ Anchore: Anchore is used to analyze container images for the presence of
known security vulnerabilities and against custom security policies. It has
both open source and commercial versions. You can obtain the open source
code and more information about it from https://github.com/anchore/
anchore-engine.

 ■ Aqua Security: This is a commercial tool for securing container-based appli-
cations (see https://www.aquasec.com).

 ■ Bane: This is an AppArmor profile generator for Docker containers. You can
download it from https://github.com/genuinetools/bane.

 ■ CIS Docker Benchmark: This tool provides an automated way to test con-
tainers against well-known security best practices. You can download the CIS
Docker Benchmark from https://github.com/dev-sec/cis-docker-benchmark.

 ■ Dev-Sec.io: This tool allows you to automatically apply hardening best prac-
tices to different types of servers (see https://dev-sec.io).

 ■ Clair: This is an open source static analysis for Docker containers from
Core-OS. You can download Clair from https://github.com/coreos/clair.

 ■ Dagda: This is another tool for performing static analysis of known vulner-
abilities. You can download Dagda from https://github.com/eliasgranderubio/
dagda.

 ■ docker-bench-security: This script, created by Docker, checks for common
security best practices when deploying Docker containers in production. You
can download this tool from https://github.com/docker/docker-bench-security.

http://docker.io
https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine
https://www.aquasec.com
https://github.com/genuinetools/bane
https://github.com/dev-sec/cis-docker-benchmark
http://Dev-Sec.io:
https://dev-sec.io
https://github.com/coreos/clair
https://github.com/eliasgranderubio/dagda
https://github.com/eliasgranderubio/dagda
https://github.com/docker/docker-bench-security

314 CompTIA® PenTest+ Cert Guide

 ■ docker-explorer: This tool was created by Google to help analyze offline
Docker file systems. It can be useful when performing forensic analysis of
Docker containers. You can download it from https://github.com/google/
docker-explorer.

 ■ Notary: This open source project includes a server and a client for running
and interacting with trusted containers. Notary is maintained by The Update
Framework (TUF). You can obtain more information about Notary from
https://github.com/theupdateframework/notary and information about TUF
from https://theupdateframework.github.io.

 ■ oscap-docker: OpenSCAP (created by RedHat) includes the oscap-docker
tool, which is used to scan Docker containers and images. OpenSCAP and the
oscap-docker tool can be downloaded from https://github.com/OpenSCAP/
openscap.

Mobile Device Security

Mobile device security is a hot topic today. Individuals and organizations are increas-
ingly using mobile devices for personal use and to conduct official business. Because
of this, the risk in mobile devices and applications continues to increase.

The OWASP organization created the Mobile Security Project to provide mobile
application and platform developers, as well as security professionals, resources
to understand cybersecurity risks and to build and maintain secure mobile
applications. The OWASP Mobile Security Project website can be accessed at
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project.

OWASP often performs studies of the top mobile security threats and vulnerabilities.
According to OWASP, the top 10 mobile security risks at the time of this writing are:

 ■ Improper platform usage

 ■ Insecure data storage

 ■ Insecure communication

 ■ Insecure authentication

 ■ Insufficient cryptography

 ■ Insecure authorization

 ■ Client code quality

 ■ Code tampering

 ■ Reverse engineering

 ■ Extraneous functionality

https://github.com/google/docker-explorer
https://github.com/google/docker-explorer
https://github.com/theupdateframework/notary
https://theupdateframework.github.io
https://github.com/OpenSCAP/openscap
https://github.com/OpenSCAP/openscap
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

315Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

Mobile applications (apps) run either directly on a mobile device, on a mobile device
web browser, or both. Mobile operating systems (such as Android and Apple iOS)
offer software development kits (SDKs) for developing applications (such as those
for games, productivity, business, and more). These mobile apps, referred to as native

apps, typically provide the fastest performance with the highest degree of reliability
and adhere to platform-specific design principles.

Mobile web apps are basically websites designed to look and feel like native apps.
These apps are accessed by a user via a device’s browser and are usually developed in
HTML5 and responsive mobile frameworks. Another option, a hybrid app, executes
like a native app, but a majority of its processes rely on web technologies.

A lot of attacks against mobile apps start with reverse engineering and then move
into tampering with the mobile app. Reverse engineering involves analyzing the
compiled app to extract information about its source code. The goal of reverse engi-
neering is to understand the underlying code and architecture. Tampering is the
process of changing a mobile app (either the compiled app or the running process)
or its environment to affect its behavior. In order to perform good reverse engineer-
ing of mobile apps, you should become familiar with the mobile device processor
architecture, the app executable format, and the programming language used to
develop a mobile app.

Modern apps often include controls that hinder dynamic analysis. Certificate pin-
ning and end-to-end (E2E) encryption sometimes prevent you from intercepting or
manipulating traffic with a proxy. Root detection could prevent an app from running
on a rooted device, preventing you from using advanced testing tools.

NOTE Mobile apps that implement the protections specified in the Mobile AppSec
Verification Standard (MASVS) Anti-Reversing Controls should withstand reverse
engineering to a certain degree. Details about MASVS can be accessed at
https://www.owasp.org/images/6/61/MASVS_v0.9.4.pdf.

There are a few basic tampering techniques:

 ■ Binary patching (“modding”): This involves changing the compiled app
in binary executables or tampering with resources. Modern mobile operat-
ing systems such as iOS and Android enforce code signing to mitigate binary
tampering.

 ■ Code injection: This allows you to explore and modify processes at runtime.
Several tools, including Cydia Substrate (http://www.cydiasubstrate.com),
Frida (https://www.frida.re), and XPosed (https://github.com/rovo89/
XposedInstaller), give you direct access to process memory and important
structures such as live objects instantiated by the app.

https://www.owasp.org/images/6/61/MASVS_v0.9.4.pdf
http://www.cydiasubstrate.com
https://www.frida.re
https://github.com/rovo89/XposedInstaller
https://github.com/rovo89/XposedInstaller

316 CompTIA® PenTest+ Cert Guide

 ■ Static and dynamic binary analysis: This is done using disassemblers and
decompilers to translate an app’s binary code or bytecode back into a more
understandable format. By using these techniques on native binaries, you can
obtain assembler code that matches the architecture for which the app was
compiled.

 ■ Debugging and tracing: It is possible to identify and isolate problems in a
program as part of the software development life cycle. The same tools used
for debugging are valuable to reverse engineers even when identifying bugs
is not their primary goal. Debuggers enable program suspension at any point
during runtime, inspection of the process’s internal state, and even register and
memory modification.

Understanding Android Security

Android is a Linux-based open source platform developed by Google as a mobile
operating system. Android is not only used in mobile phones and tablets but also
in wearable products, TVs, and many other smart devices. Android-based solutions
come with many pre-installed (“stock”) apps and support installation of third-party
apps through the Google Play store and other marketplaces.

Android’s software stack is composed of several different layers (see https://source
.android.com/devices/architecture). Each layer defines interfaces and offers specific
services. At the lowest level, Android is based on a variation of the Linux kernel. On
top of the kernel, the Hardware Abstraction Layer (HAL) defines a standard inter-
face for interacting with built-in hardware components. Several HAL implementa-
tions are packaged into shared library modules that the Android system calls when
required. This is how applications interact with the device’s hardware (for instance,
how a phone uses the camera, microphone, and speakers).

Android apps are usually written in Java and compiled to Dalvik bytecode, which
is somewhat different from the traditional Java bytecode. The current version of
Android executes this bytecode on the Android runtime (ART). ART is the succes-
sor to Android’s original runtime, the Dalvik virtual machine. The key difference
between Dalvik and ART is the way the bytecode is executed (see https://source
.android.com/devices/tech/dalvik/).

Android apps do not have direct access to hardware resources, and each app runs
in its own sandbox (see https://source.android.com/security/app-sandbox). The
Android runtime controls the maximum number of system resources allocated to
apps, preventing any one app from monopolizing too many resources.

https://source.android.com/devices/architecture
https://source.android.com/devices/architecture
https://source.android.com/devices/tech/dalvik/
https://source.android.com/devices/tech/dalvik/
https://source.android.com/security/app-sandbox

317Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

Even though the Android operating system is based on Linux, it doesn’t implement
user accounts in the same way other Unix-like systems do. In Android, the multiuser
support of the Linux kernel extends to sandbox apps: With a few exceptions, each
app runs as though under a separate Linux user, effectively isolated from other apps
and the rest of the operating system.

TIP The file android_filesystem_config.h includes a list of the predefined users and
groups to which system processes are assigned. User IDs (UIDs) for other applica-
tions are added as they are installed.

Android apps interact with system services such as the Android Framework and
related APIs. Most of these services are invoked via normal Java method calls and
are translated to IPC calls to system services that are running in the background.
Examples of system services include the following:

 ■ Network connectivity, including Wi-Fi, Bluetooth, and NFC

 ■ Cameras

 ■ Geolocation (GPS)

 ■ Device microphone

The framework also offers common security functions, such as cryptography.

The Android Package Kit (APK) file is an archive that contains the code and
resources required to run the app it comes with. This file is identical to the original
signed app package created by the developer. The installed Android apps are typi-
cally located at /data/app/[package-name].

The following are some key Android files:

 ■ AndroidManifest.xml: This file contains the definition of the app’s package
name, target, and minimum API version, app configuration, components, and
user-granted permissions.

 ■ META-INF: This file contains the application’s metadata and the following
three files:

 ■ MANIFEST.MF: This file stores hashes of the app resources.

 ■ CERT.RSA: This file stores the app’s certificate(s).

 ■ CERT.SF: This file lists resources and the hash of the corresponding
lines in the MANIFEST.MF file.

318 CompTIA® PenTest+ Cert Guide

 ■ assets: This directory contains app assets (files used within the Android app,
such as XML files, JavaScript files, and pictures), which the AssetManager can
retrieve.

 ■ classes.dex: This directory contains classes compiled in the DEX file format
that the Dalvik virtual machine/Android runtime can process. DEX is Java
bytecode for the Dalvik virtual machine, and it is optimized for small devices.

 ■ lib: This directory contains native compiled libraries that are part of the APK,
such as the third-party libraries that are not part of the Android SDK.

 ■ res: This directory contains resources that haven’t been compiled into
resources.arsc.

 ■ resources.arsc: This file contains precompiled resources, such as XML files
for layout.

AndroidManifest.xml is encoded into binary XML format, which is not readable
with a text editor. However, you can unpack an Android app by using Apktool.
When you run Apktool with the default command-line flags, it automatically
decodes the manifest file to text-based XML format and extracts the file resources.
The following are the typical decoded and extracted files:

 ■ AndroidManifest.xml: This is the decoded manifest file, which can be opened
and edited in a text editor.

 ■ apktool.yml: This file contains information about the output of Apktool.

 ■ original: This folder contains the MANIFEST.MF file, which stores informa-
tion about the files contained in the JAR file.

 ■ res: This directory contains the app’s resources.

 ■ smalidea: This is a Smali language plugin. Smali is a human-readable repre-
sentation of the Dalvik executable. Every app also has a data directory for stor-
ing data created during runtime. Additional information about smalidea can be
obtained from https://github.com/JesusFreke/smali/wiki/smalidea.

 ■ cache: This location is used for data caching. For example, the WebView cache
is found in this directory.

 ■ code_cache: This is the location of the file system’s application-specific cache
directory that is designed for storing cached code. On devices running Lol-
lipop or later Android versions, the system deletes any files stored in this loca-
tion when the app or the entire platform is upgraded.

 ■ databases: This folder stores SQLite database files generated by the app at
runtime (for example, user data files).

https://github.com/JesusFreke/smali/wiki/smalidea

319Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

 ■ files: This folder stores regular files created by the app.

 ■ lib: This folder stores native libraries written in C/C++. These libraries can
have one of several file extensions, including .so and .dll (x86 support). This
folder contains subfolders for the platforms for which the app has native
libraries, including the following:

 ■ armeabi: Compiled code for all ARM-based processors

 ■ armeabi-v7a: Compiled code for all ARM-based processors, version 7
and above only

 ■ arm64-v8a: Compiled code for all 64-bit ARM-based processors,
version 8 and above only

 ■ x86: Compiled code for x86 processors only

 ■ x86_64: Compiled code for x86_64 processors only

 ■ mips: Compiled code for MIPS processors

 ■ shared_prefs: This folder contains an XML file that stores values saved via
the SharedPreferences APIs.

Android leverages Linux user management to isolate apps. This approach is differ-
ent from user management in traditional Linux environments, where multiple apps
are often run by the same user. Android creates a unique UID for each Android app
and runs the app in a separate process. Consequently, each app can access its own
resources only. This protection is enforced by the Linux kernel. Typically, apps are
assigned UIDs in the range 10000 and 19999. An Android app receives a user name
based on its UID. For example, the app with UID 10188 receives the username
u0_a188. If the permissions an app requested are granted, the corresponding group
ID is added to the app’s process. For example, the user ID of the app in this exam-
ple is 10188. It belongs to the group ID 3003 (inet). That group is related to the
android.permission.INTERNET permission in the application manifest.

Apps are executed in the Android Application Sandbox, which separates the app data
and code execution from other apps on the device. This separation adds a layer of
security. Installation of a new app creates a new directory named after the app pack-
age (for example, /data/data/[package-name]). This directory holds the app’s data.
Linux directory permissions are set such that the directory can be read from and
written to only with the app’s unique UID.

The process Zygote starts up during Android initialization. Zygote is a system ser-
vice for launching apps. The Zygote process is a base process that contains all the
core libraries the app needs. Upon launch, Zygote opens the socket /dev/socket/

320 CompTIA® PenTest+ Cert Guide

zygote and listens for connections from local clients. When it receives a connection,
it forks a new process, which then loads and executes the app-specific code.

In Android, the lifetime of an app process is controlled by the operating system. A
new Linux process is created when an app component is started and the same app
doesn’t yet have any other components running. Android may kill this process when
the process is no longer necessary or when it needs to reclaim memory to run more
important apps. The decision to kill a process is primarily related to the state of the
user’s interaction with the process.

Android apps are made of several high-level components, including the following:

 ■ Activities

 ■ Fragments

 ■ Intents

 ■ Broadcast receivers

 ■ Content providers and services

All these elements are provided by the Android operating system, in the form of pre-
defined classes available through APIs.

TIP During development, an app is signed with an automatically generated certifi-
cate. This certificate is inherently insecure and is for debugging only. Most stores
don’t accept this kind of certificate for publishing; therefore, a certificate with more
secure features must be created. When an application is installed on the Android
device, PackageManager ensures that it has been signed with the certificate included
in the corresponding APK. If the certificate’s public key matches the key used to sign
any other APK on the device, the new APK may share a UID with the preexisting
APK. This facilitates interactions between applications from a single vendor. Alter-
natively, specifying security permissions for the Signature protection level is possible;
this restricts access to applications that have been signed with the same key.

To perform detailed analysis of Android applications, you can download Android
Studio. It comes with the Android SDK, an emulator, and an app to manage the var-
ious SDK versions and framework components. Android Studio also comes with the
Android Virtual Device (AVD) Manager application for creating emulator images.
You can download Android Studio from https://developer.android.com/studio.

Figure 7-13 shows a screenshot of an application called OmarsApplication being
developed using Android Studio.

https://developer.android.com/studio

321Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

FIGURE 7-13 Android Studio

For dynamic analysis, you need an Android device to run the target app. In prin-
ciple, however, you can do without a real Android device and test on the emulator.
Figure 7-14 shows the Android emulator that comes with Android Studio.

FIGURE 7-14 Android Emulator

322 CompTIA® PenTest+ Cert Guide

Testing on a real device makes for a smoother process and a more realistic environ-
ment. However, emulators provide a lot of convenience and flexibility.

Developers and users often root their real devices to get full control over the oper-
ating system and to bypass restrictions such as app sandboxing. These privileges in
turn allow individuals to use techniques like code injection and function hooking
more easily. Rooting is risky and can void the device warranty. You might end up
“bricking” a device (rendering it inoperable and unusable) if you run into problems
when rooting the device. More importantly, rooting a device creates additional secu-
rity risks because built-in exploit mitigations are often removed.

TIP You should not root a personal device on which you store your private informa-
tion. It is recommended to use a cheap, dedicated test device instead.

Figure 7-15 demonstrates how to use Apktool to decode and analyze the Android
application OmarsApplication.

FIGURE 7-15 Using Apktool

NOTE The source code for this sample application can be accessed at
https://github.com/The-Art-of-Hacking/art-of-hacking.

https://github.com/The-Art-of-Hacking/art-of-hacking

323Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

A few tools and frameworks are designed to test Android-based systems and related
applications:

 ■ Androick: This collaborative research project allows any user to analyze an
Android application. You can download Androick from https://github.com/
Flo354/Androick.

 ■ NowSecure App Testing: This is a mobile app security testing suite for
Android and iOS mobile devices. There are two versions: a commercial
edition and a community (free) edition. You can obtain more informa-
tion about NowSecure from https://www.nowsecure.com/solutions/
mobile-app-security-testing.

 ■ OWASP SeraphimDroid: This privacy and device protection application
for Android devices helps users learn about risks and threats coming from
other Android applications. SeraphimDroid is also an application firewall
for Android devices that blocks malicious SMS or MMS from being sent,
Unstructured Supplementary Service Data (USSD) codes from being
executed, or calls from being called without user permission and
knowledge. You can obtain more information about SeraphimDroid from
https://www.owasp.org/index.php/OWASP_SeraphimDroid_Project.

Understanding Apple iOS Security

The iOS operating system runs only in Apple mobile devices, including the iPhone,
iPad, and iPods. Apple tvOS has inherited many architectural components and
features from iOS. iOS apps run in a restricted environment and are isolated from
each other at the file system level. iOS apps are also significantly limited in terms of
system API access compared to macOS and other operating systems. Apple restricts
and controls access to the apps that are allowed to run on iOS devices. The Apple
App Store is the only official application distribution platform.

iOS apps are isolated from each other via the Apple sandbox and mandatory access
controls defining the resources an app is allowed to access. iOS offers very few
IPC options compared to Android, which significantly reduces the attack surface.
Uniform hardware and tight hardware/software integration create another security
advantage.

The iOS security architecture consists of six core features:

 ■ Hardware security

 ■ Secure boot

 ■ Code signing

https://github.com/Flo354/Androick
https://github.com/Flo354/Androick
https://www.nowsecure.com/solutions/mobile-app-security-testing
https://www.nowsecure.com/solutions/mobile-app-security-testing
https://www.owasp.org/index.php/OWASP_SeraphimDroid_Project

324 CompTIA® PenTest+ Cert Guide

 ■ Sandbox

 ■ Encryption and data protection

 ■ General exploit mitigations

Every iOS device has two built-in Advanced Encryption Standard (AES) 256-bit
keys (GID and UID). These keys are included in the application processor and
secure enclave during manufacturing. There’s no direct way to read these keys with
software or debugging interfaces such as JTAG. The GID is a value shared by all
processors in a class of devices that is used to prevent tampering with firmware files.
The UID is unique to each device and is used to protect the key hierarchy that’s used
for device-level file system encryption. UIDs are not created during manufacturing,
and not even Apple can restore the file encryption keys for a particular device.

The Apple secure boot chain consists of the kernel, the bootloader, the kernel exten-
sions, and the baseband firmware. Apple has also implemented an elaborate DRM
system to make sure that only Apple-approved code runs on Apple devices. FairPlay
Code Encryption is applied to apps downloaded from the App Store. FairPlay was
developed as a DRM for multimedia content purchased through iTunes.

The App Sandbox is an iOS sandboxing technology. It is enforced at the kernel
level and has been a core security feature since the first release of iOS. All third-
party apps run under the same user (mobile), and only a few system applications
and services run as root. Regular iOS apps are confined to a container that restricts
access to the app’s own files and a very limited number of system APIs. Access to all
resources (such as files, network sockets, IPCs, and shared memory) is controlled
by the sandbox. In addition, iOS implements address space layout randomization
(ASLR) and the eXecute Never (XN) bit to mitigate code execution attacks.

iOS developers cannot set device permissions directly; they do so by using APIs. The
following are a few examples of APIs and resources that require user permission:

 ■ Contacts

 ■ Microphone

 ■ Calendars

 ■ Camera

 ■ Reminders

 ■ HomeKit

 ■ Photos

 ■ HealthKit

 ■ Motion activity and fitness

325Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

 ■ Speech recognition

 ■ Location Services

 ■ Bluetooth

 ■ Media library

 ■ Social media accounts

There are a few tools you can use to practice security testing on mobile devices. One
of the most popular is the Damn Vulnerable iOS application, a project that provides an
iOS application to practice mobile attacks and security defenses. It has a set of challenges
that can be completed by an individual. Each challenge area corresponds to an in-depth
article designed to teach the fundamentals of mobile security on the iOS platform. The
following are examples of the challenges in the Damn Vulnerable iOS application:

 ■ Insecure Data Storage

 ■ Jailbreak Detection

 ■ Runtime Manipulation

 ■ Transport Layer Security

 ■ Client-Side Injection

 ■ Broken Cryptography

 ■ Binary Patching

 ■ Side Channel Data Leakage

 ■ Security Decisions via Untrusted Input

A learning tool for iOS security that is very popular and maintained by OWASP is
iGoat. iGoat was inspired by the OWASP WebGoat project and has a similar con-
ceptual flow. iGoat is free software, released under the GPLv3 license. iGoat can be
downloaded from https://www.owasp.org/index.php/OWASP_iGoat_Tool_Project.

Another tool is the MobiSec Live Environment Mobile Testing Framework. MobiSec
is a live environment for testing mobile environments, including devices, applications,
and supporting infrastructure. The purpose is to provide attackers and defenders the
ability to test their mobile environments to identify design weaknesses and vulnerabili-
ties. MobiSec can be downloaded from https://sourceforge.net/projects/mobisec.

MITRE started a collaborative research project focused on open source iOS secu-
rity controls called iMAS. iMAS was created to protect iOS applications and data
beyond the Apple-provided security model and reduce the attack surface of iOS
mobile devices and applications. The source code for iMAS is available on GitHub
at https://github.com/project-imas.

https://www.owasp.org/index.php/OWASP_iGoat_Tool_Project
https://sourceforge.net/projects/mobisec
https://github.com/project-imas

326 CompTIA® PenTest+ Cert Guide

Understanding Physical Security Attacks
Physical security is a very important element when defending an organization
against any security risk. The following sections provide an overview of physical
device security and facilities/building security concepts.

Understanding Physical Device Security

Attackers with physical access to a device can perform a large number of attacks.
Of course, device theft is one of the most common risks and the main reason it is
important to encrypt workstations, laptops, and mobile devices as well as to enable
remote wipe and remote recovery features. On the other hand, a few more sophisti-
cated attacks and techniques can be carried out, including the following:

 ■ Cold boot attacks: Cold boot is a type of side channel attack in which the
attacker tries to retrieve encryption keys from a running operating system after
using a cold reboot (system reload). Cold boot attacks attempt to compromise
the data remanence property of DRAM and SRAM to retrieve memory con-
tents that could remain readable in the seconds to minutes after power has
been removed from the targeted system. Typically, this type of attack by using
removable media to boot a different operating system used to dump the con-
tents of pre-boot physical memory to a file.

 ■ Serial console debugging, reconnaissance, and tampering: Many organiza-
tions use terminal servers (serial console servers) to allow remote access to the
serial port of another device over a network. These devices provide remote
access to infrastructure devices (for example, routers, switches), servers, and
industrial control systems. They are also used to provide out-of-band access
to network and power equipment for the purpose of recovery in the case of an
outage. Many serial devices do not require authentication and instead assume
that if you are physically connected to a serial port, you probably are assumed
to be allowed to configure and connect to the system. Clearly, this can be
abused by any attacker to gain access to a victim system. Even if terminal serv-
ers may allow you to connect using a non-privileged account, attackers can use
unprotected serial consoles for reconnaissance and debugging to then perform
further attacks on the targeted system.

 ■ JTAG debugging, reconnaissance, and tampering: JTAG is a hardware
access interface that allows a penetration tester to perform debugging of hard-
ware implementations. Debuggers can use JTAG access registers, memory
contents, and interrupts, and they can even pause or redirect software instruc-
tion flows. JTAG can be an effective attack research tool because it allows
debugging software (such as OpenOCD) control over a JTAG interface.
OpenOCD can be used to manipulate the JTAG’s TAP controller and to send

327Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

bits to a state machine with the goal of the chip being able to interpret them
as valid commands. These types of tools allow you to debug firmware and soft-
ware in devices via the GNU Project Debugger (GDB) or even interact with
other tools like IDA Pro and other disassemblers and debuggers.

Clearly, an attacker with physical access to the targeted system has an advantage.
Physical security to protect buildings and facilities is therefore crucial. In the next
section, you will learn details about different physical security threats and attacks
against buildings and facilities.

Protecting Your Facilities Against Physical Security Attacks

Numerous types of attacks can be carried to infiltrate facilities and to steal sensitive
information from an organization. The following are some of the most common
of them:

 ■ Piggybacking/tailgating: An unauthorized individual may follow an autho-
rized individual to enter a restricted building or facility.

 ■ Fence jumping: An unauthorized individual may jump a fence or a gate to
enter a restricted building or facility.

 ■ Dumpster diving: An unauthorized individual may search for and attempt to
collect sensitive information from the trash.

 ■ Lockpicking: An unauthorized individual may manipulate or tamper with
a lock to enter a building or obtain access to anything that is protected by a
lock. Lock bypass is a technique used in lockpicking. Locks may be bypassed
in many ways, including by using techniques such as simple loiding attempts
(using a “credit card” or similar items against self-closing “latch” locks) and
bypassing padlocks by shimming.

 ■ Egress sensors: Attackers may tamper with egress sensors to open doors.

 ■ Badge cloning: Attackers may clone the badges of employees and authorized
individuals to enter a restricted facility or a specific area in a building. One
of the most common techniques is to clone radio-frequency identification
(RFID) tags (refer to Chapter 5).

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the Introduction, you have
a couple of choices for exam preparation: the exercises here, Chapter 11, “Final Prep-
aration,” and the exam simulation questions in the Pearson Test Prep software online.

328 CompTIA® PenTest+ Cert Guide

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topics icon in
the outer margin of the page. Table 7-3 lists these key topics and the page number
on which each is found.

Table 7-3 Key Topics for Chapter 7

Key Topic
Element

Description Page
Number

Summary Understanding insecure service and protocol configurations 281

Summary Understanding local privilege escalation 285

Summary Understanding Linux permissions 286

Summary Changing Linux permissions and understanding sticky bits 288

Summary Understanding SUID or SGID and Unix programs 291

Summary Identifying insecure Sudo implementations 294

Summary Understanding ret2libc attacks 298

Summary Defining CPassword 299

Summary Abusing and obtaining clear-text LDAP credentials 300

Summary Understanding Kerberoasting 301

Summary Compromising credentials in Local Security Authority Subsystem
Service (LSASS) implementations

301

Summary Understanding and attacking the Windows SAM database 302

Summary Understanding dynamic link library (DLL) hijacking 303

Summary Abusing exploitable services 304

Summary Exploiting insecure file and folder permissions 305

Summary Defining and understanding keyloggers 306

Summary Defining and understanding scheduled tasks 307

Summary Understanding sandbox escape attacks 308

Summary Understanding virtual machine (VM) escape attacks 310

Summary Identifying container security challenges 313

Summary Understanding the top mobile security threats and vulnerabilities 314

Summary Understanding Android security 316

Summary Understanding Apple iOS security 323

Summary Understanding cold boot attacks, serial console, and JTAG
debugging reconnaissance and tampering

326

Summary Understanding physical security attacks 327

329Chapter 7: Exploiting Local Host and Physical Security Vulnerabilities

Define Key Terms
Define the following key terms from this chapter and check your answers in the
glossary:

piggybacking, tailgating, fence jumping, dumpster diving, lockpicking,
lock bypass, JTAG, sandbox, keylogger, Group Policy Object (GPO),
Kerberoast, CPassword, Ret2libc

Q&A
The answers to these questions appear in Appendix A. For more practice with exam
format questions, use the Pearson Test Prep software online.

 1. Which of the following involves an unauthorized individual searching and
attempting to collect sensitive information from the trash?

 a. Piggybacking

 b. Fence jumping

 c. Dumpster diving

 d. Lockpicking

 2. Which of the following is a technique that is executed using disassemblers and
decompilers to translate an app’s binary code or bytecode back into a more or
less understandable format?

 a. Static and dynamic binary analysis

 b. Static and dynamic source code analysis

 c. Binary patching, or “modding”

 d. Binary code injection

 3. Which of the following is a sandbox built in the Linux kernel to only allow the
write(), read(), exit(), and sigreturn() system calls?

 a. SUDI

 b. Seccomp

 c. SELinux

 d. Linux-jail

330 CompTIA® PenTest+ Cert Guide

 4. Which of the following statements is not true?

 a. Modern web browsers provide sandboxing capabilities to isolate exten-
sions and plugins.

 b. HTML5 has a sandbox attribute for use with iframes.

 c. Java virtual machines include a sandbox to restrict the actions of
untrusted code, such as a Java applet.

 d. Microsoft’s .NET Common Language Runtime cannot enforce restric-
tions on untrusted code.

 5. Which of the following can attackers use to capture every keystroke of a user
in a system and steal sensitive data (including credentials)?

 a. RATs

 b. Keybinders

 c. Keyloggers

 d. Ransomware

 6. Which of the following functionalities can an attacker abuse to try to elevate
privileges if the service is running under SYSTEM privileges?

 a. Unquoted service paths

 b. Unquoted PowerShell scripts

 c. Writable SYSTEM services using the GetSystemDirectory function

 d. Cross-site scripting (XSS)

 7. Which of the following is not a place where Windows stores password hashes?

 a. SAM database

 b. LSASS

 c. PowerShell hash store

 d. AD database

 8. Which of the following is an open source tool that allows an attacker to
retrieve user credential information from the targeted system and potentially
perform pass-the-hash and pass-the-ticket attacks?

 a. SAM Stealer

 b. Mimikatz

 c. Kerberoast

 d. Hashcrack

This page intentionally left blank

Index

A
AC (Attack Complexity) metrics, 37
acceptance of risk, 48
Access Vector (AV) metrics, 37
account data, elements of, 55
acquirers, 54
Activate Exam button (Pearson Test

Prep software), 507
Activate New Product button (Pearson

Test Prep software), 506
active reconnaissance

defined, 70–71
Enum4linux, 395–400
enumeration

defined, 71
group, 81–82
host, 78–79
network share, 82
packet crafting, 85–87
service, 85
user, 80–81
web page/web application, 83–84

Nikto scans, 84
Nmap port scans, 391–393

half-open, 71–72
ping, 77–78
SYN, 71–72
TCP connect, 73–74
TCP FIN, 76–77
UDP, 74–75

Recon-ng, 90–102
hackertarget module, 96
help menu, 92

key list command, 96–97
launching, 91
main menu and splash page, 91
searches, 95
Shodan API, 96–102
show modules command, 92–95

Zenmap, 393–395
adapters, wireless, 189
Add-Persistence script, 351
Address Resolution Protocol. See ARP

(Address Resolution Protocol)
address space layout randomization

(ASLR), 298, 324
ADIA (Appliance for Digital

Investigation and Analysis), 457
Adobe Reader, 309
Advanced Encryption Standard (AES),

324
advertisements, malvertising, 127–128
AES (Advanced Encryption Standard),

324
AFL (American Fuzzy Lop), 459
Aircrack-ng suite, 186–189, 191–196

Aireplay-ng, 188, 191, 194–195
Airmon-ng, 186–187, 191, 194
Airodump-ng, 188, 191, 194–195

algorithms
cryptographic, 243–244
Luhn, 55

ALTER DATABASE statement,
228

ALTER TABLE statement, 228
American Fuzzy Lop (AFL), 459

542 amplification DDoS (distributed denial-of-service) attacks

amplification DDoS (distributed denial-
of-service) attacks, 178–179

Anchore, 313
Andersson, Bjorn, 441
Androick, 323
Android

android_filesystem_config.h file, 317
AndroidManifest.xml file, 317
APK (Android Package Kit), 317
AVD (Android Virtual Device)

Manager, 320
security, 316–323

APIs (application programming
interfaces), 40

API-based keyloggers, 307
documentation, 40
ESAPI (Enterprise Security API), 240
RESTful (REST), 269
Shodan, 96–102, 378–380
unprotected, 267–270

APK (Android Package Kit), 317
Apktool, 322
apktool.yml file, 318
appetite for risk, 49–50
Apple

iOS security, 323–325
Remote Desktop, 348, 433

Appliance for Digital Investigation and
Analysis (ADIA), 457

application-based vulnerabilities, 207
approved scanning vendors (ASVs), 54
APs (access points), rogue, 185
Aqua Security, 313
arm64-v8a folder, 319
armeabi folder, 319
armeabi-v7a folder, 319
armoring, ASCII, 298
ARP (Address Resolution Protocol)

cache poisoning, 173–175
spoofing, 173–175

Art of Hacking GitHub repository, 225,
346, 390, 395, 410, 454

ASCII armor region, 298
ASCII armoring, 298
ASLR (address space layout

randomization), 298, 324
assets directory, 318
ASVs (approved scanning vendors), 54
Attack Complexity (AC) metrics, 37
attacks, 7–8. See also evasion techniques;

privilege escalation
authentication-based vulnerabilities

credential brute forcing, 243–245
default credential exploits, 249–250
Kerberos exploits, 250
redirect attacks, 249
session hijacking, 245–249

authorization-based vulnerabilities
Insecure Direct Object Reference

vulnerabilities, 251–252
parameter pollution, 250–251

clickjacking, 261
command injection, 241–242
credential, 420

Cain and Abel, 424–425
CeWL, 431–432
Hashcat, 425–427
Hydra, 428–429
John the Ripper, 420–425
Johnny, 425
Medusa, 430–431
Mimikatz, 432
Ncrack, 430–431
Patator, 432–433
RainbowCrack, 429–430

CSRF (cross-site request forgery),
260–261

current threat landscape, 7–9
DDoS (distributed denial-of-service),

8–9
exploitation frameworks

BeEF, 449–450
Metasploit, 442–449

file inclusion vulnerabilities

543SQL injection

LFI (local file inclusion), 264
RFI (remote file inclusion), 264–265

HTML injection, 241
insecure code practices

code signing, lack of, 270
error-handling errors, 266
hard-coded credentials, 266
hidden elements, 270
race conditions, 266–267
source code comments, 265–266
unprotected APIs, 267–270

insecure service and protocol
configurations, 281–284

to IoT devices, 8–9
mobile device security, 314–316

Android, 316–323
Apple iOS, 323–325
OWASP Mobile Security Project,

314
network-based vulnerabilities

DDoS (distributed denial-of-service),
178–179

DHCP (Dynamic Host Control
Protocol), 183–185

DNS cache poisoning, 155–157
DoS (denial-of-service), 176–177
FTP (File Transfer Protocol),

166–168
Kerberos, 169–172
LDAP (Lightweight Directory

Access Protocol), 169–172
man-in-the-browser attacks, 249
MITM (man-in-the-middle) attacks,

173–175, 193
NAC (network access control)

bypass, 179–180
name resolution and SMB attacks,

148–155
pass-the-hash attacks, 168–169,

302–303
route manipulation attacks,

175–176

SMB (Server Message Block),
151–155, 157–159

SMTP (Simple Mail Transfer
Protocol), 159–166

VLAN hopping, 181–183
physical, 326–327
ransomware

Nyeta, 354
WannaCry, 8

ret2libc (“return-to-libc”), 298
security misconfigurations, 262

cookie manipulation attacks,
263–264

directory traversal vulnerabilities,
262–263

social engineering, 11–12
characteristics of, 125–126
elicitation, 135
interrogation, 136
malvertising, 127–128
motivation techniques, 137
pharming, 126–127
phishing, 126
pretexting, 136
SET (Social-Engineer Toolkit),

129–134
shoulder surfing, 137
SMS phishing, 134–135
spear phishing, 128–134
USB key drop, 138
voice phishing, 135
whaling, 135

SQL injection, 228
blind, 237
Boolean technique, 233, 237
categories of, 232–234
database fingerprinting, 234–235
error-based technique, 233
examples of, 228–232
mitigations, 240
out-of-band technique, 233, 237–238
stored procedures, 239–240

544 SQL injection

time-delay technique, 233, 239
UNION operator technique, 233,

235–236
threat actors, 9–10
wireless and RF-based

credential harvesting, 199–200
deauthentication attacks, 186–189
evil twin attacks, 185–186
fragmentation attacks, 197–198
IV (initialization vector) attacks,

190
KARMA attacks, 197
KRACK (key reinstallation attack),

196–197
PNL (preferred network list) attacks,

189
RFID (radio-frequency

 identification) attacks, 200
rogue access points, 185
signal jamming, 189
war driving, 190
WEP (Wired Equivalent Privacy)

attacks, 190–192
WPA (Wi-Fi Protected Access)

attacks, 192–196
WPS (Wi-Fi Protected Setup),

197
XSS (cross-site scripting)

 vulnerabilities, 252–253
DOM-based XSS attacks, 256–257
evasion techniques, 257–259
reflected XSS attacks, 253–254
stored XSS attacks, 255–256

zero-day, 8
audience for reports, identifying, 476–477
AUTH command (SMTP), 161
Authd, 284
authenticated scans, 105
authentication

Authentication Cheat Sheet (OWASP),
222, 246

vulnerabilities

credential brute forcing, 243–245
default credential exploits, 249–250
Kerberos, 169–172
Kerberos exploits, 250
redirect attacks, 249
session hijacking, 245–249

authority, in social engineering, 137
authorization-based vulnerabilities

Insecure Direct Object Reference
 vulnerabilities, 251–252

parameter pollution, 250–251
AV (Access Vector) metrics, 37
Availability Impact (A) metrics, 37
AVD (Android Virtual Device) Manager,

320
avoidance of risk, 49

B
backdoors, 238, 346
backtracking, 262–263
badge cloning, 327
bandwidth limitations, vulnerability

scanning and, 111
Bane, 313
base groups, 34–37
bash, 460–461
basic service set identifiers (BSSIDs), 188
BeEF, 449–450
BGP hijacking attacks, 175
Bienaimé, Pierre, 441
bilateral NDAs (nondisclosure

agreements), 43
binary patching, 315
Black Hills Information Security, 90–91
black lists, 46
BlackArch Linux, 224, 367–368
black-box tests, 12, 47
blind shells, creating, 338–344
blind SQL injection, 237
Blowfish, 166
blue teams, 46
Bluejacking, 199–200

545commands

Bluesnarfing, 199–200
Booleans, SQL injection with, 233, 237
Born, Kenton, 441
botnets, 177
Bourne-Again shell (bash), 460–461
Breach Notification Rule, 52
BSSIDs (basic service set identifiers), 188
budget, planning, 32–33
Burp Suite, 41, 214
Bursztein, Elie, 138
business associates, 53
bWAPP, 225

C
C (Confidentiality Impact) metrics, 37
C2 (command and control) utilities,

344–345
cache file, 318
cache poisoning

ARP (Address Resolution Protocol),
173–175

DNS (Domain Name System),
155–157

Cain and Abel, 424–425
CAINE (Computer Aided Investigative

Environment), 369, 457
CAPEC (Common Attack Pattern

Enumeration and Classification),
114

card security codes, 56
cardholder data environment, 55
cat command, 343
CAV2 codes, 56
cd command, 343, 350
Censys, 389–390
CERT.RSA file, 317
CERT.SF file, 317
CeWL, 431–432
CFTC (Commodity Futures Trading

Commission), 52
chaining analysis, 37–38
chmod command, 287–289

Choose a Tool dropdown (Dradis),
484–485

CID codes, 56
CIFS (Common Internet File System),

172
CIS Docker Benchmark, 313
Cisco ETA (Encrypted Traffic Analytics),

440
Cisco Smart Install, 281
Clair, 313
classes.dex directory, 318
classification, report, 499
cleanup process, 356
clearev command, 343
clear-test credentials in LDAP, 300–301
clickjacking, 261
Clickjacking Defense Cheat Sheet

(OWASP), 261
clients, HTTP (Hypertext Transfer

Protocol), 213
code injection, 315
code practices, insecurity in

code signing, lack of, 270
error-handling errors, 266
hard-coded credentials, 266
hidden elements, 270
race conditions, 266–267
source code comments, 265–266
unprotected APIs, 267–270

code_cache file, 318
cold boot attacks, 326
Collignon, Nicolas, 441
command and control. See C2 (command

and control) utilities
command injection vulnerabilities,

241–242
commands. See also scripts; tools

aireplay-ng, 188, 191, 194–195
airmon-ng, 186–187, 191, 194
airodump-ng, 191, 194
cat, 343
cd, 343, 350

546 commands

chmod, 287–289
clearev, 343
continue, 451
Copy-Item, 349
dig, 90, 371–372
download, 343
edit, 343
execute, 343
find, 292–293
Get-ChildItem, 349
Get-Command, 350
Get-Content, 350
Get-HotFix, 350
Get-Location, 350
Get-NetFirewallRule, 350
Get-Process, 350
Get-Service, 350
getsystem, 449
getuid, 343
groups, 294
hashdump, 343, 448
host, 371–372
id, 294
idletime, 343
ipconfig, 343
john --list=formats, 420–421
john -show hashes, 423
key list, 96–97
keys add, 386
keys add shodan_api, 98
keys list, 386–387
lcd, 343
list audit, 417–419
locate, 423
lpwd, 343
ls, 343, 350
migrate, 343
Move-Item, 349
msfconsole, 90–91, 442
msfdb init, 443
New-NetFirewallRule, 350
nmap

-sF option, 76–77
-sn option, 77–78
-sS option, 71–72
-sT option, 73–74
-sU option, 74–75

nslookup, 90, 156–157, 371–372
ps, 343
pwd, 343
resource, 343
run, 451
scapy, 86
screenshot, 448
search, 343
Select-String, 349
service dradis start, 479
set LHOST, 155
set RHOST, 155
setoolkit, 129
shell, 343
show info, 387–388
show modules, 383–386
show options, 155
SMTP (Simple Mail Transfer

Protocol), 160–163
sudo, 286–287, 294–298
sysinfo, 449
upload, 343
use, 387–389
use exploit/windows/smb/ms17_010_

eternalblue, 155
useradd, 295
usermod, 294–295
visudo, 296
webcam_list, 344
webcam_snap, 344
whois, 372–373

comments, exploiting, 265–266
Commodity Futures Trading Commission

(CFTC), 52
Common Attack Pattern Enumeration

and Classification (CAPEC),
114

547Damn Vulnerable Web App (DVWA)

Common Internet File System (CIFS),
172

Common Vulnerabilities and Exposures
(CVE), 114–115

Common Vulnerability Scoring System
(CVSS), 34–37, 494–495

Common Weakness Enumeration
(CWE), 115

communication escalation path, 31–32
communications, reporting and, 500–501
Community Edition (Dradis), 479
compliance scans, 109–110
compliance-based assessment, 45, 50

financial sector regulations, 50–52
healthcare sector regulations, 52–53
key technical elements, 56–57
limitations of, 57–58
PCI DSS (Payment Card Industry

Data Security Standard), 53–56
Computer Aided Investigative

Environment (CAINE), 369, 457
Confidentiality Impact (C) metrics, 37
confidentiality of findings, 32
CONNECT method (HTTP), 217
container security, 310–314
continue command, 451
contracts, 41–42
cookie manipulation attacks, 263–264
Copy-Item command, 349
corporate policies, 43–44
covering tracks, 356
CPassword attacks, 299
cracking passwords. See password

crackers
CREATE DATABASE statement, 228
CREATE INDEX statement, 228
CREATE TABLE statement, 228
credentials

attacks, 420
brute forcing, 243–245
Cain and Abel, 424–425
CeWL, 431–432

credential harvesting, 199–200
Hashcat, 425–427
Hydra, 428–429
John the Ripper, 420–425
Medusa, 430–431
Mimikatz, 432
Ncrack, 430–431
Patator, 432–433
RainbowCrack, 429–430
RFID (radio-frequency

 identification) attacks, 200
hard-coded, 266

Cri-o, 311
cross-site scripting. See XSS (cross-site

scripting) vulnerabilities
cryptographic algorithms, 243–244
Crysis, 8
CSRF (cross-site request forgery), 260–261
curl, 221
custom daemons and processes, creating,

346
CVC2 codes, 56
CVE (Common Vulnerabilities and

Exposures), 114–115
CVSS (Common Vulnerability Scoring

System), 34–37, 494–495
CVV2 codes, 56
CWE (Common Weakness

Enumeration), 115
cyber ranges, 227
Cydia Substrate, 315

D
daemons, creating, 346
Dagda, 313
Dalvik, 316
Damn Vulnerable ARM Router (DVAR),

225
Damn Vulnerable iOS Application

(DVIA), 225
Damn Vulnerable Web App (DVWA),

225

548 DATA command (SMTP)

DATA command (SMTP), 160
data isolation, 56
database fingerprinting, 234–235
databases, SAM (Security Account

Manager), 302–303
databases folder, 318
DDoS (distributed denial-of-service)

attacks, 8–9
amplification, 178–179
reflected, 178

deauthentication attacks, 186–189
debugging tools

edb debugger, 452–454
GDB (GNU Project Debugger),

450–452
Immunity, 454
OllyDbg, 452–453
Windows Debugger, 452

default credential exploits, 249–250
defensive controls, 49
DEFT (Digital Evidence & Forensics

Toolkit), 457
DELETE method (HTTP), 217
DELETE statement (SQL), 228
Dembour, Olivier, 441
denial-of-service (DoS) attacks, 176–177
DeNiSe, 441
Department of Health and Human

Services (HHS), 52
DES, 166
Dev-Sec.io, 313
DHCP (Dynamic Host Control

Protocol)
spoofing, 183–185
starvation attacks, 183–185

dig command, 90
Dig tool, 371–372
Digital Evidence & Forensics Toolkit

(DEFT), 457
Dirbuster, 419
directory climbing, 262–263
Directory Information Tree (DIT), 170

directory traversal vulnerabilities,
262–263

disassemblers
IDA, 454–455
Objdump, 455–457

disclaimers, documentation of, 38–39
discovery scans, 106
Distinguished Name (DN), 170
distributed denial-of-service. See DDoS

(distributed denial-of-service)
attacks

distribution of reports, 499–500
DIT (Directory Information Tree), 170
DLL (dynamic link library) hijacking,

303–304
DN (Distinguished Name), 170
DNS (Domain Name System)

cache poisoning, 155–157
DNSSEC (Domain Name System

Security Extension), 157
exfiltration, 440–442
tunneling, 440–442

dns2tcp, 441
DNScapy, 441
DNScat, 441
DNScat2, 345, 441
DNSdumpster, 88
DNSRecon, 67–69
DNSSEC (Domain Name System

Security Extension), 157
Docker, 310–313
docker-bench-security, 313
docker-explorer, 314
Document Object Model. See DOM

(Document Object Model)
documentation, 41

API (application programming
 interface), 268

legal
contracts, 41–42
MSAs (master service agreements),

42

549email threats

NDAs (nondisclosure agreements),
43

SOWs (statements of work), 42
pre-engagement

budget, 32–33
communication escalation path,

31–32
confidentiality of findings, 32
disclaimers, 38–39
impact analysis and remediation

timelines, 34–38
point-in-time assessment, 33
rules of engagement, 30
target audience, 29–30
technical constraints, 39

rules of engagement, 30
support resources, 40–41

DOM (Document Object Model)
DOM-based XSS (cross-site scripting)

attacks, 256–257
stored DOM-based attacks,

263–264
domain enumeration, 88–91
Domain Name System. See DNS

(Domain Name System)
DoS (denial-of-service) attacks,

176–177
dot-dot-slash, 262–263
downgrade attacks, 175
download command, 343
Dradis Framework

Choose a Tool dropdown, 484–485
data import, 483
imported scans, viewing, 488–490
launching, 479
login screen, 480
node organization, 486–488
node/subnode creation, 481–483
output file processing, 485–486
password creation, 479–480
plugin.output node, 486
Project Summary screen, 481

Upload Manager screen, 484
Upload Output from Tool option,

483–484
versions, 478–479

DROP INDEX statement, 228
DROP TABLE statement, 228
DropboxC2 (DBC2), 345
Dual Elliptic Curve Deterministic

Random Bit Generator
(Dual_EC_DRBG), 439

dumpster diving, 327
DVAR (Damn Vulnerable ARM Router),

225
DVIA (Damn Vulnerable iOS

Application), 225
DVWA (Damn Vulnerable Web App), 225
dynamic binary analysis, 316
Dynamic Host Control Protocol. See

DHCP (Dynamic Host Control
Protocol)

dynamic link library (DLL) hijacking,
303–304

DynDNS service, 8–9

E
E (Exploit Code Maturity), 36
eavesdropping, packet, 90
edb debugger, 452–454
edit command, 343
egress sensors, 327
EHLO command (SMTP), 160
Ekman, Erik, 441
electronic protected health information

(ePHI), 53
elicitation, 135
email threats

pharming, 126–127
phishing, 126

SMS phishing, 134–135
spear phishing, 128–134
voice phishing, 135
whaling, 135

550 Empire

Empire, 171, 353–354, 434
Encrypted Traffic Analytics (ETA), 440
Encryption, 439–440
encryption

AES (Advanced Encryption Standard),
324

cryptographic algorithms, 243–244
engagement, rules of, 30
Enterprise Security API (ESAPI), 240
Enum4linux, 155, 395–400
enumeration

defined, 71
domain, 88–91
group, 81–82
host, 78–79
network share, 82
packet crafting, 85–87
service, 85
user, 80–81
web page/web application, 83–84

environmental groups, 34–37
ePHI (electronic protected health

information), 53
error handling

lack of, 266
verbose, 266

error-based SQL injection, 233
ESAPI (Enterprise Security API), 240
escalation of privileges. See privilege

escalation
escalation path, 31–32
ESSIDs (extended basic service set

identifiers), 188
ETA (Encrypted Traffic Analytics), 440
EternalBlue exploit, 8, 154–155
ethical hacking

defined, 6–7
importance of, 7
nonethical hacking compared to,

6–7
Ettercap, 199
Evan’s debugger, 452–454

evasion techniques
DNS tunneling, 440–442
Encryption, 439–440
Proxychains, 439
Tor, 438–439
Veil, 434–437
XSS (cross-site scripting)

 vulnerabilities, 257–258
evil twin attacks, 185–186
exam preparation

chapter-ending review tools, 509
Pearson Test Prep software, 505

exam customization, 507–508
exam updates, 508
offline access, 506–507
online access, 505
Premium Edition, 508–509

study plans, 509
execute command, 343
eXecute Never (XN), 324
executive summary section (reports),

493
exfiltration, DNS (Domain Name

System), 440–442
ExifTool, 374–375
Exploit Code Maturity (E), 36
The Exploit Database, 151
Exploitability metrics, 35
exploitable services, 304–305
exploitation frameworks

BeEF, 449–450
Metasploit, 90–91, 115, 154–155,

442–449
Metasploit Unleashed course, 344
Meterpreter, 299, 343–344,

446–449
RDP connections, creating, 348–349

exploits. See attacks
EXPN command (SMTP), 161
export restrictions, 43
extended basic service set identifier

(ESSID), 188

551Get-NetFirewallRule command

F
false negatives, 475–476, 477
false positives, 475–476, 477, 495–496
FBI (Federal Bureau of Investigation),

439
FDIC (Federal Deposit Insurance

Corporation) Safeguards Act, 51
fear, social engineering and, 137
Federal Bureau of Investigation (FBI), 439
Federal Deposit Insurance Corporation

(FDIC) Safeguards Act, 51
Federal Financial Institutions

Examination Council (FFIEC), 51
Federal Trade Commission (FTC), 52
Feederbot and Moto, 442
fence jumping, 327
FFIEC (Federal Financial Institutions

Examination Council), 51
file inclusion vulnerabilities

LFI (local file inclusion), 264
RFI (remote file inclusion), 264–265

File Transfer Protocol. See FTP (File
Transfer Protocol)

files
permissions, insecurity in, 305
SOAP (Simple Object Access Protocol),

40
files folder, 319
FILS (Financial Institutions Letters), 51
financial sector regulations, 50–52
find command, 292–293
Find-AVSignature script, 351
Findbugs, 458
findings, reporting, 495–497
Findsecbugs, 458
Finger, 284
fingerprinting databases, 234–235
Fingerprinting Organizations with

Collected Archives (FOCA), 374
FIRST (Forum of Incident Response and

Security Teams), 34, 37
FIRST.org, 494

FOCA (Fingerprinting Organizations
with Collected Archives), 374

folder permissions, 305
forensics tools, 457–458
forgery, CSRF (cross-site request

forgery), 260–261
Forum of Incident Response and Security

Teams (FIRST), 34, 37
fragile systems, vulnerability scans for,

111–112
fragmentation attacks, 197–198
Frida, 315
FTC (Federal Trade Commission), 52
FTP (File Transfer Protocol)

exploits, 166–168
FTPS (File Transfer Protocol Secure),

166
full scans, 106–108
functions. See also commands

GetSystemDirectory, 304
GetWindowsDirectory, 304

fuzz testing, 458
fuzzers, 458

AFL (American Fuzzy Lop), 459
Mutiny Fuzzing Framework, 459
Peach, 459

G
Game of Hacks, 225
GDB (GNU Project Debugger), 450–452
GET method (HTTP), 215, 217
Get-ChildItem command, 349
Get-Command command, 350
Get-Content command, 350
Get-GPPAutologon script, 352
Get-GPPPassword script, 352
Get-HotFix command, 350
Get-HttpStatus script, 352
Get-Keystrokes script, 352
Get-Location command, 350
Get-MicrophoneAudio script, 352
Get-NetFirewallRule command, 350

http://FIRST.org

552 Get-Process command

Get-Process command, 350
Get-SecurityPackages script, 351
Get-Service command, 350
getsystem command, 449
GetSystemDirectory function, 304
Get-TimedScreenshot script, 352
getuid command, 343
Get-VaultCredential script, 352
Get-VolumeShadowCopy script, 352
GetWindowsDirectory function, 304
GLBA (Gramm-Leach-Bliley Act), 51–52
GNU Project Debugger (GDB),

450–452
goals-based assessment, 45
golden ticket attacks (Kerberos), 170–172
GPOs (Group Policy Objects), 305–306
GPP attacks. See CPassword attacks
Gramm-Leach-Bliley Act (GLBA), 51–52
GraphQL, 40, 267
gray-box tests, 13, 47
groups

CVSS (Common Vulnerability Scoring
System), 34–37

enumeration, 81–82
Group Policy Objects (GPOs),

305–306
groups command, 294

H
Hack This, 225
Hack This Site, 225
Hackazon, 225
hackertarget module, 96
hacktivists, 10
HAL (Hardware Abstraction Layer),

316
half-open scanning, 71–72
handling reports, 499–500
hard-coded credentials, 266
Hardware Abstraction Layer (HAL), 316
Hashcat, 425–427
hashdump command, 343, 448

HEAD method (HTTP), 217
Health Information Technology for

Economic and Clinical Health
Act, 52

health plans, 53
healthcare clearinghouses, 53
healthcare providers, 53
healthcare sector regulations, 52–53
HellBound Hackers, 225
HELO command (SMTP), 160
HELP command (SMTP), 161
help menu (Recon-ng), 92
Heyoka, 441
hidden elements, 270
hijacking

DLL (dynamic link library),
303–304

session, 245–249
HIPAA Security Enforcement Final

Rule, 52
HIPAA Security Rule, 52–53
HITECH (Health Information

Technology for Economic and
Clinical Health) Act, 52

hopping, VLAN, 181–183
Host, 371–372
host enumeration, 78–79
hosts, local. See local host vulnerabilities
HPP (HTTP parameter pollution),

250–251
HTML (Hypertext Markup Language)

HTML5, 309
injection, 241

HTTP (Hypertext Transfer Protocol),
213–221

clients, 213
HPP (HTTP parameter pollution),

250–251
proxies

defined, 214
ZAP, 214

request/response model, 215–218

553intrusion prevention systems (IPSs)

servers, 213
sessions, 213
URLs (uniform resource locators),

219–220
http-enum script, 83–84
Hydra, 428–429
Hypertext Markup Language.

See HTML (Hypertext Markup
Language)

Hypertext Transfer Protocol. See HTTP
(Hypertext Transfer Protocol)

hypervisor-based keyloggers, 307

I
I (Integrity Impact) metrics, 37
id command, 294
IDA, 454–455
Identd, 284
idletime command, 343
IDs

SGID (set-group-ID)
Linux, 289
Unix, 291–293

SUID (set-user-ID)
Linux, 289
Unix, 291–293

IETF (Internet Engineering Task Force),
157

iGoat, 325
IIHI (individually identifiable health

information), 53
IMAP (Internet Message Address

Protocol), 159
iMAS, 325
Immunity, 454
impact analysis, 34–38
Impact metrics, 36–44
impersonation, 136
individually identifiable health

information (IIHI), 53
information gathering.

See reconnaissance

Information Systems Security Assessment
Framework (ISSAF), 16

initialization vector (IV) attacks, 190
injection-based vulnerabilities

command injection, 241–242
HTML injection, 241
SQL injection, 228

blind, 237
Boolean technique, 233, 237
categories of, 232–234
database fingerprinting, 234–235
error-based technique, 233
examples of, 228–232
mitigations, 240
out-of-band technique, 233, 237–238
stored procedures, 239–240
time-delay technique, 233, 239
UNION operator technique, 233,

235–236
insecure code practices

code signing, lack of, 270
error-handling errors, 266
hard-coded credentials, 266
hidden elements, 270
race conditions, 266–267
source code comments, 265–266
unprotected APIs, 267–270

Insecure Direct Object Reference
vulnerabilities, 251–252

INSERT INTO statement, 228
insider threats, 10
inspection, packet, 90
Install-SSP script, 351
Integrity Impact (I) metrics, 37
intentionally vulnerable systems, 224–227
Internet Engineering Task Force. See

IETF (Internet Engineering Task
Force)

Internet Message Address Protocol
(IMAP), 159

interrogation, 136
intrusion prevention systems (IPSs), 46

554 Invoke-CredentialInjection script

Invoke-CredentialInjection script, 351
Invoke-DllInjection script, 351
Invoke-Mimikatz script, 352
Invoke-NinjaCopy script, 352
Invoke-Portscan script, 352
Invoke-ReflectivePEInjection script, 351
Invoke-ReverseDnsLookup script, 352
Invoke-Shellcode script, 351
Invoke-TokenManipulation script, 351
Invoke-WmiCommand script, 351
Iodine, 441
iOS security, 323–325
IoT (Internet of Things), threats to,

8–9
ipconfig command, 343
IPSs (intrusion prevention systems),

46
ISSAF (Information Systems Security

Assessment Framework), 16
IV (initialization vector) attacks, 190

J
jail, 309
Japan Computer Emergency Response

Team (JPCERT), 113
JavaScript-based keyloggers, 307
john --list=formats command, 420–421
john -show hashes command, 423
John the Ripper, 420–425
Johnny, 425
JPCERT (Japan Computer Emergency

Response Team), 113
JTAG debugging, 326–327
JWT (JSON Web Token), 223

K
Kali Linux, 224, 366
Kaminsky, Dan, 441
KARMA attacks, 197
Kennedy, Dave, 11–12
Kerberoast, 301
Kerberos

exploits, 250
Kerberos Delegation, 172
KRBTGT(Kerberos TGT) password

hash, 170
vulnerabilities, 169–172

kernel-based keyloggers, 307
key list command, 96–97
key management, 57
key reinstallation attack (KRACK),

196–197
keyloggers, 306–307
keys add command, 386
keys add shodan_api command, 98
keys list command, 386–387
KRACK (key reinstallation attack),

196–197
KRBTGT (Kerberos TGT) password

hash, 170

L
labs, 16–17

recovery, 19
requirements and guidelines, 18
tools, 18–19
web application, 224–227

languages
Python, 461
Ruby, 461–462

Lanman, 80–81
lateral movement, 347

post-exploitation scanning, 347–348
remote access protocols, 348–349

lcd command, 343
LDAP (Lightweight Directory Access

Protocol)
clear-test credentials in, 300–301
vulnerabilities, 169–172

legal concepts, 41
contracts, 41–42
MSAs (master service agreements), 42
NDAs (nondisclosure agreements), 43
SOWs (statements of work), 42

555META-INF file

legislation. See regulations
LFI (local file inclusion) vulnerabilities,

264
lib directory, 318
lib folder, 319
Lightweight Directory Access Protocol.

See LDAP (Lightweight Directory
Access Protocol)

likeness, social engineering and, 137
Link-Local Multicast Name Resolution.

See LLMNR (Link-Local
Multicast Name Resolution)

Linux
distributions, 224, 365

BlackArch Linux, 224, 367–368
CAINE (Computer Aided

Investigative Environment), 369
Kali Linux, 224, 366
Parrot, 224, 367
Security Onion, 369–370
SELinux (Security Enhanced Linux),

293
LXC (Linux Containers), 310
permissions, 286–291

list audit command, 417–419
LLMNR (Link-Local Multicast Name

Resolution), 148–150
local file inclusion (LFI) vulnerabilities,

264
local host vulnerabilities, 281. See also

privilege escalation
insecure service and protocol configu-

rations, 281–284
mobile device security, 314–316

Android, 316–323
Apple iOS, 323–325

physical security attacks, 326–327
local privilege escalation. See privilege

escalation
Local Security Authority Subsystem

Service (LSASS) credentials,
301–302

locate command, 423
lockpicking, 327
Locky, 8
lpwd command, 343
ls command, 343, 350
LSASS (Local Security Authority

Subsystem Service) credentials,
301–302

Luhn, Hans Peter, 55
Luhn algorithm, 55
LXC (Linux Containers), 310

M
MAC authentication (auth) bypass,

179–180
magnetic credit card stripes, 56
MAIL command (SMTP), 161
Maltego, 381–382
malvertising, 127–128
Management Frame Protection (MFP),

189
Management Information Base (MIB),

158
MANIFEST.MF file, 317
man-in-the-browser attacks, 249
man-in-the-middle attacks. See MITM

(man-in-the-middle) attacks
Masscan, 78–79
master service agreements (MSAs), 42
MASVS (Mobile AppSec Verification

Standard) Anti-Reversing
Controls, 315

MD5 algorithm, 166
measurements, 494–495
Medusa, 430–431
memory-injection-based keyloggers, 307
merchants, 54
messages (SMB)

SMB_COM_NEGOTIATE, 80
SMB_COM_SESSION_SETUP_

ANDX, 80–81
META-INF file, 317

556 Metasploit

Metasploit, 90–91, 115, 154–155,
442–449

Metasploit Unleashed course, 344
Meterpreter, 299, 343–344, 446–449
RDP connections, creating, 348–349

Metasploitable2, 225
Metasploitable3, 225
Meterpreter, 299, 343–344, 446–449
methodologies, penetration testing, 13–16
methodology section (reports), 494
metrics, 34–37, 494–495
MFA (multifactor authentication), 243
MFP (Management Frame Protection),

189
MIB (Management Information Base),

158
Microsoft

MOM (Microsoft Operations
Manager), 354

MS17-010 security bulletin, 8
MSRPC (Microsoft Remote Procedure

Call), 82
Office, 309

migrate command, 343
Mimikatz, 169–172, 302, 432
mips file, 319
mitigation

risk, 48–49
SQL injection, 240
XSS (cross-site scripting) vulnerabili-

ties, 258–259
MITM (man-in-the-middle) attacks, 249

ARP cache poisoning, 173–175
ARP spoofing, 173–175
downgrade attacks, 175
KARMA, 197
session hijacking, 193

MITRE iMAS, 325
Mobile AppSec Verification Standard

(MASVS) Anti-Reversing
Controls, 315

mobile device security, 314–316

Android, 316–323
Apple iOS, 323–325
OWASP Mobile Security Project, 314

MobiSec Live Environment Mobile
Testing Framework, 325

modding, 315
Modified Base Metrics, 36
modules

PowerSploit, 351–352
Recon-ng

hackertarget, 96
show modules command, 92–95

MOM (Microsoft Operations Manager),
354

Moore, H. D., 442
motivation techniques, social engineering,

137
Mount-VolumeShadowCopy script, 352
Move-Item command, 349
MS17–010 security bulletin, 8
MSAs (master service agreements), 42
msfconsole command, 90–91, 442
msfdb init command, 443
MSRPC (Microsoft Remote Procedure

Call), 82
multifactor authentication (MFA), 243
multilateral NDAs (nondisclosure

agreements), 43
Mutiny Fuzzing Framework, 459

N
NAC (network access control), 46,

179–180
name resolution, 148

LLMNR (Link-Local Multicast Name
Resolution), 148–150

NetBIOS, 148–150
National Cybersecurity and

Communications Integration
Center (NCCIC), 113

National Institute of Standards and
Technology (NIST), 15, 57, 113

557wireless and RF-based

National Security Agency (NSA), 439
NCCIC (National Cybersecurity and

Communications Integration
Center), 113

Ncrack, 430–431
NDAs (nondisclosure agreements), 43
need-to-know, 499
Nessus scanner, 106–108, 403–404
.NET Common Language Runtime, 309
NetBIOS, 148–150
Netcat, 338–342
Netdump, 284
Netdump-server, 284
netstat command, 105
network access control. See NAC

(network access control)
network diagrams, 41
network infrastructure tests, 11
network share enumeration, 82
Network Time Protocol (NTP), 178
network-based vulnerabilities, 148

DDoS (distributed denial-of-service)
amplification, 178–179
reflected, 178

DHCP (Dynamic Host Control
Protocol)

spoofing, 183–185
starvation attacks, 183–185

DNS cache poisoning, 155–157
DoS (denial-of-service), 176–177
FTP (File Transfer Protocol), 166–168
Kerberos, 169–172
LDAP (Lightweight Directory Access

Protocol), 169–172
man-in-the-browser attacks, 249
MITM (man-in-the-middle) attacks,

249
ARP cache poisoning, 173–175
ARP spoofing, 173–175
downgrade attacks, 175
KARMA, 197
session hijacking, 193

NAC (network access control) bypass,
179–180

name resolution and SMB attacks, 148
LLMNR (Link-Local Multicast

Name Resolution), 148–150
NetBIOS, 148–150
SMB (Server Message Block),

151–155
network topology, 110–111
pass-the-hash attacks, 168–169,

302–303
route manipulation attacks, 175–176
SMTP (Simple Mail Transfer Protocol)

commands, 160–163
known SMTP server exploits,

163–166
open relay, 160
TCP port numbers, 159

SNMP (Simple Network Management
Protocol), 157–159

VLAN hopping, 181–183
wireless and RF-based

credential harvesting, 199–200
deauthentication attacks, 186–189
evil twin attacks, 185–186
fragmentation attacks, 197–198
IV (initialization vector) attacks, 190
KARMA attacks, 197
KRACK (key reinstallation attack),

196–197
PNL (preferred network list) attacks,

189
RFID (radio-frequency identifica-

tion) attacks, 200
rogue access points, 185
signal jamming, 189
war driving, 190
WEP (Wired Equivalent Privacy)

attacks, 190–192
WPA (Wi-Fi Protected Access)

attacks, 192–196
WPS (Wi-Fi Protected Setup), 197

558 New York Department of Financial Services Cybersecurity Regulation

New York Department of Financial
Services Cybersecurity Regulation,
51, 52

New-ElevatedPersistenceOption script,
351

New-NetFirewallRule command, 350
New-UserPersistenceOption script,

351
New-VolumeShadowCopy script, 352
Nfs, 284
Nikto, 84, 410–413, 488–489
NIST (National Institute of Standards

and Technology), 15, 57, 113
Nmap, 155, 391–393

enumeration
group, 81–82
host, 78–79
network share, 82
service, 85
user, 80–81
web page/web application, 83–84

scans
ping, 77–78
TCP connect, 73–74
TCP FIN, 76–77
UDP, 74–75

scripts
http-enum, 83–84
smb-enum-groups, 81–82
smb-enum-processes, 85
smb-enum-shares, 82
smb-enum-users.nse, 80–81
smtp-open-relay, 160
SNMP-related, 158–159

Zenmap, 393–395
nmap command

-sF option, 76–77
-sS option, 71–72
-sT option, 73–74
-sU option, 74–75

Nmap Scripting Engine (NSE), 69
nodes (Dradis)

creating, 481–483
organizing, 486–488
plugin.output, 486

no-execute (NX) bit feature, 298
nondisclosure agreements (NDAs), 43
nonethical hacking, 6–7
nontraditional assets, vulnerability scans

for, 111–112
Notary, 314
NotPetya, 8
NowSecure App Testing:323
NSA (National Security Agency),

439
NSE (Nmap Scripting Engine), 69

http-enum script, 83–84
smb-enum-groups script, 81–82
smb-enum-processes script, 85
smb-enum-shares script, 82
smb-enum-users.nse script, 80–81
smtp-open-relay script, 160
SNMP-related scripts, 158–159

Nslookup, 90, 156–157, 371–372
NTLM (NT LAN Manager), 80–81, 168,

302–303
NTP (Network Time Protocol), 178
NX (no-execute) bit feature, 298
Nyeta ransomware, 354

O
OASP Mobile Security Testing

Guidelines, 16
OBEX (Object Exchange), 199
Objdump, 455–457
Object Exchange (OBEX), 199
offensive controls, 49
Offensive Security Example penetration

test report, 497
offline brute-force attacks, 243
OllyDbg, 452–453
one-click attacks, 260–261
online brute-force attacks, 243
open relay (SMTP), 160

559passive reconnaissance

Open Source Intelligence. See OSINT
(Open Source Intelligence)
gathering

Open Source Security Testing
Methodology Manual
(OSSTMM), 15–16

Open Web Application Security
Project. See OWASP (Open Web
Application Security Project)

OpenAPI, 40, 268
OpenSCAP, 314
OpenSSL, POODLE (Padding Oracle on

Downgraded Legacy Encryption)
vulnerability, 175

OpenVAS, 401–403
OpenVz, 311
operators, UNION, 233, 235–236
OPTIONS method (HTTP), 217
organized crime, 9–10
original folder, 318
oscap-docker, 314
OSINT (Open Source Intelligence)

gathering, 90
defined, 90
tools, 370

Censys, 389–390
Dig, 371–372
ExifTool, 374–375
FOCA (Fingerprinting

Organizations with Collected
Archives), 374

Host, 371–372
Maltego, 381–382
Nslookup, 371–372
Recon-ng, 382–389
Shodan API, 378–380
Theharvester, 376–378
Whois, 372–373

OSSTMM (Open Source Security
Testing Methodology Manual),
15–16

Out-CompressedDll script, 351

Out-EncodedCommand script, 351
Out-EncryptedScript script, 351
Out-Minidump script, 352
out-of-band SQL injection, 233, 237–238
output file processing (Dradis), 485–486
OverTheWire Wargames, 225
OWASP (Open Web Application Security

Project), 11, 226
Authentication Cheat Sheet, 222, 246
Clickjacking Defense Cheat Sheet, 261
Enterprise Security API (ESAPI), 240
iGoat, 325
Mobile Security Project, 314
Mutillidae II, 225
REST Security Cheat Sheet, 269
Risk Rating Methodology, 495
SeraphimDroid, 323
ZAP (Zed Attack Proxy), 41, 251,

413–414
OzymanDNS and sods, 441

P
Packetforge-ng, 197–198
packets

capture, 215
crafting, 85–87
inspection and eavesdropping, 90

Padding Oracle on Downgraded
Legacy Encryption (POODLE)
vulnerability, 175

PALADIN, 457
PANs (primary account numbers), 54
parameter pollution, 250–251
Parrot, 224, 367
passive reconnaissance, 87–88, 370

Censys, 389–390
defined, 70–71
Dig, 371–372
domain enumeration, 88–91
ExifTool, 374–375
FOCA (Fingerprinting Organizations

with Collected Archives), 374

560 passive reconnaissance

Host, 371–372
Maltego, 381–382
Nslookup, 90, 156–157, 371–372
OSINT (Open Source Intelligence)

gathering, 90
packet inspection and eavesdropping,

90
Recon-ng, 90–102, 382–389

hackertarget module, 96
help menu, 92
key list command, 96–97
keys add command, 386
keys list command, 96–97,

386–387
launching, 91
main menu and splash page, 91
searches, 95
Shodan API, 96–102
show info command, 387–388
show modules command, 92–95,

383–386
support resources, 389
use command, 387–389

Shodan API, 96–102, 378–380
Theharvester, 376–378
vulnerability scans, 103

authenticated, 105
challenges of, 109–112
compliance, 109–110
discovery, 106
full, 106–108
how it works, 103–104
results analysis, 112–113
stealth, 108–109
support resources, 113–115
unauthenticated, 104–105
vulnerability management, 115–116

Whois, 372–373
passive vulnerability scanners, 108. See

also scans
pass-the-hash attacks, 168–169, 302–303
password crackers

Cain and Abel, 424–425
CeWL, 431–432
Hashcat, 425–427
Hydra, 428–429
John the Ripper, 420–425
Johnny, 425
Medusa, 430–431
Mimikatz, 432
Ncrack, 430–431
Patator, 432–433
RainbowCrack, 429–430

passwords
Dradis Framework, 479–480
management, 56

Patator, 432–433
path traversals, 262–263
payment brands, 54
Payment Card Industry Data Security

Standard. See PCI DSS (Payment
Card Industry Data Security
Standard)

PCI DSS (Payment Card Industry Data
Security Standard), 13–14, 53–56,
491–493

PCI forensic investigators (PFIs), 54
PCI SSC (Payment Card Industry

Security Standards Council), 53
Peach, 459
Pearson Test Prep software, 505

exam customization, 507–508
exam updates, 508
offline access, 506–507
online access, 505
Premium Edition, 508–509

PearsonITCertification.com, 506
penetration testing, defined, 6–7
Penetration Testing Execution Standard

(PTES), 13, 16
Penetration Testing Framework, 14
penetration testing labs. See labs
penetration testing methodologies, 10,

13–16

http://PearsonITCertification.com

561POODLE (Padding Oracle on Downgraded Legacy Encryption) vulnerability

reasons for following, 10
web application tests, 11

penetration testing planning. See planning
and preparation

penetration testing reports. See reports
penetration testing tools. See tools
permission escalation. See privilege

escalation
Permissions Calculator website, 290
persistence, 337, 433

blind shells, creating, 338–344
C2 (command and control) utilities,

344–345
custom daemons and processes,

 creating, 346
reverse shells, creating, 338–344
scheduled tasks, creating, 346
tools, 433–434
users, creating, 346

Peruggia, 225
PFIs (PCI forensic investigators), 54
pharming, 126–127
phishing, 126

SMS, 134–135
spear, 128–134
voice, 135
whaling, 135

physical facility tests, 11
physical security attacks, 326–327
Piessens, Frank, 196
Pietraszek, Tadeusz, 441
piggybacking, 327
ping scans, 77–78
ping sweeps, 77
pivoting, 347

post-exploitation scanning, 347–348
remote access protocols, 348–349

planning and preparation
compliance-based assessment, 50

financial sector regulations, 50–52
healthcare sector regulations, 52–53
key technical elements, 56–57

limitations of, 57–58
PCI DSS (Payment Card Industry

Data Security Standard), 53–56
corporate policies, 43–44
export restrictions, 43
importance of, 29
legal concepts, 41

contracts, 41–42
MSAs (master service agreements), 42
NDAs (nondisclosure agreements), 43
SOWs (statements of work), 42

pre-engagement documentation
budget, 32–33
communication escalation path,

31–32
confidentiality of findings, 32
disclaimers, 38–39
impact analysis and remediation

timelines, 34–38
point-in-time assessment, 33
rules of engagement, 30
target audience, 29–30
technical constraints, 39

risk management, 47–50
scoping

assessment types, 45
importance of, 44
scope creep, 44
special considerations, 45–46
target selection, 46–47

strategy, 47
support resources, 40–41

plugin.output node (Dradis), 486
PNL (preferred network list) attacks,

189
point-in-time assessments, 33
policies

corporate, 43–44
Windows Group Policy, 305–306

POODLE (Padding Oracle on
Downgraded Legacy Encryption)
vulnerability, 175

562 POP3 (Post Office Protocol v3) port numbers

POP3 (Post Office Protocol v3) port
numbers, 159

port numbers, 159
port scans, Nmap, 391–393

half-open, 71–72
ping, 77–78
SYN, 71–72
TCP connect, 73–74
TCP FIN, 76–77
UDP, 74–75
Zenmap, 393–395

POST method (HTTP), 217
Post Office Protocol v3 (POP3) port

numbers, 159
post-engagement activities, 474–475.

See also reports
post-exploitation techniques

blind shells, creating, 338–344
C2 (command and control) utilities,

344–345
cleanup process, 356
custom daemons and processes,

 creating, 346
lateral movement, 347

post-exploitation scanning, 347–348
remote access protocols, 348–349

persistence, 337
reverse shells, creating, 338–344
scheduled tasks, creating, 346
users, creating, 346
Windows legitimate utilities, 349

Empire, 353–354
PowerShell, 349–350
PowerSploit, 351–353
PSExec, 355–356
Sysinternals, 355–356
WMI (Windows Management

Instrumentation), 354–355
PowerShell, 349–350, 433, 462
PowerSploit, 351–353, 434
PowerUp script, 352
PowerView script, 352

PR (Privilege Required) metrics, 37
pre-engagement documentation

budget, 32–33
communication escalation path, 31–32
confidentiality of findings, 32
disclaimers, 38–39
impact analysis and remediation

 timelines, 34–38
point-in-time assessment, 33
rules of engagement, 30
target audience, 29–30
technical constraints, 39

preferred network list (PNL) attacks,
189

pretexting, 136
primary account numbers (PANs), 54
privilege escalation, 285–286

insecure SUDO implementations,
294–298

Linux permissions, 286–291
ret2libc (“return-to-libc”) attacks, 298
Unix programs, 291–293
Windows privileges

clear-test credentials in LDAP,
300–301

container security, 310–314
CPassword, 299
DLL (dynamic link library) hijack-

ing, 303–304
exploitable services, 304–305
Group Policy, 305–306
insecure file/folder permissions, 305
Kerberoast, 301
keyloggers, 306–307
LSASS (Local Security Authority

Subsystem Service) credentials,
301–302

SAM (Security Account Manager)
database, 302–303

sandbox escape, 308–310
scheduled tasks, 307–308
VM (virtual machine) escape, 310

563red teams

Privilege Required (PR) metrics, 37
PRNGs (pseudorandom number

generators), 247
ProcDump, 301–302
procedures, stored, 239–240
processes, creating, 346
Professional Edition (Dradis), 479
Project Summary screen (Dradis), 481
protocol configurations, insecurity in,

281–284
proxies (HTTP)

defined, 214
ZAP, 214

Proxychains, 439
ps command, 343
pseudorandom number generators

(PRNGs), 247
PSExec, 355–356
PsExec tool (Sysinternals), 355
PsFile tool (Sysinternals), 355
PsGetSid tool (Sysinternals), 355
PsInfo tool (Sysinternals), 355
PsKill tool (Sysinternals), 355
PsList tool (Sysinternals), 355
PsLoggedOn tool (Sysinternals), 355
PsLogList tool (Sysinternals), 355
PsPassword tool (Sysinternals), 355
PsPing tool (Sysinternals), 355
PsService tool (Sysinternals), 355
PsShutdownPsSuspend tool

(Sysinternals), 355
psudp, 441
PTES (Penetration Testing Execution

Standard), 13, 16
PUT method (HTTP), 217
pwd command, 343
Python, 461

Q
QSAs (qualified security assessors), 54
qualified security assessors (QSAs), 54
Qualys scanner, 404

query throttling, 111
QUIT command (SMTP), 161

R
race conditions, 266–267
Radamsa, 459
radio-frequency identification (RFID)

attacks, 200
rainbow tables, 244, 429
RainbowCrack, 429–430
ransomware

Nyeta, 354
WannaCry, 8

Rapid7, 404
RC (Report Confidence), 36
RCPT command (SMTP), 160
rcrack, 429–430
RDP (Remote Desktop Protocol), 348,

433
Reader (Adobe), 309
Reaver, 197
recommendations for remediation,

reporting, 495–497
reconnaissance. See active

reconnaissance; passive
reconnaissance

Recon-ng, 90–102, 382–389
hackertarget module, 96
help menu, 92
key list command, 96–97
keys add command, 386
keys list command, 386–387
launching, 91
main menu and splash page, 91
searches, 95
Shodan API, 96–102
show info command, 387–388
show modules command, 92–95,

383–386
support resources, 389
use command, 387–389

red teams, 46

564 redirect attacks

redirect attacks, 249
reflected DDoS (distributed denial-

of-service) attacks, 178
reflected XSS (cross-site scripting)

attacks, 253–254
regulations

financial sector, 50–52
healthcare sector, 52–53
PCI DSS (Payment Card Industry

Data Security Standard), 53–56
Remediation Level (RL), 36
remediation timelines, 34–38
remote access protocols, 348–349
Remote Desktop Protocol (RDP), 348,

433
remote file inclusion (RFI) vulnerabilities,

264–265
Remove-Comments script, 351
Remove-VolumeShadowCopy script, 352
Report Confidence (RC), 36
reporting/html module, 102
reports

classifying, 499
common elements of, 490

executive summary, 493
findings and recommendations,

495–497
methodology, 494
metrics and measurements, 494–495

communications, 500–501
distribution, 499–500
Dradis Framework

Choose a Tool dropdown, 484–485
data import, 483
imported scans, viewing, 488–490
launching, 479
login screen, 480
node organization, 486–488
node/subnode creation, 481–483
output file processing, 485–486
password creation, 479–480
plugin.output node, 486

Project Summary screen, 481
Upload Manager screen, 484
Upload Output from Tool option,

483–484
versions, 478–479

handling, 499–500
Offensive Security Example penetra-

tion test report, 497
PCI DSS reporting guidelines,

491–493
writing

best practices, 475, 476–478
importance of, 475–476

Representational State Transfer (REST),
267

request for proposal (RFP), 44
requests (HTTP), 215–218
res directory, 318
resource command, 343
resources, support, 40–41

CAPEC (Common Attack Pattern
Enumeration and Classification),
114

CVE (Common Vulnerabilities and
Exposures), 114–115

CWE (Common Weakness
Enumeration), 115

JPCERT (Japan Computer Emergency
Response Team), 113

NIST (National Institute of Standards
and Technology), 113

US-CERT (U.S. Computer Emergency
Readiness Team), 113

resources.arsc directory, 318
responses

HTTP (Hypertext Transfer Protocol),
215–218

port scans
SYN scans, 71
TCP connect scans, 73
TCP FIN scans, 76
UDP scans, 75

565scarcity, social engineering and

REST (Representational State Transfer),
267

RESTful (REST) APIs, 269
ret2libc (“return-to-libc”) attacks, 298
reverse shells, 238, 338–344
RF-based attacks. See wireless network

vulnerabilities
RFI (remote file inclusion) vulnerabilities,

264–265
RFP (request for proposal), 44
risk, 47–50

acceptance, 48
appetite for risk, 49–50
avoidance, 49
mitigation, 48–49
Risk Rating Methodology (OWASP),

495
sharing, 49
tolerance, 47–48
transfer, 49

RL (Remediation Level), 36
Rlogin, 284
Rocket, 311
rockyou wordlist, 424
rogue access points, 185
rogue DHCP servers, 183–185
Root Me, 225
route manipulation attacks, 175–176
RSET command (SMTP), 161
Rsh, 284
Ruby, 461–462
rules of engagement, 30
run command, 451
Rwhod, 284

S
S (Scope) metrics, 37
SAM (Security Account Manager)

database, 302–303
Samba, 284
Samurai Web Testing Framework, 225
sandboxes, escaping, 308–310

SANS Institute InfoSec Reading Room,
493

SANS Investigative Forensic Toolkit
(SIFT) Workstation, 458

Saved State Analysis, 302
scans, 391–393

Nmap port scans
half-open, 71–72
ping, 77–78
SYN, 71–72
TCP connect, 73–74
TCP FIN, 76–77
UDP, 74–75

post-exploitation, 347–348
tools, 18–19
vulnerability, 103

authenticated, 105
challenges of, 109–112
compliance, 109–110
Dirbuster, 419
discovery, 106
full, 106–108
how it works, 103–104
management, 115–116
Nessus, 403
Nexpose, 403–404
Nikto, 84, 410–413, 488–489
OpenVAS, 401–403
Qualys, 404
results analysis, 112–113
SQLmap, 404–410
stealth, 108–109
support resources, 113–115
unauthenticated, 104–105
W3AF, 415–419
ZAP (Zed Attack Proxy), 41, 214,

251, 413–414
vulnerability scans, 400

Scapy, 85–87
scapy command, 86
scarcity, social engineering and,

137

566 scheduled tasks

scheduled tasks
creating, 346
privilege escalation and, 307–308

Scope (S) metrics, 37
scoping. See also planning and

preparation
assessment types, 45
importance of, 44
scope creep, 44
special considerations, 45–46
target selection, 46–47

screenshot command, 448
scripts

Add-Persistence, 351
docker-bench-security, 313
Find-AVSignature, 351
Get-GPPAutologon, 352
Get-GPPPassword, 352
Get-HttpStatus, 352
Get-Keystrokes, 352
Get-MicrophoneAudio, 352
Get-SecurityPackages, 351
Get-TimedScreenshot, 352
Get-VaultCredential, 352
Get-VolumeShadowCopy, 352
http-enum, 83–84
Install-SSP, 351
Invoke-CredentialInjection, 351
Invoke-DllInjection, 351
Invoke-Mimikatz, 352
Invoke-NinjaCopy, 352
Invoke-Portscan, 352
Invoke-ReflectivePEInjection, 351
Invoke-ReverseDnsLookup, 352
Invoke-Shellcode, 351
Invoke-TokenManipulation, 351
Invoke-WmiCommand, 351
Mount-VolumeShadowCopy, 352
New-ElevatedPersistenceOption, 351
New-UserPersistenceOption, 351
New-VolumeShadowCopy, 352
Out-CompressedDll, 351

Out-EncodedCommand, 351
Out-EncryptedScript, 351
Out-Minidump, 352
PowerUp, 352
PowerView, 352
Remove-Comments, 351
Remove-VolumeShadowCopy, 352
Set-CriticalProcess, 352
Set-MasterBootRecord, 352
smb-enum-groups, 81–82
smb-enum-processes, 85
smb-enum-shares, 82
smb-enum-users.nse, 80–81
smtp-open-relay, 160
SNMP-related, 158–159

SDKs (software development kits), 40
search command, 343
searches, Recon-ng, 95
SearchSploit, 151–154, 163–166
SEC (Securities and Exchange

Commission), 52
Secure Computing Mode (seccomp), 309
Secure File Transfer Protocol (SFTP),

166
Secure SMTP (SSMTP) port number,

159
Securities and Exchange Commission

(SEC), 52
Security Account Manager (SAM)

database, 302–303
Security Enhanced Linux (SELinux), 293
security misconfigurations, 262

cookie manipulation attacks, 263–264
directory traversal vulnerabilities,

262–263
Security Onion, 369–370, 457
Security Requirements metrics, 36
Security Standards for the Protection

of Electronic Protected Health
Information. See HIPAA Security
Rule

SELECT statement, 228

567smtp-open-relay script

Select-String command, 349
SELinux (Security Enhanced Linux), 293
Sendmail, 284
sensors, egress, 327
SeraphimDroid, 323
serial console debugging, 326
Server Message Block (SMB), 8, 76,

151–155
servers, HTTP (Hypertext Transfer

Protocol), 213
service dradis start command, 479
service providers, 54–55
service set identifiers (SSIDs), 46, 186
services

enumeration, 85
insecure configurations of, 281–284

session hijacking, 245–249
session riding, 260–261
session sniffing, 249
sessions

HTTP (Hypertext Transfer Protocol),
213

web, 221–224
SET (Social-Engineer Toolkit), 11–12,

129–134
set LHOST command, 155
set RHOST command, 155
Set-CriticalProcess script, 352
Set-MasterBootRecord script, 352
setoolkit command, 129
-sF option (nmap command), 76–77
SFI (software fault isolation), 309
SFTP (Secure File Transfer Protocol),

166
SGID (set-group-ID)

Linux, 289
Unix, 291–293

SHA-1 algorithm, 166
SHA-2 algorithm, 166
SHA-512 algorithm, 166
The Shadow Brokers, 8
shared_prefs folder, 319

sharing risk, 49
shell command, 343
shells

bash, 460–461
blind, 338–344
reverse, 238, 338–344

Shodan API, 96–102, 378–380
shodan_hostname module, 100
shoulder surfing, 137
show info command, 387–388
show modules command, 383–386
show options command, 155
SIFT (SANS Investigative Forensic

Toolkit) Workstation, 458
signal jamming, 189
silver ticket attacks (Kerberos), 172
Simple Network Management Protocol.

See SNMP (Simple Network
Management Protocol)

Simple Object Access Protocol (SOAP),
40, 267

Skadi, 457
Smali, 318
smalidea, 318
Smart Install, 281
SMB (Server Message Block), 8, 76,

151–155
SMB_COM_NEGOTIATE message, 80
SMB_COM_SESSION_SETUP_ANDX

message, 80–81
smb-enum-groups script, 81–82
smb-enum-processes script, 85
smb-enum-shares script, 82
smb-enum-users.nse script, 80–81
SMS phishing, 134–135
SMTP (Simple Mail Transfer Protocol)

commands, 160–163
known SMTP server exploits, 163–166
open relay, 160
SMTPS (SMTP over SSL), 159
TCP port numbers, 159

smtp-open-relay script, 160

568 SMTPS (SMTP over SSL)

SMTPS (SMTP over SSL), 159
smtp-user-enum tool, 161–163
-sn option (nmap command), 77–78
sniffing, session, 249
SNMP (Simple Network Management

Protocol), 157–159
SOAP (Simple Object Access Protocol),

40, 267
socat, 345
social engineering attacks, 11–12

characteristics of, 125–126
elicitation, 135
interrogation, 136
malvertising, 127–128
motivation techniques, 137
pharming, 126–127
phishing, 126

SMS, 134–135
spear, 128–134
voice phishing, 135
whaling, 135

pretexting, 136
SET (Social-Engineer Toolkit),

129–134
shoulder surfing, 137
USB key drop, 138

social engineering tests, 11–12, 129–134
social proof, in social engineering, 137
Social-Engineer Toolkit. See SET

(Social-Engineer Toolkit)
Social-Engineer Toolkit (SET), 11–12
software. See tools
software assurance tools, 458–459
software development kits (SDKs), 40
software fault isolation (SFI), 309
SonarQube, 458
source code comments, exploits in,

265–266
SOWs (statements of work), 42
spear phishing, 128–134
Special Publication 800–57 (NIST), 57
Special Publication 800–115 (NIST), 15

spoofing
ARP, 173–175
DHCP (Dynamic Host Control

Protocol), 183–185
SQL injection vulnerabilities, 228

blind SQL injection, 237
Boolean technique, 233, 237
categories of, 232–234
database fingerprinting, 234–235
error-based technique, 233
examples of, 228–232
mitigations, 240
out-of-band technique, 233, 237–238
SQL statements, 228–232
stored procedures, 239–240
time-delay technique, 233, 239
UNION operator technique, 233,

235–236
SQLi. See SQL injection vulnerabilities
SQLmap, 404–410
-sS option (Nmap), 71–72
SSIDs (service set identifiers), 46, 186
SSLStrip, 174
SSMTP (Secure SMTP) port number,

159
-sT option (nmap command), 73–74
stack-smashing protection, 298
STARTTLS, 159, 160
starvation attacks (DHCP), 183–185
statements (SQL), 228–232
statements of work (SOWs), 42
state-sponsored attackers, 10
static binary analysis, 316
stealth scans, 108–109
sticky bits, 288
stored DOM-based attacks, 263–264
stored procedures, 239–240
stored XSS (cross-site scripting) attacks,

255–256
study plans (exam prep), 509
-sU option (nmap command), 74–75
sudo command, 286–287, 294–298

569tools

SUID (set-user-ID)
Linux, 289
Unix, 291–293

Sun Tzu, 9
support resources, 40–41

CAPEC (Common Attack Pattern
Enumeration and Classification),
114

CVE (Common Vulnerabilities and
Exposures), 114–115

CWE (Common Weakness
Enumeration), 115

intentionally vulnerable systems,
224–227

JPCERT (Japan Computer Emergency
Response Team), 113

NIST (National Institute of Standards
and Technology), 113

US-CERT (U.S. Computer Emergency
Readiness Team), 113

Swagger, 40, 268
SYN flood attacks, 176
SYN scans, 71–72
sysinfo command, 449
Sysinternals, 302, 355–356
system cleanup, 356
system diagrams, 41
SYSTEM privileges, 304

T
tables, rainbow, 244, 429
tailgating, 327
target audience, identification of, 29–30
target selection, 46–47
tasks, scheduled

creating, 346
privilege escalation, 307–308

TCP (Transmission Control Protocol)
Nmap scans

TCP connect, 73–74
TCP FIN, 76–77

port numbers, 159

TCPDUMP, 90, 215, 282–284
teams

blue, 46
red, 46

technical constraints, 39
Telnet, 281
temporal groups, 34–37
tests

gray-box, 13
network infrastructure, 11
physical facility, 11
social engineering, 11–12
white-box, 12–13
wireless network, 11

Theharvester, 376–378
theoretical vulnerabilities, 38
threat actors, 9–10
threats. See attacks
time of check to time of use (TOCTOU)

attacks, 266–267
time-delay SQL injection, 233, 239
timeline, remediation, 34–38
Times, Tim, 90–91
TOCTOU (time of check to time of use),

266–267
tolerance, risk, 47–48
tools, 18–19, 313. See also commands;

scripts
ADIA (Appliance for Digital

Investigation and Analysis), 457
AFL (American Fuzzy Lop), 459
Aircrack-ng suite, 186–189, 191–196

Aireplay-ng, 188, 191, 194–195
Airmon-ng, 186–187, 191, 194
Airodump-ng, 188, 191, 194–195

Anchore, 313
Androick, 323
Apktool, 322
Apple Remote Desktop, 433
Aqua Security, 313
Bane, 313
bash, 460–461

570 tools

BeEF, 449–450
Burp, 214
Cain and Abel, 424–425
CAINE (Computer Aided Investigative

Environment), 457
Censys, 389–390
CeWL, 431–432
Clair, 313
Cydia Substrate, 315
Dagda, 313
DEFT (Digital Evidence & Forensics

Toolkit), 457
DeNiSe, 441
Dev-Sec.io, 313
Dig, 371–372
Dirbuster, 419
dns2tcp, 441
DNScapy, 441
DNScat, 441
DNScat2, 345, 441
DNSdumpster, 88
DNSRecon, 67–69
docker-bench-security, 313
docker-explorer, 314
Dradis Framework

Choose a Tool dropdown, 484–485
data import, 483
imported scans, viewing, 488–490
launching, 479
login screen, 480
node organization, 486–488
node/subnode creation, 481–483
output file processing, 485–486
password creation, 479–480
plugin.output node, 486
Project Summary screen, 481
Upload Manager screen, 484
Upload Output from Tool option,

483–484
versions, 478–479

DropboxC2 (DBC2), 345
edb debugger, 452–454

Empire, 171, 353–354, 434
Encryption, 439–440
Enum4linux, 395–400
Ettercap, 199
ExifTool, 374–375
Feederbot and Moto, 442
Findbugs, 458
Findsecbugs, 458
FOCA (Fingerprinting Organizations

with Collected Archives), 374
Frida, 315
GDB (GNU Project Debugger),

450–452
Hashcat, 425–427
Heyoka, 441
Host, 371–372
Hydra, 428–429
IDA, 454–455
iGoat, 325
iMAS, 325
Immunity, 454
Iodine, 441
John the Ripper, 420–425
Johnny, 425
Kerberoast, 301
keyloggers, 306–307
Lanman, 80–81
Linux distributions, 224, 365

BlackArch Linux, 224, 367–368
CAINE (Computer Aided

Investigative Environment), 369
Kali Linux, 224, 366
Parrot, 224, 367
Security Onion, 369–370

Maltego, 381–382
Medusa, 430–431
Metasploit, 90–91, 115, 442–449

Metasploit Unleashed course, 344
Meterpreter, 299, 343–344,

446–449
RDP connections, creating, 348–349

Mimikatz, 169–172, 432

http://Dev-Sec.io

571tools

MobiSec Live Environment Mobile
Testing Framework, 325

Mutiny Fuzzing Framework, 459
Ncrack, 430–431
Nessus, 106–108, 403–404
Netcat, 338–342
Nikto, 84, 410–413, 488–489
Nmap. See Nmap
Notary, 314
Nslookup, 90, 156–157, 371–372
NTLM, 80–81
Objdump, 455–457
OllyDbg, 452–453
OpenVAS, 401–403
oscap-docker, 314
OzymanDNS and sods, 441
Packetforge-ng, 197–198
PALADIN, 457
Patator, 432–433
Peach, 459
Pearson Test Prep software, 505

exam customization, 507–508
exam updates, 508
offline access, 506–507
online access, 505
Premium Edition, 508–509

PowerShell, 349–350, 433, 462
PowerSploit, 351–353, 434
ProcDump, 301
Proxychains, 439
PSExec, 355–356
psudp, 441
Qualys scanner, 404
Radamsa, 459
RainbowCrack, 429–430
RDP (Remote Desktop Protocol), 433
Reaver, 197
Recon-ng, 90–102, 382–389

hackertarget module, 96
help menu, 92
key list command, 96–97
keys add command, 386

keys list command, 386–387
launching, 91
main menu and splash page, 91
searches, 95
Shodan API, 96–102
show info command, 387–388
show modules command, 92–95,

383–386
support resources, 389
use command, 387–389

Security Onion, 457
Shodan API, 96–102, 378–380
SIFT (SANS Investigative Forensic

Toolkit) Workstation, 458
Skadi, 457
smtp-user-enum, 161–163
socat, 345
SonarQube, 458
SQLmap, 404–410
SSLStrip, 174
Sysinternals, 355–356
tcpdump, 90, 215, 282–284
Theharvester, 376–378
Tor, 438–439
TrevorC2, 345
Try-SQL Editor, 229
Tshark, 284
Twittor, 345
use cases for, 365
Veil, 434–437
vmss2core, 301
VNC, 433
W3AF scanner, 415–419
W3AFusage, 419
WebGoat, 225, 231, 254
Whois, 372–373
Windows Debugger, 452
Wireshark, 90, 216
WMI (Windows Management

Instrumentation), 354–355
WMImplant, 345
wsc2, 345

572 tools

X server forwarding, 433
XPosed, 315
ZAP (Zed Attack Proxy), 41, 214, 251,

413–414
Zenmap, 393–395

Tor, 438–439
TRACE method (HTTP), 217
transfer of risk, 49
TrevorC2, 345
Try2Hack, 225
Try-SQL Editor, 229
Tshark, 284
tunneling, DNS (Domain Name System),

440–442
Twittor, 345

U
UDP (User Datagram Protocol), Nmap

UDP scans, 74–75
UI (User Interaction) metrics, 37
unauthenticated scans, 104–105
uniform resource locators (URLs),

219–220
unilateral NDAs (nondisclosure

agreements), 43
UNION operator, 233, 235–236
Unix, privilege escalation in, 291–293
unprotected APIs, 267–270
Unstructured Supplementary Service

Data (USSD), 323
Update Products button (Pearson Test

Prep software), 508
UPDATE statement, 228
updating Pearson Test Prep software,

508
upload command, 343
Upload Manager screen (Dradis), 484
Upload Output from Tool option

(Dradis), 483–484
urgency, in social engineering, 137
URLs (uniform resource locators),

219–220

USB key drops, 138
US-CERT (U.S. Computer Emergency

Readiness Team), 113
use cases, 365
use command, 387–389
use exploit/windows/smb/ms17_010_

eternalblue command, 155
user enumeration, 80–81
User Interaction (UI) metrics, 37
useradd command, 295
usermod command, 294–295
users, creating, 346
USSD (Unstructured Supplementary

Service Data), 323
utilities. See tools

V
Vanhoef, Mathy, 196
Veil, 434–437
verbose error handling, 266
Vicnum, 225
visudo command, 296
VLANs (virtual LANs), hopping,

181–183
VMs (virtual machines)

containers compared to, 311–312
dumping memory from, 301
escaping, 310

.vmsn file extension, 301

.vmss file extension, 301
vmss2core, 301–302
VMware Snapshot, 302
VNC, 348, 433
voice phishing, 135
Volatility Foundation, 302
Volatility Framework, 301
VRFY command (SMTP), 161
vulnerability management, 115–116

chaining analysis, 37–38
impact analysis, 34–37
theoretical vulnerabilities, 38

vulnerability scans, 103, 400

573web applications

authenticated, 105
challenges of, 109–112
compliance, 109–110
Dirbuster, 419
discovery, 106
full, 106–108
how it works, 103–104
Nessus, 403–404
Nikto, 84, 410–413, 488–489
OpenVAS, 401–403
Qualys, 404
results analysis, 112–113
SQLmap, 404–410
stealth, 108–109
support resources, 113–115
tools, 18–19
unauthenticated, 104–105
vulnerability management, 115–116
W3AF, 415–419
ZAP (Zed Attack Proxy), 41, 214, 251,

413–414

W
W3AF scanner, 415–419
W3AFusage, 419
W3Schools, 218, 229
WADL (Web Application Description

Language), 40, 268
WAFs (web application firewalls), 46
WannaCry, 8
war driving, 190
Wassenaar Arrangement, 439
weak cryptographic algorithms, 243–244
Web Application Description Language

(WADL), 40, 268
web applications

authentication-based vulnerabilities
credential brute forcing, 243–245
default credential exploits, 249–250
Kerberos exploits, 250
redirect attacks, 249
session hijacking, 245–249

authorization-based vulnerabilities
Insecure Direct Object Reference

vulnerabilities, 251–252
parameter pollution, 250–251

clickjacking, 261
command injection vulnerabilities,

241–242
CSRF (cross-site request forgery),

260–261
enumeration, 83–84
file inclusion vulnerabilities

LFI (local file inclusion), 264
RFI (remote file inclusion), 264–265

HTML injection vulnerabilities, 241
HTTP (Hypertext Transfer Protocol),

213–221
clients, 213
proxies, 214
request/response model, 215–218
servers, 213
sessions, 213
URLs (uniform resource locators),

219–220
insecure code practices

code signing, lack of, 270
error-handling errors, 266
hard-coded credentials, 266
hidden elements, 270
race conditions, 266–267
source code comments, 265–266
unprotected APIs, 267–270

labs for, 224–227
security misconfigurations, 262

cookie manipulation attacks,
263–264

directory traversal vulnerabilities,
262–263

SQL injection vulnerabilities, 228
blind SQL injection, 237
Boolean technique, 233, 237
categories of, 232–234
database fingerprinting, 234–235

574 web applications

error-based technique, 233
examples of, 228–232
mitigations, 240
out-of-band technique, 233, 237–238
stored procedures, 239–240
time-delay technique, 233, 239
UNION operator technique, 233,

235–236
tests, 11
WAFs (web application firewalls), 46
web sessions, 221–224
XSS (cross-site scripting) vulnerabili-

ties, 252–253
DOM-based XSS attacks, 256–257
evasion techniques, 257–258
mitigations, 258–259
reflected XSS attacks, 253–254
stored XSS attacks, 255–256

web browsers, 309
web form-grabbing keyloggers, 307
web page enumeration, 83–84
Web Security Dojo, 225, 227
Web Services Description Language

(WSDL), 40, 268
web sessions, 221–224
webcam_list command, 344
webcam_snap command, 344
WebGoat, 225, 231, 254
WEP (Wired Equivalent Privacy) attacks,

190–192
whaling, 135
white lists, 46
white-box tests, 12–13, 47
Whois, 372–373
Wi-Fi Protected Access (WPA) attacks,

192–196
Wi-Fi Protected Setup (WPS), 197
WiGLE, 190
Windows

Debugger, 452
legitimate utilities for post-exploitation

tasks, 349

Empire, 353–354
PowerShell, 349–350
PowerSploit, 351–353
PSExec, 355–356
Sysinternals, 355–356
WMI (Windows Management

Instrumentation), 354–355
privilege escalation

clear-test credentials in LDAP,
300–301

container security, 310–314
CPassword, 299
DLL (dynamic link library)

 hijacking, 303–304
exploitable services, 304–305
Group Policy, 305–306
insecure file/folder permissions, 305
Kerberoast, 301
keyloggers, 306–307
LSASS (Local Security Authority

Subsystem Service) credentials,
301–302

SAM (Security Account Manager)
database, 302–303

sandbox escape, 308–310
scheduled tasks, 307–308
VM (virtual machine) escape, 310

Sysinternals, 302
WinRM (Windows Remote

Management), 354
WMI (Windows Management

Instrumentation), 172, 354–355
WinRM (Windows Remote

Management), 354
Wired Equivalent Privacy (WEP),

190–192, 243
wireless adapters, 189
wireless network tests, 459
wireless network vulnerabilities

credential harvesting, 199–200
deauthentication attacks, 186–189
evil twin attacks, 185–186

575Zygote

fragmentation attacks, 197–198
IV (initialization vector) attacks, 190
KARMA attacks, 197
KRACK (key reinstallation attack),

196–197
network tests, 11
PNL (preferred network list) attacks,

189
RFID (radio-frequency identification)

attacks, 200
rogue access points, 185
signal jamming, 189
war driving, 190
WEP (Wired Equivalent Privacy)

attacks, 190–192
WPA (Wi-Fi Protected Access) attacks,

192–196
WPS (Wi-Fi Protected Setup), 197

Wireshark, 90, 216
WMI (Windows Management

Instrumentation), 172, 354–355
WMImplant, 345
wordlists

creating with CeWL, 431–432
defined, 423
rockyou, 424

workgroups, 150
WPA (Wi-Fi Protected Access) attacks,

192–196
WPS (Wi-Fi Protected Setup), 197
“Writing a Penetration Testing Report”

whitepaper, 493

writing reports
best practices, 475, 476–478
importance of, 475–476

wsc2, 345
WSDL (Web Services Description

Language), 40, 268

X
X server forwarding, 348, 433
x86 file, 319
x86_64 file, 319
XN (eXecute Never), 324
XPosed, 315
XSS (cross-site scripting) vulnerabilities,

252–253
DOM-based XSS attacks, 256–257
evasion techniques, 257–259
reflected XSS attacks, 253–254
stored XSS attacks, 255–256

Y
Yppasswdd, 284
Ypserv, 284
Ypxfrd, 284

Z
ZAP (Zed Attack Proxy), 41, 214, 251,

413–414
Zenmap, 393–395
zero-day attacks, 8
Zygote, 319–320

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Chapter 7 Exploiting Local Host and Physical Security Vulnerabilities
	“Do I Know This Already?” Quiz
	Exploiting Local Host Vulnerabilities
	Insecure Service and Protocol Configurations
	Local Privilege Escalation
	Understanding Linux Permissions
	Understanding SUID or SGID and Unix Programs
	Insecure SUDO Implementations
	Ret2libc Attacks
	Windows Privileges
	CPassword
	Clear-Text Credentials in LDAP
	Kerberoasting
	Credentials in Local Security Authority Subsystem Service (LSASS)
	SAM Database
	Understanding Dynamic Link Library Hijacking
	Exploitable Services
	Insecure File and Folder Permissions
	Understanding Windows Group Policy
	Keyloggers
	Scheduled Tasks
	Escaping the Sandbox
	Virtual Machine Escape
	Understanding Container Security
	Mobile Device Security
	Understanding Android Security
	Understanding Apple iOS Security

	Understanding Physical Security Attacks
	Understanding Physical Device Security
	Protecting Your Facilities Against Physical Security Attacks

	Review All Key Topics
	Define Key Terms
	Q&A

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

