Credits

Figure 1-1 Screenshot of File metadata © Microsoft 2020
Figure 2-3 Screenshot of View advanced system settings © Microsoft 2020
Figure 2-4 Screenshot of System Properties dialog box © Microsoft 2020
Figure 2-5 Screenshot of Performance Options dialog box © Microsoft 2020
Figure 2-6 Screenshot of Performance Options dialog box with paging file size © Microsoft 2020
Figure 2-7 Screenshot of The ASCII text display © 1995-2014 BreakPoint Software, Inc.
Figure 2-8 Screenshot of The file slack © 1995-2014 BreakPoint Software, Inc.
Figure 2-9 Screenshot of Viewing the BIOS © Microsoft 2020
Figure 2-10 Screenshot of Adding the drive to the Evidence Tree © Copyright 2020 AccessData
Figure 2-11 Screenshot of Expand button © Copyright 2020 AccessData
Figure 2-12 Screenshot of Partition 1 selected © Copyright 2020 AccessData
Figure 2-13 Screenshot of NTFS highlighted © Copyright 2020 AccessData
Figure 2-14 Screenshot of Master File Table displayed in the hex editor © Copyright 2020 AccessData
Figure 2-15 Screenshot of Prefetch Files © Microsoft 2020
Figure 2-16 Screenshot of Registry Editor © Microsoft 2020
Figure 2-17 Screenshot of Two of the data types © Microsoft 2020
Figure 2-18 Screenshot of Using Disk Defragmenter © Microsoft 2020
Figure 2-19 Screenshot of The Event Viewer © Microsoft 2020
Figure 2-20 Screenshot of AutoPlay dialog box © Microsoft 2020
Figure 2-21 Screenshot of The Backup and Restore Center © Microsoft 2020
Figure 2-22 Screenshot of System Restore © Microsoft 2020
Figure 2-23 Screenshot of USB drive information © Microsoft 2020
Figure 2-24 Screenshot of USBDeview © Microsoft 2020
Figure 2-25 Screenshot of Sticky Note © Microsoft 2020
Figure 2-26 Screenshot of InPrivate Browsing with Internet Explorer © Microsoft 2020
Figure 2-27 Screenshot of Pictures Library © Microsoft 2020
Figure 2-28 Screenshot of Windows 8 Start screen © Microsoft 2020
Figure 2-29 Screenshot of Windows 8 Desktop © Microsoft 2020
Figure 2-30 Screenshot of USB connection history in the Registry Editor © Microsoft 2020
Figure 3-17 Screenshot of Registry Editor © Microsoft 2020
Figure 4-13 Screenshot of Add Evidence Item selected © Copyright 2020 AccessData
Figure 4-14 Screenshot of Physical Drive selected © Copyright 2020 AccessData
Figure 4-15 Screenshot of USB drive selected © Copyright 2020 AccessData
Figure 4-16 Screenshot of FTK Imager user interface © Copyright 2020 AccessData
Figure 4-17 Screenshot of FTK Imager user interface showing deleted files © Copyright 2020 AccessData
Figure 4-18 Screenshot of FTK Imager user interface © Copyright 2020 AccessData
Figure 5-1 Screenshot of Fake Name Generator website results © 2006-2020 Corban Works, LLC.
Figure 5-2 Screenshot of GuerrillaMail website © 2006 - 2020 Jamit Software Limited
Figure 5-3 Screenshot of mail expire website © mailexpire.com
Figure 5-4 Screenshot of Mailinator website © 2020 Manybrain, LLC.
Figure 5-5 Screenshot of Bluffmycall.com website © Bluffmycall.com
Figure 5-6 Screenshot of SpyDialer.com website © 2020 Spy Dialer, Inc.
Figure 5-7 Screenshot of Megaproyxy.com website © 2000-2018 Megaproyxy.com, Inc.
Figure 5-8 Screenshot of OSINT Framework © osintframework.com
Figure 5-9 Screenshot of Historical view of www.apple.com (on 8/19/04) using the WayBack-Machine © Internet Archive
Figure 5-10 Screenshot of NETCRAFT statistics on www.pace.edu © 1995 - 2020 Netcraft Ltd
Figure 5-11 Screenshot of Alexa website © Alexa Internet, Inc. 1996 - 2019
Figure 5-12 Screenshot of Zaba Search website © 2020 Zabasearch
Figure 5-13 Screenshot of US SEARCH website © 1998-2020 PeopleConnect, Inc.
Figure 5-14 Screenshot of Searchbug website © 1995-2020, Searchbug, Inc.
Figure 5-15 Screenshot of Skipease website © 2020 Skipease.com
Figure 5-16 Screenshot of Spokeo website © 2006-2020 Spokeo, Inc.
Figure 5-17 Screenshot of pipl website © pipl.com
Figure 5-18 Screenshot of HootSuite website ©2020 Hootsuite Inc.
Figure 5-19 Screenshot of Mibbit website ©Mibbit Ltd
Figure 5-20 Screenshot of Binsearch © 2006-2018 BinSearch
Figure 5-21 Screenshot of Google Groups © Google LLC
Figure 5-22 Screenshot of Blog Search Engine © BlogSearchEngine.com
Figure 5-23 Screenshot of FBI YouTube video of Catherine Greig (Bulger’s girlfriend) © Federal Bureau of Investigation
Figure 5-24 Screenshot of LinkedIn © 2020 LinkedIn
Figure 5-25 Screenshot of BRB Publications website © © 1996 – 2018 PeopleConnect, Inc.
Figure 8-1 Screenshot of Windows Event Viewer: DHCP © Microsoft 2020
Figure 8-2 Screenshot of Windows Event Viewer: DNS resolution service © Microsoft 2020
Figure 11-1 Courtesy of U.S. Department of Justice
Figure 11-2 Screenshot of Huntington Beach Jane Doe, 1968 © 2020 Facebook
Unnumbered Figure 11-1 © Copyright 2002-2020 Huntington Beach Police Department
Figure 11-3 Screenshot of Prince Edward Island RCMP Facebook profile © 2020 Facebook
Figure 11-5 Annual Report 2007, Copyright © Interpol. All rights reserved.
Figure 11-6 Annual Report 2007, Copyright © Interpol. All rights reserved.
Figure 12-8 Screenshot of IIOReg Info from BlackBag Technologies © 2020 BlackBag Technologies, Inc. All Rights Reserved
Figure 12-9 Screenshot of PMAP Info from BlackBag Technologies © 2020 BlackBag Technologies, Inc. All Rights Reserved
Figure 12-10 Screenshot of Epoch Converter © 2020 Epoch Converter
Figure 12-11 Screenshot of Sample PList © 1997 NeXT Software, Inc.
Figure 12-12 Screenshot of Webpage Previews © 1997 NeXT Software, Inc.
Figure 12-13 Screenshot of Top sites © 1997 NeXT Software, Inc.
Unnumbered Figure 12-4 © 2020 BBC
Unnumbered
Figure 10-1 Facebook, Inc.
“Wherever he steps, whatever he touches, whatever he leaves, even unconsciously, will serve as a silent witness against him. Not only his fingerprints or his footprints, but his hair, the fibers from his clothes, the glass he breaks, the tool mark he leaves, the paint he scratches, the blood or semen he deposits or collects. All of these and more bear mute witness against him. This is evidence that does not forget. It is not confused by the excitement of the moment. It is not absent because human witnesses are. It is factual evidence. Physical evidence cannot be wrong, it cannot perjure itself, it cannot be wholly absent. Only human failure to find it, study, and understand it can diminish its value.”

“fully customizable tool allows your on-the-scene agents to run more than 150 commands on a live computer system." “provides reports in a simple format for later interpretation by experts or as supportive evidence for subsequent investigation and prosecution.”

“There's no chance that the iPhone is going to get any significant market share." "We believe in touch.”

§ Managerial competence § Integrity § Quality § Efficiency § Productivity § Meeting organizational expectations § Health and safety § Security § Management information systems § Qualifications § Training § Maintaining employee competency § Staff development § Environment § Communication § Supervision § Fiscal § Conflict of interest § Response to public needs § Professional staffing § Recommendations and references § Legal compliance § Fiscal responsibility § Accountability § Disclosure and discovery § Work quality § Accreditation § Peer certification § Peer organizations § Research § Ethics

“fat ass who should stop eating fast food, and is a douche bag.”

“Tor is free software and an open network that helps you defend against traffic analysis, a form of network surveillance that threatens personal freedom and privacy, confidential business activities and relationships, and state security”

(1) In general - A provider of wire or electronic communication services or a remote computing service, upon the request of a governmental entity, shall take all necessary steps to preserve records and other evidence in its possession pending the issuance of a court order or other process. (2) Period of retention - Records referred to in paragraph (1) shall be retained for a period of 90 days, which shall be extended for an additional 90-day period upon a renewed request by the governmental entity.

(a) In general - Not Automatically Objectionable. An opinion is not objectionable just because it embraces an ultimate issue. (b) Exception - In a criminal case, an expert witness must not state an opinion about whether the defendant did or did not have a mental state or condition that constitutes an element of the crime charged or of a defense. Those matters are for the trier of fact alone.
(B) Witnesses Who Must Provide a Written Report. Unless otherwise stipulated or ordered by the court, this disclosure must be accompanied by a written report - prepared and signed by the witness - if the witness is one retained or specially employed to provide expert testimony in the case or one whose duties as the party’s employee regularly involve giving expert testimony. The report must contain: (i) a complete statement of all opinions the witness will express and the basis and reasons for them; (ii) the facts or data considered by the witness in forming them; (iii) any exhibits that will be used to summarize or support them; (iv) the witness's qualifications, including a list of all publications authored in the previous 10 years; (v) a list of all other cases in which, during the previous 4 years, the witness testified as an expert at trial or by deposition; and (vi) a statement of the compensation to be paid for the study and testimony in the case.

The judicial Power shall extend to all Cases, in Law and Equity, arising under this Constitution, the Laws of the United States, and Treaties made, or which shall be made, under their Authority; to all Cases affecting Ambassadors, other public Ministers and Consuls; to all Cases of admiralty and maritime Jurisdiction; to Controversies to which the United States shall be a Party; to Controversies between two or more States; between a State and Citizens of another State; between Citizens of different States; between Citizens of the same State claiming Lands under Grants of different States, and between a State, or the Citizens thereof, and foreign States, Citizens or Subjects.

In all criminal prosecutions, the accused shall enjoy the right to a speedy and public trial, by an impartial jury of the State and district wherein the crime shall have been committed, which district shall have been previously ascertained by law, and to be informed of the nature and cause of the accusation; to be confronted with the witnesses against him; to have compulsory process for obtaining witnesses in his favor, and to have the Assistance of Counsel for his defense.

It has no declaration of rights.

Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to petition the Government for a redress of grievances.

“It can hardly be argued that either students or teachers shed their constitutional rights to freedom of speech or expression at the schoolhouse gate.” “materially and substantially disrupt the work and discipline of the school.”Tinker v. Des Moines Independent Community School District (No. 21), 393 U.S. 503 (1969).
the reach of school authorities is not without limits.... It would be an unseemly and dangerous precedent to allow the state in the guise of school authorities to reach into a child's home and control his/her actions there...we therefore conclude that the district court correctly ruled that the District's response to Justin's expressive conduct violated the First Amendment guarantee of free expression.

"jamfest is cancelled due to the douchebags in central office—here is a letter to get an idea of what to write if you want to write something or call her [school superintendent] to piss her off more.”
"created a foreseeable risk of substantial disruption"

The right of the people to be secure in their persons, houses, papers, and effects, against unreasonable searches and seizures, shall not be violated, and no Warrants shall issue, but upon probable cause, supported by Oath or affirmation, and particularly describing the place to be searched, and the persons or things to be seized.

"One who occupies [a telephone booth], shuts the door behind him, and pays the toll that permits him to place a call is surely entitled to assume that the words he utters into the mouthpiece will not be broadcast to the world."

The right of the people to be secure in their persons, houses, papers, and effects, against unreasonable searches and seizures, shall not be violated, and no Warrants shall issue, but upon probable cause, supported by Oath or affirmation, and particularly describing the place to be searched, and the persons or things to be seized.

We accept the reality that such over-seizing is an inherent part of the electronic search process and proceed on the assumption that, when it comes to the seizure of electronic records, this will be far more common than in the days of paper records. This calls for greater vigilance on the part of judicial officers in striking the right balance between the government's interest in law enforcement and the right of individuals to be free from unreasonable searches and seizures.

Those circumstances that would cause a reasonable person to believe that entry (or other relevant prompt action) was necessary to prevent physical harm to the officers or other persons, the destruction of relevant evidence, the escape of a suspect, or some other consequence improperly frustrating legitimate law enforcement efforts.

names, telephone numbers, ledger receipts, addresses, and other documentary evidence pertaining to the sale and distribution of controlled substances.

Controlled substances, evidence of the possession of controlled substances, which may include, but not be limited to, cash or proceeds from the sales of controlled substances, items, substances, and other paraphernalia designed or used in the weighing, cutting, and packaging of controlled substances, firearms, records, and/or receipts, written or electronically stored, income tax records, checking and savings records, records that show or tend to show ownership or control of the premises and other property used to facilitate the distribution and delivery [of] controlled substances.
“When (the) defendant sat down at the networked computer…he knew that the systems administrator could and likely would monitor his activities,” “Indeed, the undercover agents told (Gorshkov) that they wanted to watch in order to see what he was capable of doing.” “the agents had good reason to fear that if they did not copy the data, (the) defendant's co-conspirators would destroy the evidence or make it unavailable.”

Monitoring the beeper signals did not invade any legitimate expectation of privacy on respondent's part, and thus there was neither a “search” nor a “seizure” within the contemplation of the Fourth Amendment. The beeper surveillance amounted principally to following an automobile on public streets and highways. A person traveling in an automobile on public thoroughfares has no reasonable expectation of privacy in his movements.

[i]he undercarriage is part of the car's exterior, and as such, is not afforded a reasonable expectation of privacy.

is only a semiprivate area.

undercarriage of a vehicle, as part of its exterior, is not entitled to a reasonable expectation of privacy

The Court explicitly distinguished between the limited information discovered by use of the beeper—movements during a discrete journey—and more comprehensive or sustained monitoring of the sort at issue in this case…. Most important for the present case, the Court specifically reserved the question whether a warrant would be required in a case involving twenty-four hour surveillance, stating, “if such dragnet-type law enforcement practices as respondent envisions should eventually occur, there will be time enough then to determine whether different constitutional principles may be applicable.”

What motivated the Fourth Amendment historically was the disapproval, the outrage, that our Founding Fathers experienced with general warrants that permitted police indiscriminately to investigate just on the basis of suspicion, not probable cause, and to invade every possession that the individual had in search of a crime. With computers around, it's now so simple to amass an enormous amount of information. How do we deal with this? Just say nothing has changed?"
We decide whether the attachment of a Global Positioning-System (GPS) tracking device to an individual’s vehicle, and subsequent use of that device to monitor the vehicle’s movements on public streets, constitutes a search or seizure within the meaning of the Fourth Amendment.

Technological advances have produced many valuable tools for law enforcement and, as the years go by, the technology available to aid in the detection of criminal conduct will only become more and more sophisticated. Without judicial oversight, the use of these powerful devices presents a significant and, to our minds, unacceptable risk of abuse. Under our State Constitution, in the absence of exigent circumstances, the installation and use of a GPS device to monitor an individual’s whereabouts requires a warrant supported by probable cause.

Johnson did not produce any evidence that demonstrated his intention to guard the undercarriage of his van from inspection or manipulation by others….. Supreme Court precedent has established not only that a vehicle’s exterior lacks a reasonable expectation of privacy, but also that one’s travel on public roads does not implicate Fourth Amendment protection against searches and seizures.

“I think there was an expectation of privacy that the defendant had for his BlackBerry, that there were not sufficient grounds to authorize the deputy to open that BlackBerry up and, therefore, anything that was discovered as a result of that activity would be suppressed....”

“a routine inventory search of an automobile lawfully impounded by police for violations of municipal parking ordinances,” “standard police procedures,”

“the deputies were justified in searching the vehicle's passenger compartment and, 'any containers therein,' In sum, it is our conclusion that, after Reid [Nottoli] was arrested for being under the influence, it was reasonable to believe that evidence relevant to that offense might be found in his vehicle. Consequently, the deputies had unqualified authority under Gant to search the passenger compartment of the vehicle and any container found therein, including Reid’s cell phone. It is up to the US Supreme Court to impose any greater limits on officers' authority to search incident to arrest.

“I am returning Senate Bill 914 without my signature” “courts are better suited to resolve the complex and case-specific issues relating to constitutional search-and-seizures protections.”

“ample time for the law enforcement officials to secure a warrant in order to make this significant intrusion”
“Tracking a person’s past movements through CSLI partakes of many of the qualities of GPS monitoring considered in Jones. In fact, historical cell-site records present even greater privacy concerns than the GPS monitoring considered in Jones: They give the Government near perfect surveillance and allow it to travel back in time to retrace a person’s whereabouts, subject only to the five-year retention policies of most wireless carriers.” “Government did not obtain a warrant supported by probable cause before acquiring Carpenter’s cell-site records. It acquired those records pursuant to a court order under the Stored Communications Act, which required the Government to show “reasonable grounds” for believing that the records were “relevant and material to an ongoing investigation.” 18 U. S. C. §2703(d). That showing falls well short of the probable cause required for a warrant. Consequently, an order issued under §2703(d) is not a permissible mechanism for accessing historical cell-site records”.

No person shall be held to answer for a capital, or otherwise infamous crime, unless on a presentment or indictment of a Grand Jury, except in cases arising in the land or naval forces, or in the Militia, when in actual service in time of War or public danger; nor shall any person be subject for the same offense to be twice put in jeopardy of life or limb; nor shall be compelled in any criminal case to be a witness against himself, nor be deprived of life, liberty, or property, without due process of law; nor shall private property be taken for public use, without just compensation.

You have the right to remain silent. Anything you say or do can and will be held against you in a court of law. You have the right to speak to an attorney. If you cannot afford an attorney, one will be appointed for you. Do you understand these rights as they have been read to you?

In all criminal prosecutions, the accused shall enjoy the right to a speedy and public trial, by an impartial jury of the State and district wherein the crime shall have been committed, which district shall have been previously ascertained by law, and to be informed of the nature and cause of the accusation; to be confronted with the witnesses against him; to have compulsory process for obtaining witnesses in his favor, and to have the Assistance of Counsel for his defense.

in all criminal prosecutions, the accused shall enjoy the right…to be confronted with the witnesses against him.

Section 2511 of Title 18 prohibits the unauthorized interception, disclosure, and use of wire, oral, or electronic communications. The prohibitions are absolute, subject only to the specific exemptions in Title III. Consequently, unless an interception is specifically authorized, it is impermissible and, assuming existence of the requisite criminal intent, in violation of

United States v. Jones, 565 U. S. 400

Fifth Amendment of the U.S. Constitution

Sixth Amendment of the U.S. Constitution

Sixth Amendment of the U.S. Constitution

“combat fraud and theft of service.” (A) any temporary, intermediate storage of a wire or electronic communication incidental to the electronic transmission thereof; and (B) any storage of such communication by an electronic communication service for purposes of backup protection of such communication.

“having knowingly accessed a computer without authorization or exceeding authorized access, and by means of such conduct having obtained information that has been determined by the United States Government pursuant to an Executive order or statute to require protection against unauthorized disclosure for reasons of national defense or foreign relations, or any restricted data, as defined in paragraph y. of section 11 of the Atomic Energy Act of 1954, with reason to believe that such information so obtained could be used to the injury of the United States, or to the advantage of any foreign nation willfully communicates, delivers, transmits, or causes to be communicated, delivered, or transmitted, or attempts to communicate, deliver, transmit or cause to be communicated, delivered, or transmitted the same to any person not entitled to receive it, or willfully retains the same and fails to deliver it to the officer or employee of the United States entitled to receive it;”

“records of session times and durations;” “any temporarily assigned network address.”

§ Title I: The “WIPO Copyright and Performances and Phonograms Treaties Implementation Act of 1998,” implements the WIPO treaties. § Title II: The “Online Copyright Infringement Liability Limitation Act” creates limitations on the liability of online service providers for copyright infringement when engaging in certain types of activities. § Title III: The “Computer Maintenance Competition Assurance Act” creates an exemption for making a copy of a computer program by activating a computer for purposes of maintenance or repair. § Title IV: Contains six miscellaneous provisions, relating to the functions of the Copyright Office, distance education, the exceptions in the Copyright Act for libraries and for making ephemeral recordings, “webcasting” of sound recordings on the Internet, and the applicability of collective bargaining agreement obligations in the case of transfers of rights in motion pictures.

Anonymity is a shield from the tyranny of the majority [that] exemplifies the purpose [of the First Amendment]: ‘to protect unpopular individuals from retaliation…at the hand of an intolerant society.’

Federal Wiretap Act (18 U.S. Code § 2511 (2)(a)(i)). Interception and disclosure of wire, oral, or electronic communications prohibited

Corporate Espionage (18 U.S. Code § 1030 (a)(1)). Fraud and related activity in connection with computers

USA PATRIOT Act (18 U.S. Code § 2703 (c)(2)). Required disclosure of customer communications or records

Just when a scientific principal or discovery crosses the line between the experimental and demonstrable stages is difficult to define. Somewhere in this twilight zone the evidential force of the principle must be recognized, and while courts will go a long way in admitting expert testimony deduced from a well-recognized scientific principle or discovery, the thing from which the deduction is made must be sufficiently established to have gained general acceptance in the particular field in which it belongs. (emphasis added).

Rule 702, Testimony by Expert Witnesses, Federal Rules of Evidence

If scientific, technical, or other specialized knowledge will assist the trier of fact to understand the evidence or to determine a fact in issue, a witness qualified as an expert by knowledge, skill, experience, training, or education, may testify thereto in the form of an opinion or otherwise, if (1) the testimony is based upon sufficient facts or data, (2) the testimony is the product of reliable principles and methods, and (3) the witness has applied the principles and methods reliably to the facts of the case.

§ (i) A complete statement of all opinions the witness will express and the basis and reasons for them; § (ii) The facts or data considered by the witness in forming them; § (iii) Any exhibits that will be used to summarize or support them; § (iv) The witness's qualifications, including a list of all publications authored in the previous 10 years; § (v) A list of all other cases in which, during the previous 4 years, the witness testified as an expert at trial or by deposition; and § (vi) A statement of the compensation to be paid for the study and testimony in the case.

§ (i) The name and, if not previously provided, the address and telephone number of each witness—separately identifying those the party expects to present and those it may call if the need arises; § (ii) The designation of those witnesses whose testimony the party expects to present by deposition and, if not taken stenographically, a transcript of the pertinent parts of the deposition; and § (iii) An identification of each document or other exhibit, including summaries of other evidence—separately identifying those items the party expects to offer and those it may offer if the need arises.

Records of regularly conducted activity. A memorandum, report, record, or data compilation, in any form, of acts, events, conditions, opinions, or diagnoses, made at or near the time by, or from information transmitted by, a person with knowledge, if kept in the course of a regularly conducted business activity, and if it was the regular practice of that business activity to make the memorandum, report, record or data compilation, all as shown by the testimony of the custodian or other qualified witness, or by certification that complies with Rule 902(11), Rule 902(12), or a statute permitting certification, unless the source of information or the method or circumstances of preparation indicate lack of trustworthiness. The term "business" as used in this paragraph includes business, institution, association, profession, occupation, and calling of every kind, whether or not conducted for profit.

Rule 803, Exceptions to the Rule Against Hearsay, Federal Rules of Evidence
“the by-product of a machine operation which uses for its input statements' entered into the machine” “was generated solely by the electrical and mechanical operations of the computer and telephone equipment.”

The requirement of authentication or identification as a condition precedent to admissibility is satisfied by evidence sufficient to support a finding that the matter in question is what its proponent claims.

Facts are stubborn things; and whatever may be our wishes, our inclinations, or the dictates of our passion, they cannot alter the state of facts and evidence.

§ Maintain a Cybersecurity Program § Cybersecurity Policy § Role of the CISO § Pen Testing & Vulnerability Assessment § Audit Trail § Access Privileges § Application Security § Risk Assessment § Qualified Personnel & Intelligence § Third Party Service Provider § Multi-Factor Authentication § Limitations on Data Retention § Training & Monitoring § Encryption of Non-Public Information § Incident Response Plan § Notices to Superintendent

§ Airports, aircraft and airlines; § Banks and authorized foreign banks; § Inter-provincial or international transportation companies; § Telecommunications companies; § Offshore drilling operations; and § Radio and television broadcasters.

(2) Whereas data-processing systems are designed to serve man; whereas they must, whatever the nationality or residence of natural persons, respect their fundamental rights and freedoms, notably the right to privacy, and contribute to economic and social progress, trade expansion and the well-being of individuals

“Photographs” includes “still photographs, X-ray films, video tapes, and motion pictures.” An “original” can include a negative or a print from the negative. A “duplicate” is “a counterpart produced by the same impression as the original, or from the same matrix, or by means of photography, including enlargements and miniatures, or by mechanical or electronic re-recording.” “other output readable by sight”

Secure Enclave is Secure Enclave is a coprocessor fabricated within the system on chip (SoC). It uses encrypted memory and includes a hardware random number generator. The Secure Enclave provides all cryptographic operations for Data Protection key management and maintains the integrity of Data Protection even if the kernel has been compromised.
I came across this website called Silk Road. It's a Tor hidden service that claims to allow you to buy and sell anything online anonymously. I'm thinking of buying off it, but wanted to see if anyone here had heard of it and could recommend it. I found it through silkroad420.wordpress.com, which, if you have a tor browser, directs you to the real site at http://tydgccykixpbu6uz.onion. Let me know what you think... the best and brightest IT pro in the bitcoin community [to] be the lead developer in a venture-backed bitcoin startup company “anybody know someone that works for UPS, FedEx, or DHL?”

How can I connect to a Tor hidden service using curl in php?
I’m trying to connect to a tor hidden service using the following php: $url = “http://jhiwjjlqpyawmpjx.onion/” $ch = curl_init(); curl_setopt($ch, CURLOPT_URL, $url); curl_setopt($ch, CURLOPT_RETURNTRANSFER, true); curl_setopt($ch, CURLOPT_PROXY, “http://127.0.0.1:9050/”); curl_setopt($ch, CURLOPT_PROXYTYPE, CURLPROXY_SOCKS5); $output = curl_exec($ch); $curl_error =curl_error($ch); curl_close($ch); print_r($output); print_r($curl_error); when I run it I get the following error: Couldn’t resolve host name However, when I run the following command from my command line in ubuntu: curl -v --socks5-hostname localhost:9050 http://jhiwjjlqpyawmpjx.onion I get a response as expected the php cURL documentations says this: --socks5-hostname Use the specified SOCKS5 proxy (and let the proxy resolve the host name). I believe the reason it works from the command line is because Tor (the proxy) is resolving the .onion hostname, which it recognizes. When running the php above, my guess is that cURL or php is trying to resolve the .onion hostname and doesn’t recognize it. I’ve searched for a way to tell cURL/php to let the proxy resolve the hostname, but can’t find a way. There is a very similar question here: CURL request using socks5 proxy fails when using PHP but works through the command line

“(1) obtain subscriber information associated with the Subject Server; (2) collect routing information for communications sent to and from the Subject Server, including historical routing data from the prior 90 days; and (3) covertly image the contents of the Subject Server.”

“failed to submit anything establishing that he has a personal privacy interest in the Icelandic server or any of the other items imaged and/or searched and/or seized”

I am creating a year of prosperity and power beyond what I have ever experienced. Silk Road is going to become a phenomenon and at least one person will tell me about it, unknowing that I was its creator. I felt compelled to reveal myself to her. It was terrible.

Quoted by Ross William Ulbricht, American convict

Quoted by Ross William Ulbricht, American convict

Stack Exchange Inc. “How can I connect to a Tor hidden service using cURL in PHP?” http://stackoverflow.com/questions/15445285

Quoted by Ross William Ulbricht, American convict, April 2012
I told her I have secrets. She already knows I work with bitcoin which is terrible. I’m so stupid. Everyone knows I am working on a bitcoin exchange. I always thought honesty was the best policy and now I don’t know what to do. I should have just told everyone I am a freelance programmer or something, but I had to tell half-truths. It felt wrong to lie completely so I tried to tell the truth without revealing the bad parts, but now I am in a jam. Everyone knows too much, dammit.

§ Conspiracy to commit acts of terrorism transcending national boundaries § Conspiracy to commit aircraft piracy § Conspiracy to destroy aircraft § Conspiracy to use weapons of mass destruction § Conspiracy to murder United States employees § Conspiracy to destroy property of the United States

[The] authentication information (such as the MD5 message digest and other accepted computer forensic methods) is critical as without it, it is impossible to verify that the duplicate hard drives are an exact copy of those that exist on the original systems. Likewise, without such information it is impossible to determine if the material retrieved from the hard drives is accurate.

“NIST does not ‘approve’ any computer forensic tools. Instead, it merely reports the results of its testing. Moreover, Mr. Allison wrongly identifies Linux dd as the ‘only one method...approved by [NIST].’” “there would not ordinarily be any MD5 or SH-1 hash values to disclose to the defense for any computer drives imaged with SafeBack or a Logicube disk duplicator.”

“any comment, request, suggestion, proposal, image, or other communication which is obscene or child pornography, with intent to annoy, abuse, threaten, or harass another person.”

“Jumping off the gw bridge, sorry.” “making out with a dude.” “Anyone with iChat I dare you to video chat me between the hours of 9:30 and 12. Yes, it’s happening again.” “Watch out, he may come for you when you’re sleeping.” “It keeps the gays away.”

We disapproved the wholesale seizure of the documents and particularly the government’s failure to return the materials that were not the object of the search once they had been segregated. Id. at 596-97. However, we saw no reason to suppress the properly seized materials just because the government had taken more than authorized by the warrant.

“Given the important First Amendment and privacy implications at stake, the warrant should be quashed unless the Court finds that the State has met its heightened burden for compelled production of such materials.”
“Starting May 1, the App Store will no longer accept new apps or app updates that access the UDID; please update your apps and servers to associate users with the Vendor or Advertising identifiers introduced in iOS 6”

“may also collect the precise location of your device when the app is running in the foreground or background”

“Uber collects your location (i) when the app is open and (ii) from the time of the trip request through five minutes after the trip ends”

“improve pickups, drop-offs, customer service, and to enhance safety”

§ Phone number analysis § IMSI number analysis § IMEI number analysis § SIM number analysis § ISPC number analysis

No actions performed by investigators should change data contained on digital devices or storage media that may subsequently be relied upon in court.

Step 1. Securing and Evaluating the Scene: Steps should be taken to ensure the safety of individuals and to identify and protect the integrity of potential evidence. Step 2. Documenting the Scene: Create a permanent record of the scene, accurately recording both digital-related and conventional evidence. Step 3. Evidence Collection: Collect traditional and digital evidence in a manner that preserves their evidentiary value. Step 4. Packaging, Transportation, and Storage: Take adequate precautions when packaging, transporting, and storing evidence, maintaining chain of custody.

§ Article File: Records on stolen articles and lost public safety, homeland security, and critical infrastructure identification. § Gun File: Records on stolen, lost, and recovered weapons and weapons used in the commission of crimes that are designated to expel a projectile by air, carbon dioxide, or explosive action. § Boat File: Records on stolen boats. § Securities File: Records on serially numbered stolen, embezzled, used for ransom, or counterfeit securities. § Vehicle File: Records on stolen vehicles, vehicles involved in the commission of crimes, or vehicles that may be seized based on federally issued court order. § Vehicle and Boat Parts File: Records on serially numbered stolen vehicle or boat parts. § License Plate File: Records on stolen license plates. § Missing Persons File: Records on individuals, including children, who have been reported missing to law enforcement and there is a reasonable concern for their safety.

Uber Privacy Notice,' February 28, 2020, © Uber Technologies Inc

Uber Technologies Inc

Quote from International Numbering Plans, ‘Number analysis tools’

Source: https://www.fbi.gov/services/cjis/ncic
§ Foreign Fugitive File: Records on persons wanted by another country for a crime that would be a felony if it were committed in the United States. § Identity Theft File: Records containing descriptive and other information that law enforcement personnel can use to determine if an individual is a victim of identity theft or if the individual might be using a false identity. § Immigration Violator File: Records on criminal aliens whom immigration authorities have deported and aliens with outstanding administrative warrants of removal. § Protection Order File: Records on individuals against whom protection orders have been issued. § Supervised Release File: Records on individuals on probation, parole, or supervised release or released on their own recognizance or during pre-trial sentencing. § Unidentified Persons File: Records on unidentified deceased persons, living persons who are unable to verify their identities, unidentified victims of catastrophes, and recovered body parts. The file cross-references unidentified bodies against records in the Missing Persons File. § Protective Interest: Records on individuals who might pose a threat to the physical safety of protectees or their immediate families. Expands on the U.S. Secret Service Protective File, originally created in 1983. § Gang File: Records on violent gangs and their members. § Known or Appropriately Suspected Terrorist File: Records on known or appropriately suspected terrorists in accordance with HSPD-6. § Wanted Persons File: Records on individuals (including juveniles who will be tried as adults) for whom a federal warrant or a felony or misdemeanor warrant is outstanding. § National Sex Offender Registry File: Records on individuals who are required to register in a jurisdiction's sex offender registry. § National Instant Criminal Background Check System (NICS) Denied Transaction File: Records on individuals who have been determined to be “prohibited persons” according to the Brady Handgun Violence Prevention Act and were denied as a result of a NICS background check. (As of August 2012, records include last six months of denied transactions; in the future, records will include all denials.) § Violent Person File: Once fully populated with data from our users, this file will contain records of persons with a violent criminal history and persons who have previously threatened law enforcement.

Sometimes you will see the following messages in DHCP logs

Contents at a Glance

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>xxxvii</td>
</tr>
<tr>
<td>1 The Scope of Digital Forensics</td>
<td>2</td>
</tr>
<tr>
<td>2 Windows Operating and File Systems</td>
<td>34</td>
</tr>
<tr>
<td>3 Handling Computer Hardware</td>
<td>92</td>
</tr>
<tr>
<td>4 Acquiring Evidence in a Computer Forensics Lab</td>
<td>126</td>
</tr>
<tr>
<td>5 Online Investigations</td>
<td>176</td>
</tr>
<tr>
<td>6 Documenting the Investigation</td>
<td>224</td>
</tr>
<tr>
<td>7 Admissibility of Digital Evidence</td>
<td>252</td>
</tr>
<tr>
<td>8 Network Forensics and Incident Response</td>
<td>314</td>
</tr>
<tr>
<td>9 Mobile Forensics</td>
<td>372</td>
</tr>
<tr>
<td>10 Mobile App Investigations</td>
<td>426</td>
</tr>
<tr>
<td>11 Photograph Forensics</td>
<td>460</td>
</tr>
<tr>
<td>12 Mac Forensics</td>
<td>480</td>
</tr>
<tr>
<td>13 Case Studies</td>
<td>538</td>
</tr>
<tr>
<td>14 Internet of Things (IoT) Forensics and Emergent Technologies</td>
<td>572</td>
</tr>
<tr>
<td>Answer Key</td>
<td>594</td>
</tr>
<tr>
<td>Index</td>
<td>606</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>xxxvii</td>
</tr>
<tr>
<td>Chapter 1: The Scope of Digital Forensics</td>
<td>2</td>
</tr>
<tr>
<td>Popular Myths about Computer Forensics</td>
<td></td>
</tr>
<tr>
<td>Myth 1: Computer Forensics Is the Same As Computer Security</td>
<td>3</td>
</tr>
<tr>
<td>Myth 2: Computer Forensics Is about Investigating Computers</td>
<td>3</td>
</tr>
<tr>
<td>Myth 4: Computer Forensics Is Really Used to Resurrect Deleted Files</td>
<td>4</td>
</tr>
<tr>
<td>Types of Digital Forensic Evidence Recovered</td>
<td>5</td>
</tr>
<tr>
<td>Electronic Mail (Email)</td>
<td>5</td>
</tr>
<tr>
<td>Images</td>
<td>7</td>
</tr>
<tr>
<td>Video</td>
<td>8</td>
</tr>
<tr>
<td>Websites Visited and Internet Searches</td>
<td>9</td>
</tr>
<tr>
<td>Cellphone Forensics</td>
<td>10</td>
</tr>
<tr>
<td>IoT Forensics</td>
<td>10</td>
</tr>
<tr>
<td>What Skills Must a Digital Forensics Investigator Possess?</td>
<td>10</td>
</tr>
<tr>
<td>Computer Science Knowledge</td>
<td>10</td>
</tr>
<tr>
<td>Legal Expertise</td>
<td>11</td>
</tr>
<tr>
<td>Communication Skills</td>
<td>11</td>
</tr>
<tr>
<td>Linguistic Abilities</td>
<td>12</td>
</tr>
<tr>
<td>Continuous Learning</td>
<td>12</td>
</tr>
<tr>
<td>Programming</td>
<td>12</td>
</tr>
<tr>
<td>An Appreciation for Confidentiality</td>
<td>12</td>
</tr>
<tr>
<td>The Importance of Digital Forensics</td>
<td>12</td>
</tr>
<tr>
<td>Job Opportunities</td>
<td>13</td>
</tr>
<tr>
<td>A History of Digital Forensics</td>
<td>14</td>
</tr>
<tr>
<td>1980s: The Advent of the Personal Computer</td>
<td>15</td>
</tr>
<tr>
<td>1990s: The Impact of the Internet</td>
<td>15</td>
</tr>
<tr>
<td>2000s: Virtual Currencies, IoT, Encryption, and the Edward Snowden Effect</td>
<td>20</td>
</tr>
</tbody>
</table>
Training and Education ... 21
 Law Enforcement Training .. 21
 High School Training .. 22
 University Training ... 22
 Professional Certifications .. 22
Summary .. 27
Key Terms ... 28
Assessment .. 30
Chapter 2: Windows Operating and File Systems 34
Physical and Logical Storage .. 36
 File Storage ... 36
Paging .. 39
File Conversion and Numbering Formats 42
 Conversion of Binary to Decimal .. 42
 Hexadecimal Numbering .. 42
 Conversion of Hexadecimal to Decimal 43
 Conversion of Hexadecimal to ASCII 44
 Using Hex to Identify a File Type ... 47
 Unicode .. 47
Operating Systems .. 47
 The Boot Process ... 48
 Windows File Systems .. 49
Windows Registry .. 59
 Registry Data Types .. 61
 FTK Registry Viewer .. 62
Microsoft Office ... 62
Microsoft Windows Features .. 63
 Windows Vista ... 63
 Windows 7 .. 68
| Windows 8.1 | ... 79 |
| Windows 10 | ... 82 |
| Microsoft Office 365 | ... 83 |

Summary ... 84

Key Terms ... 85

Assessment ... 88

Chapter 3: Handling Computer Hardware 92

Hard Disk Drives ... 93

- Small Computer System Interface (SCSI) ... 93
- Integrated Drive Electronics (IDE) ... 94
- Serial ATA (SATA) ... 95

Cloning a PATA or SATA Hard Disk ... 97

Cloning Devices ... 98

Removable Memory ... 105

- FireWire ... 105
- USB Flash Drives ... 106
- External Hard Drives ... 107
- MultiMediaCards (MMCs) ... 108

Summary ... 120

Key Terms ... 120

Assessment ... 122

Reference ... 125

Chapter 4: Acquiring Evidence in a Computer Forensics Lab 126

Lab Requirements ... 127

- American Society of Crime Laboratory Directors (ASCLD) ... 127
- American Society of Crime Laboratory Directors/Lab Accreditation Board (ASCLD/LAB) ... 127
- ASCLD/LAB Guidelines for Forensic Laboratory Management Practices ... 127
Table of Contents

ISO/IEC 17025:2017 ..129
Scientific Working Group on Digital Evidence (SWGDE)129

Private-Sector Computer Forensics Laboratories130
 Evidence Acquisition Laboratory ...131
 Email Preparation Laboratory ..131
 Inventory Control ..131
 Laboratory Information Management Systems131
 Web Hosting ..132

Computer Forensics Laboratory Requirements ...132
 Laboratory Layout ..132
 Laboratory Management ..154
 Laboratory Access ..155

Extracting Evidence from a Device ...157
 Using the dd Utility ..157
 Using Global Regular Expressions Print (GREP)158

Skimmers ..166
Steganography ...168
Summary ...170
Key Terms ..170
Assessment ..172

Chapter 5: Online Investigations ...176

Working Undercover ...177
 Generating an Identity ..178
 Generating an Email Account ...179
 Masking Your Identity ..181

Dark Web Investigations ..184
 OSINT Framework ...184
 Tor ..184
Invisible Internet Project ... 186
Freenet ... 186
SecureDrop .. 186
Dark Web Marketplaces ... 186
Virtual Currencies ... 188
Bitcoin ... 188
Venmo and Vicemo ... 189
Website Evidence .. 189
Website Archives .. 189
Website Statistics .. 190
Background Searches on a Suspect ... 191
Finding Personal Information .. 192
Personal Interests and User Groups ... 195
Searching for Stolen Property .. 196
Online Crime .. 209
Identity Theft .. 210
Credit Cards for Sale ... 210
Electronic Medical Records .. 210
Counterfeit and Counter-proliferation Investigations (CPI) 211
Cyberbullying ... 211
Social Networking .. 211
Capturing Online Communications ... 212
Using Screen Captures .. 212
Using Video ... 213
Viewing Cookies ... 214
Using Windows Registry ... 215
Edge Web Browser .. 215
Summary ... 216
Key Terms ... 216
Assessment ... 218
Chapter 6: Documenting the Investigation

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtaining Evidence from a Service Provider</td>
<td>224</td>
</tr>
<tr>
<td>Documenting a Crime Scene</td>
<td>226</td>
</tr>
<tr>
<td>Seizing Evidence</td>
<td>227</td>
</tr>
<tr>
<td>- Crime Scene Examinations</td>
<td></td>
</tr>
<tr>
<td>- Crime Scene Investigator Equipment</td>
<td></td>
</tr>
<tr>
<td>Documenting the Evidence</td>
<td>229</td>
</tr>
<tr>
<td>- Completing a Chain of Custody Form</td>
<td>229</td>
</tr>
<tr>
<td>- Completing a Computer Worksheet</td>
<td>230</td>
</tr>
<tr>
<td>- Completing a Hard Disk Drive Worksheet</td>
<td>232</td>
</tr>
<tr>
<td>- Completing a Server Worksheet</td>
<td>233</td>
</tr>
<tr>
<td>Using Tools to Document an Investigation</td>
<td>234</td>
</tr>
<tr>
<td>- FragView</td>
<td></td>
</tr>
<tr>
<td>- Helpful Mobile Applications (Apps)</td>
<td>235</td>
</tr>
<tr>
<td>Writing Reports</td>
<td>236</td>
</tr>
<tr>
<td>- Time Zones and Daylight Saving Time (DST)</td>
<td>236</td>
</tr>
<tr>
<td>- Creating a Comprehensive Report</td>
<td>238</td>
</tr>
<tr>
<td>Using Expert Witnesses at Trial</td>
<td>242</td>
</tr>
<tr>
<td>- The Expert Witness</td>
<td>242</td>
</tr>
<tr>
<td>- The Goals of the Expert Witness</td>
<td>242</td>
</tr>
<tr>
<td>- Preparing an Expert Witness for Trial</td>
<td>243</td>
</tr>
<tr>
<td>Summary</td>
<td>245</td>
</tr>
<tr>
<td>Key Terms</td>
<td>246</td>
</tr>
<tr>
<td>Assessment</td>
<td>246</td>
</tr>
</tbody>
</table>

Chapter 7: Admissibility of Digital Evidence

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>History and Structure of the United States Legal System</td>
<td>253</td>
</tr>
<tr>
<td>- Origins of the U.S. Legal System</td>
<td>254</td>
</tr>
<tr>
<td>- Overview of the U.S. Court System</td>
<td>254</td>
</tr>
<tr>
<td>- In the Courtroom</td>
<td>259</td>
</tr>
</tbody>
</table>
Table of Contents

Evidence Admissibility ... 262
Constitutional Law .. 262
 First Amendment.. 262
 First Amendment and the Internet 263
 Fourth Amendment .. 265
 Fifth Amendment .. 279
 Sixth Amendment ... 280
 Congressional Legislation .. 281
 CLOUD (Clarifying Lawful Overseas Use of Data) Act 288
 Rules for Evidence Admissibility ... 288
 Criminal Defense ... 293
 California Consumer Privacy Act (CCPA) 294
 NYS DFS Rule 23 NYCRR 500 .. 294
 Canada Personal Information Protection and Electronic
 Documents Act (PIPEDA) .. 295
When Computer Forensics Goes Wrong 296
 Pornography in the Classroom .. 296
Structure of the Legal System in the European Union (E.U.) 296
 Origins of European Law ... 297
 Structure of European Union Law 297
Privacy Legislation in Asia .. 303
 China ... 304
 India .. 304
Summary ... 305
Key Terms .. 306
Assessment ... 309

Chapter 8: Network Forensics and Incident Response 314
 The Tools of the Trade ... 315
 Networking Devices ... 316
Proxy Servers ... 317
Web Servers ... 317
DHCP Servers .. 321
DHCP Logs ... 323
Hub .. 324
Switch .. 324
SMTP Servers ... 324
DNS Servers ... 326
The Hosts File .. 327
DNS Protocol ... 328
Internet Corporation for Assigned Names and Numbers (ICANN) 328
Traceroute ... 328
Routers .. 328
IDS .. 338
Firewalls ... 339
Ports .. 340

Understanding the OSI Model .. 341
The Physical Layer .. 341
The Data Link Layer .. 342
The Network Layer .. 342
The Transport Layer ... 343
The Session Layer .. 344
The Presentation Layer ... 344
The Application Layer .. 345

Introduction to VoIP ... 346
Voice over Internet Protocol (VoIP) .. 346
Disadvantages of VoIP .. 346
PBX (Private Branch Exchange) .. 346
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session Initiation Protocol (SIP)</td>
<td>348</td>
</tr>
<tr>
<td>STUN (Simple Traversal of UDP Through NATs (Network Address Translation))</td>
<td>348</td>
</tr>
<tr>
<td>Incident Response (IR)</td>
<td>348</td>
</tr>
<tr>
<td>STIX, TAXII, and Cybox</td>
<td>349</td>
</tr>
<tr>
<td>Advanced Persistent Threats</td>
<td>349</td>
</tr>
<tr>
<td>APT10</td>
<td>350</td>
</tr>
<tr>
<td>Cyber Kill Chain</td>
<td>350</td>
</tr>
<tr>
<td>Indicators of Compromise (IOC)</td>
<td>354</td>
</tr>
<tr>
<td>Investigating a Network Attack</td>
<td>357</td>
</tr>
<tr>
<td>Random Access Memory (RAM)</td>
<td>357</td>
</tr>
<tr>
<td>AmCache</td>
<td>357</td>
</tr>
<tr>
<td>ShimCache</td>
<td>358</td>
</tr>
<tr>
<td>ShellBags</td>
<td>358</td>
</tr>
<tr>
<td>Volume Shadow Copy</td>
<td>358</td>
</tr>
<tr>
<td>Endpoint Detection and Response (EDR)</td>
<td>359</td>
</tr>
<tr>
<td>Kibana</td>
<td>359</td>
</tr>
<tr>
<td>Log2Timeline/Plaso</td>
<td>359</td>
</tr>
<tr>
<td>SANS SIFT Workstation</td>
<td>360</td>
</tr>
<tr>
<td>Windows Registry</td>
<td>361</td>
</tr>
<tr>
<td>Summary</td>
<td>364</td>
</tr>
<tr>
<td>Key Terms</td>
<td>365</td>
</tr>
<tr>
<td>Assessment</td>
<td>367</td>
</tr>
<tr>
<td>Chapter 9: Mobile Forensics</td>
<td>372</td>
</tr>
<tr>
<td>The Cellular Network</td>
<td>374</td>
</tr>
<tr>
<td>Base Transceiver Station</td>
<td>374</td>
</tr>
<tr>
<td>Mobile Station</td>
<td>378</td>
</tr>
<tr>
<td>Cellular Network Types</td>
<td>383</td>
</tr>
<tr>
<td>SIM Card Forensics</td>
<td>385</td>
</tr>
<tr>
<td>Types of Evidence</td>
<td>388</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Handset Specifications</td>
<td>389</td>
</tr>
<tr>
<td>Memory and Processing</td>
<td>389</td>
</tr>
<tr>
<td>Battery</td>
<td>390</td>
</tr>
<tr>
<td>Other Hardware</td>
<td>390</td>
</tr>
<tr>
<td>Mobile Operating Systems</td>
<td>391</td>
</tr>
<tr>
<td>Android OS</td>
<td>391</td>
</tr>
<tr>
<td>Symbian OS</td>
<td>400</td>
</tr>
<tr>
<td>BlackBerry 10</td>
<td>400</td>
</tr>
<tr>
<td>Windows Phone</td>
<td>400</td>
</tr>
<tr>
<td>Standard Operating Procedures for Handling Handset Evidence</td>
<td>401</td>
</tr>
<tr>
<td>National Institute of Standards and Technology (NIST)</td>
<td>401</td>
</tr>
<tr>
<td>Handset Forensics</td>
<td>406</td>
</tr>
<tr>
<td>Cellphone Forensics Tools</td>
<td>406</td>
</tr>
<tr>
<td>Logical Versus Physical Examination</td>
<td>408</td>
</tr>
<tr>
<td>Manual Cellphone Examinations</td>
<td>408</td>
</tr>
<tr>
<td>Flasher Box</td>
<td>409</td>
</tr>
<tr>
<td>Global Satellite Service Providers</td>
<td>410</td>
</tr>
<tr>
<td>Satellite Communication Services</td>
<td>410</td>
</tr>
<tr>
<td>Legal Considerations</td>
<td>410</td>
</tr>
<tr>
<td>National Crime Information Center (NCIC)</td>
<td>411</td>
</tr>
<tr>
<td>Other Mobile Devices</td>
<td>413</td>
</tr>
<tr>
<td>Tablets</td>
<td>413</td>
</tr>
<tr>
<td>GPS Tracking</td>
<td>414</td>
</tr>
<tr>
<td>Documenting the Investigation</td>
<td>415</td>
</tr>
<tr>
<td>Summary</td>
<td>416</td>
</tr>
<tr>
<td>Key Terms</td>
<td>416</td>
</tr>
<tr>
<td>Assessment</td>
<td>421</td>
</tr>
</tbody>
</table>
Chapter 10: Mobile App Investigations

Section Title	Page
Static Versus Dynamic Analysis | 427
 - Static Analysis | 427
 - Dynamic Analysis | 431
Introduction to Debookee | 433
Dating Apps | 441
 - Tinder | 442
 - Grindr | 445
Rideshare Apps | 450
 - Uber | 451
Communication Apps | 453
 - Skype | 453
Summary | 457
Key Terms | 457
Assessment | 458

Chapter 11: Photograph Forensics

Section Title	Page
National Center for Missing and Exploited Children (NCMEC) | 462
Project VIC | 463
Case Studies | 463
 - Facebook Selfie | 463
 - To Catch a Predator | 463
 - Extortion | 464
Understanding Digital Photography | 464
 - File Systems | 464
 - Digital Photography Applications and Services | 465
Examining Picture Files | 466
 - Exchangeable Image File Format (EXIF) | 467
Evidence Admissibility | 470
Federal Rules of Evidence (FRE) ... 470
Analog vs. Digital Photographs ... 470
Case Studies ... 471
Worldwide Manhunt ... 471
NYPD Facial Recognition Unit .. 473
Summary .. 474
Key Terms .. 474
Assessment ... 475
Chapter 12: Mac Forensics ... 480
A Brief History .. 480
Macintosh .. 481
Mac mini with OS X Server .. 481
iPod ... 482
iPhone ... 483
iPad ... 485
iPad Pro ... 485
Apple Watch .. 485
Apple Wi-Fi Devices .. 487
Apple TV .. 487
AirPort Express .. 488
AirPort Extreme ... 488
AirPort Time Capsule ... 488
Macintosh File Systems .. 489
Hierarchical File System (HFS) ... 489
HFS+ ... 489
APFS ... 490
Forensic Examinations on a Mac ... 494
Epoch Time .. 496
DMG ... 498
PList Files ... 499
SQLite Databases .. 501
Email Files ... 501
Hibernation File ... 501

Macintosh Operating Systems ... 502
macOS Catalina .. 502
File Vault .. 503
Disk Utility ... 503
macOS Keychain .. 503
iCloud Keychain .. 504
Multiple Displays .. 504
Notifications ... 504
Tags ... 504
Safari ... 504
Target Disk Mode and Device Cloning .. 506

Apple Mobile Devices .. 507
iOS .. 508
Enterprise Deployment of Apple Devices .. 526
Battery ... 527

Performing a Mac Forensics Examination ... 527
Case Studies .. 529
Find My iPhone ... 529
Wanted Hactevist ... 529
Michael Jackson ... 529
Stolen iPhone ... 529
Drug Bust .. 530
Murder Trial ... 530

Summary .. 531
Key Terms .. 531
Assessment ... 535
Chapter 13: Case Studies

Silk Road ... 538
- Genesis of the Silk Road... 539
- Death Threat .. 542
- Silk Road Takedown ... 542
- The Takedown of Ulbricht ... 543
- Ross Ulbricht Pre-trial ... 544
- Ross Ulbricht on Trial ... 546
- Laptop Evidence .. 546
- Trial Verdict .. 549

Las Vegas Massacre ... 549

Zacharias Moussaoui .. 551
- Background .. 551
- Digital Evidence ... 552
- Standby Counsel Objections 553
- Prosecution Affidavit ... 554
- Exhibits ... 554

BTK (Bind Torture Kill) Serial Killer 555
- Profile of a Killer ... 555
- Evidence ... 556

Cyberbullying ... 557
- Federal Anti-harassment Legislation 557
- State Anti-harassment Legislation 557
- Warning Signs of Cyberbullying 557
- What Is Cyberbullying? ... 558
- Phoebe Prince .. 558
- Ryan Halligan ... 559
- Megan Meier .. 559
- Tyler Clementi .. 559
| Sports | 561 |
| Summary | 563 |
| Key Terms | 563 |
| Assessment | 564 |
| Assignment | 570 |
| **Chapter 14: Internet of Things (IoT) Forensics and Emergent Technologies** | 572 |
| 5G | 573 |
| Wi-Fi 6 | 575 |
| Wi-Fi Mesh Networks | 576 |
| Shodan | 576 |
| Mirai Botnet | 577 |
| Cryptocurrency Mining | 577 |
| Alexa | 578 |
| Micro-Chipping | 579 |
| Fitness Trackers | 579 |
| Apple Watch | 581 |
| Action Cameras | 583 |
| Police Safety | 583 |
| Police Vehicles | 585 |
| Vehicle Forensics | 585 |
| Low-Tech Solution for High-Tech Seizures | 586 |
| Summary | 588 |
| Key Terms | 588 |
| Assessment | 590 |
| **Answer Key** | 594 |
| Index | 606 |
About the Author

Dr. Darren R. Hayes is a leading expert in the field of digital forensics and computer security. He is the Director of Digital Forensics and Associate Professor at Pace University, and he has been named one of the Top 10 Computer Forensics Professors by Forensics Colleges. He was selected as the recipient of the 2020 Homeland Security Investigations New York Private Sector Partnership Award.

During his time at Pace University, Hayes developed a Digital Forensics track for the University’s Bachelor of Science in Information Technology degree in addition to his development of digital forensics graduate courses. He also created, and now manages, the Pace University Digital Forensics Research Laboratory, where he devotes most of his time to working with a team of students to support the efforts of law enforcement and the University’s students. As part of his research and promoting this scientific field of study, he has fostered relationships with the New York Police Department, New York County D.A., Westchester County D.A., Homeland Security Investigations, National Crime Agency and numerous other agencies.

Hayes is not only an academic, however—he is also a practitioner. He has been an investigator on both civil and criminal investigations and frequently consults on cases for law firms. In fact, he has been declared an expert witness in U.S. federal court.

In New York City, Hayes has been working with six to eight public high schools to develop a curriculum in computer forensics and cybersecurity. He collaborates on computer forensics projects internationally and served as an extern examiner for the MSc in the Forensic Computing and Cybercrime Investigation degree program at University College Dublin for four years.

Hayes has appeared on CNBC, Bloomberg Television, MSNBC and Fox News and been quoted by Associated Press, CNN, Wall Street Journal, The Guardian (UK), The Irish Independent, Japan Times, Investor’s Business Daily, MarketWatch, Newsweek, SC Magazine, Silicon Valley Business Journal, USA Today, Washington Post, and Wired News. His op-eds have been published by Homeland Security Today, USA Today, and The Hill’s Congress Blog. In addition, he has authored a number of peer-reviewed articles in many prominent academic journals. Hayes has been both an author and reviewer for Pearson Prentice Hall since 2007.

About the Technical Reviewers

Lorne Dannenbaum has been working in digital forensics since 2004. He is an experienced Cyber-Security Analyst with a demonstrated history of working in the information technology and services industry. Skilled in Digital Forensics and Incident Response, he performed examinations of systems regarding incidents such as intrusions, data loss protection, malware, and fraud. He uses skills such as memory analysis, file system, and artifact analysis to conduct digital forensic examinations using a wide variety of tools.

Aamir Lakhani is a leading senior security strategist. He is responsible for providing IT security solutions to major enterprises and government organizations. Mr. Lakhani creates technical security strategies and leads security implementation projects for Fortune 500 companies. He has designed
offensive counter-defense measures for the Department of Defense and national intelligence agencies, as well as Global 100 organizations. He has also assisted organizations with safeguarding IT and physical environments from attacks perpetrated by underground cybercriminal groups. Mr. Lakhani is considered an industry leader for creating detailed security architectures within complex computing environments. His areas of expertise include cyber defense, mobile application threats, malware management, Advanced Persistent Threat (APT) research, and investigations relating to the Internet’s dark security movement. He is the author or contributor of several books and has appeared on FOX Business News, National Public Radio, and other media outlets as an expert on cybersecurity.

Dedication

This book is dedicated to my loving wife, Nalini, and my children, Shay, Fiona, Aine, and Nicolai.

I also dedicate this book to law enforcement, first responders, and our military veterans, who risk their lives to protect our safety.

Acknowledgments

I should begin by acknowledging my supportive and patient wife, Nalini, who is my best friend. Long hours working on a book mean sacrifices for everyone in the family, and my children, Nicolai, Aine, Fiona, and Shay, have been brilliant. My parents, Annette and Ted, have been mentors throughout my life, and I will always be in their debt.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@informit.com

Visit our website and register this book at www.pearsonitcertification.com/register for convenient access to any updates, downloads, or errata that might be available for this book.
Introduction
The field of digital forensics has grown immensely and diversified over the past few years for a number of reasons. Therefore, this book addresses these changes in a number of new and existing chapters. The proliferation of IoT devices, wearable technologies and other new technologies, like 5G, are explained in detail in Chapter 14 because their impact on digital forensics will be profound. The chapter also discusses how new technologies are changing policing and the safety of law enforcement officers. The chapter also discusses the growing field of vehicle forensics.

There has been no slowdown in the number of network breaches globally; therefore, the need for digital forensics examiners in incident response is greater than ever. Therefore, Chapter 8 is focused on developing the skills of incident responders and highlighting indicators of compromise.

Mobile forensics continually changes and these changes are addressed in numerous chapters, including Chapter 7, when some Supreme Court landmark decisions have changed the rules for law enforcement. Chapter 9 provides an introduction to Mobile Forensics but also explains the changes in Android devices and methods of examination. Chapter 12 explains how iPhone examinations have changed dramatically and shows how full file system extractions are now available with a recently discovered exploit. Mobile applications (apps) save an immense amount of personal information and pretty much every investigation includes at least one mobile device. Therefore, Chapter 10 is a new chapter that provides investigators with forensic techniques to perform both a static and a dynamic examination of mobile apps. Furthermore, this chapter explains how real-time intelligence can be gathered from many popular apps.

Every chapter has been updated extensively to incorporate many recent changes in technology and newly discovered techniques to obtain digital evidence.

This book assumes no prior knowledge of the subject matter, and I have written it for both high school and university students and professional forensics investigators. Additionally, other professions can clearly benefit from reading this book—it is useful for lawyers, forensic accountants, security professionals, and others who have a need to understand how digital evidence is gathered, handled, and admitted to court. The book places a significant emphasis on process and adherence to the law, which are equally important to the evidence that can ultimately be retrieved.

The reader of this book should also realize that comprehensive knowledge of computer forensics can lead to a variety of careers. Digital forensics examiners and experts work for accounting firms, software companies, banks, law enforcement, intelligence agencies, and consulting firms. Every major company has an incident response team and many have a threat intelligence team or department. This book will certainly benefit those in that profession or perhaps those considering a career change. The growth of social media and open source data and tools creates a wealth of information for investigators and these are discussed in the book. Some are experts in mobile forensics, some excel in network forensics, and others focus on personal computers. Other experts specialize in Mac forensics or reverse engineering malware. The good news for graduates with computer forensics experience is that they have a variety of directions to choose from: the job market for them will remain robust, with more positions than graduates for the foreseeable future.
This book is a practical guide, not only because of the hands-on activities it offers, but also because of the numerous case studies and practical applications of computer forensics techniques. Case studies are a highly effective way to demonstrate how particular types of digital evidence have been successfully used in different investigations.

Finally, this book often refers to professional computer forensics tools that can be expensive. You should realize that academic institutions can take advantage of significant discounts when purchasing these products. The book makes a point of mentioning many free or low-cost forensics tools that can be just as effective as some of the expensive tools. You can definitely develop your own program or laboratory in a budget-conscious way.

Register this book to unlock the data files that are needed to complete the end-of-chapter projects.

Follow the steps below:

1. Go to www.pearsonITcertification.com/register and log in or create a new account.
2. Enter the ISBN: 9780789759917.
3. Click on the “Access Bonus Content” link in the Registered Products section of your account page, to be taken to the page where your downloadable content is available.
This page intentionally left blank
Mobile App Investigations

Learning Outcomes

After reading this chapter, you will be able to understand the following:

- The importance of mobile apps in investigations;
- How to perform a static and dynamic analysis;
- The digital evidence available from dating, rideshare, and other popular apps;
- The value of deep-linking in investigations; and
- Analyzing SQLite databases.

Mobile applications (apps) are extremely important today in investigations for a variety of reasons. Interestingly, the databases associated with many apps, are unencrypted and are not too difficult to analyze. Furthermore, if a mobile device is locked or inaccessible, there are many other options available, which may include analyzing a linked desktop version of the app or sending a subpoena, or court order, to a third-party provider to obtain a suspect’s data. Third-party companies collect, and store, a tremendous amount of data on their customers. Finally, many users opt to back up their data to cloud storage. For example, WhatsApp has the option for Apple iPhone/iPad users to back up their chats to iCloud, and that backup can be requested from Apple. Nevertheless, organized criminals and terrorist groups largely use mobile apps that utilize strong encryption or proprietary encryption, which can seriously hamper the work of law enforcement. Compounding these concerns is the fact that many apps maintain their servers in countries like Russia, which is beyond the reach of law enforcement in the West. Popular communication apps that use strong encryption include Telegram, Signal, Wickr, and Threema to name but a few. Nevertheless, zero-day exploits are frequently found in mobile apps, including Telegram, which can help investigators to gain access to an encrypted app. A **zero-day exploit** is a security vulnerability that is a threat on the day that it is discovered because a software patch, to fix the exploit, does not yet exist.
Static Versus Dynamic Analysis

During app installation, typically a SQLite database will be installed on the user device. This is a relational database that is comprised of tables. The data stored in these tables may or may not be encrypted. A table may contain a user’s contacts, while a related table may store communications with contacts, for example. It is important to understand that these databases contain an extraordinary amount of personal information and, when unencrypted, can put an individual at risk for social engineering. Additionally, we should always consider the possibility to subpoena a third-party service provider for evidence.

When analyzing mobile apps, there are several approaches that an investigator can take, in order to examine the user data. A static analysis includes an examination of the SQLite database associated with that app. A dynamic analysis of the app is an analysis of the behavior of the application once it has been executed (or run). The sections that follow examine static analysis and dynamic analysis in more detail.

Static Analysis

A SQLite database is a relational database that is the preferred storage for data associated with mobile apps. SQLite is a C-language library that is responsible for the SQL database. SQLite source code is source code that resides in the public domain. Forensic tools, like BlackLight, enable the user to easily browse through application SQLite databases but there are other standalone tools that can be used. One of these tools is SQLite Database Browser, which is freeware. Later in this chapter we shall detail the types of evidence available from a number of popular mobile apps. Figure 10.1 shows an example of a SQLite database for the Tinder app on an iPhone.

![Tinder SQLite database on iOS (iPhone)](image)
A cursory view of the information in Figure 10.1 shows that there are many folders and files associated with a mobile app SQLite database. Ultimately, the database could have five tables or could have 100 tables, which means that a thorough examination can be a painstaking process. Within each SQLite database (.sqlite) you will find databases, which will contain the file extension .db; for example, google_analytics.db. You will often find recognizable files, like .jpg (picture images), .vcf (or vCard for your contacts), or .mp3 (sound file).

The chart in Figure 10.2 provides a general outline of how an iOS application is stored on an iPhone or iPad.

The Library folder, which is highlighted in Figure 10.2, is where you will find the all-important user data, including cache, cookies, and other personal information. In the Preferences folder, which is displayed and highlighted in Figure 10.3, you may actually discover usernames and passwords that are stored in plaintext.

In Figure 10.4, we can view the name com.cardify.tinder and this is referred to as a bundle ID. A bundle ID is a uniform type identifier, which is comprised of alphanumeric characters, that uniquely identifies a specific app. The bundle ID for Microsoft’s iOS Outlook app is com.microsoft.Office.Outlook. Thus, the format for the bundle ID is generally com.<YourCompany>.<AppName>, which is referred to as a reverse-domain name style string. When you visit the Apple App Store and search for the Microsoft Outlook app for iOS, then you will arrive at this URL in your web browser: https://apps.apple.com/us/app/microsoft-outlook/id951937596. Notice the “id951937596”, which identifies this app on the App Store. An iOS app also has a unique identifier known as an App ID. An App ID is a two-part string that identifies a development team (Team ID) and an application (bundle ID). The Team ID is created and assigned by Apple, while the bundle ID is generated by the app developer.
Static Analysis: Code Review

Another form of static analysis refers to performing a code review on a mobile app, which can help the investigator understand the type of evidence that is available. In terms of the evidence available for an Android app (.apk or Android Package) there is the manifest, which shows the permissions associated with a particular app. For example, the manifest may show that the app is collecting user location information ("COARSE_LOCATION" and/or "FINE_LOCATION"). ACCESS_COARSE_LOCATION is a permission that enables the app to access the approximate location of the user device, which is based on NETWORK_PROVIDER (cell sites, i.e. cell towers). ACCESS_FINE_LOCATION enables the app to determine the location of the user device based on NETWORK_PROVIDER and GPS (GPS_PROVIDER). An Android application contains a file at the root of the project source set, which is
called AndroidManifest.xml. An Android manifest file contains the application’s package name, its functionality, permissions, hardware, and software requirements for installation.

Understanding the permissions associated with an app allows the investigator to understand the type of evidence that can be requested from the provider and the type of evidence to look for when examining the SQLite database. The latter is important because examining one database can take many days, or even weeks, and therefore limiting the scope of your analysis is key. Example 10.1 shows a small extract from an Android manifest for WhatsApp.

EXAMPLE 10.1 Android Permissions Manifest for WhatsApp

```xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
    android:versionCode="451048" android:versionName="2.12.550" package="com.whatsapp"
    platformBuildVersionCode="23" platformBuildVersionName="6.0-2166767">
    <uses-sdk android:minSdkVersion="7" android:targetSdkVersion="23" />
    <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
    <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
    <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
    <uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />
    <uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS" />
    <uses-permission android:name="android.permission.BLUETOOTH" />
    <uses-permission android:name="android.permission.BROADCAST_STICKY" />
    <uses-permission android:name="android.permission.CAMERA" />
    <uses-permission android:name="android.permission.CHANGE_WIFI_STATE" />
    <uses-permission android:name="android.permission.GET_ACCOUNTS" />
    <uses-permission android:name="android.permission.GET_TASKS" />
    <uses-permission android:name="android.permission.INSTALL_SHORTCUT" />
    <uses-permission android:name="android.permission.INTERNET" />
    <uses-permission android:name="android.permission.MANAGE_ACCOUNTS" />
    <uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />
    <uses-permission android:name="android.permission.READ_CONTACTS" />
    <uses-permission android:name="android.permission.READ_PHONE_STATE" />
</manifest>
```

An understanding of the manifest is also important from a mobile security perspective. Many privacy policy statements are misleading or confusing and provide poor guidance about how trustworthy a mobile app is. The Federal Trade Commission (FTC), for example, investigated a popular free app for Android, called the Brightest Flashlight, after it was discovered that the app requested many more permissions from the user’s device beyond the light function on the device. Therefore, some app permissions are high risk, while other permissions are low risk.

A Web search for the “Uber APK file”, or any other APK file, quickly identifies where the application package can be downloaded. Once the APK has been downloaded, there are a number of applications that can be used to review the code and manifest for the APK. One tool for reviewing the APK developer code is dex2jar (dex compiler), which can be downloaded from SourceForge. Another application for viewing the APK is FileViewer Plus. One preferred tool is an online Java APK decompiler application,
which is available from www.javadecompilers.com/apk. With this tool, you can decompile your APK in a web browser without downloading an APK decompiler to your computer. Therefore, you do not need to worry whether the application that you are downloading is from a trusted source because the application is being run from their web server and not from your computer. There are numerous other source code analytical tools that an investigator can use, including SourceMeter, JSLint, and FindBugs. Figure 10.5 shows the JSLint user interface.

![JSLint user interface](image)

FIGURE 10.5 JSLint user interface

Dynamic Analysis

A dynamic analysis of the app is an analysis of the behavior of the application once it has been executed (or run). An **Android emulator** is an application that simulates, or runs, the Android operating system in a virtual machine. These applications are generally developed for use with a personal computer and run as a virtual machine. App developers use an emulator to analyze how their apps will run before making them available to the public. However, an emulator can also benefit investigators who are interested in viewing the behavior of an app—especially if an app potentially contains malware. This is the benefit of using an emulator that operates as a virtual machine. An investigator may also be interested in monitoring the permissions and DNS connections associated with an executed mobile app. In terms of monitoring DNS connections (connections to servers), there is Wireshark (Windows) and Debookee (macOS), which are very effective at monitoring these connections over a wireless network. Figure 10.6 shows a screenshot of a pcap (packet capture) file from Wireshark. A **pcap file** is a wireless packet that contains user data and network data related to the sender and receiver of that data.
FIGURE 10.6 Google Maps API identified in a PCAP captured by Wireshark
When performing any type of wireless monitoring, ensure that you have permission to be on a particular network and ensure that you are only monitoring your wireless traffic.

To remain safe and compliant, consider using a personal hotspot device, like a Verizon Jetpack, in a secure lab. A tool like Debookee also has the ability to encrypt some wireless traffic, which means that while app data may be encrypted on the device and on the server, often companies will implement poor encryption protocols, whereby the data in transmission can be intercepted and viewed in plaintext. Thus, tools like Debookee can also be used, by security professionals analyzing apps, to try to determine how secure apps are.

Introduction to Debookee

Debookee is a comprehensive wireless packet sniffer for macOS. The tool is not passive as it performs a man-in-the-middle (MITM) attack to intercept data from mobile and IoT devices. A man-in-the-middle (MITM) attack is an attempt to intercept electronic communications between two computing devices, with the intent to decipher encrypted messages. The tool also performs SSL/TLS decryption. Debookee supports numerous protocols, including HTTP, HTTPS, DNS, TCP, DHCP, SIP, and RTP (VoIP). The tool can be used to identify what data is being collected and shared by mobile apps. In other words, you can identify DNS connections to servers around the world and other companies that could be potentially subpoenaed for information. The data generated from one mobile app can be shared with fifty or more third-party companies, which are mostly analytics companies like Crashlytics, UXCam, Fabric, etc.

On the homepage of the Debookee website, click the **Download** button and install the software.

You do not need to purchase the software but can begin by using the trial version. You may of course later decide to purchase the software, which is relatively inexpensive, and one license can be used on two different computers.

Once you install the software and start the program, you will see an interface, similar to Figure 10.8. The IP address, MAC address, and host name that are displayed provide information about your device.

Figure 10.9 shows a close-up of the information that we just discussed. Click the **Start LanScan** button as highlighted in Figure 10.9.
You will then see a list of all devices that are connected to the same wireless access point as your computer. Once you select your target device, click the Pcap option, on the upper left of your screen, and then click Save Pcap files, as shown in Figure 10.10.
You can then click the **Open Export Folder** button to change the default export folder. There is an add-on tool in Debookee, which allows you to decrypt the contents of the pcap files. If you purchase this option, you can click the **SSL/TLS** button displayed in Figure 10.11.

The next step in the TLS decryption process is to install the certificate authority (CA) on the machine (see Figure 10-12). To start your NA, click the Play button ▶ in the very top left of your application screen (underneath it says, “Start NA”). Once the trust certificate has been installed, you should stop the NA (Network Analysis) by clicking the same button.
From the screen in Figure 10.13, click the **Start NA ▶** button again. Open the webpage, or application, you want to analyze (or the device that you wish to monitor), and begin generating data packets by opening and closing different functions, sending messages, or just using the application.
FIGURE 10.13 Start NA option in Debookee

On the left column in Figure 10.14, under **Own Traffic**, you will see that **DNS** and **HTTP** have populated. The NA will run continuously until you terminate it. When you are satisfied with the data collected, press the stop button. Remember that your pcap files are automatically exported to the folder that you previously selected.

Click **DNS** in the left column and you will see all DNS connections made during the NA (timestamped) with the hostname and/or IP address. These are the IP addresses and hosts that you can analyze, in addition to the pcaps.

It is recommended that you click **File > Export** and save this list as a .doc or a .txt file. You can then use some open source DNS analysis tools, including www.robtex.com and www.dnsdumpster.com.

Clicking the **HTTP** button, as shown in Figure 10.15, will display an itemized list of every packet transmitted over HTTP, HTTPS, TCP, SIP, IMAP, and other protocols. If you did not purchase the SSL/TLS decrypt module, HTTPS packets (transmitted over port 443 using TLSv1.2) will display in red, and you will not be able to read the data until you decrypt the packets. Port 443 is the port number for secure HTTP communications—in other words, Web traffic. If you did purchase the SSL/TLS decrypt module, HTTPS packets will display in black, and when you click on them, the data will be displayed in plaintext in the data field.

Click on a packet that you wish to examine. In the data field you will see some text populate underneath the tab labeled **Request**. Upon further inspection of the data field, you will see the full GET request along with the packet parameters and data, as displayed in Figure 10.16. **GET** is an HTTP method used to request data from a specific resource, like a web server.
CHAPTER 10 Mobile App Investigations

FIGURE 10.14 DNS connections captured

FIGURE 10.15 Decrypted TikTok packet (pcap)
You may then click the **Response** tab to view the webpage or application response packet. Figure 10.17 displays a webpage response. Status code 200 means that it was successfully downloaded.

You can choose to export your packets so that they can be analyzed later. You can select to view your packet data in a text file or in a Word document. Figure 10.18 displays the option to export the packet data.
FIGURE 10.18 Data Export feature in Debookee

In Figure 10.19 and Figure 10.20 you can view the location and message data that was transmitted in plaintext while using the popular dating application Tinder. This data was observed while inspecting the entire packet in a text document.
Dating Apps

There were 3.6 million applications ("apps") on Google Play and 2.1 million iOS applications on Apple’s App Store in 2017, and a mere 8.5% of those apps were cross-platform, meaning that they were available for both iOS and Android. Adults in the United States are using mobile devices in ways that could not be imagined just 15 years ago. According to Pew Research Center’s report on mobile dating, 15% of adults (ages 18 and older), in the United States, have reported that they have used online dating sites or mobile dating apps. Dating site usage has nearly tripled for young adults (18 through 24) in just two years, from 10% to 27%. Therefore, it is important for investigators to understand the evidence available from mobile dating apps. Moreover, the prevalence of social engineering—using data derived from social media accounts—means that dating apps are a cause for concern in terms of organizational risk.

With the recent increase in online match-making connections, in a post-Snowden era where privacy has become a major concern, we might question whether dating applications are utilizing personal data ethically. In March 2018, a security flaw in the Grindr app disclosed user location data, which could have exposed app users to harassment; Grindr is a dating app, primarily used to connect gay men and unfortunately has facilitated numerous attacks against many gay men. Thus, understanding the available evidence from a dating app is extremely important because of the nature of the crimes being
committed, the links to social media, the personal information available, and the location and communication capabilities of these apps.

Tinder

As of 2018, Tinder had 57 million users worldwide. Millions of Tinder subscribers pay for a premium service: Tinder Plus or Tinder Gold. Tinder is used in 190 countries and supports 40 languages. Owned by Match Group, Inc., Tinder is a location-based, social media, application for dating. The app connects singles and allows them to “Swipe Right”, if they wish to connect with another individual, or they can “Swipe Left”, if they are not interested. The user can also “Swipe Up” (called a “super like”), which notifies the user that they have been “Super Liked”. The ability to passively block communication with someone, whom a user is not interested in, is what makes Tinder appealing for so many people.

Tinder gives the user the ability to chat with individuals who have both swiped right pseudo-anonymously. A user is not required to divulge his cellphone number, and a user can make his own judgment about how much personal information he wishes to share with another user when matched. Chats within the application are stored chronologically and can be deleted.

Tinder also offers a Web-based version of their service at gotinder.com and tinder.com (see Figure 10.21). The website gives users the ability to use Tinder’s services without a smartphone. The user simply logs in with their credentials. However, location services must be turned on, in the browser application, to use the Web version of the application.

![www.gotinder.com user profile](image)
One of the most popular features of Tinder is the ability for users to synchronize their personal Instagram page with their Tinder profile (see Figure 10.22). This feature allows someone whom they have matched with (both parties swipe right) to have the ability to view the other user’s Instagram profile. This allows a user to visit a Tinder user’s Instagram profile, even if the Instagram account is set to private. Connecting social media accounts in this fashion is referred to as “deep-linking”.

A Spotify account can also be synchronized with a Tinder account, using deep-linking. This feature allows the users to share their personal playlists with individuals that they have matched with. A user can apply an “Anthem” to their profile, which can be the user’s favorite song.

Using Robtex (robtex.com), we can quickly map out the domains associated with Tinder, some of which are displayed in Figure 10.23.

Utilizing tools, like Robtex and traceroute, and whatismyipaddress.com, an investigator can determine where app user data is being stored and determining jurisdiction.
An analysis of Tinder’s DNS connections shows that the Tinder app connects a user’s profile with servers managed by Facebook, Leanplum, Appsflyer, DoubleClick, and many other companies. Using Debookee, it was possible to intercept Tinder messages, an example of which can be viewed in Figure 10.24. Figure 10.25 displays sample DNS connections associated with Tinder and captured with Debookee.

Using BlackLight, a static analysis of the user data, contained in the Tinder SQLite database on an iPhone, reveals that the data is stored in plaintext. Interestingly, a private Instagram account could be viewed during this analysis. Moreover, that (private) Instagram account stored Instagram photos from other users without that user’s consent. User chat sessions, usernames, and Instagram data were all stored in plaintext on the iPhone test device. A URL can be found associated with each profile, which enables the user to access another user’s profile page—even if it is marked private.
An examination of the Tinder SQLite database also revealed the location of other Tinder users in close proximity, as shown in Figure 10.26.

![ZDISTANCEMILES](image)

FIGURE 10.26 ZDISTANCEMILES displays the distances to other users

It is also possible to obtain more precise information about users’ locations in the vicinity, as shown in Figure 10.27.

```json
{
    "city": "New York",
    "country": "US",
    "county": "New York",
    "dataProvider": "",
    "deviceId": "F4CB9617-E5E2-4B7A-8C46-CAFBA75BE0F",
    "didSuperLike": false,
    "gender": "0",
    "hasUnsentMessage": false,
    "heartbeatInMillis": 2000,
    "language": "en-US",
    "lastMessageFrom": "other",
    "lat": 40.71,
    "lon": -74.01,
    "manu": "Apple",
    "matchId": ""
}
```

FIGURE 10.27 Location data from the Tinder app

Grindr

While there are many mobile apps that provide corroborating evidence in an investigation, Grindr is an app that has been used to perpetrate some of the most heinous crimes. Therefore, it is an app that warrants special attention for investigators. Stephen Port, from East London, U.K., was called the Grindr Serial Killer after he was charged with murdering four men that he met on Grindr. There are literally hundreds, if not thousands of cases, where Grindr has been used, by criminals, to lure victims
and subsequently commit crimes, which include murder, assault, and robbery. The good news is that the Grindr app stores a wealth of information, in plaintext, which may help investigators and prosecutors.

Grindr was launched in 2009 and is the world’s leading social networking application for gay, bisexual, trans and queer people. Grindr, unlike traditional dating apps, like Tinder and Bumble, is designed to find individuals in close proximity to the user. The smallest value for distance that Tinder/Bumble incorporates into their platform is one mile but Grindr will literally go to “zero feet away”, and this is explicitly stated in the “About” section of their webpage. There is no “swipe left” or “dislike” and individuals are listed from closest to farthest away. There are no parameters to meet a certain type of user like with Tinder (age range, gender, etc.). If a user wants to engage with another user, they simply “Tap” that individual’s profile, and they will be notified. The other user is then notified that they have been tapped. At this point, both users can immediately send an unlimited number of messages, which can be texts, images, and “GayMoji” stickers.

Popular dating applications, like Tinder and Bumble, require both users to explicitly indicate their willingness to engage with the other. However, Grindr does not require mutual consent to begin a chat session. There is a safeguard to protect from harassment, where the user can simply delete the “Tap” from a user they do not like, ending the message session. There are different types of “Taps” that give a visual representation of what the individual is looking for. There is a “Hi” icon tap for if the individual just wants to introduce himself or herself, or perhaps just chat. There is a “flame” icon tap for if the individual is interested in dating or sex. And finally, there is a “smiling devil Emoji” icon tap if the individual is looking for a “no strings attached” interaction. If the message is a text, then it will be previewed next to the user’s profile. If it is a photo or video, it will have a small “Camera Icon” instead. A relatively new feature to the Grindr message function is “Read” receipts that will indicate whether the person a user messages has actually opened the message. Figure 10.28 shows the “Flame” tap and “Smiling Devil Tap” emojis.

Grindr has reached more than 196 countries with more than 3.6 million daily active users (2018). On average these users send 228 million messages and 20 million photos each day.

To date, there is no Web interface for Grindr, which supports user chat. However, the user can create a profile at www.grindr.com.

Grindr Evidence

Grindr does support deep-linking to social media services, which includes Facebook, Instagram, and Twitter. A feature of Grindr is the opportunity for a user to sync their personal Instagram page directly to their Grindr profile. This feature allows someone who has tapped on a user’s Grindr profile to directly view the user’s Instagram profile page. Grindr then gives the user the option to quickly switch directly to Instagram. This feature gives the user even more redundancy in deciding if the person they have matched with is someone they would still like to engage with. Both users still must go through the process of requesting to follow and allowing a follow through Instagram if the Instagram account is private. Like Instagram, a Facebook account can also be synced with a Grindr account, and it provides an easy one-click link directly to the Facebook profile on the Facebook app.
Grindr appears to connect with a number of IP addresses, as displayed in Figure 10.29. A trace of these IP addresses goes back to San Francisco, California.

FIGURE 10.28 Grindr mobile user chat interface

FIGURE 10.29 www.grindr.com.cdn.cloudflare.net DNS map (Source: Robtex.com)
Debookee could identify Grindr communication packets from iPhones, while they are being transmitted. The content is TLS/SSL encrypted. However, using the TLS decryption tool, offered by Debookee, it is possible to view a substantial amount of the DNS and HTTPS traffic, as shown in Figure 10.30. Messages are sent through cdns.grindr.com on port 443, using Amazon Web Services Inc. Although Grindr has made security updates to its platform since 2008, the third parties responsible for advertising, like Nexage, still pass sensitive PII, which includes exact location, sex, and age in plaintext, as shown in Figure 10.31. This means that anyone performing a man-in-the-middle attack could see that data.

```
GET https://cdns.grindr.com/images/thumb/187x187/119ec148769261deac9753b956d105fa5c1b6047 HTTP/2.0

:authority: cdns.grindr.com:443
accept-language: en-us
accept: image/png
accept-encoding: gzip, deflate
user-agent: grindr/5.5.2 (iPhone; iOS 10.3.3; Scale/2.00)

< 403 213

Date: Thu, 23 May 2019 16:27:28 GMT
Content-type: application/xml
Set-cookie: _cfduid=d368f9b86152eab3a1603d1f3c3a02511558628847;
Expires=Fri, 22-May-20 16:27:28 GMT; path=/; domain.grindr.com; HttpOnly
X-CSRF-Request-ID: 402245E3F27DAFC50
X-amz-id-2: GqyrEWIEYFmGGFVE6WQYQExa2y6UCM9GFEskSdfdlXVJ6DdXZfzdr2NB8BFSCIK1iCYHWW/hja
GUN=cf-cache-status: HIT
Expect-CT: max-age=604800, report-uri=https://report-uri.cloudflare.com/cdn-cgi/beacon/expect-ct
Vary: Accept-Encoding
Server: cloudflare
CF-RAY: 4db865c07cc02214-EWR
Content-encoding: gzip
```

FIGURE 10.30 Debookee HTTPS packet capture decryption

In a SQLite database, named `greventLog.sqlite`, you can find multiple latitude/longitude references stored in plaintext, as shown in Figure 10.32. Each message transaction is sent with updated location data. A latitude/longitude converter can then be used to find the address.

Messages in Grindr are unencrypted and are stored in plaintext. After viewing the data, a user has a unique identifier that is displayed in the “from” portion and in the “to” portion, which is a unique ID for the subject’s iPhone, as shown in Figure 10.33. After combing through `PersistenceStore.bin`, it is possible to see all message data generated between two devices. Incoming messages can also be retrieved in plaintext as shown in Figure 10.33.
FIGURE 10.31 Mopub banner ad including PII: Age, sex, and exact location

FIGURE 10.32 Latitude/longitude data from greventLog.sqlite
Rideshare Apps

Location information is always important in an investigation because an investigator does not just search for incriminating evidence but also needs to identify where a suspect was. As you will learn, rideshare apps, like Uber, contain extensive geolocation data that is easily accessible.
Rideshare Apps

Uber

Uber is a service that enables drivers to act as flexible contractors and provide transportation services that compete with traditional taxi services. Consumers, using the Uber mobile app, can search for a car service in their area. The benefit to the consumer is that they are visually provided with the mapped location of Uber cars in their vicinity and are provided with an upfront quote for a specific journey (or “ride”). Uber operates in approximately 600 cities worldwide. In the past, Uber has received negative press about its geolocation tracking of users, which raised a number of concerns regarding its privacy policies and potentially invasive data collection practices. In April 2017, the New York Times published a story that documented a meeting, at Apple headquarters, in 2015, between Travis Kalanick, CEO of Uber, and Tim Cook, CEO of Apple. The article alleged that Mr. Cook scolded Mr. Kalanick for identifying and tagging iPhones after the Uber app had been uninstalled or the device had been wiped. Apparently, this type of user identity coding violated the Apple developer terms of service agreement.

An article in the New York Times detailed how Unroll.me, which purported to purge your device’s email inbox of annoying advertising messages, was used to spy on competitors. The article documented how Unroll.me would scan a user’s inbox, identify if there were service receipts, from competing companies like Lyft, and then sell that information to Lyft’s competitor—Uber.

Since the introduction of iOS 5, Apple has been limiting app developer access to the iPhone’s UDID (unique device identifier). A notice from Apple stated, “Starting May 1, the App Store will no longer accept new apps or app updates that access the UDID; please update your apps and servers to associate users with the Vendor or Advertising identifiers introduced in iOS 6.” Apple now prefers that app developers utilize the official Apple advertising platform to track app users. Based on Apple’s advertising and privacy policy, it appears that Apple does collect user data and then subsequently shares it with third parties. Nevertheless, developers can obtain extensive information about an app user through the integration of the UIDevice object. The UIDevice object can be used by an app developer to determine the assigned name of the device, device model and iOS version, orientation (orientation property) of the device, battery charge (batteryState property), and distance of the device to the user (proximity-State property). Moreover, developers can integrate code, during app development, for third-party analytics. These third-party companies include Localytics, mixpanel, UXCam, and Fabric. Companies like Apptopia provide app developers with extensive, nay invasive, analytics on competitor apps.

The use of the user UDID has not always been employed for nefarious purposes. However, the UDID was often utilized to identify if an app user was legitimate and could block a customer’s access if an account was compromised or potentially stolen. Fingerprinting is yet another methodology, used by third parties, to uniquely identify users, based on application configuration. Fingerprinting is best known for identifying online users based on user settings from their browser, which may include user cookies and browser plug-ins. The Electronic Frontier Foundation (EFF) created a project known as Panopticlick (panopticlick.eff.org) to raise awareness about how your browser is used by advertisers, and others, to identify and track you on the Web. The EFF announced that 84% of online users can be uniquely identified by their browser.

According to Uber’s user privacy statement, there are two categories of information collected about users: (a) Information You Provide to Us, which can include name, email, phone number, postal
address, profile picture, payment method, and (b) Information We Collect Through Your Use of Our Services, which can include location information, contacts, transactions, usage and preference, device information, call and SMS data, and log information. Of particular interest is the device information (hardware model, operating system and version, software and file names and versions, preferred language, unique device identifier, advertising identifiers, serial number, device motion information, and mobile network information). In terms of location information, Uber is not specific about the extent to which the user’s location is being tracked but states that they “may also collect the precise location of your device when the app is running in the foreground or background.” Uber provides more detailed information about the use of location services on its website under iOS App Permissions.

What is interesting is that during our installation of the Uber app, a dialog box appears and states that “Uber collects your location (i) when the app is open and (ii) from the time of the trip request through five minutes after the trip ends”, as displayed in Figure 10.21.

Uber states in their FAQ that the reasoning behind this data collection is to “improve pickups, drop-offs, customer service, and to enhance safety.” However, users reported seeing the Uber app using location services weeks after the app was used and certainly beyond the stated 5 minutes. Uber responded to these reports blaming Apple’s iOS Maps extension that Uber uses to serve regional maps to their customers.
Perhaps unsurprisingly, Uber has invested heavily in data science to retain its competitive advantage, as evidenced by its aggressive recruitment of data scientists. We also know that Uber extensively uses a telematics pilot program, called Autohawk, to identify the location of its drivers and perform diagnostic testing on the vehicle to ensure passenger safety. In fact, Uber provides geolocation information, provided by its data visualization team, on its website at eng.uber.com/data-viz-intel. Uber integrates both Fabric and Localytics in its mobile app. Fabric provides companies, like Uber, with real-time information about the health of their app. These analytics include application crash analytics. Localytics provide location information.

As of November 2017, allegations abound about Uber’s competitor spy programs. The Waymo v. Uber lawsuit appears to indicate that Uber may have been involved in illegal espionage. A letter, submitted as evidence in this lawsuit and penned by Richard Jacobs, former Uber security executive, details Uber’s illegal practices of hiring actors to collect data and spy on their competitors. In the letter, Jacobs, who at the time had filed suit against Uber in the capacity of “whistleblower”, detailed practices that would lead to the theft of trade secrets related to competitor fares and driver incentives. To settle, Uber paid Jacobs $4.3 million at the time. His allegations have now been made public and have been used in a related case, Waymo v. Uber. In this case, a former employee allegedly sold trade secrets to Uber, prior to the company being acquired by Uber.

Communication Apps

Communication apps, such as WhatsApp, Signal, Viber, and Skype, are arguably more important than traditional cellphone or landline calls for numerous reasons. The first reason is that it is a lot easier to obtain content from these apps than to obtain a Title III Wiretap. Secondly, the content is so much richer than a traditional call or a text message. For example, consumers will share rich content, while reacting to the comments of others. In other words, you can find group chats that can link individuals and see emoticons and other reactions to messages that demonstrate personalization and behavior.

Skype

Law enforcement today understands that cellular communications generally account for a minority of smartphone communications. In fact, criminal gangs will often prefer using mobile communication apps over traditional cellular calls. Therefore, it is essential to have a good understanding of applications like Skype, Viber, enLegion, and WhatsApp.

Skype is a peer-to-peer (P2P) communication application that facilitates free video, voice, and instant messaging (IM) using a Wi-Fi connection. Skype also allows for file transfer to other Skype contacts and fee-based voice calls to landline phones and cellular phones using VoIP. Skype can be used with Mac computers, personal computers, tablets, smartphones, smart televisions, smart Blu-ray players, and game systems that include Xbox One and Sony’s PS Vita PlayStation.

There are close to 300 million active monthly users worldwide. The company was purchased by Microsoft Corporation in 2011 for $8.5 billion.
Skype Location

Location is important in terms of jurisdiction, when conducting an investigation. If the investigation is being conducted in the United States, then having a corporate location in the U.S. is helpful. However, even the presence of a server in the U.S. can enable law enforcement to subpoena that entity.

Skype is headquartered in Luxembourg but also has offices in London (U.K.), Palo Alto (U.S.A.) and Tallinn (Estonia), Prague (Czech Republic), Stockholm (Sweden), Moscow (Russia) and Singapore.

Skype Encryption

Instant messages (IM), between the Skype and chat service in the Cloud, are encrypted using TLS (transport-level security). IM between two Skype users are encrypted using AES (Advanced Encryption Standard). Voice messages are encrypted when sent to the recipient. However, when the voice message is downloaded and listened to, it is stored on the client’s computer in an unencrypted way. Skype calls are also encrypted. When the user logs in, Skype will verify the user’s public key using 1536 or 2048-bit RSA certificates.

Skype Evidence

The SQLite database file associated with Skype is main.db. The following files can be found within this SQLite database:

- DbMeta
- Contacts
- Videos
- SMSes
- CallMembers
- ChatMembers
- Alerts
- Conversations
- Participants
- VideoMessages
- LegacyMessages
- Calls
- Accounts
- Transfers
Voicemails
Chats
Messages
ContactGroups
AppSchemaVersion
MediaDocuments
MessageAnnotations
Translators
tracker_journal

The Registry key associated with Skype is located here:
HKEY_CURRENT_USER\Software\Skype.

On a Windows PC, the file is located here:
%localappdata%\Packages\Microsoft.SkypeApp_kzf8qxf38zg5c\LocalState\<Skype Name>

On a Mac, the file is located here:
~/Library/Application Support/Skype/YourSkypeName/main.db

Table 10.1 and Table 10.2 display PLists associated with applications that may be of interest to investigators. More information about PLists can be found in Chapter 12, “Mac Forensics”.

TABLE 10.1 Application PLists

<table>
<thead>
<tr>
<th>Application</th>
<th>SQLite File</th>
<th>PList</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook</td>
<td>Friends.sqlite</td>
<td>com.facebook.Facebook.plist</td>
</tr>
<tr>
<td>LinkedIn</td>
<td>com.linkedin.LinkedIn.plist</td>
<td></td>
</tr>
<tr>
<td>Dropbox</td>
<td>com.getdropbox.Dropdown.plist</td>
<td></td>
</tr>
<tr>
<td>Skype</td>
<td>main.db</td>
<td>com.skype.skype.plist</td>
</tr>
<tr>
<td>Amazon</td>
<td>com.amazon.Amazon.plist</td>
<td></td>
</tr>
<tr>
<td>eBay</td>
<td>com.ebay.iphone.plist</td>
<td></td>
</tr>
<tr>
<td>Google Maps</td>
<td>MapTiles.sqlitedb</td>
<td>com.google.maps.plist</td>
</tr>
<tr>
<td>Tinder</td>
<td>Tinder2.sqlite</td>
<td>com.tinder.Tinder.plist</td>
</tr>
<tr>
<td>WhatsApp</td>
<td>ChatStorage.sqlite</td>
<td>net.whatsapp.WhatsApp.plist</td>
</tr>
</tbody>
</table>
Table 10.2 Apple App .db Files

<table>
<thead>
<tr>
<th>Apple App</th>
<th>SQLite File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone</td>
<td>AddressBook.sqlitedb</td>
</tr>
<tr>
<td>Calendar</td>
<td>Calendar.sqlite</td>
</tr>
<tr>
<td>Phone</td>
<td>Voicemail.db</td>
</tr>
<tr>
<td>Phone</td>
<td>Call_history.db</td>
</tr>
<tr>
<td>Messages</td>
<td>Sms.db</td>
</tr>
<tr>
<td>Safari</td>
<td>Safari/History.db</td>
</tr>
<tr>
<td>Maps</td>
<td>Maps/History.plist</td>
</tr>
<tr>
<td>Siri</td>
<td>ManagedObjects.SQLite</td>
</tr>
</tbody>
</table>
Summary

Mobile forensics has become extremely important for investigations because of the wealth of evidence available. The mobile apps found on a device are beneficial because of the fact that the data contained in the SQLite database is unencrypted for many mobile applications. Furthermore, deep-linking, which links one application to another application, enables an investigator to pull data from multiple sources while only examining one application. The data available during a static analysis can include contacts, chats, location data pictures, and other important evidence. As discussed, a SQLite database is a relational database that contains a series of tables. A static analysis is not limited to extracting evidence using forensics tools but also includes a review of the application manifest. The application manifest clearly identifies permissions associated with the application, which will help to guide the investigator to look for evidence related to those permissions. A dynamic analysis can assist an investigator in understanding potential third-party evidence, which is based on an app’s connections to DNS servers when executed. Ultimately, these third-party companies can be subpoenaed for further evidence. A dynamic analysis can also determine the location of servers, associated with a mobile application, in terms of helping to identify jurisdiction. In this chapter, we spoke at length about mobile dating apps, which are important because of the extent of personal information available, primarily in the form of social media information. Dating apps are also important because we can also link people together. Grindr is particularly of interest to law enforcement because this dating app has actually been used to perpetrate crimes, especially hate crimes.

Key Terms

Android emulator: An application that simulates or runs the Android operating system in a virtual machine.

Android manifest file: A file that contains the application’s package name, its functionality, permissions, hardware and software requirements for installation.

App ID: A two-part string that identifies a development team (Team ID) and an application (bundle ID).

bundle ID: A uniform-type identifier, which is comprised of alphanumeric characters, that uniquely identifies a specific app.

GET: An HTTP method used to request data from a specific resource, like a web server.

man-in-the-middle (MITM) attack: An attempt to intercept electronic communications between two computing devices with the intent to decipher encrypted messages.

pcap file: A wireless packet that contains user data and network data related to the sender and receiver of that data.

zero-day exploit: A security vulnerability that is a threat on the day that it is discovered because a software patch, to fix the exploit, does not yet exist.
Assessment

CLASSROOM DISCUSSIONS

1. Based on what you have learned in this chapter, from a security perspective, how can you determine if a mobile application is safe to use?

2. In what ways have mobile applications helped criminals and their criminal activities?

3. Under what circumstances is it legal to use wireless packet capture tools, like Wireshark or Debookee?

MULTIPLE-CHOICE QUESTIONS

1. An .apk file is associated with which of the following systems?
 A. Android
 B. iOS
 C. Wireshark
 D. Windows

2. Which of the following refers to a wireless packet that contains user data and network data related to the sender and receiver of that data?
 A. pcap file
 B. bundle ID
 C. Android manifest file

FILL IN THE BLANKS

1. An Android ________ file contains the application’s package name, its functionality, permissions, hardware and software requirements for installation.

2. An Android ________ is an application that simulates or runs the Android operating system in a virtual machine.

3. A(n) ________ file is a wireless packet that contains user data and network data related to the sender and receiver of that data.

4. A(n) ________ ID is a uniform-type identifier, which is comprised of alphanumeric characters, that uniquely identifies a specific app.

5. A(n) ________ ID is a two-part string that identifies a development team (Team ID) and an application (bundle ID).
6. A(n) __________-day exploit is a security vulnerability that is a threat on the day that it is discovered because a software patch, to fix the exploit, does not yet exist.

7. A man-in-the-__________ attack is an attempt to intercept electronic communications between two computing devices with the intent to decipher encrypted messages.

8. __________ is an HTTP method used to request data from a specific resource, like a web server.

PROJECTS

Write an Essay about a Mobile Application

Select a popular mobile app of your choice, which is not covered in this chapter and then perform a static and dynamic analysis on the app, using the analytics tools discussed in this chapter. Describe the value of the evidence that you find from (a) a digital forensics investigator perspective and (b) an organizational security and privacy viewpoint.
Symbols

$USN_Journal, IOC, 355

Numbers

3GP wireless standard, 384–385, 416
3GP2 wireless standard, 385, 416
3GPP (3rd Generation Partnership Project), 384–385, 416
3GPP2 (3rd Generation Partnership Project 2), 385, 416
4G LTE Advanced, 383, 416
4G wireless standard, 383
5G wireless standard, 384, 573–575, 588
10-day notices, 130
800-byte files, physical layout of, 37
1980s, history of digital forensics, 15
1990s, history of digital forensics, 15–19
2000s, history of digital forensics, 20
2600: The Hacker Quarterly, 15

A

ABA (American Bankers Association)
ABA numbers, 165, 171
Federal Reserve Bank reference list, 165

ABC fire extinguishers, 170

About This Mac feature (Apple), 527
Abrahams, Jared, photo forensics, case studies, 464
admissibility of evidence, 262, 305–306
cellphone forensics, 393–396
congressional legislation
 CLOUD Act, 288
 CALEA (47 U.S.C. § 1002), 284
 Computer Fraud and Abuse Act (18 U.S.C. § 2511), 283
 Corporate Espionage (18 U.S.C. § 1030(a) (1)), 283–284
 Digital Millennium Copyright Act (DMCA) (17 U.S.C. § 1201), 286–287
 FISA-1978, 282–283
 PROTECT Act, 286
 USA PATRIOT Act (H.R. 3162), 14, 16–17, 268, 283, 284–286
 Constitutional law, 262
 criminal defense, 293–295
 Daubert test, 289
depositions, 290, 307
Discovery phase, 290–291, 307
email, 6
Fifth Amendment (U.S. Constitution), 279–280
First Amendment (U.S. Constitution), 262–263
 Doninger v. Niehoff, 527 F.3d 41 (2d Cir. 2008), 265
 Internet and, 263–265
 Miller v. California, 413 U.S. 15 (1973), 265
forensics going wrong, 296
Fourth Amendment, 265–266
certiorari, 266, 306
exclusionary rule, 266, 307
fruit of the poisonous tree, 266, 278, 308
Katz v. United States, 389 U.S. 347 (1967), 266
O’Connor v. Ortega, 480 U.S. 709 (1987), 266
Olmstead v. United States, 277 U.S. 438 (1928), 266
search warrants, 266
warrantless searches, 268–271
Weeks v. United States, 232 U.S. 383 (1914), 266
FRE, 289–290
 best evidence rule, 292–293, 306
depositions, 290, 307
expert witnesses, 290–291
FRCP, 290
hearsay, 290, 291–292, 308
Frye test, 288–289
hearsay, 290, 291–292, 308
photo forensics, 470
 analog vs digital photography, 470–471
 enhanced images, 471
FRE, 470
SWGDE, 470
records of regularly conducted activity, 291
rules for admissibility, 288–293
Sixth Amendment (U.S. Constitution), 280–281
ADN (Abbreviated Dialing Numbers), 386–387, 417
Adroit forensics, 153
ADS (Alternate Data Streams), 51
AES (Advanced Encryption Standard), 67
AFF (Advanced Forensics Format), 150, 170
AFF4 (Advanced Forensic File Format), 492, 531
Afifi, Asir, 273
AIM messages, 200
AirDrop, 531
AirPlay, 487, 531
AirPort Express, 488, 531
AirPort Extreme, 488, 531
AirPort Time Capsule, 488, 531
ALEAPP (Android Logs Events And Protobuf Parser), 399
Alerts (Google), searching for stolen property, 197
Alexa virtual assistant, 191, 578–579
algorithms, 28
Alito, Justice Samuel, 275
allocated storage space, 35–36
allocation blocks, 489–490, 531
AlphaBay, Dark Web investigations, 187–188
altered/fake images, 471
alternative volume headers, 489–490, 532
Amber Alert Bill, 16–17
AMBER alerts, 203–204, 216
AmCache, 357–358
amendments (U.S. Constitution)
 Fifth Amendment, 279–280
 First Amendment, 262–263
 Doninger v. Niehoff, 527 F.3d 41 (2d Cir. 2008), 265
 Internet and, 263–265
 Miller v. California, 413 U.S. 15 (1973), 265
 Fourth Amendment, 265–266
certiorari, 266, 306
exclusionary rule, 266, 307
fruit of the poisonous tree, 266, 278, 308
Katz v. United States, 389 U.S. 347 (1967), 266
O'Connor v. Ortega, 480 U.S. 709 (1987), 266
Olmstead v. United States, 277 U.S. 438 (1928), 266
search warrants, 266
warrantless searches, 268–271
Weeks v. United States, 232 U.S. 383 (1914), 266
 Sixth Amendment, 280–281, 306
Amero, Julie, 296
analog vs digital photography, evidence
admissibility, 470–471
analysis
electronic media analyzed (reports), 240–241
Network Analyzer, 235
static analysis of applications (apps), SQLite database, 427–431
Twitter analytics, 204–205

Android OS, 200, 216, 391, 417
ADB, 398, 417
Android Auto, 391–392
Android manifest files, 429–430, 457
applications, 399–400
Brightest Flashlight, 430
Chip-Off, 395–396
EDL mode, 396–397, 417
emulators, 431, 457
evidence, 394–396
file systems, 392
forensics tools, 398
ISP, 396, 418
JTAG, 394–395, 418
partitions, 392–393
resources, 399
security, 396
USB debugging, 398, 420

anonymity, undercover investigations
Bluffmycall.com, 181–182
Spy Dialer, 182–183

ANPR (Automatic Number Plate Recognition), 585, 588
antennas/cell towers, locating, 375
anti-forensics, 365
anti-harrassment legislation, 557
antivirus software, 151
Antoine, Cheyenne Rose, 463

appeal courts
federal courts, 256–257
intermediate appellate courts, 257
state courts, 257

APFS (Apple File Systems), 490–491, 532
AFF4, 492, 531
APFS Free Queue, 492, 532
copy-on-write feature, 491, 532
data cloning, 491, 532
encryption, 491–492
keybags, 491–492, 533
metadata, 491
snapshots, 493, 534
space sharing, 492, 534
T2 security chip, 492
tmutil snapshot [enter], 493

API (Application Programming Interfaces), 204, 216

APK files, 430–431

APOLLO tool, 525–526, 583

App ID, 428, 457

appeals courts, 255–256

appendices/exhibits (reports), 241

Apple
About This Mac feature, 527
AirDrop, 531
AirPlay, 487, 531
AirPort Express, 488, 531
AirPort Extreme, 488, 531
AirPort Time Capsule, 488, 531
Apple Configurator, 526–527, 532
Apple ID, 510
Apple TV, 487–488
Apple Watch, 485, 581–583
Series 4, 485
Series 5, 486
Data Protection, 509, 532
deploying devices, 526–527
enterprise deployments, 526–527
Health application (app), 486–487, 530
history of, 480–481

iOS
Apple ID, 510
Data Protection, 509, 532
encryption, 509–510
iOS 13, 508–509
media partitions, 508, 533
root partitions, 508, 534
security, 509–510
System Software Personalization, 508, 534
UDID, 509, 534
USB Restricted Mode, 510, 534
iPad, 485, 487, 511, 530
iPhone, 483–484, 511
 APOLLO tool, 525–526
 Apple Configurator, 526–527, 532
 backups, 517, 522–523
 batteries, 527
 checkm8, 522
 checkra1n, 522
 DFU Mode, 512–513
 enterprise deployments, 526–527
 Face ID, 517, 532
 Find My iPhone feature, 529
forensics, 511–526
iBeacon, 518, 533
iBoot, 513, 533
iCloud, 517–518, 533
 imaging software, 512
iPhone 3G, 513
iPhone 3GS, 514
iPhone 4, 514
iPhone 5, 514
iPhone 5C, 514–515
iPhone 5S, 514
iPhone 6, 514–515
iPhone 6 Plus, 514–515
iPhone 11, 516
iPhone 11 Pro, 516
iPhone 11 Pro Max, 516
KTX Snapshots, 523–524
Location Services, 518–522, 533
Mail, 518
 modes of operation, 512–513
Notes application (app), 523
 original iPhone, 513
 photos, 518, 523–524
 Recovery Mode, 513, 534
 Safari web browser, 518
 Significant Locations, 521
SIM cards, 513
stolen iPhone case study, 529
 Touch ID, 515–516, 534
 user events, 525
iPod, 482–483, 510–511
iPod Touch, 482–483
Mac, 481
 About This Mac feature, 527
 AFF4, 492, 531
 APFS, 490–493, 532
 App .db files, 456
 Apple Configurator, 526–527, 532
 Boot Camp, 92, 120, 489, 532
deleted files, 498
 DMG images, 494, 498
 email files, 501
 enterprise deployments, 526–527
 Epoch Converter, 497, 521
 Epoch time, 496–497
 forensics, 480, 492, 494–501, 527–528
 Fusion Drives, 491, 494, 533
 HFS, 489, 533
 HFS+489–490
 hibernation files, 501
 initialization, 495, 533
 IOReg Info, 495–496
 journaling, 498
 MAC addresses, finding, 337
MFS, 489, 533
PLists, 455, 499–501, 504–506
- PMAP Info, 495–496
- Quick Look, 494, 499, 534
- sleepimage files, 501, 534
- Spotlight feature, 494–495, 534
- SQLite database, 501, 505
- T2 security chip, 492
- Target Disk Mode, 506–507
- Terminal Window, 500

Mac mini, 481–482

macOS, 502
- Cache.db, 505
- Catalina, 502–503
- Cocoa, 499, 521, 522, 532
- Cookies.plist, 505
deleted files, 498
- Disk Utility, 503
displays (multiple), support for, 504
- DMG images, 494, 498
- Downloads.plist, 505
e-mail files, 501
- Epoch Converter, 497
- Epoch time, 496–497
- FileVault, 503, 532
- Gatekeeper, 502–503, 533
- hibernation files, 501
- History.plist, 504–505
- iCloud Keychain, 504, 533
- initialization, 495, 533
- IOReg Info, 495–496
- journaling, 498
- Keychain, 503
- notifications, 504, 533
- Objective-C, 499, 533
- PLists, 455, 499–501
- PMAP Info, 495–496

Safari web browser, 504–506
- sleepimage files, 501, 534
- Spotlight feature, 494–495, 534
- SQLite database, 501
tags, 504, 534
- Target Disk Mode, 506–507
- TopSites.plist, 506

Mac OS Extended. See HFS+
- mobile devices, 507–510
- System Software Personalization, 508, 534
- USB Restricted Mode, 510, 534
- Wi-Fi devices, 487–488

Apple Configurator, 526–527, 532

Application Layer (Layer 7), OSI model, 345, 365

applications (apps)
- Android OS, 399–400, 417
- APK files, 430–431
- Brightest Flashlight, 430
- communication applications, 453–456
- Cop App application (app), 235
dating applications, 441–442
 - Grindr application, 445–445
 - Tinder application, 442–445
- Digital Forensics Reference application (app), 235
digital photography apps, 465–466
documenting investigations, 234–236
- Facebook, photo forensics, 465
- Federal Rules of Evidence application (app), 236
- Flickr, 466
- FRCP application (app), 236
- Health (Apple), 486–487, 530
- Instagram, 466
- investigating, 457
 - communication applications, 453–456
dating applications, 441–450
Debookee, 433–441
dynamic analysis, 431–433
JSLint, 430–431
pcap files, 431–432, 457
rideshare applications, 450–453
SQLite database, 427–431
static analysis, 427–431
wireless monitoring, 431–433
Lock and Code application (app), 235
Network Analyzer, 235
Notes application (app), iPhone, 523
PLists, 455, 499–501
rideshare applications, 450–453
Skype, 453–455
SnapChat, 466
static analysis of applications (apps), SQLite database, 427–431
Strava application (app), 579–580
System Status application (app), 235
Uber application, 451–453
Windows 8.1, 81
wireless monitoring, 431–433
zero-day exploits, 426, 457
APT (Advanced Persistent Threats), 314–315, 349–350, 364, 365
archives (website), 189–190
Arizona v. Gant, 2009, 271, 278
ARP (Address Resolution Protocol), 365
OSI model, 342
requests, 321–322
Articles of the Constitution, 254
ASCII (American Standard Code for Information Interchange), hexadecimal numbers
hexadecimal to ASCII conversion, 44–45
hex editors, 46
ASCLD (American Society of Crime Laboratory Directors), 127, 171
ASCLD/LAB, 127–129, 171
assistants (digital)
Alexa, 191, 578–579
Cortana, 82–83
Assisted GPS, 414, 417
ATM skimmers, 166–167, 171
attacks
APT, 314–315
botnets, 577
cryptojacking, 577–578, 588
malware, VPN, 178
MITM attacks, 433, 457
network attacks, investigating, 357
AmCache, 357–358
EDR, 359
Kibana, 359
Log2Timeline, 359
RAM, 357
SANS SIFT workstation, 360–361
ShellBags, 358
ShimCache, 358
VSC, 358
Windows Registry, 361–363
Trojan horses, 210, 218, 367
zero-day exploits, 426, 457
Zeus, 210, 218
attorneys, standby council, 564
attorneys
defense attorneys, 293–294, 307
standby council, 564
AuC (Authentication Center), 383, 417
auditing, laboratory access, 156
Auernheimer, Andrew “weev”283
authentication, AuC, 383, 417
Autopsy Video Triage, 213
AXIOM, 145, 212
background searches, 177, 191–192
 blogs, 202
dynamic IP addresses, 207
Google Groups, 201
IM, 197–200
IPv4 addresses, 206–207
law enforcement access, 208–209
locating suspects, 207
metadata, 207
personal information, 192–195
personal interests, 195–196
professional networks, 205–206
public records, 206
router forensics, 207–208
social media, 196
social networking websites, 202–205
stolen property, 196–197
usenet groups, 200–201
user groups, 196
backup keybags, 492
backups
 iPhone, 517, 522–523
 Windows 7
 backing up to networks, 71–72
 Backup and Restore Center, 69–71
bad sectors, 36
BALCO (Bay Areas Laboratory Company), 268
bash boards, 558, 563
Bates, James, 579
batteries
 cellphones, 390
 iPhone, 527
Bayonet (Operation), Dark Web investigations, 187–188
BD (Blue-ray Discs), 115–116, 120

best evidence rule, 292–293, 306
BHO (Browser Help Objects), 365
Bill of Rights, The, 254, 262, 306
binary to decimal file conversion, 42
biographies (reports), 240
biometrics, Windows 7, 69
BIOS (Basic Input/Output System)
 defined, 48
 viewing, 48–49
Bitcoin, 188, 216
 Bitcoin miners, 189, 216
 Bitcoin tumblers, 189, 216
 Bitcoin wallets, 188–189, 216
 blockchains, 189, 217
 identities, generating, 178
BitLocker, 10–11, 28
BitLocker To Go, 72
BitPim, 406–407
bit-stream imaging tools, 4, 28. See also forensic imaging software
BitTorrent, 191, 216
Blackbag Technologies
 IOReg Info, 495–496
 PMAP Info, 495–496
BlackBerry 10, RIM OS, 400
BlackLight, 150
blockchains, 189, 217
blogs
 background searches, 202
 Blog Search Engine, 202
Bluffmcall.com, 181–182
BMP files, 469, 474
Bohach v. City of Reno, 282
Boot Camp, 92, 120, 489, 532
boot process, 48–49
bootloaders, 396, 417
bootstrapping, 48
Boston Massacre, 293
botnets, 577
BRB Publications, Inc. 206
Breivik, Anders Behring, 202
Brightest Flashlight, 430
brightness (images), 471, 474
Britton, Craig, 464
Brown, Governor Jerry, 278
browsers, 367
 Edge web browser, 82
 viewing websites visited, 215
WebCacheV01.dat, 215, 218
InPrivate Browsing, Internet Explorer, 76–77
 network forensics, 318–319
Safari, 504
 Cache.db, 505
 Cookies.plist, 505
 Downloads.plist, 505
 History.plist, 504–505
 iPhone, 518
 TopSites.plist, 506
 webpage reviews, 504–505
 for Windows, 506
 Windows 7, 76–77
brute force attacks, 151, 171
BSC (Base Station Controllers), 377, 417
BTK killer, 117–118, 555–557, 563
BTS (Base Transceiver Stations), 373, 374–377, 417
budgets, computer forensics laboratories, 154
Bulger, James "Whitey" 204
bundle ID, 428, 457
burden of proof, 260–261, 306
BWC (Body Wear Cameras), 584, 588
bytes
 800-byte files, physical layout of, 37
 conversion table, 38–39
 defined, 36

C
C2 (Command and Control), Intrusion Kill Chains, 352
CabinCr3w hactivist, 529
cabinets, computer forensics laboratories, 137
cabling
 FireWire cabling, 105–106, 121, 506–507, 532
 SATA, 95–96, 97
 ZIF cables, SATA, 96–97
Cache.db, 505
calculating IP subnet masks, 334–335
CALEA (Commission on Accreditation for Law Enforcement Agencies), 284
California v. Nottoli, 277–278
cameras (digital), 141–142. See also photo forensics
 BMP files, 469, 474
 BWC, 584, 588
cellphones, 390–391
 DCIM, 465, 474
digital photography apps, 465–466
 DNG, 469, 474
 DSCN, 465, 475
 EXIF, 152, 466–467, 475
 file types, overview of, 467–468
 GIF files, 469, 475
 JPEG files, 468, 475
 PNG files, 469, 475
 RAW files, 468–469, 475
 TIFF files, 469, 475
capacity of hard disks, determining, 38
capturing online communications
 AXIOM, 212
cookies, 214
capturing online communications
 AXIOM, 212
 cookies, 214
 screen captures, 212–213
 video, 213–214
 websites visited, 215
Carpenter v. United States, 278–279
CART (Computer Analysis and Response Teams), 15, 29

carving files, 145, 153, 171

case studies, 538, 563
 - BTK killer, 555–557, 563
 - cyberbullying, 558–561
 - GPS tracking, 414
 - Las Vegas Massacre, 549–550
 - Mac forensics, 529–530
 - Major League Baseball (MLB), 561–562, 563
 - Moussaoui, Zacharias, 551–555, 563

photo forensics, 463, 471
 - Abrahams, Jared, 464
 - Antoine, Cheyenne Rose, 463
 - Britton, Craig, 464
 - Cole, Special Agent Jim, 463–464
 - extortion, 464
 - Gargol, Brittney, 463
 - INTERPOL, 471–473
 - IsAnybodyDown website, 464
 - Keating, Stephen, 463–464
 - NYPD Facial Recognition Unit, 473
 - Paul, Christopher Neil, 471–473
 - Wolf, Miss Teen USA Cassidy, 464

Silk Road, The, 538–549, 563

warrantless searches, 271

Catalina (macOS), 502–503

catalog files, 489–490, 532

Catalog ID, 489–490, 532

cause (probable), 267

CCPA (California Consumer Privacy Act), 294

CCTV (Closed-Circuit Television), 8–9, 29

CD (Compact Discs), 113–114, 120
 - lands, 113–114, 121
 - pits, 113–114, 121
 - sessions, 114, 115, 122

 tracks, 36, 114, 122

CDMA (Code Division Multiple Access), 385, 417

CDMA2000, 385, 417

CDR (Call Detail Records), 377–378, 412–413, 417

CD-ROM, frames, 114, 121

CD-RW (CD-Rewritable), 114–115

Celebrite UFED, 399, 408

cell sites, 374, 417

cellphones
 - accelerometers, 390, 417
 - Android OS, 391, 417
 - ADB, 398, 417
 - Android Auto, 391–392
 - applications, 399–400
 - Chip-Off, 395–396
 - EDL mode, 396–397, 417
 - evidence, 394–396
 - file systems, 392
 - forensics tools, 398
 - ISP, 396, 418
 - JTAG, 394–395, 418
 - partitions, 392–393
 - resources, 399
 - security, 396
 - USB debugging, 398, 420

 - batteries, 390
 - cameras, 390–391
 - charging, 405–406
 - features, identifying, 404
 - forensics, 10, 372–374, 406, 416
 - 3GP, 384–385, 416
 - 3GP2, 385, 416
 - 4G, 383
 - 4G LTE Advanced, 383, 416
 - 5G, 384, 588
admissibility of evidence, 393–396
ADN, 386–387, 417
Android OS, 398, 417
AuC, 383, 417
BitPim, 406–407
BTS, 373, 374–377, 417
CDMA, 385, 417
CDMA2000, 385, 417
CDR, 377–378, 412–413, 417
Celebrite UFED, 408
containment devices, 403–404, 406
documenting investigations, 415
E3, 407–408
EDGE, 384–385, 417
EIR, 383, 417
evidence, 388–389
FCC-ID, 380, 404
Fernico ZRT 3, 408–409
flasher boxes, 409, 418
FPLMN, 386–387, 418
global satellite service providers, 410
GPS devices, 413–414
GrayKey, 406
GRPS, 384–385
GSM, 384, 418
handsets, 406
HLR, 382, 418
iDEN, 385
identifying cellphone features, 404
IMEI, 378–379, 381–382, 418
IMSI, 381, 418
international numbering plans, 382–383
ISPC, 382, 418
ITU, 384
legal considerations, 410–411
LND, 386–387, 418
logical versus physical examinations, 408
manual examinations, 408–409
MCC, 381, 418
MEID, 379, 418
MiFi, 383, 419
MMS, 389, 419
MNO, 383, 419
MOBILedit! Forensic, 407
MSIN, 381, 419
MSISDN, 381, 419
multiplexing, 385, 419
MVNO, 383, 419
NCIC, 209, 218, 411–412, 419
Project-a-Phone, 408–409
PUC, 388, 419
PUK, 377–378, 388, 419
RCS, 389, 419
satellite communication services, 410
SIM cards, 381–382, 385–388
SMS, 388–389, 419
SOP, 401–406
subscribers, 377–378, 382–383, 420
subsidy locks, 379, 420
TAC, 378, 420
TDMA, 384, 420
TMSI, 382, 386–387, 420
UMTS, 385, 420
VLR, 382, 420
W-CDMA, 384, 420, 384
 global satellite service providers, 410
 handsets, 389
jammers, 155–156, 171
memory, 389–390
RIM OS, 400, 419
Samsung Galaxy, 393
Symbian OS, 400, 420
Windows 10 Mobile, 400, 420
cellular networks, 417
- 3GP, 384–385, 416
- 3GP2, 385, 416
- 4G, 383
- 4G LTE Advanced, 383, 416
- 5G, 384, 573–575, 588
- ADN, 386–387, 417
- AuC, 383, 417
- BSC, 377
- BTS, 373, 374–377, 417
- CDMA, 385, 417
- CDMA2000, 385, 417
- cell sites, 374, 417
- cell towers/antennas, locating, 375
- EDGE, 384–385, 417
- EIR, 383, 417
- FCC-ID, 380, 404
- FPLMN, 386–387, 418
- GRPS, 384–385
- GSM, 384, 418
- hard/soft handoffs, 377, 418, 420
- HLR, 382, 418
- ICCID, 381–382, 418
- iDEN, 385
- IMEI, 378–379, 381–382, 418
- IMSI, 381, 418
- international numbering plans, 382–383
- ISPC, 382, 418
- ITU, 384
- LND, 386–387, 418
- MCC, 381, 418
- MEID, 379, 418
- MiFi, 383, 419
- MMS, 389, 419
- MNO, 383, 419
- Mobile Stations, 378–383, 419
- MSC, 374, 419
- MSIN, 381, 419
- MSISDN, 381, 419
- multiplexing, 385, 419
- MVNO, 383, 419
- PSTN, 374, 419
- PUC, 388, 419
- PUK, 377–378, 388, 419
- RCS, 389, 419
- SIM cards, 381–382, 385–388
- SMS, 388–389, 419
- subscribers, 377–378
- authentication, 382–383
- records, 377–378, 420
- subsidy locks, 379, 420
- TAC, 378, 420
- TDMA, 384, 420
- TMSI, 382, 386–387, 420
- UICC, 379, 420
- UMTS, 385, 420
- VLR, 382, 420

W-CDMA, 384, 420, 384

CERT (Computer Emergency Response Teams), 21
certifications, digital forensic training, 22–26
certiorari, 266, 306
CF (CompactFlash) cards, 110, 120
CF (Core Foundation), 499, 532
chain of custody, 2, 28, 229–230
chain of events, email, 5
charging cellphones, 405–406
check fraud
- Federal Reserve Bank reference list, 165
- GREP searches, 165–166
checkm8, 522
checkra1n, 522
children
- CIRCAMP, 18
cyberbullying, 557
anti-harassment legislation, 557
defined, 558
warning signs of, 557–558
E.U. legal system, child pornography directives, 302–303
ICAID, 18
juvenile courts, 258, 308
NCMEC
 history of digital forensics, 15
 photo forensics, 462–463
 Project VIC, 463–464
 United States v. Tank, 292
Chinese legal system, 304
Chip-Off, 395–396
CIRCAMP (COSPOL Internet Related Child Abuse Material Project), 18
City of Ontario v. Quon, 282
City, State, Zip code expressions (GREP), 162
Civil law, 254, 306
civil trials versus criminal trials, 261–262
Civil War (U.S.), The, 253
claims court (small), 258
Class A networks, subnet masks, 332
Class B networks, subnet masks, 332
Class C networks, subnet masks, 332
"Clear Web"184
Clementi, Tyler, 559–560, 563
client computers, 9, 28
Clinton, U.S. President Bill, 183
cloning
data, 491, 532
devices, 98, 120, 137
 ImageMASSter Solo IV Forensic, 101
 Mac, 506–507
hard disk drives
 PATA, 97
 SATA, 97
SIM cards, 388
CLOUD (Clarifying Lawful Overseas Use of Data) Act, 288
cloud computing
 iCloud, 517–518, 533
 iCloud Keychain, 504, 533
clusters, 36
CNN (Cable News Network), photo forensics case studies, 463–464
Cocoa, 499, 521, 522, 532
Codified law, 254, 306
COFEE (Computer Online Forensic Evidence Extractor), 72
CoinMarketCap, 188
Cole, Special Agent Jim, 463–464
colleges/universities, digital forensic training, 22
color balance (images), 471, 474
common law, 254, 306
communication
 applications (apps), 453–456
capturing online communications
 AXIOM, 212
 cookies, 214
 screen captures, 212–213
 video, 213–214
 websites visited, 215
 skills (digital forensics), 11
CompactFlash, CF cards, 110, 120
comprehensive reports, creating, 238, 239
 biographies, 240
 cover pages, 239
 executive summaries, 239
 exhibits/appendices, 241
 findings of reports, 241
 glossaries, 241–242
 graphics, 238
 investigative details connected to the case, 241
 methodologies, 240, 246
 proper/improper statements, 241
ASCLD/LAB

purpose of investigation, 240
structure of, 238–242

compression (file), 51

compromise (IOC), indicators of, 354, 357

$USN_Journal, 355
DLL files, 354
e-mail, 354
event logs, 355–357
MFT, 355
MRU lists, 356
ports, 355
Prefetch files, 355
PSEexec, 356
RAM, 357
Registry keys, 354
ServiceDLL, 354
svc.host.eve, 354
System32, 355
UserAssist, 357

computer forensics

imaging software, 143
myths about, 3–4

computer forensics laboratories, 126, 170

accessing, 155
 auditing access, 156
data access, 155–156
determining laboratory location, 157
physical security, 156
sign-in sheets, 156
antivirus software, 151

ASCLD/LAB, 127–129, 171

budgets, 154
cabinets, 137
cloning devices, 137
digital cameras, 141–142
e-mail preparation laboratories, 131
energy requirements, 153
ergonomics, 154
evidence
 acquisition laboratories, 131
 bags, 142
 labels, 143
 lockers, 136, 171
extracting evidence from devices, 157
 ATM skimmers, 166–167, 171
 dd command, 157–158
 EGREP, 160–161, 171
 FGREP, 161–162, 171
 GREP, 158–160, 162–166, 172
 magstripe readers, 166–167, 172
 parasites, 166, 172
 skimmers, 166–168
 steganalysis, 168, 172
 steganography, 168–169, 172
Faraday rooms, 135
field kit storage units, 134–135
flashlights, 141
guidelines/standards, 127–130
harvest drives, 140
imaging software, 143, 144
 AXIOM, 145
 BlackLight, 150
differences between tools, 143–144
 DriveSpy, 144
 E01 file format, 150, 171
 EnCase, 150
 EnScript, 150, 171
 F-Response, 145
 FTK, 7, 145, 149–150
 FTK Imager, 145, 146–149
 Guidance Software (opentext), 150
 ILook, 144
 Mac Marshal, 150
 Mobilyze, 145
PALADIN, 145
TSK, 144
WinHex, 144
X-Ways Forensics software, 144
inventory control, 131
ISO/IEC 17025.2017, 129
laboratory information management systems, 131–132
layout of, 132–133
managing, 154–155
password-cracking software, 151
photo forensics, 152
 Adroit forensics, 153
evidence, 152–153
EXIF data, 152
file formats, 152
metadata, 152
private-sector computer forensics laboratories, 130
safety, 153–154
security, physical security, 156
SIM card readers, 139–140
SWDGE, 129–130, 172
toolkits, 141
VMware, 151
web hosting, 132
workbenches, 134, 172
workstations, 133
write-blockers, 137–139

Computer Fraud and Abuse Act (18 U.S.C. § 2511), 283

computer hardware, 92–93
 CF cards, 110, 120
 cloning devices, 98, 120
 ImageMASSter Solo IV Forensic, 101
disk controllers, 94, 121
FireWire cabling, 105–106, 121, 506–507, 532
flash drives, 106
hard disk drives, 93
 cloning devices, 98–101
 external hard drives, 107–108
HPA, 99, 100, 121
IDE, 93, 121
SATA, 95–97, 121
SCSI, 93–94, 122
memory
 flash memory cards, 111–112
 frames, CD-ROM, 114, 121
 Memory Sticks, 110, 121
 RAM, 103–104
 removable memory, 105
 xD Picture Cards, 111, 122
MMC, 108, 121
pits, CD, 113–114, 115, 121, 122
RAID, 104, 121
SD cards, 109–110, 112–113, 121
sessions, CD, 122
SSD, 101–103, 122
 garbage collection, 102, 103, 121
 TRIM function, 122
 write-blockers, 109, 112
storage
 BD, 115–116, 120
 CD, 113–114, 120, 121
 CD-RW, 114–115
 DVD, 115, 120
 floppy disks, 116–118, 121
 magnetic tapes, 114–115, 121
 zip disks, 118, 122
tracks (CD), 36, 114, 122

computer science knowledge (digital forensics skills), 10–11
computer security, 29
computer toolkits, 141
computer worksheets, documenting investigations, 230–231
confidentiality (digital forensics skills), 12
Configurator (Apple), 526–527
Confrontation Clause, Sixth Amendment (U.S. Constitution), 281, 306
congressional legislation
 CLOUD Act, 288
 CALEA, 284
 Computer Fraud and Abuse Act (18 U.S.C. § 2511), 283
 Corporate Espionage (18 U.S.C. § 1030(a)(1)), 283–284
 DMCA, 286–287
 FISA-1978, 282–283
 PROTECT Act, 286
 USA PATRIOT Act (H.R. 3162), 14, 16–17, 268, 283, 284–286
consent, Indian legal system, 304
Constitution (U.S.), 254
 Fifth Amendment, 279–280
 First Amendment, 262–263
 Doninger v. Niehoff, 527 F.3d 41 (2d Cir. 2008), 265
 Internet and, 263–265
 Miller v. California, 413 U.S. 15 (1973), 265
 Fourth Amendment, 265–266
 certiorari, 266, 306
 exclusionary rule, 266, 307
 fruit of the poisonous tree, 266, 278, 308
 Katz v. United States, 389 U.S. 347 (1967), 266
 O’Connor v. Ortega, 480 U.S. 709 (1987), 266
 Olmstead v. United States, 277 U.S. 438 (1928), 266
 search warrants, 266
 warrantless searches, 268–271
 Weeks v. United States, 232 U.S. 383 (1914), 266
 Sixth Amendment, 280–281, 306
 Supreme Court, The, 256
Constitutional law, 254, 262, 306
consumer access/editing, Indian legal system, 304
Container Keybags, 491, 532
containment devices, cellphone forensics, 403–404, 406
contempt of court, 260, 307
Contents (reports), Table of, 239
continuous learning (digital forensics skills), 12
contrast (images), 471, 474
control of email, 5–6
control characters, hexadecimal to ASCII conversion, 45
converting files, 42
 binary to decimal, 42
 hexadecimal numbers
 conversion table, 42–43
 hex converters, 45
 hex editors, 45–46
 hexadecimal to ASCII conversion, 44–45
 hexadecimal to decimal file conversion, 43
 hexadecimal to file type conversion, 47
cookies, 217
 flash cookies, 214, 217
 persistent cookies, 214, 218
 session cookies, 214, 218
 viewing, 214
Cookies.plist, 505
Cop App application (app), 235
copy-on-write feature (APFS), 491, 532
CoreStorage, 532
Corporate Espionage (18 U.S.C. § 1030(a)(1)), 283–284
Cortana, 62–83
counter-proliferation, 217
courts
appeals courts, 255–256
burden of proof, 260–261, 306
Court of Justice of the European Union, 297, 307
court orders, 272, 307
criminal trials versus civil trials, 261–262
cross-examination, 260–261, 307
deliberations, 261, 307
direct examination, 260–261, 307
federal courts
appellate courts, 256–257
jurisdiction, 256
Supreme Court, The, 256
U.S. District Courts, 257
felonies, 261, 307
juries, 260
contempt of court, 260, 307
foreperson, 260, 307
grand juries, 308
hung juries, 261, 308
indictments, 308
sequestration, 260, 308
voir dire, 260, 309
misdemeanors, 261, 308
opening statements, 260–261
procedural overview, 259–260
state courts, 257
appellate courts, 257
family courts, 258, 307
intermediate appellate courts, 257
juvenile courts, 258, 308
municipal courts, 258, 308
New York Trial Courts, 258–259
probate courts, 258, 309
small claims courts, 258, 309
traffic courts, 258, 309
trial courts of general jurisdiction, 258–259
trial courts of limited jurisdiction, 258
verdicts, 261
courts (U.S.), 254–255
admissibility of evidence, 262
Constitutional law, 262
First Amendment (U.S. Constitution), 262–265
Fourth Amendment (U.S. Constitution), 265–279
appeals courts, 255–256
burden of proof, 260–261, 306
court orders, 272, 307
criminal defense, 293
CCPA, 294
defense attorneys, 293–294, 307
NYS DFS Rule 23 NYCRR 500, 294–295
PIPEDA, 295
criminal trials versus civil trials, 261–262
cross-examination, 260–261, 307
deliberations, 261, 307
direct examination, 260–261, 307
en banc, 561, 563
federal courts
appellate courts, 256–257
jurisdiction, 256
Supreme Court, The, 256
U.S. District Courts, 257
felonies, 261, 307
judges, 255, 308
juries, 260
contempt of court, 260, 307
foreperson, 260, 307
grand juries, 308
hung juries, 261, 308
indictments, 308
sequestration, 260, 308
voir dire, 260, 309

misdemeanors, 261, 308

motion in limine, 267, 308
Ninth U.S. Circuit Court of Appeal’s, 268
opening statements, 260–261
pro se, 552
procedural overview, 259–260
standby council, 564
state courts, 257
appellate courts, 257
family courts, 258, 307
intermediate appellate courts, 257
juvenile courts, 258, 308
municipal courts, 258, 308
New York Trial Courts, 258–259
probate courts, 258, 309
small claims courts, 258, 309
traffic courts, 258, 309
trial courts of general jurisdiction, 258–259
trial courts of limited jurisdiction, 258
verdicts, 261

cover pages (reports), 239

CPI (Counterfeit and Counter-proliferation Investigations), 211, 217

credit cards for sale, 210

Creepy, background searches

geodata, 203
locating suspects, 207

crime (online), 209

CPI, 211
credit cards for sale, 210
cyberbullying, 211
electronic medical records, 210–211
identity theft, 210
social networking, 211–212

crime scenes, documenting, 226

CSI equipment, 228–229
evidence
evidence lists, 226–227
seizing, 227
on-scene examinations, 227–228

criminal defense, 293

CCPA, 294
defense attorneys, 293–294, 307
NYS DFS Rule 23 NYCRR 500, 294–295
PIPEDA, 295

Criminal Procedure, Rules of, 270

criminal trials versus civil trials, 261–262
cropping images, 471, 474
cross-examination, 260–261, 307
cryptanalysis, 151, 171

crypto-currencies

Bitcoin, 188, 216

Bitcoin miners, 189, 216
Bitcoin tumblers, 189, 216
Bitcoin wallets, 188–189, 216
blockchains, 189, 217
identities, generating, 178
CoinMarketCap, 188
cryptojacking, 577–578, 588
Fiat currency, 188, 217
FinCEN, 188
history of digital forensics, 20
identities, generating, 178
IRS, 188
Linden dollars, 188
taxes, 188
Venmo, 189
Vicemo, 189
CSI (Crime Scene Investigation), equipment, 228–229
CTIN (Computer Technology Investigators Network), 21–22, 29
CUPS (Control and User Plane Separation), 574, 588
curtilage, 273, 307
custody, chain of, 2, 28, 229–230
C-V2X (Cellular Vehicle-to-Everything), 585, 588
Cyber Kill Chains, 350
 C2, 352
delivery, 352
DLL side-loading, 353
exfiltration, 352
exploitation, 352
job postings, 351
persistence, 353
press releases, 351
reconnaissance, 350–352
remediation, 354
technical forums, 351
TTP, 352–353
weaponization, 352
YARA, 353
cyberbullying, 211, 557
 anti-harrassment legislation, 557
bash boards, 558, 563
case studies, 558–561
defined, 558
doxing, 505, 560, 563
flaming, 558, 563
happy slapping, 558, 564
impersonation, 558, 564
online polls, 558, 564
outing, 558, 564
sexting, 558, 564
tricking, 558, 564
warning signs of, 557–558
Cyborg, 349
cylinders, 38

D
D2D (Device-to-Device), 574, 589
Dark Web investigations
 AlphaBay, 187–188
 Freenet, 186
 I2P, 186
 marketplaces, 186–188
 Operation Bayonet, 187–188
 OSINT Framework, 184
 PlayPen, 187
 Silk Road, The, 187, 188
 Tails, 185, 218
 Tor, 184–185, 218
data access, computer forensics laboratories, 155–156
data cloning, 491, 532
data forks (HFS), 489, 532
Data Link Escape, 45
Data Link Layer (Layer 2), OSI model, 342
data packets, 366
data privacy
 E.U. legal system, 209, 298
 Indian legal system, 304
Data Protection (Apple), 509, 532
data storage
 BD, 115–116, 120
 CD, 113–114, 120
 lands, 113–114, 121
 pits, 113–114, 121
 sessions, 114, 115, 122
 TOC, 114, 122
 tracks, 36, 114, 122
 CD-RW, 114–115
 DVD, 115, 120
floppy disks, 116–118, 121
magnetic tapes, 114–115, 121
wear-leveling, 122
zip disks, 118
databases (SQLite), 420, 501
applications (apps), investigating, 427–431
Cache.db, 505
Mac forensics, 501
Tinder SQLite database, 427–429
dates and times
 Epoch time, 496–497
 HFS+490
dating applications (apps), 441–442
 Grindr application, 445–450
 Tinder application, 442–445
Daubert v. Merrell Dow Pharmaceuticals, 289
DCF (Design Rule for Camera File System), 465, 474
DCIM (Digital Camera IMages), 465, 474, 475
dd command, 119, 120, 157–158
DeadAim, 198, 217
Debookee, 433–441
debugging
 ADB, 398, 417
 USB debugging, 398, 420
decimal numbers
 binary to decimal file conversion, 42
 hexadecimal to decimal file conversion, 43
default gateways, 321, 365
defendants, 253, 307
defense (criminal), 293
 attorneys, 307
 CCPA, 294
defense attorneys, 293–294, 307
 NYS DFS Rule 23 NYCRR 500, 294–295
 PIPEDA, 295
defragmentation, Vista, 63–64
deleted files, macOS, 498
deliberations, 261, 307
delivery (Intrusion Kill Chains), 352
deploying Apple devices, 526–527
depositions, 290, 307
desktops, Windows 8.1, 80–81
DFU Mode, 512–513, 532
DHCP servers, 365
 ARP requests, 321–322
default gateways, 321
 Event Viewer, 322
 logs, 322–324
 network forensics, 317–321
 subnet masks, 321
 viewing service activity, 322
DHS (Department of Homeland Security)
 federal, state, local information exchange, 208
 history of digital forensics, 16–17
dictionary attacks, 151, 171
digital assistants
 Alexa, 191, 578–579
 Cortana, 82–83
digital cameras, 141–142. See also photo forensics
 BMP files, 469, 474
 BWC, 584, 588
cellphones, 390–391
 DCIM, 465, 474
digital photography apps, 465–466
 DNG, 469, 474
 DSCN, 465, 475
 EXIF, 152, 466–467, 475
 file types, overview of, 467–468
 GIF files, 469, 475
 JPEG files, 468, 475
 PNG files, 469, 475
 RAW files, 468–469, 475
 TIFF files, 469, 475
digital evidence, 136

digital forensics, 29

defined, 2
history of, 14–15, 27–28
1980s, 15
1990s, 15–19
2000s, 20
Amber Alert Bill, 16–17
DHS, 16–17
DoD, 16
ECTF, 16–17
encryption, 20
FARC, 16
FBI, 15
fusion centers, 18–19
INTERPOL, 17–18
IoT, 20
IRS, 16
NCMEC, 15
PC, 15
PROTECT Act, 16–17
RCFL, 18–19
Snowden, Edward, 20
USSS, 16–17
virtual currencies, 20
Digital Forensics Reference application (app), 235
importance of, 12–13
investigator skills
communication skills, 11
computer science knowledge, 10–11
confidentiality, 12
continuous learning, 12
legal expertise, 11
linguistic abilities, 12
programming, 12
job opportunities, 13–14
photo forensics, 464, 474

BMP files, 469, 474
brightness, 471, 474
case studies, 471–473
color balance, 471, 474
contrast, 471, 474
cropping images, 471, 474
DCF, 465, 474
DCIM, 465, 474
digital photography apps, 465–466
DNG, 469, 474
dscn, 464, 475
enhanced images, 471
evidence admissibility, 470–473
EXIF, 152, 466–467, 475
EXIFextracter, 467
ExifTool, 467
Facebook, 465
fake/altered images, 471
file systems, 464–465
file types, overview of, 467–468
Flicker, 464
GIF files, 469, 475
Instagram, 466
JPEG files, 468, 475
linear filtering, 471, 475
megapixels, 467–468, 475
pixels, 467–468, 475
PNG files, 469, 475
raster-based graphics, 467–468
RAW files, 468–469, 475
SnapChat, 466
SWGIt, 471, 475
TIFF files, 469, 475
tumbcache.db, 469
vector graphics, 468, 475
professional certifications, 22–26
recovered evidence, types of, 5
cellphones, 10
email, 5–6
images, 7–8
IoT, 10
video, 8–9
training/education, 21
colleges/universities, 22
high schools, 22
law enforcement, 21–22
digital surveillance, search warrants, 272–273
digital vs analog photography, evidence admissibility, 470–471
direct examination, 260–261, 307
Discord, 200
discovery periods, 132, 171
Discovery phase (trials), 290–291, 307
disk controllers, 94, 121
disk geometry, 38
disk images, 97, 121
Disk Signatures, 49
disk storage
BD, 115–116, 120
CD, 113–114, 120
lands, 113–114, 121
pits, 113–114, 121
sessions, 114, 115, 122
TOC, 114, 122
tracks, 36, 114, 122
CD-RW, 114–115
DVD, 115, 120
floppy disks, 116–118, 121
zip disks, 118, 122
Disk Utility (macOS), 503
Disney, stolen iPhone case study, 529
displays (multiple), macOS support, 504
disposable email services, 179–181
District Courts (U.S.), 257

DLL (Dynamic Link-Layer), 365
IOC, 354–354
ServiceDLL, 354
side-loading (Intrusion Kill Chains), 353
DMCA (Digital Millennium Copyright Act), 286–287
DMG images, 494, 498, 532
DNG (Digital Negatives), 469, 474
DNS (Domain Name System), 365
network forensics, 326–327
protocol, 328
documenting investigations, 224, 245
cellphone forensics, 415
Chain of Custody forms, 229–230
Cop App application (app), 235
crime scenes, 226
evidence lists, 226–227
on-scene examinations, 227–228
seizing evidence, 227
CSI equipment, 228–229
Digital Forensics Reference application (app), 235
expert witnesses, 242, 246
goals of, 242
preparing for trial, 243–244
role of, 242
tips for prosecution, 244
Federal Rules of Evidence application (app), 236
FragView, 234
FRCP application (app), 236
hard disk drive worksheets, 232
ISP, obtaining evidence from, 224–225
lay witnesses, 243, 246
Lock and Code application (app), 235
Network Analyzer, 235
photos, 231
preservation orders, 225, 246
reports, 238, 239
 biographies, 240
cover pages, 239
DST, 236–237, 246
electronic media analyzed, 240–241
executive summaries, 239
exhibits/appendices, 241
findings of reports, 241
forensic tools, 236
glossaries, 241–242
graphics, 238
investigative details connected to the case, 241
methodologies, 240, 246
proper/improper statements, 241
purpose of investigation, 240
structure of, 238–242
time zones, 236–238
server worksheets, 233–234
System Status application (app), 235
tagged evidence, 229
tools/applications, 234–236
DoD (Department of Defense), history of digital forensics, 16
dogs, vehicle forensics, 586–587
DOJ (U.S.), warrantless searches, 268
Doninger v. Niehoff, 527 F.3d 41 (2d Cir. 2008), 265
Downloads.plist, 505
doxing, 560, 563
DriveSpy, 144
drones, 584
DSCN (Digital Still Capture Nikon), 465, 475
DST (Daylight Savings Time), documenting investigations, 236–237, 246
Dual Shot, 393
DVD (Digital Video Disks), 115, 120
dynamic analysis, applications (apps), 431–433
dynamic IP addresses, 207, 217
E
E01 forensic disk image file format, 150, 171
E3, 407–408
ECTF (Electronic Crimes Task Forces), 16–17, 29
EDGE (Enhanced Data Rates for GSM Evolution), 384–385, 417
Edge web browser, 82
 WebCacheV01.dat, 215, 218
 websites visited, viewing, 215
eDiscovery, 13, 29, 130, 171
EDL mode, 396–397, 417
EDR (Endpoint Detection and Response), 359
education/training, 21
 colleges/universities, 22
 high schools, 22
 law enforcement, 21–22
 professional certifications, 22–26
EGREP (Extended Global Regular Expressions Print), 160–161, 171
EIR (Equipment Identity Register), 383, 417
electronic media analyzed (reports), 240–241
electronic medical records, 210–211
email
 accounts, generating, 179
 GuerillaMail, 179–180
 mail expire, 180
 Mailinator, 181
 as digital evidence, 5
 accessibility, 6
 admissibility, 6
chain of events, 5
control, 5–6
intent, 5–6
ownership, 5–6
prevalence, 6
tampering with evidence, 6
disposable email services, 179–181
e-mail preparation laboratories, 131
identities, generating, 178
IOC, 354
Mac forensics, 501
macOS email files, 501
Mail, iPhone, 518
MIME, 326, 365
network forensics, 325–326
SMTP servers, 325–326
United States v. Ziegler, 267

Email Address expressions (GREP), 162
emulators, Android OS, 431, 457
en banc, 561, 563
EnCase, 150
encryption, 9, 29
AES, 67
APFS, 491–492
FileVault (macOS), 503, 532
history of digital forensics, 20
iOS, 509–510
KEK, 491, 533
OpenPGP, network forensics, 330
PGP encryption
 network forensics, 329–330
 OpenPGP, 330
VEK, 491, 534
End of Sector Markers, 49
endpoints, EDR, 359
energy requirements, computer forensics laboratories, 153
Enhanced 911, 414, 417
enhanced images, admissibility of evidence, 471
EnScript, 150, 171
Epoch Converter, 497, 521
Epoch time, 496–497
ergonomics, computer forensics laboratories, 154
eSATA connectors, 96, 121
escrow keybags, 492
ESI (Electronically Stored Information), 130, 171
ESN (Electronic Serial Numbers), 417
E.U. (European Union). See also U.K.
data privacy, 209, 298
European Commission, 307
legal system, 296–297
 ACPO, 303
 child pornography directives, 302–303
 Court of Justice of the European Union, 297, 307
 European Commission, 297
 European law, origins of, 297
 European law, structure of, 297–303
 Europol, 303
 Facebook, 302
 GDPR, 298–301
 intellectual property, 302
 Investigative Powers Act of 2016, 302
 Judex, 297, 308
 legislatures, 297
 OLAF, 303
 UK Modern Slavery Act, 301
 Legislature, 307
Europol, 303
event logs, IOC, 355–357
Event Viewer, 65–66, 76, 322
events (email), chain of, 5
evidence
admissibility, email, 6
admissibility of, 262, 305–306
best evidence rule, 292–293, 306
cellphone forensics, 393–396
certiorari, 266, 306
congressional legislation, 281–288
Constitutional law, 262
criminal defense, 293–295
Daubert test, 289
depositions, 290, 307
Discovery phase, 290–291, 307
exclusionary rule, 266, 307
expert witnesses, 290–291
Fifth Amendment (U.S. Constitution), 279–280
First Amendment (U.S. Constitution), 262–265
forensics going wrong, 296
Fourth Amendment (U.S. Constitution), 265–279
FRCP, 290
FRE, 289–293
fruit of the poisonous tree, 266, 308
Frye test, 288–289
hearsay, 290, 291–292, 308
Katz v. United States, 389 U.S. 347 (1967), 266
O'Connor v. Ortega, 480 U.S. 709 (1987), 266
Olmstead v. United States, 277 U.S. 438 (1928), 266
records of regularly conducted activity, 291
rules for admissibility, 288–293
search warrants, 266
Sixth Amendment (U.S. Constitution), 280–281
warrantless searches, 268–271
Weeks v. United States, 232 U.S. 383 (1914), 266
best evidence rule, 292–293, 306
cellphone forensics, 388
MMS, 389, 419
RCS, 389, 419
SMS, 388–389, 419
Discovery phase, 290–291, 307
documenting, 229
Chain of Custody forms, 229–230
Cop App application (app), 235
Digital Forensics Reference application (app), 235
evidence lists, 226–227
Federal Rules of Evidence application (app), 236
FragView, 234
FRCP application (app), 236
hard disk drive worksheets, 232
Lock and Code application (app), 235
Network Analyzer, 235
photos, 231
server worksheets, 233–234
System Status application (app), 235
tools/apps, 234–236
evidence acquisition laboratories, 131
evidence bags, 142
evidence labels, 143
evidence lockers, 136, 171
exculpatory evidence, 2, 29
extracting from devices, 157
ATM skimmers, 166–167, 171
dd command, 157–158
EGREP, 160–161, 171
FGREP, 161–162, 171
GREP, 158–160, 162–166, 172
magstripe readers, 166–167, 172
parasites, 166, 172
skimmers, 166–168
steganalysis, 168, 172
steganography, 168–169, 172
Federal Rules of Evidence
application (app), 236
expert witnesses, 242
firewall evidence, 340
FRE, 289–290, 470
best evidence rule, 292–293, 306
depositions, 290, 307
expert witnesses, 290–291
FRCP, 290
hearsay, 290, 291–292, 308
gathering, Windows 8.1, 81–82
hearsay, 290, 291–292, 308
IM, 199–200
inculpatory evidence, 2, 29
ISP, obtaining evidence from, 224–225
photo forensics, 152–153, 231
admissibility, 470–473
analog vs digital photography, 470–471
enhanced images, 471
fake/altered images, 471
preservation orders, 225, 246
seizing, 227
spoilation of, 12, 30
SWGDE, 470
tagged evidence, documenting, 229
Transfer of Evidence, 4
tampering with, 6, 30
website evidence, 189
website archives, 189–190
website statistics, 190–191
exclusionary rule, 266, 307
exculpatory evidence, 2, 29
executive summaries (reports), 239
exFAT, 464
exfiltration (Intrusion Kill Chains), 352
exhibits/appendices (reports), 241
EXIF (Exchangeable Image File Format), 152, 466–467, 475
EXIF Extracter, 467
ExifTool, 467
exigent circumstances, 268, 307
expert witnesses, 242, 246, 290–291
goals of, 242
prosecution, tip for, 244
role of, 242
trial, preparing for, 243–244
exploitation (Intrusion Kill Chains), 352
external hard drives, 107–108
extortion, photo forensics case studies, 464
extracting evidence from devices, 157
ATM skimmers, 166–167, 171
dd command, 157–158
EGREP, 160–161, 171
FGREP, 161–162, 171
GREP, 158–160, 172
check fraud searches, 165–166
expressions, 162–163
financial fraud searches, 163–165
magstripe readers, 166–167, 172
parasites, 166, 172
skimmers, 166–168
steganalysis, 168, 172
steganography, 168–169, 172
F
Face ID (iPhone), 517, 532
Facebook
AMBER alerts, 203–204
background searches, 203–204
E.U. legal system, 302
photo forensics, 461–462, 465
Face.com, 465
facial recognition, 584
 Face ID (iPhone), 517, 532
 NYPD Facial Recognition Unit, 473
Fake Name Generator, 179
fake/altered images, 471
family courts, 258, 307
Faraday boxes, 403–404, 406
Faraday rooms, 135
FARC, history of digital forensics, 17–18
Farid, Hany, 471
FAT (File Allocation Tables), 464
 defined, 50
 FAT12, 50
 FAT16, 50
 FAT32, 50
 FAT64, 50
 FATX, 50
fault tolerance, 104, 121
FBI (Federal Bureau of Investigation)
 CART, 15
 history of digital forensics, 15
 Ten Most Wanted list, 460
FCC (Federal Communications Commission)
 cellular telephone jammers, 155–156
 FCC-ID, 380, 404, 418
federal, state, local information exchange, 208–209
federal courts
 appellate courts, 256–257
 jurisdiction, 256
 Supreme Court, The, 256
 U.S. District Courts, 257
Federal Reserve Bank reference list, check fraud, 165
 Federalist Papers, 287
felonies, 261, 307
 Fernico ZRT 3, 408–409
 FGREP (Fast Global Regular Expressions Print), 161–162, 171
 Fiat currency, 188, 217
 field kit storage units, 134–135
 Fifth Amendment (U.S. Constitution), 279–280
 file systems
 Android OS, 392
 APFS, 490–491
 AFF4, 492, 531
 APFS Free Queue, 492, 532
 copy-on-write feature, 491, 532
 data cloning, 491, 532
 encryption, 491–492
 keybags, 491–492, 533
 metadata, 491
 snapshots, 493, 534
 space sharing, 492, 534
 T2 security chip, 492
 tmutil snapshot [enter], 493
 Fusion Drives, 491, 494, 533
 HFS, 489, 533
 HFS+489–490
 MFS, 489, 533
 NTFS
 defined, 50, 51–52
 FTK Imager, 53–56
 MFT, 52
 system files, 53
 photo forensics, 464–465
 SIM cards, 386–387
 Windows
 defined, 49
 FAT, 50, 464
 FAT12, 50
 FAT16, 50
 FAT32, 50
 FAT64, 50
FATX, 50
feature comparisons table, 52
NTFS, 50, 51–52, 53–56
Prefetch files, 57, 355, 366
ShellBags, 58
ShimCache, 58–59
Superfetch files, 58
Windows Registry, 59–62

files
APFS file metadata, 491
Cache.db, 505
carving, 145, 153, 171
catalog files, 489–490, 532
conversion, 51
conversion table, 42–43
hex converters, 45
hex editors, 45–46
hexadecimal to ASCII conversion, 44–45
hexadecimal to decimal file conversion, 43
hexadecimal to file type conversion, 47
deleted files, macOS, 498
DMG images, 494, 498
email files, macOS, 501
formats, photo forensics, 152
grouping, Windows 7, 78
hosts files, 327–328, 365
Linux, network forensics, 317–318
macOS
email files, 501
hibernation files, 501
sleepimage files, 501, 534
metadata, 29
images, 7
Vista, 67
PList files, 455, 499–501
Cookies.plist, 505
Downloads.plist, 505
History.plist, 504–505
TopSites.plist, 506
Prefetch files, 57, 355, 366
slack, 37, 46
storage
800-byte files, physical layout of, 37
bad sectors, 36
bytes, 36, 38–39
clusters, 36
drive slack, 37, 46
logical file size, 36
physical file size, 36
sectors, 36
tracks (CD), 36, 114, 122
Superfetch files, 58
types, hexadecimal number conversions to, 47
FileVault (macOS), 503, 532
financial fraud
GREP searches, 163–165
IIN matrix, 163
MII charts, 163
FindCEN (Financial Crimes Enforcement Unit), 188
Find My iPhone feature (Apple), 529
finding
MAC addresses, 336–337
iPhone, 337
Mac (Apple), 337
PC, 336
personal information, 192–195
subnet masks, 335
findings of reports, documenting investigations, 241
fire extinguishers (ABC), 170
firewalls, 365
evidence, 340
network forensics, 339–340
NGFW, 339–340
proxy firewalls, 339–340
stateful inspection firewalls, 339–340
stateless firewalls, 339–340
UTM, 339–340
FireWire cabling, 105–106, 121, 506–507, 532
firmware, 151, 171, 512–513
First Amendment (U.S. Constitution), 262–263
Doninger v. Niehoff, 527 F.3d 41 (2d Cir. 2008), 265
Internet and, 263–265
Miller v. California, 413 U.S. 15 (1973), 265
FISA-1978 (Foreign Intelligence Surveillance Act-1978), 282–283
fitness trackers, 579–580
Five Eyes, 20, 29
flaming, 558, 563
flash cookies, 214, 217
flash drives, 106
flash memory cards
exFAT, 464
FAT, 464
reading, 111–112
UltraBlock Forensic Card Reader and Writer, 111–112
flasher boxes, 409, 418
flashlights, 141
FLETC (Federal Law Enforcement Training Centers), 21, 29
Flickr, 466
floppy disks, 116–118, 121
Foller.me, Twitter analytics, 205
forensically sound, defined, 2
forensics. See also cellphone forensics; digital forensics; iPhone forensics; Mac forensics; network forensics; photo forensics; vehicle forensics
accountants, 29
Android OS, 398
anti-forensics, 365
COFEE, 72
defined, 2
going wrong, admissibility of evidence, 296
imaging software, 36, 143, 144
AXIOM, 145
BlackLight, 150
differences between tools, 143–144
DriveSpy, 144
E01 file format, 150, 171
EnCase, 150
EnScript, 150, 171
F-Response, 145
FTK, 7, 145, 149–150
FTK Imager, 145, 146–149
Guidance Software (opentext), 150
ILook, 144
Mac Marshal, 150
Mobilyze, 145
PALADIN, 145
TSK, 144
WinHex, 144
X-Ways Forensics software, 144
routers, 207–208, 328, 366
SIM cards, 385–388
tables, 413
tools, documenting use of, 236
forensics laboratories (computers), 126, 170
accessing, 155
auditing access, 156
data access, 155–156
determining laboratory location, 157
physical security, 156
sign-in sheets, 156
antivirus software, 151
ASCLD/LAB, 127–129, 171
budgets, 154
cabinets, 137
cloning devices, 137
digital cameras, 141–142
e-mail preparation laboratories, 131
energy requirements, 153
ergonomics, 154
evidence
 evidence acquisition laboratories, 131
evidence bags, 142
evidence labels, 143
evidence lockers, 136, 171
extracting evidence from devices, 157
 ATM skimmers, 166–167, 171
 dd command, 157–158
 EGREP, 160–161, 171
 FGREP, 161–162, 171
 GREP, 158–160, 172
 GREP, check fraud searches, 165–166
 GREP, expressions, 162–163
 GREP, financial fraud searches, 163–165
 magstripe readers, 166–167, 172
 parasites, 166, 172
 skimmers, 166–168
 steganalysis, 168, 172
 steganography, 168–169, 172
Faraday rooms, 135
field kit storage units, 134–135
flashlights, 141
guidelines/standards, 127–130
harvest drives, 140
imaging software, 143, 144
 AXIOM, 145
BlackLight, 150
differences between tools, 143–144
DriveSpy, 144
E01 file format, 150, 171
EnCase, 150
EnScript, 150, 171
F-Response, 145
FTK, 7, 145, 149–150
FTK Imager, 145, 146–149
Guidance Software (opentext), 150
ILook, 144
Mac Marshal, 150
Mobilyze, 145
PALADIN, 145
TSK, 144
WinHex, 144
X-Ways Forensics software, 144
inventory control, 131
ISO/IEC 17025.2017, 129
laboratory information management systems, 131–132
layout of, 132–133
managing, 154–155
password-cracking software, 151
photo forensics, 152
 Adroit forensics, 153
 evidence, 152–153
 EXIF data, 152
 file formats, 152
 metadata, 152
private-sector computer forensics laboratories, 130
safety, 153–154
security, physical security, 156
SIM card readers, 139–140
SWDGE, 129–130, 172
toolkits, 141
VMware, 151
forensics laboratories (computers)

web hosting, 132
workbenches, 134, 172
workstations, 133
write-blockers, 137–139
foreperson (juries), 260, 307
Fourth Amendment (U.S. Constitution), 265–266
certiorari, 266, 306
exclusionary rule, 266, 307
fruit of the poisonous tree, 266, 278, 308
Katz v. United States, 389 U.S. 347 (1967), 266
O’Connor v. Ortega, 480 U.S. 709 (1987), 266
Olmstead v. United States, 277 U.S. 438 (1928), 266
search warrants, 309
court orders, 272, 307
digital surveillance, 272–273
e-mail, 267
GPS tracking, 273–276
MLB and BALCO, 268
pen registers, 272–273, 308
probable cause, 267, 309
Smith v. Maryland, 442 U.S. 735 (1979), 272–273
traffic stops, 277–279
United States v. Leon, 468 U.S. 897 (1984), 267
United States v. Ziegler, 267
warrantless searches, 269
Arizona v. Gant, 2009, 271, 278
case studies, 271
DOJ, 268
exigent circumstances, 268, 307
Horton v. California, 269
"knock and talk"269, 308
People v. Diaz, 271
plain error, 270, 308
plain view doctrine, 269, 308
Riley v. California, 271
Rules of Criminal Procedure, 270, 309
search incident to a lawful arrest, 271
standing warrants, 271
United States of America, Plaintiff-Appellee, v. Russell Lane WALSER, Defendant-Appellant. No. 01–8019, 269–270
United States v. Carey, No. 14–50222 (9th Cir. 2016), 269, 270
United States v. Mann (No. 08–3041), 270–271
United States v. McConney, 728 F.2d 1195, 1199 (9th Cir.), 268
Weeks v. United States, 232 U.S. 383 (1914), 266
FPLMN (Forbidden Public Land Mobile Networks), 386–387, 418
FragView, 234
frames, 114, 121
Franklin, Benjamin, 253
fraud
check fraud
Federal Reserve Bank reference list, 165
GREP searches, 165–166
financial fraud
GREP searches, 163–165
IIN matrix, 163
MII charts, 163
OLAF, 303
PBX, 347–348
FRCP (Federal Rules of Civil Procedure), 236, 290, 307
FRE (Federal Rules of Evidence), 289–290, 307
 best evidence rule, 292–293, 306
depositions, 290, 307
 expert witnesses, 290–291
FRCP, 290
hearsay, 290, 291–292, 308
photo forensics, 470
FRED workstations, 153
Freenet, Dark Web investigations, 186
F-Response, 145
fruit of the poisonous tree, 266, 278, 308
Frye v. United States, 288–289
FTK (Forensic Toolkit), 7, 145
FTK Imager, 53–56, 145
FTK Registry Viewer, 62
FTL (File Translation Layer), 103, 121
fusion centers
 history of digital forensics, 18–19
 HSIN-SLIC, 208, 217
Fusion Drives (Apple), 491, 494, 533

G

Galaxy (Samsung), 393
garbage collection, 102, 103, 121
gargol, Brittney, 463
Gatekeeper (macOS), 502–503, 533
gateways (default), 321, 365
gathering evidence, Windows 8.1, 81–82
GDPR (General Data Protection Regulation), 130, 298–301
General Framework for Secured IoT Systems (NISC), 573
Genesis Blocks, 189, 217
g教室, social networking websites, 202–203
Geotab GO, 585
gotags, 203, 217
GET method, 437, 457
GIF files, 469, 475
global satellite service providers, 410
Globestar, 410
glossaries (reports), 241–242
GMDSS (Global Maritime Distress & Safety Services), 410
GMT (Greenwich Mean Time), 237–238, 246
Goldstein, Emmanuel, 15
Google Alerts, searching for stolen property, 197
Google Groups, 201
Google Hangouts, 200
GoPro, 583
Gorshkov, Vasily, 210, 271
GPRS (General Packet Radio Service), 384–385, 418
GPS (Global Positioning Systems), 29
 in images, 7
 tracking
 Assisted GPS, 414, 417
 case studies, 414
 Enhanced 911, 414, 417
 mobile forensics, 413–414
 PSAP, 414, 419
 search warrants, 273–276
 track logs, 414, 420
 trackpoints, 414, 420
 waypoints, 414, 420
grand juries, 308
graphics
 BMP files, 469, 474
 comprehensive reports, including in, 238
 DNG, 469, 474
 file types, overview of, 467–468
 GIF files, 469, 475
 JPEG files, 468, 475
 lossless compression, 152, 172
lossy compression, 152, 172, 475
megapixels, 467–468, 475
pixels, 467–468, 475
PNG files, 469, 475
raster-based graphics, 152, 172, 467–468, 475
RAW files, 468–469, 475
TIFF files, 469, 475
tumblrcache.db, 469
vector graphics, 468, 475

GrayKey, 406
Greig, Catherine, 204
GREP (Global Regular Expressions Print), 158–160, 172
check fraud searches, 165–166
EGREP, 160–161, 171
expressions, 162–163
FGREP, 161–162, 171
financial fraud searches, 163–165
Grindr application (app), 445–450
grouping files, Windows 7, 78
GSM (Global System for Mobile Communications), 384, 418
GuerillaMail, 179–180
Guidance Software (opentext), 150

H
hacktivists, 529
Halligan, Jim, 198
Halligan, Ryan, 559
Hamilton, Alexander, 253
Hammond, Richard, 583
handsets
cellphone forensics, 406
cellphones, 389
Hansa, Dark Web investigations, 188
happy slapping, 558, 564

hard disk drives. See HDD
hard disks
actuator arms, 37–38
capacity, determining, 38
cylinders, 38
disk geometry, 38
layout of, 37–38
page files, 39
Pagefile.sys, 39
physical layout of, 36–37
platters, 37–38
spindles, 37–38
hard/soft handoffs, 377, 418, 420
harvest drives, 140
HCR (HKEY_CURRENT_USER), 363
HCU (HKEY_CURRENT_CONFIG), 363
HDD (Hard Disk Drives), 93
allocation blocks, 489–490, 531
cloning devices
ImageMASSter Solo IV Forensic, 101
external hard drives, 107–108
HPA, 99, 100, 121
IDE, 93, 121
PATA
cloning disks, 97
disk images, 97
SATA, 121
cabling, 93, 97
cloning disks, 97
disk images, 97
drives, sizes of, 96–97
eSATA connectors, 96, 121
SCSI, 93–94, 122
worksheets, documenting investigations, 232
headers
alternative volume headers, 489–490, 532
IPv4 headers, 330–331
TCP/IP headers, 344
volume headers, 489–490, 534
Health application (app), Apple, 486–487, 530
hearsay, 290, 291–292, 308
HEIF (High Efficiency Image Format), 523, 533
hexadecimal numbers
conversion table, 42–43
Data Link Escape, 45
hex converters, 45
hex editors, 45–46
hexadecimal to ASCII conversion, 44–45
hexadecimal to decimal file conversion, 43
hexadecimal to file type conversion, 47
HFS (Hierarchical File Systems), 489, 533
HFS+489–490, 533
hibernation files (macOS), 501
HIDS (Host-based Intrusion Detection Systems), network forensics, 338
high schools, digital forensic training, 22
history of digital forensics, 14–15, 27–28
1980s, 15
1990s, 15–19
2000s, 20
Amber Alert Bill, 16–17
DHS, 16–17
DoD, 16
ECTF, 16–17
encryption, 20
FARC, 16
FBI, 15
fusion centers, 18–19
INTERPOL, 17–18
IoT, 20
IRS, 16
NCMEC, 15
PC, 15
PROTECT Act, 16–17
RCFL, 18–19
Snowden, Edward, 20
USSS, 16–17
virtual currencies, 20
History.plist, 504–505
HITECH Act, 210–211
HKCC (HKEY_CURRENT_CONFIG), 61
HKCR (HKEY_CLASSES_ROOT), 60, 363
HKCU (HKEY_CURRENT_USER), 60–61
HKLM (HKEY_LOCAL_MACHINE), 61, 363
HKU (HKEY_USERS), 61, 363
HLR (Home Location Register), 382, 418
Hochron, Det. Brett, 586–587
Holden, Thomas Jane, 460–461
HootSuite, 196
Horton v. California, 269
hosts files, 327–328, 365
HPA (Host-Protected Areas), 99, 100, 121
HSDN (Homeland Security Data Network), 208, 217
HSIN-SLIC (Homeland Security Interaction-State and Local Fusion Centers), 208, 217
HTTP (Hypertext Transfer Protocol), 365
GET method, 437, 457
network forensics, 319–320
hubs, 324, 365
hung juries, 261, 308
Huntington Beach Jane Doe, 1968, 460–461
Hyberfil.sys, 68

I

I2P (Invisible Internet Project), Dark Web investigations, 186
IANA (Internet Assigned Numbers Authority), 337, 365
IP addresses,
iBeacon, 518, 533
iBoot, 513, 533
ICAID (INTERPOL Child Abuse Image Database), 18
ICANN (Internet Corporation for Assigned Names and Numbers), 328
ICCID (Integrated Circuit Card ID), 381–382, 418
iCloud, 517–518, 533
iCloud Keychain, 504, 533
IDE (Integrated Drive Electronics), 94–95, 121
iDEN (Integrated Digital Enhanced Networks), 385, 418
identification
 App ID, 428, 457
 Apple ID, 510
 bundle ID, 428, 457
 Catalog ID, 489–490, 532
 Face ID, 517, 532
 FCC-ID, 380, 404, 418
 ICCID, 381–382, 418
 Touch ID, 515–516, 534
identities
 generating
 Bitcoin, 178
 email, 178
 Fake Name Generator, 179
 malware protection, 178
 sockpuppets, 178
 virtual currencies, 178
 masking
 Bluffmycall.com, 181–182
 online proxies, 183–184
 Spy Dialer, 182–183
 telephone carriers, 183
 wiretaps, 183
 theft, 210
IDS (Intrusion Detection Systems), 365
 HIDS, 338
 IPS, 339
 network forensics, 338
 NIDS, 338
 NNIDS, 338
IIN (Issuer Identification Numbers), 163, 172
ILook, 144
IM (Instant Messaging)
 acronyms, 198–199
 AIM messages, 200
 background searches, 197–200
 DeadAim, 198
 Discord, 200
 evidence, 199–200
 Google Hangouts, 200
 IRC, 197–198, 217
 Mibbit, 197
 Skype, 200
 XMPP, 199
ImageMASSter Solo IV Forensic, 101
images. See also photo forensics
 BMP files, 469, 474
 brightness, 471, 474
 color balance, 471, 474
 comprehensive reports, including in, 238
 contrast, 471, 474
 cropping images, 471, 474
 as digital evidence, 7–8
 DMG images, 494, 498
 DNG, 469, 474
 enhanced images, photo forensics, evidence admissibility, 471
 evidence admissibility, 470–473
 analog vs digital photography, 470–471
 enhanced images, 471
 FRE, 470
 SWGDE, 470
DLL side-loading, 353
exfiltration, 352
exploitation, 352
job postings, 351
persistence, 353
press releases, 351
reconnaissance, 350–352
remediation, 354
tech forums, 351
TTP, 352–353
weaponization, 352
YARA, 353

inventory control, 131

investigating

applications (apps), 457
communication applications, 453–456
dating applications, 441–450
Debookee, 433–441
dynamic analysis, 431–433
JSLint, 430–431
pcap files, 431–432, 457
rideshare applications, 450–453
SQLite database, 427–431
static analysis, 427–431
wireless monitoring, 431–433

background searches, 191–192
blogs, 202
dynamic IP addresses, 207
Google Groups, 201
IM, 197–200
IPv4 addresses, 206–207
law enforcement access, 208–209
locating suspects, 207
metadata, 207
personal information, 192–195
personal interests, 195–196
professional networks, 205–206
public records, 206
router forensics, 207–208
social media, 195–196
social networking websites, 202–205
stolen property, 196–197
usenet groups, 200–201
user groups, 196

Dark Web investigations

AlphaBay, 187–188
Freenet, 186
Hansa, 188
I2P, 186
marketplaces, 186–188
Operation Bayonet, 187–188
OSINT Framework, 184
PlayPen, 187
Silk Road, The, 187
Tails, 185, 218
Tor, 184–185, 218

documenting investigations, 224, 245
Chain of Custody forms, 229–230
Cop App application (app), 235
crime scenes, 226–234
CSI equipment, 228–229
Digital Forensics Reference application (app), 235
evidence, obtaining from ISP, 224–225
evidence lists, 226–227
expert witnesses, 242–244, 246
Federal Rules of Evidence application (app), 236
FragView, 234
FRCP application (app), 236
hard disk drive worksheets, 232
lay witnesses, 243, 246
Lock and Code application (app), 235
Network Analyzer, 235
photos, 231
preservation orders, 225, 246
reports, 236–242
on-scene examinations, 227–228
seizing evidence, 227
server worksheets, 233–234
System Status application (app), 235
tagged evidence, 229
tools/applications, 234–236
network attacks, 357
AmCache, 357–358
EDR, 359
Kibana, 359
Log2Timeline, 359
RAM, 357
SANS SIFT workstation, 360–361
ShellBags, 358
ShimCache, 358
VSC, 358
Windows Registry, 361–363
online communications
AXIOM, 212
cookies, 214
screen captures, 212–213
video, 213–214
websites visited, 215
online crime, 209
CPI, 211
credit cards for sale, 210
cyberbullying, 211
electronic medical records, 210–211
identity theft, 210
social networking, 211–212
online investigations, 176–177, 216
purpose of investigation (reports), 240
undercover investigations, 177–184, 218
anonymity, 181–184
background searches, 177

generating email accounts, 179–181
generating identities, 178–179
sting operations, 178
surveillance, 177–178
warrants, 178
wiretaps, 178, 183
virtual currencies, 188–189
website evidence, 189
website archives, 189–190
website statistics, 190–191

investigative details connected to the case (reports), 241
Investigative Powers Act of 2016, 302

investigator skills
communication skills, 11
computer science knowledge, 10–11
confidentiality, 12
continuous learning, 12
legal expertise, 11
linguistic abilities, 12
programming, 12

IOC (Indicators of Compromise), 354, 357
$USN_Journal, 355
DLL files, 354
email, 354
event logs, 355–357
MFT, 355
MRU lists, 356
ports, 355
Prefetch files, 355
PSEexec, 356
RAM, 357
Registry keys, 354
ServiceDLL, 354
svc.host.eve, 354
System32, 355
UserAssist, 357
iOS

Apple ID, 510
Data Protection, 509, 532
encryption, 509–510
iOS 13, 508–509
media partitions, 508, 533
root partitions, 508, 534
security, 509–510
System Software Personalization, 508, 534
Tinder SQLite database, 427–429
UDID, 534
USB Restricted Mode, 510, 534

IoT (Internet of Things), 10, 572–573, 588, 589
5G, 573–575
action cameras, 583
Alexa virtual assistant, 578–579
Apple Watch, 581–583
botnets, 577
cryptojacking, 577–578, 588
CUPS, 574, 588
D2D, 574, 589
fitness trackers, 579–580
General Framework for Secured IoT Systems, 573
history of digital forensics, 20
law enforcement
ANPR, 585, 588
BWC, 584, 588
C-V2X, 585, 588
drones, 584
facial recognition, 584
police safety, 583–585
police vehicles, 585
telematics, 585, 589
MEC, 574, 589
micro-chipping, 579
requirements, 573
Ring doorbell, 585
Shodan, 576–577
smart holster sensors, 584, 589
U.K. Code of Practice for Consumer Internet of Things Security, 573
Vo5G, 575, 589
Wi-Fi mesh networks, 576, 589

IP addresses
dynamic IP addresses, 207, 217
IANA and, 337
IP Address expressions (GREP), 162–163
IPv4, 217
background searches, 206–207
headers, 330–331, 365
network forensics, 330–331
IPv6, network forensics, 337
reserved IP addresses, 334
TCP/IP headers, 344
VoIP
network forensics, 346, 367
STUN, 348

IP subnet masks, calculating, 334–335

iPad, 485, 487, 511, 530

iPhone, 483–484, 511
APOLLO tool, 525–526
Apple Configurator, 526–527, 532
backups, 517, 522–523
batteries, 527
checkm8, 522
checkra1n, 522
DFU Mode, 512–513
enterprise deployments, 526–527
Face ID, 517, 532
Find My iPhone feature, 529
iBeacon, 518, 533
iBoot, 513, 533
iCloud, 517–518, 533
imaging software, 512
iPhone 3G, 513
iPod, 482–483, 510–511
iPod Touch, 482–483
IPS (Intrusion Prevention Systems), network forensics, 339
IPv4 (IP Addressing version 4), 365
IR (Incident Response), 348–349, 364
IRC (Internet Relay Chats), 197–198, 217
Iridium Communications, Inc.410
IRS (Internal Revenue Service)
 history of digital forensics, 16
 virtual currencies, 188
IsAnybodyDown website, photo forensics, 464

ISO/IEC 17025.2017, 129
ISP (In-System Programming), Android OS, 396, 418
ISP (Internet Service Providers), evidence, obtaining, 224–225
ISPC (International Signal Point Codes), 382, 418
ITU (International Telecommunication Union), 384, 418
Ivanov, Alexey, 210, 271

J

Jabbr. See XMPP
Jablin, Fred, 414
Jackson, Michael, 529
job opportunities/postings
digital forensics, 13–14
Intrusion Kill Chains, 351
Jones, Antoine, 274–276
journaling
 defined, 51
 macOS, 498
JPEG files, 468, 475
JSLint, 430–431
JTAG (Joint Test Action Group), 394–395, 418
Judex, 297, 308
judges, 255, 308
JumpLists, 69
jurisdiction, 256, 308
 trial courts of general jurisdiction, 258–259
 trial courts of limited jurisdiction, 258
juries, 253, 260, 308
 contempt of court, 260
 foreperson, 260, 307
 grand juries, 308
 hung juries, 261, 308
 indictments, 308
juries, 260, 308
voir dire, 260, 309
juvenile courts, 258, 308

K
Kagan, Justice Elena, 275
Kali Linux, 315
Kaminski, John, 115
Katz v. United States, 389 U.S. 347 (1967), 266
Keating, Stephen, 463–464
Kee, Eric, 471
KEK (Key Encryption Keys), 491, 533
Kelley, Det. Coby, 414
Kernel, David, 183
kernels, 48
keybags, 491–492, 533
Keychain (macOS), 503
Khan, Samir, 202
Khavari, Hussein, 530
Kibana, 359
"knock and talk," 269, 308
Krieger, Mike, 466
KTX Snapshots, 523–524
Kumho Tire Co. v. Carmichael, 289

L
laboratories (computer forensics), 126, 170
accessing, 155
auditing access, 156
data access, 155–156
determining laboratory location, 157
physical security, 156
sign-in sheets, 156
antivirus software, 151
ASCLD/LAB, 127–129, 171
budgets, 154

...
EnScript, 150, 171
F-Response, 145
FTK, 7, 145, 149–150
FTK Imager, 145, 146–149
Guidance Software (opentext), 150
ILook, 144
Mac Marshal, 150
Mobilityze, 145
PALADIN, 145
TSK, 144
WinHex, 144
X-Ways Forensics software, 144
inventory control, 131
ISO/IEC 17025.2017, 129
laboratory information management systems, 131–132
layout of, 132–133
managing, 154–155
password-cracking software, 151
photo forensics, 152
Adroit forensics, 153
evidence, 152–153
EXIF data, 152
file formats, 152
metadata, 152
private-sector computer forensics laboratories, 130
safety, 153–154
security, physical security, 156
SIM card readers, 139–140
SWDGE, 129–130, 172
toolkits, 141
VMware, 151
web hosting, 132
workbenches, 134, 172
workstations, 133
write-blockers, 137–139
laboratory information management systems, 131–132
Ladenburger, Maria, 530
lands (CD), 113–114, 121
Las Vegas Massacre, 549–550
latency, 573, 589
law. See also legal systems
Civil law, 254, 306
Codified law, 254, 306
common law, 254, 306
congressional legislation
CALEA, 284
CLOUD Act, 288
Computer Fraud and Abuse Act (18 U.S.C. § 2511), 283
Corporate Espionage (18 U.S.C. § 1030(a) (1)), 283–284
Digital Millennium Copyright Act (DMCA) (17 U.S.C. § 1201), 286–287
FISA-1978, 282–283
PROTECT Act, 286
USA PATRIOT Act (H.R. 3162), 14, 16–17, 268, 283, 284–286
Constitutional law, 254, 262, 306
Louisiana Civil Code Digest of 1808, 254
Napoleonic Code, The, 254
precedents, 254, 309
Regulatory law, 254, 309
Roman law, 254
Statutory law, 254, 309
subpoenas, 309
law enforcement
ANPR, 585, 588
CALEA, 284
C-V2X, 585, 588
digital forensic training, 21–22
facial recognition, 584
Harley the cyber dog, 586–587
IoT
 BWC, 584, 588
drones, 584
police safety, 583–585
police vehicles, 585
smart holster sensors, 584, 589
personal information, accessing, 208
 federal, state, local information exchange, 208–209
 international databases, 209
 local law enforcement, 208
 RTCC, 208
telematics, 585, 589
lay witnesses, 243, 246
LeadsOnline, searching for stolen property, 196
LEAP (Local Number Portability Enhanced Analytical Platform), 183
Leap Second Bug, 237, 246
learning (continuous), digital forensics skills, 12
legal expertise (digital forensics skills), 11
legal systems, 305–306. See also law
 Chinese legal system, 304
 E.U. legal system, 296–297
 ACPO, 303
 child pornography directives, 302–303
 Court of Justice of the European Union, 297, 307
data privacy, 209, 298
 European Commission, 297
 European law, origins of, 297–303
 Europol, 303
Facebook, 302
GDPR, 298–301
intellectual property, 302
Investigative Powers Act of 2016, 302
Judex, 297, 308
legislatures, 297
OLAF, 303
UK Modern Slavery Act, 301
Indian legal system, 304
U.S. legal system, 252
 Articles of the Constitution, 254
 Bill of Rights, The, 254, 262, 306
 Civil law, 254, 306
 Codified law, 254, 306
 common law, 254, 306
 Constitutional law, 254, 262, 306
 criminal defense, 293–295
 defendants, 253, 307
 history of, 253–254
 juries, 253, 308
 Louisiana Civil Code Digest of 1808, 254
 motion in limine, 267, 308
 Napoleonic Code, The, 254
 Ninth U.S. Circuit Court of Appeal’s, 268
 origins of, 254
plaintiffs, 130, 172, 253, 309
 precedents, 254, 309
 Regulatory law, 254, 309
 Roman law, 254
 Statutory law, 254, 309
 structure of, 253–254
subpoenas, 309
 U.S. Constitution, 254, 256
 U.S. court system, overview of, 254–262
legislatures (E.U.), 297
Lewinsky, Monica, 183
Linden dollars, 188
linear filtering (images), 471, 475
linguistic abilities (digital forensics skills), 12
LinkedIn, background searches, 205
Linux, 315, 317–318
LND (Last Numbers Dialed), 386–387, 418
Locard's Exchange Principle, 4
locating suspects, 207
location of a laboratory, determining, 157
Location Services (iPhone), 518–522, 533
Lock and Code application (app), 235
Log2Timeline, 359
logical file size, defined, 36
logs
 DHCP servers, 322–324
event logs, IOC, 355–357
 track logs, GPS devices, 414, 420
 trackpoints, GPS devices, 414, 420
lossless compression, 152, 172
lossy compression, 152, 172, 475
Louisiana Civil Code Digest of 1808, 254
Lounsbury, Det. Mark, 296

M

Mac (Apple), 481
 About This Mac feature, 527
 AFF4, 492, 531
 APFS, 490–491, 532
 AFF4, 492, 531
 APFS Free Queue, 492, 532
copy-on-write feature, 491, 532
data cloning, 491, 532
encryption, 491–492
keybags, 491–492, 533
metadata, 491
snapshots, 493, 534
space sharing, 492, 534
T2 security chip, 492
tmutil snapshot [enter], 493
App .db files, 456
Apple Configurator, 526–527, 532
Boot Camp, 92, 120, 489, 532
Cache.db, 505
deleted files, 498
DMG images, 494, 498
e-mail files, 501
enterprise deployments, 526–527
Epoch Converter, 497, 521
Epoch time, 496–497
forensics, 480, 494, 527–528, 531
 AFF4, 492, 531
 case studies, 529–530
deleted files, 498
DMG images, 494, 498
e-mail files, 501
Epoch Converter, 497, 521
Epoch time, 496–497
hibernation files, 501
initialization, 495, 533
IOReg Info, 495–496
iPhone, 511–526
journaling, 498
PLists, 455, 499–501, 504–506
PMap Info, 495–496
sleepimage files, 501, 534
Spotlight feature, 494–495, 534
SQLite database, 501, 505
Fusion Drives, 491, 494, 533
HFS, 489, 533
HFS+489–490
hibernation files, 501
initialization, 495, 533
IOReg Info, 495–496
journaling, 498
MAC addresses, finding, 337
Mac OS Extended. See HFS+
MFS, 489, 533
PLists, 455, 499–501
Cookies.plist, 505
Downloads.plist, 505
History.plist, 504–505
TopSites.plist, 506
PMAP Info, 495–496
Quick Look, 494, 499, 534
screen captures, 212–213
sleepimage files, 501, 534
Spotlight feature, 494–495, 534
SQLite database, 501
Cache.db, 505
T2 security chip, 492
Target Disk Mode, 506–507
Terminal Window, 500
MAC addresses
finding, 336–337
network forensics, 335–337
Mac Marshal, 150
Mac mini, 481–482
Mac OS Extended. See HFS+
macOS, 502
Cache.db, 505
Catalina, 502–503
Cocoa, 499, 521, 522, 532
Cookies.plist, 505
deleted files, 498
Disk Utility, 503
displays (multiple), support for, 504
DMG images, 494, 498
Downloads.plist, 505
e-mail files, 501
Epoch Converter, 497
Epoch time, 496–497
FileVault, 503, 532
Gatekeeper, 502–503, 533
hibernation files, 501
History.plist, 504–505
iCloud Keychain, 504, 533
initialization, 495, 533
IODReg Info, 495–496
journaling, 498
Keychain, 503
notifications, 504, 533
Objective-C, 499, 533
PLists, 455, 499–501, 504–506
PMAP Info, 495–496
Safari web browser, 504
 Cache.db, 505
 Cookies.plist, 505
 Downloads.plist, 505
 History.plist, 504–505
 TopSites.plist, 506
webpage reviews, 504–505
sleepimage files, 501, 534
Spotlight feature, 494–495, 534
SQLite database, 501
tags, 504
Target Disk Mode, 506–507
TopSites.plist, 506
Magnet Forensics, 399
magnetic tapes, 119, 121
magstripe readers, 166–167, 172
Mail, iPhone, 518
e-mail expire, 180
Mailinator, 181
Major League Baseball (MLB), 561–562, 563
malware
 security, 178
 VPN, 178
managing computer forensics laboratories, 154–155
Marbury v. Madison, 256, 262
marketplaces, Dark Web investigations, 186–188
Mason, George, 262
Master Boot Code, 49
Master Partition Tables, 49
Mattel v. MGA Entertainment, Inc.6
MBR (Master Boot Records), 49
MCC (Mobile Country Codes), 381, 418
McCaffrey, Kate, 529
McIntyre v. Ohio Elections Commission, 514
U.S. 334, 357 (1995), 287
MEC (Multi-access Edge Computing), 574, 589
media partitions (iOS), 508, 533
medical records (electronic)
 HITECH Act, 210–211
 online crime, 210–211
megapixels, 467–468, 475
Megap proxy, 183
MEID (Mobile Equipment Identifiers), 379, 418
Meier, Megan, 559
Melendez-Diaz v. Massachusetts, 281
memory
 CD-ROM, frames, 114, 121
 cellphones, 389–390
 flash memory cards
 exFAT, 464
 FAT, 464
 reading, 111–112
 UltraBlock Forensic Card Reader and Writer, 111–112
 Memory Sticks, 110, 121
 physical memory, Vista, 67
 RAM, 30, 39, 42, 103–104, 121, 357
 removable memory, 105
 ROM, 48
 virtual memory, 39, 42
 xD Picture Cards, 111, 122
Merck, 2017 ransomware attack, 314
mesh networks (Wi-Fi), 576, 589
metadata
 APFS file metadata, 491
 background searches, 207
 file metadata, 7, 29
 photo forensics, 152
 Vista, 67
methodologies (reports), 240, 246
MFS (Macintosh File Systems), 489, 533
MFT (Master File Tables), 52, 355
Mibbit, IM background searches, 197
micro-chipping, 579
Microsoft Edge, 82
Microsoft Office, 62–63
Microsoft Office 365, 83
MiFi (My Wireless Fidelity), 383, 419
MII (Major Industry Identifiers), 163, 172
Miller v. California, 413 U.S. 15 (1973), 265
MIME (Multipurpose Internet Mail Extensions), 326, 365
MIND/FIND, 209, 217
Mirai Botnet, 577
misdemeanors, 261, 308
Miss Teen USA, photo forensics case studies, 464
MITM (Man-in-the-Middle) attacks, 433, 457
MLB (Major League Baseball), 268
MMC (MultiMediaCards), 108, 121
MMS (Multimedia Messaging Service), 389, 419
MNO (Mobile Network Operators), 383, 419
mobile applications. See applications
Mobile Connect, 575, 589
mobile device examination workbenches, 134
mobile forensics. See cellphone forensics
mobile OS
 Android OS, 391, 417
 ADB, 398, 417
 Android Auto, 391–392
applications, 399–400
Chip-Off, 395–396
EDL mode, 396–397, 417
evidence, 394–396
file systems, 392
forensics tools, 398
ISP, 396, 418
JTAG, 394–395, 418
partitions, 392–393
resources, 399
security, 396
USB debugging, 398, 420

iOS
Apple ID, 510
Data Protection, 509, 532
cipher, 509–510
iOS 13, 508–509
media partitions, 508, 533
root partitions, 508, 534
security, 509–510
System Software Personalization, 508, 534
Tinder SQLite database, 427–429
UDID, 534
USB Restricted Mode, 510, 534

RIM OS, 400, 419
Samsung Galaxy, 393
Symbian OS, 400, 420
Windows 10 Mobile, 400, 420

Mobile Stations, 419
FCC-ID, 380, 404
ICCID, 381–382, 418
IMEI, 378–379, 381–382, 418
IMSI, 381, 418
international numbering plans, 382–383
ISPC, 382, 418
MCC, 381, 418
MEID, 379, 418
MSIN, 381, 419
MSISDN, 381, 419
SIM cards, 381–382, 385–388
subsidy locks, 379, 420
TAC, 378, 420
UICC, 379, 420

MOBILedit! Forensic, 407
Mobilyze, 145
monitoring applications (wireless), 431–433
Monster Crawler, searching for stolen property, 197
motion in limine, 267, 308
Moussaoui, Zacharias, 551–555, 563
MRU lists, IOC, 356
MSC (Mobile Switching Centers), 374, 419
MSIN (Mobile Subscriber Identity Numbers), 381, 419
MSISDN (Mobile Subscriber ISDN), 381, 419
MSP (Managed Service Providers), 315, 365
MST (Mountain Standard Time), 237, 246
multiple displays, macOS support, 504
multiplexing, 385, 419
municipal courts, 258, 308
Murray, Dr. Conrad, 529
MVNO (Mobile Virtual Network Operators), 383, 419
MySpace, background searches, 205

N
Nakamoto, Satoshi, 188
Napoleonic Code, The, 254
NAT (Network Address Translation), 333, 348, 366
NCic (National Crime Information Center), 209, 218, 411–412, 419
NCMEC (National Center for Missing and Exploited Children), 30
history of digital forensics, 15
network forensics

photo forensics, 462–463
URL Initiative, 462–463

NCTC (National Counterterrorism Center), 208, 217

Netcraft, website statistics, 190

Network Analyzer, 235

Network forensics, 314–315, 345–346, 364

APT, 349, 350, 364, 365
attacks, investigating, 357
AmCache, 357–358
EDR, 359
Kibana, 359
Log2Timeline, 359
RAM, 357
SANS SIFT workstation, 360–361
ShellBags, 358
ShimCache, 358
VSC, 358
Windows Registry, 361–363
Cyborg, 349
DHCP servers, 321–324, 365
DNS protocol, 328
DNS servers, 326–327
e-mail, 325–326
firewalls, 339–340
HIDS, 338
hosts files, 327–328
hubs, 324
ICANN, 328
IDS, 338
Intrusion Kill Chains, 350
C2, 352
delivery, 352
DLL side-loading, 353
exfiltration, 352
exploitation, 352
job postings, 351
persistence, 353
press releases, 351
reconnaissance, 350–352
remediation, 354
tech forums, 351
TTP, 352–353
weaponization, 352
YARA, 353
IOC, 354, 357
$USN_Journal, 355
DLL files, 354
e-mail, 354
event logs, 355–357
MFT, 355
MRU lists, 356
ports, 355
Prefetch files, 355
PSEexec, 356
RAM, 357
Registry keys, 354
ServiceDLL, 354
svc.host.eve, 354
System32, 355
UserAssist, 357
IPS, 339
IPv4 addresses, 330–331
IPv6, network forensics, 337
IR, 348–349, 364
Kali Linux, 315
MAC addresses, 335–337
mistakes in, 345
networking devices, list of, 316–317
NIDS, 338
NNIDS, 338
OpenPGP, 330
OSI model, 341–346
packet sniffers, 316, 366
PBX, 346–348
PGP encryption, 329–330
ports, 340–341
Promiscuous mode (NIC), 316
protocol analyzers, 316
proxy servers, 317
RAID, 315
real-time capture/analysis, 315
retroactive analysis of captured data, 315
routers, 328
Secure Data Transmission, 328, 366
SIP, 348
SMTP servers, 324–325
STIX, 349
STUN, 348
subnet masks, 332–337
 calculating, 334–335
 finding, 335
TAXII, 349
tools, 315–316
Traceroute, 328, 367
VoIP, 346
web servers, 317–321
 HTTP, 319–320
 scripting languages, 320–321
 URI, 318
 web browsers, 318–319

Network Layer (Layer 3), OSI model, 342, 366

networks
attacks, investigating, 357
 AmCache, 357–358
 EDR, 359
 Kibana, 359
 Log2Timeline, 359
 RAM, 357
 SANS SIFT workstation, 360–361
 ShellBags, 358
 ShimCache, 358
 VSC, 358
 Windows Registry, 361–363
backing up to networks, Windows 7, 71–72
cellular networks, 417
 3GP, 384–385, 416
 3GP2, 385, 416
 4G, 383
 4G LTE Advanced, 383, 416
 5G, 384, 573–575, 588
 ADN, 386–387, 417
 AuC, 383, 417
 BSC, 377
 BTS, 373, 374–377, 417
 CDMA, 385, 417
 CDMA2000, 385, 417
 cell sites, 374, 417
 EDGE, 384–385, 417
 EIR, 383, 417
 FCC-ID, 380, 404
 FPLMN, 386–387, 418
 GRPS, 384–385
 GSM, 384, 418
 hard/soft handoffs, 377, 418, 420
 HLR, 382, 418
 ICCID, 381–382, 418
 iDEN, 385
 IMEI, 378–379, 381–382, 418
 IMSI, 381, 418
 international numbering plans, 382–383
 ISPC, 382, 418
 ITU, 384
 LND, 386–387, 418
 locating cell towers/antennas, 375
 MCC, 381, 418
 MEID, 379, 418
 MiFi, 383, 419
 MMS, 389, 419
MNO, 383, 419
Mobile Stations, 378–383, 419
MSC, 374, 419
MSIN, 381, 419
MSISDN, 381, 419
multiplexing, 385, 419
MVNO, 383, 419
PSTN, 374, 419
PUC, 388, 419
PUK, 377–378, 388, 419
RCS, 389, 419
records, 377–378
SIM cards, 381–382, 385–388
SMS, 388–389, 419
subscribers, 377–378, 382–383, 420
subsidy locks, 379, 420
TAC, 378, 420
TDMA, 384, 420
TMSI, 382, 386–387, 420
UICC, 379, 420
UMTS, 385, 420
VLR, 382, 420

W-CDMA, 384, 420
Class A networks, subnet masks, 332
Class B networks, subnet masks, 332
Class C networks, subnet masks, 332
DHCP servers, 321–324, 365
DNS protocol, 328
DNS servers, 326–327
firewalls, 365
evidence, 340
network forensics, 339–340
NGFW, 339–340
proxy firewalls, 339–340
stateful inspection firewalls, 339–340
stateless firewalls, 339–340
UTM, 339–340

FPLMN, 386–387, 418
hosts files, 327–328
hubs, 324, 365
ICANN, 328
iDEN, 385, 418
IDS, 365
HIDS, 338
IPS, 339
network forensics, 338
NIDS, 338
NNIDS, 338
IPv4
address headers, 330–331, 365
network forensics, 330–331
IPv6, 337
MAC addresses, 335–337
network masks, 333–334
OpenPGP, 330
OSI model, 366
Application Layer (Layer 7), 345, 365
ARP, 342, 365
Data Link Layer (Layer 2), 342
network forensics, 341–346
Network Layer (Layer 3), 342, 366
Physical Layer (Layer 1), 341, 366
Presentation Layer (Layer 6), 344, 366
Session Layer (Layer 5), 344, 366
Transport Layer (Layer 4), 343
PBX, 366
fraud, 347–348
network forensics, 346–348
PGP encryption, 329–330
ports, 340–341, 366
proxy servers, 317
PSTN, 374, 419
reserved IP addresses, subnet masks, 334
routers, 328, 366
routing tables, 342, 366
Secure Data Transmission, 328
SIP, 348
SMTP servers
 email, 325–326
 network forensics, 324–326
STUN, 348
subnet masks, 332, 366
 calculating, 334–335
 Class A networks, 332
 Class B networks, 332
 Class C networks, 332
 finding, 335
 network forensics, 332–337
 network masks, 333–334
 reserved IP addresses, 334
switches, 324, 367
Traceroute, 328, 367
VoIP, 346, 367
VPN, 178
web servers, 317–321
 Wi-Fi mesh networks, 576, 589
New York Trial Courts, 258–259
 New York v. Weaver, 276
NewDotNet, 296
newsgroups. See usenet groups
NGFW (Next Generation Firewalls), 339–340
NIC (Network Interface Cards), Promiscuous mode, 316, 366
NIDS (Network Intrusion Detection Systems), network forensics, 338
NIJ (U.S. Department of Justice)
 cellphone forensics, 402–403
 crime scenes, documenting, 226–227
Ninth U.S. Circuit Court of Appeal’s
 MLB and BALCO, 268
 United States v. McConney, 728 F.2d 1195, 1199 (9th Cir.), 268
NISC, General Framework for Secured IoT Systems, 573
NIST (National Institute of Standards and Technology)
 cellphone forensics, 401–406
 comprehensive reports, creating, 238
NLRB (National Labor Relations Board), 176–177
NNIDS (Network Node Intrusion Detection Systems), network forensics, 338
Notes application (app), iPhone, 523
notifications
 macOS, 504, 533
 Windows 10, 82
NotPetya ransomware, 314
NTFS (New Technology File System), 51–52
 defined, 50
 FTK Imager, 53–56
 MFT, 52
 system files, 53
numbering plans (international), 382–383
numbers
 binary numbers, binary to decimal file conversion, 42
 decimal numbers
 binary to decimal file conversion, 42
 hexadecimal to decimal file conversion, 43
 hexadecimal numbers
 conversion table, 42–43
 Data Link Escape, 45
 hex converters, 45
 hex editors, 45–46
 hexadecimal to ASCII conversion, 44–45
hexadecimal to decimal file conversion, 43
hexadecimal to file type conversion, 47
NW3C (National White Collar Crime Center), 21, 30
NYPD (New York Police Department), Facial Recognition Unit, 473
NYS DFS Rule 23 NYCRR 500, criminal defense, 294–295

Objective-C, 499, 533
O’Brien, James, 471
Ochoa III, Higinio O. 529
O’Connor v. Ortega, 480 U.S. 709 (1987), 266
OFDMA (Orthogonal Frequency-Division Multiple Access), 575, 589
Office (Microsoft), Microsoft Office, 62–63
Office 365, 83
Ohio v. Johnson, 276
OLAF (European Anti-fraud Office), 303
Olmstead v. United States, 277 U.S. 438 (1928), 266

online communications, capturing
AXIOM, 212
cookies, 214
screen captures, 212–213
video, 213–214
websites visited, 215

online investigations, 176–177, 216
background searches, 191–192
blogs, 202
dynamic IP addresses, 207
Google Groups, 201
IM, 197–200
IPv4 addresses, 206–207
law enforcement access, 208–209
locating suspects, 207
metadata, 207
personal information, 192–195
personal interests, 195–196
professional networks, 205–206
public records, 206
router forensics, 207–208
social media, 195–196
social networking websites, 202–205
stolen property, 196–197
user groups, 200–201
user groups, 196
capturing communications
AXIOM, 212
cookies, 214
screen captures, 212–213
video, 213–214
websites visited, 215

Dark Web investigations
AlphaBay, 187–188
Freenet, 186
Hansa, 188
I2P, 186
marketplaces, 186–188
Operation Bayonet, 187–188
OSINT Framework, 184
PlayPen, 187
Silk Road, The, 187
Tails, 185, 218
Tor, 184–185, 218

online crime, 209
CPI, 211
credit cards for sale, 210
cyberbullying, 211
electronic medical records, 210–211
identity theft, 210
social networking, 211–212

undercover investigations
anonymity, 181–184
background searches, 177
generating email accounts, 179–181
generating identities, 178–179
sting operations, 178
surveillance, 177–178
warrants, 178
wiretaps, 178, 183
virtual currencies, 188–189
website evidence, 189
website archives, 189–190
website statistics, 190–191

online polls, 558, 564
online proxies, 183–184, 218
on-scene examinations, documenting crime scenes, 227–228
opening statements, 260–261
OpenPGP, 330
opentext (Guidance Software), 150
Operation Bayonet, Dark Web investigations, 187–188
Oregon v. Meredith, 276
OS (Operating Systems)
Android OS, 200, 216, 391, 417
ADB, 398, 417
Android Auto, 391–392
Android manifest files, 429–430, 457
applications, 399–400
Brightest Flashlight, 430
Chip-Off, 395–396
EDL mode, 396–397, 417
emulators, 431, 457
evidence, 394–396
file systems, 392
forensics tools, 398
ISP, 396, 418
JTAG, 394–395, 418
partitions, 392–393
resources, 399
security, 396
USB debugging, 398, 420
BIOS
defined, 48
viewing, 48–49
boot process, 48–49
bootstrapping, 48
defined, 47
Disk Signatures, 49
End of Sector Markers, 49
iOS
Apple ID, 510
Data Protection, 509, 532
encryption, 509–510
iOS 13, 508–509
media partitions, 508, 533
root partitions, 508, 534
security, 509–510
System Software Personalization, 508, 534
Tinder SQLite database, 427–429
UDID, 509, 534
USB Restricted Mode, 510, 534
kernels, 48
macOS, 502
Cache.db, 505
Catalina, 502–503
Cookies.plist, 505
deleted files, 498
Disk Utility, 503
displays (multiple), 504
DMG images, 494, 498
Downloads.plist, 505
e-mail files, 501
Epoch Converter, 497, 521
Epoch time, 496–497
FileVault, 503, 532
Gatekeeper, 502–503, 533
hibernation files, 501
History.plist, 504–505
iCloud Keychain, 504, 533
initialization, 495, 533
IOReg Info, 495–496
journaling, 498
Keychain, 503
notifications, 504, 533
PList files, 499–501, 504–506
PMap Info, 495–496
Safari web browser, 504–506
Spotlight feature, 494–495, 534
SQLite database, 501, 505
tags, 504, 534
Target Disk Mode, 506–507
TopSites.plist, 506
Mac OS Extended. See HFS+
Master Boot Code, 49
Master Partition Tables, 49
MBR, 49
RIM OS, 400, 419
ROM, 48
Samsung Galaxy, 393
Symbian OS, 400, 420
UEFI, 48
Unicode, 47
Windows 10 Mobile, 400, 420
Windows OS
 Microsoft Office, 62–63
 Safari web browser, 506
 subnet masks, finding, 335
tumbcache.db, 469
Vista, 63–68
OSI model, 366
 Application Layer (Layer 7), 345, 365
 ARP, 342, 365
 Data Link Layer (Layer 2), 342
 network forensics, 341–346
 Network Layer (Layer 3), 342, 366
 Physical Layer (Layer 1), 341, 366
 Presentation Layer (Layer 6), 344, 366
 Session Layer (Layer 5), 344, 366
 Transport Layer (Layer 4)
 SYN Flood attacks, 344
 TCP, 343–344
 UDP, 343
OSINT Framework, Dark Web investigations, 184
outing, 558, 564
ownership, email, 5–6

P

packet sniffers, 316, 366
packets (data), 366
Paddock, Steven Craig, 549–550
page files, 39
Pagefile.sys, 39
PALADIN, 145
Palin, Sarah, 183, 210
Paraben StrongHold bags, 403
parasites, 166, 172
partitions
 Android OS, 392–393
 defined, 35–36
 iOS
 media partitions, 508, 533
 root partitions, 508, 534
passwords
 password-cracking software, 151
 PRTK, 151
PATA
 cloning disks, 97
disk images, 97
Paul, Christopher Neil, 471–473
PBX (Private Branch Exchange), 366
 fraud, 347–348
 network forensics, 346–348
PC (Personal Computers)
 history of digital forensics, 15
 MAC addresses, finding, 336
pcap files, 431–432, 434–435, 457
peer-to-peer payment services, 189
PEI (Prince Edward Island), RCMP, 462
pen registers, 272–273, 308
People v. Diaz, 271
People v Spinelli, 35 NY2d 77, 81, 278
persistence (Intrusion Kill Chains), 353
persistent cookies, 214, 218
personal data, Indian legal system, 304
personal information
 background searches, 192–195
 credit cards for sale, 210
 identity theft, 210
 law enforcement access, 208–209
personal interests, background searches, 195–196, 197
PGP encryption
 network forensics, 329–330
 OpenPGP, 330
photo forensics, 152, 460, 464, 474. See also
digital cameras; images
 admissibility of evidence, 470
 analog vs digital photography, 470–471
 enhanced images, 471
 SWGDE, 470
 Adroit forensics, 153
 BMP files, 469, 474
 brightness, 471, 474
 budgets, 154
 case studies, 463, 471
 Abrahams, Jared, 464
 Antoine, Cheyenne Rose, 463
Britton, Craig, 464
Cole, Special Agent Jim, 463–464
extortion, 464
Gargol, Brittney, 463
INTERPOL, 471–473
IsAnybodyDown website, 464
Keating, Stephen, 463–464
NYPD Facial Recognition Unit, 473
Paul, Christopher Neil, 471–473
Wolf, Miss Teen USA Cassidy, 464
color balance, 471, 474
contrast, 471, 474
cropping images, 471, 474
DCF, 465, 474
DCIM, 465, 474
digital photography apps, 465–466
DNG, 469, 474
documenting investigations, 231
DSCN, 464, 475
evidence, 152–153, 231
 admissibility, 470
 analog vs digital photography, 470–471
 enhanced images, 471
 SWGDE, 470
EXIF, 152, 466–467, 475
EXIFExtractor, 467
ExifTool, 467
Facebook, 461–462, 465
fake/altered images, 471
directory formats, 152
directory systems, 464–465
directory types, overview of, 467–468
Flickr, 464
FRE, 470
GIF files, 469, 475
Holden, Thomas Jane, 460–461
Huntington Beach Jane Doe, 1968, 460–461
professional certifications, digital forensic training

Instagram, 466
iPhone, 518, 523–524
JPEG files, 468, 475
linear filtering, 471, 475
megapixels, 467–468, 475
metadata, 152
NCMEC, 462–463
pixels, 467–468, 475
PNG files, 469, 475
Project VIC, 463–464
raster-based graphics, 467–468
RAW files, 468–469, 475
RCMP, 462
SnapChat, 466
social networking, 461–462
SWGIT, 471, 475
Ten Most Wanted list (FBI), 460
TIFF files, 469, 475
tumbeache.db, 469
vector graphics, 468, 475
physical file size, 37
Physical Layer (Layer 1), OSI model, 341, 366
physical memory, Vista, 67
physical security, computer forensics laboratories, 156
PIPEDA (Personal Information Protection and Electronic Documents Act), 295
pipl, finding personal information, 195
Pirate Bay, The, 191
pits (CD), 113–114, 121
pixels, 467–468, 475
plain error, 270, 308
plain view doctrine, 269, 308
plaintiffs, 130, 172, 253, 309
Plaso, 359
platters, 37–38
PlayPen, Dark Web investigations, 187
PlayStation (Sony), 2011 breach, 314
PLists, 455
 Format files, 533
macOS, 499–501
 Cookies.plist, 505
 Downloads.plist, 505
 History.plist, 504–505
 TopSites.plist, 506
plutil (property list utility), 499, 533
PMAP Info (Blackbag Technologies), 495–496
PNG files, 469, 475
ports, 366
 IOC, 355
 network forensics, 340–341
power supplies, UPS, 153, 172
PPG (Photoplethysmography), 581, 589
precedents, 254, 309
predictive coding methodology (reports), 240, 246
Prefetch files, 57, 355, 366
Presentation Layer (Layer 6), OSI model, 344, 366
preservation orders, 225, 246
press releases, Intrusion Kill Chains, 351
prevalence, email, 6
Prince, Phoebe, 558–559
Prince Edward Island RCMP, 462
privacy (data)
 E.U. legal system, 209, 298
 Indian legal system, 304
private-sector computer forensics laboratories, 130
pro se, 552, 564
probable cause, 267, 309
probate courts, 258, 309
professional certifications, digital forensic training, 22–26
professional networks
background searches, 205–206
LinkedIn, 205

programming
digital forensics skills, 12
Unicode, 47

Project VIC, 463–464
Project-a-Phone, 408–409
Promiscuous mode (NIC), 316, 366
proof, burden of, 260–261
proper/improper statements (reports), 241
prosecution, expert witnesses, 244
PROTECT Act, 16–17, 286
protocol analyzers, 316, 366
proxies (online), 183–184, 218
proxy firewalls, 339–340
proxy servers, 317, 366
PRTK (Password Recovery Toolkit), 151
PSAP (Public Safety Access Points), 414, 419
PSExec, IOC, 356
PSIN (Public Switched Telephone Networks), 374, 419

public records
background searches, 206
BRB Publications, Inc. 206

PUC (Personal Unblocking Codes), 388, 419
PUK (Pin Unblocking Keys), 377–378, 388, 419

purpose of investigation (reports), 240

Q

QAM (Quadrature Amplitude Modulation), 575, 589
Quick Look, 494, 499, 534

R

Rader, Dennis, 117–118, 555–557, 563
RAID (Redundant Array of Independent Disks), 104, 121, 315
rainbow tables, 131, 172
RAM (Random Access Memory), 30, 39, 42, 103–104, 121, 357
Ramsey boxes, 403
raster-based graphics, 152, 172, 467–468, 475
RAW files, 468–469, 475
RCFL (Regional Computer Forensics Laboratory), 18–19, 21, 30
RCMP (Royal Canadian Mounted Police), 462
RCS (Rich Communications Service), 389, 419
ReadyBoost, 67
Real Player, 214
real-time capture/analysis, network forensics, 315
reconnaissance (Intrusion Kill Chains), 350–352
records of regularly conducted activity, 291
recovered evidence, types of, 5
cellphone forensics, 10
e-mail, 5
accessibility, 6
admissibility, 6
chain of events, 5
control, 5–6
intent, 5–6
ownership, 5–6
prevalence, 6
tampering with evidence, 6
images, 7–8
IoT forensics, 10
video
CCTV, 8–9
skimmers, 8
surveillance video, 8
websites visited/Internet searches, 9
Recovery Mode (iPhone), 513, 534
Registry (Windows), 59–60, 61
analysis, Windows 7, 75
data types, 61
FTK Registry Viewer, 62
HCR (HKEY_CURRENT_USER), 363
HCU (HKEY_CURRENT_CONFIG), 363
HKCC, 61
HKCR, 60
HKCR (HKEY_CLASSES_ROOT), 363
HKCU, 60–61
HKLM, 61, 363
HKU, 61
HKU (HKEY_USERS), 363
Index.dat, 215, 217
network attacks, investigating, 361–363
Registry Editor, 60
registry paths and corresponding files, Windows 7, 76
websites visited, viewing, 215

Registry Editor, 60
flash drives, 106
Registkeys, IOC, 354–357
regularly conducted activity, records of, 291
Regulatory law, 254, 309
remediation (Intrusion Kill Chains), 354
removable memory, 105
reports, documenting investigations, 238, 239
 biographies, 240
cover pages, 239
 DST, 236–237, 246
electronic media analyzed, 240–241
executive summaries, 239
exhibits/appendices, 241
findings of reports, 241
forensic tools, 236
glossaries, 241–242
graphics, 238
investigative details connected to the case, 241
methodologies, 240, 246
R
proper/improper statements, 241
purpose of investigation, 240
structure of, 238–242
time zones, 236
 DST, 236, 246
 GMT, 237–238, 246
 MST, 237, 246
 UTC, 237, 246
time zones/DST, 236–238
reserved IP addresses, 334
resource forks (HFS), 489, 534
resources, Android OS, 399
restores
 Backup and Restore Center, 68
 restoration points, 71
 System Restore, 71
retroactive analysis of captured data, network forensics, 315
rideshare applications (apps), 450
Riley v. California, 271
RIM OS, 400, 419
Ring doorbell, 585
RMS (Record Management Systems), 208–209, 218
ROM (Read-Only Memory), 48
Roman law, 254
Rombom, et al. v. Weberman et al.6
root partitions (iOS), 508, 534
Rountree, Piper, 414
router forensics, 207–208, 328, 366
routes (waypoints), GPS devices, 414, 419
routing tables, 342, 366
RTCC (Real Time Crime Center), 208, 218
Rules of Criminal Procedure, 270, 309
S
SABAM, 302
Safari web browser, 504
Cache.db, 505
Cookies.plist, 505
Downloads.plist, 505
History.plist, 504–505
iPhone, 518
TopSites.plist, 506
webpage reviews, 504–505
for Windows, 506
safety, computer forensics laboratories, 153–154
Samsung Galaxy, 393
SANS SIFT workstation, 360–361
SATA (Serial ATA), 121
cabling, 95–96, 97, 121
cloning disks, 97
disk images, 97
drives, sizes of, 96–97
eSATA connectors, 96, 121
satellite communication services, cellphone forensics, 410
SaveVid.org, 213
screen captures, 212–213
scripting languages, network forensics, 320–321
SCSI (Small Computer System Interfaces), 93–94, 122
SD (Secure Digital) cards, 109–110, 112–113, 121
search incident to a lawful arrest, 309
search warrants, 178, 309. See also warrantless searches
court orders, 272, 307
digital surveillance, 272–273
e-mail, 267
exclusionary rule, 266, 307
GPS tracking, 273–276
 New York v. Weaver, 276
 Ohio v. Johnson, 276
 Oregon v. Meredith, 276
state law, 276
United States v. Jones, 274–276
United States v. Magana, 512 F.2d 1169, 1171 [9th Cir. 1975], 274
United States v. Dunn, 480 U.S. 294 (1987), 273
United States v. McIver, 274
Washington v. Jackson, 150 Wash.2d 251, 76 P.3d 217 (Wash. 2003), 276
MLB and BALCO, 268
pen registers, 272–273, 308
probable cause, 267, 309
Smith v. Maryland, 442 U.S. 735 (1979), 272–273
traffic stops, 277
 Arizona v. Gant, 278
 California v. Nottoli, 277–278
 Carpenter v. United States, 278–279
 People v Spinelli, 35 NY2d 77, 81, 278
 South Dakota v. Opperman (1976) 428 U.S. 364 [96 S.Ct. 3092], 277
 United States v. Leon, 468 U.S. 897 (1984), 267
 United States v. Ziegler, 267
Searchbug, finding personal information, 193
searching
 background searches, 177, 191–192
 blogs, 202
dynamic IP addresses, 207
Google Groups, 201
IM, 197–200
IPv4 addresses, 206–207
law enforcement access, 208–209
locating suspects, 207
metadata, 207
personal information, 192–195
personal interests, 195–196
professional networks, 205–206
public records, 206
router forensics, 207–208
social media, 195–196
social networking websites, 202–205
stolen property, 196–197
usenet groups, 200–201
user groups, 196
GREP searches
check fraud, 165–166
financial fraud, 163–165
stolen property, 196–197
Windows Federated Search, 79
Windows search engine (indexing), Vista, 66
SEC (Securities and Exchange Commission),
10-day notices, 130
sectors, 36
Secure Data Transmission, 328, 366
security
AES, 67
Android OS, 396
computer security, 29
encryption
AES, 67
APFS, 491–492
FileVault (macOS), 503, 532
firewalls, 365
evidence, 340
network forensics, 339–340
NGFW, 339–340
proxy firewalls, 339–340
stateful inspection firewalls, 339–340
stateless firewalls, 339–340
UTM, 339–340
Indian legal system, 304
iOS, 509–510
macOS, Gatekeeper, 502–503, 533
malware, 178
password-cracking software, 151
physical security, computer forensics laboratories, 156
PRTK, 151
steganalysis, 168, 172
steganography, 168–169, 172
T2 security chip (Apple), 492
Windows 8.1, 82
seizing evidence, 227
selling credit cards, 210
sequestration of juries, 260, 308
servers
DHCP servers, 365
ARP requests, 321–322
default gateways, 321
Event Viewer, 322
logs, 322–324
network forensics, 321–324
subnet masks, 321
viewing service activity, 322
DNS servers, network forensics, 326–327
proxy servers, 317, 366
SMTP servers, 366
e-mail, 325–326
network forensics, 324–326
web servers, 9, 30, 367
HTTP, 319–320
network forensics, 317–321
scripting languages, 320–321
URL, 318
web browsers, 318–319, 367
worksheets, documenting investigations, 233–234
service providers (ISP), obtaining evidence, 224–225

ServiceDLL, IOC, 354
session cookies, 214, 218
Session Layer (Layer 5), OSI model, 344, 366
sessions (CD), 114
sexting, 558, 564
ShellBags, 58, 358
ShimCache, 58–59, 358
Shodan, 576–577
signal jammers, 155–156, 171
Significant Locations (iPhone), 521
sign-in sheets, laboratory access, 156
Silk Road, The, 538–549, 563
Dark Web investigations, 187
Hansa, 188
trial, 33
SIM card readers, 139–140
SIM cards, 381–382, 419
accessing, 388
cloning, 388
file systems, 386–387
forensics, 385–388
hardware, 386
interface, 386
iPhone, 513
PUC, 388, 419
Simmonds, Jamie, 583
SIP (Session Initiation Protocol), network forensics, 348
Sixth Amendment (U.S. Constitution), 280–281, 306
skimmers, 8, 30, 166
ATM skimmers, 166–167, 171
magstripe readers, 166–167, 172
parasites, 166, 172
SkipEase, finding personal information, 194
Skype, 200, 453–455

SkyWave Mobile Communications, 410
slack (file), 37, 46
sleepimage files (macOS), 501, 534
Sleuth Kit (TSK), The, 144
small claims courts, 258, 309
SMART files, 150, 172
smart holster sensors, 584, 589
SmartCarving, 153
SmartMedia cards, 108
Smith v. Maryland, 442 U.S. 735 (1979), 272–273
SMS (Short Message Service), 388–389, 419
SMTP servers, 366
email, 325–326
network forensics, 324–325

Smyth v. The Pillsbury Company, 282
SnapChat, 466
snapshots (APFS), 493, 534
sniffers (packet), 316, 366
Snipping tool (Windows 10), 213
Snowden, Edward, 20
social networking
background searches, 195–196, 202–205
Facebook, 203–204
gedata, 202–203
HootSuite, 196
MySpace, 205
online crime, 211–212
photo forensics, 461–462
Social Searcher, 196
Twitter
analytics, 204–205
API, 204
background searches, 204–205
Foller.me, 205
U.S. Department of Defense, 212

Social Searcher, 196
sockpuppets, 178
soft/hard handoffs, 377, 418, 420
software, forensic imaging, 36
Sony Computer Entertainment America v. George Hotz, 287
Sony PlayStation, 2011 breach, 314
SOP, cellphone forensics, 401–406
South Dakota v. Opperman (1976) 428 U.S. 364 [96 S.Ct. 3092], 277
Souza, Dawnmarie, 176–177
space sharing (APFS), 492, 534
sparse bundles, 534
sparse images, 534
spindles, 37–38
spoilation of evidence, 12, 30
Spokeo, finding personal information, 194
Spotlight feature (macOS), 494, 534
Spy Dialer, 182–183
SQLite database, 420
applications (apps), investigating, 427–431
Cache.db, 505
Mac forensics, 501
Tinder SQLite database, 427–429
SSD (Solid State Drives), 101–103, 122
FTL, 103, 121
garbage collection, 102, 103, 121
TRIM function, 103, 122
write-blockers, 109, 112
standby council, 564
standing warrants, 271, 309
start screen, Windows 8.1, 79–80
state courts, 257
appellate courts, 257
family courts, 258, 307
intermediate appellate courts, 257
juvenile courts, 258, 308
municipal courts, 258, 308
New York Trial Courts, 258–259
probate courts, 258, 309
small claims courts, 258, 309
traffic courts, 258, 309
trial courts of general jurisdiction, 258–259
trial courts of limited jurisdiction, 258
State v. Armstead, 292
stateful inspection firewalls, 339–340
stateless firewalls, 339–340
static analysis of applications (apps), SQLite database, 427–431
statistics, websites, 190–191
Statutory law, 254, 309
steganalysis, 168, 172
steganography, 168–169, 172
Stengart v. Loving Care Agency, Inc.6
Sticky Notes (Windows 7), 74–75
sting operations, 178
Stingray, 272, 309
STIX, 349
stolen property, searching for, 196–197
storage
allocated storage space, 35–36
BD, 115–116, 120
CD, 113–114, 120
lands, 113–114, 121
pits, 113–114, 121
sessions, 114, 115, 122
TOC, 114, 122
tracks, 36, 114, 122
CD-RW, 114–115
DVD, 115, 120
file storage
800-byte files, physical layout, 37
bytes, 36, 38–39
clusters, 36
file slack, 37, 46
logical file size, 36
physical file size, 36
sectors, 36
tracks (CD), 36, 114, 122
floppy disks, 116–118, 121
hard disks
actuator arms, 37–38
cylinders, 38
determining capacity of, 38
disk geometry, 38
layout of, 37–38
page files, 39
Pagefile.sys, 39–42
platters, 37–38
spindles, 37–38
magnetic tapes, 114–115, 121
sectors, bad sectors, 36
unallocated storage space, 35–36
wear-leveling, 102, 122
zip disks, 118, 122
Strava application (app), 579–580
structure of, comprehensive reports, 238–242
STUN (Simple Traversal of UDP through NAT), network forensics, 348
subnet masks, 321, 332, 366
calculating, 334–335
Class A networks, 332
Class B networks, 332
Class C networks, 332
finding, 335
network forensics, 332–337
network masks, 333–334
reserved IP addresses, 334
subpoenas, 309
subscribers (cellular networks)
authentication, 382–383
records, 377–378, 420
subsidy locks, 379, 420
Superfetch files, 58
Supreme Court, The, 256
surveillance
online investigations, 177–178
search warrants, 272–273
video, 8
suspects, locating, 207
svc.host.eve, IOC, 354
SWDGE (Scientific Working Group on Digital Evidence), 129–130, 172, 470
SWGIT (Scientific Working Group on Imaging Technologies), 471, 475
switches, 324, 367
Symbian OS, 400, 420
SYN Flood attacks, 344
SYN-SYN-ACK (TCP three-way handshake), 343
System Restore, 71
System Software Personalization (Apple), 508, 534
System Status application (app), 235
System32, IOC, 355
Systrom, Kevin, 466
T2 security chip (Apple), 492
table of contents (ToC), reports, 239
tables, 413
TAC (Type Allocation Codes), 378, 420
tagged evidence, documenting, 229
tags (macOS), 504, 534
Tails, 185, 218
TALON (Threat And Local Observation Notice), 209, 218
tampering with evidence, 6, 30
Target Disk Mode (macOS), 506–507
taxes, virtual currencies, 188
TAXII, 349
TCP (Transmission Control Protocol), 343, 367
 importance of, 344
 retransmission, 344
 TCP/IP headers, 344
 three-way handshake, 343–344
TDMA (Time Division Multiple Access), 384, 420
tech forums, Intrusion Kill Chains, 351
Telegram, background searches, 195–196
telematics, 585, 589
telephone carriers, masking identities, 183
Ten Most Wanted list (FBI), 460
Terminal Window, 500
threats
 APT, 314–315
 botnets, 577
 cryptojacking, 577–578, 588
 malware, VPN, 178
 MITM attacks, 433, 457
 network attacks, investigating, 357
 AmCache, 357–358
 EDR, 359
 Kibana, 359
 Log2Timeline, 359
 RAM, 357
 SANS SIFT workstation, 360–361
 ShellBags, 358
 ShimCache, 358
 VSC, 358
 Windows Registry, 361–363
Trojan horses, 210, 218, 367
 zero-day exploits, 426, 457
 Zeus, 210, 218
three-way handshake (TCP), 343
TIFF files, 469, 475
Time Capsule (Airport), 488, 531
time zones, documenting investigations, 236
 GMT, 237–238, 246
 MST, 237, 246
 UTC, 237, 246
times and dates
 Epoch time, 496–497
 HFS+490
timestamps
 NTFS, 52
 timestomping, 350, 367
Tinder application (app), 442–445
Tinder SQLite database, 427–429
TLO (Terrorism Liaison Officers), 208–209, 218
TMSI (Temporary Mobile Subscriber Identities), 382, 386–387, 420
tmutil snapshot [enter], 493
Tobolski, Donny, 177
TOC (Table of Contents)
 CD, 114, 122
 reports, 239
toolkits, 141
tools
 documenting investigations, 234–236
 network forensics, 315–316
TopSites.plist, 506
Tor, 184–185, 218
Touch ID (iPhone), 515–516, 534
touchscreen computing, Windows 7, 74
TPPO (Triphenylphosphine Oxide), 586, 589
Traceroute, 328, 367
track logs, GPS devices, 414, 420
trackpoints, GPS devices, 414, 420
tracks (CD), 36, 114, 122
traffic courts, 258, 309
traffic stops, search warrants, 277
 Arizona v. Gant, 278
 California v. Nottoli, 277–278
 Carpenter v. United States, 278–279
 People v Spinelli, 35 NY2d 77, 81, 278
 South Dakota v. Opperman (1976) 428 U.S. 364 [96 S.Ct. 3092], 277

training/education, 21
 colleges/universities, 22
 high schools, 22
 law enforcement, 21–22
 professional certifications, 22–26

Transfer of Evidence, 4
Transport Layer (Layer 4), OSI model
 SYN Flood attacks, 344
 TCP, 343
 importance of, 344
 retransmission, 344
 TCP/IP headers, 344
 three-way handshake, 343
 UDP, 343

trials
 criminal defense, 293
 CCPA, 294
 defense attorneys, 293–294, 307
 NYS DFS Rule 23 NYCRR 500, 294–295
 PIPEDA, 295
 criminal trials versus civil trials, 261–262
 expert witnesses, preparing, 243–244
 Discovery phase, 290–291, 307
 trial courts
 of general jurisdiction, 258–259
 of limited jurisdiction, 258

tricking, 558, 564
TRIM function, 103, 122
Tripp, Linda, 183

Trojan horses, 210, 218, 367
TSK (The Sleuth Kit), 144
TTP (Tactics, Techniques and Procedures), Intrusion Kill Chains, 352–353
tumbcache.db, 469

Twitter
 analytics, 204–205
 API, 204
 background searches, 204–205
 Foller.me, 205

U

Uber application (app), 451–453
UDID (Unique Device Identifiers), 509, 534
UDP (User Datagram Protocol), 343, 348, 367
UEFI (Unified Extensible Firmware Interface), 48
UICC (Universal Integrated Circuit Cards), 379, 420

U.K. (United Kingdom). See also E.U.
 U.K. Code of Practice for Consumer Internet of Things Security, 573
 UK Modern Slavery Act, 301

Ulbrecht, Ross, 538–549, 563
UltraBlock Forensic Card Reader and Writer, 111–112

UMTS (Universal Mobile Telecommunications System), 385, 420

unallocated storage space, 35–36

undercover investigations, 218
 anonymity, 181–184
 background searches, 177
 email accounts, generating, 179–181
 identities, generating, 178–179
 sting operations, 178
 surveillance, 177–178
 warrants, 178
 wiretaps, 178, 183

Unicode, 47
universities/colleges, digital forensic training, 22
UNIX, dd command, 119, 120, 157–158
upgrades, DFU Mode (iPhone), 512–513
UPS (Uninterruptible Power Supplies), 153, 172
URI (Uniform Resource Identifiers), 318, 367
URL Initiative (NCMEC), 462–463
U.S. Constitution, 254
Fifth Amendment, 279–280
First Amendment (U.S. Constitution), 262–263
Doninger v. Niehoff, 527 F.3d 41 (2d Cir. 2008), 265
Internet and, 263–265
Miller v. California, 413 U.S. 15 (1973), 265
Fourth Amendment, 265–266
certiorari, 266, 306
exclusionary rule, 266, 307
fruit of the poisonous tree, 266, 278, 308
Katz v. United States, 389 U.S. 347 (1967), 266
O'Connor v. Ortega, 480 U.S. 709 (1987), 266
Olmstead v. United States, 277 U.S. 438 (1928), 266
search warrants, 266
warrantless searches, 268–271
Weeks v. United States, 232 U.S. 383 (1914), 266
Sixth Amendment, 280–281, 306
Supreme Court, The, 256
U.S. Department of Defense, social networking, 212
U.S. Department of Justice (NIJ)
cellphone forensics, 402–403
crime scenes, documenting, 226–227
U.S. District Courts, 257
U.S. DOJ (Department of Justice), warrantless searches, 268
U.S. legal system, 252, 254–255
admissibility of evidence, 262
Constitutional law, 262
First Amendment (U.S. Constitution), 262–265
Fourth Amendment (U.S. Constitution), 265–279
appeals courts, 255–256
Articles of the Constitution, 254
Bill of Rights, The, 254, 262, 306
burden of proof, 260–261, 306
Civil law, 254, 306
Codified law, 254, 306
common law, 254, 306
Constitutional law, 254, 262, 306
criminal defense, 293
CCPA, 294
defense attorneys, 293–294, 307
NYS DFS Rule 23 NYCRR 500, 294–295
PIPEDA, 295
criminal trials versus civil trials, 261–262
cross-examination, 260–261, 307
defendants, 253, 307
deliberations, 261, 307
direct examination, 260–261, 307
en banc, 561, 563
federal courts
appellate courts, 256–257
jurisdiction, 256
Supreme Court, The, 256
U.S. District Courts, 257
felonies, 261, 307
history of, 253–254
judges, 255, 308
juries, 260, 308
 contempt of court, 260
foreperson, 260, 307
grand juries, 308
hung juries, 261, 308
indictments, 308
sequestration, 260, 308
voir dire, 260, 309
Louisiana Civil Code Digest of 1808, 254
misdemeanors, 261, 308
Napoleonic Code, The, 254
opening statements, 260–261
origins of, 254
plaintiffs, 130, 172, 253, 309
precedents, 254, 309
pro se, 552
procedural overview, 259–260
Regulatory law, 254, 309
Roman law, 254
standby council, 564
state courts, 257
 appellate courts, 257
 family courts, 258, 307
 intermediate appellate courts, 257
 juvenile courts, 258, 308
 municipal courts, 258, 308
 New York Trial Courts, 258–259
 probate courts, 258, 309
 small claims courts, 258, 309
 traffic courts, 258, 309
 trial courts of general jurisdiction, 258–259
 trial courts of limited jurisdiction, 258
Statutory law, 254, 309
structure of, 253–254
subpoenas, 309
UNITED STATES of America, Plaintiff-
Appellee, v. Russell Lane WALSER,
 Defendant-Appellant. No. 01–8019,
 269–270
United States v. Carey, No. 14–50222 (9th
Cir. 2016), 269, 270
United States v. Daniel David Rigmaiden,
United States v. Dunn, 480 U.S. 294
(1987), 273
United States v. Jones, 274–276
United States v. Knotts 460 U.S. 276
(1983), 273–274
United States v. Leon, 468 U.S. 897 (1984),
267
United States v. Magana, 512 F.2d 1169,
1171 [9th Cir. 1975], 274
United States v. Mann (No. 08–3041),
270–271
United States v. McIver, 274
United States v. McConney, 728 F.2d
1195, 1199 (9th Cir.), 268
United States v. Tank, 292
United States v. Warsbak, 562 F. Supp. 2d
986 (S.D. Ohio 2008), 267
United States v. Ziegler, 267
U.S. Constitution, 254, 256
verdicts, 261
US Search, finding personal information,
192–193
USA PATRIOT Act (H.R. 3162), 14, 16–17, 268,
283, 284–286
USB devices
debugging, 398, 420
flash drives, 106, 146–149
ownership, 72–73
USB Restricted Mode (Apple), 510, 534
USBDeview, 72–73
usenet groups, 200–201, 218
user events (iPhone), 525
user groups, background searches, 196
user keybags, 492
UserAssist, IOC, 357
SUSN_Journal, IOC, 355
USSS (United States Secret Service), history of digital forensics, 16–17
UTC (Coordinated Universal Time), 237, 246
UTM (Unified Threat Management), 339–340

V

vacuuming, 501, 534
vBulletin, background searches, 195–196
vector graphics, 468, 475

vehicle forensics
dogs, 586–587
VIN, 585–586, 589

VEK (Volume Encryption Keys), 491, 534
Venmo, 189

verdicts, 261

Vicemo, 189

video

Autopsy Video Triage, 213
capturing, 213–214
evidence
CCTV, 8–9
skimmers, 8
surveillance video, 8
websites visited/Internet searches, 9
Real Player, 214
SaveVid.org, 213
WM Recorder, 214

viewing

BIOS, 48–49
cookies, 214
websites visited, 215

VIN (Vehicle Identification Numbers), 585–586, 589

Virginia Declaration of Rights, 262

virtual assistants
Alexa, 191, 578–579

Cortana, 82–83

virtual currencies

Bitcoin, 188, 216
Bitcoin miners, 189, 216
Bitcoin tumblers, 189, 216
Bitcoin wallets, 188–189, 216
blockchains, 189, 217
identities, generating, 178

CoinMarketCap, 188
cryptojacking, 577–578, 588
Fiat currency, 188, 217
FinCEN, 188
history of digital forensics, 20
identities, generating, 178

IRS, 188
Linden dollars, 188
taxes, 188

Venmo, 189

Vicemo, 189

virtual memory, 39, 42

visited websites/Internet searches, 9

Vista, 63, 68
defragmentation, 63–64
Event Viewer, 65–66
Hyberfil.sys, 68
metadata, 67
physical memory, 67
ReadyBoost, 67

Volume Shadow Copy Service, 67–68
Windows search engine (indexing), 66

VLR (Visitor Location Register), 382, 420

VM (Virtual Machines), 150–151, 172

VMware, 151

Vo5G wireless standard, 575, 589

VoIP (Voice over Internet Protocol), 367

network forensics, 345–346

STUN, 348

voir dire, 260, 309
volume headers, 489–490, 534
Volume Keybags, 491, 534
Volume Shadow Copy Service, 67–68
VPN (Virtual Private Networks), 178
VSC (Volume Shadow Copy), 358

W

War Games, 15

warrants,

search warrants
court orders, 272, 307
digital surveillance, 272–273
e-mail, 267
GPS tracking, 273–276
MLB and BALCO, 268
pen registers, 272–273, 308
probable cause, 267, 309
Smith v. Maryland, 442 U.S. 735 (1979), 272–273
traffic stops, 277–279
United States v. Leon, 468 U.S. 897 (1984), 267
United States v. Ziegler, 267

standing warrants, 271, 309

warrantless searches, 269

Arizona v. Gant, 2009, 271
case studies, 271
DOJ, 268
exigent circumstances, 268, 307
Horton v. California, 269
"knock and talk"269, 308
People v. Diaz, 271
plain error, 270, 308
plain view doctrine, 269, 308
Riley v. California, 271
Rules of Criminal Procedure, 270, 309
search incident to a lawful arrest, 271
standing warrants, 271
United States of America, Plaintiff-
Appellee, v. Russell Lane WALSER,
Defendant-Appellant. No. 01–8019, 269–270
United States v. Carey, No. 14–50222 (9th Cir. 2016), 269, 270
United States v. Mann (No. 08–3041), 270–271
United States v. McConney, 728 F.2d 1195, 1199 (9th Cir.), 268
Washington v. Jackson, 150 Wash.2d 251, 76 P.3d 217 (Wash. 2003), 276
WayBackMachine, 189–190
waypoints, GPS devices, 414, 420
W-CDMA (Wide Band CDMA), 384, 420
WD (Western Digital) external hard drives, 107
weaponization (Intrusion Kill Chains), 352
wear-leveling, 102, 122

web browsers, 367

Edge web browser, 82
t viewing websites visited, 215
WebCacheV01.dat, 215, 218
InPrivate Browsing, Internet Explorer, 76–77
network forensics, 318–319
Safari, 504
Cache.db, 505
Cookies.plist, 505
Downloads.plist, 505
History.plist, 504–505
iPhone, 518
TopSites.plist, 506
webpage reviews, 504–505
for Windows, 506
Windows 7, 76–77

web hosting, 132
web servers, 9, 30, 367
 network forensics, 317–321
 HTTP, 319–320
 scripting languages, 320–321
 URI, 318
 web browsers, 318–319
 web browsers, network forensics, 318–319, 367
WebCacheV01.dat, 215, 218
webpage reviews, Safari web browser, 504–505
websites
 archives, 189–190
 background searches
 professional networks, 205–206
 social networking websites, 202–205
 evidence, 189
 website archives, 189–190
 website statistics, 190–191
 IsAnybodyDown website, photo forensics, 464
 statistics, 190–191
 TopSites.plist, 506
 websites visited/Internet searches, 9
Weeks v. United States, 232 U.S. 383 (1914), 266
Wichita Eagle Newspaper, 118
Wi-Fi
 Apple devices, 487–488
 mesh networks, 576, 589
 Wi-Fi 6, 575–576, 589
Windows 7, 68
 backing up to networks, 71–72
 Backup and Restore Center, 68
 biometrics, 69
 BitLocker To Go, 72
 COFEE, 72
 Event Viewer, 76
 grouping files, 78
 InPrivate Browsing, 76–77
 JumpLists, 69
 restoration points, 71
 Sticky Notes, 74–75
 System Restore, 71
 touchscreen computing, 74
 USB device ownership, 72–73
 web browsers, 76–77
 Windows Federated Search, 79
 Windows Registry
 analysis, 75
 registry paths and corresponding files, 76
Windows 8.1
 applications, 81
 desktop, 80–81
 evidence gathering, 81–82
 security, 82
 start screen, 79–80
Windows 10, 82
 Cortana, 82–83
 Edge web browser, 82
 notifications, 82
 screen captures, 213
 Snipping tool, 213
Windows 10 Mobile, 400, 420
Windows Federated Search, 79
Windows File Registry, 106
Windows file systems
 defined, 49
 FAT, 464
 defined, 50
 FAT12, 50
 FAT16, 50
 FAT32, 50
 FAT64, 50
 FATX, 50
 feature comparisons table, 52
 NTFS, 51–52
Windows file systems

defined, 50
FTK Imager, 53–56
MFT, 52
system files, 53
Prefetch files, 57, 355, 366
ShellBags, 58
ShimCache, 58–59
Superfetch files, 58
Windows Registry, 59–60, 61
 analysis, Windows 7, 75
data types, 61
FTK Registry Viewer, 62
HKCC, 61
HKCR, 60
HKCU, 60–61
HKLM, 61
HKU, 61
Registry Editor, 60
registry paths and corresponding files,
 Windows 7, 76

Windows OS
Microsoft Office, 62–63
Microsoft Office 365, 83
Safari web browser, 506
subnet masks, finding, 335
tumbcache.db, 469
Vista, 63, 68
defragmentation, 63–64
Event Viewer, 65–66
Hyberfil.sys, 68
metadata, 67
ReadyBoost, 67
Volume Shadow Copy Service, 67–68
Windows search engine (indexing), 66
Windows 7, 68
 backing up to networks, 71–72
Backup and Restore Center, 68
biometrics, 69
BitLocker To Go, 72
COFEE, 72
Event Viewer, 76
grouping files, 78
InPrivate Browsing, 76–77
JumpLists, 69
restoration points, 71
Sticky Notes, 74–75
System Restore, 71
touchscreen computing, 74
USB device ownership, 72–73
web browsers, 76–77
Windows Federated Search, 79
Windows Registry, 75–76
Windows 8.1
 applications, 81
desktop, 80–81
evidence gathering, 81–82
security, 82
start screen, 79–80
Windows 10, 82
Cortana, 82–83
Edge web browser, 82
notifications, 82

Windows Registry, 59–60, 61
analysis, Windows 7, 75
data types, 61
FTK Registry Viewer, 62
HCR (HKEY_CURRENT_USER), 363
HCU (HKEY_CURRENT_CONFIG), 363
HKCC, 61
HKCR, 60
HKCR (HKEY_CLASSES_ROOT), 363
HKCU, 60–61
HKLM, 61, 363
HKU, 61
HKU (HKEY_USERS), 363
Index.dat, 215, 217
network attacks, investigating, 361–363
Registry Editor, 60
registry paths and corresponding files, Windows 7, 76
websites visited, viewing, 215
Windows search engine (indexing), Vista, 66
WinHex, 144
Winslow II, Kelvin, 580
wireless monitoring, applications (apps), 431–433
wireless telecommunications technologies
3G, 384–385, 416
3GP, 384–385, 416
3GP2, 385, 416
4G, 383
4G LTE Advanced, 383, 416
5G, 384, 573–575, 588
CDMA, 385, 417
CDMA2000, 385, 417
EDGE, 384–385, 417
GPRS, 384–385
GSM, 384, 418
iDEN, 385
MiFi, 383, 419
multiplexing, 385, 419
TDMA, 384, 420
UMTS, 385, 420
Vo5G, 575, 589
W-CDMA, 384, 420
Wi-Fi 6, 575–576, 589
wiretaps, 178, 183
witnesses
depositions, 290, 307
expert witnesses, 242, 246, 290–291
goals of, 242
preparing for trial, 243–244
role of, 242
tips for prosecution, 244
lay witnesses, 243, 246
WM Recorder, 214
Wolf, Miss Teen USA Cassidy, 464
workbenches, 134, 172
worksheets, documenting investigations
 computer worksheets, 230–231
 hard disk drive worksheets, 232
 server worksheets, 233–234
workstations, 133
 ergonomics, 154
 FRED workstations, 153
 SANS SIFT workstation, 360–361
WWW (World Wide Web), 184

X

xD Picture Cards, 111, 122
XMPP (Extensible Messaging and Presence Protocol), 199, 217
X-Ways Forensics software, 7, 144

Y

YARA, Intrusion Kill Chains, 353

Z

Zaba Search, finding personal information, 192
zero-day exploits, 426, 457
Zeus, 210, 218
ZIF cables, SATA, 96–97
zip disks, 118, 122