FULL COLOR
e

JavaScript

BEGINNER’S

No experience necessary!

e
>
&

Kirupa Chinnathambi

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

E 80 8 0 8.

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780789758064
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780789758064
https://plusone.google.com/share?url=http://www.informit.com/title/9780789758064
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780789758064
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780789758064/Free-Sample-Chapter

JavaScript

ABSOLUTE

GUIDE

Kirupa Chinnathambi
Pearson Education

800 East 96th Street
Indianapolis, Indiana 46240

USA

JavaScript Absolute Beginner’s Guide
Copyright © 2017 by Pearson Education

All rights reserved. No part of this book shall be reproduced, stored in

a retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from

the publisher. No patent liability is assumed with respect to the use of

the information contained herein. Although every precaution has been

taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

ISBN-13: 978-0-7897-5806-4
ISBN-10: 0-7897-5806-7

Library of Congress Control Number: 2016939721
Printed in the United States of America

First Printing: July 2016

Trademarks

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Pearson cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fitness is implied. The information provided

is on an “as is” basis. The author and the publisher shall have neither liability
nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,

or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearsoned.com.

Acquisitions Editor
Mark Taber

Development Editor
Chris Zahn

Copy Editor
Autumn Spalding

Production Editor
Lori Lyons

Technical Editors
Trevor McCauley
Kyle Murray

This page intentionally left blank

Contents at a Glance

Part |

O Vv 00 NO U1 A WN

—

Part Il

1
12
13
14
15
16
17
18
19
20

Part I

21
22
23
24
25
26
27

INtrOdUCHION Lo 1
Hello, Worldl . o 5

The Basic Stuff

Values and Variables ... 13
FUNCHIONS ..o 19
Conditional Statements: If, Else, and Switch ... 31
Meet the Loops: For, While, and Do...Whilel.................... 47
TS 59
Variable SCOPE ... 67
CloSUIES. ... 77
Where Should Your Code Live?............ocooiiiii 89
Commenting Your Code ... 101

It's an Object-Oriented World

Of Pizza, Types, Primitives, and Objects ... 109
SIS e 121
When Primitives Behave Like Objects ... 133
AATTAYS 139
NUMDEIS. ..o 149
A Deeper Look at Objects ... 161
Extending Built-in Objects ... 179
Booleans and the Stricter === and !== Operators ... 189
Null and Undefined.............. 195
Immediately Invoked Function Expressions ... 201

Working with the DOM

JS, The Browser, and The DOM ... 219
Finding Elements in the DOM ..., 231
Modifying DOM Elements ... 237
Styling Your Content........o.ooiiiiii 247
Traversing the DOM........... 255
Creating and Removing DOM Elements............... 265

In-Browser Developer Tools................o 279

vi

Part IV Dealing with Events
28 EVENTS oo 299
29 Event Bubbling and Capturing...............oooooiiiii 311
30 MoOUSE EVENTS ..o 325
31 Keyboard Events ... 339
32 Page Load Events and Other Stuff................................. 349
33 Handling Events for Multiple Elements ... 363
34 CoNCIUSION .o 373
GlOSSANY ... 377
INA@X 381

vii

Table of Contents

Introduction................ 1
Parlez-vous JavaScript? 2
Contacting Me/Getting Help ... 4

1 Hello, Worldl .. 5
What Is JavaSCript? ... 7

A Simple Example ... 8
Code Editing TOOIS. ... 8

The HTML DOCUMENT ..o 9
Looking at the Code: Statements and Functions ... 10

| The Basic Stuff

2 Values and Variables. ... 13
Using Variables ... 14
More Variable Stuff. ... 15

Naming Variables ... 15
More on Declaring and Initializing Variables.................................. 16

3 FUNCHiONS ... 19

What Is @ FUNCHON? ... 22
A Simple FUNCEION ..o 22
Creating a Function That Takes Arguments ... 24
Creating a Function That Returns Data..................ooooi 27
The Return Keyword ..., 27
Exiting the Function Early.............. 28

4 Conditional Statements: If, Else, and Switch............................. 31

The If/EIse StatemMent. ... 32
Meet the Conditional Operators ... 34
Creating More Complex EXpressions. ... 36
Variations on the If/Else Statement ... 38

viii

SWItCh STAtEMENTS ..o 39
Using a Switch Statement.............. 39
Similarity to an If/Else Statement ... 42

Deciding Which to Use ... 44

Meet the Loops: For, While, and Do...While!................................. 47

The £OT LOOP ..o 49
The Starting Condition ... 51
Terminating Condition (aka Are we done yet?) ... 51
Reaching the End ..., 51
Putting It All Together ... 52

Some for Loop Examples ... 52
Stopping a Loop Early ... 53
Skipping an [teration ... 53
Going Backwards................ 54
You Don’t Have to Use Numbers ... 54
Array! Arrayl Array! . o 54
Oh No He Didn"th ... 55

The Other LOOPS ... 55
The While LOOP \.iiiiiiiiiii e 56
The do. v eWhile LOOP i, 56

TUMIEIS 59

Meet the Three Timers ... 60
Delaying with setTimeout................... 60
Looping with setInterval ... 61
Animating Smoothly with requestAnimationFrame................... 62

Variable Scope ..., 67

Global SCOPE ... i 68

Local SCOPE ..o 70

Miscellaneous Scoping Shenanigans ... 71
Declarations Using var Do Not Support Block Scoping....................... 71

How JavaScript Processes Variables................................... 72

ClOSUI®S ... 74

ClOSUIES ..o 77

Functions within FUNCEIONS ... 78

When the Inner Functions Aren’t Self-Contained ... 81

9 Where Should Your Code Live? ... 89
The Options on the Table 90
Approach #1: All the Code Lives in Your HTML Document ... 92
Approach #2: The Code Lives in a Separate File ... 93

The JavaScript File ... 93
Referencing the JavaScript File ... 94
So...Which Approach to Use? ... 97
Yes, My Code Will Be Used on Multiple Documents!.................... 97
No, My Code Is Used Only Once, on a Single HTML Document!.............. 99

10 Commenting Your Code ... 101

What Are ComMMENTS? ... 102
Single Line ComMMENTS. ... 103
Multi-line ComMMENTS. ... 104

Commenting Best Practices ... 106

Il It's an Object-Oriented World

11 Of Pizza, Types, Primitives, and Objects ... 109
Let's First Talk About Pizza.................... 110
From Pizza to JavaScript................... 113
What Are OBJECES? ..o 115
The Predefined Objects Roaming Around ..., 117

T2 SHFINGS .. 121
THE BaSICS. ..o 122
String Properties and Methods ... 124

Accessing Individual Characters ... 124
Combining (aka Concatenating) Strings ... 125
Making Substrings out of Strings ... 126
Splitting @ String/sPLit ... 128
Finding Something Inside a String ... 129

Upper and Lower Casing Strings..................oiiiii 130

13

14

15

16

When Primitives Behave Like Objects ... 133

Strings Aren’t the Only Problem 134
Let's Pick on Strings ANYWay ... 134
Why This Matters ..., 137
ATTAYS o 139
Creating @n ATITAY ..o 140
Accessing Array Values ... 141
Adding Items to Your Array ... 143
Removing ltems from the Array ... 145
Finding Items in the Array ... 146
MEIGING AITAYS ..o 147
Numbers ... 149
USING @ NUMDET. ... 150
OPErators ... 151
Doing Simple Math ... 151
Incrementing and Decrementing..............ocoooiiiiii 152
Special Values—Infinity and NaN ... 153
Iy 153
N AN 154
The Math ObJect ..o, 154
The CoNSTANTS ..o 155
Rounding Numibers ... 157
Trigonometric Functions ... 158
Powers and Square ROOTS. ... 158
Getting the Absolute Value.................o 159
Random NUMbErs 159
A Deeper Look at Objects ... 161
Meet the ObJECt ... 162
Creating ObjJECtS ..o 163
Specifying Properties ... 167
Creating Custom OBjJECS ... 169

The this Keyword. ... 175

17

18

19

20

xi

Extending Built-in Objects ... 179
Say Hello to Prototype...Again—Sort ofl ... 181
Extending Built-in Objects Is Controversial ... 185
You Don't Control the Built-in Object’s Future ... 186
Some Functionality Should Not Be Extended or Overridden................. 186
Booleans and the Stricter === and !== Operators........................ 189
The Boolean Object ... 190
The Boolean FUNCION ... 190
Strict Equality and Inequality Operators.....................i 192
Null and Undefined ... 195
UL 196
UNefined . ..o 197
Immediately Invoked Function Expressions................................ 201
Writing a Simple HFE. ... 203
Writing an [IFE That Takes Arguments ..., 204
When to Use an IIFE ... 205
Avoiding Code Collisions ... 206
Closures and Locking in State..................o 207
Making Things Private.............. 213
Working with the DOM

21

JS, The Browser, and The DOM 219
What HTML, CSS, and JavaScript Do ..., 220
HTML Defines the Structure ... 220
Prettify My World, CSS! ... 222
It's JavaScript Timel. ... 223
Meet the Document Object Model ..., 225

The WIindow OBjJECt ..o 227

The Document ObJect ... 228

Xii

22

23

24

25

26

Finding Elements in the DOM ... 231
Meet the querySelector Family.............................. 232
QUETLYSELECTOL oot 233
QUErYSeleCtOrALL . 233
It Really Is the CSS Selector Syntax.............cooiiiiii 234
Modifying DOM Elements.................... 237
DOM Elements Are Objects—Sort ofl ... 238
Let's Actually Modify DOM Elements.............ococoooiiiiiii, 240
Changing an Element's Text Value ... 242
Attribute Values ... 242
Styling Your Content ... 247
Why Would You Set Styles Using JavaScript? ... 248
A Tale of Two Styling Approaches.................i, 248
Setting the Style Directly ... 249
Adding and Removing Classes Using c1lassList ... 250
Adding Class Values.............. 250
Removing Class Values ... 251
Toggling Class Values ... 251
Checking Whether a Class Value EXists ... 252
Going Further ... 252
Traversing the DOM ... 255
Finding Your Way Around.............ooiiii 256
Dealing with Siblings and Parents...................................... 259
Let's Have Some Kids!...........o 259
Putting It All Together ... 261
Checking Whether a Child Exists ... 261
Accessing All the Child Elements................ 261
Walking the DOM.......o 262
Creating and Removing DOM Elements ... 265
Creating Elements ... 266
Removing Elements ... 271

Cloning ElemeNnts ... 273

xiii

27 In-Browser Developer Tools ... 279
Meet the Developer ToOls. ..., 280
Inspecting the DOM ... 282
Debugging JavaScript ... 287
Meet the Console. ... 293
Inspecting ObjJeCts ... 294
LOgging MESSagES ... 296

IV Dealing with Events
28 EVENTS. ...l 299
What Are EVENTS? ..o 300
Events and JavaScript ... 302
1. Listening for EVents ... 302
2. Reacting to Events ...l 304
A Simple EXample ... 305
The Event Arguments and the Event Type ... 307
29 Event Bubbling and Capturing.......................i 311
Event Goes Down. Event Goes Up. ... 312
Meet the Phases ... 316
WHO CareS? ... 319
Event, Interrupted ... 319
30 Mouse Events ... 325
Meet the Mouse EVeNnts. ... 326
Clicking Once and Clicking Twice ..o, 326
Mousing Over and Mousing Out................ooiiiiii 328
The Very Click-like Mousing Down and Mousing Up Events ... 330
The Event Heard Again...and Again...and Again! ... 331
The Context M@NU ... 332
The MouseEvent Properties ... 333
The Global Mouse POSItioN ... 333
The Mouse Position Inside the Browser ... 334
Detecting Which Button Was Clicked............... 335

Dealing with the Mouse Wheel 336

Xiv

31 Keyboard EVeNnts ... 339
Meet the Keyboard Events...................... 340
Using These EVENTS ... 341
The Keyboard Event Properties...................oiii 342
Some EXamPles ... 343

Checking That a Particular Key Was Pressed ... 343
Doing Something When the Arrow Keys Are Pressed........................ 344
Detecting Multiple Key Presses ... 345

32 Page Load Events and Other Stuff..................................... 349

The Things That Happen During Page Load ..., 350
Stage NUMEro Uno ... 351
Stage NUMEro Dos...........oiiiiii 352
Stage NUMEro Three ... 352

The DOMContentLoaded and load Events..............., 353

Scripts and Their Location in the DOM ... 355

Script Elements—Async and Defer................i 358
SYIIC oo 358
AEE @ o 359

33 Handling Events for Multiple Elements..................................... 363
How t0 Do All Of ThiS......oooi e, 365

A Terrible Solution............ 366
A Good SOIUTION. ..o 367
Putting It All Together ... 370
34 Conclusion ... 373
GlOSSANY ... 377

XV

Dedication

To Meena!

(Who still laughs at the jokes found in these pages despite having read them
a bazillion times!)

Acknowledgments

As | found out, getting a book like this out the door is no small feat. It involves a
bunch of people in front of (and behind) the camera who work tirelessly to turn my
ramblings into the beautiful pages that you are about see. To everyone at Pearson
who made this possible, thank youl

With that said, there are a few people I'd like to explicitly call out. First, I'd like to
thank Mark Taber for giving me this opportunity, Chris Zahn for patiently answering
my numerous questions, and Loretta Yates for helping make the connections that
made all of this happen. The technical content of this book has been reviewed

in great detail by my long-time friends and online collaborators, Kyle Murray and
Trevor McCauley. | can't thank them enough for their thorough (and occasionally,
humorous!) feedback.

Lastly, I'd like to thank my parents for having always encouraged me to pursue
creative hobbies like painting, writing, playing video games, and writing code.
| wouldn't be half the rugged indoorsman | am today without you both.©

Xvi

About the Author

Kirupa Chinnathambi has spent most of his life trying to teach others to love web
development as much as he does.

In 1999, before blogging was even a word, he started posting tutorials on
kirupa.com. In the years since then, he has written hundreds of articles, written

a few books (none as good as this one, of course!), and recorded a bunch of
videos you can find on YouTube. When he isn’t writing or talking about web
development, he spends his waking hours helping make the Web more awesome
as a Program Manager in Microsoft. In his non-waking hours, he is probably
sleeping...or writing about himself in the third person.

You can find him on Twitter (twitter.com/kirupa), Facebook (facebook.com/kirupa),
or e-mail (kirupa@kirupa.com). Feel free to contact him anytime.

http://www.twitter.com/kirupa
http://www.facebook.com/kirupa
http://www.kirupa@kirupa.com

INTRODUCTION

Have you ever tried learning to read, speak, or write in a language different
from the one you grew up with? If you were anything like me, your early

attempts probably looked something like the following:

Sono qui per uccidere
il grande drago
rosso?

m

2 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Unless you are Jason Bourne (or Roger Federer), you barely survived learning your
first language. This is because learning languages is hard. It doesn't matter if you
are learning your first language or a second or third. Being good at a language

to a point where you are useful in a non-comical way takes a whole lotta time

and effort.

It requires starting with the basics:

It requires a boatload of practice and patience. It's one of those few areas where
there really aren’t any shortcuts for becoming proficient.

Parlez-vous JavaScript?

Successfully learning a programming language is very similar to how you would
approach learning a real world language. You start off with the basics. Once
you've gotten good at that, you move on to something a bit more advanced.

This whole process just keeps repeating itself, and it never really ends. None of us
ever truly stop learning. It just requires starting somewhere. To help you with the

INTRODUCTION 3

“starting somewhere” part is where this book comes in. This book is filled from

beginning to end with all sorts of good (and hilarious—I hope!) stuff to help you
learn JavaScript.

Now, | hate to say anything bad about a programming language behind its back,
but JavaScript is pretty dull and boring:

(Why won't you answer my calls???!!

function doingSomethingBoring() {
count++;

r

var count = 8;

&—Dull

if (count > 10) {
alert("Yaaaaaawwwnnnnnnnnn!");

} else {
alert("This one time, at band camp....");

,Q Boring!

There is no other way to describe it. Despite how boring JavaScript might most
certainly be,’ it doesn’t mean that learning it has to be boring as well.

As you make your way through the book, hopefully you will find the very casual
language and illustrations both informative as well as entertaining (infotaining!).
All of this casualness and fun is balanced out by deep coverage of all the
interesting things you need to know about JavaScript to become better at using it.
By the time you reach the last chapter, you will be prepared to face almost any
JavaScript-related challenge head-on without breaking a sweat.

1. FYL All grammatical snafus are carefully and deliberately placed—most of the time!

4 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Contacting Me/Getting Help

If you ever get stuck at any point or just want to contact me, post in the forums at:
forum.kirupa.com.

For non-technical questions, you can also send e-mail to kirupa@kirupa.com,
tweet to @kirupa, or message me on Facebook (facebook.com/kirupa). | love
hearing from readers like you, and | make it a point to personally respond to every

message | receive.

And with that, flip the page—it’'s time to get started!

IN THIS CHAPTER

FUNCTIONS

So far, all of the code we've written contained virtually no structure. It was
just...there:

alert("hello, world!");

There is nothing wrong with having code like this. This is especially true if
your code is made up of a single statement. Most of the time, though, that
will never be the case. Your code will rarely be this simple when you are

using JavaScript in the real world for real-worldy things.

20 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To highlight this, let’s say we want to display the distance something has traveled
(see Figure 3.1).

A realistic-looking spaceship!

distance traveled?

FIGURE 3.1

The distance something has traveled.

If you remember from school, distance is calculated by multiplying the speed
something has traveled by how long it took as shown in Figure 3.2.

distance = speed time

FIGURE 3.2

The formula for calculating distance.

The JavaScript version of that will look as follows:
var speed = 10;
var time = 5;

alert (speed * time);

We have two variables—speed and time—and they each store a number. The
alert function displays the result of multiplying the values stored by the speed
and time variables. Quick note: The * character (which | threw in there without
warning) between two numbers indicates that a multiplication needs to take place.
Anyway, as you can see, our JavaScript is a pretty literal translation of the distance
equation you just saw.

Let's say we want to calculate the distance for more values. Using only what we've
seen so far, our code would look as follows:

var speed = 10;

var time = 5;

alert (speed * time) ;

CHAPTER 3 FUNCTIONS 21

var speedl = 85;
var timel = 1.5;

alert (speedl * timel) ;

var speed2 = 12;
var time2 = 9;

alert (speed2 * time2) ;

var speed3 = 42;
var time3d = 21;

alert (speed3 * time3);

| don’t know about you, but this just looks (as Frank Caliendo impersonating
Charles Barkley would say) turrible." Our code is unnecessarily verbose and
repetitive. As | mentioned earlier, when we looked at variables in the previous
chapter, repetition makes your code harder to maintain. It also wastes your time.

This entire problem can be solved very easily by using what you'll be seeing a lot
of here—functions:

function showDistance (speed, time) ({

alert (speed * time) ;

showDistance (10, 5);
showDistance (85, 1.5);
showDistance (12, 9);

showDistance (42, 21);

Don't worry too much about what this code does just yet. Just know that this
smaller chunk of code does everything all those many lines of code did earlier
without all of the negative side effects and calories. We'll learn all about functions,
and how they do all the sweet things that they do, starting...right...now!

1. Frank Caliendo FTW: http://bit.ly/kirupaFrankCB.

http://bit.ly/kirupaFrankCB

22 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

What Is a Function?

At a very basic level, a function is nothing more than a wrapper for some code.
A function basically

* Groups statements together

* Makes your code reusable

You will rarely write or use code that doesn’t involve functions, so it's important
that you become familiar with them and learn all about how well they work.

A Simple Function

The best way to learn about functions is to just dive right in and start using them,
so let's start off by creating a very simple function. Creating a function is pretty
easy and only requires understanding some little syntactical quirks like using weird
parentheses and brackets.

The following is an example of what a very simple function looks like:
function sayHello() {
alert ("hello!") ;

}

Just having your function isn't enough, though. Your function needs to actually be
called, and you can do that by adding the following line at the end of your code
block:
function sayHello()
alert ("hello!");

}

sayHello() ;

If you type all this in your favorite code editor and preview your page in your
browser, you will see hello! displayed. The only thing that you need to know right
now is that your code works. Let's look at why the code works by breaking it up
into individual chunks and looking at them in greater detail.

First, you see the function keyword leading things off:
function sayHello () {

alert ("hello!") ;

CHAPTER 3 FUNCTIONS 23

This keyword tells the JavaScript engine that lives deep inside your browser to
treat this entire block of code as something to do with functions.

After the function keyword, you specify the actual name of the function
followed by some opening and closing parentheses, ():

function sayHello () {
alert ("hello!");

}

Rounding out your function declaration are the opening and closing brackets that
enclose any statements that you may have inside:

function sayHello() {
alert ("hello!");

}

The final thing is the contents of your function—the statements that make your
function actually...functional:
function sayHello() {
alert ("hello!");

}

In our case, the content is the alert function that displays a dialog box with the
word hello! displayed.

The last thing to look at is the function call:
function sayHello () {
alert ("hello!");

}

sayHello() ;

The function call is typically the name of the function you want to call (or invoke)
followed again by parentheses. Without your function call, the function you
created doesn’t do anything. It is the function call that wakes your function up and
makes it do things.

Now, what you have just seen is a very simple function. In the next couple
of sections, we are going to build on what you've just leared and look at
increasingly more realistic examples of functions.

24 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Creating a Function That Takes Arguments

Like | mentioned earlier, the previous sayHello example was quite simple:
function sayHello() {
alert ("hello!");

}

You call a function, and the function does something. That simplification by itself
is not out of the ordinary. All functions work just like that. There are differences,
however, in the details on how functions get invoked, where they get their data
from, and so on. The first such detail we are going to look at involves functions
that take arguments.

Let's start with a simple example:
alert ("my argument") ;
What we have here is your alert function. You've probably seen it a few (or a few

dozen) times already. As you know, this function simply displays some text that
you tell it to show (see Figure 3.3).

my argument

OK

FIGURE 3.3

The text “my argument” is displayed as a result of the alert function.

Let's look at this a little closer. Between your opening and closing parentheses

when calling the alert function, you specify the stuff that needs to be displayed.
This “stuff” is more formally known as an argument. The alert function is just

one of many functions that take arguments, and many functions you create will

take arguments as well.

CHAPTER 3 FUNCTIONS 25

To stay local, within this chapter itself, another function that we briefly looked at
that takes arguments is our showDistance function:

function showDistance (speed, time) {

alert (speed * time) ;

}

So, you can tell when a function takes arguments by looking at the function decla-
ration itself:

function showDistance (speed, time) ({

}

Functions that don’t take arguments are easy to identify. They typically show up
with empty parentheses following their name. Functions that take arguments
aren't like that. Following their name and between the parentheses, these func-
tions will contain some information about the quantity of arguments they need,
along with some hints about what values your arguments will take.

For showDistance, you can infer that this function takes two arguments: the first
corresponds to the speed and the second corresponds to the time.

You specify your arguments to the function as part of the function call:
function showDistance (speed, time) ({
alert (speed * time);

}

showDistance (10, 5);

In our case, we call showDistance and specify the values we want to pass to the
function inside the parentheses.

showDistance (10, 5);

Functions that take arguments, however, contain some information about the
quantity of arguments they need in the parentheses following their name, along
with some hints about what values your arguments will take. To emphasize this,
let's look at Figure 3.4.

26 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

the function call | showDistance(10, 5);

the function function showDistance(speed, time) {
alert(speed * time);

FIGURE 3.4

Order matters.

When the showDistance function gets called, the 10 corresponds to the speed
argument, and the 5 corresponds to the distance argument. That mapping is
entirely based on order.

Once the values you pass in as arguments reach your function, the names you
specified for the arguments are treated just like variable names (see Figure 3.5).

the function function showDistance(speed, time) {

(_‘J

alert(speed * time);

FIGURE 3.5

The names of the arguments are treated as variable names.

You can use these variable names to easily reference the values stored by the
arguments inside your function.

CHAPTER 3 FUNCTIONS 27

@ NOTE I a function happens to take arguments and you don’t
provide any arguments as part of your function call, provide too
W few arguments, or provide too many arguments, things can still
work. You can code your function defensively against these cases.

In general, to make the code you are writing clear, just provide the required
number of arguments for the function you are calling. Don’t complicate things
unnecessarily.

Creating a Function That Returns Data

The last function variant we will look at is one that returns some data back to
whatever called it. Here is what we want to do. We have our showDistance
function, and we know that it looks as follows:

function showDistance (speed, time) {

alert (speed * time) ;

}

Instead of having our showDistance function calculate the distance and display
it as an alert, we actually want to store that value for some future use. We want
to do something like this:

var myDistance = showDistance (10, 5);
The myDistance variable will store the results of the calculation done by the

showDistance function. There are just a few things you need to know about
being able to do something like this.

The Return Keyword

The way you return data from a function is by using the return keyword. Let's
create a new function called getDistance that looks identical to showDistance
with the only difference being what happens when the function runs to

completion:
function getDistance (speed, time) {
var distance = speed * time;

return distance;

}

Notice that we are still calculating the distance by multiplying speed and time.
Instead of displaying an alert, we return the distance (as stored by the distance
variable).

28 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To call the getDistance function, you can just call it as part of initializing a
variable:

var myDistance = showDistance (10, 5);

When the getDistance function gets called, it gets evaluated and returns a
numerical value that then becomes assigned to the myDistance variable. That's
all there is to it.

Exiting the Function Early

Once your function hits the return keyword, it stops everything it is doing at that
point, returns whatever value you specified to whatever called it, and exits:
function getDistance (speed, time) {
var distance = speed * time;

return distance;

if (speed < 0) {

distance *= -1;

}

Any code that exists after your return statement will not be reached, such as the
following highlighted lines:

function getDistance (speed, time) {
var distance = speed * time;

return distance;

if (speed < 0) {

distance *= -1;

}

It will be as if that chunk of code never even existed. In practice, you will use the
return statement to terminate a function after it has done what you wanted it
to do. That function could return a value to the caller like you saw in the previous
examples, or that function could simply exit:

function doSomething () {
// do something

return;

CHAPTER 3 FUNCTIONS 29

Using the return keyword to return a value is optional. The return keyword can
be used by itself as you see here to just exit the function.

TIP Just a quick reminder for those of you reading these words
in the print or e-book edition of this book: If you go to
www.quepublishing.com and register this book, you can receive
free access to an online Web Edition that not only contains

the complete text of this book but also features a short, fun
interactive quiz to test your understanding of the chapter you
just read.

If you're reading these words in the Web Edition already and
want to try your hand at the quiz, then you're in luck — all you
need to do is scroll down!

http://www.quepublishing.com

This page intentionally left blank

Symbols

* (asterisk), multiplication
operator, 20, 151

[] (brackets)
array declaration, 140
property definition, 167

|| conditional operator, 35
&& conditional operator, 35
< conditional operator, 35
<= conditional operator, 35
> conditional operator, 35
>= conditional operator, 35

{} (curly braces) in functions,
23

—— (decrement operator),
152, 153

—= (decrement operator),
152

/= (division operator), 152
== (equality operator), 35
comparison with ===

strict equality operator,
192-194, 198

/ (forward slash), division
operator, 151

++ (increment operator),
152, 153
I= (inequality operator), 35
comparison with == strict

inequality operator,
192-194

- (minus sign), subtraction
operator, 151

%= (modulus operator), 152

/%.%/ (multi-line comments),
104

#= (multiplication operator),
152

() (parentheses)
in functions, 23
in IIFE, 203-204
in mathematical
expressions, 151

% (percent sign), modulus
operator, 151
+ (plus sign)
addition operator, 151

concatenation operator,
125-126

+= (plus-equal sign)
concatenation operator,
125-126
increment operator, 152

"

(quotation marks) in
strings, 11, 123

: (semicolon) in statements,
11

// (single line comments),
103-104

=== (strict equality operator),
35
comparison with ==
equality operator,
192-194, 198
I== (strict inequality
operator), 35

Index

comparison with !=
inequality operator,
192-194

A
abs() function (Math object),
159

absolute paths, referencing
JavaScript files, 94-96

absolute value, 159

accessibility tools,
DOM and, 278

accessing
all children, 261
array values, 141-142
characters in strings,
124-125
Developer Tools, 280-282
acos() function
(Math object), 158
add method (classList API),
250-251
addEventListener function,
302-304, 341-342
adding
class values, 250-251
items to arrays, 143-144
addition operator, 151
alert function, 11
arguments, 24

console.log function
versus, 296

382 ALTKEY PROPERTY (KEYBOARD EVENTS)

altKey property (keyboard
events), 342

animation, requestAnima-
tionFrame function, 62-64

anonymous functions, 202

appendChild function,
267-268

arguments
for event handlers,
307-308
for functions, 24-27
in lIFE, 204

Array object, 117, 134
concat method, 147
indexOf method, 146-147
lastindexOf method,

146-147
length property, 142
pop method, 145
push method, 143
shift method, 145
shuffling arrays example
(extending objects),
179-180
slice method, 146
unshift method, 143-144

arrays

accessing values, 141-142

adding items to, 143-144

declaring, 140-141

finding items in, 146-147

in for loops, 54-55

merging, 147

removing items from,
145-146

shuffling arrays example
(extending objects),
179-180

arrow key actions, 344-345

asin() function (Math object),
158

asterisk (), multiplication
operator, 20, 151

async attribute (script tag),
358-359

atan() function (Math object),
158

attribute selectors, 234

attribute values, modifying
in DOM elements, 242-244

B

block scope, 71-72
Boolean function, 190-192
Boolean Logic, 37

Boolean object, 117, 134,
190

Boolean type, 114

booleans
initializing variables as,
189
as primitives, 190
brackets ([])
array declaration, 140
property definition, 167
break keyword
in for loops, 53
in switch statements,
41-42
breakpoints
removing, 293
setting, 288

browser Developer Tools.
See Developer Tools
browser-specific mouse
position, 334-335
bubbling events phase, 318
usage examples, 322-324
when to use, 319
built-in objects. See objects;
primitives
button detection mouse
properties, 335-336

button property
(MouseEvent object),
335-336

buttons property
(MouseEvent object), 336

C

calling functions, 22, 23
within functions, 78-81

cancelAnimationFrame
function, 63

canceling
animation frames, 63
looping timers, 62
timers, 60

capturing events phase, 316
usage examples, 322-324
when to use, 319

Cascading Style Sheets.
See CSS

case (of strings), changing,
130

case statements in switch
statements, 39-42

ceil() function (Math object),
157

characters in strings
accessing, 124-125
finding, 129-130

charAt method
(String object), 125

charCode property
(keyboard events), 342,
343-344

child objects, 170, 258
accessing all, 261
checking existence, 261
event listening on,

367-370
mouse events and, 329
properties, 259-260

children property, 259-260
class values
adding, 250-251
checking existence, 252
removing, 251
toggling, 251
classList API, 250-252
className property, 244
clearlnterval function, 62
clearTimeout function, 60
click event, 303, 326-327

clientX property
(MouseEvent object),
334-335

clientY property
(MouseEvent object),
334-335

cloneNode function, 273-276
cloning DOM elements,
273-276

closures, 77-78, 81-86
outer variable references,
207-212

code collision avoidance,
206-207

Code Convention, 16
code editors, 8

code placement options,
90-92, 355-358, 360-361
in HTML document,
92-93
in separate file, 93-96
which to use, 97-99

code privacy, providing,
213-216
combining strings, 125-126
comments
best practices, 106-107
JSDoc comments, 105
multi-line comments, 104

single line comments,
103-104
when to use, 102-103

complex expressions in
if/else statements, 36-37

concat method
Array object, 147
String object, 126
concatenating strings,
125-126

conditional operators, 34-36

conditional statements
if/else statements, 32-34
complex expressions,
36-37
conditional operators
in, 34-36
switch statement
comparison, 42-44
when to use, 44-45
if/else-if/else statements,
38-39
if-only statements, 38
switch statements, 39-42
if/else statement
comparison, 42-44
when to use, 44-45

console (Developer Tools),
293

console.log function, 296
constants, 155-157
constructor functions, 135

contains method
(classList API), 252

context menus, disabling,
332-333

contextmenu event, 332-333
continue keyword, 53

converting strings to
numbers, 154

DEFAULT STATEMENTS 383

cos() function (Math object),
158

create method (Object
type), 171-174

createElement method
(DOM), 266

Crockford, Douglas, 16

CSS (Cascading Style
Sheets)
purpose of, 222-223
selector syntax, 234-235
styling directly, 249-250
CSS Zen Garden, 5-6
ctrlKey property (keyboard
events), 342
curly braces ({}) in functions,
23
currentTarget property
(Event type), 308
cursor. See mouse

custom objects, creating,
169-174

D

Date object, 117, 134

Date.now() function, 83

dblclick event, 303, 327-328

debugging JavaScript,
287-293

decisions. See conditional
statements

declaring
arrays, 140-141
functions, 22-23
variables, 14-15, 16-17

decrementing
for loops, 54
with operators, 152-153

default statements, 42

How can we make this index more useful? Email us at indexes@quepublishing.com

384 DEFER ATTRIBUTE (SCRIPT TAG)

defer attribute (script tag),
358, 359-360
defining
methods, 168-169
properties, 167-169
delays. See timers
detail property
(DOMMouseScroll event),
336-337

Developer Tools, 279
accessing, 280-282
console, 293
debugging JavaScript,

287-293
DOM view, 282-287
inspecting objects,
294-295
logging messages, 296

disabling context menus,
332-333

distance calculation
example, 20-21

division operator, 151

document object, 228-229,
256-257, 354

Document Object Model.
See DOM (Document
Object Model)

documents (HTML). See
HTML documents

document.writeln function,
50

DOM (Document Object
Model), 225-226

accessibility tools and,
278

cloning elements,
273-276

code placement and,
355-358

creating elements,
266-271

document object,
228-229
event paths, 312-316
JavaScript objects
comparison, 238-240
modifying elements,
240-241
attribute values,
242-244
text values, 242
navigating, 256-258
accessing all children,
261
checking child
existence, 261
child relationships,
259-260
parent and sibling
relationships, 259
usage examples, 262
nodes, 225-226
removing elements,
271-273
searching in
CSS selector syntax,
234-235

querySelector function,

233
querySelectorAll
function, 233-234
viewing in Developer
Tools, 282-287
window object, 227

DOMContentLoaded event,
303, 353-355, 358

DOMMouseScroll event,
303, 336-337

dot notation, 167
do...while loops, 56-57

E

E property (Math object),
155

else if statements, 38-39

equality operator (==), 35
comparison with ===
strict equality operator,
192-194, 198

Event Bubbling Phase, 318
usage examples, 322-324
when to use, 319

Event Capturing Phase, 316
usage examples, 322-324
when to use, 319

event handlers, 304
arguments, 307-308
as functions, 304-305
usage examples, 305-307

event targets, 314
Event type, 308

events
definition, 300-302
DOM paths of, 312-316
handling. See event
handlers
interrupting, 319-321
keyboard events
arrow key actions,
344-345
detecting particular
keys, 343-344
list of, 340-341
listening for, 341-342
multiple key presses,
345-347
properties, 342-343
list of, 303
listening for
addEventListener
function, 302-304
in document object,
354
interrupting, 319-321
keyboard events,
341-342
on multiple elements,
365-371

phases, 316-319
removeEventListener
function, 309
mouse events
click, 326-327
contextmenu, 332-333
dblclick, 327-328
DOMMouseScroll,
336-337
list of, 326
mousedown, 330-331
mouseenter, 329
mouseleave, 329
mousemove, 331
mouseout, 328-329
mouseover, 328-329
mouseup, 330-331
mousewheel, 336-337
MouseEvent object, 333

browser-specific mouse

position, 334-335
button detection,
335-336

global mouse position,

333-334
scroll wheel
movement, 336-337
page loads
DOMContentLoaded
and load events,
353-355
steps in, 350-353
usage examples,
305-307

exiting functions early,
28-29

exp() function (Math object),

158

extending objects
array shuffling example,
179-180
prototype property,
181-185
reasons against, 185-186

F

files, JavaScript in, 91, 93-96
finding
characters in strings,
129-130
items in arrays, 146-147

firstChild property, 259-260

floor() function (Math object),
157

for loops, 49-50, 52

accessing array values,
142

arrays, 54-55

decrementing, 54

iterations, 51-52

missing sections, 55

non-numerical iterations,
54

skipping iterations, 53

starting condition, 51

stopping early, 53

terminating condition, 51

forward slash (/), division
operator, 151

function keyword, 22
Function object, 117, 134

functions. See also methods
abs(), 159
acos(), 158
addEventListener,
302-304, 341-342
alert, 11
arguments, 24
console.log function
versus, 296
anonymous functions,
202
appendChild, 267-268
arguments, 24-27
asin(), 158
atan(), 158
Boolean, 190-192

FUNCTIONS 385

calling, 22, 23
cancelAnimationFrame,
63
ceil(), 157
clearinterval, 62
clearTimeout, 60
cloneNode, 273-276
closures, 77-78, 81-86
console.log, 296
constructor functions,
135
cos(), 158
Date.now(), 83
declaring, 22-23
definition, 22
distance calculation
example, 21
document.writeln, 50
event handlers, 304-305
exiting early, 28-29
exp(), 158
floor(), 157
within functions, 78-81
shared variables, 81-86
getDistance, 27-28
getElementByld, 235
getElementsByClass-
Name, 235
getElementsByTagName,
235
[IFE
arguments in, 204
code collision
avoidance, 206-207
creating, 203-204
hidden code, 213-216
outer variable
references, 207-212
when to use, 205-206
initializing variables in,
72-74
insertAfter, 271
insertBefore, 268-270
pow(), 158
purpose of, 201

How can we make this index more useful? Email us at indexes@quepublishing.com

386 FUNCTIONS

querySelector, 233,
234-235, 257

querySelectorAll,
233-235, 257

random(), 159

removeChild, 271-273

removeEventListener, 309

requestAnimationFrame,
62-64

returning data, 27-28

round(), 157

scope and, 70-71, 205

setinterval, 61-62

setTimeout, 60-61

showDistance

arguments, 25-26
returning data, 27

sin(), 158

sqrt(), 158

tan(), 158

G

getAttribute method,
242-244

getDistance function, 27-28

getElementByld function,
235

getElementsByClassName
function, 235

getElementsByTagName
function, 235

global mouse position,
333-334

global scope, 16-17, 68-69

H

handling events. See event
handlers
Hello, World! example, 9-10

hidden code with IIFE,
213-216

hoisting variables, 72-74,
205

hovering. See mouseover
event

HTML (Hypertext Markup
Language)
purpose of, 220-222
styling, 247-248
with classList API,
250-252
directly with style
object, 249-250
with JavaScript, 248

HTML documents
code placement within,
90, 92-93
CSS, purpose of, 222-223
Hello, World! example,
9-10
HTML, purpose of,
220-222
JavaScript, purpose of,
223-224
page loads
DOMContentLoaded
and load events,
353-355
steps in, 350-353
parsing, 96
script tag placement, 96,
355-358, 360-361

html object, 256-257

hybrid code placement
option, 91-92

Hypertext Markup
Language. See HTML

id property, 244

if/else statements, 32-34
complex expressions,
36-37

conditional operators in,
34-36

switch statement
comparison, 42-44

when to use, 44-45

if/else-if/else statements,
38-39

if-only statements, 38

IIFE (Immediately Invoked
Function Expression)

arguments in, 204

code collision avoidance,
206-207

creating, 203-204

hidden code, 213-216

outer variable references,
207-212

when to use, 205-206

incrementing with operators,
152-153
index positions, 124
index values of arrays, 142
indexOf method
Array object, 146-147
String object, 129-130
inequality operator (=), 35
comparison with == strict
inequality operator,
192-194
Infinity keyword, 153
inheritance, 166, 170-171
initializing variables, 14-15,
16-17
as booleans, 189
in functions, 72-74
inner functions, shared
variables, 81-86
insertAfter function, 271

insertBefore function,
268-270

inspecting objects, 294-295

interrupting events, 319-321

iterations
in for loops, 51-52
non-numerical, 54

skipping, 53
J

JavaScript
code placement options,
90-92, 355-358, 360-361
in HTML document,
92-93
in separate file, 93-96
which to use, 97-99
debugging, 287-293
definition, 7-8
purpose of, 223-224
JavaScript Variable Name
Validator, 16

Js file extension, 93-94
JSDoc comments, 105

K

keyup event, 303, 340-341
listening for, 341-342

keywords
break
in for loops, 53
in switch statements,
41-42
continue, 53
function, 22
Infinity, 153
let, 72
NaN, 154
null, 196-197
return
exiting functions early,
28-29
returning data, 27-28
this, 175-177
typeof, 137
var, 14, 70-71

L

keyboard events

arrow key actions,
344-345

detecting particular keys,
343-344

list of, 340-341

listening for, 341-342

multiple key presses,
345-347

properties, 342-343

keyboards, 339

keyCode property (keyboard
events), 342, 343-344

keydown event, 303,
340-341
listening for, 341-342

keypress event, 340-341
listening for, 341-342

lastChild property, 259-260

lastindexOf method
Array object, 146-147
String object, 129-130
length property
Array object, 142
String object, 124

let keyword, 72
lexical scope, 205

listening for events

addEventlistener
function, 302-304

in document object, 354

interrupting, 319-321

keyboard events,
341-342

on multiple elements,
365-371

phases, 316-319

removeEventListener
function, 309

MATH OBJECT 387

literal notation, 167
literals, string, 123

LN2 property
(Math object), 155

LN10 property
(Math object), 155

load event, 303, 353-355
local scope, 70-71
locking in state, 207-212

LOGZ2E property
(Math object), 155

LOG10E property
(Math object), 155
logging messages, 296
loops
do...while loops, 56-57
for loops, 49-50, 52
accessing array values,
142
arrays, 54-55
decrementing, 54
iterations, 51-52
missing sections, 55
non-numerical
iterations, 54
skipping iterations, 53
starting condition, 51
stopping early, 53
terminating condition,
51
types of, 48
while loops, 56

lowercase, changing strings
to, 130

M

match method
(String object), 130
Math object, 117, 134,
154-155. See also numbers
absolute value, 159

How can we make this index more useful? Email us at indexes@quepublishing.com

388 MATH OBJECT

constants, 155-157

powers and square roots,
158-159

random numbers, 159

rounding numbers, 157

trigonometric functions,
158

merging arrays, 147

metaKey property (keyboard
events), 343

methods. See also functions
add (classList API),
250-251
charAt (String object), 125
concat
Array object, 147
String object, 126
contains (classList API),
252
create (Object type),
171174
createElement (DOM),
266
defining, 168-169
getAttribute, 242-244
indexOf
Array object, 146-147
String object, 129-130
lastindexOf
Array object, 146-147
String object, 129-130
match (String object), 130
pop (Array object), 145
preventDefault (Event
type), 308, 321, 333, 347
push (Array object), 143
remove (classList API), 251
setAttribute, 242-244
shift (Array object), 145
slice
Array object, 146
String object, 127
split (String object),
128-129

stopPropagation (Event
type), 308, 320-321, 370
substr (String object),
127-128
toggle (classList API), 251
toLowerCase
(String object), 130
toUpperCase
(String object), 130
unshift (Array object),
143-144

minus sign (=), subtraction
operator, 151

modifying DOM elements,
240-241
attribute values, 242-244
text values, 242

modulus operator, 151

mouse, 325

browser-specific mouse
position, 334-335

button detection,
335-336

global cursor position,
333-334

scroll wheel movement,
336-337

mouse events
click, 326-327
contextmenu, 332-333
dblclick, 327-328
DOMMouseScroll,

336-337

list of, 326
mousedown, 330-331
mouseenter, 329
mouseleave, 329
mousemove, 331
mouseout, 328-329
mouseover, 328-329
mouseup, 330-331
mousewheel, 336-337

mousedown event, 330-331

mouseenter event, 329

MouseEvent object, 333

browser-specific mouse
position, 334-335

button detection, 335-336

global mouse position,
333-334

scroll wheel movement,
336-337

mouseleave event, 329
mousemove event, 303, 331

mouseout event, 303,
328-329

mouseover event, 303,
328-329

mouseup event, 330-331

mousewheel event, 303,
336-337

multi-line comments, 104

multiple elements, events
on, 365-371

multiple key presses,
345-347

multiplication operator,
20, 151

N

naming variables, 15-16
NaN keyword, 154
navigating DOM, 256-258
accessing all children, 261
checking child existence,
261
child relationships,
259-260
parent and sibling
relationships, 259
usage examples, 262

nextSibling property, 259
nodes, 225-226

non-numerical iterations in
for loops, 54

null keyword, 196-197
Null type, 114

Number object, 117, 134
Number type, 114

numbers. See also Math
object
absolute value, 159
converting strings to, 154
Infinity keyword, 153
NaN keyword, 154
operators
incrementing and dec-
rementing, 152-153
simple math, 151
powers and square roots,
158-159
random numbers, 159
rounding, 157
types, 150
usage examples, 150

0)

object literal syntax, 163

Object type, 114, 162
create method, 171-174
creating objects, 163-166
DOM element

comparison, 238-240
[[Prototypel]] property, 166

objects, 115-116
child objects, 170, 258
accessing all, 261
checking existence,
261
event listening on,
367-370
properties, 259-260
constructor functions, 135
creating, 163-166

PREVENTDEFAULT METHOD (EVENT TYPE)

custom objects, creating,
169-174
document, 228-229,
256-257, 354
DOM element
comparison, 238-240
extending
array shuffling
example, 179-180
prototype property,
181-185
reasons against,
185-186
html, 256-257
inspecting, 294-295
list of, 117-118
methods, defining,
168-169
parent objects, 170, 258
event listening on,
367-370
properties, 259
properties, defining,
167-169
prototype, 165
prototypical inheritance
model, 178
sibling objects, 258, 259
style, 249-250
temporarily converting
primitives to, 133-138
this keyword, 175-177
window, 69, 227,
256-257

operators
conditional, 34-36
incrementing and
decrementing, 152-153
simple math, 151

outer functions, shared
variables, 81-86

outer variables, referencing,
207-212

389

P

page loads
DOMContentLoaded and
load events, 353-355
steps in, 350-353
parent objects, 170, 258
event listening on,
367-370
properties, 259

parentheses (())
in functions, 23
in IIFE, 203-204
in mathematical
expressions, 151

parentNode property, 259
parsing HTML documents, 96

percent sign (%), modulus
operator, 151

phases (event listening),
316-318
usage examples, 322-324
when to use, 319

Pl property (Math object),
155, 156-157

pizza metaphor (types),
110-113

plus sign (+)
addition operator, 151
concatenation operator,
125-126

pop method (Array object),
145

pow() function (Math object),
158

powers (Math object),
158-159

preventDefault method
(Event type), 308, 321,
333, 347

How can we make this index more useful? Email us at indexes@quepublishing.com

390

previousSibling property, 259

primitives, 115

booleans as, 190

null, 196-197

object usage versus,
117-118

temporary conversion to
objects, 133-138

undefined, 197-198

private code with IIFE,
213-216

properties, 162
child objects, 259-260
className, 244
CSS, styling directly,
249-250
for custom objects,
170-171
defining, 167-169
Event type, 308
id, 244
keyboard events, 342-343
MouseEvent object
browser-specific mouse
position, 334-335
button detection,
335-336
global mouse position,
333-334
scroll wheel
movement, 336-337
parent and sibling objects,
259
prototype, extending
objects, 181-185
textContent, 242
this keyword, 175-177

__proto__ property, 164

prototype chains, 166,
170-171

prototype objects, 165

prototype property,
extending objects, 181-185

PREVIOUSSIBLING PROPERTY

[[Prototypel] property, 166

prototypical inheritance
model, 178

push method (Array object),
143

Q

querySelector function, 233,
234-235, 257

querySelectorAll function,
233-235, 257

quotation marks (“”) in
strings, 11, 123

R

random() function
(Math object), 159

random numbers, 159

referencing
JavaScript files, 94-96
outer variables, 207-212
RegExp object, 117, 134
relative paths, referencing
JavaScript files, 94-96
remove method
(classList API), 251

removeChild function,
271-273

removeEventListener
function, 309

removing
breakpoints, 293
class values, 251
DOM elements, 271-273
items from arrays, 145-146

repeats. See loops

requestAnimationFrame
function, 62-64

requestID variable, 64

return keyword
exiting functions early,
28-29
returning data, 27-28
returning data from
functions, 27-28
within functions, 78-81
Revealing Module Pattern,
215
right-click menus, disabling,
332-333

round() function
(Math object), 157

rounding numbers, 157

S

scope of variables

block scope, 71-72

closures, 77-78, 81-86

global scope, 16-17,
68-69

initializing variables in
functions, 72-74

inspecting objects, 295

lexical scope, 205

local scope, 70-71

var keyword, 70-71

screenX property
(MouseEvent object),
333-334

screenY property
(MouseEvent object),
333-334
script tag, 9-10
async attribute, 358-359
code placement within,
92-93
defer attribute, 358,
359-360
placement in HTML
document, 96, 355-358,
360-361

referencing JavaScript
files, 94-96
scroll event, 303
scroll wheel movement,
336-337
searching in DOM
CSS selector syntax,
234-235
querySelector function,
233
querySelectorAll function,
233-234

semicolon (;) in statements,
11

setAttribute method,
242-244

setInterval function, 61-62
setTimeout function, 60-61

shared variables in inner
functions, 81-86

shift method (Array object),
145

shiftkey property (keyboard
events), 342

showDistance function
arguments, 25-26
returning data, 27

shuffling arrays example
(extending objects),
179-180

sibling objects, 258, 259

sin() function (Math object),
158

single line comments,
103-104

slice method
Array object, 146
String object, 127
split method (String object),
128-129

sgrt() function (Math object),
158

SQRT1_2 property
(Math object), 155

SQRT2 property
(Math object), 155

square brackets ([])
array declaration, 140
property definition, 167
square roots, 158-159

src attribute (script tag),
94-95

starting condition in for
loops, 51

state, locking in, 207-212

statements
case, 39-42
conditional
if/else statements,
32-34
if/else-if/else
statements, 38-39
if-only statements, 38
switch statements,
39-42
default, 42
definition, 10
loops
do...while loops,
56-57
for loops, 49-50, 52
types of, 48
while loops, 56
semicolon (;) in, 11

stepping through code,
290-292

stopPropagation method
(Event type), 308, 320-321,
370

strict equality operator

(===), 35

STRINGS 391

comparison with ==
equality operator,
192-194, 198

strict inequality operator
(I==), 35

comparison with I=
inequality operator,
192-194

string literals, 123

String object, 117, 134
charAt method, 125
concat method, 126
indexOf method, 129-130
lastindexOf method,

129-130
length property, 124
match method, 130
slice method, 127
split method, 128-129
substr method, 127-128
toLowerCase method,
130
toUpperCase method,
130

String type, 114

strings, 121-123
accessing characters in,

124-125
changing case, 130
concatenating, 125-126
converting to numbers,
154
finding characters within,
129-130
primitive versus object
forms, 134-136
quotation marks (““) in,
11,123
substrings, 126
slice method, 127
split method, 128-129
substr method,
127-128

How can we make this index more useful? Email us at indexes@quepublishing.com

392 STYLE OBJECT

style object, 249-250

styling HTML elements,
247-248
with classList API, 250-252
directly with style object,
249-250
with JavaScript, 248

substr method (String
object), 127-128

substrings, 126
slice method, 127
split method, 128-129
substr method, 127-128

subtraction operator, 151

switch statements, 39-42
if/else statement
comparison, 42-44
when to use, 44-45

T

tags. See script tag

tan() function (Math object),
158

target property (Event type),
308

terminating condition in for
loops, 51

text values, modifying in
DOM elements, 242. See
also strings

textContent property, 242
this keyword, 175-177
timelD variable, 60

timers
canceling, 60
requestAnimationFrame
function, 62-64
setinterval function, 61-62
setTimeout function,
60-61

toggle method (classList API),
251

toggling class values, 251

toLowerCase method (String
object), 130

toUpperCase method (String
object), 130

trigonometric functions, 158
true/false. See booleans
type coercion, 193

type property (Event type),
308

typeof keyword, 137
types
list of, 113-115
for numbers, 150
objects, 115-116
list of, 117-118
pizza metaphor, 110-113
primitives, 115

V)

undefined primitive,
197-198

Undefined type, 114

unshift method (Array
object), 143-144

uppercase, changing
strings to, 130

\'/

values
of arrays, accessing,
141-142
definition, 14
null, 196-197
undefined, 197-198

var keyword, 14, 70-71

variables
arguments as, 26
declaring, 14-15, 16-17
definition, 14
hoisting, 72-74, 205
initializing, 14-15, 16-17
as booleans, 189
in functions, 72-74
naming, 15-16
outer variables,
referencing, 207-212
requestlD, 64
scope
block scope, 71-72
closures, 77-78, 81-86
global scope, 16-17,
68-69
inspecting objects, 295
lexical scope, 205
local scope, 70-71
var keyword, 70-71
shared variables in inner
functions, 81-86
timelD, 60

View Source command
(Developer Tools), 284-287

viewing DOM in Developer
Tools, 282-287

w

web documents. See HTML
documents

wheelDelta property
(mousewheel events),
336-337

which property (MouseEvent
object), 336

while loops, 56
whitespace in comments, 106

window object, 69, 227,
256-257

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	Parlez-vous JavaScript?
	Contacting Me/Getting Help
	I: The Basic Stuff
	3 Functions
	What Is a Function?
	A Simple Function

	Creating a Function That Takes Arguments
	Creating a Function That Returns Data
	The Return Keyword
	Exiting the Function Early

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

