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Introduction

2011 and 2014 were two special years for C++. While C++11 ushered in a dramatic
improvement to C++, introducing new keywords and constructs that increased your
programming efficiency, C++14 brought in incremental improvements that added
finishing touches to the features introduced by C++11.

This book helps you learn C++ in tiny steps. It has been thoughtfully divided into lessons
that teach you the fundamentals of this object-oriented programming language from a
practical point of view. Depending on your proficiency level, you will be able to master
C++ one hour at a time.

Learning C++ by doing is the best way—so try the rich variety of code samples in this
book hands-on and help yourself improve your programming proficiency. These code
snippets have been tested using the latest versions of the available compilers at the
time of writing, namely the Microsoft Visual C++ compiler for C++ and GNU’s C++
compiler, which both offer a rich coverage of C++14 features.

Who Should Read This Book?

The book starts with the very basics of C++. All that is needed is a desire to learn this
language and curiosity to understand how stuff works. An existing knowledge of C++
programming can be an advantage but is not a prerequisite. This is also a book you
might like to refer to if you already know C++ but want to learn additions that have been
made to the language. If you are a professional programmer, Part III, “Learning the
Standard Template Library (STL),” is bound to help you create better, more practical C++
applications.

Visit the publisher’s website and register this book at
informit.com/register for convenient access to any updates,
downloads, or errata that may be available for this book.

NOTE
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Organization of This Book

Depending on your current proficiency levels with C++, you can choose the section
you would like to start with. Concepts introduced by C++11 and C++14 are sprinkled
throughout the book, in the relevant lessons. This book has been organized into five
parts:

m Part I, “The Basics,” gets you started with writing simple C++ applications. In
doing so, it introduces you to the keywords that you most frequently see in C++
code of a variable without compromising on type safety.

m Part II, “Fundamentals of Object-Oriented C++ Programming,” teaches you the
concept of classes. You learn how C++ supports the important object-oriented pro-
gramming principles of encapsulation, abstraction, inheritance, and polymorphism.
Lesson 9, “Classes and Objects,” teaches you the concept of move constructor
followed by the move assignment operator in Lesson 12, “Operator Types and
Operator Overloading.” These performance features help reduce unwanted and
unnecessary copy steps, boosting the performance of your application. Lesson
14, “An Introduction to Macros and Templates,” is your stepping stone to writing
powerful generic C++ code.

m Part III, “Learning the Standard Template Library (STL),” helps you write efficient
and practical C++ code using the STL string class and containers. You learn how
std: :string makes simple string concatenation operations safe and easy and how
you don’t need to use C-style char* strings anymore. You will be able to use STL
dynamic arrays and linked lists instead of programming your own.

m Part IV, “More STL,” focuses on algorithms. You learn to use sort on containers
such as vector via iterators. In this part, you find out how keyword auto intro-
duced by C++11 has made a significant reduction to the length of your iterator dec-
larations. Lesson 22, “Lambda Expressions,” presents a powerful new feature that
results in significant code reduction when you use STL algorithms.

m Part V, “Advanced C++ Concepts,” explains language capabilities such as smart
pointers and exception handling, which are not a must in a C++ application but help
make a significant contribution toward increasing its stability and quality. This part
ends with a note on best practices in writing good C++ applications, and introduces
you to the new features expected to make it to the next version of the ISO standard
called C++17.
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Conventions Used in This Book

Within the lessons, you find the following elements that provide additional information:

NOTE These boxes provide additional information related to material
you read.
These boxes alert your attention to problems or side effects that
CAUTION can occur in special situations.
These boxes give you best practices in writing your C++ pro-
TIP
grams.
DO DON'T

a quick summary of a fundamental offered in these boxes.

DO use the “Do/Don’t” boxes to find DON’T overlook the useful information
principle in a lesson.

This book uses different typefaces to differentiate between code and plain English.
Throughout the lessons, code, commands, and programming-related terms appear in a
computer typeface.

Sample Code for This Book

The code samples in this book are available online for download from the publisher’s
website.
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LESSON 3
Using Variables,
Declaring Constants

Variables are tools that help the programmer temporarily store data for
a finite amount of time. Constants are tools that help the programmer
define artifacts that are not allowed to change or make changes.

In this lesson, you find out
m How to declare and define variables and constants
m How to assign values to variables and manipulate those values
m How to write the value of a variable to the screen
]

How to use keywords auto and constexpr
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LESSON 3: Using Variables, Declaring Constants

What Is a Variable?

Before you actually explore the need and use of variables in a programming language,
take a step back and first see what a computer contains and how it works.

Memory and Addressing in Brief

All computers, smart phones, and other programmable devices contain a microprocessor
and a certain amount of memory for temporary storage called Random Access Memory
(RAM). In addition, many devices also allow for data to be persisted on a storage device
such as the hard disk. The microprocessor executes your application, and in doing so it
works with the RAM to fetch the application binary code to be executed as well as the
data associated with it, which includes that displayed on the screen and that entered by
the user.

The RAM itself can be considered to be a storage area akin to a row of lockers in

the dorms, each locker having a number—that is, an address. To access a location in
memory, say location 578, the processor needs to be asked via an instruction to fetch a
value from there or write a value to it.

Declaring Variables to Access and Use Memory

The following examples will help you understand what variables are. Assume you are
writing a program to multiply two numbers supplied by the user. The user is asked to
feed the multiplicand and the multiplier into your program, one after the other, and you
need to store each of them so that you can use them later to multiply. Depending on what
you want to be doing with the result of the multiplication, you might even want to store it
for later use in your program. It would be slow and error-prone if you were to explicitly
specify memory addresses (such as 578) to store the numbers, as you would need to
worry about inadvertently overwriting existing data at the location or your data being
overwritten at a later stage.

When programming in languages like C++, you define variables to store those values.
Defining a variable is quite simple and follows this pattern:

VariableType VariableName;

or

VariableType VariableName = InitialValue;

The variable type attribute tells the compiler the nature of data the variable can store, and
the compiler reserves the necessary space for it. The name chosen by the programmer is
a friendly replacement for the address in the memory where the variable’s value is stored.
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Unless the initial value is assigned, you cannot be sure of the contents of that memory
location, which can be bad for the program. Therefore, initialization is optional, but
it’s often a good programming practice. Listing 3.1 shows how variables are declared,
initialized, and used in a program that multiplies two numbers supplied by the user.

LISTING 3.1 Using Variables to Store Numbers and the Result of Their Multiplication

1: #include <iostreams>
2: using namespace std;
3:
4: int main ()
5: {
6: cout << "This program will help you multiply two numbers" << endl;
7:
8: cout << "Enter the first number: ";
9: int firstNumber = 0;
10: cin >> firstNumber;
11: 3
12: cout << "Enter the second number: ";
13: int secondNumber = 0;
14: cin >> secondNumber;
15:
16 // Multiply two numbers, store result in a variable
17 int multiplicationResult = firstNumber * secondNumber;
18:
19 // Display result
20 cout << firstNumber << " X " << secondNumber;
21 cout << " = " << multiplicationResult << endl;
22:
23: return 0;
24: }
Output v

This program will help you multiply two numbers
Enter the first number: 51

Enter the second number: 24

51 x 24 = 1224

Analysis v

This application asks the user to enter two numbers, which the program multiplies and
displays the result. To use numbers entered by the user, it needs to store them in the
memory. Variables firstNumber and secondNumber declared in Lines 9 and 13 do the
job of temporarily storing integer values entered by the user. You use std::cin in Lines
10 and 14 to accept input from the user and to store them in the two integer variables.
The cout statement in Line 21 is used to display the result on the console.
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Analyzing a variable declaration further:

9: int firstNumber = 0;

What this line declares is a variable of type int, which indicates an integer, with a name
called firstNumber. Zero is assigned to the variable as an initial value.

The compiler does the job of mapping this variable firstNumber to a location in
memory and takes care of the associated memory-address bookkeeping for you for all
the variables that you declare. The programmer thus works with human-friendly names,
while the compiler manages memory-addressing and creates the instructions for the
microprocessor to execute in working with the RAM.

Naming variables appropriately is important for writing good,
understandable, and maintainable code.

CAUTION

Variable names in C++ can be alphanumeric, but they cannot
start with a number. They cannot contain spaces and cannot
contain arithmetic operators (such as +, -, and so on) within
them. Variable names also cannot be reserved keywords. For
example, a variable named return will cause compilation failure.

Variable names can contain the underscore character_that often
is used in descriptive variable naming.

Declaring and Initializing Multiple
Variables of a Type

In Listing 3.1, firstNumber, secondNumber, and multiplicationResult are all of
the same type—integers—and are declared in three separate lines. If you wanted to, you
could condense the declaration of these three variables to one line of code that looks like
this:

int firstNumber = 0, secondNumber = 0, multiplicationResult = 0;

As you can see, C++ makes it possible to declare multiple
variables of a type at once and to declare variables at the
beginning of a function. Yet, declaring a variable when it is first
needed is often better as it makes the code readable—one
notices the type of the variable when the declaration is close to
its point of first use.

NOTE
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Data stored in variables is data stored in RAM. This data is lost
when the application terminates unless the programmer explicitly
persists the data on a storage medium like a hard disk.

Storing to a file on disk is discussed in Lesson 27, “Using
Streams for Input and Output.”

Understanding the Scope of a Variable

Ordinary variables like the ones we have declared this far have a well-defined scope
within which they’re valid and can be used. When used outside their scope, the variable
names will not be recognized by the compiler and your program won’t compile. Beyond
its scope, a variable is an unidentified entity that the compiler knows nothing of.

To better understand the scope of a variable, reorganize the program in Listing 3.1 into
a function MultiplyNumbers() that multiplies the two numbers and returns the result.
See Listing 3.2.

LISTING 3.2 Demonstrating the Scope of the Variables
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#include <iostream>
using namespace std;

void MultiplyNumbers ()

{

}

cout << "Enter the first number: ";
int firstNumber = 0;
cin >> firstNumber;

cout << "Enter the second number: ";
int secondNumber = 0;
cin >> secondNumber;

// Multiply two numbers, store result in a variable
int multiplicationResult = firstNumber * secondNumber;

// Display result
cout << firstNumber << " X " << secondNumber;
cout << " = " << multiplicationResult << endl;

int main ()

{

cout << "This program will help you multiply two numbers" << endl;

// Call the function that does all the work
MultiplyNumbers () ;

35




36 LESSON 3: Using Variables, Declaring Constants

27:

28: // cout << firstNumber << " x " << secondNumber;
29: // cout << " = " << multiplicationResult << endl;
30:

31: return 0;

32: }

Output v

This program will help you multiply two numbers
Enter the first number: 51

Enter the second number: 24

51 x 24 = 1224

Analysis v

Listing 3.2 does exactly the same activity as Listing 3.1 and produces the same output.
The only difference is that the bulk of the work is delegated to a function called
MultiplyNumbers() invoked by main(). Note that variables firstNumber and
secondNumber cannot be used outside of MultiplyNumbers(). If you uncomment
Lines 28 or 29 in main(), you experience compile failure of type undeclared

identifier

This is because the scope of the variables firstNumber and secondNumber is local,
hence limited to the function they’re declared in, in this case MultiplyNumbers().

A local variable can be used in a function after variable declaration till the end of the
function. The curly brace (}) that indicates the end of a function also limits the scope of
variables declared in the same. When a function ends, all local variables are destroyed
and the memory they occupied returned.

When compiled, variables declared within MultiplyNumbers() perish when the
function ends, and if they’re used in main(), compilation fails as the variables have not
been declared in there.

If you declare another set of variables with the same name in
main (), then don’t still expect them to carry a value that might
have been assigned in MultiplyNumbers ().

CAUTION

The compiler treats the variables in main () as independent
entities even if they share their names with a variable declared
in another function, as the two variables in question are limited
by their scope.
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Global Variables

If the variables used in function MultiplyNumbers() in Listing 3.2 were declared
outside the scope of the function MultiplyNumber () instead of within it, then they
would be usable in both main() and MultiplyNumbers(). Listing 3.3 demonstrates
global variables, which are the variables with the widest scope in a program.

LISTING 3.3 Using Global Variables

1: #include <iostreams>

2: using namespace std;

3:

4: // three global integers

5: int firstNumber = 0;

6: int secondNumber = 0;

7: int multiplicationResult = 0;

8:

9: void MultiplyNumbers () 3
10: {

11 cout << "Enter the first number: ";

12: cin >> firstNumber;

13:

14: cout << "Enter the second number: ";

15 cin >> secondNumber;

16

17 // Multiply two numbers, store result in a variable
18: multiplicationResult = firstNumber * secondNumber;
19
20 // Display result
21 cout << "Displaying from MultiplyNumbers(): ";
22: cout << firstNumber << " X " << secondNumber;
23: cout << " = " << multiplicationResult << endl;
24: }
25: int main ()
26: {
27: cout << "This program will help you multiply two numbers" << endl;
28:
29: // Call the function that does all the work

30: MultiplyNumbers () ;

31:

32: cout << "Displaying from main(): ";

33:

34: // This line will now compile and work!

35: cout << firstNumber << " X " << secondNumber;

36: cout << " = " << multiplicationResult << endl;

37:

38: return 0;

39: }
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Output v

This program will help you multiply two numbers
Enter the first number: 51

Enter the second number: 19

Displaying from MultiplyNumbers(): 51 x 19 = 969
Displaying from main(): 51 x 19 = 969

Analysis v

Listing 3.3 displays the result of multiplication in two functions, neither of which has
declared the variables firstNumber, secondNumber, and multiplicationResult.
These variables are global as they have been declared in Lines 57, outside the
scope of any function. Note Lines 23 and 36 that use these variables and display their
values. Pay special attention to how multiplicationResult is first assigned in
MultiplyNumbers() yet is effectively reused in main().

Indiscriminate use of global variables is considered poor pro-
gramming practice. This is because global variables can be
assigned values in any/every function and can contain an unpre-
dictable state, especially when functions that modify them run in
different threads or are programmed by different programmers in
a team.

CAUTION

An elegant way of programming Listing 3.3 without using global
variables would have the function MultiplyNumbers () return the
integer result of the multiplication to main ().

Naming Conventions

In case you haven’t noticed, we named the function MultiplyNumbers() where every
word in the function name starts with a capital letter (called Pascal casing), while
variables firstNumber, secondNumber, and multiplicationResult were given
names where the first word starts with a lowercase letter (called camel casing). This book
follows a convention where variable names follow camel casing, while other artifacts
such as function names follow Pascal casing.

You may come across C++ code wherein a variable name is prefixed with characters
that explain the type of the variable. This convention is called the Hungarian notation
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and is frequently used in the programming of Windows applications. So, firstNumber
in Hungarian notation would be iFirstNumber, where the prefix i stands for integer.

A global integer would be called g iFirstNumber. Hungarian notation has lost
popularity in recent years in part due to improvements in Integrated Development
Environments (IDEs) that display the type of a variable when required—on mouse hover,
for instance.

Examples of commonly found bad variable names follow:

int 1 = 0;

bool b = false;

The name of the variable should indicate its purpose, and the two can be better declared as

int totalCash = 0;
bool isLampOn = false;

Naming conventions are used to make the code readable to
programmers, not to compilers. So choose a convention that
suits wisely and use it consistently.

CAUTION

When working in a team, it is a good idea to align on the conven-
tion to be used before starting a new project. When working on
an existing project, adopt the used convention so that the new
code remains readable to others.

Common Compiler-Supported C++
Variable Types

In most of the examples thus far, you have defined variables of type int—that is,
integers. However, C++ programmers can choose from a variety of fundamental
variable types supported directly by the compiler. Choosing the right variable type is as
important as choosing the right tools for the job! A Phillips screwdriver won’t work well
with a regular screw head just like an unsigned integer can’t be used to store values that
are negative! Table 3.1 enlists the various variable types and the nature of data they can
contain.
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TABLE 3.1 Variable Types

Type Values
bool true Or false
char 256 character values

unsigned short int
short int

unsigned long int

long int

unsigned long long

long long

int (16 bit)

int (32 bit)

unsigned int (16 bit)
unsigned int (32 bit)
float

double

0 to 65,535

-32,768 to 32,767

0 to 4,294,967,295
-2,147,483,648 to 2,147,483,647
0 to 18,446,744,073,709,551,615

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

-32,768 to 32,767
-2,147,483,648 to 2,147,483,647
0 to 65,535

0 to 4,294,967,295

1.2e-38 to 3.4e38

2.2e-308 to 1.8e308

The following sections explain the important types in greater detail.

Using Type bool to Store Boolean Values

C++ provides a type that is specially created for containing Boolean values true or
false, both of which are reserved C++ keywords. This type is particularly useful in
storing settings and flags that can be ON or OFF, present or absent, available or unavail-

able, and the like.

A sample declaration of an initialized Boolean variable is

bool alwaysOnTop = false;

An expression that evaluates to a Boolean type is

bool deleteFile = (userSelection == "yes");
// evaluates to true if userSelection contains "yes", else to false

Conditional expressions are explained in Lesson 5, “Working with Expressions,

Statements, and Operators.”
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Using Type char to Store Character Values
Use type char to store a single character. A sample declaration is

char userInput = 'Y'; // initialized char to 'Y'

Note that memory is comprised of bits and bytes. Bits can be either O or 1, and bytes
can contain numeric representation using these bits. So, working or assigning character
data as shown in the example, the compiler converts the character into a numeric
representation that can be placed into memory. The numeric representation of Latin
characters A-Z, a—z, numbers 0-9, some special keystrokes (for example, DEL), and
special characters (such as backspace) has been standardized by the American Standard
Code for Information Interchange, also called ASCII.

You can look up the table in Appendix D, “ASCII Codes,” to see that the character Y
assigned to variable userInput has the ASCII value 89 in decimal. Thus, what the
compiler does is store 89 in the memory space allocated for userInput. 3

The Concept of Sighed and Unsigned Integers

Sign implies positive or negative. All numbers you work with using a computer are stored
in the memory in the form of bits and bytes. A memory location that is 1 byte large con-

tains 8 bits. Each bit can either be a 0 or 1 (that is, carry one of these two values at best).

Thus, a memory location that is 1 byte large can contain a maximum of 2 to the power 8

values—that is, 256 unique values. Similarly, a memory location that is 16 bits large can

contain 2 to the power 16 values—that is, 65,536 unique values.

If these values were to be unsigned—assumed to be only positive—then one byte could
contain integer values ranging from O through 255 and two bytes would contain val-

ues ranging from 0 through 65,535, respectively. Look at Table 3.1 and note that the
unsigned short is the type that supports this range, as it is contained in 16 bits of
memory. Thus, it is quite easy to model positive values in bits and bytes (see Figure 3.1).

FIGURE 3.1 15
Organization of bits

short integer.

16 bits carry value

How to model negative numbers in this space? One way is to “sacrifice” a bit as the
sign-bit that would indicate if the values contained in the other bits are positive or
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negative (see Figure 3.2). The sign-bit needs to be the most-significant-bit (MSB) as

the least-significant-one would be required to model odd numbers. So, when the MSB
contains sign-information, it is assumed that 0 would be positive and 1 would mean nega-
tive, and the other bytes contain the absolute value.

FIGURE 3.2 15 Bit 0
Organization of bits
in a 16-bit signed
short integer.

1 1111111111111

\ J
Y

15 bits contain absolute value

Sign Bit
0: Indicates positive integer
1: Indicates negative integer

Thus, a signed number that occupies 8 bits can contain values ranging from —128 through
127, and one that occupies 16 bits can contain values ranging from —32,768 through
32,767. If you look at Table 3.1 again, note that the (signed) short is the type that
supports positive and negative integer values in a 16-bit space.

Signed Integer Types short, int, long,
and long long

These types differ in their sizes and thereby differ in the range of values they can
contain. int is possibly the most used type and is 32 bits wide on most compilers.
Use the right type depending on your projection of the maximum value that particular
variable would be expected to hold.

Declaring a variable of a signed type is simple:

short int gradesInMath = -5; // not your best score
int moneyInBank = -70000; // overdraft

long populationChange = -85000; // reducing population
long long countryGDPChange = -70000000000;

Unsigned Integer Types unsigned short, unsigned
int, unsigned long, and unsigned long long

Unlike their signed counterparts, unsigned integer variable types cannot contain sign
information, and hence they can actually support twice as many positive values.
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Declaring a variable of an unsigned type is as simple as this:

unsigned short int numColorsInRainbow = 7;

unsigned int numEggsInBasket = 24; // will always be positive
unsigned long numCarsInNewYork = 700000;

unsigned long long countryMedicareExpense = 70000000000;

You would use an unsigned variable type when you expect only

NOTE positive values. So, if you're counting the number of apples,
don’t use int; use unsigned int. The latter can hold twice as
many values in the positive range as the former can.

So, an unsigned type might not be suited for a variable in a

CAUTION gned ype m'e

banking application used to store the account balance as banks

do allow some customers an overdraft facility. To see an example
that demonstrates the differences between signed and unsigned

types, visit Listing 5.3 in Lesson 5.

Avoid Overflow Errors by Selecting Correct
Data Types

Data types such as short, int, long, unsigned short, unsigned int, unsigned
long, and the like have a finite capacity for containing numbers. When you exceed the
limit imposed by the type chosen in an arithmetic operation, you create an overflow.

Take unsigned short for an example. Data type short consumes 16 bits and can
hence contain values from O through 65,535. When you add 1 to 65,535 in an unsigned
short, the value overflows to 0. It’s like the odometer of a car that suffers a mechanical
overflow when it can support only five digits and the car has done 99,999 kilometers

(or miles).

In this case, unsigned short was never the right type for such a counter. The

programmer was better off using unsigned int to support numbers higher than 65,535.

In the case of a signed short integer, which has a range of —32,768 through 32,767,

adding 1 to 32,767 may result in the signed integer taking the highest negative value.

This behavior is compiler dependent.

43
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Listing 3.4 demonstrates the overflow errors that you can inadvertently introduce via

arithmetic operations.

LISTING 3.4 Demonstrating the lll-Effects of Signed and Unsigned Integer
Overflow Errors

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: unsigned short uShortValue = 65535;
6: cout << "Incrementing unsigned short " << uShortValue << " gives: ";
7: cout << ++uShortValue << endl;
8:
9: short signedShort = 32767;
10: cout << "Incrementing signed short " << signedShort << " gives: ";
11: cout << ++signedShort << endl;
12:
13: return 0;
14: }
Output v

Incrementing unsigned short 65535 gives: 0
Incrementing signed short 32767 gives: -32768

Analysis v

The output indicates that unintentional overflow situations result in unpredictable and
unintuitive behavior for the application. Lines 7 and 11 increment an unsigned short
and a signed short that have previously been initialized to their maximum supported
values —65,535 and 32,767, respectively. The output demonstrates the value they hold
after the increment operation, namely an overflow of 65,535 to zero in the unsigned short
and an overflow of 32,767 to —32,768 in the signed short. One wouldn’t expect the result
of an increment operation to reduce the value in question, but that is exactly what hap-
pens when an integer type overflows. If you were using the values in question to allocate
memory, then with the unsigned short, you can reach a point where you request zero
bytes when your actual need is 65536 bytes.
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The operations ++uShortvalue and ++signedShort Seen in
Listing 3.4 at lines 7 and 11 are prefix increment operations.
These are explained in detail in Lesson 5.

NOTE

Floating-Point Types float and double

Floating-point numbers are what you might have learned in school as real numbers.
These are numbers that can be positive or negative. They can contain decimal values.
So, if you want to store the value of pi (22 / 7 or 3.14) in a variable in C++, you would
use a floating-point type.

Declaring variables of these types follows exactly the same pattern as the int in
Listing 3.1. So, a £1oat that allows you to store decimal values would be declared as the
following:

float pi = 3.14;

And a double precision float (called simply a double) is defined as

double morePrecisePi = 22.0 / 7;

C++14 adds support for chunking separators in the form of a
single quotation mark. This improves readability of code, as seen
in the following initializations:

TIP

int moneyInBank = -70'000; // -70000
long populationChange = -85'000; // -85000

long long countryGDPChange = -70'000'000'000; //
-70 billion

double pi = 3.141'592'653'59; // 3.14159265359

The data types mentioned thus far are often referred to as POD
(Plain Old Data). The category POD contains these as well as
aggregations (structs, enums, unions, or classes) thereof.

NOTE
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Determining the Size of a Variable
Using sizeof

Size is the amount of memory that the compiler reserves when the programmer declares
a variable to hold the data assigned to it. The size of a variable depends on its type, and
C++ has a very convenient operator called sizeof that tells you the size in bytes of a
variable or a type.

The usage of sizeof is simple. To determine the size of an integer, you invoke sizeof
with parameter int (the type) as demonstrated by Listing 3.5.

cout << "Size of an int: " << sizeof (int);

LISTING 3.5 Finding the Size of Standard C++ Variable Types

1: #include <iostreams

2

3: int main()

4: |

5: using namespace std;

6 cout << "Computing the size of some C++ inbuilt variable types" << endl;
7

8: cout << "Size of bool: " << sizeof (bool) << endl;

9: cout << "Size of char: " << sizeof (char) << endl;

10: cout << "Size of unsigned short int: " << sizeof (unsigned short) << endl;
11: cout << "Size of short int: " << sizeof (short) << endl;

12: cout << "Size of unsigned long int: " << sizeof (unsigned long) << endl;
13: cout << "Size of long: " << sizeof (long) << endl;

14: cout << "Size of int: " << sizeof (int) << endl;

15: cout << "Size of unsigned long long: "<< sizeof (unsigned long long) <<
endl;

16: cout << "Size of long long: " << sizeof(long long) << endl;

17: cout << "Size of unsigned int: " << sizeof (unsigned int) << endl;

18: cout << "Size of float: " << sizeof (float) << endl;

19: cout << "Size of double: " << sizeof (double) << endl;

20:

21: cout << "The output changes with compiler, hardware and OS" << endl;
22:

23: return 0;

24: }
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Output v

Computing the size of some C++ inbuilt variable types
Size of bool: 1

Size of char: 1

Size of unsigned short int: 2

Size of short int: 2

Size of unsigned long int: 4

Size of long: 4

Size of int: 4

Size of unsigned long long: 8

Size of long long: 8

Size of unsigned int: 4

Size of float: 4

Size of double: 8

The output changes with compiler, hardware and OS

Analysis v 3

The output of Listing 3.5 reveals sizes of various types in bytes and is specific to my
platform: compiler, OS, and hardware. This output in particular is a result of running the
program in 32-bit mode (compiled by a 32-bit compiler) on a 64-bit operating system.
Note that a 64-bit compiler probably creates different results, and the reason I chose a
32-bit compiler was to be able to run the application on 32-bit as well as 64-bit systems.
The output tells that the sizeof a variable doesn’t change between an unsigned or signed

type; the only difference in the two is the MSB that carries sign information in the former.

All sizes seen in the output are in bytes. The size of a type is an

NOTE important parameter to be considered, especially for types used
to hold numbers. A short int can hold a smaller range than a
long long. You therefore wouldn’t use a short int to hold the
population of a country, for example.

TIP C++11 introduced fixed-width integer types that allow you to

specify the exact width of the integer in bits. These are int8 t
or uints_t for 8bit signed and unsigned integers, respectively.
You may also use 16-bit (int16 t, uintilé_t), 32-bit (int32 _t,
uint32 t), and 64-bit (int64 t, uinte4_t) integer types. To use
these types, remember to include header

<cstdints>.
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Avoid Narrowing Conversion Errors by Using
List Initialization

When you initialize a variable of a smaller integer type (say, short) using another of
a larger type (say, an int), you are risking a narrowing conversion error, because the
compiler has to fit data stored in a type that can potentially hold much larger numbers
into a type that doesn’t have the same capacity (that is, is narrower). Here's an example:

int largeNum = 5000000;
short smallNum = largeNum; // compiles OK, yet narrowing error

Narrowing isn’t restricted to conversions between integer types only. You may face
narrowing errors if you initialize a £loat using a double, a float (or double) using
an int, or an int using a £loat. Some compilers may warn, but this warning will not
cause an error that stops compilation. In such cases, you may be confronted by bugs that
occur infrequently and at execution time.

To avoid this problem, C++11 recommends /ist initialization techniques that prevent
narrowing. To use this feature, insert initialization values/variables within braces {...}.
The list initialization syntax is as follows:

int largeNum = 5000000;

short anotherNum{ largeNum }; // error! Amend types

int anotherNum{ largeNum }; // OK!

float someFloat{ largeNum }; // error! An int may be narrowed
float someFloat{ 5000000 }; // OK! 5000000 can be accomodated

It may not be immediately apparent, but this feature has the potential to spare bugs that
occur when data stored in a type undergoes a narrowing conversion at execution time—
these occur implicitly during an initialization and are tough to solve.

Automatic Type Inference Using auto

There are cases where the type of a variable is apparent given the initialization value
being assigned to it. For example, if a variable is being initialized with the value true,
the type of the variable can be best estimated as bool. Compilers supporting C++11 and
beyond give you the option of not having to explicitly specify the variable type when
using the keyword auto.

auto coinFlippedHeads = true;
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We have left the task of defining an exact type for variable coinFlippedHeads to the
compiler. The compiler checks the nature of the value the variable is being initialized
to and then decides on the best possible type that suits this variable. In this particular
case, it is clear that an initialization value of true best suits a variable that is of type
bool. The compiler thus determines bool as the type that suits variable coinFlipped-
Heads best and internally treats coinFlippedHeads as a bool, as also demonstrated
by Listing 3.6.

LISTING 3.6 Using the auto Keyword and Relying on the Compiler’'s Type-Inference
Capabilities

: #include <iostream>
: using namespace std;

1

2

3

4: int main()

5: |

6: auto coinFlippedHeads = true; 3
7 auto largeNumber = 2500000000000;

8

9

: cout << "coinFlippedHeads = " << coinFlippedHeads;
10: cout << " , sizeof (coinFlippedHeads) = " << sizeof (coinFlippedHeads) <<
endl;
11: cout << "largeNumber = " << largeNumber;
12: cout << " , sizeof (largeNumber) = " << sizeof (largeNumber) << endl;
13
14: return 0;
15: }
Output v
coinFlippedHeads = 1 , sizeof (coinFlippedHeads) = 1
largeNumber = 2500000000000 , sizeof (largeNumber) = 8

Analysis v

See how instead of deciding that coinFlippedHeads should be of type bool or that
largeNumber should be a long long, you have used the auto keyword in Lines 6
and 7 where the two variables have been declared. This delegates the decision on the
type of variable to the compiler, which uses the initialization value as a ballpark. You
have used sizeof to actually check whether the compiler created the types you sus-
pected it would, and you can check against the output produced by your code to verify
that it really did.
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Using auto requires you to initialize the variable for the compiler
that uses this initial value in deciding what the variable type
can be.

NOTE

When you don't initialize a variable of type auto, you get a
compile error.

Even if auto seems to be a trivial feature at first sight, it makes programming a lot easier
in those cases where the type variable is a complex type. The role of auto in writing
simpler, yet type-safe code is revisited in Lesson 15, “An Introduction to the Standard
Template Library,” and beyond.

Using typedef to Substitute a Variable’s
Type

C++ allows you to substitute variable types to something that you might find convenient.
You use the keyword typedef for that. Here is an example where a programmer wants
to call an unsigned int a descriptive STRICTLY POSITIVE INTEGER.

typedef unsigned int STRICTLY POSITIVE INTEGER;
STRICTLY POSITIVE INTEGER numEggsInBasket = 4532;

When compiled, the first line tells the compiler that a STRICTLY POSITIVE INTEGER
is nothing but an unsigned int. At later stages when the compiler encounters the already
defined type STRICTLY POSITIVE_ INTEGER, it substitutes it for unsigned int and
continues compilation.

typedef or type substitution is particularly convenient when
dealing with complex types that can have a cumbersome syntax,
for example, types that use templates. Templates are discussed
later in Lesson 14, “An Introduction to Macros and Templates.”

NOTE

What Is a Constant?

Imagine you are writing a program to calculate the area and the circumference of
a circle. The formulas are

Area = pi * Radius * Radius;
Circumference = 2 * pi * Radius
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In this formula, pi is the constant of value 22 / 7. You don’t want the value of pi to
change anywhere in your program. You also want to avoid any accidental assignments of
possibly incorrect values to pi. C++ enables you to define pi as a constant that cannot
be changed after declaration. In other words, after it’s defined, the value of a constant
cannot be altered. Assignments to a constant in C++ cause compilation errors.

Thus, constants are like variables in C++ except that these cannot be changed. Similar
to variables, constants also occupy space in the memory and have a name to identify the
address where the space is reserved. However, the content of this space cannot be over-
written. Constants in C++ can be

Literal constants

Declared constants using the const keyword

]
]
m Constant expressions using the constexpr keyword (new since C++11)
® Enumerated constants using the enum keyword

]

Defined constants that are not recommended and deprecated

Literal Constants

Literal constants can be of many types—integer, string, and so on. In your first C++
program in Listing 1.1, you displayed “Hello World” using the following statement:

std::cout << "Hello World" << std::endl;

In here, “Hello World” is a string literal constant. You literally have been using literal
constants all the while! When you declare an integer someNumber, like this:

int someNumber = 10;

The integer variable someNumber is assigned an initial value of ten. Here decimal ten
is a part of the code, gets compiled into the application, is unchangeable, and is a literal
constant too. You may initialize the integer using a literal in octal notation, like this:

int someNumber = 012 // octal 12 evaluates to decimal 10

Starting in C++14, you may also use binary literals, like this:

int someNumber = 0b1010; // binary 1010 evaluates to decimal 10
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C++ also allows you to define your own literals. For example,
temperature as 32.0_F (Fahrenheit) or 0.0_c (Centigrade),
distance as 16_m (Miles) or 10_km (Kilometers), and so on.

TIP

These suffixes F, ¢, m,and km are called user-defined literals
and are explained in Lesson 12, “Operator Types and Operator
Overloading,” after the prerequisite concepts are explained.

Declaring Variables as Constants Using const

The most important type of constants in C++ from a practical and programmatic point
of view are declared by using keyword const before the variable type. The generic
declaration looks like the following:

const type-name constant-name = value;

Let’s see a simple application that displays the value of a constant called pi (see Listing 3.7).

LISTING 3.7 Declaring a Constant Called pi

1: #include <iostream>
2:
3: int main()
4 |
5: using namespace std;
6
7 const double pi = 22.0 / 7;
8 cout << "The value of constant pi is: " << pi << endl;
9:
10: // Uncomment next line to view compile failure
11: // pi = 345;
12:
13: return 0;
14: }
Output v

The value of constant pi is: 3.14286

Analysis v

Note the declaration of constant pi in Line 7. We use the const keyword to tell the
compiler that pi is a constant of type double. If you uncomment Line 11 where the
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programmer tries to assign a value to a variable you have defined as a constant, you see
a compile failure that says something similar to, ““You cannot assign to a variable that
is const.” Thus, constants are a powerful way to ensure that certain data cannot be
modified.

It is good programming practice to define variables that are not
supposed to change their values as const. The usage of the
const keyword indicates that the programmer has thought about
ensuring the constantness of data where required and protects
his application from inadvertent changes to this constant.

NOTE

This is particularly useful in a multiprogrammer environment.

Constants are useful when declaring the length of static arrays, which are fixed at
compile time. Listing 4.2 in Lesson 4, “Managing Arrays and Strings,” includes a sample
that demonstrates the use of a const int to define the length of an array.

Constant Expressions Using constexpr
Keyword constexpr allows function-like declaration of constants:

constexpr double GetPi() {return 22.0 / 7;}

One constexpr can use another:

constexpr double TwicePi() {return 2 * GetPi();}

constexpr may look like a function, however, allows for optimization possibilities from
the compiler’s and application’s point of view. So long as a compiler is capable of evaluat-
ing a constant expression to a constant, it can be used in statements and expressions at
places where a constant is expected. In the preceding example, TwicePi() is a constexpr
that uses a constant expression GetPi(). This will possibly trigger a compile-time optimi-
zation wherein every usage of TwicePi() is simply replaced by 6.28571 by the compiler,
and not the code that would calculate 2 x 22 / 7 when executed.

Listing 3.8 demonstrates the usage of constexpr.

LISTING 3.8 Using constexpr to Calculate Pi

#include <iostreams>
constexpr double GetPi() { return 22.0 / 7; }
constexpr double TwicePi() { return 2 * GetPi(); }

Ul W N

int main()

53
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6: {
7: using namespace std;
8: const double pi = 22.0 / 7;
9
10 cout << "constant pi contains value " << pi << endl;
11: cout << "constexpr GetPi() returns value " << GetPi() << endl;
12: cout << "constexpr TwicePi() returns value " << TwicePi() << endl;
13: return 0;
14: }
Output v

constant pi contains value 3.14286
constexpr GetPi() returns value 3.14286
constexpr TwicePi() returns value 6.28571

Analysis v

The program demonstrates two methods of deriving the value of pi—one as a constant
variable pi as declared in Line 8 and another as a constant expression GetPi() declared
in Line 2. GetPi() and TwicePi() may look like functions, but they are not exactly.
Functions are invoked at program execution time. But, these are constant expressions and
the compiler had already substituted every usage of GetPi() by 3.14286 and every usage
of TwicePi() by 6.28571. Compile-time resolution of TwicePi() increases the speed of
program execution when compared to the same calculation being contained in a function.

Constant expressions need to contain simple implementations
that return simple types like integer, double, and so on. C++14
allows constexpr to contain decision-making constructs such as
if and switch statements. These conditional statements are dis-
cussed in detail in Lesson 6, “Controlling Program Flow.”

NOTE

The usage of constexpr will not guarantee compile-time
optimization—for example, if you use a constexpr expression to
double a user provided number. The outcome of such an expres-
sion cannot be calculated by the compiler, which may ignore the
usage of constexpr and compile as a regular function.

To see a demonstration of how a constant expression is used
in places where the compiler expects a constant, see the code
sample in Listing 4.2 in Lesson 4.
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In the previous code samples, we defined our own constant pi
as an exercise in learning the syntax of declaring constants and
constexpr. Yet, most popular C++ compilers already supply you
with a reasonably precise value of pi in the constant m_pI. You
may use this constant in your programs after including header
file <cmaths.

TIP

Enumerations

There are situations where a particular variable should be allowed to accept only a
certain set of values. These are situations where you don’t want the colors in the rainbow
to contain Turquoise or the directions on a compass to contain Left. In both these cases,
you need a type of variable whose values are restricted to a certain set defined by you.
Enumerations are exactly the tool you need in this situation and are characterized by the
keyword enum. Enumerations comprise a set of constants called enumerators.

In the following example, the enumeration RainbowColors contains individual colors
such as Violet as enumerators:

enum RainbowColors

{
Violet = 0,
Indigo,
Blue,
Green,
Yellow,
Orange,
Red

}i

Here’s another enumeration for the cardinal directions:

enum CardinalDirections

{

North,
South,
East,
West

}i

Enumerations are used as user-defined types. Variables of this type can be assigned a
range of values restricted to the enumerators contained in the enumeration. So, if defining
a variable that contains the colors of a rainbow, you declare the variable like this:

RainbowColors MyFavoriteColor = Blue; // Initial value
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In the preceding line of code, you declared an enumerated constant MyFavoriteColor
of type RainbowColors. This enumerated constant variable is restricted to contain any
of the legal VIBGYOR colors and no other value.

The compiler converts the enumerator such as violet and so on
into integers. Each enumerated value specified is one more than
the previous value. You have the choice of specifying a starting
value, and if this is not specified, the compiler takes it as 0. So,
North is evaluated as value O.

NOTE

If you want, you can also specify an explicit value against each of
the enumerated constants by initializing them.

Listing 3.9 demonstrates how enumerated constants are used to hold the four cardinal
directions, with an initializing value supplied to the first one.

LISTING 3.9 Using Enumerated Values to Indicate Cardinal Wind Directions

1: #include <iostream>

2: using namespace std;

3:

4: enum CardinalDirections

5: {

6: North = 25,

7: South,

8: East,

9: West

10: };

11:

12: int main()

13: {

14: cout << "Displaying directions and their symbolic values" << endl;
15: cout << "North: " << North << endl;

16: cout << "South: " << South << endl;

17: cout << "East: " << East << endl;

18: cout << "West: " << West << endl;

19:
20: CardinalDirections windDirection = South;
21: cout << "Variable windDirection = " << windDirection << endl;
22:
23: return 0;

24: }
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Output v

Displaying directions and their symbolic values
North: 25

South: 26

East: 27

West: 28

Variable windDirection = 26

Analysis v

Note how we have enumerated the four cardinal directions but have given the first North

an initial value of 25 (see Line 6). This automatically ensures that the following constants

are assigned values 26, 27, and 28 by the compiler as demonstrated in the output. In Line

20 you create a variable of type CardinalDirections that is assigned an initial value

South. When displayed on the screen in Line 21, the compiler dispatches the integer

value associated with South, which is 26. 3

You may want to take a look at Listings 6.4 and 6.5 in

Lesson 6. They use enum to enumerate the days of the week and
conditional processing to tell what the day of the user’s choosing
is named after.

TIP

Defining Constants Using #define

First and foremost, don’t use this if you are writing a program anew. The only reason
this book analyzes the definition of constants using #define is to help you understand
certain legacy programs that do define constants such as pi using this syntax:

#define pi 3.14286

#define is a preprocessor macro, and what is done here is that all mentions of pi
henceforth are replaced by 3.14286 for the compiler to process. Note that this is a text
replacement (read: non-intelligent replacement) done by the preprocessor. The compiler
neither knows nor cares about the actual type of the constant in question.

Defining constants using the preprocessor via #define is depre-
cated and should not be used.

CAUTION
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Keywords You Cannot Use as Variable
or Constant Names

Some words are reserved by C++, and you cannot use them as variable names. These
keywords have special meaning to the C++ compiler. Keywords include if, while, for,
and main. A list of keywords defined by C++ is presented in Table 3.2 as well as in
Appendix B, “C++ Keywords.” Your compiler might have additional reserved words, so
you should check its manual for a complete list.

TABLE 3.2 Major C++ Keywords

asm
auto

bool
break
case
catch
char
class
const
constexpr
continue
default
delete

do

double

dynamic cast

else
enum
explicit
export
extern
false
float
for
friend
goto

if
inline
int
long
mutable

namespace

new
operator

private
protected
public

register
reinterpret cast
return

short

signed

sizeof

static
static_cast
struct

switch

template

In addition, the following words are reserved:

and
and_eq

bitand

bitor
compl

not

not_eq
or

or_eq

this
throw
true

try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar t

while

Xor

Xor_eq
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DO DON'T

DO give variables descriptive names, DON’T give names that are too short
even if that makes them long. or contain just a character.

DO initialize variables, and use list DON’T give names that use exotic
initialization to avoid narrowing con- acronyms known only to you.

LRI (ol DON'T give names that are reserved
DO ensure that the name of the vari- C++ keywords as these won't

able explains its purpose. compile.

DO put yourself into the shoes of
one who hasn’t seen your code yet
and think whether the name would
make sense to him or her.

DO check whether your team is
following certain naming conventions
and follow them. 3

Summary

In this lesson you learned about using memory to store values temporarily in variables
and constants. You learned that variables have a size determined by their type and

that the operator sizeof can be used to determine the size of one. You got to know of
different types of variables such as bool, int, and so on and that they are to be used

to contain different types of data. The right choice of a variable type is important in
effective programming, and the choice of a variable that’s too small for the purpose can
result in a wrapping error or an overflow situation. You learned about the keyword auto,
where you let the compiler decide the data-type for you on the basis of the initialization
value of the variable.

You also learned about the different types of constants and usage of the most important
ones among them using the keywords const, constexpr, and enum.

Q&A

Q Why define constants at all if you can use regular variables instead of them?

A Constants, especially those declared using the keyword const, are your way of
telling the compiler that the value of a particular variable be fixed and not allowed
to change. Consequently, the compiler always ensures that the constant variable is
never assigned another value, not even if another programmer was to take up your
work and inadvertently try to overwrite the value. So, declaring constants where
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you know the value of a variable should not change is a good programming practice
and increases the quality of your application.

Q Why should I initialize the value of a variable?

A If you don’t initialize, you don’t know what the variable contains for a starting
value. The starting value is just the contents of the location in the memory that are
reserved for the variable. Initialization such as that seen here:

int myFavoriteNumber = 0;

writes the initial value of your choosing, in this case 0, to the memory location
reserved for the variable myFavoriteNumber as soon as it is created. There are
situations where you do conditional processing depending on the value of a variable
(often checked against nonzero). Such logic does not work reliably without initial-
ization because an unassigned or initiated variable contains junk that is often
nonzero and random.

Q Why does C++ give me the option of using short int and int and long
int? Why not just always use the integer that always allows for the highest
number to be stored within?

A C++ is a programming language that is used to program for a variety of
applications, many running on devices with little computing capacity or memory
resources. The simple old cell phone is one example where processing capacity
and available memory are both limited. In this case, the programmer can often save
memory or speed or both by choosing the right kind of variable if he doesn’t need
high values. If you are programming on a regular desktop or a high-end smart-
phone, chances are that the performance gained or memory saved in choosing one
integer type over another is going to be insignificant and in some cases even absent.

Q Why should I not use global variables frequently? Isn’t it true that they’re
usable throughout my application and I can save some time otherwise lost
to passing values around functions?

A Global variables can be read and assigned globally. The latter is the problem as they
can be changed globally. Assume you are working on a project with a few other
programmers in a team. You have declared your integers and other variables to be
global. If any programmer in your team changes the value of your integer inadver-
tently in his code—which even might be a different .CPP file than the one you are
using—the reliability of your code is affected. So, sparing a few seconds or minutes
should not be criteria, and you should not use global variables indiscriminately to
ensure the stability of your code.
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Q C++ is giving me the option of declaring unsigned integers that are supposed
to contain only positive integer values and zero. What happens if I decrement
a zero value contained in an unsigned int?

A You see a wrapping effect. Decrementing an unsigned integer that contains 0 by
1 means that it wraps to the highest value it can hold! Check Table 3.1—you see
that an unsigned short can contain values from 0 to 65,535. So, declare an
unsigned short and decrement it to see the unexpected:

unsigned short myShortInt = 0; // Initial Value
myShortInt = myShortInt - 1; // Decrement by 1
std::cout << myShortInt << std::endl; // Output: 65535!

Note that this is not a problem with the unsigned short, rather with your usage
of the same. An unsigned integer (or short or long) is not to be used when nega-
tive values are within the specifications. If the contents of myShortInt are to be
used to dynamically allocate those many number of bytes, a little bug that allows
a zero value to be decremented would result in 64KB being allocated! Worse,

if myShortInt were to be used as an index in accessing a location of memory,
chances are high that your application would access an external location and
would crash!

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix E, and be certain that you understand the answers before continuing to the
next lesson.

Quiz

. What is the difference between a signed and an unsigned integer?

[N

. Why should you not use #define to declare a constant?

. Why would you initialize a variable?

~ WD

. Consider the enum below. What is the value of Queen?

enum YourCards {Ace, Jack, Queen, King};

5. What is wrong with this variable name?

int Integer = 0;

61
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Exercises

1. Modify enum YourCards in quiz question 4 to demonstrate that the value of
Queen can be 45.

2. Write a program that demonstrates that the size of an unsigned integer and a normal
integer are the same, and that both are smaller in size than a long integer.

3. Write a program to calculate the area and circumference of a circle where the
radius is fed by the user.

4. In Exercise 3, if the area and circumference were to be stored in integers, how
would the output be any different?

5. BUGBUSTERS: What is wrong in the following initialization:

auto Integer;
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~ (tilde)

~ (tilde), 234
""s operator, 451-452
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347-349
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operator, 442-443

addition operator (+), 88-89,
347-349
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determining, 179-180
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advantages of C++, 6
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defined, 570, 618
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570-571
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347-349

array class, 699

array operator ([ ]), 197-198

arrays. See also string class
accessing data in, 67-68
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195-198

defined, 64
do’s and don’ts, 71

dynamic arrays, 66, 74-76,
469-472

explained, 65
modifying data in, 69-71

multidimensional arrays,
71-73, 145-146

need for, 64—65

passing to functions, 165-166
size of, 8283

static arrays, 65-66

storing data in, 66—67

ASCIl (American Standard Code
for Information Interchange)
codes, 41, 711-715

assert() macro, 399-400

assignment operator (=),
87, 357-360. See also
compound assignment
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423-424

ate constant, 661

auto keyword, 12-13, 48-50,
171-172, 493

auto_ptr class, 640-643

automatic type deduction,
48-50, 171-172, 698-699

back(), 611
backslash (\), 76-78, 86
bad_alloc class, 679
bad_cast class, 679
base class methods
hiding, 286
initializing, 279-281
invoking, 283-286
overridden methods, 281-284
basic_string class, 450-451
begin(), 481-482
best practices, 693-694
bidirectional iterators, 426
binary constant, 661

binary files, reading/writing,
664-665

binary functions, 545-550
binary literals, 51

binary numeral system,
702-703, 705-706

binary operators
arithmetic operators, 347-349

compound assignment
operators, 350-352

copy assignment, 357-360
equality/inequality, 352
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function (), 364-365

move assignment, 365-371
move constructor, 365-371
relational operators, 354-357
subscript ([]), 360-364

binary predicates, 363,
547-550

binary_search(), 573, 592-595
bits, 703
bitset class, 622-627, 706

bitwise operators, 100-104,
624

blocks, 87, 117-118
bool type, 40

Boolean variables, declaring,
40

Boost Thread Libraries,
645, 690

braces ({ }), 48, 87

break statement, 139-140
breakdown method, 705
buckets, 507

bugs, 8

bytes, 703

Cc

.c filename extension, 9
c_str(), 440
C++
advantages of, 6
evolution of, 7
history of, 6
new features, 12—13
revisions of, 12-13
C++17, 695-699
capture lists, 559-560
case, converting, 449-450
case sensitivity, 20, 398
casting
const_cast operator, 385-386
C-style casts, 379

conditional code compilation

do’s and don’ts, 388

dynamic_cast operator,
381-384

explained, 377
need for, 378
problems with, 386-387

reinterpret_cast operator,
384-385

static_cast operator, 380-381
upcasting, 380
catch keyword, 673-675
catching exceptions
all exceptions, 673-674
catch keyword, 673-675
example, 677-679
exceptions of type, 674-675

failed memory allocation,
202-204

try keyword, 673
cbegin(), 442
cerr class, 651

char buffer, writing to,
657-658

char type, 41

character variables, declaring,
41

chunking separators, 45

cin class, 26-28, 651,
656-660

Circumference(), 152-153

classes. See also constructors;
destructors; inheritance;
individual classes (for
example, fstream class)

accessing members of,
218-220

aggregate initialization,
263-266

aggregation, 296

compared to structs, 257-258
composition, 296

constexpr keyword, 266-267
declaring, 216-217

deep copying, 240-244
explained, 216

friend classes, 258-260
instantiating, 217-218

instantiation on stack,
prohibiting, 249-251

naming conventions, 219

non-copyable objects,
ensuring, 246

private keyword, 220-224
public keyword, 220-222
shallow copying, 237-240
singleton classes, 247-249
sizeof() on, 255-257
subclasses, 275
super classes, 275
unions, 260-266

clear(), 472, 483

Clone(), 638

CodeGuru, 699

CodeProject, 699

collections, inserting elements
into, 597-599

collisions, 529
colon (:), 10
comments, 18, 23, 28

compilation, 8. See also
preprocessor directives

compilers, 10-12, 13,
709-710

compile-time checks,
417-418

compile-time errors, 14

conditional code compilation,
697-698

example, 10-12

operator precedence, 709-710
compiled languages, 13
complexity, 424
composition, 296

compound assignment
operators, 104-106, 350-352

compound statements, 87,
117-118

concatenation, 79-81, 442-443

conditional code compilation,
697-698

765
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conditional operator (?:)

conditional operator (?:),
126-127

conditional programming

conditional operator (?:),
126-127

if statement, 114-122
loops. See loops

switch-case statement,
122-125

const keyword, 52-53,
193-194, 208, 363

const_cast operator, 385-386
in constant, 661
constant complexity, 424
constant expressions, 53-55
constants. See also variables
constant expressions, 53-55
declared constants, 52-53
defined, 50-51
defining, 57, 59-60, 392-394
enumerators, 55-57

literal constants, 51-52,
371-372

naming conventions, 58-59

constexpr keyword, 53-55,
233, 266-267

construction, order of, 288
constructors

automatic type deduction,
698-699

classes without default
constructors, 228-230

converting constructors,
251-253

copy constructors, 233-244
declaring, 224-225

default constructors, 228-230
default values, 230-231
initialization lists, 231-233
move constructors, 244-245
order of construction, 288
overloading, 227-228

uses for, 246-253

virtual copy constructors,
328-331

when to use, 225-226

containers

associative containers,
423-424

choosing, 429-431
container adapters, 425
defined, 422

elements

copy and remove
operations, 588-590

counting, 576-577
finding, 573-575
initializing, 580-583

inserting into collections,
597-599

partitioning, 595-597
processing, 583-585
replacing, 590-592
searching for, 577-579
sorting, 592-595

interaction with algorithms,
427-429

queues, 604-618

sequential containers,
422-423

stacks, 604—608
continue statement, 139-140
conventional pointers, 634
conversion operators, 341-343

converting constructors,
251-253

copy(), 572, 588-590

copy assignment operator,
357-360

copy constructors, 233-244
copy elision, 696
Copy on Write (COW), 639

copy_backward(), 572,
588-590, 600

copy._if(), 588-590

count(), 500, 570, 576-577,
625

count_if(), 570, 576-577

cout class, 651, 653-656, 706
cout statement, 20

COW (Copy on Write), 639

.cpp filename extension, 8
cppreference.com, 699
CPUs, multicore, 688-689

custom sort predicates,
525-528

CustomException class,
680-682

dangling pointers, 200-201
deadlock, 692
debugging, 8

decimal numeral system, 702,
705-706,

decrement operator (--), 89,
191-193, 338-341

deepcopy_smart_ptr class,
637-639

deep-copy-based smart
pointers, 637-639

default constructors, 228-230

default template parameters,
407-408

default values, function
parameters with, 157-159

#define directive, 57

defining constants with,
392-394

writing macro functions with,
396-398

definitions (function), 154
delete operator, 187-190
DemoConsoleOutput(), 24-26
deque class, 422, 469-472,

dereference operator (*),
344-345

dereferencing operator (*),
183-185, 635, 639

derivation, 272-276
DerivedFunction(), 380
destruction, order of, 288-290

destructive copy smart
pointers, 640-643



destructors, 635
declaring, 233-234
order of destruction, 288-290
private destructors, 249-251
virtual destructors, 310-314
when to use, 234-237

directives. See preprocessor
directives

display number formats,
changing, 653-655

DisplayArray(), 165-166
DisplayComparison(), 405
DisplayContents(), 500

DisplayElementKeepCount(),
541-543

DisplayTuplelnfo(), 416-417
DisplayVector(), 467
division operator (/), 88-89
do...while loop, 132-133
documentation, 699

dot operator (.), 218-219
double type, 45

dynamic arrays. See also
vector class

declaring, 74-76

defined, 66

deque class, 469472
dynamic memory allocation

delete operator, 187-190

explained, 187

failed memory allocation,
202-204

new operator, 187-190
dynamic_cast operator, 381-384

Eclipse IDE, 8

ellipses (...), 415

empty(), 472, 611, 615
empty return values, 156-157
end(), 481-482

#endif directive, 395-396

endl manipulator, 652

ends manipulator, 652
enumerations, 55-57
enumerators, 55-57

equal(), 571

equality operator (==), 92, 352

erase(), 445-447, 482-483,
502-506, 522-524

errors. See also exceptions
compiler errors, 12
compile-time errors, 14
debugging, 8
fence-post errors, 70

narrowing conversion errors,
48

overflow errors, 43-44

runtime errors, 14
evolution of C++7
exception class, 679-680
exceptions. See also errors

catching, 673-679

causes of, 672

custom classes, 680-682

defined, 671

do’s and don’ts, 682

std::exception class, 679-680

throwing, 676-679, 683
exclusive OR operator, 95-96
executables, generating, 7-8
explicit keyword, 252-253
explicit type declaration, 493

expressions. See also lambda
expressions

constant, 53-55
validating, 399-400

extraction operator (>>), 27,
624, 649, 663-664

F

failed memory allocation,
202-204

false value, 94

function objects 767

fence-post errors, 70

Fibonacci number calculation,
145-146

Fibonacci numbers, calculating,
159-161

field width, setting, 655-656
filename extensions, 8, 9
fill(), 571, 580

fill_n(), 571, 580

final specifier, 300, 327, 708

find(), 426, 444-445,
500-502, 519-522, 571,
573-575

find_end(), 571
find_first_of(), 571

find_if(), 426, 558, 571,
573-575

fixed manipulator, 652
fixed-width integer types, 47
flip(), 625, 628-629

float type, 45

floating-point variables, 45

flow control. See program flow,
controlling

for_each(), 554, 555-556, 572,
583-585

forward iterators, 425-426
forward slash (/), 88-89

forward_list class, 422,
490-492

friend classes, 258-260
front(), 611
fstream class, 651

opening/closing files,
660-661

reading binary files, 664—665
reading text files, 663—-664

writing to binary files,
664-665

writing to text files, 662—-663
FuncDisplayElement(), 538-541
function objects

binary functions, 545-550,
562-563

defined, 528
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function objects

explained, 538

unary functions, 538-545,
555-557

function operator, 364-365
function prototypes, 153-154
<functional>615

functions. See also arguments;
function objects; macros;
virtual functions; specific
functions (for example,
count())

automatic return type
deduction, 171-172

definitions, 154
explained, 23-26
inline functions, 169-171

microprocessor-level
implementation of, 168—-169

multiple return statements,
161

need for, 152-153
overloading, 163-164

overridden functions,
preventing, 327

passing pointers to, 194-195

pointers, storing addresses in,
180-182

prototypes, 153-154
template functions, 403—405
functors. See function objects

g++ compiler, 8, 10-11
generate(), 571, 581-583
generate_n(), 581-583
get(), 668
GetFibNumber(), 159-161
Getlnstance(), 249
getline(), 28, 659-660, 668
GetMax(), 403-405
GetPi(), 53-54, 169-171
GHz (gigahertz), 688
gigabytes, 704

global variables, 37-38, 60
goto loop, 128-130

greater than (>) operator,
92-94, 354-357

greater than or equal to (>=)
operator, 354-357

grouped if...else constructs,
121-122

handling exceptions. See
exceptions

hash sets, 507-509
hash tables, 528-533
HashFunction(), 529

header files, inclusion guards
in, 419

Hello World program, 9-11, 18
hex manipulator, 652

hexadecimal numbering
system, 178, 704-705,
706-706

history of C++6

HoldsPair template, 408-409
Hungarian notation, 38-39
Hz (hertz), 688

IDEs (Integrated Development
Environments), 8-9, 38-39

if statement, 114-122,
695-696

#ifndef directive, 395-396
Ifstream class, 651

implicit conversions, 343
#include directive, 18-19, 28

inclusion guards, 395-396,
419

increment operator (++), 89,
191-193, 338-341

inequality (!=) operator, 92,
352

infinite loops, 141-143

inheritance
avoiding with final, 300
base class methods, 279-286
do’s and don’ts, 301
multiple inheritance, 297-300
order of construction, 288
order of destruction, 288-290
private inheritance, 291
protected, 276-279

protected inheritance,
293-296

public, 273-274

slicing, 297
initialization lists, 231-233
initializer statement, 695-696
inline functions, 169-171
inline keyword, 169-171
input iterators, 425

input/output, 26-28. See also
streams

insert(), 459-462, 479-482,
499, 608

insertion operator (<<), 26,
624, 649, 662

int keyword, 19-20
int type, 42
int8_t type, 47
int16_t type, 47
int32_t type, 47
int64_t type, 47
integers, 60
fixed-width, 47
signed, 41-42
unsigned, 61

Integrated Development
Environments (IDEs), 8-9,
38-39

International Organization for
Standardization (I1SO), 6, 11

interpreted languages, 13

intrusive reference counting,
639

invalid memory locations, 199
<iomanip> manipulators, 652



iostream file, 18

ISO (International Organization
for Standardization), 6, 11

iterative statements. See loops

iterators, 425-426, 429,
534-535, 630

J-K-L

keywords, list of, 58-59,
707-708. See also individual
keywords (for example, auto)

kilobytes, 704-704
lambda expressions
for binary functions, 562-563

for binary predicates,
564-566

in C++17, 698

do’s and don’ts, 566

explained, 12-13, 172-174,
554-555

local variables in, 567

state maintenance, 559-560,
567

syntax, 560-562
for unary functions, 555-557
for unary predicates, 557-558

leaks, memory, 188, 198-204

left shift operator (<<),
102-104

length of strings, determining,
79-81

less, 522-524

less than (<) operator, 92-94,
354-357

less than or equal to (<=)
operator, 92-94, 354-357

lexicographical_compare(), 571
line breaks, 12
linear complexity, 424
lists, 422
capture lists, 559-560
do’s and don’ts, 492

erasing elements from,
482-483

initialization, 48, 459
initialization lists, 231-233

inserting elements into,
478-482

instantiating, 476477

removing elements from,
487-490

reversing elements in,
484-485

sorting elements in, 485-486

literal constants, 51-52,

371-372

load_factor(), 509, 530
local variables in lambda

expressions, 567

logarithmic complexity, 424
logical AND (&&) operator,

95-100

logical NOT (!) operator,

95-100

logical OR (]| |) operator,

95-100

logical XOR operator, 95-96
long long type, 42

long type, 42

for loop, 133-139
loops

access arrays with, 71
do...while, 132-133
exiting, 139-140

for, 133-139

goto, 128-130
infinite, 141-143
nested, 143-148

resuming execution of,
139-140

while, 130-132

lower_bound(), 573, 597-599
lowercase, converting strings

to, 449-450

l-values, 87-88

memory

macros

advantages/disadvantages,
400-401

assert(), 399-400

case sensitivity, 398
compared to templates, 419
do’s and don’ts, 401
inclusion guards in, 395-396
parentheses in, 398-399

protecting against multiple
inclusion with, 395-396

tuples, 415417

writing, 396-398
main(), 19-20
manipulators, stream, 651-652
map class, 423

custom sort predicates,
525-528

erasing elements from,
522-524

explained, 514
finding elements in, 519-521

inserting elements into,
517-519

instantiating, 515-516
max_bucket_count(), 509
max_load_factor(), 509
megabytes, 704
megahertz (Mhz), 688

member selection operator (->),
344-345, 635, 639

memory. See also pointers

accessing with variables. See
variables

dynamic memory allocation,
187-190, 202-204

I-values, 87-88
memory leaks, 188, 198-204

RAM (Random Access
Memory), 32

raw pointers, 634
r-values, 87-88
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memory

stack, 169

variable addresses,
determining, 179-180

memory leaks, 188, 198-204
methods. See functions
Mhz (megahertz), 688

Microsoft Visual Studio
Express, 8

MIN macro, 397, 400-401
mismatch(), 571
modulo operator (%), 88-89

move assignment operator,
365-371

move constructor operator,
365-371

move constructors, 244-245
multicore processors, 688-689

multidimensional arrays,
71-74,145-146

multimap class, 423

custom sort predicates,
525-528

erasing elements from,
522-524

finding elements in, 522

inserting elements into,
517-519

instantiating, 515-516

multiple inclusion, protecting
against, 395-396

multiple inheritance, 297-300

multiplication operator (*),
88-89

MultiplyNumbers(), 35-36
multiset class, 423, 496-510
do’s and don’ts, 510
erasing elements in, 502-506
explained, 496
finding elements in, 500-502

inserting elements into,
499-500

instantiating, 497-498

pros and cons of, 507
multithreading, 690-693
mutating algorithms, 571-573
mutex class, 692

[N] operator, 624
namespaces, 21-22
naming conventions

classes, 219

constants, 58-59

variables, 34, 38-39, 58-59
narrowing conversion errors, 48
nested if statements, 118-122
nested loops, 143-148
.NET, 6

new operator, 187-190,
202-204

new(nothrow) operator, 204,
210

non-copyable objects, ensuring,
246

non-mutating algorithms,
570-571

NOT operator
bitwise NOT (~), 100-102
logical NOT (!), 95-100
null terminator, 76-78, 82

numeric codes (ASCII), 41,
711-715

o

.0 filename extension, 8
.obj filename extension, 8
objects, creating, 217-218
oct manipulator, 652

octal numeral system, 705
OFF state, 702

ofstream class, 651

online communities, 699
online documentation, 699
open(), 660, 662-664
operator keyword, 336

operators. See also binary
operators; casting;
overloaded operators; unary
operators

declaring, 336
do’s and don’ts, 374
explained, 336-337

precedence of, 108-109,
709-710

prefix versus postfix, 90-91
order of construction, 288
order of destruction, 288-290
OR operator

bitwise OR (I), 100-102, 624

logical OR (ll), 95-100
out constant, 661

output, 26-28. See also
streams

output iterators, 425
overflow errors, 43-44

overloaded constructors,
227-228

overloaded functions, 163-164

overloaded operators, 635
copy assignment, 357-360
equality/inequality, 352

operators that cannot be
overloaded, 373

relational operators, 354-357

overridden functions, 281-284,
327

override specifier, 326-327,
708

P

partial_sort(), 572
partial_sort_copy(), 573
partition(), 573, 595-597

POD (Plain Old Data), 45,
656-657

pointer operator (->), 219-220,
344-345

pointers. See also smart
pointers

accessing data in, 183-185
compared to arrays, 195-198
const keyword, 193-194



declaring, 178-179, 180

decrement operator (--),
191-193

defined, 178
do’s and don’ts, 205

dynamic memory allocation,
187-190

increment operator (++),
191-193

passing to functions, 194—195
raw pointers, 634

sizeof(), 185-186

this, 254

polymorphism. See also virtual
functions

abstract base classes,
318-320, 332

defined, 306
do’s and don’ts, 331
need for, 306-308

pop(), 607-608, 611-613,
616-618

pop operations, 169

pop_back(), 465-466,
470-472

pop_front(), 470-472
postfix operators, 90-91

precedence of operators,
108-109

predicates, 363
binary predicates, 547-550

custom sort predicates,
522-524

unary predicates, 543-545,
557-558

prefix, 21-22

prefix operators, 90-91

preprocessor, 392

preprocessor directives
#define, 57, 392-398
defined, 18
#endif, 395-396
explained, 392
#ifndef, 395-396
#include, 18-19

printable characters (ASCII),
41, 711-715

priority_queue class, 425,
613-618

private destructors, 249-251
private inheritance, 291

private keyword, 220-224, 291
processors, multicore, 688-689

program flow, controlling. See
also loops

conditional operator (?:),
126-127

if statement, 114-122

switch-case statement,
122-125

programs
building, 10-11
compiling, 8, 10-12
executables, 7-8
executing, 10-11
structure of, 18-28

protected inheritance,
276-279, 293-296

protected keyword, 276-279,
293

prototypes (function), 153-154
public inheritance, 273-274

public keyword, 220-222,
273-274,527

pure virtual functions, 318-320

push(), 607-608, 611-613,
616-618

push operations, 169

push_back(), 76, 458, 470-
472, 478-479, 608, 629

push_front(), 470-472,
478-479

QR

queues
explained, 425, 604-605
operators, 628-629
priority_queue class, 613-618
queue class, 425, 609-613

return values

race conditions, 692

RAM (Random Access
Memory), 32

random access iterators, 426

range-based for loops,
137-139

raw pointers, 634
read(), 664-665
recursion, 159-161
references
const keyword, 208
explained, 205-206

intrusive reference counting,
639

need for, 206-208

passing by reference,
166-168, 208-209

reference-counted smart
pointers, 639-640

reference-linked smart
pointers, 640

referencing operator (&),
179-180

refinements, 426

reinterpret_cast operator,
384-385

relational operators, 92-94,
354-357

remove(), 572, 590
remove_copy(), 572

remove_if(), 426, 550, 572,
590

replace(), 572, 590-592
replace_if(), 572, 590-592
reserve(), 473

reserved words. See keywords,
list of

reset(), 625
resetioflags(), 653-654
resetiosflag manipulator, 652

resuming loop execution,
139-140

return statements, multiple,
161

return values, 20

771
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reverse()

reverse(), 448-449, 484-485
reverse algorithm, 426

right shift operator (>>),
102-104

RTTI (runtime type
identification), 318, 382

runtime errors, 14
r-values, 87-88

S

safety (type), templates and,
405

scientific manipulator, 652
scope of variables, 35-36

scope resolution (::) operator,
225

search(), 570, 577-579
search_n(), 570, 577-579
semaphores, 692
separators, chunking, 45

sequential containers,
422-423

set(), 625

set class
do’s and don’ts, 510
erasing elements in, 502-506
explained, 423, 496-510
finding elements in, 500-502

inserting elements into,
499-500

instantiating, 497-498
pros and cons of, 507
setbase manipulator, 652
setfill(), 652, 655-656
setiosflags(), 652, 653-654
setprecision(), 652
setw(), 652, 655-656
shallow copying, 237-240
shared_ptr class, 645
shift operators, 102-104
short type, 42
signed integers, 41-42

single quotation mark ('), 45
singleton classes, 247-249
size(), 611, 615, 625

sizeof(), 46-47, 106-107,
185-186, 255-257

slicing, 297, 637-638

smart pointers
advantages of, 634-635
auto_ptr, 640-643
COW (Copy on Write), 639
deep copy, 637-639
defined, 344, 634
destructive copy, 640-643
implementing, 635-636
libraries, 645
reference-counted, 639-640
reference-linked, 640
shared_ptr, 645
slicing issues, 637-638
unique_ptr, 643-645
weak_ptr, 645

sort(), 485-486, 547-550,
564-566, 572, 592-595,
600

specialization (templates),
410-411

SQUARE macro, 396-397

stable_partition(), 573, 595-
597

stable_sort(), 572, 595
StackOverflow, 699
stacks, 169, 604

inserting and removing
elements in, 607-608

instantiating, 605-606
member functions, 606-607

prohibiting instantiation on,
249-251

stack class, 425, 605-608
ON state, 702
statements. See also loops
blocks, 87, 117-118
break, 139-140
continue, 139-140

cout, 20
explained, 86
if, 114-122
initializer, 695-696
return, 161
switch, 695-696
switch-case, 122-125
static arrays, 65-66
static keyword, 247-248
static members, 412-413
static_assert, 417-418
static_cast operator, 380-381
std namespace, 21-22
stray pointers, 200-201
strcat(), 79
strepy(), 79
streams
cin class, 656-660
classes, 651
cout class, 653-656
explained, 649-650
extraction operator (>>), 649
fstream class, 660—665
insertion operator (<<), 649
manipulators, 651-652
stringstream class, 665-668
string class, 79-81, 432
“’’s operator in, 451-452
accessing, 440-442
concatenating, 442443
converting case of, 449—450
finding characters in, 444445
instantiating, 437-440
need for, 436437

reversing contents of,
448-449

template-based
implementation, 450451

truncating, 445-447

writing to, 658-660
string literals, 20
string_view class, 452, 696



stringstream class, 651,
665-668

strlen(), 79
Stroustroup, Bjarne, 6
structs, 257-258
subclasses, 275

subscript ([]) operator,
360-364

subscript operator ([]), 462
substrings, finding, 444-445

subtraction operator (-), 88-89,
347-349

subtype polymorphism. See
polymorphism

super classes, 275
SurfaceArea(), 155-156

switch statement, 695-696
switch-case statement, 122-125

synchronization, thread, 691,
692

T

tables
hash tables, 528-533

virtual function table,
314-318

template keyword, 397
template<auto>699
templates

compared to macros, 419

compile-time checks,
417-418

terabytes, 704

text files
closing, 660-661
opening, 660-661
reading, 663-664
writing to, 662-663

this pointer, 254

threads, 689-693

throw keyword, 676-677

throwing exceptions, 676-679,

683
tilde (~), 100-102
top(), 615

transform(), 426, 449-450,
545-547, 562-563, 572,
585-588

transformations, 585-588
true value, 94

trunc constant, 661

try keyword, 673

tuple class, 415-417
TwicePi(), 53-54

typedef keyword, 50
types

automatic type deduction,
48-50, 698-699

bool, 40

casting, 377-388
char, 41

conversion, 251-253
double, 45

exceptions of type, handling,

674-675

declaring, 402-408

do’s and don’ts, 418

explained, 402

HoldsPair example, 408—409

instantiating, 410411

programming applications
of, 418

specialization, 410411

static members, 412413

template classes, 406407

variable templates, 413-417

explicit type declaration, 493
fixed-width integer types, 47
float, 45

int, 42

iterator type definitions, 429
long, 42

long long, 42

overflow errors, 43-44

RTTI (runtime type
identification), 382

short, 42

unordered_set class

table of, 3940

type safety, templates and,
405

type substitution, 50
unsigned int, 42-43
unsigned long, 4243
unsigned long long, 42—43
unsigned short, 42-43

uint8_t type, 47

uint16_t type, 47
uint32_t type, 47
uint64_t type, 47

unary functions, 538-545
unary operators

conversion operators,
341-343

dereference, 344-345
explained, 337-338

increment/decrement, 89,
338-341

logical operators, 95-100
member selection, 344-345

unary predicates, 363,

543-545, 557-558

unions

aggregate initialization,
263-266

declaring, 260-263
typesafe alternative to, 697
when to use, 261-263
unique(), 572

unique_copy(), 572
unique_ptr class, 643-645

unordered_map class, 423,
528-533

unordered_multimap class,
423, 528-533

unordered_multiset class, 423,
507-509

unordered_set class, 423,
507-509
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774 unsigned int type

unsigned int type, 42-43
unsigned integers, 42-43, 61
unsigned long long type, 42-43
unsigned long type, 42-43
unsigned short type, 42-43
upcasting, 380

upper_bound(), 573, 597-599

uppercase, converting strings
to, 449-450

User Interface Threads, 690

user-defined literals, 52,
371-372

using keyword, 21-22

'/

values
default values, 157-159
passing to functions
arrays of values, 165-166
by reference, 166-168
variable templates, 413-417

variables. See also constants;
types

addresses
determining, 179-180

storing in pointers,
180-182

declaring

automatic type inference,
48-50

Boolean variables, 40
character variables, 41

floating-point variables,
45

multiple variables, 34
overflow errors, 43—44
signed integers, 42
single variables, 32-34
unsigned integers, 4243

global variables, 37-38, 60

initializing, 60

integers, 60

list initialization, 48

local variables, 567

naming conventions, 38-39,
58-59

narrowing conversion errors,
48

scope, 35-36

size of, 4647
variadic templates, 413-417
variant class, 263, 697
vector class, 74-76, 422

accessing elements in,
462-465

characteristics of, 455-456
do’s and don’ts, 472
initialization, 459

inserting elements into,
458-462

instantiating, 456457

removing elements from,
465-466

size and capacity of, 467-469
vector<bool>

accessing with iterators, 630

explained, 627

functions, 628-629

instantiating, 627-628

specifying number of
elements in, 630

virtual copy constructors,
328-331

virtual destructors, 310-314
virtual function table, 314-318
virtual functions

abstract base classes, 318-320

declaring, 308-310

do’s and don’ts, 331

final specifier, 327

inheritance, 321-325

override specifier, 326-327

pure virtual functions,
318-320

virtual function table,
314-318

virtual inheritance, 321-325

virtual keyword, 318, 324-325,
332

W-X-Y-Z

warning messages, 13
weak_ptr class, 645
while loop, 130-132
wild pointers, 200-201
Worker Threads, 690
write(), 664-665
wstring class, 432, 450-451
XOR operator
bitwise XOR, 100-102, 624
logical XOR, 95-96
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