_ EIGHTH
Siddhartha Rao EDITION

New C++14
& C++17

Coverage

SamsTeach Yourself

iIn One Hour a Day

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

£ & B R |

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780789757746
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780789757746
https://plusone.google.com/share?url=http://www.informit.com/title/9780789757746
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780789757746
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780789757746/Free-Sample-Chapter

Siddhartha Rao

SamsTeachYourself

C++

in One Hour a Day
Eighth Edition

SAMS ‘ 800 East 96th Street, Indianapolis, Indiana 46240 USA

Sams Teach Yourself C++ in One Hour a Day,
Eighth Edition

Copyright © 2017 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms, and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.
No patent liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-7897-5774-6

ISBN-10: 0-7897-5774-5

Library of Congress Control Number: 2016958138
First Printing: December 2016

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The

author and the publisher shall have neither liability nor responsibility to any person or entity

with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales @pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales @ pearsoned.com.

For questions about sales outside the U.S., please contact intlcs @pearson.com.

Editor

Mark Taber

Senior Project Editor
Tonya Simpson

Copy Editor

Geneil Breeze

Indexer

Erika Millen
Proofreader
Sasirekha Durairajan
Technical Editor
Adrian Ngo

Compositor
codeMantra

http://www.pearsoned.com/permissions/

Contents

Introduction

PART I: The Basics

LESSON 1: Getting Started

A Brief History of C++
Connection to C
Advantages of C++
Evolution of the C++ Standard
Who Uses Programs Written in C++?

Programming a C++ Application
Steps to Generating an Executable
Analyzing Errors and “Debugging”
Integrated Development Environments
Programming Your First C++ Application
Building and Executing Your First C++ Application
Understanding Compiler Errors

What’s New in C++7?

LESSON 2: The Anatomy of a C++ Program
Parts of the Hello World Program
Preprocessor Directive #include
The Body of Your Program main ()

Returning a Value
The Concept of Namespaces
Comments in C++ Code
Functions in C++

Basic Input Using std: :cin and Output Using std: : cout

LESSON 3: Using Variables, Declaring Constants
What Is a Variable?
Memory and Addressing in Brief

Declaring Variables to Access and Use Memory

NoRRN-CRNN-CES IS S N - = = ¢

O
N O

17
18
18
19
20
21
22
23
26

31
32
32
32

iv Sams Teach Yourself C++ in One Hour a Day

Declaring and Initializing Multiple Variables of a Type
Understanding the Scope of a Variable
Global Variables
Naming Conventions
Common Compiler-Supported C++ Variable Types
Using Type bool to Store Boolean Values
Using Type char to Store Character Values
The Concept of Signed and Unsigned Integers
Signed Integer Types short, int, long, and long long

Unsigned Integer Types unsigned short, unsigned int,

unsigned long, and unsigned long long

Avoid Overflow Errors by Selecting Correct
Data Types

Floating-Point Types £1loat and double
Determining the Size of a Variable Using sizeof

Avoid Narrowing Conversion Errors by Using
List Initialization

Automatic Type Inference Using auto

Using typedef to Substitute a Variable’s Type

What Is a Constant?
Literal Constants
Declaring Variables as Constants Using const
Constant Expressions Using constexpr
Enumerations
Defining Constants Using #define

Keywords You Cannot Use as Variable or Constant Names

LESSON 4: Managing Arrays and Strings
What Is an Array?
The Need for Arrays
Declaring and Initializing Static Arrays
How Data Is Stored in an Array
Accessing Data Stored in an Array
Modifying Data Stored in an Array
Multidimensional Arrays
Declaring and Initializing Multidimensional Arrays

Accessing Elements in a Multidimensional Array

34
35
37
38
39
40
41
41
42

42

43
45
46

48
48
50
50
51
52
53
55
57
58

63
64
64
65
66
67
69
71
72
73

Contents

Dynamic Arrays 74
C-style Character Strings 76
C++ Strings: Using std: :string 79
LESSON 5: Working with Expressions, Statements, and Operators 85
Statements 86
Compound Statements or Blocks 87
Using Operators 87
The Assignment Operator (=) 87
Understanding L-values and R-values 87
Operators to Add (+), Subtract (-), Multiply (*), Divide (/),
and Modulo Divide (%) 88
Operators to Increment (++) and Decrement (--) 89
To Postfix or to Prefix? 90
Equality Operators (==) and (!=) 92
Relational Operators 92
Logical Operations NOT, AND, OR, and XOR 95
Using C++ Logical Operators NOT (1), AND (&&), and OR (| |) 96
Bitwise NOT (~), AND (&), OR (|), and XOR (*) Operators 100
Bitwise Right Shift (>>) and Left Shift (<<) Operators 102
Compound Assignment Operators 104
Using Operator sizeof to Determine the Memory Occupied by a Variable 106
Operator Precedence 108
LESSON 6: Controlling Program Flow 113
Conditional Execution Using if .. else 114
Conditional Programming Using if .. else 115
Executing Multiple Statements Conditionally 117
Nested if Statements 118
Conditional Processing Using switch-case 122
Conditional Execution Using Operator (?:) 126
Getting Code to Execute in Loops 128
A Rudimentary Loop Using goto 128
The while Loop 130
The do..while Loop 132
The for Loop 133

The Range-Based for Loop 137

vi Sams Teach Yourself C++ in One Hour a Day

Modifying Loop Behavior Using continue and break
Loops That Don’t End—That Is, Infinite Loops
Controlling Infinite Loops

Programming Nested Loops
Using Nested Loops to Walk a Multidimensional Array

Using Nested Loops to Calculate Fibonacci Numbers

LESSON 7: Organizing Code with Functions

The Need for Functions
What Is a Function Prototype?
What Is a Function Definition?
What Is a Function Call, and What Are Arguments?
Programming a Function with Multiple Parameters
Programming Functions with No Parameters or No Return Values
Function Parameters with Default Values
Recursion—Functions That Invoke Themselves
Functions with Multiple Return Statements

Using Functions to Work with Different Forms of Data
Overloading Functions
Passing an Array of Values to a Function
Passing Arguments by Reference

How Function Calls Are Handled by the Microprocessor
Inline Functions
Automatic Return Type Deduction

Lambda Functions

LESSON 8: Pointers and References Explained
What Is a Pointer?

Declaring a Pointer

Determining the Address of a Variable Using the Reference Operator (&)

Using Pointers to Store Addresses
Access Pointed Data Using the Dereference Operator (*)
What Is the sizeof () of a Pointer?
Dynamic Memory Allocation
Using Operators new and delete to Allocate
and Release Memory Dynamically
Effect of Incrementing and Decrementing Operators
(++ and --) on Pointers

139
140
141
143
145
147

151
152
153
154
154
155
156
157
159
161
162
163
165
166
168
169
171
172

177
178
178
179
180
183
185
187

187

191

Using the const Keyword on Pointers
Passing Pointers to Functions
Similarities between Arrays and Pointers
Common Programming Mistakes When Using Pointers
Memory Leaks
When Pointers Don’t Point to Valid Memory Locations
Dangling Pointers (Also Called Stray or Wild Pointers)
Checking Whether Allocation Request Using new Succeeded
Pointer Programming Best-Practices
What Is a Reference?
What Makes References Useful?
Using Keyword const on References

Passing Arguments by Reference to Functions

PART II: Fundamentals of Object-Oriented C++ Programming

LESSON 9: Classes and Objects
The Concept of Classes and Objects
Declaring a Class
An Object as an Instance of a Class
Accessing Members Using the Dot Operator (.)
Accessing Members Using the Pointer Operator (—>)
Keywords public and private
Abstraction of Data via Keyword private
Constructors
Declaring and Implementing a Constructor
When and How to Use Constructors
Overloading Constructors
Class Without a Default Constructor
Constructor Parameters with Default Values
Constructors with Initialization Lists
Destructor
Declaring and Implementing a Destructor
When and How to Use a Destructor
Copy Constructor
Shallow Copying and Associated Problems
Ensuring Deep Copy Using a Copy Constructor

Move Constructors Help Improve Performance

Contents

193
194
195
198
198
199
200
202
204
205
206
208
208

215
216
216
217
218
219
220
222
224
224
225
227
228
230
231
233
234
234
237
237
240
244

Vil

viii Sams Teach Yourself C++ in One Hour a Day

Different Uses of Constructors and the Destructor 246
Class That Does Not Permit Copying 246
Singleton Class That Permits a Single Instance 247
Class That Prohibits Instantiation on the Stack 249
Using Constructors to Convert Types 251

this Pointer 254

sizeof () a Class 255

How struct Differs from class 257

Declaring a friend of a class 258

union: A Special Data Storage Mechanism 260
Declaring a Union 260
Where Would You Use a union? 261

Using Aggregate Initialization on Classes and Structs 263
constexpr with Classes and Objects 266

LESSON 10: Implementing Inheritance 271

Basics of Inheritance 272
Inheritance and Derivation 272
C++ Syntax of Derivation 274
Access Specifier Keyword protected 276
Base Class Initialization—Passing Parameters to the Base Class 279
Derived Class Overriding Base Class’s Methods 281
Invoking Overridden Methods of a Base Class 283
Invoking Methods of a Base Class in a Derived Class 284
Derived Class Hiding Base Class’s Methods 286
Order of Construction 288
Order of Destruction 288

Private Inheritance 291

Protected Inheritance 293

The Problem of Slicing 297

Multiple Inheritance 297

Avoiding Inheritance Using £inal 300

LESSON 11: Polymorphism 305

Basics of Polymorphism 306

Need for Polymorphic Behavior 306

Polymorphic Behavior Implemented Using Virtual Functions 308

Contents

Need for Virtual Destructors 310
How Do virtual Functions Work? Understanding
the Virtual Function Table 314
Abstract Base Classes and Pure Virtual Functions 318
Using virtual Inheritance to Solve the Diamond Problem 321
Specifier override to Indicate Intention to Override 326
Use final to Prevent Function Overriding 327
Virtual Copy Constructors? 328
LESSON 12: Operator Types and Operator Overloading 335
What Are Operators in C++? 336
Unary Operators 337
Types of Unary Operators 337
Programming a Unary Increment/Decrement Operator 338
Programming Conversion Operators 341
Programming Dereference Operator (*) and Member
Selection Operator (->) 344
Binary Operators 346
Types of Binary Operators 346
Programming Binary Addition (a+b) and Subtraction (a-b) Operators 347
Implementing Addition Assignment (+=) and Subtraction
Assignment (-=) Operators 350
Overloading Equality (==) and Inequality (:=) Operators 352
Overloading <, >, <=, and >= Operators 354
Overloading Copy Assignment Operator (=) 357
Subscript Operator ([1) 360
Function Operator () 364
Move Constructor and Move Assignment Operator for High
Performance Programming 365
The Problem of Unwanted Copy Steps 365
Declaring a Move Constructor and Move Assignment Operator 366
User Defined Literals 371
Operators That Cannot Be Overloaded 373
LESSON 13: Casting Operators 377
The Need for Casting 378

Why C-Style Casts Are Not Popular with Some C++ Programmers 379

Sams Teach Yourself C++ in One Hour a Day

The C++ Casting Operators 379
Using static_cast 380
Using dynamic_cast and Runtime Type Identification 381
Using reinterpret cast 384
Using const_cast 385

Problems with the C++ Casting Operators 386

LESSON 14: An Introduction to Macros and Templates 391

The Preprocessor and the Compiler 392

Using Macro #define to Define Constants 392
Using Macros for Protection against Multiple Inclusion 395

Using #define to Write Macro Functions 396
Why All the Parentheses? 398
Using Macro assert to Validate Expressions 399
Advantages and Disadvantages of Using Macro Functions 400

An Introduction to Templates 402
Template Declaration Syntax 402
The Different Types of Template Declarations 403
Template Functions 403
Templates and Type Safety 405
Template Classes 406
Declaring Templates with Multiple Parameters 407
Declaring Templates with Default Parameters 408
Sample Template class<> HoldsPair 408
Template Instantiation and Specialization 410
Template Classes and static Members 412
Variable Templates, Also Called Variadic Templates 413
Using static_assert to Perform Compile-Time Checks 417
Using Templates in Practical C++ Programming 418

PART lil: Learning the Standard Template Library (STL)

LESSON 15: An Introduction to the Standard Template Library 421
STL Containers 422
Sequential Containers 422

Associative Containers 423

Container Adapters 425

Contents Xi

STL Iterators 425
STL Algorithms 426
The Interaction between Containers and Algorithms Using Iterators 427
Using Keyword auto to Let Compiler Define Type 429
Choosing the Right Container 429
STL String Classes 432
LESSON 16: The STL String Class 435
The Need for String Manipulation Classes 436
Working with the STL String Class 437
Instantiating the STL String and Making Copies 437
Accessing Character Contents of a std: :string 440
Concatenating One String to Another 442
Finding a Character or Substring in a String 444
Truncating an STL string 445
String Reversal 448

String Case Conversion 449
Template-Based Implementation of an STL String 450
C++14 operator “”sin std::string 451
LESSON 17: STL Dynamic Array Classes 455
The Characteristics of std: :vector 456
Typical Vector Operations 456
Instantiating a Vector 456
Inserting Elements at the End Using push back () 458

List Initialization 459
Inserting Elements at a Given Position Using insert () 459
Accessing Elements in a Vector Using Array Semantics 462
Accessing Elements in a Vector Using Pointer Semantics 464
Removing Elements from a Vector 465
Understanding the Concepts of Size and Capacity 467
The STL deque Class 469
LESSON 18: STL 1ist and forward list 475
The Characteristics of a std: :1ist 476
Basic 1ist Operations 476
Instantiating a std: : 1ist Object 476

Inserting Elements at the Front or Back of the List 478

Xii

Sams Teach Yourself C++ in One Hour a Day

Inserting at the Middle of the List
Erasing Elements from the List
Reversing and Sorting Elements in a List
Reversing Elements Using list: :reverse ()

Sorting Elements

Sorting and Removing Elements from a 1ist That Contains

Instances of a class

std::forward list Introduced in C++11

LESSON 19: STL Set Classes
An Introduction to STL Set Classes
Basic STL set and multiset Operations
Instantiating a std: :set Object
Inserting Elements in a set or multiset
Finding Elements in an STL set or multiset
Erasing Elements in an STL set or multiset

Pros and Cons of Using STL set and multiset

STL Hash Set Implementation std: :unordered set and

std: :unordered multiset

LESSON 20: STL Map Classes

An Introduction to STL Map Classes

Basic std: :map and std: :multimap Operations
Instantiating a std: :map or std: :multimap
Inserting Elements in an STL map or multimap
Finding Elements in an STL map
Finding Elements in an STL multimap
Erasing Elements from an STL map or multimap

Supplying a Custom Sort Predicate

STL’s Hash Table-Based Key-Value Container
How Hash Tables Work

Using unordered map and unordered multimap

PART IV: More STL

LESSON 21: Understanding Function Objects
The Concept of Function Objects and Predicates
Typical Applications of Function Objects

479
482
483
484
485

487
490

495
496
496
497
499
500
502
507

507

513
514
515
515
517
519
522
522
525
528
529
529

537
538
538

Unary Functions
Unary Predicate
Binary Functions

Binary Predicate

LESSON 22: Lambda Expressions
What Is a Lambda Expression?
How to Define a Lambda Expression
Lambda Expression for a Unary Function
Lambda Expression for a Unary Predicate
Lambda Expression with State via Capture Lists [. . .]
The Generic Syntax of Lambda Expressions
Lambda Expression for a Binary Function

Lambda Expression for a Binary Predicate

LESSON 23: STL Algorithms

What Are STL Algorithms?

Classification of STL Algorithms
Non-Mutating Algorithms
Mutating Algorithms

Usage of STL Algorithms
Finding Elements Given a Value or a Condition
Counting Elements Given a Value or a Condition
Searching for an Element or a Range in a Collection
Initializing Elements in a Container to a Specific Value

Using std: :generate () to Initialize Elements to a Value
Generated at Runtime

Processing Elements in a Range Using for_each ()
Performing Transformations on a Range Using std: : transform()
Copy and Remove Operations

Replacing Values and Replacing Element
Given a Condition

Sorting and Searching in a Sorted Collection and Erasing Duplicates
Partitioning a Range

Inserting Elements in a Sorted Collection

Contents

538
543
545
547

553
554
555
555
557
559
560
562
564

569
570
570
570
571
573
573
576
577
580

582
583
585
588

590
592
595
597

Xiii

Xiv Sams Teach Yourself C++ in One Hour a Day

LESSON 24: Adaptive Containers: Stack and Queue
The Behavioral Characteristics of Stacks and Queues
Stacks
Queues
Using the STL stack Class
Instantiating the Stack
Stack Member Functions
Insertion and Removal at Top Using push () and pop ()
Using the STL queue Class
Instantiating the Queue

Member Functions of a queue

Insertion at End and Removal at the Beginning of queue

via push () and pop ()
Using the STL Priority Queue
Instantiating the priority gueue Class

Member Functions of priority gqueue

Insertion at the End and Removal at the Beginning of priority queue

via push () and pop ()

LESSON 25: Working with Bit Flags Using STL
The bitset Class
Instantiating the std: :bitset
Using std: :bitset and Its Members
Useful Operators Featured in std: :bitset
std: :bitset Member Methods
The vector<bools>
Instantiating vector<bools>

vector<bool> Functions and Operators

PART V: Advanced C++ Concepts

LESSON 26: Understanding Smart Pointers

What Are Smart Pointers?
The Problem with Using Conventional (Raw) Pointers
How Do Smart Pointers Help?

How Are Smart Pointers Implemented?

Types of Smart Pointers
Deep Copy
Copy on Write Mechanism

603
604
604
604
605
605
606
607
609
609
610

611
613
613
615

616

621
622
622
623
624
625
627
627
628

633
634
634
634
635
636
637
639

Contents

Reference-Counted Smart Pointers 639
Reference-Linked Smart Pointers 640
Destructive Copy 640
Using the std: :unique ptr 643
Popular Smart Pointer Libraries 645
LESSON 27: Using Streams for Input and Output 649
Concept of Streams 650
Important C++ Stream Classes and Objects 651
Using std: : cout for Writing Formatted Data to Console 652
Changing Display Number Formats Using std: : cout 653
Aligning Text and Setting Field Width Using std: : cout 655
Using std: :cin for Input 656
Using std: :cin for Input into a Plain Old Data Type 656
Using std: :cin: :get for Input into char* Buffer 657
Using std: :cin for Input into a std: :string 658
Using std: : fstream for File Handling 660
Opening and Closing a File Using open () and close () 660
Creating and Writing a Text File Using open () and operator<< 662
Reading a Text File Using open () and operators> 663
Writing to and Reading from a Binary File 664
Using std: :stringstream for String Conversions 666
LESSON 28: Exception Handling 671
What Is an Exception? 672
What Causes Exceptions? 672
Implementing Exception Safety via try and catch 673
Using catch(...) to Handle All Exceptions 673
Catching Exception of a Type 674
Throwing Exception of a Type Using throw 676
How Exception Handling Works 677
Class std: :exception 680
Your Custom Exception Class Derived from std: :exception 680
LESSON 29: Going Forward 687
What’s Different in Today’s Processors? 688
How to Better Use Multiple Cores 689
What Is a Thread? 689

Why Program Multithreaded Applications? 690

XVi

Sams Teach Yourself C++ in One Hour a Day

How Can Threads Transact Data?
Using Mutexes and Semaphores to Synchronize Threads
Problems Caused by Multithreading

Writing Great C++ Code

C++17: Expected Features
if and switch Support Initializers
Copy Elision Guarantee
std::string view Avoids Allocation Overheads
std::variant As a Typesafe Alternative to a union
Conditional Code Compilation Using if constexpr
Improved Lambda Expressions
Automatic Type Deduction for Constructors
template<auto>

Learning C++ Doesn’t Stop Here!
Online Documentation

Communities for Guidance and Help
PART VI: Appendixes
APPENDIX A: Working with Numbers: Binary and Hexadecimal
APPENDIX B: C++ Keywords
APPENDIX C: Operator Precedence
APPENDIX D: ASCII Codes

APPENDIX E: Answers

Index

691
692
692
693
694
695
696
696
697
697
698
698
699
699
699
699

701

707

709

711

717

763

Dedication

In memory of my father, who will continue to be my source of inspiration.

Acknowledgments

I am thankful to my family for the immense support, to my wife Clara, and to the edito-
rial staff for their spirited engagement in getting this book to you!

About the Author

Siddhartha Rao is the Vice President in charge of Security Response at SAP SE,

the world’s leading supplier of enterprise software. The evolution of C++ convinces
Siddhartha that you can program faster, simpler, and more powerful applications than
ever before. He loves traveling and is a passionate mountain biker. He looks forward to
your feedback on this effort!

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this
book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with
the author and editors who worked on the book.

Email: feedback @samspublishing.com
Mail: Sams Publishing

ATTN: Reader Feedback

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services

Visit the publisher’s website and register this book at informit.com/register for convenient
access to any updates, downloads, or errata that may be available for this book.

Introduction

2011 and 2014 were two special years for C++. While C++11 ushered in a dramatic
improvement to C++, introducing new keywords and constructs that increased your
programming efficiency, C++14 brought in incremental improvements that added
finishing touches to the features introduced by C++11.

This book helps you learn C++ in tiny steps. It has been thoughtfully divided into lessons
that teach you the fundamentals of this object-oriented programming language from a
practical point of view. Depending on your proficiency level, you will be able to master
C++ one hour at a time.

Learning C++ by doing is the best way—so try the rich variety of code samples in this
book hands-on and help yourself improve your programming proficiency. These code
snippets have been tested using the latest versions of the available compilers at the
time of writing, namely the Microsoft Visual C++ compiler for C++ and GNU’s C++
compiler, which both offer a rich coverage of C++14 features.

Who Should Read This Book?

The book starts with the very basics of C++. All that is needed is a desire to learn this
language and curiosity to understand how stuff works. An existing knowledge of C++
programming can be an advantage but is not a prerequisite. This is also a book you
might like to refer to if you already know C++ but want to learn additions that have been
made to the language. If you are a professional programmer, Part III, “Learning the
Standard Template Library (STL),” is bound to help you create better, more practical C++
applications.

Visit the publisher’s website and register this book at
informit.com/register for convenient access to any updates,
downloads, or errata that may be available for this book.

NOTE

Sams Teach Yourself C++ in One Hour a Day

Organization of This Book

Depending on your current proficiency levels with C++, you can choose the section
you would like to start with. Concepts introduced by C++11 and C++14 are sprinkled
throughout the book, in the relevant lessons. This book has been organized into five
parts:

m Part I, “The Basics,” gets you started with writing simple C++ applications. In
doing so, it introduces you to the keywords that you most frequently see in C++
code of a variable without compromising on type safety.

m Part II, “Fundamentals of Object-Oriented C++ Programming,” teaches you the
concept of classes. You learn how C++ supports the important object-oriented pro-
gramming principles of encapsulation, abstraction, inheritance, and polymorphism.
Lesson 9, “Classes and Objects,” teaches you the concept of move constructor
followed by the move assignment operator in Lesson 12, “Operator Types and
Operator Overloading.” These performance features help reduce unwanted and
unnecessary copy steps, boosting the performance of your application. Lesson
14, “An Introduction to Macros and Templates,” is your stepping stone to writing
powerful generic C++ code.

m Part III, “Learning the Standard Template Library (STL),” helps you write efficient
and practical C++ code using the STL string class and containers. You learn how
std: :string makes simple string concatenation operations safe and easy and how
you don’t need to use C-style char* strings anymore. You will be able to use STL
dynamic arrays and linked lists instead of programming your own.

m Part IV, “More STL,” focuses on algorithms. You learn to use sort on containers
such as vector via iterators. In this part, you find out how keyword auto intro-
duced by C++11 has made a significant reduction to the length of your iterator dec-
larations. Lesson 22, “Lambda Expressions,” presents a powerful new feature that
results in significant code reduction when you use STL algorithms.

m Part V, “Advanced C++ Concepts,” explains language capabilities such as smart
pointers and exception handling, which are not a must in a C++ application but help
make a significant contribution toward increasing its stability and quality. This part
ends with a note on best practices in writing good C++ applications, and introduces
you to the new features expected to make it to the next version of the ISO standard
called C++17.

Introduction

Conventions Used in This Book

Within the lessons, you find the following elements that provide additional information:

NOTE These boxes provide additional information related to material
you read.
These boxes alert your attention to problems or side effects that
CAUTION can occur in special situations.
These boxes give you best practices in writing your C++ pro-
TIP
grams.
DO DON'T

a quick summary of a fundamental offered in these boxes.

DO use the “Do/Don’t” boxes to find DON’T overlook the useful information
principle in a lesson.

This book uses different typefaces to differentiate between code and plain English.
Throughout the lessons, code, commands, and programming-related terms appear in a
computer typeface.

Sample Code for This Book

The code samples in this book are available online for download from the publisher’s
website.

This page intentionally left blank

LESSON 3
Using Variables,
Declaring Constants

Variables are tools that help the programmer temporarily store data for
a finite amount of time. Constants are tools that help the programmer
define artifacts that are not allowed to change or make changes.

In this lesson, you find out
m How to declare and define variables and constants
m How to assign values to variables and manipulate those values
m How to write the value of a variable to the screen
]

How to use keywords auto and constexpr

32

LESSON 3: Using Variables, Declaring Constants

What Is a Variable?

Before you actually explore the need and use of variables in a programming language,
take a step back and first see what a computer contains and how it works.

Memory and Addressing in Brief

All computers, smart phones, and other programmable devices contain a microprocessor
and a certain amount of memory for temporary storage called Random Access Memory
(RAM). In addition, many devices also allow for data to be persisted on a storage device
such as the hard disk. The microprocessor executes your application, and in doing so it
works with the RAM to fetch the application binary code to be executed as well as the
data associated with it, which includes that displayed on the screen and that entered by
the user.

The RAM itself can be considered to be a storage area akin to a row of lockers in

the dorms, each locker having a number—that is, an address. To access a location in
memory, say location 578, the processor needs to be asked via an instruction to fetch a
value from there or write a value to it.

Declaring Variables to Access and Use Memory

The following examples will help you understand what variables are. Assume you are
writing a program to multiply two numbers supplied by the user. The user is asked to
feed the multiplicand and the multiplier into your program, one after the other, and you
need to store each of them so that you can use them later to multiply. Depending on what
you want to be doing with the result of the multiplication, you might even want to store it
for later use in your program. It would be slow and error-prone if you were to explicitly
specify memory addresses (such as 578) to store the numbers, as you would need to
worry about inadvertently overwriting existing data at the location or your data being
overwritten at a later stage.

When programming in languages like C++, you define variables to store those values.
Defining a variable is quite simple and follows this pattern:

VariableType VariableName;

or

VariableType VariableName = InitialValue;

The variable type attribute tells the compiler the nature of data the variable can store, and
the compiler reserves the necessary space for it. The name chosen by the programmer is
a friendly replacement for the address in the memory where the variable’s value is stored.

What Is a Variable? 33

Unless the initial value is assigned, you cannot be sure of the contents of that memory
location, which can be bad for the program. Therefore, initialization is optional, but
it’s often a good programming practice. Listing 3.1 shows how variables are declared,
initialized, and used in a program that multiplies two numbers supplied by the user.

LISTING 3.1 Using Variables to Store Numbers and the Result of Their Multiplication

1: #include <iostreams>
2: using namespace std;
3:
4: int main ()
5: {
6: cout << "This program will help you multiply two numbers" << endl;
7:
8: cout << "Enter the first number: ";
9: int firstNumber = 0;
10: cin >> firstNumber;
11: 3
12: cout << "Enter the second number: ";
13: int secondNumber = 0;
14: cin >> secondNumber;
15:
16 // Multiply two numbers, store result in a variable
17 int multiplicationResult = firstNumber * secondNumber;
18:
19 // Display result
20 cout << firstNumber << " X " << secondNumber;
21 cout << " = " << multiplicationResult << endl;
22:
23: return 0;
24: }
Output v

This program will help you multiply two numbers
Enter the first number: 51

Enter the second number: 24

51 x 24 = 1224

Analysis v

This application asks the user to enter two numbers, which the program multiplies and
displays the result. To use numbers entered by the user, it needs to store them in the
memory. Variables firstNumber and secondNumber declared in Lines 9 and 13 do the
job of temporarily storing integer values entered by the user. You use std::cin in Lines
10 and 14 to accept input from the user and to store them in the two integer variables.
The cout statement in Line 21 is used to display the result on the console.

34 LESSON 3: Using Variables, Declaring Constants

Analyzing a variable declaration further:

9: int firstNumber = 0;

What this line declares is a variable of type int, which indicates an integer, with a name
called firstNumber. Zero is assigned to the variable as an initial value.

The compiler does the job of mapping this variable firstNumber to a location in
memory and takes care of the associated memory-address bookkeeping for you for all
the variables that you declare. The programmer thus works with human-friendly names,
while the compiler manages memory-addressing and creates the instructions for the
microprocessor to execute in working with the RAM.

Naming variables appropriately is important for writing good,
understandable, and maintainable code.

CAUTION

Variable names in C++ can be alphanumeric, but they cannot
start with a number. They cannot contain spaces and cannot
contain arithmetic operators (such as +, -, and so on) within
them. Variable names also cannot be reserved keywords. For
example, a variable named return will cause compilation failure.

Variable names can contain the underscore character_that often
is used in descriptive variable naming.

Declaring and Initializing Multiple
Variables of a Type

In Listing 3.1, firstNumber, secondNumber, and multiplicationResult are all of
the same type—integers—and are declared in three separate lines. If you wanted to, you
could condense the declaration of these three variables to one line of code that looks like
this:

int firstNumber = 0, secondNumber = 0, multiplicationResult = 0;

As you can see, C++ makes it possible to declare multiple
variables of a type at once and to declare variables at the
beginning of a function. Yet, declaring a variable when it is first
needed is often better as it makes the code readable—one
notices the type of the variable when the declaration is close to
its point of first use.

NOTE

CAUTION

What Is a Variable?

Data stored in variables is data stored in RAM. This data is lost
when the application terminates unless the programmer explicitly
persists the data on a storage medium like a hard disk.

Storing to a file on disk is discussed in Lesson 27, “Using
Streams for Input and Output.”

Understanding the Scope of a Variable

Ordinary variables like the ones we have declared this far have a well-defined scope
within which they’re valid and can be used. When used outside their scope, the variable
names will not be recognized by the compiler and your program won’t compile. Beyond
its scope, a variable is an unidentified entity that the compiler knows nothing of.

To better understand the scope of a variable, reorganize the program in Listing 3.1 into
a function MultiplyNumbers() that multiplies the two numbers and returns the result.
See Listing 3.2.

LISTING 3.2 Demonstrating the Scope of the Variables

DN NNND R R R R R P R R R R
AUl W N O WOow-NO0 Ul WP o v

W J O Ul B W

#include <iostream>
using namespace std;

void MultiplyNumbers ()

{

}

cout << "Enter the first number: ";
int firstNumber = 0;
cin >> firstNumber;

cout << "Enter the second number: ";
int secondNumber = 0;
cin >> secondNumber;

// Multiply two numbers, store result in a variable
int multiplicationResult = firstNumber * secondNumber;

// Display result
cout << firstNumber << " X " << secondNumber;
cout << " = " << multiplicationResult << endl;

int main ()

{

cout << "This program will help you multiply two numbers" << endl;

// Call the function that does all the work
MultiplyNumbers () ;

35

36 LESSON 3: Using Variables, Declaring Constants

27:

28: // cout << firstNumber << " x " << secondNumber;
29: // cout << " = " << multiplicationResult << endl;
30:

31: return 0;

32: }

Output v

This program will help you multiply two numbers
Enter the first number: 51

Enter the second number: 24

51 x 24 = 1224

Analysis v

Listing 3.2 does exactly the same activity as Listing 3.1 and produces the same output.
The only difference is that the bulk of the work is delegated to a function called
MultiplyNumbers() invoked by main(). Note that variables firstNumber and
secondNumber cannot be used outside of MultiplyNumbers(). If you uncomment
Lines 28 or 29 in main(), you experience compile failure of type undeclared

identifier

This is because the scope of the variables firstNumber and secondNumber is local,
hence limited to the function they’re declared in, in this case MultiplyNumbers().

A local variable can be used in a function after variable declaration till the end of the
function. The curly brace (}) that indicates the end of a function also limits the scope of
variables declared in the same. When a function ends, all local variables are destroyed
and the memory they occupied returned.

When compiled, variables declared within MultiplyNumbers() perish when the
function ends, and if they’re used in main(), compilation fails as the variables have not
been declared in there.

If you declare another set of variables with the same name in
main (), then don’t still expect them to carry a value that might
have been assigned in MultiplyNumbers ().

CAUTION

The compiler treats the variables in main () as independent
entities even if they share their names with a variable declared
in another function, as the two variables in question are limited
by their scope.

What Is a Variable? 37

Global Variables

If the variables used in function MultiplyNumbers() in Listing 3.2 were declared
outside the scope of the function MultiplyNumber () instead of within it, then they
would be usable in both main() and MultiplyNumbers(). Listing 3.3 demonstrates
global variables, which are the variables with the widest scope in a program.

LISTING 3.3 Using Global Variables

1: #include <iostreams>

2: using namespace std;

3:

4: // three global integers

5: int firstNumber = 0;

6: int secondNumber = 0;

7: int multiplicationResult = 0;

8:

9: void MultiplyNumbers () 3
10: {

11 cout << "Enter the first number: ";

12: cin >> firstNumber;

13:

14: cout << "Enter the second number: ";

15 cin >> secondNumber;

16

17 // Multiply two numbers, store result in a variable
18: multiplicationResult = firstNumber * secondNumber;
19
20 // Display result
21 cout << "Displaying from MultiplyNumbers(): ";
22: cout << firstNumber << " X " << secondNumber;
23: cout << " = " << multiplicationResult << endl;
24: }
25: int main ()
26: {
27: cout << "This program will help you multiply two numbers" << endl;
28:
29: // Call the function that does all the work

30: MultiplyNumbers () ;

31:

32: cout << "Displaying from main(): ";

33:

34: // This line will now compile and work!

35: cout << firstNumber << " X " << secondNumber;

36: cout << " = " << multiplicationResult << endl;

37:

38: return 0;

39: }

38

LESSON 3: Using Variables, Declaring Constants

Output v

This program will help you multiply two numbers
Enter the first number: 51

Enter the second number: 19

Displaying from MultiplyNumbers(): 51 x 19 = 969
Displaying from main(): 51 x 19 = 969

Analysis v

Listing 3.3 displays the result of multiplication in two functions, neither of which has
declared the variables firstNumber, secondNumber, and multiplicationResult.
These variables are global as they have been declared in Lines 57, outside the
scope of any function. Note Lines 23 and 36 that use these variables and display their
values. Pay special attention to how multiplicationResult is first assigned in
MultiplyNumbers() yet is effectively reused in main().

Indiscriminate use of global variables is considered poor pro-
gramming practice. This is because global variables can be
assigned values in any/every function and can contain an unpre-
dictable state, especially when functions that modify them run in
different threads or are programmed by different programmers in
a team.

CAUTION

An elegant way of programming Listing 3.3 without using global
variables would have the function MultiplyNumbers () return the
integer result of the multiplication to main ().

Naming Conventions

In case you haven’t noticed, we named the function MultiplyNumbers() where every
word in the function name starts with a capital letter (called Pascal casing), while
variables firstNumber, secondNumber, and multiplicationResult were given
names where the first word starts with a lowercase letter (called camel casing). This book
follows a convention where variable names follow camel casing, while other artifacts
such as function names follow Pascal casing.

You may come across C++ code wherein a variable name is prefixed with characters
that explain the type of the variable. This convention is called the Hungarian notation

Common Compiler-Supported C++ Variable Types 39

and is frequently used in the programming of Windows applications. So, firstNumber
in Hungarian notation would be iFirstNumber, where the prefix i stands for integer.

A global integer would be called g iFirstNumber. Hungarian notation has lost
popularity in recent years in part due to improvements in Integrated Development
Environments (IDEs) that display the type of a variable when required—on mouse hover,
for instance.

Examples of commonly found bad variable names follow:

int 1 = 0;

bool b = false;

The name of the variable should indicate its purpose, and the two can be better declared as

int totalCash = 0;
bool isLampOn = false;

Naming conventions are used to make the code readable to
programmers, not to compilers. So choose a convention that
suits wisely and use it consistently.

CAUTION

When working in a team, it is a good idea to align on the conven-
tion to be used before starting a new project. When working on
an existing project, adopt the used convention so that the new
code remains readable to others.

Common Compiler-Supported C++
Variable Types

In most of the examples thus far, you have defined variables of type int—that is,
integers. However, C++ programmers can choose from a variety of fundamental
variable types supported directly by the compiler. Choosing the right variable type is as
important as choosing the right tools for the job! A Phillips screwdriver won’t work well
with a regular screw head just like an unsigned integer can’t be used to store values that
are negative! Table 3.1 enlists the various variable types and the nature of data they can
contain.

40

LESSON 3: Using Variables, Declaring Constants

TABLE 3.1 Variable Types

Type Values
bool true Or false
char 256 character values

unsigned short int
short int

unsigned long int

long int

unsigned long long

long long

int (16 bit)

int (32 bit)

unsigned int (16 bit)
unsigned int (32 bit)
float

double

0 to 65,535

-32,768 to 32,767

0 to 4,294,967,295
-2,147,483,648 to 2,147,483,647
0 to 18,446,744,073,709,551,615

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

-32,768 to 32,767
-2,147,483,648 to 2,147,483,647
0 to 65,535

0 to 4,294,967,295

1.2e-38 to 3.4e38

2.2e-308 to 1.8e308

The following sections explain the important types in greater detail.

Using Type bool to Store Boolean Values

C++ provides a type that is specially created for containing Boolean values true or
false, both of which are reserved C++ keywords. This type is particularly useful in
storing settings and flags that can be ON or OFF, present or absent, available or unavail-

able, and the like.

A sample declaration of an initialized Boolean variable is

bool alwaysOnTop = false;

An expression that evaluates to a Boolean type is

bool deleteFile = (userSelection == "yes");
// evaluates to true if userSelection contains "yes", else to false

Conditional expressions are explained in Lesson 5, “Working with Expressions,

Statements, and Operators.”

Common Compiler-Supported C++ Variable Types 41

Using Type char to Store Character Values
Use type char to store a single character. A sample declaration is

char userInput = 'Y'; // initialized char to 'Y'

Note that memory is comprised of bits and bytes. Bits can be either O or 1, and bytes
can contain numeric representation using these bits. So, working or assigning character
data as shown in the example, the compiler converts the character into a numeric
representation that can be placed into memory. The numeric representation of Latin
characters A-Z, a—z, numbers 0-9, some special keystrokes (for example, DEL), and
special characters (such as backspace) has been standardized by the American Standard
Code for Information Interchange, also called ASCII.

You can look up the table in Appendix D, “ASCII Codes,” to see that the character Y
assigned to variable userInput has the ASCII value 89 in decimal. Thus, what the
compiler does is store 89 in the memory space allocated for userInput. 3

The Concept of Sighed and Unsigned Integers

Sign implies positive or negative. All numbers you work with using a computer are stored
in the memory in the form of bits and bytes. A memory location that is 1 byte large con-

tains 8 bits. Each bit can either be a 0 or 1 (that is, carry one of these two values at best).

Thus, a memory location that is 1 byte large can contain a maximum of 2 to the power 8

values—that is, 256 unique values. Similarly, a memory location that is 16 bits large can

contain 2 to the power 16 values—that is, 65,536 unique values.

If these values were to be unsigned—assumed to be only positive—then one byte could
contain integer values ranging from O through 255 and two bytes would contain val-

ues ranging from 0 through 65,535, respectively. Look at Table 3.1 and note that the
unsigned short is the type that supports this range, as it is contained in 16 bits of
memory. Thus, it is quite easy to model positive values in bits and bytes (see Figure 3.1).

FIGURE 3.1 15
Organization of bits

short integer.

16 bits carry value

How to model negative numbers in this space? One way is to “sacrifice” a bit as the
sign-bit that would indicate if the values contained in the other bits are positive or

42

LESSON 3: Using Variables, Declaring Constants

negative (see Figure 3.2). The sign-bit needs to be the most-significant-bit (MSB) as

the least-significant-one would be required to model odd numbers. So, when the MSB
contains sign-information, it is assumed that 0 would be positive and 1 would mean nega-
tive, and the other bytes contain the absolute value.

FIGURE 3.2 15 Bit 0
Organization of bits
in a 16-bit signed
short integer.

1 1111111111111

\ J
Y

15 bits contain absolute value

Sign Bit
0: Indicates positive integer
1: Indicates negative integer

Thus, a signed number that occupies 8 bits can contain values ranging from —128 through
127, and one that occupies 16 bits can contain values ranging from —32,768 through
32,767. If you look at Table 3.1 again, note that the (signed) short is the type that
supports positive and negative integer values in a 16-bit space.

Signed Integer Types short, int, long,
and long long

These types differ in their sizes and thereby differ in the range of values they can
contain. int is possibly the most used type and is 32 bits wide on most compilers.
Use the right type depending on your projection of the maximum value that particular
variable would be expected to hold.

Declaring a variable of a signed type is simple:

short int gradesInMath = -5; // not your best score
int moneyInBank = -70000; // overdraft

long populationChange = -85000; // reducing population
long long countryGDPChange = -70000000000;

Unsigned Integer Types unsigned short, unsigned
int, unsigned long, and unsigned long long

Unlike their signed counterparts, unsigned integer variable types cannot contain sign
information, and hence they can actually support twice as many positive values.

Common Compiler-Supported C++ Variable Types

Declaring a variable of an unsigned type is as simple as this:

unsigned short int numColorsInRainbow = 7;

unsigned int numEggsInBasket = 24; // will always be positive
unsigned long numCarsInNewYork = 700000;

unsigned long long countryMedicareExpense = 70000000000;

You would use an unsigned variable type when you expect only

NOTE positive values. So, if you're counting the number of apples,
don’t use int; use unsigned int. The latter can hold twice as
many values in the positive range as the former can.

So, an unsigned type might not be suited for a variable in a

CAUTION gned ype m'e

banking application used to store the account balance as banks

do allow some customers an overdraft facility. To see an example
that demonstrates the differences between signed and unsigned

types, visit Listing 5.3 in Lesson 5.

Avoid Overflow Errors by Selecting Correct
Data Types

Data types such as short, int, long, unsigned short, unsigned int, unsigned
long, and the like have a finite capacity for containing numbers. When you exceed the
limit imposed by the type chosen in an arithmetic operation, you create an overflow.

Take unsigned short for an example. Data type short consumes 16 bits and can
hence contain values from O through 65,535. When you add 1 to 65,535 in an unsigned
short, the value overflows to 0. It’s like the odometer of a car that suffers a mechanical
overflow when it can support only five digits and the car has done 99,999 kilometers

(or miles).

In this case, unsigned short was never the right type for such a counter. The

programmer was better off using unsigned int to support numbers higher than 65,535.

In the case of a signed short integer, which has a range of —32,768 through 32,767,

adding 1 to 32,767 may result in the signed integer taking the highest negative value.

This behavior is compiler dependent.

43

44

LESSON 3: Using Variables, Declaring Constants

Listing 3.4 demonstrates the overflow errors that you can inadvertently introduce via

arithmetic operations.

LISTING 3.4 Demonstrating the lll-Effects of Signed and Unsigned Integer
Overflow Errors

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: unsigned short uShortValue = 65535;
6: cout << "Incrementing unsigned short " << uShortValue << " gives: ";
7: cout << ++uShortValue << endl;
8:
9: short signedShort = 32767;
10: cout << "Incrementing signed short " << signedShort << " gives: ";
11: cout << ++signedShort << endl;
12:
13: return 0;
14: }
Output v

Incrementing unsigned short 65535 gives: 0
Incrementing signed short 32767 gives: -32768

Analysis v

The output indicates that unintentional overflow situations result in unpredictable and
unintuitive behavior for the application. Lines 7 and 11 increment an unsigned short
and a signed short that have previously been initialized to their maximum supported
values —65,535 and 32,767, respectively. The output demonstrates the value they hold
after the increment operation, namely an overflow of 65,535 to zero in the unsigned short
and an overflow of 32,767 to —32,768 in the signed short. One wouldn’t expect the result
of an increment operation to reduce the value in question, but that is exactly what hap-
pens when an integer type overflows. If you were using the values in question to allocate
memory, then with the unsigned short, you can reach a point where you request zero
bytes when your actual need is 65536 bytes.

Common Compiler-Supported C++ Variable Types 45

The operations ++uShortvalue and ++signedShort Seen in
Listing 3.4 at lines 7 and 11 are prefix increment operations.
These are explained in detail in Lesson 5.

NOTE

Floating-Point Types float and double

Floating-point numbers are what you might have learned in school as real numbers.
These are numbers that can be positive or negative. They can contain decimal values.
So, if you want to store the value of pi (22 / 7 or 3.14) in a variable in C++, you would
use a floating-point type.

Declaring variables of these types follows exactly the same pattern as the int in
Listing 3.1. So, a £1oat that allows you to store decimal values would be declared as the
following:

float pi = 3.14;

And a double precision float (called simply a double) is defined as

double morePrecisePi = 22.0 / 7;

C++14 adds support for chunking separators in the form of a
single quotation mark. This improves readability of code, as seen
in the following initializations:

TIP

int moneyInBank = -70'000; // -70000
long populationChange = -85'000; // -85000

long long countryGDPChange = -70'000'000'000; //
-70 billion

double pi = 3.141'592'653'59; // 3.14159265359

The data types mentioned thus far are often referred to as POD
(Plain Old Data). The category POD contains these as well as
aggregations (structs, enums, unions, or classes) thereof.

NOTE

46

LESSON 3: Using Variables, Declaring Constants

Determining the Size of a Variable
Using sizeof

Size is the amount of memory that the compiler reserves when the programmer declares
a variable to hold the data assigned to it. The size of a variable depends on its type, and
C++ has a very convenient operator called sizeof that tells you the size in bytes of a
variable or a type.

The usage of sizeof is simple. To determine the size of an integer, you invoke sizeof
with parameter int (the type) as demonstrated by Listing 3.5.

cout << "Size of an int: " << sizeof (int);

LISTING 3.5 Finding the Size of Standard C++ Variable Types

1: #include <iostreams

2

3: int main()

4: |

5: using namespace std;

6 cout << "Computing the size of some C++ inbuilt variable types" << endl;
7

8: cout << "Size of bool: " << sizeof (bool) << endl;

9: cout << "Size of char: " << sizeof (char) << endl;

10: cout << "Size of unsigned short int: " << sizeof (unsigned short) << endl;
11: cout << "Size of short int: " << sizeof (short) << endl;

12: cout << "Size of unsigned long int: " << sizeof (unsigned long) << endl;
13: cout << "Size of long: " << sizeof (long) << endl;

14: cout << "Size of int: " << sizeof (int) << endl;

15: cout << "Size of unsigned long long: "<< sizeof (unsigned long long) <<
endl;

16: cout << "Size of long long: " << sizeof(long long) << endl;

17: cout << "Size of unsigned int: " << sizeof (unsigned int) << endl;

18: cout << "Size of float: " << sizeof (float) << endl;

19: cout << "Size of double: " << sizeof (double) << endl;

20:

21: cout << "The output changes with compiler, hardware and OS" << endl;
22:

23: return 0;

24: }

Determining the Size of a Variable Using sizeof 47

Output v

Computing the size of some C++ inbuilt variable types
Size of bool: 1

Size of char: 1

Size of unsigned short int: 2

Size of short int: 2

Size of unsigned long int: 4

Size of long: 4

Size of int: 4

Size of unsigned long long: 8

Size of long long: 8

Size of unsigned int: 4

Size of float: 4

Size of double: 8

The output changes with compiler, hardware and OS

Analysis v 3

The output of Listing 3.5 reveals sizes of various types in bytes and is specific to my
platform: compiler, OS, and hardware. This output in particular is a result of running the
program in 32-bit mode (compiled by a 32-bit compiler) on a 64-bit operating system.
Note that a 64-bit compiler probably creates different results, and the reason I chose a
32-bit compiler was to be able to run the application on 32-bit as well as 64-bit systems.
The output tells that the sizeof a variable doesn’t change between an unsigned or signed

type; the only difference in the two is the MSB that carries sign information in the former.

All sizes seen in the output are in bytes. The size of a type is an

NOTE important parameter to be considered, especially for types used
to hold numbers. A short int can hold a smaller range than a
long long. You therefore wouldn’t use a short int to hold the
population of a country, for example.

TIP C++11 introduced fixed-width integer types that allow you to

specify the exact width of the integer in bits. These are int8 t
or uints_t for 8bit signed and unsigned integers, respectively.
You may also use 16-bit (int16 t, uintilé_t), 32-bit (int32 _t,
uint32 t), and 64-bit (int64 t, uinte4_t) integer types. To use
these types, remember to include header

<cstdints>.

48

LESSON 3: Using Variables, Declaring Constants

Avoid Narrowing Conversion Errors by Using
List Initialization

When you initialize a variable of a smaller integer type (say, short) using another of
a larger type (say, an int), you are risking a narrowing conversion error, because the
compiler has to fit data stored in a type that can potentially hold much larger numbers
into a type that doesn’t have the same capacity (that is, is narrower). Here's an example:

int largeNum = 5000000;
short smallNum = largeNum; // compiles OK, yet narrowing error

Narrowing isn’t restricted to conversions between integer types only. You may face
narrowing errors if you initialize a £loat using a double, a float (or double) using
an int, or an int using a £loat. Some compilers may warn, but this warning will not
cause an error that stops compilation. In such cases, you may be confronted by bugs that
occur infrequently and at execution time.

To avoid this problem, C++11 recommends /ist initialization techniques that prevent
narrowing. To use this feature, insert initialization values/variables within braces {...}.
The list initialization syntax is as follows:

int largeNum = 5000000;

short anotherNum{ largeNum }; // error! Amend types

int anotherNum{ largeNum }; // OK!

float someFloat{ largeNum }; // error! An int may be narrowed
float someFloat{ 5000000 }; // OK! 5000000 can be accomodated

It may not be immediately apparent, but this feature has the potential to spare bugs that
occur when data stored in a type undergoes a narrowing conversion at execution time—
these occur implicitly during an initialization and are tough to solve.

Automatic Type Inference Using auto

There are cases where the type of a variable is apparent given the initialization value
being assigned to it. For example, if a variable is being initialized with the value true,
the type of the variable can be best estimated as bool. Compilers supporting C++11 and
beyond give you the option of not having to explicitly specify the variable type when
using the keyword auto.

auto coinFlippedHeads = true;

Automatic Type Inference Using auto 49

We have left the task of defining an exact type for variable coinFlippedHeads to the
compiler. The compiler checks the nature of the value the variable is being initialized
to and then decides on the best possible type that suits this variable. In this particular
case, it is clear that an initialization value of true best suits a variable that is of type
bool. The compiler thus determines bool as the type that suits variable coinFlipped-
Heads best and internally treats coinFlippedHeads as a bool, as also demonstrated
by Listing 3.6.

LISTING 3.6 Using the auto Keyword and Relying on the Compiler’'s Type-Inference
Capabilities

: #include <iostream>
: using namespace std;

1

2

3

4: int main()

5: |

6: auto coinFlippedHeads = true; 3
7 auto largeNumber = 2500000000000;

8

9

: cout << "coinFlippedHeads = " << coinFlippedHeads;
10: cout << " , sizeof (coinFlippedHeads) = " << sizeof (coinFlippedHeads) <<
endl;
11: cout << "largeNumber = " << largeNumber;
12: cout << " , sizeof (largeNumber) = " << sizeof (largeNumber) << endl;
13
14: return 0;
15: }
Output v
coinFlippedHeads = 1 , sizeof (coinFlippedHeads) = 1
largeNumber = 2500000000000 , sizeof (largeNumber) = 8

Analysis v

See how instead of deciding that coinFlippedHeads should be of type bool or that
largeNumber should be a long long, you have used the auto keyword in Lines 6
and 7 where the two variables have been declared. This delegates the decision on the
type of variable to the compiler, which uses the initialization value as a ballpark. You
have used sizeof to actually check whether the compiler created the types you sus-
pected it would, and you can check against the output produced by your code to verify
that it really did.

50 LESSON 3: Using Variables, Declaring Constants

Using auto requires you to initialize the variable for the compiler
that uses this initial value in deciding what the variable type
can be.

NOTE

When you don't initialize a variable of type auto, you get a
compile error.

Even if auto seems to be a trivial feature at first sight, it makes programming a lot easier
in those cases where the type variable is a complex type. The role of auto in writing
simpler, yet type-safe code is revisited in Lesson 15, “An Introduction to the Standard
Template Library,” and beyond.

Using typedef to Substitute a Variable’s
Type

C++ allows you to substitute variable types to something that you might find convenient.
You use the keyword typedef for that. Here is an example where a programmer wants
to call an unsigned int a descriptive STRICTLY POSITIVE INTEGER.

typedef unsigned int STRICTLY POSITIVE INTEGER;
STRICTLY POSITIVE INTEGER numEggsInBasket = 4532;

When compiled, the first line tells the compiler that a STRICTLY POSITIVE INTEGER
is nothing but an unsigned int. At later stages when the compiler encounters the already
defined type STRICTLY POSITIVE_ INTEGER, it substitutes it for unsigned int and
continues compilation.

typedef or type substitution is particularly convenient when
dealing with complex types that can have a cumbersome syntax,
for example, types that use templates. Templates are discussed
later in Lesson 14, “An Introduction to Macros and Templates.”

NOTE

What Is a Constant?

Imagine you are writing a program to calculate the area and the circumference of
a circle. The formulas are

Area = pi * Radius * Radius;
Circumference = 2 * pi * Radius

What Is a Constant? 51

In this formula, pi is the constant of value 22 / 7. You don’t want the value of pi to
change anywhere in your program. You also want to avoid any accidental assignments of
possibly incorrect values to pi. C++ enables you to define pi as a constant that cannot
be changed after declaration. In other words, after it’s defined, the value of a constant
cannot be altered. Assignments to a constant in C++ cause compilation errors.

Thus, constants are like variables in C++ except that these cannot be changed. Similar
to variables, constants also occupy space in the memory and have a name to identify the
address where the space is reserved. However, the content of this space cannot be over-
written. Constants in C++ can be

Literal constants

Declared constants using the const keyword

]
]
m Constant expressions using the constexpr keyword (new since C++11)
® Enumerated constants using the enum keyword

]

Defined constants that are not recommended and deprecated

Literal Constants

Literal constants can be of many types—integer, string, and so on. In your first C++
program in Listing 1.1, you displayed “Hello World” using the following statement:

std::cout << "Hello World" << std::endl;

In here, “Hello World” is a string literal constant. You literally have been using literal
constants all the while! When you declare an integer someNumber, like this:

int someNumber = 10;

The integer variable someNumber is assigned an initial value of ten. Here decimal ten
is a part of the code, gets compiled into the application, is unchangeable, and is a literal
constant too. You may initialize the integer using a literal in octal notation, like this:

int someNumber = 012 // octal 12 evaluates to decimal 10

Starting in C++14, you may also use binary literals, like this:

int someNumber = 0b1010; // binary 1010 evaluates to decimal 10

52 LESSON 3: Using Variables, Declaring Constants

C++ also allows you to define your own literals. For example,
temperature as 32.0_F (Fahrenheit) or 0.0_c (Centigrade),
distance as 16_m (Miles) or 10_km (Kilometers), and so on.

TIP

These suffixes F, ¢, m,and km are called user-defined literals
and are explained in Lesson 12, “Operator Types and Operator
Overloading,” after the prerequisite concepts are explained.

Declaring Variables as Constants Using const

The most important type of constants in C++ from a practical and programmatic point
of view are declared by using keyword const before the variable type. The generic
declaration looks like the following:

const type-name constant-name = value;

Let’s see a simple application that displays the value of a constant called pi (see Listing 3.7).

LISTING 3.7 Declaring a Constant Called pi

1: #include <iostream>
2:
3: int main()
4 |
5: using namespace std;
6
7 const double pi = 22.0 / 7;
8 cout << "The value of constant pi is: " << pi << endl;
9:
10: // Uncomment next line to view compile failure
11: // pi = 345;
12:
13: return 0;
14: }
Output v

The value of constant pi is: 3.14286

Analysis v

Note the declaration of constant pi in Line 7. We use the const keyword to tell the
compiler that pi is a constant of type double. If you uncomment Line 11 where the

What Is a Constant?

programmer tries to assign a value to a variable you have defined as a constant, you see
a compile failure that says something similar to, ““You cannot assign to a variable that
is const.” Thus, constants are a powerful way to ensure that certain data cannot be
modified.

It is good programming practice to define variables that are not
supposed to change their values as const. The usage of the
const keyword indicates that the programmer has thought about
ensuring the constantness of data where required and protects
his application from inadvertent changes to this constant.

NOTE

This is particularly useful in a multiprogrammer environment.

Constants are useful when declaring the length of static arrays, which are fixed at
compile time. Listing 4.2 in Lesson 4, “Managing Arrays and Strings,” includes a sample
that demonstrates the use of a const int to define the length of an array.

Constant Expressions Using constexpr
Keyword constexpr allows function-like declaration of constants:

constexpr double GetPi() {return 22.0 / 7;}

One constexpr can use another:

constexpr double TwicePi() {return 2 * GetPi();}

constexpr may look like a function, however, allows for optimization possibilities from
the compiler’s and application’s point of view. So long as a compiler is capable of evaluat-
ing a constant expression to a constant, it can be used in statements and expressions at
places where a constant is expected. In the preceding example, TwicePi() is a constexpr
that uses a constant expression GetPi(). This will possibly trigger a compile-time optimi-
zation wherein every usage of TwicePi() is simply replaced by 6.28571 by the compiler,
and not the code that would calculate 2 x 22 / 7 when executed.

Listing 3.8 demonstrates the usage of constexpr.

LISTING 3.8 Using constexpr to Calculate Pi

#include <iostreams>
constexpr double GetPi() { return 22.0 / 7; }
constexpr double TwicePi() { return 2 * GetPi(); }

Ul W N

int main()

53

LESSON 3: Using Variables, Declaring Constants

6: {
7: using namespace std;
8: const double pi = 22.0 / 7;
9
10 cout << "constant pi contains value " << pi << endl;
11: cout << "constexpr GetPi() returns value " << GetPi() << endl;
12: cout << "constexpr TwicePi() returns value " << TwicePi() << endl;
13: return 0;
14: }
Output v

constant pi contains value 3.14286
constexpr GetPi() returns value 3.14286
constexpr TwicePi() returns value 6.28571

Analysis v

The program demonstrates two methods of deriving the value of pi—one as a constant
variable pi as declared in Line 8 and another as a constant expression GetPi() declared
in Line 2. GetPi() and TwicePi() may look like functions, but they are not exactly.
Functions are invoked at program execution time. But, these are constant expressions and
the compiler had already substituted every usage of GetPi() by 3.14286 and every usage
of TwicePi() by 6.28571. Compile-time resolution of TwicePi() increases the speed of
program execution when compared to the same calculation being contained in a function.

Constant expressions need to contain simple implementations
that return simple types like integer, double, and so on. C++14
allows constexpr to contain decision-making constructs such as
if and switch statements. These conditional statements are dis-
cussed in detail in Lesson 6, “Controlling Program Flow.”

NOTE

The usage of constexpr will not guarantee compile-time
optimization—for example, if you use a constexpr expression to
double a user provided number. The outcome of such an expres-
sion cannot be calculated by the compiler, which may ignore the
usage of constexpr and compile as a regular function.

To see a demonstration of how a constant expression is used
in places where the compiler expects a constant, see the code
sample in Listing 4.2 in Lesson 4.

What Is a Constant? 55

In the previous code samples, we defined our own constant pi
as an exercise in learning the syntax of declaring constants and
constexpr. Yet, most popular C++ compilers already supply you
with a reasonably precise value of pi in the constant m_pI. You
may use this constant in your programs after including header
file <cmaths.

TIP

Enumerations

There are situations where a particular variable should be allowed to accept only a
certain set of values. These are situations where you don’t want the colors in the rainbow
to contain Turquoise or the directions on a compass to contain Left. In both these cases,
you need a type of variable whose values are restricted to a certain set defined by you.
Enumerations are exactly the tool you need in this situation and are characterized by the
keyword enum. Enumerations comprise a set of constants called enumerators.

In the following example, the enumeration RainbowColors contains individual colors
such as Violet as enumerators:

enum RainbowColors

{
Violet = 0,
Indigo,
Blue,
Green,
Yellow,
Orange,
Red

}i

Here’s another enumeration for the cardinal directions:

enum CardinalDirections

{

North,
South,
East,
West

}i

Enumerations are used as user-defined types. Variables of this type can be assigned a
range of values restricted to the enumerators contained in the enumeration. So, if defining
a variable that contains the colors of a rainbow, you declare the variable like this:

RainbowColors MyFavoriteColor = Blue; // Initial value

56 LESSON 3: Using Variables, Declaring Constants

In the preceding line of code, you declared an enumerated constant MyFavoriteColor
of type RainbowColors. This enumerated constant variable is restricted to contain any
of the legal VIBGYOR colors and no other value.

The compiler converts the enumerator such as violet and so on
into integers. Each enumerated value specified is one more than
the previous value. You have the choice of specifying a starting
value, and if this is not specified, the compiler takes it as 0. So,
North is evaluated as value O.

NOTE

If you want, you can also specify an explicit value against each of
the enumerated constants by initializing them.

Listing 3.9 demonstrates how enumerated constants are used to hold the four cardinal
directions, with an initializing value supplied to the first one.

LISTING 3.9 Using Enumerated Values to Indicate Cardinal Wind Directions

1: #include <iostream>

2: using namespace std;

3:

4: enum CardinalDirections

5: {

6: North = 25,

7: South,

8: East,

9: West

10: };

11:

12: int main()

13: {

14: cout << "Displaying directions and their symbolic values" << endl;
15: cout << "North: " << North << endl;

16: cout << "South: " << South << endl;

17: cout << "East: " << East << endl;

18: cout << "West: " << West << endl;

19:
20: CardinalDirections windDirection = South;
21: cout << "Variable windDirection = " << windDirection << endl;
22:
23: return 0;

24: }

What Is a Constant? 57

Output v

Displaying directions and their symbolic values
North: 25

South: 26

East: 27

West: 28

Variable windDirection = 26

Analysis v

Note how we have enumerated the four cardinal directions but have given the first North

an initial value of 25 (see Line 6). This automatically ensures that the following constants

are assigned values 26, 27, and 28 by the compiler as demonstrated in the output. In Line

20 you create a variable of type CardinalDirections that is assigned an initial value

South. When displayed on the screen in Line 21, the compiler dispatches the integer

value associated with South, which is 26. 3

You may want to take a look at Listings 6.4 and 6.5 in

Lesson 6. They use enum to enumerate the days of the week and
conditional processing to tell what the day of the user’s choosing
is named after.

TIP

Defining Constants Using #define

First and foremost, don’t use this if you are writing a program anew. The only reason
this book analyzes the definition of constants using #define is to help you understand
certain legacy programs that do define constants such as pi using this syntax:

#define pi 3.14286

#define is a preprocessor macro, and what is done here is that all mentions of pi
henceforth are replaced by 3.14286 for the compiler to process. Note that this is a text
replacement (read: non-intelligent replacement) done by the preprocessor. The compiler
neither knows nor cares about the actual type of the constant in question.

Defining constants using the preprocessor via #define is depre-
cated and should not be used.

CAUTION

58

LESSON 3: Using Variables, Declaring Constants

Keywords You Cannot Use as Variable
or Constant Names

Some words are reserved by C++, and you cannot use them as variable names. These
keywords have special meaning to the C++ compiler. Keywords include if, while, for,
and main. A list of keywords defined by C++ is presented in Table 3.2 as well as in
Appendix B, “C++ Keywords.” Your compiler might have additional reserved words, so
you should check its manual for a complete list.

TABLE 3.2 Major C++ Keywords

asm
auto

bool
break
case
catch
char
class
const
constexpr
continue
default
delete

do

double

dynamic cast

else
enum
explicit
export
extern
false
float
for
friend
goto

if
inline
int
long
mutable

namespace

new
operator

private
protected
public

register
reinterpret cast
return

short

signed

sizeof

static
static_cast
struct

switch

template

In addition, the following words are reserved:

and
and_eq

bitand

bitor
compl

not

not_eq
or

or_eq

this
throw
true

try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar t

while

Xor

Xor_eq

Q&A 59

DO DON'T

DO give variables descriptive names, DON’T give names that are too short
even if that makes them long. or contain just a character.

DO initialize variables, and use list DON’T give names that use exotic
initialization to avoid narrowing con- acronyms known only to you.

LRI (ol DON'T give names that are reserved
DO ensure that the name of the vari- C++ keywords as these won't

able explains its purpose. compile.

DO put yourself into the shoes of
one who hasn’t seen your code yet
and think whether the name would
make sense to him or her.

DO check whether your team is
following certain naming conventions
and follow them. 3

Summary

In this lesson you learned about using memory to store values temporarily in variables
and constants. You learned that variables have a size determined by their type and

that the operator sizeof can be used to determine the size of one. You got to know of
different types of variables such as bool, int, and so on and that they are to be used

to contain different types of data. The right choice of a variable type is important in
effective programming, and the choice of a variable that’s too small for the purpose can
result in a wrapping error or an overflow situation. You learned about the keyword auto,
where you let the compiler decide the data-type for you on the basis of the initialization
value of the variable.

You also learned about the different types of constants and usage of the most important
ones among them using the keywords const, constexpr, and enum.

Q&A

Q Why define constants at all if you can use regular variables instead of them?

A Constants, especially those declared using the keyword const, are your way of
telling the compiler that the value of a particular variable be fixed and not allowed
to change. Consequently, the compiler always ensures that the constant variable is
never assigned another value, not even if another programmer was to take up your
work and inadvertently try to overwrite the value. So, declaring constants where

60 LESSON 3: Using Variables, Declaring Constants

you know the value of a variable should not change is a good programming practice
and increases the quality of your application.

Q Why should I initialize the value of a variable?

A If you don’t initialize, you don’t know what the variable contains for a starting
value. The starting value is just the contents of the location in the memory that are
reserved for the variable. Initialization such as that seen here:

int myFavoriteNumber = 0;

writes the initial value of your choosing, in this case 0, to the memory location
reserved for the variable myFavoriteNumber as soon as it is created. There are
situations where you do conditional processing depending on the value of a variable
(often checked against nonzero). Such logic does not work reliably without initial-
ization because an unassigned or initiated variable contains junk that is often
nonzero and random.

Q Why does C++ give me the option of using short int and int and long
int? Why not just always use the integer that always allows for the highest
number to be stored within?

A C++ is a programming language that is used to program for a variety of
applications, many running on devices with little computing capacity or memory
resources. The simple old cell phone is one example where processing capacity
and available memory are both limited. In this case, the programmer can often save
memory or speed or both by choosing the right kind of variable if he doesn’t need
high values. If you are programming on a regular desktop or a high-end smart-
phone, chances are that the performance gained or memory saved in choosing one
integer type over another is going to be insignificant and in some cases even absent.

Q Why should I not use global variables frequently? Isn’t it true that they’re
usable throughout my application and I can save some time otherwise lost
to passing values around functions?

A Global variables can be read and assigned globally. The latter is the problem as they
can be changed globally. Assume you are working on a project with a few other
programmers in a team. You have declared your integers and other variables to be
global. If any programmer in your team changes the value of your integer inadver-
tently in his code—which even might be a different .CPP file than the one you are
using—the reliability of your code is affected. So, sparing a few seconds or minutes
should not be criteria, and you should not use global variables indiscriminately to
ensure the stability of your code.

Workshop

Q C++ is giving me the option of declaring unsigned integers that are supposed
to contain only positive integer values and zero. What happens if I decrement
a zero value contained in an unsigned int?

A You see a wrapping effect. Decrementing an unsigned integer that contains 0 by
1 means that it wraps to the highest value it can hold! Check Table 3.1—you see
that an unsigned short can contain values from 0 to 65,535. So, declare an
unsigned short and decrement it to see the unexpected:

unsigned short myShortInt = 0; // Initial Value
myShortInt = myShortInt - 1; // Decrement by 1
std::cout << myShortInt << std::endl; // Output: 65535!

Note that this is not a problem with the unsigned short, rather with your usage
of the same. An unsigned integer (or short or long) is not to be used when nega-
tive values are within the specifications. If the contents of myShortInt are to be
used to dynamically allocate those many number of bytes, a little bug that allows
a zero value to be decremented would result in 64KB being allocated! Worse,

if myShortInt were to be used as an index in accessing a location of memory,
chances are high that your application would access an external location and
would crash!

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix E, and be certain that you understand the answers before continuing to the
next lesson.

Quiz

. What is the difference between a signed and an unsigned integer?

[N

. Why should you not use #define to declare a constant?

. Why would you initialize a variable?

~ WD

. Consider the enum below. What is the value of Queen?

enum YourCards {Ace, Jack, Queen, King};

5. What is wrong with this variable name?

int Integer = 0;

61

62 LESSON 3: Using Variables, Declaring Constants

Exercises

1. Modify enum YourCards in quiz question 4 to demonstrate that the value of
Queen can be 45.

2. Write a program that demonstrates that the size of an unsigned integer and a normal
integer are the same, and that both are smaller in size than a long integer.

3. Write a program to calculate the area and circumference of a circle where the
radius is fed by the user.

4. In Exercise 3, if the area and circumference were to be stored in integers, how
would the output be any different?

5. BUGBUSTERS: What is wrong in the following initialization:

auto Integer;

Index

Symbols

+ (addition) operator, 88-89,
347-349

+= (addition assignment)
operator, 442-443

<> (angle brackets), 19

= (assignment) operator, 87,
357-360

\ (backslash), 76-78, 86

& (bitwise AND) operator,
100-102, 624

>> (bitwise right shift) operator,
102-104

~ (bitwise NOT) operator,
100-102

| (bitwise OR) operator,
100-102, 624

A (bitwise XOR) operator,
100-102, 624

{ } (braces), 48, 87

: (colon), 10, 232

// comment syntax, 23, 28
/* */ comment syntax, 23, 28

?: (conditional) operator,
126-127

-- (decrement) operator, 89,
190-193, 338-341

* (dereferencing) operator,
183-185, 344-345, 635,
639

. (dot) operator, 218-219
/ (division) operator, 88-89
... (ellipses), 415

== (equality) operator, 92, 352
>> (extraction) operator, 27,
624, 649, 663-664

> (greater than) operator,
92-94, 354-357

>= (greater than or equal to)
operator, 354-357

= (inequality) operator,
92, 352

++ (increment) operator, 89,
191-193, 338-341, 26, 624,
649, 662, 624

< (less than) operator, 92-94,
354-357

<= (less than or equal to)
operator, 92-94, 354-357

&& (logical AND) operator,
95-100

|| (logical OR) operatot,
95-100

! (logical NOT) operator,
95-100

-> (member selection) operator,

219-220, 344-345, 635,
639

% (modulo) operator, 88-89

* (multiplication) operator,
88-89

() (parentheses), 364-365,
398-399

& (referencing) operator,
179-180
>>= (right shift) operator, 624

[] (subscript) operator,
197-198, 360-364, 462,
555

764

~ (tilde)

~ (tilde), 234
""s operator, 451-452

:: (scope resolution) operator,
225

; (semicolon), 12, 86, 216
' (single quotation mark), 45

- (subtraction) operator, 88-89,
347-349

Ox prefix, 704

\O string-terminating character,
76-78, 82

A

abstract base classes,
318-320, 332

access-specifier, 274
adapters, container, 425

adaptive containers. See
queues; stacks

adaptive function objects, 538

addition assignment (+=)
operator, 442-443

addition operator (+), 88-89,
347-349

addresses of variables
determining, 179-180
storing in pointers, 180-182

adjacent_find(), 571

advantages of C++, 6

aggregate initialization,
263-266

aggregation, 296

algorithms. See also
containers; specific
algorithms (for example,
for_each())

defined, 570, 618
do’s and don’ts, 599
explained, 426

interaction with containers,
427-429

mutating algorithms, 571-573

non-mutating algorithms,
570-571

transformations, 585-588

allocation of memory. See
dynamic memory allocation

American Standard Code for
Information Interchange
(ASCII) codes, 41, 711-715

AND operator

bitwise AND (&), 100-102,
624

logical AND (&&), 95-100
angle brackets (<>), 19
app class, 661
app constant, 661
append(), 442-443
Area(), 152-153, 158-159
arguments
arrays of values, 165-166
default values, 157-159
defined, 19, 154
multiple parameters, 155-156
no parameters, 156157

passing by reference,
166-168, 208-209

arithmetic operators, 88-89,
347-349

array class, 699

array operator ([]), 197-198

arrays. See also string class
accessing data in, 67-68

compared to pointers,
195-198

defined, 64
do’s and don’ts, 71

dynamic arrays, 66, 74-76,
469-472

explained, 65
modifying data in, 69-71

multidimensional arrays,
71-73, 145-146

need for, 64—65

passing to functions, 165-166
size of, 8283

static arrays, 65-66

storing data in, 66—67

ASCIl (American Standard Code
for Information Interchange)
codes, 41, 711-715

assert() macro, 399-400

assignment operator (=),
87, 357-360. See also
compound assignment
operators

associative containers,
423-424

ate constant, 661

auto keyword, 12-13, 48-50,
171-172, 493

auto_ptr class, 640-643

automatic type deduction,
48-50, 171-172, 698-699

back(), 611
backslash (\), 76-78, 86
bad_alloc class, 679
bad_cast class, 679
base class methods
hiding, 286
initializing, 279-281
invoking, 283-286
overridden methods, 281-284
basic_string class, 450-451
begin(), 481-482
best practices, 693-694
bidirectional iterators, 426
binary constant, 661

binary files, reading/writing,
664-665

binary functions, 545-550
binary literals, 51

binary numeral system,
702-703, 705-706

binary operators
arithmetic operators, 347-349

compound assignment
operators, 350-352

copy assignment, 357-360
equality/inequality, 352

explained, 346

function (), 364-365

move assignment, 365-371
move constructor, 365-371
relational operators, 354-357
subscript ([]), 360-364

binary predicates, 363,
547-550

binary_search(), 573, 592-595
bits, 703
bitset class, 622-627, 706

bitwise operators, 100-104,
624

blocks, 87, 117-118
bool type, 40

Boolean variables, declaring,
40

Boost Thread Libraries,
645, 690

braces ({ }), 48, 87

break statement, 139-140
breakdown method, 705
buckets, 507

bugs, 8

bytes, 703

Cc

.c filename extension, 9
c_str(), 440
C++
advantages of, 6
evolution of, 7
history of, 6
new features, 12—13
revisions of, 12-13
C++17, 695-699
capture lists, 559-560
case, converting, 449-450
case sensitivity, 20, 398
casting
const_cast operator, 385-386
C-style casts, 379

conditional code compilation

do’s and don’ts, 388

dynamic_cast operator,
381-384

explained, 377
need for, 378
problems with, 386-387

reinterpret_cast operator,
384-385

static_cast operator, 380-381
upcasting, 380
catch keyword, 673-675
catching exceptions
all exceptions, 673-674
catch keyword, 673-675
example, 677-679
exceptions of type, 674-675

failed memory allocation,
202-204

try keyword, 673
cbegin(), 442
cerr class, 651

char buffer, writing to,
657-658

char type, 41

character variables, declaring,
41

chunking separators, 45

cin class, 26-28, 651,
656-660

Circumference(), 152-153

classes. See also constructors;
destructors; inheritance;
individual classes (for
example, fstream class)

accessing members of,
218-220

aggregate initialization,
263-266

aggregation, 296

compared to structs, 257-258
composition, 296

constexpr keyword, 266-267
declaring, 216-217

deep copying, 240-244
explained, 216

friend classes, 258-260
instantiating, 217-218

instantiation on stack,
prohibiting, 249-251

naming conventions, 219

non-copyable objects,
ensuring, 246

private keyword, 220-224
public keyword, 220-222
shallow copying, 237-240
singleton classes, 247-249
sizeof() on, 255-257
subclasses, 275
super classes, 275
unions, 260-266

clear(), 472, 483

Clone(), 638

CodeGuru, 699

CodeProject, 699

collections, inserting elements
into, 597-599

collisions, 529
colon (:), 10
comments, 18, 23, 28

compilation, 8. See also
preprocessor directives

compilers, 10-12, 13,
709-710

compile-time checks,
417-418

compile-time errors, 14

conditional code compilation,
697-698

example, 10-12

operator precedence, 709-710
compiled languages, 13
complexity, 424
composition, 296

compound assignment
operators, 104-106, 350-352

compound statements, 87,
117-118

concatenation, 79-81, 442-443

conditional code compilation,
697-698

765

766

conditional operator (?:)

conditional operator (?:),
126-127

conditional programming

conditional operator (?:),
126-127

if statement, 114-122
loops. See loops

switch-case statement,
122-125

const keyword, 52-53,
193-194, 208, 363

const_cast operator, 385-386
in constant, 661
constant complexity, 424
constant expressions, 53-55
constants. See also variables
constant expressions, 53-55
declared constants, 52-53
defined, 50-51
defining, 57, 59-60, 392-394
enumerators, 55-57

literal constants, 51-52,
371-372

naming conventions, 58-59

constexpr keyword, 53-55,
233, 266-267

construction, order of, 288
constructors

automatic type deduction,
698-699

classes without default
constructors, 228-230

converting constructors,
251-253

copy constructors, 233-244
declaring, 224-225

default constructors, 228-230
default values, 230-231
initialization lists, 231-233
move constructors, 244-245
order of construction, 288
overloading, 227-228

uses for, 246-253

virtual copy constructors,
328-331

when to use, 225-226

containers

associative containers,
423-424

choosing, 429-431
container adapters, 425
defined, 422

elements

copy and remove
operations, 588-590

counting, 576-577
finding, 573-575
initializing, 580-583

inserting into collections,
597-599

partitioning, 595-597
processing, 583-585
replacing, 590-592
searching for, 577-579
sorting, 592-595

interaction with algorithms,
427-429

queues, 604-618

sequential containers,
422-423

stacks, 604—608
continue statement, 139-140
conventional pointers, 634
conversion operators, 341-343

converting constructors,
251-253

copy(), 572, 588-590

copy assignment operator,
357-360

copy constructors, 233-244
copy elision, 696
Copy on Write (COW), 639

copy_backward(), 572,
588-590, 600

copy._if(), 588-590

count(), 500, 570, 576-577,
625

count_if(), 570, 576-577

cout class, 651, 653-656, 706
cout statement, 20

COW (Copy on Write), 639

.cpp filename extension, 8
cppreference.com, 699
CPUs, multicore, 688-689

custom sort predicates,
525-528

CustomException class,
680-682

dangling pointers, 200-201
deadlock, 692
debugging, 8

decimal numeral system, 702,
705-706,

decrement operator (--), 89,
191-193, 338-341

deepcopy_smart_ptr class,
637-639

deep-copy-based smart
pointers, 637-639

default constructors, 228-230

default template parameters,
407-408

default values, function
parameters with, 157-159

#define directive, 57

defining constants with,
392-394

writing macro functions with,
396-398

definitions (function), 154
delete operator, 187-190
DemoConsoleOutput(), 24-26
deque class, 422, 469-472,

dereference operator (*),
344-345

dereferencing operator (*),
183-185, 635, 639

derivation, 272-276
DerivedFunction(), 380
destruction, order of, 288-290

destructive copy smart
pointers, 640-643

destructors, 635
declaring, 233-234
order of destruction, 288-290
private destructors, 249-251
virtual destructors, 310-314
when to use, 234-237

directives. See preprocessor
directives

display number formats,
changing, 653-655

DisplayArray(), 165-166
DisplayComparison(), 405
DisplayContents(), 500

DisplayElementKeepCount(),
541-543

DisplayTuplelnfo(), 416-417
DisplayVector(), 467
division operator (/), 88-89
do...while loop, 132-133
documentation, 699

dot operator (.), 218-219
double type, 45

dynamic arrays. See also
vector class

declaring, 74-76

defined, 66

deque class, 469472
dynamic memory allocation

delete operator, 187-190

explained, 187

failed memory allocation,
202-204

new operator, 187-190
dynamic_cast operator, 381-384

Eclipse IDE, 8

ellipses (...), 415

empty(), 472, 611, 615
empty return values, 156-157
end(), 481-482

#endif directive, 395-396

endl manipulator, 652

ends manipulator, 652
enumerations, 55-57
enumerators, 55-57

equal(), 571

equality operator (==), 92, 352

erase(), 445-447, 482-483,
502-506, 522-524

errors. See also exceptions
compiler errors, 12
compile-time errors, 14
debugging, 8
fence-post errors, 70

narrowing conversion errors,
48

overflow errors, 43-44

runtime errors, 14
evolution of C++7
exception class, 679-680
exceptions. See also errors

catching, 673-679

causes of, 672

custom classes, 680-682

defined, 671

do’s and don’ts, 682

std::exception class, 679-680

throwing, 676-679, 683
exclusive OR operator, 95-96
executables, generating, 7-8
explicit keyword, 252-253
explicit type declaration, 493

expressions. See also lambda
expressions

constant, 53-55
validating, 399-400

extraction operator (>>), 27,
624, 649, 663-664

F

failed memory allocation,
202-204

false value, 94

function objects 767

fence-post errors, 70

Fibonacci number calculation,
145-146

Fibonacci numbers, calculating,
159-161

field width, setting, 655-656
filename extensions, 8, 9
fill(), 571, 580

fill_n(), 571, 580

final specifier, 300, 327, 708

find(), 426, 444-445,
500-502, 519-522, 571,
573-575

find_end(), 571
find_first_of(), 571

find_if(), 426, 558, 571,
573-575

fixed manipulator, 652
fixed-width integer types, 47
flip(), 625, 628-629

float type, 45

floating-point variables, 45

flow control. See program flow,
controlling

for_each(), 554, 555-556, 572,
583-585

forward iterators, 425-426
forward slash (/), 88-89

forward_list class, 422,
490-492

friend classes, 258-260
front(), 611
fstream class, 651

opening/closing files,
660-661

reading binary files, 664—665
reading text files, 663—-664

writing to binary files,
664-665

writing to text files, 662—-663
FuncDisplayElement(), 538-541
function objects

binary functions, 545-550,
562-563

defined, 528

768

function objects

explained, 538

unary functions, 538-545,
555-557

function operator, 364-365
function prototypes, 153-154
<functional>615

functions. See also arguments;
function objects; macros;
virtual functions; specific
functions (for example,
count())

automatic return type
deduction, 171-172

definitions, 154
explained, 23-26
inline functions, 169-171

microprocessor-level
implementation of, 168—-169

multiple return statements,
161

need for, 152-153
overloading, 163-164

overridden functions,
preventing, 327

passing pointers to, 194-195

pointers, storing addresses in,
180-182

prototypes, 153-154
template functions, 403—405
functors. See function objects

g++ compiler, 8, 10-11
generate(), 571, 581-583
generate_n(), 581-583
get(), 668
GetFibNumber(), 159-161
Getlnstance(), 249
getline(), 28, 659-660, 668
GetMax(), 403-405
GetPi(), 53-54, 169-171
GHz (gigahertz), 688
gigabytes, 704

global variables, 37-38, 60
goto loop, 128-130

greater than (>) operator,
92-94, 354-357

greater than or equal to (>=)
operator, 354-357

grouped if...else constructs,
121-122

handling exceptions. See
exceptions

hash sets, 507-509
hash tables, 528-533
HashFunction(), 529

header files, inclusion guards
in, 419

Hello World program, 9-11, 18
hex manipulator, 652

hexadecimal numbering
system, 178, 704-705,
706-706

history of C++6

HoldsPair template, 408-409
Hungarian notation, 38-39
Hz (hertz), 688

IDEs (Integrated Development
Environments), 8-9, 38-39

if statement, 114-122,
695-696

#ifndef directive, 395-396
Ifstream class, 651

implicit conversions, 343
#include directive, 18-19, 28

inclusion guards, 395-396,
419

increment operator (++), 89,
191-193, 338-341

inequality (!=) operator, 92,
352

infinite loops, 141-143

inheritance
avoiding with final, 300
base class methods, 279-286
do’s and don’ts, 301
multiple inheritance, 297-300
order of construction, 288
order of destruction, 288-290
private inheritance, 291
protected, 276-279

protected inheritance,
293-296

public, 273-274

slicing, 297
initialization lists, 231-233
initializer statement, 695-696
inline functions, 169-171
inline keyword, 169-171
input iterators, 425

input/output, 26-28. See also
streams

insert(), 459-462, 479-482,
499, 608

insertion operator (<<), 26,
624, 649, 662

int keyword, 19-20
int type, 42
int8_t type, 47
int16_t type, 47
int32_t type, 47
int64_t type, 47
integers, 60
fixed-width, 47
signed, 41-42
unsigned, 61

Integrated Development
Environments (IDEs), 8-9,
38-39

International Organization for
Standardization (I1SO), 6, 11

interpreted languages, 13

intrusive reference counting,
639

invalid memory locations, 199
<iomanip> manipulators, 652

iostream file, 18

ISO (International Organization
for Standardization), 6, 11

iterative statements. See loops

iterators, 425-426, 429,
534-535, 630

J-K-L

keywords, list of, 58-59,
707-708. See also individual
keywords (for example, auto)

kilobytes, 704-704
lambda expressions
for binary functions, 562-563

for binary predicates,
564-566

in C++17, 698

do’s and don’ts, 566

explained, 12-13, 172-174,
554-555

local variables in, 567

state maintenance, 559-560,
567

syntax, 560-562
for unary functions, 555-557
for unary predicates, 557-558

leaks, memory, 188, 198-204

left shift operator (<<),
102-104

length of strings, determining,
79-81

less, 522-524

less than (<) operator, 92-94,
354-357

less than or equal to (<=)
operator, 92-94, 354-357

lexicographical_compare(), 571
line breaks, 12
linear complexity, 424
lists, 422
capture lists, 559-560
do’s and don’ts, 492

erasing elements from,
482-483

initialization, 48, 459
initialization lists, 231-233

inserting elements into,
478-482

instantiating, 476477

removing elements from,
487-490

reversing elements in,
484-485

sorting elements in, 485-486

literal constants, 51-52,

371-372

load_factor(), 509, 530
local variables in lambda

expressions, 567

logarithmic complexity, 424
logical AND (&&) operator,

95-100

logical NOT (!) operator,

95-100

logical OR (]| |) operator,

95-100

logical XOR operator, 95-96
long long type, 42

long type, 42

for loop, 133-139
loops

access arrays with, 71
do...while, 132-133
exiting, 139-140

for, 133-139

goto, 128-130
infinite, 141-143
nested, 143-148

resuming execution of,
139-140

while, 130-132

lower_bound(), 573, 597-599
lowercase, converting strings

to, 449-450

l-values, 87-88

memory

macros

advantages/disadvantages,
400-401

assert(), 399-400

case sensitivity, 398
compared to templates, 419
do’s and don’ts, 401
inclusion guards in, 395-396
parentheses in, 398-399

protecting against multiple
inclusion with, 395-396

tuples, 415417

writing, 396-398
main(), 19-20
manipulators, stream, 651-652
map class, 423

custom sort predicates,
525-528

erasing elements from,
522-524

explained, 514
finding elements in, 519-521

inserting elements into,
517-519

instantiating, 515-516
max_bucket_count(), 509
max_load_factor(), 509
megabytes, 704
megahertz (Mhz), 688

member selection operator (->),
344-345, 635, 639

memory. See also pointers

accessing with variables. See
variables

dynamic memory allocation,
187-190, 202-204

I-values, 87-88
memory leaks, 188, 198-204

RAM (Random Access
Memory), 32

raw pointers, 634
r-values, 87-88

769

memory

stack, 169

variable addresses,
determining, 179-180

memory leaks, 188, 198-204
methods. See functions
Mhz (megahertz), 688

Microsoft Visual Studio
Express, 8

MIN macro, 397, 400-401
mismatch(), 571
modulo operator (%), 88-89

move assignment operator,
365-371

move constructor operator,
365-371

move constructors, 244-245
multicore processors, 688-689

multidimensional arrays,
71-74,145-146

multimap class, 423

custom sort predicates,
525-528

erasing elements from,
522-524

finding elements in, 522

inserting elements into,
517-519

instantiating, 515-516

multiple inclusion, protecting
against, 395-396

multiple inheritance, 297-300

multiplication operator (*),
88-89

MultiplyNumbers(), 35-36
multiset class, 423, 496-510
do’s and don’ts, 510
erasing elements in, 502-506
explained, 496
finding elements in, 500-502

inserting elements into,
499-500

instantiating, 497-498

pros and cons of, 507
multithreading, 690-693
mutating algorithms, 571-573
mutex class, 692

[N] operator, 624
namespaces, 21-22
naming conventions

classes, 219

constants, 58-59

variables, 34, 38-39, 58-59
narrowing conversion errors, 48
nested if statements, 118-122
nested loops, 143-148
.NET, 6

new operator, 187-190,
202-204

new(nothrow) operator, 204,
210

non-copyable objects, ensuring,
246

non-mutating algorithms,
570-571

NOT operator
bitwise NOT (~), 100-102
logical NOT (!), 95-100
null terminator, 76-78, 82

numeric codes (ASCII), 41,
711-715

o

.0 filename extension, 8
.obj filename extension, 8
objects, creating, 217-218
oct manipulator, 652

octal numeral system, 705
OFF state, 702

ofstream class, 651

online communities, 699
online documentation, 699
open(), 660, 662-664
operator keyword, 336

operators. See also binary
operators; casting;
overloaded operators; unary
operators

declaring, 336
do’s and don’ts, 374
explained, 336-337

precedence of, 108-109,
709-710

prefix versus postfix, 90-91
order of construction, 288
order of destruction, 288-290
OR operator

bitwise OR (I), 100-102, 624

logical OR (ll), 95-100
out constant, 661

output, 26-28. See also
streams

output iterators, 425
overflow errors, 43-44

overloaded constructors,
227-228

overloaded functions, 163-164

overloaded operators, 635
copy assignment, 357-360
equality/inequality, 352

operators that cannot be
overloaded, 373

relational operators, 354-357

overridden functions, 281-284,
327

override specifier, 326-327,
708

P

partial_sort(), 572
partial_sort_copy(), 573
partition(), 573, 595-597

POD (Plain Old Data), 45,
656-657

pointer operator (->), 219-220,
344-345

pointers. See also smart
pointers

accessing data in, 183-185
compared to arrays, 195-198
const keyword, 193-194

declaring, 178-179, 180

decrement operator (--),
191-193

defined, 178
do’s and don’ts, 205

dynamic memory allocation,
187-190

increment operator (++),
191-193

passing to functions, 194—195
raw pointers, 634

sizeof(), 185-186

this, 254

polymorphism. See also virtual
functions

abstract base classes,
318-320, 332

defined, 306
do’s and don’ts, 331
need for, 306-308

pop(), 607-608, 611-613,
616-618

pop operations, 169

pop_back(), 465-466,
470-472

pop_front(), 470-472
postfix operators, 90-91

precedence of operators,
108-109

predicates, 363
binary predicates, 547-550

custom sort predicates,
522-524

unary predicates, 543-545,
557-558

prefix, 21-22

prefix operators, 90-91

preprocessor, 392

preprocessor directives
#define, 57, 392-398
defined, 18
#endif, 395-396
explained, 392
#ifndef, 395-396
#include, 18-19

printable characters (ASCII),
41, 711-715

priority_queue class, 425,
613-618

private destructors, 249-251
private inheritance, 291

private keyword, 220-224, 291
processors, multicore, 688-689

program flow, controlling. See
also loops

conditional operator (?:),
126-127

if statement, 114-122

switch-case statement,
122-125

programs
building, 10-11
compiling, 8, 10-12
executables, 7-8
executing, 10-11
structure of, 18-28

protected inheritance,
276-279, 293-296

protected keyword, 276-279,
293

prototypes (function), 153-154
public inheritance, 273-274

public keyword, 220-222,
273-274,527

pure virtual functions, 318-320

push(), 607-608, 611-613,
616-618

push operations, 169

push_back(), 76, 458, 470-
472, 478-479, 608, 629

push_front(), 470-472,
478-479

QR

queues
explained, 425, 604-605
operators, 628-629
priority_queue class, 613-618
queue class, 425, 609-613

return values

race conditions, 692

RAM (Random Access
Memory), 32

random access iterators, 426

range-based for loops,
137-139

raw pointers, 634
read(), 664-665
recursion, 159-161
references
const keyword, 208
explained, 205-206

intrusive reference counting,
639

need for, 206-208

passing by reference,
166-168, 208-209

reference-counted smart
pointers, 639-640

reference-linked smart
pointers, 640

referencing operator (&),
179-180

refinements, 426

reinterpret_cast operator,
384-385

relational operators, 92-94,
354-357

remove(), 572, 590
remove_copy(), 572

remove_if(), 426, 550, 572,
590

replace(), 572, 590-592
replace_if(), 572, 590-592
reserve(), 473

reserved words. See keywords,
list of

reset(), 625
resetioflags(), 653-654
resetiosflag manipulator, 652

resuming loop execution,
139-140

return statements, multiple,
161

return values, 20

771

772

reverse()

reverse(), 448-449, 484-485
reverse algorithm, 426

right shift operator (>>),
102-104

RTTI (runtime type
identification), 318, 382

runtime errors, 14
r-values, 87-88

S

safety (type), templates and,
405

scientific manipulator, 652
scope of variables, 35-36

scope resolution (::) operator,
225

search(), 570, 577-579
search_n(), 570, 577-579
semaphores, 692
separators, chunking, 45

sequential containers,
422-423

set(), 625

set class
do’s and don’ts, 510
erasing elements in, 502-506
explained, 423, 496-510
finding elements in, 500-502

inserting elements into,
499-500

instantiating, 497-498
pros and cons of, 507
setbase manipulator, 652
setfill(), 652, 655-656
setiosflags(), 652, 653-654
setprecision(), 652
setw(), 652, 655-656
shallow copying, 237-240
shared_ptr class, 645
shift operators, 102-104
short type, 42
signed integers, 41-42

single quotation mark ('), 45
singleton classes, 247-249
size(), 611, 615, 625

sizeof(), 46-47, 106-107,
185-186, 255-257

slicing, 297, 637-638

smart pointers
advantages of, 634-635
auto_ptr, 640-643
COW (Copy on Write), 639
deep copy, 637-639
defined, 344, 634
destructive copy, 640-643
implementing, 635-636
libraries, 645
reference-counted, 639-640
reference-linked, 640
shared_ptr, 645
slicing issues, 637-638
unique_ptr, 643-645
weak_ptr, 645

sort(), 485-486, 547-550,
564-566, 572, 592-595,
600

specialization (templates),
410-411

SQUARE macro, 396-397

stable_partition(), 573, 595-
597

stable_sort(), 572, 595
StackOverflow, 699
stacks, 169, 604

inserting and removing
elements in, 607-608

instantiating, 605-606
member functions, 606-607

prohibiting instantiation on,
249-251

stack class, 425, 605-608
ON state, 702
statements. See also loops
blocks, 87, 117-118
break, 139-140
continue, 139-140

cout, 20
explained, 86
if, 114-122
initializer, 695-696
return, 161
switch, 695-696
switch-case, 122-125
static arrays, 65-66
static keyword, 247-248
static members, 412-413
static_assert, 417-418
static_cast operator, 380-381
std namespace, 21-22
stray pointers, 200-201
strcat(), 79
strepy(), 79
streams
cin class, 656-660
classes, 651
cout class, 653-656
explained, 649-650
extraction operator (>>), 649
fstream class, 660—665
insertion operator (<<), 649
manipulators, 651-652
stringstream class, 665-668
string class, 79-81, 432
“’’s operator in, 451-452
accessing, 440-442
concatenating, 442443
converting case of, 449—450
finding characters in, 444445
instantiating, 437-440
need for, 436437

reversing contents of,
448-449

template-based
implementation, 450451

truncating, 445-447

writing to, 658-660
string literals, 20
string_view class, 452, 696

stringstream class, 651,
665-668

strlen(), 79
Stroustroup, Bjarne, 6
structs, 257-258
subclasses, 275

subscript ([]) operator,
360-364

subscript operator ([]), 462
substrings, finding, 444-445

subtraction operator (-), 88-89,
347-349

subtype polymorphism. See
polymorphism

super classes, 275
SurfaceArea(), 155-156

switch statement, 695-696
switch-case statement, 122-125

synchronization, thread, 691,
692

T

tables
hash tables, 528-533

virtual function table,
314-318

template keyword, 397
template<auto>699
templates

compared to macros, 419

compile-time checks,
417-418

terabytes, 704

text files
closing, 660-661
opening, 660-661
reading, 663-664
writing to, 662-663

this pointer, 254

threads, 689-693

throw keyword, 676-677

throwing exceptions, 676-679,

683
tilde (~), 100-102
top(), 615

transform(), 426, 449-450,
545-547, 562-563, 572,
585-588

transformations, 585-588
true value, 94

trunc constant, 661

try keyword, 673

tuple class, 415-417
TwicePi(), 53-54

typedef keyword, 50
types

automatic type deduction,
48-50, 698-699

bool, 40

casting, 377-388
char, 41

conversion, 251-253
double, 45

exceptions of type, handling,

674-675

declaring, 402-408

do’s and don’ts, 418

explained, 402

HoldsPair example, 408—409

instantiating, 410411

programming applications
of, 418

specialization, 410411

static members, 412413

template classes, 406407

variable templates, 413-417

explicit type declaration, 493
fixed-width integer types, 47
float, 45

int, 42

iterator type definitions, 429
long, 42

long long, 42

overflow errors, 43-44

RTTI (runtime type
identification), 382

short, 42

unordered_set class

table of, 3940

type safety, templates and,
405

type substitution, 50
unsigned int, 42-43
unsigned long, 4243
unsigned long long, 42—43
unsigned short, 42-43

uint8_t type, 47

uint16_t type, 47
uint32_t type, 47
uint64_t type, 47

unary functions, 538-545
unary operators

conversion operators,
341-343

dereference, 344-345
explained, 337-338

increment/decrement, 89,
338-341

logical operators, 95-100
member selection, 344-345

unary predicates, 363,

543-545, 557-558

unions

aggregate initialization,
263-266

declaring, 260-263
typesafe alternative to, 697
when to use, 261-263
unique(), 572

unique_copy(), 572
unique_ptr class, 643-645

unordered_map class, 423,
528-533

unordered_multimap class,
423, 528-533

unordered_multiset class, 423,
507-509

unordered_set class, 423,
507-509

773

774 unsigned int type

unsigned int type, 42-43
unsigned integers, 42-43, 61
unsigned long long type, 42-43
unsigned long type, 42-43
unsigned short type, 42-43
upcasting, 380

upper_bound(), 573, 597-599

uppercase, converting strings
to, 449-450

User Interface Threads, 690

user-defined literals, 52,
371-372

using keyword, 21-22

'/

values
default values, 157-159
passing to functions
arrays of values, 165-166
by reference, 166-168
variable templates, 413-417

variables. See also constants;
types

addresses
determining, 179-180

storing in pointers,
180-182

declaring

automatic type inference,
48-50

Boolean variables, 40
character variables, 41

floating-point variables,
45

multiple variables, 34
overflow errors, 43—44
signed integers, 42
single variables, 32-34
unsigned integers, 4243

global variables, 37-38, 60

initializing, 60

integers, 60

list initialization, 48

local variables, 567

naming conventions, 38-39,
58-59

narrowing conversion errors,
48

scope, 35-36

size of, 4647
variadic templates, 413-417
variant class, 263, 697
vector class, 74-76, 422

accessing elements in,
462-465

characteristics of, 455-456
do’s and don’ts, 472
initialization, 459

inserting elements into,
458-462

instantiating, 456457

removing elements from,
465-466

size and capacity of, 467-469
vector<bool>

accessing with iterators, 630

explained, 627

functions, 628-629

instantiating, 627-628

specifying number of
elements in, 630

virtual copy constructors,
328-331

virtual destructors, 310-314
virtual function table, 314-318
virtual functions

abstract base classes, 318-320

declaring, 308-310

do’s and don’ts, 331

final specifier, 327

inheritance, 321-325

override specifier, 326-327

pure virtual functions,
318-320

virtual function table,
314-318

virtual inheritance, 321-325

virtual keyword, 318, 324-325,
332

W-X-Y-Z

warning messages, 13
weak_ptr class, 645
while loop, 130-132
wild pointers, 200-201
Worker Threads, 690
write(), 664-665
wstring class, 432, 450-451
XOR operator
bitwise XOR, 100-102, 624
logical XOR, 95-96

	Cover
	Title Page
	Copyright Page
	Acknowledgments
	About the Author
	Contents
	Introduction
	PART I: The Basics
	LESSON 3: Using Variables, Declaring Constants
	What Is a Variable?
	Memory and Addressing in Brief
	Declaring Variables to Access and Use Memory
	Declaring and Initializing Multiple Variables of a Type
	Understanding the Scope of a Variable
	Global Variables
	Naming Conventions

	Common Compiler-Supported C++ Variable Types
	Using Type bool to Store Boolean Values
	Using Type char to Store Character Values
	The Concept of Signed and Unsigned Integers
	Signed Integer Types short, int, long, and long long
	Unsigned Integer Types unsigned short, unsigned int, unsigned long, and unsigned long long
	Avoid Overflow Errors by Selecting Correct Data Types
	Floating-Point Types float and double

	Determining the Size of a Variable Using sizeof
	Avoid Narrowing Conversion Errors by Using List Initialization

	Automatic Type Inference Using auto
	Using typedef to Substitute a Variable’s Type
	What Is a Constant?
	Literal Constants
	Declaring Variables as Constants Using const
	Constant Expressions Using constexpr
	Enumerations
	Defining Constants Using #define

	Keywords You Cannot Use as Variable or Constant Names

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

