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Like a lot of people, I slogged through my first 
undergraduate classes in inferential statistics. I’m 
not talking here about the truly basic, everyday stats 
like averages, medians, and ranges. I’m talking about 
things you don’t commonly run into outside the 
classroom, like randomized block designs and the 
analysis of variance.

I hated it. I didn’t understand it. Assistant professors 
and textbooks inflicted formulas on us, formulas that 
made little sense. We were supposed to pump data 
through the formulas, but the results had  mysterious 
names like “mean square within.” All too often, the 
formulas appeared to bear no relationship to the 
concept they were supposed to quantify. Quite a bit 
later I came to understand that those formulas were 
“calculation formulas,” meant to be quicker to apply, 
and less error-prone, than the more intuitively useful 
definitional formulas.

Eventually I came to understand why the analysis 
of variance, or ANOVA, is used to evaluate the 
differences between means—as counterintuitive as 
that sounded—but all those sums of squares between 
and sums of squares within and degrees of freedom 
just did not make sense. I knew that I had to 
calculate them to satisfy a requirement, and I knew 
how to do so, but I did not understand why.

Eventually I came across a book on regression 
analysis. Another student recommended it to me—it 
had clarified many of the issues that had confused 
him and that were still confusing me. The book, now 
long out of print, discussed the analysis of variance 
and covariance in terms of regression analysis. It 
resorted to computer analysis where that made 
sense. It stressed correlations and proportions of 
shared variance in its explanations. Although it also 
discussed sums of squares and mean squares, the 
book talked about them principally to help show the 
relationship between conventional Fisherian analysis 
and the regression approach.
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The concepts began to clarify for me and I realized that they had been there all the time, 
but they were hidden behind the arcane calculations of ANOVA. Those calculations were 
used, and taught, because they were developed during the early twentieth century, when 
twenty-first century computing power wasn’t merely hard to find, it just didn’t exist. It was 
much easier to compute sums of squares (particularly using calculation formulas) than it 
was to calculate the staples of regression analysis, such as multiple correlations and squared 
semipartials. You didn’t have to find the inverse of a matrix in traditional ANOVA, as was 
once necessary in regression. (Calculating by hand the inverse of any matrix larger than 
3 × 3 is a maddening experience.)

Today, all those capabilities exist in Excel worksheets, and they make the concepts behind 
the analysis of variance much more straightforward. Furthermore, the Excel worksheet 
application makes things much easier than was hinted at in that book I read. The book was 
written long before Excel first emerged from its early shrink-wrap, and I shake my head 
that once upon a time it was necessary to pick individual pieces from the inverse of a matrix 
and fool around with them to get a result. Today, you can get the same result in an Excel 
worksheet just by combining fixed and relative addressing properly.

We still rely heavily on the analysis of variance and covariance in various fields of research, 
from medical and pharmaceutical studies to financial analysis and econometrics, from 
agricultural experiments to operations research. Understanding the concepts is important 
in those fields—and I maintain that understanding comes a lot easier from viewing the 
problems through the prism of regression than through that of conventional ANOVA.

More important, I think, is that understanding the concepts that you routinely use in 
regression makes it much easier to understand even more advanced methods such as logistic 
regression and factor analysis. Those techniques expand your horizons beyond the  analysis 
of one-variable-at-a-time methods. They help you move into areas that involve latent, 
unobserved factors and multinomial dependent variables. The learning curve is much 
steeper in principal components analysis if you don’t already have the concept of shared 
variance in your hip pocket.

And that’s why I’ve written this book. I’ve had enough experience, first as a suit and then in 
my own consulting practice, with inferential statistics to know how powerful a tool it can be, 
if used correctly. I’ve also been using Excel to that end for more than 20 years. Some deride 
Excel as a numeric analysis application. I think they’re wrong. On the other hand, Microsoft’s 
history as Excel’s publisher is, well, checkered. Not long ago a colleague forwarded to me an 
email in which his correspondent wondered, a little plaintively, whether it was “safe” to use 
Excel’s statistical functions. At the time I was finishing this book up, and much of the book 
has to do with the use of Excel’s LINEST( ) worksheet function. Here’s what I wrote back:

The question of whether it’s “safe” to use Excel for statistical analysis is a messy one. 
Microsoft is at fault to some degree, and those who rant that it’s dangerous to use Excel 
for statistical analysis share that fault.

Since 1995, MS has done nothing to improve the Data Analysis add-in (aka the 
Analysis Toolpak) other than to convert it from the old V4 macro language to VBA. 

Introduction2



3Introduction

That’s a shame, because the add-in has plenty of problems that could easily be 
corrected. But the add-in is not Excel any more than the old Business Planner add-in is 
Excel. Nevertheless, I’ve seen plenty of papers published both privately and in refereed 
journals that rightly complain about the add-in’s statistical tools, and then lay the blame 
on the actual application.

There were, through either 2003 or 2007—I can’t now recall which—two principal 
problems with LINEST( ). One had to do with the way that the regression and residual 
sums of squares were calculated when LINEST( )’s third, const argument is set to 
FALSE. This was known as early as 1995, but MS didn’t fix it until much later.

Another was that LINEST( ) solved what are termed the “normal equations” using 
matrix algebra—long the preferred method in statistical apps. But on rare occasions it’s 
possible for multicollinearity (the presence of strong correlations among the predictor 
variables) to result in a matrix with a zero determinant. Such a matrix cannot be 
inverted, and that makes it impossible to return LINEST( )’s usual results. In 2003 or 
2007, MS fixed that by replacing it with something called QR decomposition.

But the multicollinearity problem caused LINEST( ) to return the #NUM! error value. 
No one could be led down an unsafe, dangerous path by that. And the problem with 
the third, const argument resulted in such things as a negative R-squared. Only someone 
utterly untutored in regression analysis could be misled by a negative R-squared. 
It cannot come about legitimately, so something must be wrong somewhere.

Finally, various bread-and-butter statistical functions in Excel have been improved 
to enhance their accuracy when they’re pointed at really extreme values. This is 
useful—more accuracy is always better than less accuracy. But it’s an instance of what 
Freud called the “narcissism of small differences.” If I’m a biostatistician and I’m 
called upon to make a decision based on a difference between 10^−16 and 10^−17, 
I’m going to replicate the experiment. The difference is too small, both substantively 
and technically, to use as the basis for an important decision—regardless of whether 
I’m using SAS, R, or Excel.

Which brings me to the Chicken Little alarmists who scare people with lengthy screeds 
regarding this stuff. Badmouthing sound statistical applications has a long, dishonorable 
history. When I was still in school, other students who had sweated blood to learn 
an application named BMD said that it was a bad idea to use a different application. 
They said the competing app wasn’t accurate, but their real motive was to prevent the 
erosion of their own hard-acquired expertise—more precisely, the perception of that 
expertise. (The new, competing application was SPSS.)

I spend some ink in the introduction to my book Statistical Analysis Excel 2013, and 
in its sixth chapter, on these and closely related matters. If it’s unsafe to use Excel for 
statistical analysis, the danger lies in the use of an accurate tool by someone who hasn’t 
a clue what he’s doing, either with inferential statistics or with Excel.

That’s my screed for 2016. I hope you enjoy this book as much as I enjoyed revisiting old 
friends.
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This is a book about regression analysis. 
Nevertheless, I’m going to start this chapter by 
 discussing different scales of measurement. When 
you use regression analysis, your predicted (or 
 outcome, or dependent) variable is nearly always 
 measured on an interval or ratio scale, one whose 
values are numeric quantities. Your predictor (or 
independent, or regressor) variables are also frequently 
measured on such numeric scales.

However, the predictor variables can also  represent 
nominal or category scales. Because functions 
such as Excel’s LINEST( ) do not respond directly 
to predictors with values such as STATIN and 
PLACEBO, or REPUBLICAN and DEMOCRAT, 
you need a system to convert those nominal values 
to numeric values that LINEST( ) can deal with.

The system you choose has major implications for 
the information you get back from the analysis. So 
I’ll be taking a closer look at some of the underlying 
issues that inform your choice.

It will also be helpful to cover some terminology 
issues early on. This book’s first six chapters have 
discussed the use of regression analysis to assess 
the relationships between variables measured on 
an interval or a ratio scale. There are a couple of 
 reasons for that:

 ■ Discussing interval variables only allows us 
to wait until now to introduce the slightly 
greater complexity of using regression to assess 
 differences between groups.

Using Regression to Test 
Differences Between 
Group Means 

I N  T H I S  C H A P T E R

Dummy Coding .......................................... 246

Effect Coding ............................................. 259

Orthogonal Coding ..................................... 267

Factorial Analysis ....................................... 272
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Coping with Unequal Cell Sizes ................... 288
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 ■ Most people who have heard of regression analysis at all have heard of it in connection 
with prediction and explanation: for example, predicting weight from known height. 
That sort of usage tends to imply interval or ratio variables as both the predicted 
 variable and the predictor variables.

With this chapter we move into the use of regression analysis to analyze the influence of 
nominal variables (such as make of car or type of medical treatment) on interval variables 
(such as gas mileage or levels of indicators in blood tests). That sort of assessment tends 
to focus on the effects of belonging to different groups upon variables that quantify the 
 outcome of group membership (gas mileage for different auto makes or cholesterol levels 
after different medical treatments).

We get back to the effects of interval variables in Chapter 8, “The Analysis of Covariance,” 
but in this chapter I’ll start referring to what earlier chapters called predicted variables as 
outcome variables, and what I have called predictor variables as factors. Lots of theorists and 
writers prefer terms other than outcome variable, because it implies a cause-and-effect 
 relationship, and inferring that sort of situation is a job for your experimental design, not 
your statistical analysis. But as long as that’s understood, I think we can get along with 
 outcome variable—at least, it’s less pretentious than some of its alternatives.

Dummy Coding
Perhaps the simplest approach to coding a nominal variable is termed dummy coding. I don’t 
mean the word “simplest” to suggest that the approach is underpowered or  simple-minded. 
For example, I prefer dummy coding in logistic regression, where it can clarify the 
 interpretation of the coefficients used in that method.

Dummy coding can also be useful in standard linear regression when you want to compare 
one or more treatment groups with a comparison or control group.

An Example with Dummy Coding
Figures 7.1 and 7.2 show how the data from a small experiment could be set up for analysis 
by an application that returns a traditional analysis of variance, or ANOVA. 

In ANOVA jargon, a variable whose values constitute the different conditions to which 
the subjects are exposed is called a factor. In this example, the factor is Treatment. The 
 different values that the Treatment factor can take on are called levels. Here, the levels are 
the three  treatments: Medication, Diet, and Placebo as a means of lowering amounts of an 
 undesirable component in the blood. 
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 Figure 7.1
The Data Analysis tool 
requires that the factor 
levels occupy different 
columns or different rows.

 Figure 7.2
If you choose Labels in 
First Row in the dialog 
box, the output associates 
the summary statistics 
with the label.

Excel’s Data Analysis add-in includes a tool named ANOVA: Single Factor. To operate 
 correctly, the data set must be arranged as in the range B2:C8 of Figure 7.2. (Or it may be 
turned 90 degrees, to have different factor levels in different rows and different  subjects 
in different columns.) With the data laid out as shown in the figure, you can run the 



7

248 Chapter 7              Using Regression to Test Differences Between Group Means

ANOVA: Single Factor tool and in short order get back the results shown in the range 
A12:H23. The Data Analysis tool helpfully provides descriptive statistics as shown in 
B14:F16.

Figure 7.3 has an example of how you might use dummy coding to set up an analysis of the 
same data set by means of regression analysis via dummy coding. 

When you use any sort of coding there are a couple of rules to follow. These are the rules 
that apply to dummy coding:

 ■ You need to reserve as many columns for new data as the factor has levels, minus 1. 
Notice that this is the same as the number of degrees of freedom for the factor. With 
three levels, as in the present example, that’s 3 − 1, or 2. It’s useful to term these 
 columns vectors.

 ■ Each vector represents one level of the factor. In Figure 7.3, Vector 1 represents 
Medication, so every subject who receives the medication gets a 1 on Vector 1, and 
everyone else receives a 0 on that vector. Similarly, every subject receives a 0 on 
Vector 2 except those who are treated by Diet—they get a 1 on Vector 2.

 ■ Subjects in one level, which is often a control group, receive a 0 on all vectors. 
In Figure 7.3, this is the case for those who take a placebo.

With the data laid out as shown in the range A2:D22 in Figure 7.3, array-enter this 
LINEST( ) function in a blank range five rows high and three columns wide, such as F2:H6 
in the figure:

=LINEST(A2:A22,C2:D22,,TRUE)

 Figure 7.3
One minor reason to 
prefer the regression 
approach is that you use 
standard Excel layouts for 
the data.
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Don’t forget to array-enter the formula with the keyboard combination Ctrl+Shift+Enter. 
The arguments are as follows:

 ■ The first argument, the range A2:A22, is the address that contains the outcome 
 variable. (Because the description of this study suggests that it’s a true, controlled 
experiment, it’s not misleading to refer to the levels of a given component in the blood 
as an outcome variable, thus implying cause and effect.)

 ■ The second argument, the range C2:D22, is the address that contains the vectors that 
indicate which level of the factor a subject belongs to. In other experimental contexts 
you might refer to these as predictor variables.

 ■ The third argument is omitted, as indicated by the consecutive commas with nothing 
between them. If this argument is TRUE or omitted, Excel is instructed to  calculate 
the regression equation’s constant normally. If the argument is FALSE, Excel is 
instructed to set the constant to 0.0.

 ■ The fourth argument, TRUE, instructs Excel to calculate and return the third through 
fifth rows of the results, which contain summary information, mostly about the 
 reliability of the regression equation.

In Figure 7.3 I have repeated the results of the traditional ANOVA from Figure 7.2, to 
make it easier to compare the results of the two analyses. Note these points:

 ■ The sum of squares regression and the sum of squares residual from the LINEST( ) 
results in cells F6 and G6 are identical to the sum of squares between groups and the 
sum of squares within groups returned by the Data Analysis add-in in cells G19 and G20.

 ■ The degrees of freedom for the residual in cell G5 is the same as the degrees of 
 freedom within groups in cell H20. Along with the sums of squares and knowledge of 
the number of factor levels, this enables you to calculate the mean square between and 
the mean square within if you want.

 ■ The F-ratio returned in cell F5 by LINEST( ) is identical to the F-ratio reported by 
the Data Analysis add-in in cell J19.

 ■ The constant (also termed the intercept) returned by LINEST( ) in cell H2 is identical 
to the mean of the group that’s assigned codes of 0 throughout the vectors. In this case 
that’s the Placebo group: Compare the value of the constant in cell H2 with the mean 
of the Placebo group in cell I14. (That the constant equals the group with codes of 0 
throughout is true of dummy coding, not effect or orthogonal coding, discussed later in 
this chapter.)

The regression coefficients in cells F2 and G2, like the t-tests in Chapter 6, express the 
 differences between group means. In the case of dummy coding, the difference is between 
the group assigned a code of 1 in a vector and the group assigned 0’s throughout.

For example, the difference between the means of the group that took a medication and the 
group that was treated by placebo is 7.14 − 14.75 (see cells I12 and I14). That difference 
equals −7.608, and it’s calculated in cell L12. That’s the regression coefficient for Vector 1, 
returned by LINEST( ) in cell G2. Vector 1 identifies the Medication group with a 1.
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Similarly, the difference between the mean of the group treated by diet and that treated by 
placebo is 6.68 − 14.75 (see cells I13 and I14). The difference equals −8.069, calculated in 
cell L13, which is also the regression coefficient for Vector 2.

 

It’s here that LINEST( )’s peculiarity in the order of the coefficients shows up again. Recall that if 
 predictor variables A, B, and C appear in that left-to-right order on the worksheet, they appear in the 
left-to-right order C, B, and then A in the LINEST( ) results.

So in Figure 7.3, the vector that represents the Medication treatment is in column C, and the  vector 
that represents Diet is to its right, in column D. However, LINEST( ) puts the regression coefficient 
for Medication in cell G2, and the regression coefficient for Diet to its left, in cell F2. The potential 
for  confusion is clear and it’s a good idea to label the columns in the LINEST( ) result to show which 
 variable each coefficient refers to.
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One bit of information that LINEST( ) does not provide you is statistical significance of 
the regression equation. In the context of ANOVA, where we’re evaluating the differences 
between group means, that test of statistical significance asks whether any of the mean 
 differences is large enough that the null hypothesis of no difference between the means in 
the population can be rejected. The F-ratio, in concert with the degrees of freedom for the 
regression and the residual, speaks to that question.

You can determine the probability of observing a given F-ratio if the null hypothesis is 
true by using Excel’s F.DIST.RT( ) function. In this case, you use it in this way (it’s also in 
cell K16):

=F.DIST.RT(F5,2,G5)

Notice that the value it returns, 0.007, is identical to that returned in cell K19 by the 
Data Analysis add-in’s ANOVA: Single Factor tool. If there is no difference, measured by 
group means, in the populations of patients who receive the medication, or whose diet was 
 controlled, or who took a placebo, then the chance of observing an F-ratio of 6.699 is 7 
in 1,000. It’s up to you whether that’s rare enough to reject the null hypothesis. It would 
be for most people, but a sample of 21 is a very small sample, and that tends to inhibit the 
generalizability of the findings—that is, how confidently you can generalize your observed 
outcome from 21 patients to your entire target population.

Populating the Vectors Automatically
So: What does all this buy you? Is there enough advantage to running your ANOVA using 
regression in general and LINEST( ) in particular that it justifies any extra work involved?

I think it does, and the decision isn’t close. First, what are the steps needed to prepare for 
the Data Analysis tool, and what steps to prepare a regression analysis?

To run the Data Analysis ANOVA: Single Factor tool, you have to arrange your data as 
shown in the range B1:D8 in Figure 7.2. That’s not a natural sort of arrangement of data 
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in either a true database or in Excel. A list or table structure of the sort shown in A1:D22 
of Figure 7.3 is much more typical, and as long as you provide columns C and D for the 
dummy 0/1 codes, it’s ready for you to point LINEST( ) at.

To prepare for a regression analysis, you do need to supply the 0s and 1s in the proper rows 
and the proper columns. This is not a matter of manually entering 0s and 1s one by one. 
Nor is it a matter of copying and pasting values or using Ctrl+Enter on a multiple selection. 
I believe that the fastest, and most accurate, way of populating the coded vectors is by way 
of Excel’s VLOOKUP( ) function. See Figure 7.4. 

To prepare the ground, enter a key such as the one in the range A2:C4 in Figure 7.4. That 
key should have as many columns and as many rows as the factor has levels. In this case, 
the factor has three levels (Medication, Diet, and Placebo), so the key has three columns, 
and there’s one row for each level. It’s helpful but not strictly necessary to provide column 
 headers, as is done in the range A1:C1 of Figure 7.4.

The first column—in this case, A2:A4—should contain the labels you use to identify the 
different levels of the factor. In this case those levels are shown for each subject in the range 
F2:F22.

You can save a little time by selecting the range cells in the key starting with its first row 
and its second column—so, B2:C4. Type 0, hold down the Ctrl key and press Enter. All the 
selected cells will now contain the value 0.

 Figure 7.4
Practice in the use of the 
VLOOKUP( ) function can 
save you considerable 
time in the long run.
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In the same row as a level’s label, enter a 1 in the column that will represent that level. So, 
in Figure 7.4, cell B2 gets a 1 because column B represents the Medication level, and cell 
C3 gets a 1 because column C represents the Diet level. There will be no 1 to represent 
Placebo because we’ll treat that as a control or comparison group, and so it gets a 0 in each 
column.

With the key established as in A2:C4 of Figure 7.4, select the first row of the first column 
where you want to establish your matrix of 0’s and 1’s. In Figure 7.4, that’s cell G2. Enter 
this formula:

=VLOOKUP($F2,$A$2:$C$4,2,0)

Where:

 ■ $F2 is the label that you want to represent with a 1 or a 0.

 ■ $A$2:$C$4 contains the key (Excel terms this a table lookup).

 ■ 2 identifies the column in the key that you want returned.

 ■ 0 specifies that an exact match for the label is required, and that the labels in the first 
column of the key are not necessarily sorted.

I’ve supplied dollar signs where needed in the formula so that it can be copied to other 
 columns and rows without disrupting the reference to the key’s address, and to the column 
in which the level labels are found.

Now copy and paste cell G2 into H2 (or use the cell’s selection handle to drag it one 
 column right). In cell H2, edit the formula so that VLOOKUP( )’s third argument has a 
3 instead of a 2—this directs Excel to look in the key’s third column for its value.

Finally, make a multiple selection of cells G2 and H2, and drag them down into G3:H22. 
This will populate columns G and H with the 0’s and 1’s that specify which factor level each 
record belongs to.

You can now obtain the full LINEST( ) analysis by selecting a range such as A6:C10, and 
array-entering this formula:

=LINEST(E2:E22,G2:H22,,TRUE)

By the way, you might find it more convenient to switch the contents of columns E and F 
in Figure 7.4. I placed the treatment labels in column F to ease the comparison of the 
labels with the dummy codes. If you swap columns E and F, you might find the LINEST( ) 
 formula easier to handle. You’ll also want to change the first VLOOKUP( ) formula from 
this:

=VLOOKUP($F2,$A$2:$C$4,2,0)

to this:

 =VLOOKUP($E2,$A$2:$C$4,2,0)
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The Dunnett Multiple Comparison Procedure
When you have completed a test of the differences between the means of three or more 
groups—whether by way of traditional ANOVA methods or a regression approach—you 
have learned the probability that any of the means in the population is different from any 
of the remaining means in the population. You have not learned which mean or means is 
 different from others.

Statisticians studied this issue and wrote an intimidatingly comprehensive literature on the 
topic during the middle years of the twentieth century. The procedures they developed 
came to be known as multiple comparisons. Depending on how you count them, the list 
of different procedures runs to roughly ten. The procedures differ from one another in 
 several ways, including the nature of the error involved (for example, per comparison or 
per  experiment), the reference distribution (for example, F, t, or q), planned beforehand 
(a priori) or after the fact (post hoc), and on other dimensions.

If you choose to use dummy coding in a regression analysis, in preference to another  
 coding method, it might well be because you want to compare all the groups but one to the 
remaining group. That approach is typical of an experiment in which you want to compare 
the results of two or more treatments to a control group. In the context of dummy coding, 
the control group is the one that receives 0’s throughout the vectors that represent group 
membership. One result of dummy coding, as you’ve seen, is that the regression coefficient 
for a particular group has a value that is identical to the difference between the group’s 
mean and the mean of the control group.

These procedures tend to be named for the statisticians who developed them, and one of 
them is called the Dunnett multiple comparison procedure. It makes a minor modification 
to the formula for the t-ratio. It also relies on modifications to the reference t-distribution. 
In exchange for those modifications, the Dunnett provides you with comparisons that have 
somewhat more statistical power than alternative procedures, given that you start your 
experiment intending to compare two or more treatments to a control.

As you’ll see, the calculation of the t-ratios is particularly easy when you have access to the 
LINEST( ) worksheet function. Access to the reference distribution for Dunnett’s t-ratio is 
a little more complicated. Excel offers you direct access to, for example, the t-distribution 
and the F-distribution by way of its T.DIST( ), T.INV( ), F.DIST( ), and F.INV( ) functions, 
and their derivatives due to the RT and 2T tags. But Excel does not have a DUNNETT( ) 
function that tells you the t-ratio that demarks the 95%, 99% or any other percent of the 
area beneath the distribution as it does for t and F.

 

You cannot legitimately calculate a t-ratio using Dunnett’s methods and then compare it to a standard 
t-distribution of the sort returned by T.DIST( ) and T.INV( ). Dunnett’s t-distribution has a different shape 
than the “standard” t-distribution.
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Although the values for Dunnett’s t are not directly available in Excel, they are available 
on various online sites. It’s easy enough to download and print the tables (they occupy 
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two printed pages). A search using the keywords “Dunnett,” “multiple comparison,” 
and “tables” will locate more sites than you want, but many of them show the necessary 
tables. The tables also appear as an appendix in most intermediate-level, general statistics 
 textbooks in print.

Let’s look at how you could conduct a Dunnett multiple comparison after running the Data 
Analysis ANOVA: Single Factor tool. See Figure 7.5. 

The data is laid out for the Data Analysis tool in A2:D7. The ANOVA: Single Factor tool 
in the Data Analysis add-in returns the results shown in the range A11:G24. You’ll need the 
group means, the Mean Square Error from the ANOVA table, and the group counts.

The first step is to calculate the denominator of the t-ratios. With equal group sizes, the 
same denominator is used for each t-ratio. The formula for the denominator is:

BMSE a 1
n1

+
1
n2
b

where MSE is the mean square error from the ANOVA table, shown in Figure 7.5 in 
cell D22. (Mean square error is simply another term for mean square within or mean square 
 residual.)

When, as here, the group sizes are equal, you can also use this arithmetically equivalent 
formula:

22MSE>n

 Figure 7.5
When the group sizes 
are equal, as here, all the 
comparisons’ t-ratios have 
the same denominator.
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The denominator for the t-ratios in this example is given in cell I2. It uses this formula:

=SQRT(D22∗(1/B13+1/B14))

where cell D22 contains the mean square error and cells B13 and B14 contain group 
counts. With all groups of the same size, it doesn’t matter which group counts you use in 
the formula. As suggested earlier, with equal group sizes the Excel formula could also be:

=SQRT((2∗D22)/B13)

The next step is to find the difference between the mean of each treatment group and the 
mean of the control group, and divide those differences by the denominator. The result is 
one or more t-ratios. For example, here’s the formula in cell I4 of Figure 7.5.

=(D14−D13)/I2

The formula divides the difference between the mean of the Med 1 group (D14) and the 
mean of the Control group (D13) by the denominator of the t-ratio (I2). The formulas in 
cells I5 and I6 follow that pattern:

I5: =(D15−D13)/I2

I6: =(D16−D13)/I2

At this point you look up the value in the Dunnett tables that corresponds to three criteria:

 ■ The Degrees of Freedom Within from the ANOVA table (in Figure 7.5, the value 16 
in cell C22) 

 ■ The total number of groups, including the control group

 ■ The value of alpha that you selected before seeing the data from your experiment

Most printed tables give you a choice of 0.05 and 0.01. That’s restrictive, of course, and it 
delights me that Excel offers exact probabilities for any probability level you might present 
it for various distributions including the chi-square, the binomial, the t and the F.

For the present data set, the printed Dunnett tables give a critical value of 2.23 for four 
groups and 16 Degrees of Freedom Within, at the 0.05 alpha level. They give 3.05 at the 
0.01 alpha level.

Because the t-ratio in cell I5, which contrasts Med 2 with Control, is the only one to 
exceed the critical value of 2.23, you could reject the null hypothesis of no difference in the 
 population means for those two groups at the .05 confidence level. You could not reject it at 
the 0.01 confidence level because the t-ratio does not exceed the 0.01 level of 3.05.

Compare all that with the results shown in Figure 7.6. 

Start by noticing that cells G2, H2, and I2, which contain the regression coefficients for 
Med 3 Vector, Med 2 Vector, and Med 1 Vector (in that order), express the differences 
between the means of the treatment groups and the control group.
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For example, the regression coefficient in cell H2 (27.8) is the difference between the 
Med 2 mean (175.8, in cell D15 of Figure 7.5) and the Control mean (148.0, in cell D13 of 
Figure 7.5). So right off the bat you’re relieved of the need to calculate those differences. 
(You can, however, find the mean of the control group in the regression equation’s constant, 
in cell J2.)

Now notice the standard errors of the regression coefficients, in cells G3, H3, and I3. They 
are all equal to 11.05, and in any equal-cell-size situation with dummy coding, the standard 
errors will all have the same value. That value is also the one calculated from the mean 
square error and the group sizes in Figure 7.5 (see that figure, cell I2).

So, all you need to do if you start the data analysis with LINEST( ) is to divide the 
 regression coefficients by their standard errors to get the t-ratios that correspond to the 
Dunnett procedure. Notice that the t-ratios in cells J8, J9, and J10 are identical to those 
calculated in Figure 7.5, cells I4, I5, and I6.

Now let’s have a look at a slightly more complicated situation, one in which you have 
 different numbers of subjects in your groups. See Figure 7.7. 

In Figure 7.7, the basic calculations are the same, but instead of using just one  denominator 
as was done in Figure 7.5 (because the groups all had the same number of subjects), we 
need three denominators because the group sizes are different. The three denominators 
appear in the range I4:I6, and use the version of the formula given earlier:

BMSE a 1
n1

+
1
n2
b

 Figure 7.6
Much less calculation is 
needed when you start by 
analyzing the data with 
regression.
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So, the formulas to return the t-ratio’s denominator are:

I4: =SQRT($D$22∗(1/B13+1/B14))

I5: =SQRT($D$22∗(1/B13+1/B15))

I6: =SQRT($D$22∗(1/B13+1/B16))

Notice that the only difference between the formulas is that they alter a reference from 
B14 to B15 to B16, as the number of observations in the Med 1, Med 2, and Med 3 groups 
increases from 5 to 6 to 7. The formulas make use of the group counts returned by the 
Data Analysis add-in to pick up the number of observations in each treatment group.

The differences between the treatment group means and the control group mean are shown 
in the range J8:J10. They are the numerators for the t-ratios, which appear in the range 
J4:J6. Each t-ratio is the result of dividing the difference between two group means by the 
associated denominator, as follows:

J4: =J8/I4

J5: =J9/I5

J6: =J10/I6

In sum, when your group sizes are unequal, traditional methods have you calculate  different 
denominators for each of the t-ratios that contrast all group means but one (here, Med 1, 
Med 2, and Med 3) with another mean (here, Control). Then for each pair of means, 
 calculate the mean difference and divide by the denominator for that pair.

 Figure 7.7
Using traditional ANOVA 
on a data set with 
unequal group sizes, 
you need to calculate a 
 different denominator for 
each t-ratio.
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You’ll also want to compare the values of the t-ratios with the values in Dunnett’s tables. 
In this case you would want to locate the values associated with 18 within-groups degrees 
of freedom (from cell C22 in the ANOVA table) and 4 groups. The intersection of those 
 values in the table is 2.21 for an alpha level of 0.05 and 3.01 for an alpha level of 0.01 
(see cells J12 and J13 in Figure 7.7). Therefore, only the difference between Med 2 and 
Control, with a t-ratio of 2.79, is beyond the cutoff for 5% of the Dunnett t distribution, 
and it does not exceed the cutoff for 1% of the distribution. You can reject the null for 
Med 2 versus Control at the 5% level of confidence but not at the 1% level. You cannot 
reject the null hypothesis for the other two contrasts at even the 5% level of confidence.

Notice that the F-ratio in the ANOVA table, 4.757 in cell E21, will appear in a  central 
F distribution with 3 and 18 degrees of freedom only 1.3% of the time. (A central F 
 distribution in the context of an ANOVA is one in which the estimate of the  population 
variance due to the differences among group means is equal to the estimate of the 
 population variance due to the average within-group variance.) So the ANOVA informs you 
that an F-ratio of 4.757 with 3 and 18 degrees of freedom is unlikely to occur by chance if 
the population means equal one another.

That likelihood, 1.3%, echoes the result of the contrast of the Med 2 group with the 
Control group. The t-ratio for that contrast, 2.79, exceeds the critical value for 5% of the 
Dunnett distribution but not the critical value for 1% of the distribution. So the  objective of 
the multiple comparison procedure, to pinpoint the difference in means that the ANOVA’s 
F-ratio tells you must exist, has been met.

Things go a lot more smoothly if you use LINEST( ) instead. See Figure 7.8. 

 Figure 7.8
LINEST( ) calculates the 
mean differences and 
t-ratio denominators 
for you.
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Figure 7.8 has the same underlying data as Figure 7.7: Four groups with a different 
 number of subjects in each. (The group membership vectors were created just as shown in 
Figure 7.6, using VLOOKUP( ), but to save space in the figure the formulas were converted 
to  values and the key deleted.)

This LINEST( ) formula is array-entered in the range G2:J6:

=LINEST(B2:B23,C2:E23,,TRUE)

Compare the regression coefficients in cells G2, H2, and I2 with the mean differences 
shown in Figure 7.7 (J8:J10). Once again, just as in Figures 7.5 and 7.6, the regression 
 coefficients are exactly equal to the mean differences between the groups that have 1’s in 
the vectors and the group that has 0’s throughout. So there’s no need to calculate the mean 
differences explicitly.

The standard errors of the regression coefficients in Figure 7.8 also equal the  denominators 
of the t-ratios in Figure 7.7 (in the range I4:I6). LINEST( ) automatically takes the 
 differences in the group sizes into account. All there’s left to do is divide the regression 
coefficients by their standards errors, as is done in the range J8:J10. The formulas in those 
cells are given as text in K8:K10. But don’t forget, when you label each t-ratio with verbiage 
that states which two means are involved, that LINEST( ) returns the coefficients and their 
standard errors backwards: Med 3 versus Control in G2:G3, Med 2 versus Control in cell 
H2:H3, and Med 1 versus Control in I2:I3.

Figure 7.8 repeats in J12 and J13 the critical Dunnett values for 18 within-group degrees 
of freedom (picked up from cell H5 in the LINEST( ) results) and 4 groups at the 0.05 and 
0.01 cutoffs. The outcome is, of course, the same: Your choice of whether to use  regression 
or  traditional ANOVA makes no difference to the outcome of the multiple comparison 
 procedure.

Finally, as mentioned earlier, the LINEST( ) function does not return the probability of the 
F-ratio associated with the R2 for the full regression. That figure is returned in cell J15 by 
this formula:

=F.DIST.RT(G5,3,H5)

Where G5 contains the F-ratio and H5 contains the within-group (or “residual”) degrees 
of freedom. You have to supply the second argument (here, 3) yourself: It’s the number 
of groups minus 1 (notice that it equals the number of vectors in LINEST( )’s second 
 argument, C2:E23) also known as the degrees of freedom between in an ANOVA or 
degrees of freedom regression in the context of LINEST( ).

Effect Coding
Another type of coding, called effect coding, contrasts each group mean following an 
ANOVA with the grand mean of all the observations. 
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More precisely, effect coding contrasts each group mean with the mean of all the group means. When 
each group has the same number of observations, the grand mean of all the observations is equal to 
the mean of the group means. With unequal group sizes, the two are not equivalent. In either case, 
though, effect coding contrasts each group mean with the mean of the group means.
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This aspect of effect coding—contrasting group means with the grand mean rather than 
with a specified group, as with dummy coding—is due to the use of −1 instead of 0 as 
the code for the group that gets the same code throughout the coded vectors. Because 
the  contrasts are with the grand mean, each contrast represents the effect of being in a 
 particular group.

Coding with -1 Instead of 0
Let’s take a look at an example before getting into the particulars of effect coding. 
See Figure 7.9. 

Figure 7.9 has the same data set as Figure 7.6, except that the Control group has the value 
−1 throughout the three coded vectors, instead of 0 as in dummy coding. Some of the 
LINEST( ) results are therefore different than in Figure 7.6. The regression coefficients 
in Figure 7.9 differ from those in Figure 7.6, as do their standard errors. All the remaining 
values are the same: R2, the standard error of estimate, the F-ratio, the residual degrees of 
freedom, and the regression and residual sums of squares—all those remain the same, just 
as they do with the third method of coding that this chapter considers, planned orthogonal 
contrasts.

 Figure 7.9
The coefficients in 
LINEST( ) equal each 
group’s distance from the 
grand mean.
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In dummy coding, the constant returned by LINEST( ) is the mean of the group that’s 
assigned 0’s throughout the coded vectors—usually a control group. In effect coding, the 
constant is the grand mean. The constant is easy to find. It’s the value in the first row 
(along with the regression coefficients) and in the rightmost column of the LINEST( ) 
results.

Because the constant equals the grand mean, it’s easy to calculate the group means from the 
constant and the regression coefficients. Each coefficient, as I mentioned at the start of this 
section, represents the difference between the associated group’s mean and the grand mean. 
So, to calculate the group means, add the constant to the regression coefficients. That’s 
been done in Figure 7.9, in the range L2:L4. The formulas used in that range are given as 
text in M2:M4. 

Notice that the three formulas add the constant (the grand mean) to a regression coefficient 
(a measure of the effect of being in that group, the distance of the group mean above or 
below the grand mean). The fourth formula in L5 is specific to the group assigned codes of 
−1, and it subtracts the other coefficients from the grand mean to calculate the mean of that 
group.

Also notice that the results of the formulas in L2:L5 equal the group means reported in 
the range J12:J15 by the Data Analysis add-in’s ANOVA: Single Factor tool. It’s also worth 
verifying that the F-ratio, the residual degrees of freedom, and the regression and residual 
sums of squares equal those reported by that tool in the range H20:K21.

Relationship to the General Linear Model
The general linear model is a useful way of conceptualizing the components of a value on 
an outcome variable. Its name makes it sound a lot more forbidding than it really is. Here’s 
the general linear model in its simplest form:

  Yij = m + aj + eij

The formula uses Greek instead of Roman letters to emphasize that it’s referring to the 
population from which observations are sampled, but it’s equally useful to consider that it 
refers to a sample taken from that population:

  Yij = Y + aj + eij

The idea is that each observation Yij can be considered as the sum of three components:

 ■ The grand mean, m

 ■ The effect of treatment j, aj

 ■ The quantity eij that represents the deviation of an individual score Yij from the 
 combination of the grand mean and the jth treatment’s effect.
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Here it is in the context of a worksheet (see Figure 7.10): 

In Figure 7.10, each of the 20 observations in Figure 7.9 have been broken down into the 
three components of the general linear model: the grand mean in the range D2:D21, the effect 
of each treatment group in E2:E21, and the so-called “error” involved with each observation.

 

The term error is used for some not especially good historical reasons, and it’s made its way into other 
terms such as mean square error and even the symbol ∈. There’s nothing erroneous about these values. 
Residuals is a perfectly descriptive term that isn’t misleading, but statistical jargon tends to prefer error.
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If you didn’t expect that one or more treatments would have an effect on the subjects 
receiving that treatment, then your best estimate of the value of a particular observation 
would be the grand mean (in this case, that’s 158.1). 

But suppose you expected that the effect of a treatment would be to raise the observed 
 values for the subjects receiving that treatment above, or lower them below, the grand 
mean. In that case your best estimate of a given observation would be the grand mean plus 
the effect, whether positive or negative, associated with that treatment. In the case of, say, 
the observation in row 5 of Figure 7.10, your expectation would be 158.1 + 6.7, or 164.8. 
If you give the matter a little thought, you’ll see why that figure, 164.8, must be the mean 
outcome score for the Med 1 group.

Although the mean of its group is your best expectation for any one of its members, 
most—typically all—of the members of a group will have a score on the outcome variable 
different from the mean of the group. Those quantities (differences, deviations, residuals, 
errors, or whatever you prefer to call them) are shown in the range F2:F21 as the result of 

 Figure 7.10
Observations broken 
down in terms of the 
components of the 
 general linear model.
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subtracting the grand mean and the group’s treatment effect from the actual observation. 
For example, the value in cell F2 is returned by this formula:

=B2-D2-E2

The purpose of a regression equation is to minimize the sum of the squares of those errors. 
When that’s done, the minimized result is called the Residual Sum of Squares in the context 
of regression, and the Sum of Squares Within in the context of ANOVA.

Note the sum of the squared errors in cell H2. It’s returned by this formula:

=SUMSQ(F2:F21)

The SUMSQ( ) function squares the values in its argument and totals them. That’s the same 
value as you’ll find in Figure 7.9, cells H21, the Sum of Squares Within Groups from the 
ANOVA, and H6, the residual sum of squares from LINEST( ). As Figure 7.10 shows, the 
sum of squares is based on the mean deviations from the grand mean, and on the individual 
deviations from the group means.

It’s very simple to move from dummy coding to effect coding. Rather than assigning codes of 
0 throughout the coding vectors to one particular group, you assign codes of −1 to one of the 
groups—not necessarily a control group—throughout the vectors. If you do that in the key range 
used by VLOOKUP( ), you need to make that replacement in only as many key range cells as 
you have vectors. You can see in Figure 7.9 that this has been done in the range C17:E21, which 
contains −1’s rather than 0’s. I assigned the −1’s to the control group not because it’s necessarily 
desirable to do so, but to make comparisons with the dummy coding used in Figure 7.6.

Regression analysis with a single factor and effect coding handles unequal group sizes 
 accurately, and so does traditional ANOVA. Figure 7.11 shows an analysis of a data set with 
unequal group sizes.  

 Figure 7.11
The ANOVA: Single Factor 
tool returns the group 
counts in the range 
H11:H14.
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Notice that the regression equation returns as the regression coefficients the effect of 
being in each of the treatment groups. In the range L2:L5, the grand mean (which is the 
 constant in the regression equation) is added to each of the regression coefficients to return 
the actual mean for each group. Compare the results with the means returned by the Data 
Analysis add-in in the range J11:J14.

Notice that the grand mean is the average of the group means, 158.41, rather than the 
mean of the individual observations, 158.6. This situation is typical of designs in which the 
groups have different numbers of observations.

Both the traditional ANOVA approach and the regression approach manage the situation 
of unequal group sizes effectively. But if you have groups with very discrepant numbers of 
observations and very discrepant variances, you’ll want to keep in mind the discussion from 
Chapter 6 regarding their combined effects on probability estimates: If your larger groups 
also have the larger variances, your apparent tests will tend to be conservative. If the larger 
groups have the smaller variances, your apparent tests will tend to be liberal.

Multiple Comparisons with Effect Coding
Dummy coding largely defines the comparisons of interest to you. The fact that you choose 
dummy coding as the method of populating the vectors in the data matrix implies that you 
want to compare one particular group mean, usually that of a control group, with the other 
group means in the data set. The Dunnett method of multiple comparisons is often the 
method of choice when you’ve used dummy coding.

A more flexible method of multiple comparisons is called the Scheffé method. It is a post 
hoc method, meaning that you can use it after you’ve seen the results of the overall  analysis 
and that you need not plan ahead of time what comparisons you’ll make. The Scheffé 
method also enables you to make complex contrasts, such as the mean of two groups versus 
the mean of three other groups.

There’s a price to that flexibility, and it’s in the statistical power of the Scheffé method. 
The Scheffé will fail to declare comparisons as statistically significant that other methods 
would. That’s a problem and it’s a good reason to consider other methods such as planned 
 orthogonal contrast (discussed later in this chapter). 

To use the Scheffé method, you need to set up a matrix that defines the contrasts you want 
to make. See Figure 7.12. 

Consider Contrast A, in the range I2:I6 of Figure 7.12. Cell I3 contains a 1 and cell I4 
 contains a −1; the remaining cells in I2:I6 contain 0’s. The values in the matrix are termed 
contrast coefficients. You multiply each contrast coefficient by the mean of the group it 
belongs to. Therefore, I2:I6 defines a contrast in which the mean of Med 2 (coefficient of 
−1) is subtracted from the mean of Med 1 (coefficient of 1), and the remaining group means 
do not enter the contrast.

Similarly, Contrast B, in J2:J6, also contains a 1 and a −1, but this time it’s the difference 
between Med 3 and Med 4 that’s to be tested.
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More complex contrasts are possible, of course. Contrast C compares the average of Med 1 
and Med 2 with the average of Med 3 and Med 4, and Contrast D compares Control with 
the average of the four medication groups.

A regression analysis of the effect-coded data in A2:F51 appears in H9:L13. An F-test of 
the full regression (which is equivalent to a test of the deviation of the R2 value in H11 from 
0.0) could be managed with this formula:

=F.DIST.RT(H12,4,I12)

It returns 0.00004, and something like 4 in 100,000 replications of this experiment would 
return an F-ratio of 8.39 or greater if there were no differences between the popula-
tion means. So you move on to a multiple comparisons procedure to try to pinpoint the 
 differences that bring about so large an F-ratio.

You can pick up the group means by combining the constant returned by LINEST( ) in 
cell L9 (which, with effect coding, is the mean of the group means) with the individual 
 regression coefficients. For example, the mean of the Med 1 group is returned in cell I16 
with this formula:

=K9+$L$9

The formula for the mean of the group assigned −1’s throughout the coding matrix is just 
a little more complicated. It is the grand mean minus the sum of the remaining regression 
coefficients. So, the formula for the control group in cell I15 is:

=$L$9-SUM(H9:K9)

With the five group means established in the range I15:I19, you can apply the contrasts 
you defined in the range I2:L6 by multiplying each group mean by the associated contrast 
coefficient for that contrast. Excel’s SUMPRODUCT( ) function is convenient for that: It 

 Figure 7.12
The matrix of contrasts 
defines how much weight 
each group mean is given.



7

266 Chapter 7              Using Regression to Test Differences Between Group Means

multiplies the corresponding elements in two arrays and returns the sum of the products. 
Therefore, this formula in cell L17:

=SUMPRODUCT(I2:I6,I15:I19)

has this effect:

=I2∗I15 + I3∗I16 + I4∗I17 + I5∗I18 + I6∗I19

which results in the value 5.3. The formula in cell L18 moves one column to the right in 
the contrast matrix:

=SUMPRODUCT(J2:J6,I15:I19)

and so on through the fourth contrast.

The final step in the Scheffé method is to determine a critical value that the contrast values 
in L17:L20 must exceed to be regarded as statistically significant. Here’s the formula, which 
looks a little forbidding in Excel syntax:

= SQRT((5−1)∗F.INV(0.95,4,I12))∗SQRT(($I$13/$I$12) 
∗(J2^2/10+J3^2/10+J4^2/10+J5^2/10+J6^2/10)) 

Here it is using more conventional notation:

  2(k - 1)Fdf1,df22MSRa
 C2

j >nj

where:

 ■ k is the number of groups.

 ■ Fdf1,df2 is the value of the F distribution at the alpha level you select, such as 0.05 or 
0.01. In the Excel version of the formula just given, I chose the .05 level, using 0.95 
as the argument to the F.INV( ) function because it returns the F-ratio that has, in 
this case, 0.95 of the distribution to its left. I could have used, instead, 
F.INV.RT(0.05,4,I12) to return the same value.

 ■ MSR is the mean square residual from the LINEST( ) results, obtained by dividing the 
residual sum of squares by the degrees of freedom for the residual.

 ■ C is the contrast coefficient. Each contrast coefficient is squared and divided by nj, the 
number of observations in the group. The results of the divisions are summed. 

The critical value varies across the contrasts that have different coefficients. To complete 
the process, compare the value of each contrast with its critical value. If the absolute value 
of the contrast exceeds the critical value, then the contrast is considered significant at 
the level you chose for the F value in the formula for the critical value.

In Figure 7.12, the critical values are shown in the range M17:M20. Only one contrast has 
an absolute value that exceeds its associated critical value: Contrast D, which contrasts the 
mean of the Control group with the average of the means of the four remaining groups.
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I mentioned at the start of this section that the Scheffé method is at once the least 
 statistically powerful and the most flexible of the multiple comparison methods. You might 
want to compare the results reported here with the results of planned orthogonal contrasts, 
discussed in the next section. Planned orthogonal contrasts are at once the most  statistically 
powerful and the least flexible of the multiple comparison methods. When we get to the 
multiple comparisons in the next section, you’ll see that the same data set returns very 
 different outcomes.

Orthogonal Coding
A third useful type of coding, besides dummy coding and effect coding, is orthogonal  coding. 
You can use orthogonal coding in both planned and post hoc situations. I’ll be discussing 
planned orthogonal coding (also termed planned orthogonal contrasts) here, because this 
approach is most useful when you already know something about how your variables work, 
and therefore are in a position to specify in advance which comparisons you will want to make.

Establishing the Contrasts
Orthogonal coding (I’ll explain the term orthogonal shortly) depends on a matrix of values 
that define the contrasts that you want to make. Suppose that you plan an experiment with 
five groups: say, four treatments and a control. To define the contrasts that interest you, you 
set up a matrix such as the one shown in Figure 7.13. 

In orthogonal coding, just defining the contrasts isn’t enough. Verifying that the contrasts 
are orthogonal to one another is also necessary. One fairly tedious way to verify that is 
also shown in Figure 7.13. The range B9:F14 contains the products of corresponding 
 coefficients for each pair of contrasts defined in B2:F5. So row 10 tests Contrasts A and C, 
and the coefficients in row 2 and row 4 are multiplied to get the products in row 10. For 
example, the formula in cell C10 is:

=C2∗C4

 Figure 7.13
The sums of products 
in G9:G14 satisfy 
the  condition of 
 orthogonality.
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In row 11, testing Contrast A with Contrast D, cell D11 contains this formula: 

=D2∗D5

Finally, total up the cells in each row of the matrix of coefficient products. If the total is 0, 
those two contrasts are orthogonal to one another. This is done in the range G9:G14. All 
the totals in that range are 0, so each of the contrasts defined in B2:F5 are orthogonal to 
one another.

Planned Orthogonal Contrasts Via ANOVA
Figure 7.14 shows how the contrast coefficients are used in the context of an ANOVA. I’m 
inflicting this on you to give you a greater appreciation of how much easier the regression 
approach makes all this. 

Figure 7.14 shows a new data set, laid out for analysis by the ANOVA: Single Factor tool. 
That tool has been run on the data, and the results are shown in H1:N17. The matrix 
of contrast coefficients, which has already been tested for orthogonality, is in the range 
B14:F17. Each of these is needed to compute the t-ratios that test the significance of the 
difference established in each contrast.

The formulas to calculate the t-ratios are complex. Here’s the formula for the first  contrast, 
Contrast A, which tests the difference between the mean of the Med 1 group and the 
Med 2 group:

= SUMPRODUCT(B14:F14,TRANSPOSE($K$5:$K$9))/
SQRT($K$15∗SUM(B14:F14^2/TRANSPOSE($I$5:$I$9)))

 Figure 7.14
The calculation of 
the t-ratios involves 
the group means and 
counts, the mean square 
within and the contrast 
 coefficients.
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The formula must be array-entered using Ctrl+Shift+Enter. Here it is in general form, 
using summation notation:

  t = a
 CjXj >2MSEa

 C2
j >nj

where:

 ■ Cj is the contrast coefficient for the jth mean.

 ■ Xj is the jth sample mean.

 ■ MSE is the mean square error from the ANOVA table. If you don’t want to start by 
running an ANOVA, just take the average of the sample group variances. In this case, 
MSE is picked up from cell K15, calculated and reported by the Data Analysis tool.

 ■ nj is the number of observations in the jth sample.

The prior two formulas, in Excel and summation syntax, are a trifle more complicated than 
they need be. They allow for unequal sample sizes. As you’ll see in the next section, unequal 
sample sizes generally—not always—result in nonorthogonal contrasts. If you have equal 
sample sizes, the formulas can treat the sample sizes as a constant and simplify as a result.

Returning to Figure 7.14, notice the t-ratios and associated probability levels in the range 
B20:C23. Each of the t-ratios is calculated using the Excel array formula just given, adjusted 
to pick up the contrast coefficients for different contrasts.

The probabilities are returned by the T.DIST.2T( ) function, the non-directional version of 
the t-test. The probability informs you how much of the area under the t-distribution with 
45 degrees of freedom is to the left of, in the case of Contrast A, −2.20 and to the right of 
+2.20. If you had specified alpha as 0.01 prior to seeing the data, you could reject the null 
hypothesis of no population difference for Contrast B and Contrast D. The probabilities 
of the associated t-ratios occurring by chance in a central t distribution are lower than your 
alpha level. The probabilities for Contrast A and Contrast C are higher than alpha and you 
must retain the associated null hypotheses.

Planned Orthogonal Contrasts Using LINEST( )
As far as I’m concerned, there’s a lot of work—and opportunity to make mistakes—involved 
with planned orthogonal contrasts in the context of the traditional ANOVA. Figure 7.15 
shows how much easier things are using regression, and in an Excel worksheet that means 
LINEST( ). 

Using regression, you still need to come up with the orthogonal contrasts and their 
 coefficients. But they’re the same ones needed for the ANOVA approach. Figure 7.15 
repeats them, transposed from Figure 7.14, in the range I1:M6.
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The difference with orthogonal coding and regression, as distinct from the traditional 
ANOVA approach shown in Figure 7.14, is that you use the coefficients to populate the 
vectors, just as you do with dummy coding (1’s and 0’s) and effect coding (1’s, 0’s, and −1’s). 
Each vector represents a contrast and the values in the vector are the contrast’s coefficients, 
each associated with a different group.

So, in Figure 7.15, Vector 1 in Column C has 0’s for the Control group, 1’s for Med 1, 
−1’s for Med 2, and—although you can’t see them in the figure—0’s for Med 3 and Med 4. 
Those are the values called for in Contrast A, in the range J2:J6. Similar comments apply 
to vectors 2 through 4. The vectors make the contrast coefficients a formal part of the 
 analysis.

The regression approach also allows for a different slant on the notion of  orthogonality. 
Notice the matrix of values in the range I21:L24. It’s a correlation matrix showing the 
 correlations between each pair of vectors in columns C through F. Notice that each vector 
has a 0.0 correlation with each of the other vectors. They are independent of one another. 
That’s another way of saying that if you plotted them, their axes would be at right angles to 
one another (orthogonal means right angled ). 

 Figure 7.15
With orthogonal coding, 
the regression coefficients 
and their standard errors 
do most of the work 
for you.
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As an experiment, I suggest that you try adding at least one case to at least one of the groups in 
 columns A through F of the worksheet for Figure 7.15—it’s in the workbook for this chapter, which 
you can download from quepublishing.com/title/9780789756558. For example, to add a case to the 
control group, insert cells in A12:F12 and put 0’s in C12:E12 and a 1 in F12. Then rebuild the correlation 
matrix starting in cell I21, either entering the CORREL( ) functions yourself or running the Data Analysis 
 add-in’s Correlation tool on the data in columns C through F. Notice that the correlations involving 
 vectors where you have changed the group count no longer equal 0.0. They’re no longer orthogonal. 

This effect has implications for designs with two or more factors and unequal group frequencies. 
A  distinction is made between situations in which the treatments might be causally related to the 
unequal frequencies—differential experimental mortality by treatment—and inequality in group 
counts due to causes unrelated to the treatments.

N
O
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Planned orthogonal contrasts have the greatest amount of statistical power of any of the 
multiple comparison methods. That means that planned orthogonal contrasts are more 
likely to identify true population differences than the alternatives (such as Dunnett and 
Scheffé). However, they require that you be able to specify your hypotheses in the form of 
contrasts before the experiment, and that you are able to obtain equal group sizes. If you 
add even one observation to any of the groups, the correlations among the vectors will no 
longer be 0.0, you’ll have lost the orthogonality, and you’ll need to resort to (probably) 
planned nonorthogonal contrasts, which, other things equal, are less powerful.

It’s easy to set up the vectors using the general VLOOKUP( ) approach described earlier in 
this chapter. For example, this formula is used to populate Vector 1:

=VLOOKUP($B2,$I$2:$M$6,2,0)

It’s entered in cell C2 and can be copied and pasted into columns D through F (you’ll 
need to adjust the third argument from 2 to 3, 4 and 5). Then make a multiple selection of 
C2:F2 and drag down through the end of the Outcome values.

With the vectors established, array-enter this LINEST( ) formula into a five-row by 
 five-column range:

=LINEST(A2:A51,C2:F51,,TRUE)

You now have the regression coefficients and their standard errors. The t-ratios—the 
same ones that show up in the range B20:B23 of Figure 7.14—are calculated by dividing 
a  regression coefficient by its standard error. So the t-ratio in cell L17 of Figure 7.15 is 
returned by this formula:

=L10/L11

The coefficients and standard errors come back from LINEST( ) in reverse of the order 
that you would like, so the t-ratios are in reverse order, too. However, if you compare 
them to the t-ratios in Figure 7.14, you’ll find that their values are precisely the same. 
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You  calculate the probabilities associated with the t-ratios just as in Figure 7.14, using the 
T.DIST( ) function that’s appropriate to the sort of research hypothesis (directional or 
 nondirectional) that you would specify at the outset.

Factorial Analysis
One of the reasons that the development of the analysis of variance represents such a 
major step forward in the science of data analysis is that it provides the ability to study 
the  simultaneous effects of two or more factors on the outcome variable. Prior to the 
 groundwork that Fisher did with ANOVA, researchers were limited to studying one 
 variable at a time, usually just two levels of that factor at a time. 

This situation meant that researchers could not investigate the joint effect of two or more 
factors. For example, it may be that men have a different attitude toward a politician when 
they are over 50 years of age than they do earlier in their lives. Furthermore, it may be that 
women’s attitude toward that politician do not change as a function of their age. If we had 
to study the effects of sex and age separately, we wouldn’t be able to determine that a joint 
effect—termed an interaction in statistical jargon—exists.

But we can accommodate more than just one factor in an ANOVA—or, of course, in a 
regression analysis. When you simultaneously analyze how two or more factors are related 
to an outcome variable, you’re said to be using factorial analysis.

And when you can study and analyze the effects of more than just one variable at a time, 
you get more bang for your buck. The costs of running an experiment are often just 
 trivially greater when you study additional variables than when you study only one.

It also happens that adding one or more factors to a single factor ANOVA can increase its 
statistical power. In a single-factor ANOVA, variation in the outcome variable that can’t 
be attributed to the factor gets tossed into the mean square residual. It can happen that 
such variation might be associated with another factor (or, as you’ll see in the next chapter, 
a covariate). Then that variation could be removed from the mean square error—which, 
when decreased, increases the value of F-ratios in the analysis, thus increasing the tests’ 
 statistical power.

Excel’s Data Analysis add-in includes a tool that accommodates two factors at once, but it 
has drawbacks. In addition to a problem I’ve noted before, that the results do not come back 
as formulas but as static values, the ANOVA: Two-Factor with Replication tool requires that 
you arrange your data in a highly idiosyncratic fashion, and it cannot accommodate unequal 
group sizes, nor can it accommodate more than two factors. Covariates are out. 

If you use regression instead, you don’t have to live with those limits. To give you a basis for 
comparison, let’s look at the results of the ANOVA: Two-Factor with Replication tool.
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Excel’s Data Analysis add-in also offers a tool called ANOVA: Two-Factor Without Replication. It is a fairly 
old-fashioned approach to analyzing what’s often termed a repeated measures design. This is the last 
you’ll hear of it in this book.

N
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The ANOVA tool used in Figure 7.16 is helpful in that it returns the average and  variance 
of the outcome variable, as well as the count, for each group in the design. My own 
 preference would be to use a pivot table to report these descriptive statistics, because that’s 
a live analysis and the table returned by the ANOVA tool is, again, static values. With a 
pivot table I can add, delete, or edit observations and have the pivot table update itself. 
With static values I have to run the ANOVA tool over again. 

The ANOVA table at the end of the results shows a couple of features that don’t appear in 
the Data Analysis add-in’s Single Factor version. Notice that rows 27 and 28 show a Sample 
and a Column source of variation. The Column source of variation refers to sex: Values for 
males are in column B and values for females are in column C. The Sample data source refers 
to whatever variable has values that occupy different rows. In Figure 7.16, values for Med 1 
are in rows 2 through 6, Med 2 in rows 7 through 11, and Med 3 in rows 12 through 16. 

 Figure 7.16
The ANOVA: Two-Factor 
with Replication tool will 
not run if different groups 
have different numbers of 
observations.
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You’ll want to draw your own conclusions regarding the convenience of the data layout 
(required, by the way, by the Data Analysis tool) and regarding the labeling of the factors in 
the ANOVA table.

The main point is that both factors, Sex (labeled Columns in cell E28) and Medication 
(labeled Sample in cell E27), exist as sources of variation in the ANOVA table. Males’ 
 averages differ from females’ averages, and that constitutes a source of variation. The three 
kinds of medication also differ from one another’s averages—another source of variation. 

There is also a third source labeled Interaction, which refers to the joint effect of the Sex 
and Medication variables. At the interaction level, groups are considered to constitute 
combinations of levels of the main factors: For example, Males who get Med 2 constitute a 
group, as do Females who get Med 1. Differences due to the combined main effects—not 
just Male compared to Female, or Med 1 compared to Med 3—are collectively referred to 
as the interaction between, here, Sex and Treatment.

The ANOVA shown in Figure 7.16 evaluates the effect of Sex as not significant at the .05 
level (see cell J28, which reports the probability of an F-ratio of 3.23 with 1 and 24 degrees 
of freedom as 8.5% when there is no difference in the populations). Similarly, there is no 
significant difference due to the interaction of Sex with Treatment. Differences between 
the means of the six design cells (two sexes times three treatments) are not great enough to 
reject the null hypothesis of no differences among the six groups. Only the Treatment main 
effect is statistically significant. If, from the outset, you intended to use planned orthogonal 
contrasts to test the differences between specific means, you could do so now and enjoy the 
statistical power available to you. In the absence of such planning, you could use the Scheffé 
procedure, hoping that you wouldn’t lose too much statistical power as a penalty for having 
failed to plan your contrasts.

Factorial Analysis with Orthogonal Coding
However, there’s no reason that you couldn’t use orthogonal coefficients in the vectors. You 
wouldn’t do so on a post hoc basis to increase statistical power, because that requires you to 
choose your comparisons before seeing the results. However, with equal group sizes 
you could still use orthogonal codes in the vectors to make some of the computations more 
convenient. Figure 7.17 shows the data from Figure 7.16 laid out as a list, with vectors that 
represent the Sex and the Treatment variables. 

The data set in Figure 7.17 has one vector in column D to represent the Sex variable. 
Because that factor has only two levels, one vector is sufficient to represent it. The data set 
also has two vectors in columns E and F to represent the Treatment factor. That factor has 
three levels, so two vectors are needed. Finally, two vectors representing the interaction 
between Sex and Treatment occupy columns G and H.

The interaction vectors are easily populated by multiplying the main effect vectors. 
The vector in column G is the result of multiplying the Sex vector by the Treatment 
1 vector. The vector in column H results from the product of the Sex vector and the 
Treatment 2 vector.
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The choice of codes in the Sex and Treatment vectors is made so that all the vectors will be 
mutually orthogonal. That’s a different reason from the one used in Figure 7.15, where the 
idea is to specify contrasts that are of particular theoretical interest—the means of particular 
groups, and the combinations of group means, that you hope will inform you about the way 
that independent variables work together and with the dependent variable to bring about 
the observed outcomes.

But in Figure 7.17, the codes are chosen simply to make the vectors mutually orthogonal 
because it makes the subsequent analysis easier. The most straightforward way to do this is 
as follows.

 1. Supply the first vector with codes that will contrast the first level of the factor with the 
second level, and ignore other levels. In Figure 7.17, the first factor has only two  levels, 
so it requires only one vector, and the two levels exhaust the factor’s information. 
Therefore, give one level of Sex a code of 1 and the other level a code of −1.

 2. Do the same for the first level of the second factor. In this case the second factor is 
Treatment, which has three levels and therefore two vectors. The first level, Med 1, 
gets a 1 in the first vector and the second level, Med 2, gets a −1. All other levels, in 
this case Med 3, get 0’s. This conforms to what was done with the Sex vector in Step 1.

 3. In the second (and subsequent) vectors for a given factor, enter codes that contrast the 
first two levels with the third level (or the first three with the fourth, or the first four 
with the fifth, and so on). That’s done in the second Treatment variable by assigning 
the code 1 to both Med 1 and Med 2, and −2 to Med 3. This contrasts the first two 
levels from the third. If there were other levels shown in this vector they would be 
assigned 0’s.

 Figure 7.17
The two-factor problem 
from Figure 7.16 laid out 
for regression analysis.
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The interaction vectors are obtained by multiplication of the main effect vectors, as 
described in the preceding steps. Now, Figure 7.18 shows the analysis of this data set. 

In Figure 7.18, the correlation matrix in the range K2:O6 shows that the correlations 
between each pair of vectors is 0.0.

 

The Correlation tool in the Data Analysis add-in is a convenient way to create a matrix such as the one 
in K2:O6.

T
IP

 

The fact that all the correlations between the vectors are 0.0 means that the vectors share no 
variance. Because they share no variance, it’s impossible for the relationships of two  vectors 
with the outcome variable to overlap. Any variance shared by the outcome variable and, say, 
the first Treatment vector is unique to that Treatment vector. When all the  vectors are mutually 
orthogonal, there is no ambiguity about where to assign variance shared with the  outcome variable.

In the range J9:O13 of Figure 7.18 you’ll find the results returned by LINEST( ) for the 
data shown in Figure 7.17. Not that it matters for present purposes, but the statistical 
 significance of the overall regression is shown in cell M15, again using the F.DIST.RT( ) 
function. More pertinent is that the R2 for the regression, 0.51, is found in cell J11. 

The range K18:O18 contains the R2 values for each coded vector with the outcome 
 variable. Excel provides a function, RSQ( ), that returns the square of the correlation 
between two variables. So the formula in cell K18 is:

=RSQ($C$2:$C$31,D2:D31)

 Figure 7.18
The orthogonal vectors 
all correlate 0.0 with one 
another.
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Cell P18 shows the sum of the five R2 values. That sum, 0.51, is identical to the R2 for the 
full regression equation that’s returned by LINEST( ) in cell J11. We have now partitioned 
the R2 for the full equation into five constituents.

Figure 7.19 ties the results of the regression analysis back to the two-factor ANOVA in 
Figure 7.16. 

 Figure 7.19
Compare the result 
of using sums of 
squares with the using 
 proportions of variance.

In Figure 7.19 I have brought forward the R2 values for the coded vectors, and the total 
regression R2, from the range K18:P18 in Figure 7.18. Recall that these R2 values are 
 actually measures of the proportion of total variance in the outcome variable associated 
with each vector. So the total amount of variance explained by the coded vectors is 51%, 
and therefore 49% of the total variance remains unexplained. That 49% of the variance 
is represented by the mean square residual (or mean square within, or mean square error) 
component—the divisor for the F-ratios.

The three main points to take from Figure 7.19 are discussed next.

Unique Proportions of Variance

The individual R2 values for each vector can simply be summed to get the R2 for the 
total regression equation. The simple sum is accurate because the vectors are mutually 
orthogonal. Each vector accounts for a unique proportion of the variance in the outcome. 
Therefore there is no double-counting of the variance, as there would be if the  vectors 
were correlated. The total of the individual R2 values equals the total R2 for the full 
regression.
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Proportions of Variance Equivalent to Sums of Squares

Compare the F-ratios from the analysis in the range C7:G12, derived from proportions 
of variance, with the F-ratios from the ANOVA in B15:H21, derived from the sums of 
squares. The F-ratios are identical, and the conclusions that you would draw from each 
analysis: that the sole significant difference is due to the treatments, and no difference 
emerges as a function of either sex or the interaction of sex with treatment.

The proportions of variance bear the same relationships to one another as do the sums 
of squares. That’s not surprising. It’s virtually by definition, because each proportion of 
variance is simply the sum of squares for that component divided by the total sum of 
squares—a constant. All the proportions of variance, including that associated with mean 
square residual, total to 1.0, so if you multiply an individual proportion of variance such as 
0.4422 in cell D8, by the total sum of squares (367.37 in cell D21), you wind up with the 
sum of squares for that component (162.47 in cell D16). Generally, proportions of variance 
speak for themselves, while sums of squares don’t. If you say that 44.22% of the variance 
in the outcome variable is due to the treatments, I immediately know how important the 
 treatments are. If you say that the sum of squares due to treatments is 162.47, I suggest that 
you’re not communicating with me.

Summing Component Effects

The traditional ANOVA shown in B15:H21 of Figure 7.19 does not provide inferential 
information for each comparison. The sums of squares, the mean squares and the F-ratios 
are for the full factor. Traditional methods cannot distinguish, for example, the effect 
of Med 1 versus Med 2 from the effect of Med 2 versus Med 3. That’s what multiple 
 comparisons are for.

However, we can get an R2 for each vector in the regression analysis. For example, the 
R2 values in cells C7 and C8 are 0.1067 and 0.3355. Those proportions of variance are 
 attributable to whatever comparison is implied by the codes in their respective vectors. 
As coded in Figure 7.17, Treatment Vector 1 compares Med 1 with Med 2, and Treatment 
Vector 2 compares the average of Med 1 and Med 2 with Med 3. Notice that if you add the 
two proportions of variance together and multiply by the total sum of squares, 367.37, you 
get the sum of squares associated with the Treatment factor in cell D16, returned by the 
traditional ANOVA.

The individual vectors can be tested in the same way as the collective vectors (one for each 
main effect and one for the interaction). Figure 7.20 demonstrates that more fine-grained 
analysis. 

The probabilities in the range G7:G11 of Figure 7.20 indicate the likelihoods of obtaining an 
F-ratio as large as those in F7:F11 if the differences in means that are defined by the vectors’ 
codes were all 0.0 in the population. So, if you had specified an alpha of 0.05, you could reject 
the null hypothesis for the Treatment 1 vector (Med 1 versus Med 2) and the Treatment 2 
vector (the average of Med 1 and Med 2 versus Med 3). But if you had selected an alpha of 
0.01, you could reject the null hypothesis for only the comparison in Treatment Vector 2.
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Factorial Analysis with Effect Coding
Chapter 3, in the section titled “Partial and Semipartial Correlations,” discussed how the 
effect of a third variable can be statistically removed from the correlation between two 
other variables. The third variable’s effect can be removed from both of the other two 
 variables (partial correlation) or from just one of the other two (semipartial  correlation). 
We’ll make use of semipartial correlations—actually, the squares of the semipartial 
 correlations—in this section. The technique also finds broad applicability in situations that 
involve unequal numbers of observations per group.

Figure 7.21 shows how the orthogonal coding from Figure 7.17, used in Figures 7.18 
through 7.20, has been changed to effect coding.  

 Figure 7.20
The question of what is 
being tested by a  vector’s 
F-ratio depends on how 
you have coded the 
vector.

 Figure 7.21
As you’ll see, effect coding 
results in vectors that are 
not wholly orthogonal.
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In the Sex vector, Males are assigned 1’s and Females are assigned −1’s. With a two-level 
factor such as Sex, orthogonal coding is identical to effect coding.

The first Treatment vector assigns 1’s to Med 1, 0’s to Med 2, and −1’s to Med 3. So 
Treatment Vector 1 contrasts Med 1 with Med 3. Treatment Vector 2 assigns 0’s to Med 1, 
1’s to Med 2 and (again) −1’s to Med 3, resulting in a contrast of Med 2 with Med 3. Thus, 
although they both provide tests of the Treatment variable, the two Treatment vectors 
define different contrasts than are defined by the orthogonal coding used in Figure 7.17.

Figure 7.22 displays the results of effect coding on the outcome variable, which has the 
same values as in Figure 7.17. 

 Figure 7.22
Vectors that represent 
different levels of a given 
factor are correlated if 
you use effect coding.

Notice that not all the off-diagonal entries in the correlation matrix, in the range K2:O6, 
are 0.0. Treatment Vector 1 has a 0.50 correlation with Treatment Vector 2, and the two 
vectors that represent the Sex by Treatment interaction also correlate at 0.50. This is typical 
of effect coding, although it becomes evident in the correlation matrix only when a main 
effect has at least three levels (as does Treatment in this example).

The result is that the vectors are not all mutually orthogonal, and therefore we cannot 
simply add up each variable’s R2 to get the R2 for the full regression equation, as is done 
in Figures 7.18 through 7.20. Furthermore, because the R2 of the vectors do not represent 
unique proportions of variance, we can’t simply use those R2 values to test the statistical 
 significance of each vector.

Instead, it’s necessary to use squared semipartial correlations to adjust the R2 values so that 
they are orthogonal, representing unique proportions of the variance of the outcome variable.
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In Figure 7.22, the LINEST( ) analysis in the range J9:O13 returns the same values as 
the LINEST( ) analysis with orthogonal coding in Figure 7.18, except  for the regression 
 coefficients, the constant, and their standard errors. In other words, the differences between 
orthogonal and effect coding make no difference to the equation’s R2, its standard error of 
estimate, the F-ratio, the degrees of freedom for the residual, or the regression and residual 
sums of squares. This is not limited to effect and orthogonal coding. Regardless of the 
method you apply—dummy coding, for example—it makes no difference to the statistics 
that pertain to the equation generally. The differences in coding methods show up when 
you start to look at variable-to-variable quantities, such as a vector’s regression coefficient 
or its simple R2 with the outcome variable.

Notice the table of R2 values in rows 18 and 19 of Figure 7.22. The R2 values in row 18 are 
raw, unadjusted proportions of variance. They do not represent unique proportions shared 
with the outcome variable. As evidence of that, the totals of the R2 values in rows 18 and 19 
are shown in cells P18 and P19. The value in cell P18, the total of the unadjusted R2 values 
in row 18, is 0.62, well in excess of the R2 for the full regression reported by LINEST( ) 
in cell J11.

Most of the R2 values in row 19, by contrast, are actually squared semipartial correlations. 
Two that should catch your eye are those in L19 and M19. Because the two vectors for the 
Treatment variable are correlated, the proportions of variance attributed to them in row 18 
via the unadjusted R2 values double-count some of the variance shared with the outcome 
variable. It’s that double-counting that inflates the total of the R2 values to 0.62 from its 
legitimate value of 0.51.

What we want to do is remove the effect of the vectors to the left of the second Treatment 
vector from the second Treatment vector itself. You can see how that’s done most easily by 
starting with the R2 in cell K19, and then following the trail of bread crumbs through cells 
L19 and M19, as follows:

Cell K19: The formula is as follows:

=RSQ($C$2:$C$31,D2:D31).

The vector in column D, Sex, is the leftmost variable in LINEST( )’s X-value arguments. 
(Space limits prevent the display of column D in Figure 7.22, but it’s visible in Figure 7.21 
and, of course, in the downloaded workbook for Chapter 7.) No variables precede the 
 vector in column D and so there’s nothing to partial out of the Sex vector: We just accept 
the raw R2.

Cell L19: The formula is:

=RSQ($C$2:$C$31,E2:E31-TREND(E2:E31,$D2:D31))

The fragment TREND(E2:E31,$D2:D31) predicts the values in E2:E31 (the first 
Treatment vector) from the values in the Sex vector (D2:D31). You can see from the 
 correlation matrix at the top of Figure 7.22 that the correlation between the Sex vector and 
the first Treatment vector is 0.0. In that case, the regression of Treatment 1 on Sex predicts 
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the mean of the Treatment 1 vector. The vector has equal numbers of 1’s, 0’s and −1’s, so its 
mean is 0.0. In short, the R2 formula subtracts 0.0 from the codes in E2:E31 and we wind 
up with the same result in L19 as we do in L18.

Cell M19: The formula is:

=RSQ($C$2:$C$31,F2:F31-TREND(F2:F31,$D2:E31))

Here’s where the squared semipartial kicks in. This fragment:

TREND(F2:F31,$D2:E31)

predicts the values for the second Treatment vector, F2:F31, based on its relationship to 
the vectors in column D and column E, via the TREND( ) function. When those predicted 
 values are subtracted from the actual codes in column F, via this fragment:

F2:F31-TREND(F2:F31,$D2:E31)

you’re left with residuals: the values for the second Treatment vector in F2:F31 that 
have their relationship with the Sex and the first Treatment vector removed. With those 
effects gone, what’s left of the codes in F2:F31 is unique and unshared with either Sex or 
Treatment Vector 1. As it happens, the result of removing the effects of the Sex and the 
Treatment 1 vectors eliminates the original relationship between the Treatment 2 vector 
and the outcome variable, leaving both a correlation and an R2 of 0.0. The double-counting 
of the shared variance is also eliminated and, when the adjusting formulas are extended 
through O19, the sum of the proportions of variance in K19:O19 equals the R2 for the full 
equation in cell J11.

The structure of the formulas that calculate the squared semipartial correlations deserves a 
little attention because it can save you time and headaches. Here again is the formula used 
in cell L19:

=RSQ($C$2:$C$31,E2:E31-TREND(E2:E31,$D2:D31))

The address $C$2:$C$31 contains the outcome variable. It is a fixed reference (although 
it might as well be treated as a mixed reference, $C2:$C31, because we won’t  intentionally 
paste it outside row 19). As we copy and paste it to the right of column L, we want to 
continue to point the RSQ function at C2:C31, and anchoring the reference to column C 
accomplishes that.

The other point to note in the RSQ( ) formula is the mixed reference $D2:D31. Here’s 
what the formula changes to as you copy and paste it, or drag and drop it, from L19 one 
column right into M19:

=RSQ($C$2:$C$31,F2:F31-TREND(F2:F31,$D2:E31))

Notice first that the references to E2:E31 in L19 have changed to F2:F31, in response 
to copying the formula one column right. We’re now looking at the squared semipartial 
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 correlation between the outcome variable in column C and the second Treatment vector in 
column F.

But the TREND( ) fragment shows that we’re adjusting the codes in F2:F31 for their 
 relationship to the codes in columns D and E. By dragging the formula on column to the right:

 ■ $C$2:$C$31 remains unchanged. That’s where the outcome variable is located.

 ■ E2:E31 changes to F2:F31. That’s the address of the second Treatment vector.

 ■ $D2:D31 changes to $D2:E31. That’s the address of the preceding predictor variables. 
We want to remove from the second Treatment vector the variance it shares with the 
preceding predictors: the Sex vector and the first Treatment vector.

By the time the formula reaches O19:

 ■ $C$2:$C$31 remains unchanged.

 ■ E2:E31 changes to H2:H31.

 ■ $D2:D31 changes to $D2:G31.

The techniques I’ve outlined in this section become even more important in Chapter 8, 
where we take up the analysis of covariance (ANCOVA). In ANCOVA you use variables 
that are measured on an interval or ratio scale as though they were factors measured on 
a nominal scale. The idea is not just to make successive R2 values unique, as discussed in 
the present section, but to equate different groups of subjects as though they entered the 
 experiment on a common footing—in effect, giving random assignment an assist.

Statistical Power, Type I and Type II Errors
In previous chapters I have mentioned a topic termed statistical power from time to time. 
Because it is a major reason to carry out factorial analyses as discussed in this chapter, 
and to carry out the analysis of covariance as discussed in Chapter 8, it’s important 
to develop a more thorough understanding of what statistical power is and how to 
 quantify it.

On a purely conceptual level, statistical power refers to a statistical test’s ability to identify 
the difference between two or more group means as genuine, when in fact the difference is 
genuine at the population level. You might think of statistical power as the sensitivity of a 
test to the difference between groups.

Suppose you’re responsible for bringing a collection of websites to the attention of 
 consumers who are shopping online. Your goal is to increase the number of hits that your 
websites experience; any resulting revenue and profit are up to the people who choose 
which products to market and how much to charge for them. 

You arrange with the owner of a popular site for web searches to display links to 16 of 
your sites, randomly selected from among those that your company controls. The other 
 randomly selected 16 of your sites will, for a month, get no special promotion.
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Your intent is to compare the average number of hourly hits for the sites whose links 
get prominent display with the average number of hourly hits for the remaining sites. 
You decide to make a directional hypothesis at the 0.05 alpha level: Only if the specially 
 promoted sites have a higher average number of hits, and only if the difference between 
the two groups of sites is so large that it could come about by chance only once in 20 
 replications of this trial, will you reject the hypothesis that the added promotion makes no 
difference to the hourly average number of hits.

Your data come in a month later and you find that your control group—the sites that 
received no special promotion—have an average of 45 hits each hour, and the specially 
promoted sites have an average hourly hit rate of 55. The standard error of the mean is 5. 
Figure 7.23 displays the situation graphically. 

Assume that two populations exist: The first consists of websites like yours that get no 
special promotion. The second consists of websites that are promoted via links on another 
popular site, but that are otherwise equivalent to the first population. If you repeated your 
month-long study hundreds or perhaps thousands of times, you might get two distributions 
that look like the two curves in Figure 7.23.

The curve on the left represents the population of websites that get no special promotion. 
Over the course of a month, some of those sites—a very few—get as few as 25 hits per 
hour, and an equally small number get 62 hits per hour. The great majority of those sites 
average 45 hits per hour: the mode, mean and median of the curve on the left.

The curve on the right represents the specially promoted websites. They tend to get about 
10 hits more per hour than the sites represented by the curve on the left. Their overall 
average is 55 hits per hour.

Now, most of this information is hidden from you. You don’t have access to information 
about the full populations, just the results of the two samples you took—but that’s enough. 

 Figure 7.23
Both power and alpha 
can be thought of as 
probabilities and depicted 
as areas under a curve.
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Suppose that at the end of the month the two populations have the same mean, as would be 
the case if the extra promotion had no effect on the average hourly hits. 

In that case, the difference in the average hit rate returned by your 16 experimental sites would 
have been due to nothing more than sampling error. That average of 55 hourly hits is among 
the  averages in the right-hand tail of the curve on the left: the portion of the curve  designated as 
alpha, shown in the chart in Figure 7.23 in a darker shade than the rest of the curve on the left.

Calculating Statistical Power
The boundary between alpha and the rest of the curve on the left is the critical value 
 established by alpha. When you adopted 5% as your alpha level, with a directional 
 hypothesis, you committed to the 5% of the right-hand tail of the curve. The critical value 
cuts off that 5%, and you can find that critical value using Excel’s T.INV( ) function:

=T.INV(0.95,30)

That is, what is the value in the t distribution with 30 degrees of freedom that separates 
the lowest 95% of the values in the distribution from the top 5%? The result is 1.7. If you 
go up from the mean of the distribution by 1.7 standard errors, you account for the lowest 
95% of the distribution. In this case the standard error is 5 (you learned that when you got 
the data on mean hourly hits), and 5 times 1.7 is 8.5. Add that to the mean of the curve on 
the left, and you get a critical value of 53.5.

In sum: The value of alpha is entirely under your control—it’s your decision rule. You have 
made a directional hypothesis and you have set alpha to 0.05. Therefore, you have decided 
to reject the null hypothesis of no difference between the groups at the population level 
if, and only if, the experimental group’s sample mean turns out to be at least 1.7 standard 
errors above the control group’s mean. 

Sometimes, the experimental group’s mean will come from that right-hand tail of the left 
curve’s distribution, just because of sampling error. Because the experimental group’s mean, 
in that case, is at least 1.7 standard errors above the control group’s mean, you’ll reject the 
null hypothesis even though both populations have the same mean. That’s Type I error, the 
probability of incorrectly rejecting a true null hypothesis.

Now suppose that in reality the populations are distributed as shown in Figure 7.23. If the 
sample experimental group has a mean at least 1.7 standard errors above the critical value of 
54—which is 1.7 standard errors above the control group mean—then you’ll correctly reject 
the null hypothesis of no difference at the population level. 

Focus on the right curve in Figure 7.23. The area to the right of the critical value in that 
curve is the statistical power of your t-test. It is the probability that the experimental group 
mean comes from the curve on the right, in a reality where the two groups are distributed 
as shown at the population level.

Quantifying that probability is easy enough. Just take the difference between the critical 
value and the experimental group mean and divide by the standard error of 5:

=(54 − 55)/5
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To get −0.2. That’s a t-value. Evaluate it using the T.DIST( ) function:

=T.DIST(−0.2,15,TRUE)

using 15 as the degrees of freedom, because at this point we’re working solely with the 
experimental group of 16 websites. The result is 0.422. That is, 42.2% of the area beneath 
the curve that represents the experimental group lies below the critical value of 54. 
Therefore 57.8% of the area under the curve lies to the right of the critical value, and the 
statistical power of the t-test is 57.8%. See Figure 7.24. 

In Figure 7.24 you can see the area that corresponds to statistical power in the curve on 
the right, to the right of the critical value. The remaining area under that curve is usually 
termed beta. It is alpha’s counterpart.

If you incorrectly reject a true null hypothesis (for example, by deciding that two population 
means differ when in fact they don’t), that’s a Type I error and it has a probability of alpha. 
You decide the value of alpha, and your decision is typically based on the cost of making a 
Type I error, in the context of the benefits of correctly rejecting a false null hypothesis.

If you incorrectly reject a true alternative hypothesis (for example, by deciding that two 
population means are identical when in fact they differ), that’s a Type II error and it has 
a probability of beta. The value of beta is not directly in your control. However, you can 
influence it, along with the statistical power of your test, as discussed in the next section. 

Increasing Statistical Power
One excellent time to perform a power analysis is right after concluding a pilot study. At 
that point you often have the basic numbers on hand to calculate the power of a planned 
full study, and you’re still in a position to make changes to the experimental design if the 
power study warrants. While a comparison of costs and benefits does not always argue for 
an increase in statistical power, it can warn you against pointless use of costly resources. 

 Figure 7.24
Type I error and alpha 
have counterparts in Type 
II error and beta.
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For example, if you can’t get the estimated statistical power above 50%, you might decide 
that the study just isn’t feasible—your odds of getting a reliable treatment effect are too low. 
Or it might turn out that increasing the sample size by 50% will result in an increase of 
only 5% in statistical power, so you’re not getting enough bang for your buck.

You have available several methods of increasing statistical power. Some are purely 
 theoretical, and have little chance of helping in real-world conditions. Others can make 
good sense.

One way is to reduce the size of the denominator of the test statistic. That denominator is 
typically a measure of the variability in the individual measures: a t-test, for example, might 
use either the standard error of the mean or the standard error of the difference between 
two means as the denominator of the t-ratio. An F-test uses the mean square residual 
(depending on the context, also known as mean square within or mean square error) as the 
denominator of the F-ratio.

When the denominator of a ratio decreases, the ratio itself increases. Other things equal, 
a larger t-ratio is more likely to be significant in a statistical sense than is a smaller t-ratio. 
One way to decrease the standard error or the mean square residual is to increase the 
sample size. Recall that the standard error of the mean divides the standard deviation 
by the square root of the sample size, and the mean square residual is the result of dividing 
the residual sum of squares by the residual degrees of freedom. In either case,  increasing 
the sample size decreases the size of the t-ratio’s or the F-ratio’s denominator, which in turn 
increases the t-ratio or the F-ratio—improving the statistical power.

Another method of decreasing the size of the denominator is directly pertinent to  factorial 
analysis, discussed in this chapter, and the analysis of covariance, discussed in Chapter 8. 
Both techniques add one or more predictors to the analysis: predictors that might have 
a substantial effect on the outcome variable. In that case, some of the variability in the 
 individual measures can be attributed to the added factor or covariate and in that way kept 
out of the ratio’s denominator.

So, adding a factor or covariate to the analysis might result in moving some of the variation 
out of the t-test’s or the F-test’s denominator and into the regression sum of squares (or the 
sum of squares between), thus increasing the size of the ratio and therefore its  statistical 
power. Furthermore, and perhaps more importantly, adding the factor or the covariate 
could better illuminate the outcome of the study, particularly if two or more of the factors 
turn out to be involved in significant interactions.

You should also bear in mind three other ways to increase statistical power (neither of 
them directly related to the topics discussed in this chapter or in Chapter 8). One is to 
increase the treatment effect—the numerator of the t-ratio or the F-ratio, rather than 
its  denominator. If you can increase the size of the treatment without also increasing the 
 individual variation, your statistical test will be more powerful.

Consider making directional hypotheses (“one-tailed tests”) instead of nondirectional 
hypotheses (“two-tailed tests”). One-tailed tests put all of alpha into one tail of the 
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 distribution. That moves the critical value toward the distribution’s mean value. The closer 
the critical value is to the mean, the more likely you are to obtain an experimental result 
that exceeds the critical value—again, increasing the statistical power.

A related technique is to relax alpha. Notice in Figure 7.24 that if you increase (or relax) 
alpha from 0.05 to, say, 0.10, one result takes place in the distribution the right: the area 
representing statistical power increases as the critical value moves toward the mean of the 
curve on the left. By increasing the likelihood of making a Type I error, you reduce the 
likelihood of making a Type II error.

Coping with Unequal Cell Sizes
In Chapter 6 we looked at the combined effects of unequal group sizes and unequal 
 variances on the nominal probability of a given t-ratio with a given degrees of freedom. 
You saw that the results can differ from the expected probabilities depending on whether 
the larger or the smaller group has the larger variance. You saw how Welch’s correction can 
help compensate for unequal cell sizes.

Things are more complicated with more than just two groups (as in a t-test), particularly 
in factorial designs with two or more factors. Then, there are several—rather than just 
two—groups to compare as to both group size and variance.

In a design with at least two factors, and therefore at least four cells, several options exist, 
based primarily on the models comparison approach that is discussed at some length in 
Chapter 5. Unfortunately, these approaches do not have names that are generally accepted. 
Of the two discussed in this section, one is sometimes termed the regression approach and 
sometimes the experimental design approach; the other is sometimes termed the sequential 
approach and sometimes the a priori ordering approach. There are other terms in use. I use 
experimental design and sequential here.

The additional difficulty imposed by factorial designs when cell sizes are unequal concerns 
correlations between the vectors that define group membership: the 1’s, 0’s and −1’s used in 
dummy, effect and orthogonal coding. Recall from earlier chapters that with equal cell sizes, 
the correlations between the vectors are largely 0.0. That feature means the sums of squares 
(and equivalently the variance) of the outcome variable can be assigned unambiguously to 
one vector or another. 

But when the vectors are correlated, the unambiguous assignment of variability to a given 
vector becomes ambiguous. The vectors share variance with the outcome variable, of 
course. If they didn’t there would be little point to retaining them in the analysis. But with 
unequal cell frequencies, the vectors share variance not only with the outcome variable but 
with one another, and in that case it’s not possible to tell whether, say, 2% of the outcome 
variance belongs to Factor A, to Factor B, or to some sort of shared assignment such as 
1.5% and 0.5%.

Despite the fact that I’ve cast this problem in terms of the vectors used in multiple 
 regression analysis, the traditional ANOVA approaches are subject to the problem too. 
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But there’s no single, generally applicable answer to the problem in the traditional 
 framework either. The reliance there is typically on proportional (if unequal) cell 
 frequencies and unweighted means analysis. Most current statistical packages use one of the 
approaches discussed here, or on one of their near relatives. (Not that it’s representative of 
applications such as SAS or R, but Excel’s Data Analysis add-in does not support designs 
with unequal cell frequencies in its 2-Factor ANOVA tool.)

Using the Regression Approach
This approach is also termed the unique approach because it treats each vector as though 
it were the last to enter the regression equation. If, say, a factor named Treatment is the 
last to enter the equation, all the other sources of regression variation are already in the 
 equation and any variance shared by Treatment with the other vectors has already been 
assigned to them. Therefore, any remaining variance attributable to Treatment belongs to 
Treatment alone. It’s unique to the Treatment vector.

Figure 7.25 shows an example of how this works. 

 Figure 7.25
This design has four cells 
with different numbers of 
observations.

The idea is to use the models comparison approach to isolate the variance explained 
uniquely by each variable. Generally, we want to assess the factors one by one, before 
moving on to their interactions. So the process with this design is to subtract the variance 
explained by each main effect from the variance explained by all the main effects.

For example, in Figure 7.25, the range F10:G14 returns LINEST( ) results for Attitude, 
the outcome variable, regressed onto Affiliation, one of the two factors. Affiliation explains 
39.51% of the variability in Attitude when Affiliation is the only vector entered: see cell F12.
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Similarly, the range I2:K6 returns LINEST( ) results for the regression of Attitude on Sex 
and Affiliation. Cell I4 shows that together, Sex and Affiliation account for 43.1% of the 
variance in Attitude. 

Therefore, with this data set, we can conclude that 43.10% − 39.51%, or 3.59%, of the 
variability in the outcome measure is specifically and uniquely attributable to the Sex  factor: 
the proportion attributable to the two main effects less that attributable to Affiliation. 
This finding, 3.59%, differs from the result obtained from the LINEST( ) analysis in 
F2:G6, where cell F4 tells us that Sex accounts for 2.63% of the variance in the outcome 
 measure. The difference between 3.59% and 2.63% is due to the fact that the unequal cell 
 frequencies induce correlations between the vectors, introducing ambiguity into how the 
variance is allocated to the vectors.

 

It’s worth noting that if the cell frequencies were equal, the proportions of variance attributable to each 
factor would be the same whether a factor was isolated by means of the models comparison approach 
or by including only the one factor in LINEST( ). In terms of the example in Figure 7.25, if each of the 
four design cells had the same number of observations, the same proportion of variance would appear 
in both cells F4 and H17. The coded vectors would be orthogonal to one another, and it would make 
no difference whether a factor were the first or last to enter the regression equation: It would always 
account for the same proportion of variance.

N
O

T
E

 

The proportion of variance due to Affiliation is calculated in the same fashion. The 
 proportion returned by LINEST( ) for the outcome measure regressed onto Sex, in cell F4, 
is subtracted from (once again) the proportion for both main effects, in cell I4. The result 
of that subtraction is 40.46%, a bit more than the 39.51% returned by the single factor 
LINEST( ) in cell F12.

After the two main effects, Sex and Affiliation, are assessed individually by subtracting their 
proportions of variance from the proportion accounted for by both, the analysis moves on 
to the interaction of the main effects. That’s managed by subtracting the proportion of 
variance for the main effects, returned by LINEST( ) in cell I4, from the total proportion 
explained by the main effects and the interaction, returned by LINEST( ) in cell I12.

We can test the statistical significance of each main effect and the interaction in an ANOVA 
table, substituting proportions of total variance for sums of squares. That’s done in the 
range F17:L20. Just divide the proportion of variance associated with each source of 
 variation by its degrees of freedom to get a stand in for the mean square. Divide the mean 
square for each main effect and for the interaction by the mean square residual to obtain 
the F-ratio for each factor and for the interaction. The F-ratios are tested as usual with 
Excel’s F.DIST.RT( ) function.

This analysis can be duplicated for sums of squares instead of proportions of variance, 
 simply by multiplying each proportion by the sum of the squared deviations of the outcome 
variable from the grand mean.
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Notice, by the way, in cell H22 that the proportions of variance do not total to precisely 
100.00%, although the total is quite close. With unequal cell frequencies, even when 
managed by this unique variance approach, the total of the proportions of variance is not 
necessarily equal to exactly 100%. If you were working with sums of squares rather than 
proportions of variance, the factors’ sums of squares do not necessarily add up precisely to 
the total sum of squares. Again, this is due to the adjustment of each factor and interaction 
vector for its correlation with the other vectors.

The sequential approach to dealing with unequal cell frequencies and correlated vectors, 
discussed in the next section, usually leads to a somewhat different outcome.

Sequential Variance Assignment
Bear in mind that the technique discussed in this section is just one of several methods 
for dealing with unequal cell frequencies in factorial designs. The unique assignment 
technique, described in the preceding section, is another such method. It differs from the 
sequential method in that it adjusts each factor’s contribution to the regression sum of 
squares for that of the other factor or factors. In the sequential method, factors that are 
entered earlier are not adjusted for factors entered later.

Figure 7.26 shows how the sequential method works. 

Figure 7.26 includes only two changes from Figure 7.25, but they can turn out to be 
 important. In the sequential analysis shown in Figure 7.26, the variability associated with 
the Sex variable is unadjusted for its correlation with the Affiliation variable, whereas that 
adjustment occurs in Figure 7.25. Compare cell H17 in the two figures.

 Figure 7.26
Consider using the 
sequential approach 
when one factor might 
have a causal effect on 
another.



7

292 Chapter 7              Using Regression to Test Differences Between Group Means

Here’s the rationale for the difference. In this data set, the subjects are categorized 
 according to their sex and their party affiliation. It is known that, nationally, women show 
a moderate preference for registering as Democrats rather than as Republicans, and the 
reverse is true for men. Therefore, any random sample of registered voters will have 
unequal cell frequencies (unless the researcher takes steps to ensure equal group sizes, a 
dubious practice at best when the variables are not directly under experimental control). 
And with those unequal cell frequencies come the correlations between the coded vectors 
that we’re trying to deal with. 

In this and similar cases, however, there’s a good argument for assigning all the variance 
shared by Sex and Affiliation to the Sex variable. The reasoning is that a person’s sex might 
influence his or her political preference (mediated, no doubt, by social and cultural variables 
that are sensitive to a person’s sex). The reverse idea, that a person’s sex is influenced by his 
or her choice of political party, is absurd.

Therefore, it’s arguable that variance shared by Sex and Affiliation is due to Sex and not 
to Affiliation. In turn, that argues for allowing the Sex variable to retain all the variance 
that it can claim in a single factor analysis, and not to adjust the variance attributed to Sex 
 according to its correlation with Affiliation.

In that case you can use the entire proportion of variance attributable to Sex in a 
 single  factor analysis as its proportion in the full analysis. That’s what has been done in 
Figure 7.26, where the formula in cell H17 is:

=F4

instead of this:

=I4-F12

in cell H17 of Figure 7.25. In that figure, the variance attributable to the Sex factor is 
adjusted by subtracting the variance attributable to the Affiliation factor (cell F12) from 
the variance attributable to both main effects (cell I4). But in Figure 7.26, the variance 
 attributable to Sex in a single-factor analysis in cell F4 is used in cell H17, unadjusted 
for variance it shares with Affiliation. Again, this is because in the researcher’s judgment 
any variance shared by the two factors belongs to the Sex variable as, to some degree, 
 causing variability in the Affiliation factor.

The adjustment, or the lack thereof, makes no practical difference in this case: The variance 
attributable to Sex is so small that it will not approach statistical significance whether it is 
adjusted or not. But with a different data set, the decision to adjust one variable for another 
as in the unique variance approach, or to retain the first factor’s full variance, as in the 
sequential approach, could easily make a meaningful difference.

Notice, by the way, in Figure 7.26 that the coded vectors have in effect been made 
 orthogonal to one another. The total of the proportions of variance in the range H17:H20 
now comes to 1.000, as shown in cell H22. That demonstrates that the overlap in  variability 
has been removed by the decision not to adjust Sex’s variance for its correlation with 
Affiliation.
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Why not follow the sequential approach in all cases? Because you need a good, sound 
reason to treat one factor as causal with respect to other factors. In this case, the fact of 
causality is underscored by the patterns in the full population, and the logic of the situation 
argues for the directionality of the cause: that Sex causes Affiliation rather than the other 
way around. 

Nevertheless, this is a case in which the subjects assign themselves to groups by being of 
one sex or the other and by deciding which political party to belong to. If the researcher 
were to selectively discard subjects in order to achieve equal group sizes, without regard to 
causality, he would be artificially imposing orthogonality on the variables. So doing alters 
the reality of the situation, and you therefore need to be able to show that causality exists 
and what its direction is.

This consideration does not tend to arise in true experimental designs, where the researcher 
is in a position to randomly assign subjects to treatments and conditions. Broccoli plants are 
not in a position to decide whether they prefer organic or inorganic fertilizer, or whether 
they flourish in sun or in shade.

Let’s move on to Chapter 8 now, and look further into the effect of adding a covariate to 
your design.
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Symbols
^ (exponentiation operator), 8

A
ABS( ) function, 7

adding

covariates, 298
sum of squares, 74–75

add-ins, Data Analysis, 203, 215

Correlation tool, 271, 276
dummy coding, 246

adjusted regression sum of squares, 
312–313

alphas, 184

analysis

effect coding, 279–283
factorial, 272–277
LINEST( ) functions, 132
multiple regression, 166
outcome variables, 299
residuals, 92
results, comparing, 249
summarizing, 320–321
via proportions of variance, 133–149
via Sum of Squares, 132
with/without covariates, 308–312

analysis of covariance. See ANCOVA

analysis of variance. See ANOVA 

ANCOVA (analysis of covariance), 295–297

adjusted regression sum of squares, 
312–313

Index



338 ANCOVA (analysis of covariance)

analysis
summarizing, 320–321
with/without covariates, 308–312

ANOVA, comparing results, 297–305
charts, 305–308
covariate sums of squares, 312
degrees of freedom, 301
F-ratios, 299
LINEST( ) function, 303
outcome measure sums of squares, 

312
planned nonorthogonal contrasts, 

330–332
planned orthogonal coding, 321–328
post hoc nonorthogonal contrasts, 

332–336
regression

multiple comparisons, 328–330
structuring using, 315–316

residuals, 301–303
R² for covariates/outcomes, 312
structuring conventional, 308
within-cell product of deviations, 

313–336
ANOVA (Analysis of Variance), 117

ANCOVA (analysis of covariance), 
comparing results, 297–305

dummy coding, 215–217
f-ratios, 129–132, 136–140
General Linear Models, 146–149
planned orthogonal contrasts with, 

268
Single Factor tool, 75, 140, 247–248
Sum of Squares Within, 81–82
Two-Factor Without Replication 

tool, 273
arguments

const, 82

new x’s, 85–86
TREND( ) function, 86–88

array-entering, 249

LINEST( ) function, 103–104
TREND( ) functions, 84–85

arrays

formulas, 84
LINEST( ) function, 104

assumptions

distributions, 211–213
dummy coding, 215–217
equal spreads, 213–215
overview of, 199–202
robustness, 202–204
statistical inference, 204
straw man example, 204–211
t-tests, 217

auditing, Formula Auditing group, 325

AVERAGE( ) function, 7, 10–12, 36, 73

avoiding traps in charts, 48–53

B
betas, 286, 311

bias

correlation, 41–44
reduction functions, 305–308

binominal variables, 117

biserial correlation, 30. See also correlation

Bubble charts, 47

C
calculating

betas in factors, 311
correlation, 34–44

bias, 41–44
coefficients, 38–41
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CORREL( ) function, 41
covariance, 34–36

deviations, 12
errors, 173–176
predicted values, 63
prediction, 61–62
probability, straw man example, 209
R², 312
residuals, 201
standard deviations, 6
standard errors, examples, 176–181
statistical power, 285–286
sum of squares, 169
t-ratios, 187
zero-constant regression, 88
z-scores, 18
z-values, 20

canonical regression, 65

category variables, 48

causation, correlation and, 53–54

cause, direction of, 54–55

cells, unequal cell sizes, 288–289

central F distributions, 209

charting

ANCOVA, 305–308
correlation, avoiding traps, 48–53
prediction, 70–71
regression, 63–75
regression lines, 317
Scatter, 50
types of, 47
variables, 46

checking for common regression lines, 
316–320

coding

dummy, 246–250

effect, 259
factorial analysis, 279–283
multiple comparisons with, 

264–267
orthogonal, 267–272

contrasts, 267
factorial analysis, 274–277
planned orthogonal contrasts with 

ANOVA, 268
using LINEST( ) function, 

269–272
planned orthogonal, 321–328
rules, 248
with −1 instead of 0, 260–261

coefficients

common regression, 310
contrast, 264
correlation, 30, 38–41
regression, 154

errors, 109–110
measuring probability, 112–113
predictions, 65
standard errors, 217–244
straw man example, 208
zeros, 110–112

standard errors
calculating, 173–176
using of the, 181–186

collinearity, 114

common regression

coefficients, 310
lines, checking for, 316–320

comparing

Dunnett multiple comparison 
 procedure, 253–259

f-ratios to R², 146
LINEST( ) function, 106–114
models, 103
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outliers, checking for, 44–48
partial, 90–95, 166
Pearson, 45
prediction, 60–61
predictors, 161
R², 117–120
restriction of range, 55–57
semipartial, 95–101, 166, 303
strength of, expressing, 30–32
two-predictor regression, 167–169
variables, 34, 55
Welch’s, 237–243
z-scores, 62

Correlation tool, 271, 276

CORREL( ) function, 38, 41, 67, 168

covariance, 34. See also ANCOVA

deviations, 36–38
COVARIANCE.P( ) function, 36

covariates, 130

adding, 298
analysis with/without, 308–312
R² for, 312
sums of squares, 312

critical values, 187

cross-validation, 198

curvilinear relationships, 219

D
Data Analysis add-in, 203, 215

Correlation tool, 271, 276
dummy coding, 246
LINEST( ) function, using instead of, 

230–231
degrees of freedom, 13, 112, 125, 188

ANCOVA, 301

models comparison approach, 192
probability, 195
results, 249
results, ANOVA/ANCOVA, 297–305

components, summing component effects, 
278–293

composite variables, 155

computational formulas, 73

conservative tests, unequal spreads, 
220–225

const argument, 82

TREND( ) function, 86–88
constants, 51, 69, 87, 104, 154

trendlines, 160
variables, 166–167

contrasts

coefficients, 264
orthogonal coding, 267
planned nonorthogonal, multiple 

comparisons, 330–332
post hoc nonorthogonal, multiple 

comparisons, 332–336
control groups, 246

conventional ANCOVA, structuring, 308

correlation, 29

bias, 41–44
calculating, 34–44
and causation, 53–54
charts, avoiding traps, 48–53
coefficients, 30, 38–41
CORREL( ) function, 41
covariance, 34–36
directions

of cause, 54–55
determining, 32–34

linearity, checking for, 44–48
measuring, 29–30
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T.DIST( ) function, 231–237
vectors, populating, 250–253

direct correlation, 32

directional tests, 191

directionality of causation, 53–54

directions

of cause, 54–55
correlation, determining, 32–34

distributions

assumptions, 211–213
central F, 209
families of, 188
sampling, 113, 125
standard normal, 22
t, 26, 121–122
unit normal, 22

dummy coding, 135, 215–217, 246–250

Dunnett multiple comparison procedure, 
253–259

E
effect coding, 259

factorial analysis, 279–283
multiple comparisons with, 264–267

effects, summing component, 278–293

equal sample sizes

unequal spreads, 226–230
equal spreads, 128–129, 200

assumptions, 213–215
Equal Variances tool, 239

equations, regression, 49

errors, 120–121, 262. See also standard 
errors

as standard deviation of residuals, 
125–128

calculating, 173–176
examples, 176–181
LINEST( ) function, 105

residuals, F-ratios, 172–173
straw man example, 207
Welch’s correlation, 241

dependent groups t-tests, 244

dependent variables, 130, 134

design

experimental, 53–54
experimental design approach, 288
repeated measures, 273

deviations

calculations, 6, 12
covariance, 36–38
from the mean, 11
MAD (mean absolute deviation), 7
squared, 38, 73, 118
standard, 14–15, 71–73
standard errors as residuals, 125–128
sums, 6–10
within-cell product of, 313–336

DEVSQ( ) function, 9–11, 73

dialog boxes, Solver, 159

differences, 245

coding with −1 instead of 0, 260–261
dummy coding, 246–250
Dunnett multiple comparison 

 procedure, 253–259
effect coding, 259
factorial analysis, 272–277
General Linear Models, relationships, 

261–264
mean, 229
multiple comparisons with effect 

 coding, 264–267
orthogonal coding, 267–272
proportions of variance, 277–278
standard error of the mean, 217
summing component effects, 278–293



342 errors

shrinkage, 197–198
standard error of estimates, 126

F-ratios, 116, 129

ANCOVA, 299
ANOVA, 129–131, 136–140
R², comparing, 146
regression, 131–132, 140–146
residual degrees of freedom, 172–173
sum of squares, 173

F-tests

omnibus, 215
straw man example, 208

fudge factors, 202

functions

ABS( ), 7
AVERAGE( ), 7, 10–12, 36, 73
bias reduction, 305–308
CORREL( ), 38, 41, 67, 168
COVARIANCE.P( ), 36
DEVSQ( ), 9–11, 73
F.DIST( ), 187
F.DIST.RT( ), 299
F.INV( ), 187
INDEX( ), 108
INTERCEPT( ), 69–70, 89
LINEST( ), 48, 50, 82, 84, 90–101, 

103–107
analysis via, 132
analysis via proportions of variance, 

133–149
ANCOVA, 303
array-entering, 103–104
array formulas, 104
comparing, 106–114
errors, 105
f-ratios, 129, 136–140

mean square, 173, 262
regression coefficients, 109–110, 

181–186
standard, 72
standard error of estimate, 72, 

120–121
standard error of measurement, 72
standard error of the mean, 15–18, 72
sum of squares, 156–160
t distributions, 121–122
type I/type II, 283–288
variance error of the mean difference, 

229
estimation, 60

standard error of estimate, 72
evaluating predictors, 192

experimental design, 53–54, 288

exponentiation operator (^), 8

F
factorial analysis, 272–277

effect coding, 279–283
factors, 246

betas, calculating, 311
families of distributions, 188

F.DIST( ) function, 187

F.DIST.RT( ) function, 299

finding sums of squares, 169–170

F.INV( ) function, 187

Formula Auditing group, 325

formulas

array-entering, 249
arrays, 84
computational, 73
LINEST( ) function, 104



343INTERCEPT( ) function

G
General Linear Models, 146–149, 157–158

relationships, 261–264
generalizing predictions, 64–65

group means, 245, 324

coding with −1 instead of 0, 260–261
dummy coding, 246–250
Dunnett multiple comparison 

 procedure, 253–259
effect coding, 259, 264–267
factorial analysis, 272–277
General Linear Models, relationships, 

261–264
orthogonal coding, 267–272
proportions of variance, 277–278
summing component effects, 278–293
vectors, populating, 250–253

groups

control, 246
Formula Auditing, 325

H
homoscedasticity, 128–129, 200

assumptions, 213–215

I
increasing statistical power, 286–288 

independent variables, 130, 134

INDEX( ) function, 108

inference

assumptions, 204
statistical, 113–114

interactions, 272

INTERCEPT( ) function, 69–70, 89

LINEST( ) function, comparing to, 
106–114

mapping results to worksheets, 
163–166

orthogonal coding, 269–272
partial correlations, 90–95
semipartial correlations, 95–101
significance of, 122–132
statistics for, 149
straw man example, 209
structuring ANCOVA using 

regression, 315
using instead of Data Analysis 

Tool, 230–231
zeros, 114–122

NORM.S.DIST( ), 20, 25
PEARSON( ), 41
SLOPE( ), 65–69, 89
standard deviations, 36
STDEV.P( ), 36
STDEV.S( ), 36
SUMDEVSQ( ), 74
SUMPRODUCT( ), 265–266
SUMSQ( ), 263
T.DIST( ), 187, 231–237
T.DIST.RT( ), 25
T.INV( ), 187
TRANSPOSE( ), 103–104
TREND( ), 82–89, 104

array-entering, 84–85
const argument, 86–88
new x’s argument, 85–86

TTEST( ), 243–244
VARA( ), 12
VAR.P( ), 10–14, 36
VARPA( ), 12
VAR.S( ), 11–14, 36
VLOOKUP( ), 251, 263
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orthogonal coding, 269–272
partial correlations, 90–95
proportions of variance, 133–149
semipartial correlations, 95–101
significance of, 122–132
statistics for, 149
straw man example, 209
using instead of Data Analysis Tool, 

230–231
zeros, 114–122

M
MAD (mean absolute deviation), 7
mapping results to worksheets, 163–166
mean

deviations from the, 11
groups, 245, 324. See also group means
regression toward the, 62–63
standard error of the, 15–18, 72

mean absolute deviation. See MAD
mean difference, 229
mean square (MS), straw man example, 

208
mean square between, 130
mean square errors, 173, 262
mean square regression, 173, 210
mean square residuals, 173, 210
mean square within, 130
measurements

correlation, 29–30
probability, 112–113
standard error of, 72
variations, 5–6

median regression lines, 157–158
methods, Scheffé, 264
models

comparing, 103
comparison approach, 192

intercepts, 69, 87. See also INTERCEPT( ) 
function

interval scales, 29, 116–117

interval variables, 245

inverse relationships, 33

J
joint effects, 272

K
known x’s/y’s, 83, 86

L
lambda values, 144

least squares, 157–158, 203

levels, 246

liberal tests, unequal spreads, 225–226

linear transformations, 153

linearity, checking for, 44–48

Line charts, 47

lines

common regression, checking for, 
316–320

median regression, 157–158
regression, 31, 61

LINEST( ) function, 48–50, 82–84, 90–101, 
103–107

analysis via, 132
ANCOVA, 303, 315
ANOVA, 136–140
array-entering, 103–104
array formulas, 104
comparing, 106–114
errors, 105
f-ratios, 129
mapping results to worksheets, 

163–166
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sum of squares
errors, 156–160
finding, 169–170
using instead of R², 196–197

trendlines, 160–163
two-tailed tests, 186–189
variables, holding constant, 166–167

N
National Center for Health Statistics, 71

navigating charts, 46

negative relationships, 33

new x’s argument, 85–86

nominal scales, 116–117

nominal variables, 117

dummy coding, 246
non-centrality parameters, 144

non-directional tests, 191

nonlinear distributions, 211–213

nonorthogonal contrasts

planned, multiple comparisons, 
330–332

post hoc, multiple comparisons, 
332–336

NORM.S.DIST( ) function, 20, 25

O
omnibus F-tests, 215

one-tailed tests, 189–192

operators, ^ (exponentiation operator), 8

orthogonal coding, 267–272

contrasts, 267
factorial analysis, 274–277
planned, 321–328
planned orthogonal contrasts

with ANOVA, 268
using LINEST( ) function, 269–272

General Linear Models, 146–149, 
157–158

statistics, 192–196
multicollinearity, 114

multiple comparisons, 253. See also 
 comparing

ANCOVA/regression, 328–330
effect coding, 264–267
planned nonorthogonal contrasts, 

330–332
post hoc nonorthogonal contrasts, 

332–336
multiple predictors, 153–156

multiple regression, 65, 108, 114

analysis, 166
errors

calculating, 173–176
examples, 176–181
using of the regression coefficient, 

181–186
F-ratios, residual degrees of freedom, 

172–173
LINEST( ) function, mapping results 

to worksheets, 163–166
model statistics, 192–196
multiple predictors, 153–156
one-tailed tests, 189–192
predictors

evaluating, 192
variables, 152–153

R²
estimating shrinkage, 197–198
standard error of estimate, 170–172
using instead of sum of squares, 

196–197
semipartial correlation in 

two-predictor regression, 167–169
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predictors

correlations, 161
evaluating, 192
linear transformations, 153
multiple, 153–156
variables, 50, 130, 152–153, 245, 249

priori ordering approach, 288

probability

comparing, 195
measuring, 112–113
straw man example, calculating, 209
of t-ratio if null is true, 229

proportions of variance, 277–278

analysis via, 133–149

Q
quasi t-ratios, TTEST( ) function, 243–244

quasi t statistic, 237

R
R2, 117–120

calculating, 312
for covariates/outcomes, 312
F-ratios, comparing, 146
in linear simple regression, 77–81
shrinkage, estimating, 197–198
standard error of estimate, 170–172
straw man example, 208
sum of squares, using instead of, 

196–197
ranges

restriction of, 55–57
of values, 214

ratios

f-ratios, 116, 129. See also F-ratios
ANOVA, 129–132, 136–140
comparing to R², 146

outcomes

measure sums of squares, 312
R² for, 312
variables, 246, 299

outliers, checking for, 44–48

P
parameters, 12

non-centrality, 144
populations, 23, 185

partial correlations, 90–95, 166

partitions, 77

Sum of Squares, 133–136
Pearson correlation, 45

Pearson, Karl, 41

PEARSON( ) function, 41

planned nonorthogonal contrasts, 330–332

planned orthogonal coding, 321–328

planned orthogonal contrasts

with ANOVA, 268
using LINEST( ) function, 269–272

pooled regression lines, 306

pooled variance, 229

populations

parameters, 23, 185
vectors, 250–253

positive correlation, 32

post hoc nonorthogonal contrasts, 
332–336

power, statistical, 235

predicted variables, 130

predictions, 60–61, 120

calculating, 61–62
charting, 70–71
generalizing, 64–65
regression, coefficients, 65
values, 63
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Regression tool, 203

relationships, 31

curvilinear, 219
General Linear Models, 261–264
inverse, 33
negative, 33

repeated measures design, 273

residuals, 120–121, 166, 262

analysis, 92
ANCOVA, 301–303
calculating, 201
degrees of freedom, 188
F-ratios, 172–173
independence of, 201
mean square, 173, 210
standard errors as standard deviation 

of, 125–128
sum of squares, 81–82

restriction of range, 55–57

results

ANOVA/ANCOVA, comparing, 
297–305

comparing, 249
worksheets, mapping, 163–166

returning variances, 11–14

robustness, 202–204

RSQ( ) function, 79

rules, coding, 248

S
sample sizes, 220, 226–230

sampling distributions, 113, 125

scales

interval, 29, 116–117
nominal, 116–117
ratio, 29

Scatter charts, 47, 50

regression, 140–146
sum of squares, 173

quasi t-ratios, TTEST( ) function, 
243–244

scales, 29
t-ratios, 111, 116, 182, 229

calculating, 187
Dunnet multiple comparison 

 procedure, 253
straw man example, 207

regression

adjusted regression sum of squares, 
312–313

ANCOVA
multiple comparisons, 328–330
structuring using, 315–316

approach, 288–293
canonical, 65
coefficients, 154

errors, 109–110
measuring probability, 112–113
predictions, 65
standard errors, 217–244
straw man example, 208
zeros, 110–112

common coefficients, 310
differences, 245. See also differences
equations, 49
f-ratios, 131–132, 140–146
General Linear Models, 146–149
lines, 31, 61
mean square, 173, 210
multiple, 65, 108, 114. See also 

 multiple regression
simple. See simple regression
Sum of Squares, partitioning, 133–136
toward the mean, 62–63
zero-constant, calculating, 88
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squared correlations
R², 117–120

squared deviations, 38, 73
sums, 7–10

standard deviations, 14–15, 71–73
calculations, 6
functions, 36
standard errors as residuals, 125–128

standard errors, 72
calculating, 173–176
coefficients, using of the, 181–186
of estimate, 72, 120–121, 174
examples, 176–181
of the mean, 15–18, 72, 217
of the mean difference, 229
of measurement, 72
R², 170–172
of the regression coefficient, 217–244
as standard deviation of residuals, 

125–128
standard normal distributions, 22
standard scores, 8. See also scores

prediction, 60–61
statistical inference, 113–114

assumptions, 204
statistical power, 235, 283–288

calculating, 285–286
increasing, 286–288

statistics
for LINEST( ) function, 149
models, 192–196
quasi t, 237

STDEV.P( ) function, 36
STDEV.S( ) function, 36
straw man example, 204–211
strength of correlations, expressing, 30–32
structuring

ANCOVA using regression, 315–316
conventional ANCOVA, 308

Scheffé method, 264

scores

prediction, 60–61
z-scores, 8, 18–23

semipartial correlations, 95–101, 166, 303

in two-predictor regression, 167–169
sequential approach, 288

shared variance, 71

shrinkage, estimating R2, 197–198

significance of LINEST( ) function, 122–132

simple regression, 59–60

charting, 63–75
INTERCEPT( ) function, 69–70, 89
LINEST( ) function, 90–101
predicted values, calculating, 63
prediction, 60–61

calculating, 61–62
charting, 70–71

R², 77–81
regression toward the mean, 62–63
shared variance, 71
SLOPE( ) function, 65–69, 89
standard deviations, 71–73
Sum of Squares Regression, 79
sums of squares, 73–77, 81–82
totals, 76–82
TREND( ) function, 82–88, 89
zero-constant regression, calculating, 

88
z-scores, 62

Single Factor ANOVA tool, 140

sizes, unequal cell, 288–289

SLOPE( ) function, 65–69, 89

LINEST( ) function, comparing to, 
106–114

Solver dialog box, 159

spreads, equal, 128–129, 200



349t-ratios

tests

conservative tests, unequal spreads, 
220–225

directional tests, 191
F-tests

omnibus, 215
straw man example, 208

liberal tests, unequal spreads, 225–226
non-directional tests, 191
one-tailed tests, 189–192
t-tests, 111

assumptions, 204
dependent groups, 244

two-tailed tests, 186–189
T.INV( ) function, 187

tools

ANOVA: Single Factor, 75
Correlation, 271, 276
Data Analysis add-in, 230–231. 

See also Data Analysis add-in
Equal Variances, 239
Regression, 203
Single Factor ANOVA, 140
Trace Dependents, 325
Trace Precedents, 325
t-test: Two-Sample Assuming Equal 

Variances, 221
Two-Factor Without 

Replication, 273
Unequal Variances, 239

totals, sum of squares, 76–82

Trace Dependents tool, 325

Trace Precedents tool, 325

transformations, linear predictors, 153

TRANSPOSE( ) function, 103–104

traps in charts, avoiding, 48–53

t-ratios, 111, 116, 182, 229

calculating, 187

studies, robustness, 202–204

SUMDEVSQ( ) function, 74

Sum of Squares Regression, 79

Sum of Squares Within (ANOVA), 81–82

summarizing analysis, 320–321

summing component effects, 278–293

factorial analysis with effect coding, 
279–283

regression approach, 289–293
statistical power, 283–288
unequal cell sizes, 288–289

SUMPRODUCT( ) function, 265–266

sums

deviations, 6–7
squared deviations, 7–10

sums of squares, 10–13, 73–77

adding, 74–75
adjusted regression, 312–313
analysis via, 132
Between, 75
covariates, 312
errors, 156–160
finding, 169–170
F-ratios, 173
outcome measure, 312
partitioning, 133–136
R², using instead of, 196–197
residuals, 81–82
totals, 76–82
Within, 75

SUMSQ( ) function, 263

T
T.DIST( ) function, 187

differences, 231–237
t distributions, 26, 121–122

T.DIST.RT( ) function, 25



350 t-ratios

V
validation, cross-validation, 198

values

critical, 187
lambda, 144
of covariance, 38
prediction, 62–63
ranges of, 214
R² in linear simple regression, 77–81
t-values, 23–28
y, 82–83
z-values, 18–23, 20

VARA( ) function, 12

variability, 60

variables

binominal, 117
category, 48
charting, 46
composite, 155
constants, 166–167
correlation, 34, 55
dependent, 130, 134
dummy coding, 246
independent, 130, 134
interval, 245
nominal, 117
outcome, 246
predicted, 130
predictor, 50, 130, 152–153, 245, 249

variance, 10–11, 214

analysis of variance. See ANOVA
error of the mean difference, 229
functions, 11–14
pooled, 229
proportions of, 277–278
shared, 71

degrees of freedom, 112
Dunnet multiple comparison 

 procedure, 253
quasi, TTEST( ) function, 243–244
straw man example, 207

TREND( ) function, 82–89, 104

array-entering, 84–85
const argument, 86–88
new x’s argument, 85–86

trendlines, 31, 48, 61. See also regression, 
lines

multiple regression, 160–163
TTEST( ) function, 243–244

t-tests, 111, 217

assumptions, 204
dependent groups, 244

t-test: Two-Sample Assuming Equal 
Variances tool, 221

t-values, 23–27

Two-Factor Without Replication tool, 273

two-predictor regression, semipartial 
 correlations, 167–169

two-tailed tests, 186–189

type I/type II errors, 283–288

types of charts, 47

U
unequal cell sizes, 288–289

unequal group variances, Welch’s 
 correlation, 237–243

unequal spreads

conservative tests, 220–225
equal sample sizes, 226–230
liberal tests, 225–226

unequal variances, 220

Unequal Variances tool, 239

unique variance, 99

unit normal distributions, 22



351z-values

Y
y values, 82–83

Z
zero-constant regression, calculating, 88

zeros

LINEST( ) function, 114–122
probability, measuring, 112–113
regression coefficients, 110–112

z-scores, 8, 18–23, 62

z-values, 18–23

calculations, 20

unequal, 220
unique, 99

variation measurements, 5–6

VARPA( ) function, 12

VAR.P( ) function, 10–14, 36

VAR.S( ) function, 11–14, 36

vectors, populating, 250–253

violations of assumptions, 202

VLOOKUP( ) function, 251, 263

W
Welch’s correlation, 237–243

within-cell product of deviations, 313–336

worksheets, mapping results, 163–166
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