
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780789755001
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780789755001
https://plusone.google.com/share?url=http://www.informit.com/title/9780789755001
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780789755001
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780789755001/Free-Sample-Chapter

Cameron Hughes
Tracey Hughes

800 East 96th Street

Indianapolis, Indiana 46240

Robot
Programming: A

Guide to Controlling
Autonomous

Robots

ROBOT PROGRAMMING: A GUIDE
TO CONTROLLING AUTONOMOUS
ROBOTS
Copyright © 2016 by Pearson Education

All rights reserved. Printed in the United States of America. This publication is

protected by copyright, and permission must be obtained from the publisher

prior to any prohibited reproduction, storage in a retrieval system, or transmis-

sion in any form or by any means, electronic, mechanical, photocopying, record-

ing, or likewise. For information regarding permissions, request forms, and the

appropriate contacts within the Pearson Education Global Rights & Permissions

Department, please visit www.pearsoned.com/permissions/. No patent liabil-

ity is assumed with respect to the use of the information contained herein.

Although every precaution has been taken in the preparation of this book, the

publisher and author assume no responsibility for errors or omissions. Nor is

any liability assumed for damages resulting from the use of the information con-

tained herein.

ISBN-13: 978-0-7897-5500-1

ISBN-10: 0-7897-5500-9

Library of Congress Control Number: 2015955656

First Printing: May 2016

Trademarks
All terms mentioned in this book that are known to be trademarks or service

marks have been appropriately capitalized. Que Publishing cannot attest to the

accuracy of this information. Use of a term in this book should not be regarded

as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as

possible, but no warranty or fitness is implied. The information provided is on

an “as is” basis. The authors and the publisher shall have neither liability nor

responsibility to any person or entity with respect to any loss or damages aris-

ing from the information contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special

sales opportunities (which may include electronic versions; custom cover

designs; and content particular to your business, training goals, marketing

focus, or branding interests), please contact our corporate sales department

at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief
Greg Wiegand

Executive Editor
Rick Kughen

Senior Acquisitions
Editor
Laura Norman

Development Editor
William Abner

Technical Editor
John Baichtal

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Geneil Breeze

Indexer
Ken Johnson

Proofreader
Gill Editorial Services

Editorial Assistant
Cindy Teeters

Cover Designer
Chuti Prasertsith

Compositor
Bronkella Publishing

http://www.pearsoned.com/permissions/

CONTENTS AT A GLANCE

 Introduction 1

 1 What Is a Robot Anyway? 9

 2 Robot Vocabularies 33

 3 RSVP: Robot Scenario Visual Planning 47

 4 Checking the Actual Capabilities of Your Robot 73

 5 A Close Look at Sensors 91

 6 Programming the Robot’s Sensors 115

 7 Programming Motors and Servos 159

 8 Getting Started with Autonomy: Building Your Robot’s Softbot Counterpart 219

 9 Robot SPACES 241

 10 An Autonomous Robot Needs STORIES 265

 11 Putting It All Together: How Midamba Programmed His First Autonomous Robot 307

 12 Open Source SARAA Robots for All! 343

 A BURT’s Gotchas 351

 Index 357

Giving the Robot Instructions 25

Every Robot Has a Language 25

Meeting the Robot’s Language

Halfway 27

How Is the Robot Scenario

Represented in Visual Programming

Environments? 30

Midamba’s Predicament 30

What’s Ahead? 32

 2 Robot Vocabularies 33

Why the Additional Effort? 34

Identify the Actions 38

The Autonomous Robot’s ROLL Model 39

Robot Capabilities 41

Robot Roles in Scenarios and

Situations 42

What’s Ahead? 44

 3 RSVP: Robot Scenario Visual
Planning 47

Mapping the Scenario 48

Creating a Floorplan 49

The Robot’s World 52

RSVP READ SET 53

Pseudocode and Flowcharting RSVP 56

Flow of Control and Control

Structures 60

Subroutines 64

Statecharts for Robots and Objects 66

Developing a Statechart 68

What’s Ahead? 72

CONTENTS

Introduction 1

Robot Programming Boot Camp 2

Ready, Set, Go! No Wires or Strings
Attached 2

Boot Camp Fundamentals 3

Core Robot Programming Skills Introduced
in This Book 4

BURT—Basic Universal Robot

Translator 4

BRON—Bluetooth Robot Oriented

Network 6

Assumptions About the Reader’s
Robot(s) 6

How Midamba Learned to Program a
Robot 7

 1 What Is a Robot Anyway? 9

The Seven Criteria of Defining a Robot 10

Criterion #1: Sensing the

Environment 11

Criterion #2: Programmable Actions and

Behavior 11

Criterion #3: Change, Interact with, or

Operate on Environment 11

Criterion #4: Power Source Required 11

Criterion #5: A Language Suitable for

Representing Instructions and Data 12

Criterion #6: Autonomy Without External

Intervention 12

Criterion #7: A Nonliving Machine 13

Robot Categories 13

What Is a Sensor? 16

What Is an Actuator? 17

What Is an End-Effector? 18

What Is a Controller? 19

What Scenario Is the Robot In? 23

Digital Cameras Used to Detect and Track
Color Objects 124

Tracking Colored Objects with RS
Media 124

Tracking Colored Objects with the Pixy
Vision Sensor 128

Training Pixy to Detect Objects 129

Programming the Pixy 130

A Closer Look at the Attributes 134

Ultrasonic Sensor 135

Ultrasonic Sensor Limitations and

Accuracy 135

Modes of the Ultrasonic Sensor 139

Sample Readings 140

Data Types for Sensor Reading 141

Calibration of the Ultrasonic Sensor 141

Programming the Ultrasonic Sensor 143

Compass Sensor Calculates Robot’s
Heading 153

Programming the Compass 154

What’s Ahead? 157

 7 Programming Motors and
Servos 159

Actuators Are Output Transducers 159

Motor Characteristics 160

Voltage 160

Current 161

Speed 161

Torque 161

Resistance 161

Different Types of DC Motors 161

Direct Current (DC) Motors 162

Speed and Torque 165

Motors with Gears 167

Motor Configurations: Direct and Indirect
Drivetrains 177

Terrain Challenge for Indoor and Outdoor
Robots 178

 4 Checking the Actual Capabilities
of Your Robot 73

The Reality Check for the
Microcontroller 76

Sensor Reality Check 79

Determine Your Robot’s Sensor

Limitations 81

Actuators End-Effectors Reality Check 84

REQUIRE Robot Effectiveness 87

What’s Ahead? 89

 5 A Close Look at Sensors 91

What Do Sensors Sense? 92

Analog and Digital Sensors 95

Reading Analog and Digital Signals 97

The Output of a Sensor 99

Where Readings Are Stored 100

Active and Passive Sensors 101

Sensor Interfacing with

Microcontrollers 103

Attributes of Sensors 107

Range and Resolution 108

Precision and Accuracy 108

Linearity 109

Sensor Calibration 110

Problems with Sensors 111

End User Calibration Process 112

Calibration Methods 112

What’s Ahead? 114

 6 Programming the Robot’s
Sensors 115

Using the Color Sensor 116

Color Sensor Modes 118

Detection Range 119

Lighting in the Robot’s

Environment 119

Calibrating the Color Sensor 119

Programming the Color Sensor 120

vi Robot Programming: A Guide to Control l ing Autonomous Robots

 9 Robot SPACES 241

A Robot Needs Its SPACES 242

The Extended Robot Scenario 242

The REQUIRE Checklist 245

What Happens If Pre/Postconditions Are

Not Met? 248

What Action Choices Do I Have If Pre/

Postconditions Are Not Met? 248

A Closer Look at Robot Initialization
Postconditions 249

Power Up Preconditions and

Postconditions 251

Coding Preconditions and

Postconditions 252

Where Do the Pre/Postconditions Come

From? 257

SPACES Checks and RSVP State
Diagrams 262

What’s Ahead? 263

 10 An Autonomous Robot Needs
STORIES 265

It’s Not Just the Actions! 266

Birthday Robot Take 2 266

Robot STORIES 268

The Extended Robot Scenario 269

Converting Unit1’s Scenario into

STORIES 269

A Closer Look at the Scenario’s

Ontology 271

Paying Attention to the Robot’s

Intention 282

Object-Oriented Robot Code and

Efficiency Concerns 304

What’s Ahead? 306

Dealing with Terrain Challenges 179

Torque Challenge for Robot Arm and

End-Effectors 182

Calculating Torque and Speed

Requirements 182

Motors and REQUIRE 183

Programming the Robot to Move 184

One Motor, Two, Three, More? 185

Making the Moves 186

Programming the Moves 186

Programming Motors to Travel to a

Location 191

Programming Motors Using

Arduino 198

Robotic Arms and End-Effectors 200

Robot Arms of Different Types 201

Torque of the Robot Arm 203

Different Types of End-Effectors 205

Programming the Robot Arm 208

Calculating Kinematics 212

What’s Ahead? 216

 8 Getting Started with Autonomy:
Building Your Robot’s Softbot
Counterpart 219

Softbots: A First Look 222

Parts Section 224

The Actions Section 224

The Tasks Section 224

The Scenarios/Situations Section 224

The Robot’s ROLL Model and Softbot
Frame 225

BURT Translates Softbots Frames into

Classes 227

Our First Pass at Autonomous Robot

Program Designs 239

What’s Ahead? 240

Contents vii

Recommendations for First-Time Robot

Programmers 348

Complete RSVPs, STORIES, and Source

Code for Midamba’s Scenario 349

 A BURT’s Gotchas 351

 Index 357

 11 Putting It All Together: How
Midamba Programmed His First
Autonomous Robot 307

Midamba’s Initial Scenario 307

Midamba Becomes a Robot Programmer

Overnight! 308

Step 1. Robots in the Warehouse

Scenario 310

Step 2. The Robot’s Vocabulary and

ROLL Model for Facility Scenario

#1 312

Step 3. RSVP for Facility Scenario

#1 313

Visual Layouts of a Robot POV

Diagram 315

Midamba’s Facility Scenario #1

(Refined) 316

Graphical Flowchart Component of the

RSVP 317

State Diagram Component of the

RSVP 324

Midamba’s STORIES for Robot Unit1 and
Unit2 325

Autonomous Robots to Midamba’s

Rescue 338

Endnote 342

What’s Ahead? 342

 12 Open Source SARAA Robots for
All! 343

Low-Cost, Open-Source, Entry-Level
Robots 344

Scenario-Based Programming Supports

Robot Safety and Programmer

Responsibility 345

SARAA Robots for All 346

ABOUT THE AUTHORS
Cameron Hughes is a computer and robot programmer. He holds a post as a Software

Epistemologist at Ctest Laboratories where he is currently working on A.I.M. (Alternative

Intelligence for Machines) and A.I.R. (Alternative Intelligence for Robots) technologies.

Cameron is the lead AI Engineer for the Knowledge Group at Advanced Software Construction

Inc., a builder of intelligent robot controllers and software-based knowledge components. He

holds a staff appointment as a Programmer/Analyst at Youngstown State University.

Tracey Hughes is a senior software and graphics programmer at Ctest Laboratories and

Advanced Software Construction Inc. where she develops user interfaces and information and

epistemic visualization software systems. Her work includes methods of graphically showing

what robots and computers are thinking. She is on the design and implementation teams for

the East-Sidaz robots at Ctest as well.

Both Cameron and Tracey Hughes are members of the advisory board for the NREF (National

Robotics Education Foundation) and members of the Oak Hill Collaborative Robotics Maker

Space. They are project leaders of the technical team for the NEOACM CSI/CLUE Robotics

Challenge and regularly organize and direct robot programming workshops for the Arduino,

Mindstorms EV3, LEGO NXT, and RS Media robot platforms. Cameron and Tracey are two

of the authors of Build Your Own Teams of Robots with LEGO® Mindstorms® NXT and
Bluetooth, published by McGraw-Hill/TAB Electronics, January 2013. They have written many

books and blogs on Software Development and Artificial Intelligence. They’ve also written

books on multicore, multithreaded programming, Linux rapid application development, object-

oriented programming, and parallel programming in C++.

Dedication
We dedicate this book to all those open source robot maker spaces that in spite of
humble and meager resources continue to toil against the improbable and do amazing
things with robots.

ACKNOWLEDGMENTS
We are greatly indebted to Valerie Cannon who played the role of “on location” robo-journalist

and photographer for us at the 2015 DARPA Robotics Search and Rescue Challenge at the

Fairplex in Pomona, California.

We would like to thank our two interviewees for our “Bron’s Believe It or Not” interviews. We

also thank Ken Burns from Tiny Circuits of Akron, Ohio, who provided us with a personal tour

of his Arduino manufacturing space and endured our probing interview questions. Portions

of the material on Arduino robotics hardware, especially the Phantom X Pincher Robot Arm,

would not have been possible without the time and interview given to us from Kyle Granat at

Trossen Robotics.

We are also indebted to the NEOACM CSI-Clue robotics challenge team who acted as a sound-

ing board and early test bed for many of the robot example programs in this book. We are for-

tunate to be part of Ctest Laboratories, which provided us with unfettered access to their East

Sidaz and Section 9 robots. The East Sidaz and Section 9 met every challenge we could throw

at them. A special thanks to Pat Kerrigan, Cody Schultz, Ken McPherson, and all the folks at

the Oak Hill Collaborative Robotics Maker Space who allowed us to subject them to some

of our early robot designs. A special thanks to Howard Walker from Oak Hill Collaborative

who introduced us to the Pixy camera. Thanks to Jennifer Estrada from Youngstown State

University for her help with the Arduino-to-Bluetooth-to-Vernier magnetic field sensor con-

nection and code. A special thanks goes to Bob Paddock for offering his insight and expertise

on sensors and giving us a clear understanding of the Arduino microcontroller. A shout-out to

Walter Pechenuk from IEEE Akron, Ohio, chapter for his subtle, cool, and calm interaction and

responses as we went on endlessly about our approach to autonomous robotics. Further, this

simply could not have been written without the inspiration, tolerance, and indirect contribution

of many of our colleagues.

WE WANT TO HEAR FROM YOU!
As the reader of this book, you are our most important critic and commentator. We value your

opinion and want to know what we’re doing right, what we could do better, what areas you’d

like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like

about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name

and email address. We will carefully review your comments and share them with the author

and editors who worked on the book.

Email: feedback@quepublishing.com

Mail: Que Publishing

ATTN: Reader Feedback

800 East 96th Street

Indianapolis, IN 46240 USA

READER SERVICES
Register your copy of Robot Programming at quepublishing.com for convenient access to

downloads, updates, and corrections as they become available. To start the registration pro-

cess, go to quepublishing.com/register and log in or create an account*. Enter the product

ISBN, 9780789755001, and click Submit. Once the process is complete, you will find any avail-

able bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us in order to receive exclusive dis-

counts on future editions of this product.

ROBOT BOOT CAMP

caution
We who program robots have a special responsibility to make sure that
the programming is safe for the public and safe for the robots. The safety
of robot interaction with humans, animals, robots, or property is a pri-
mary consideration whenever a robot is being programmed. This is true
for all kinds of robot programming and especially true for programming
autonomous robots, which is the kind of robot programming that we
explain in this book. The robot commands, instructions, programs, and
software presented in this book are meant for exposition purposes only
and as such are not suitable for safe public interaction with people, ani-
mals, robots, or property.

A serious treatment of robot safety is beyond the scope of this introduc-
tory book. Although the robot examples and applications presented in
this book were tested to ensure correctness and appropriateness, we
make no warranties that the commands, instructions, programs, and
software are free of defects or error, are consistent with any particular
standard of merchantability, or will meet your requirements for any par-
ticular application.

The robot code snippets, programs, and examples are meant for exposi-
tion purposes only and should not be relied on in any situation where
their use could result in injury to a person, or loss of property, time, or
ideas. The authors and publisher disclaim all liability for direct or con-
sequential damages resulting from your use of the robots, commands,
instructions, robot programs, and examples presented in this book or
contained on the supporting website for this book.

INTRODUCTION

Robot Boot Camp2

Robot Programming Boot
Camp

Welcome to Robot Programming: A Guide to Controlling
Autonomous Robots. This robot programming “boot camp”

ensures that you have all the information needed to get started.

We have built and programmed many types of robots ranging

from simple single-purpose robots to advanced multifunction

autonomous robot teams and have found this short robot pro-

gramming boot camp indispensable for those who are new to

programming robots or who want to learn new techniques to

program robots.

Ready, Set, Go! No Wires or
Strings Attached

There are two basic categories for robot control and robot opera-

tion as shown in Figure I.1.

The telerobot group represents robot operations that are remotely

controlled by a human operator using some kind of remote control

device or puppet mode. Some remote controls require a tether (a

wire of some sort) to be physically connected to the robot, and

other types of remote control are wireless (for example, radio con-

trol or infrared).

The autonomous robot group represents the kind of robot that

does not require a human operator. Instead, the robot accesses

a set of instructions and carries them out autonomously without

intervention or interruption from a remote control.

In this book, we focus on the autonomous group of robot

operations and robot programming. Although we often discuss,

explain, and contrast telerobots and autonomous robots, our

primary focus is on introducing you to the basic concepts of pro-

gramming a robot to operate and execute assigned tasks autono-

mously.

As you see in Chapter 9, “Robot SPACES,” there are hybrids of

the two types of robot control/operation with different mixes and

matches for operation strategies. You are introduced to tech-

niques that allow for mixing and matching different robot control

strategies.

caution
Although Robot Programming:
A Guide to Controlling
Autonomous Robots does not
assume that you have any pre-
vious experience programming
robots, to get the most out
the book it is assumed that
you are familiar with basic
programming techniques in
standard programming lan-
guages such as Java or C++.
While the book does present
all the final robot programs in
Java or C++, the basic robot
instruction techniques and
concepts are presented with
diagrams or plain English first.
The book also introduces you
to approaches to program
design, planning, and analysis
such as RSVP (Robot Scenario
Visual Planning) and REQUIRE
(Robot Effectiveness Quotient
Used in Real Environments) .

note
All robot instructions,
commands, and programs
in this book have been
tested on ARM7, ARM9
microcontroller-based robots
as well as on the widely
available and popular LEGO
NXT and EV3-based robots.
All other robot-based
software used in this book
was tested and executed
in Mac OSX and Linux
environments.

3Boot Camp Fundamentals

Boot Camp Fundamentals
Five basic questions must be answered prior to any attempt to program a robot:

 1. What type of robot is being considered?

 2. What is the robot going to do?

 3. Where is the robot going to do it?

 4. How is the robot going to do it?

 5. How will the robot be programmed?

Many beginner and would-be robot programmers fail to answer these basic questions and end

up with less than successful robot projects. Having the answers to these fundamental questions

is the first step in the process of getting any kind of robot to execute the assigned task. In Robot
Programming: A Guide to Controlling Autonomous Robots we demonstrate how these questions

and their answers are used to organize a step-by-step approach to successfully instructing a robot to

autonomously carry out a set of tasks.

TWO BASIC CATEGORIES OF ROBOT OPERATION

Tele-
Operation

Remote-
Controlled

Tethered Wireless

AUTONOMOUS

Behavior-
Based

Logic-
Controlled

TELEROBOT

Figure I.1
The two basic
categories of
robot opera-
tion

Robot Boot Camp4

Core Robot Programming Skills Introduced
in This Book

In this book, we introduce you to the following basic techniques of the Robot Boot Camp shown in

Table I.1.

Table I.1 The Boot Camp Notes

Techniques Description

Robot motion planning & pro-
gramming

Arm movement

Gripper programming

End-effector movement

Robot navigation

Programming the robot to use
different types of sensors

Infrared sensors

Ultrasonic sensors

Touch sensors

Light sensors

RFID sensors

Camera sensors

Temperature sensors

Sound sensors

Analysis sensors

Motor use Motors used in robot navigations

Motors used in robotic arms, grippers, and end-
effectors

Motors used in sensor positioning

Decision-making Robot action selection

Robot direction selection

Robot path selection

Instruction translation Translating English instructions and commands into a
programming language or instructional format that a
robot can process

These techniques are the core techniques necessary to get a robot to execute almost any assigned

task. Make note of these five areas because they represent the second step in building a solid foun-

dation for robot programming.

BURT—Basic Universal Robot Translator
In this book, we use two aids to present the robot programs and common robot programming issues

in an easy-to-understand and quick reference format. The first aid, BURT (Basic Universal Robot

5Core Robot Programming Skil ls Introduced in This Book

Translator), is used to present all the code snippets, commands, and robot programs in this book.

BURT shows two versions of each code snippet, command, or robot program:

• Plain English version

 • Robot language version

BURT is used to translate from a simple, easy-to-understand English version of a set of instructions

to the robot language version of those instructions.

In some cases the English version is translated into diagrams that represent the robot instructions.

In other cases, BURT translates the English into standard programming languages like Java or C++.

BURT can also be used to translate English instructions into robot visual instruction environments

like Labview or LEGO’s G language for Mindstorms robots.

The BURT Translations are numbered and can be used for quick reference guides on programming

techniques, robot instructions, or commands. BURT Translations have two components; an input

and an output component. The input component will contain the pseudocode, or RSVPs. The output

component will contain the program listing, whether it be a standard language or visual instruction.

They will be accompanied with the BURT Translation Input or Output logo as shown in Figure I.2.

In addition to BURT Translations, this book contains BURT Gotchas, a.k.a. BURT’s Glossary of

Technical Concepts and Helpful Acronyms. The world of robot programming is full of technical

terms and acronyms that may be unfamiliar or tricky to recall. BURT Gotchas provide a convenient

place to look up any acronym or some of the more technical terms used in this book. In some cases

BURT Gotchas are listed at the end of the chapter in which they are first used, but a complete list of

all of BURT Gotchas can be found in the book’s glossary.

Figure I.2
BURT Translation
Input and Output
logos

Robot Boot Camp6

BRON—Bluetooth Robot Oriented Network
The second aid is BRON (Bluetooth Robot Oriented Network). We have put together a small team of

robots that are connected and communicate through Bluetooth wireless protocols and the Internet.

It is the responsibility of this team of robots to locate and retrieve useful tips, tricks, little-known

facts, interviews, and news from the world of robot programming that the reader will find interest-

ing and helpful. This material is presented in sections titled BRON’s Believe It or Not and are identi-

fied by the logo shown in Figure I.3.

Believe It
Or Not!

Figure I.3
BRON’s Believe It or Not logo

These sections contain supplementary material that the reader can skip, but often offer additional

insight on some idea that has been presented in the chapter. In some instances, a BRON’s Believe

It or Not contains news that is hot off the presses and relevant to some aspect of robot program-

ming. In other instances, a BRON section contains excerpts from interviews of individuals making

important contributions to the world of robotics or robot programming. In all cases, BRON’s Believe

It or Not sections are designed to give you a deeper understanding and appreciation for the world of

robotics and robot programming.

Assumptions About the Reader’s Robot(s)
Robot Programming: A Guide to Controlling Autonomous Robots can be read and much can be

learned without any access to robots at all. Most chapters explain the concepts in plain English and

are reinforced with diagrams. However, to get the maximum benefit from reading this book, it is

7How Midamba Learned to Program a Robot

assumed you will try out and test the commands, instructions, or

programs on robots that you have access to.

We used and tested the instructions and programs in this book on

several different types of robots, and the ideas presented in this

book broadly apply to many classes of robots. If you have access

to a robot with at least one capability from each column shown

in Table I.2, you will be able to adapt any program in this book to

your robot.

Table I.2 The Boot Camp’s Matrix of Robot Capabilities

Movement Capability Sensing Actuating Control

Wheels

Bipedal

Quadruped

Hexaped (etc.)

Aerial

Infrared

Ultrasonic

Camera

Heat

Light

Color

Touch

Gripper

Robot arm

Pusher

ARM7 Microcontroller

ARM9 Microcontroller

LEGO Mindstorms EV3 Microcontroller

LEGO Mindstorms NXT Microcontroller

Arduino

ARM Cortex/Edison Processor

How Midamba Learned to Program a
Robot

In this book, we tell a short story of how free-spirited, fun-loving Midamba found himself in a pre-

carious predicament. As luck would have it, his only chance out of the predicament required that he

learn how to program robots. Although Midamba had some basic experience programming a com-

puter, he had very little knowledge of robots and no experience programming them. So throughout

the book, we use Midamba’s predicament and his robot programming triumph as an example. We

walk you through the same basic lessons that Midamba learned and the steps he had to take to suc-

cessfully program his first robot.

note
We do show you how to
program a robot to use other
sensors beyond those listed in
Table I.2. But the main ideas
in the book can be tried and
tested with only those listed
in Table I.2.

This page intentionally left blank

3

RSVP: ROBOT SCENARIO
VISUAL PLANNING

Robot Sensitivity Training Lesson #3: Don’t instruct the robot to perform
a task you can’t picture it performing.

As described in Chapter 2, “Robot Vocabularies,” the robot vocabulary

is the language you use to assign a robot tasks for a specific situation or

scenario. And once a vocabulary has been established, figuring out the

instructions for the robot to execute using that vocabulary is the next step.

Making a picture or a “visual representation” of the scenario and instruc-

tions you want the robot to perform can be great way to ensure your robot

performs the tasks properly. A picture of the instructions the robot will

perform allows you to think through the steps before translating them to

the code. Visuals can help you understand the process, and studying that

visual can improve its development by seeing what has to be done and

elucidating that which may otherwise pose a problem. We call this the

RSVP (Robot Scenario Visual Planning). The RSVP is a visual that helps

develop the plan of instructions for what the robot will do. The RSVP is

composed of three types of visuals:

 • A floorplan of the physical environment of the scenario

 • A statechart of the robot and object’s states

 • Flowcharts of the instructions for the tasks

These visuals ensure that you have a “clear picture” of what has to be

done to program a robot to do great feats that can save the world or light

the candles on a cake. RSVP can be used in any combination. Flowcharts

may be more useful than statecharts for some. For others, statecharts are

best. All we suggest is that a floorplan or layout is needed whether stat-

echarts or flowcharts are utilized.

RSVP: Robot Scenario Visual Planning48

3

C
H

A
PT

ER

The saying “a picture is worth a thousand words” means that a single image can convey the mean-

ing of a complex idea as well as a large amount of descriptive text. We grew up with this notion

while in grade school especially when trying to solve word problems; “draw a picture” of the main

ideas of the word problem and magically it becomes clear how to solve it. That notion still works. In

this case, drawing a picture of the environment, a statechart, and flowcharts will be worth not only

a thousand words but a thousand commands. Developing an RSVP allows you to plan your robot

navigation through your scenario and work out the steps of the instructions for the tasks in the vari-

ous situations. This avoids the trials and errors of directly writing code.

Mapping the Scenario
The first part of the RSVP is a map of the scenario. A map is a symbolic representation of the envi-

ronment where the tasks and situations will take place. The environment for the scenario is the

world in which the robots operate. Figure 3.1 shows the classic Test Pad for NXT Mindstorms robot.

Figure 3.1
A robot world for NXT Mindstorms Test Pad

A Test Pad like the one shown in Figure 3.1 is part of the Mindstorms robot kits. This Test Pad is

approximately 24 inches wide, 30 inches long, and has a rectangular shape. There are 16 colors on

the Test Pad and 38 unique numbers with some duplicates. There is a series of straight lines and

arcs on the pad. Yellow, blue, red, and green squares are on the Test Pad along with other colored

shapes in various areas on the pad. It is the robot’s world or environment used for the initial testing

of NXT Mindstorms robots’ color sensors, motors, and so on.

49Mapping the Scenario

3

C
H

A
PTER

Like the Test Pad, a floorplan shows the locations of objects that are to be recognized like colored

squares, objects the robot will interact with, or obstacles to be avoided. If objects are too high or too

far away, sensors may not be able to determine their location. Determining the path the robot must

navigate to reach those locations can also be planned by using this

map.

The dimension of the space and of the robot (the robot footprint)

may affect the capability of the robot to navigate the space and

perform its tasks. For example, for our BR-1 robot, what is the

location of the cake relative to the location of the robot? Is there a

path? Are there obstacles? Can the robot move around the space?

This is what the map helps determine.

Creating a Floorplan
The map can be a simple 2D layout or floorplan of the environment using geometric shapes, icons,

or colors to represent objects or robots. For a simple map of this kind, depicting an accurate scale is

not that important, but objects and spaces should have some type of relative scale.

Use straight lines to delineate the area. Decide the measurement system. Be sure the measurement

system is consistent with the API functions. Use arrows and the measurements to mark the dimen-

sions of the area, objects, and robot footprint. It’s best to use a vector graphics editor to create the

map. For our maps we use Libre Office Draw. Figure 3.2 shows a simple layout of a floorplan of the

robot environment for BR-1.

In Figure 3.2, the objects of interest are designated: locations of the robot, the table, and the cake

on the table. The floorplan marks the dimensions of the area and the footprint of the robot. The

lower-left corner is marked (0,0) and the upper-right corner is marked (300,400). This shows the

dimensions of the area in cm. It also marks distances between objects and BR-1. Although this floor-

plan is not to scale, lengths and widths have a relative relationship. BR-1’s footprint length is 50 cm

and width is 30 cm.

BR-1 is to light the candles on the cake. The cake is located at the center of an area that is 400 cm ×

300 cm. The cake has a diameter of 30 cm on a table that is 100 cm × 100 cm. That means the robot

arm of BR-1 should have a reach of at least 53 cm from the edge of the table to reach the candle at

the farthest point in the X dimension.

The maximum extension of the robot arm to the tip of the end-effector is 80 cm, and the length of

the lighter adds an additional 10 cm. The task also depends on some additional considerations:

 • The height of the candle

 • The height of the cake

 • The length of BR-1 from the arm point to the top of the candle wick

 • The location of the robot

tip
Next to the actual robot, the
robot’s environment is the
most important consider-
ation.

RSVP: Robot Scenario Visual Planning50

3

C
H

A
PT

ER

CAKE

CANDLES

100 cm

10
0

cm

BR-1 POINT
OF ORIGIN

25 cm

FLOORPLAN OF BIRTHDAY PARTY

X

NEW
LOCATION

30 cm

50 cm

30 cm5 cm
20 cm

X

(0, 0)

(300, 400)

150 cm

400 cm

300 cm

CUP and DISH

Figure 3.2
A layout of the
floorplan for the
BR-1 robot envi-
ronment

Figure 3.3 shows how to calculate the required reach to light the candle. In this case, it is the hypot-

enuse of a right triangle. Leg “a” of the triangle is the height of the robot from the top of the wick to

the robot arm joint which is 76 cm, and leg “b” is the radius of the table plus the 3 cm to the loca-

tion of the farthest candle on the cake, which is 53 cm.

So the required reach of the robot arm, end-effector, and lighter is around 93 cm. But the robot’s

reach is only 90 cm. So BR-1 will have to lean a little toward the cake or get a lighter that is 3 cm

longer to light the wick.

51Mapping the Scenario

3

C
H

A
PTER

note
Determining the positions and required extension of a robot arm is far more complicated than this simple
example and is discussed in Chapter 9, “Robot SPACES.” But what is important in the example is how the
layout/floorplan helps elucidate some important issues so that you can plan your robot’s tasks.

HYPOTE
NUSE A

ND R
EACH O

F R
OBOT A

RM

b = 53 cm

a = 76 cm

HYPOTENUSE = a + b2 2 2

CALCULATING LENGTH OF ROBOT ARM
Figure 3.3
Calculating the length of the robot arm as
the hypotenuse of a right triangle

RSVP: Robot Scenario Visual Planning52

3

C
H

A
PT

ER

The Robot’s World
For the robot to be automated it requires details about its envi-

ronment. Consider this: If you are traveling to a new city you

know nothing about, how well will you be able to do the things

you want to do? You do not know where anything is. You need

a map or someone to show you around and tell you “here is a

restaurant” and “here is a museum.” A robot that is fully auto-
mated must have sufficient information about the environment.

The more information the robot has, the more likely the robot can

accomplish its goal.

All environments are not alike. We know environments are dynamic. The robot’s environments

can be partially or fully accessible to a robot. A fully accessible environment means all objects and

aspects of the environment are within the reach of the robot’s sensors. No object is too high, low, or

far away from the robot to detect or interact with. The robot has all the necessary sensors to receive

input from the environment. If there is a sound, the robot can detect it with its sound sensor. If a

light is on, the robot can detect it with its light sensor.

A partially accessible environment means there are aspects of the environment the robot cannot

detect or there are objects the robot cannot detect or interact with because it lacks the end-effector

to pick it up or the location sensor to detect it. An object that is 180 cm from the ground is out of

the reach of the robot with a 80 cm arm extension and a height of 50 cm. What if BR-1 is to light the

candles once the singing begins and it does not have a sound sensor? Sound is part of the environ-

ment; therefore, it will not be able to perform the task. So when creating the floorplan for a partially

accessible environment, consider the “robot’s perspective.” For example, for objects that are not

accessible by the robot, use some visual indicator to distinguish those for the objects the robot can

access. Use color or even draw a broken line around it.

Deterministic and Nondeterministic Environments
What about control? Does the robot control every aspect of its environment? Is the robot the only

force that controls or manipulates the objects in its environment? This is the difference between a

deterministic and nondeterministic environment .

With a deterministic environment, the next state is completely determined by the current state and

the actions performed by the robot(s). This means if the BR-1 robot lights the candles, they will stay

lit until BR-1 blows them out. If BR-1 removes the dishes from the table, they will stay in the loca-

tion they’re placed.

With a nondeterministic environment, like the one for the birthday party scenario, BR-1 does not

blow out the candles. (It would be pretty mean if it did.) Dishes can be moved around by the attend-

ees of the party, not just BR-1. What if there are no obstacles between BR-1 and its destination and

then a partygoer places an obstacle there? How can BR-1 perform its tasks in a dynamic nondeter-

ministic environment?

Each environment type has its own set of challenges. With a dynamic nondeterministic environ-

ment, the robot is required to consider the previous state and the current state before a task is

attempted and then make a decision whether the task can be performed.

Table 3.1 lists some of the types of environments with a brief description.

note
The robot’s world is the envi-
ronment where the robot
performs it tasks. It’s the only
world the robot is aware of.
Nothing outside that environ-
ment matters, and the robot
is not aware of it.

53Mapping the Scenario

3

C
H

A
PTER

Table 3.1 Some Types of Environments with a Brief Description

Environment Type Description

Fully accessible All aspects of the environment are accessible through the robot’s
sensors, actuators, and end-effectors.

Partially accessible Some objects are not accessible or cannot be sensed by the robot.

Deterministic The next state of the environment is completely determined by the
current state and actions performed by the robot.

Nondeterministic The next state of the environment is not completely under the control
of the robot; the object may be influenced by outside factors or external
agents.

RSVP READ SET
Many aspects of the environment are not part of the layout or

floorplan but should be recorded somehow to be referenced when

developing the instructions for the tasks. For example, the color,

weight, height, and even surface type of the objects are all detect-

able characteristics that are identified by sensors or affect motors

and end-effectors as well as the environment type, identified out-

side forces, and their impact on objects.

Some of these characteristics can be represented in the floorplan.

But a READ set can contain all the characteristics. Each type of

environment should have its own READ set.

For example, color is a detectable characteristic identified by a

color or light sensor. The object’s weight determines whether the

robot can lift, hold, or carry the object to another location based on

the torque of the servos. The shape, height, and even the surface

determine whether the object can be manipulated by the end-

effector.

Any characteristic of the environment is part of the READ set, such as dimensions, lighting, and

terrain. These characteristics can affect how well sensors and motors work. The lighting of the envi-

ronment, whether sunlight, ambient room light, or candle light, affects the color and light sensor dif-

ferently. A robot traveling across a wooden floor is different from the robot traveling across gravel,

dirt, or carpet. Surfaces affect wheel rotation and distance calculations.

Table 3.2 is the READ set for the Mindstorms NXT Test Pad.

note
A READ (Robot
Environmental Attribute
Description) set is a construct
that contains a list of objects
that the robot will encounter,
control, and interact with
within the robot’s environ-
ment. It also contains char-
acteristics and attributes of
the objects detectable by the
robot’s sensors or that affect
how the robot will interact
with that object.

RSVP: Robot Scenario Visual Planning54

3

C
H

A
PT

ER

Table 3.2 READ Set for the Mindstorms NXT Test Pad

Object: Physical Work Space

Attribute Value

Environment type Deterministic, fully accessible

Width 24 inches

Length 30 inches

Height 0

Shape Rectangular

Surface Paper (smooth)

Object: Color (Light)

Attribute Value

Num of colors 16

Light intensities 16

Colors Red, green, blue, yellow, orange, white, black, gray, green, light
blue, silver, etc.

Object: Symbols

Attribute Value

Symbol Integers

Integer values 0–30, 90, 120, 180, 270, 360, 40, 60, 70

Geometric Lines, arcs, squares

The READ set for the Test Pad describes the workspace including its type (fully accessible and

deterministic), all the colors, and symbols. It describes what will be encountered by a robot when

performing a search, such as identifying the blue square. The sets list the attributes and values of

the physical workspace, colors, and symbols on the Test Pad.

For a dynamic environment such as our birthday party scenario, the READ set can contain informa-

tion pertaining to the outside forces that might interact with the objects. For example, there are

initial locations for the dishes and cups on the table, but the partygoers may move their dishes and

cups to a new location on the table. The new locations should be represented in the READ set along

with the time or the condition this occurred. Once the party is over and BR-1 is to remove those

dishes and cup, each location should be updated. Table 3.3 is the READ set for the birthday party

for the BR-1.

55Mapping the Scenario

3

C
H

A
PTER

Table 3.3 READ Set for the Birthday Party Scenario

Object: Physical Work Space

Attribute Value Force Time/Condition New Value

Environment type Nondeterministic

partially

Width 300 cm

Length 400 cm

Height 0

Shape Rectangular

Surface Paper (smooth)

Lighting Artificial

Object: Cake

Attribute Value Force Time/Condition New Value

Height 14 cm

Diameter 30 cm

Location 150, 200 External N/A

Placement Table External N/A

Related objects Candles

Object: Candles

Attribute Value Force Time/Condition New Value

Height 4 cm

Number of candles 3

Locations 1 153, 200

2 150, 200

3 147, 200

External N/A

Condition 1 Unlit BR-1 Singing starts Lit

Condition 2 Lit External Singing ends Unlit

Object: Dishes

Attribute Value Force Time/Condition New Value

Diameter 20 cm

Height 1 cm

Number of dishes 4

Locations 1 110, 215

2 110, 180

3 170, 215

4 170, 180

External After party
ends

All at 110, 215
(stacked)

Height 2 cm

RSVP: Robot Scenario Visual Planning56

3

C
H

A
PT

ER

Object: Cups

Attribute Value Force Time/Condition New Value

Diameter 5 cm

Height 10 cm

Number of dishes 4

Locations 1 119, 218

2 105, 189

3 165, 224

4 163, 185

External After party
ends

All at 119, 218
(stacked)

Height 14 cm

This READ set has three additional columns:

• Force

 • Time/Condition

 • New Value

Force is the source of the iteration with the object; this force is anything working in the environ-

ment that is not the robot. The Time/Condition denotes when or under what condition the force

interacts with the object. The New Value is self-explanatory.

Pseudocode and Flowcharting RSVP
Flowcharting is an RSVP used to work out the flow of control of an object to the whole system. It is

a linear sequence of lines of instructions that can include any kind of looping, selection, or decision-

making. A flowchart explains the process by using special box symbols that represent a certain type

of work. Text displayed within the boxes describes a task, process, or instruction.

Flowcharts are a type of statechart (discussed later in this chapter) since they also contain states

that are converted to actions and activities. Things like decisions and repetitions are easily repre-

sented, and what happens as the result of a branch can be simply depicted. Some suggest flow-

charting before writing pseudocode. Pseudocode has the advantage of being easily converted to a

programming language or utilized for documenting a program. It can also be easily changed. A flow-

chart requires a bit more work to change when using flowcharting software.

Table 3.4 list advantages and disadvantages of pseudocode and flowcharting. Both are great tools

for working out the steps. It is a matter of personal taste which you will use at a particular time in a

project.

57Pseudocode and Flowcharting RSVP

3

C
H

A
PTER

Table 3.4 Advantages and Disadvantages of Pseudocode and Flowcharting

RSVP Type Advantages Disadvantages

Pseudocode:

A method of describing com-
puter instructions using a
combination of natural lan-
guage or programming lan-
guage.

Easily created and modified in
any word processor.

Implementation is useful in
any design.

Written and understood easily.

Easily converted to a program-
ming language.

Is not visual.

No standardized style or
format.

More difficult to follow the
logic.

Flowcharting:

Flow from the top to the bot-
tom of a page. Each command
is placed in a box of the appro-
priate shape, and arrows are
used to direct program flow.

Is visual, easier to communi-
cate to others.

Problems can be analyzed
more effectively.

Can become complex and
clumsy for complicated
logic.

Alterations may require
redrawing completely.

The four common symbols used in flowcharting are

 • Start and stop: The start symbol represents the beginning of the flowchart with the label “start”

appearing inside the symbol. The stop symbol represents the end of the flowchart with the label

“stop” appearing inside the symbol. These are the only symbols with keyword labels.

 • Input and output: The input and output symbol contains data that is used for input (e.g., pro-

vided by the user) and data that is the result of processing (output).

 • Decisions: The decision symbol contains a question or a decision that has to be made.

 • Process: The process symbol contains brief descriptions (a few words) of a rule or some action

taking place .

Figure 3.4 shows the common symbols of flowcharting.

Each symbol has an inbound or outbound arrow leading to or from another symbol. The start symbol

has only one outbound arrow, and the stop symbol has only one inbound arrow. The “start” symbol

represents the beginning of the flowchart with the label “start” appearing inside the symbol.

The “stop” symbol represents the end of the flowchart with the label “stop” appearing inside the

symbol. These are the only symbols with keyword labels. The decision symbol will contain a ques-

tion or a decision that has to be made. The process symbol will contain brief descriptions (a few

words) of a rule or some action taking place. The decision symbol has one inbound arrow and two

outbound arrows. Each arrow represents a decision path through the process starting from that

symbol:

 • TRUE/YES

 • FALSE/NO

RSVP: Robot Scenario Visual Planning58

3

C
H

A
PT

ER

The process, input, and output symbols have one inbound and one outbound arrow. The symbols

contain text that describes the rule or action, input or output. Figure 3.5 shows the “Lighting can-

dles” flowchart .

Notice at the beginning of the flowchart, below the start symbol, BR-1 is to wait until the singing

begins. A decision is made on whether the singing has started. There are two paths: If the singing

has not started, there is a FALSE/NO answer to the question and BR-1 continues to wait. If the sing-

ing has started, there is a TRUE/YES answer and BR-1 enters a loop or decision.

COMMON FLOWCHART SYMBOLS

START / STOP

INPUT /
OUTPUT

DECISION

PROCESS

Figure 3.4
The common symbols of flowcharting

59Pseudocode and Flowcharting RSVP

3

C
H

A
PTER

If there are candles to light, that is the decision. If yes, it gets the position of the next candle, posi-

tions the robot arm to the appropriate position to ignite the wick, and then ignites the wick. An

input symbol is used to receive the position of the next candle to light. The BR-1 is to light all the

candles and stops once complete.

Singing
?

More

?

Figure 3.5
The lighting candles flowchart

RSVP: Robot Scenario Visual Planning60

3

C
H

A
PT

ER

Flow of Control and Control Structures
The task a robot executes can be a series of steps performed one after another, a sequential flow of

control. The term flow of control details the direction the process takes, which way program control

“flows.” Flow of control determines how a computer responds when given certain conditions and

parameters. An example of sequential flow of control is in Figure 3.6. Another robot in our birthday

scenario is BR-3. Its task is to open the door for the guests. Figure 3.6 shows the sequential flow of

control for this task.

STOP

Figure 3.6
The flowchart for BR-3

61Pseudocode and Flowcharting RSVP

3

C
H

A
PTER

The robot goes to the door, opens it, says, “Welcome,” and then closes the door and returns to its

original location. This would look like a rather inconsiderate host. Did the doorbell ring, signaling

BR-3 that guests were at the door? If someone was at the door, after saying “Welcome,” did BR-3

allow the guest to enter before closing the door? BR-3 should be able to act in a predictable way at

the birthday party. That means making decisions based on events and doing things in repetition.

A decision symbol is used to construct branching for alternative flow controls. Decision symbols can

be used to express decision, repetition, and case statements. A simple decision is structured as an

if-then or if-then-else statement.

A simple if-then decision for BR-3 is shown in Figure 3.7 (a). “If Doorbell rings, then travel to door

and open it.” Now BR-3 will wait until the guest(s) enters before it says “Welcome.” Notice the

alternative action to be taken if the guest(s) has not entered. BR-3 will wait 5 seconds and then

check if the guest(s) has entered yet. If Yes then BR-3 says “Welcome” and closes the door. This is

shown in Figure 3.7 (b) if-then-else; the alternative action is to wait.

BR-3’s GUEST WELCOMING FLOWCHART

IF
Doorbell

rings
?

THEN
travel to door

Open door

. . .
(a) If-then Decision

Yes

No

. . .

IF
Guest(s)
enters

?

Yes

No

Alternative
Action

ELSE
Wait 5 seconds

THEN
say “Welcome”

Close door

. . .
(b) If-then-else Decision

. . .

Figure 3.7
The flowchart for if-then and if-
then-else decisions

RSVP: Robot Scenario Visual Planning62

3

C
H

A
PT

ER

In Figure 3.7, the question (or condition test) to be answered is whether the doorbell has rung. What if

there is more than one question/condition test that has to be met before BR-3 is to open the door? With

about BR-1, what if there were multiple conditions that had to be met before lighting the candles:

• “If there is a singing AND the lighter is lit then light the candles.”

 • In this case, both conditions have to be met. This is called a Nested decision or condition.

What if there is a question or condition in which there are many different possible answers and

each answer or condition has a different action to take? For example, what if as our BR-1 or BR-3

travels across the room it encounters an object and has to maneuver around the object to reach

its destination. It could check the range of the object in its path to determine the action to take to

avoid it. If the object is within a certain range, BR-1 and BR-3 turn to the left either 90 degrees or 45

degrees, travel a path around the object, and then continue on their original path to their destina-

tions as shown in Figure 3.8.

DETECT OBSTACLE
30 CM - 42 CM

DETECT OBSTACLE
43 CM - 75 CM

RANGE FINDER
SENSOR

RANGE FINDER
SENSOR

TURN
45

TURN
90

TURN
135

Range 1 avoidance:
30 cm - 42 cm

Range 2 avoidance:
43 cm - 75 cm

OBSTACLE

OBSTACLE

Robot Robot

Figure 3.8
Robots obstacle avoidance

63Pseudocode and Flowcharting RSVP

3

C
H

A
PTER

Using the flowchart, this can be expressed as a series of decisions or a case statement. A case is

a type of decision where there are several possible answers to a question. With the series of deci-

sions, the same question is asked three times, each with a different answer and action. With a case

statement, the question is expressed only one time. Figure 3.9 contrasts the series of decisions in

the case statement, which is simpler to read and understand what is going on.

CONTRAST CASE WITH DECISIONS

. . .

. . .

. . .

. . .

DECISIONS CASE

Range
30 to 42

?

Range
n
?

Manuever_90

Manuever_45

Manuever_n

Manuever_n

Manuever_45

Manuever_90

Range
43 to 75

?

Evaluate
Range

30 to 42

43 to 75

n

Figure 3.9
Contrast case statement
from a series of decisions

Repetition or looping is shown in Figure 3.10. In a loop, a simple decision is coupled with an action

that is performed before or after the condition test. Depending on the result, the action is performed

again. In Figure 3.10 (a), the action will be performed at least once. If the condition is not met (sing-

ing has not started—maybe everyone is having too much fun), the robot must continue to wait. This

RSVP: Robot Scenario Visual Planning64

3

C
H

A
PT

ER

is an example of a do-until loop, “do” this action “until” this condition is true. A while loop performs

the condition test first and if met, then the action is performed. This is depicted in Figure 3.10 (b),

while singing has not started, wait. BR-1 will loop and wait until singing starts, as in the do-until

loop. The difference is a wait is performed after the condition is met. Another type is the for loop,

shown in Figure 3.10 (c), where the condition test controls the specific number of times the loop is

executed.

REPETITION / LOOPING SYMBOLS

do-until loop while loop for loop

Wait 5
Seconds

Wait 5
Seconds

Singing
?

Not
Singing

?

Wait 5
Seconds

Count
< = 7

?

Count =
Count + 1

STOP

No

Yes

Yes

No No

Yes

... ...

Figure 3.10
Repetition flowcharts
for (a) do-until, (b)
while, and (c) for loops

Subroutines
When thinking about what role your robot is to play in a scenario or situation, the role is broken

down into a series of actions. BR-1’s role is to be a host at a birthday party. This role is broken down

into four states:

• Idle

 • Traveling

 • Lighting candles

 • Waiting

 • Removing dishes

65Pseudocode and Flowcharting RSVP

3

C
H

A
PTER

This can be broken down into a series of actions or tasks:

 1. Wait until singing begins.

• Travel to birthday cake table.

• Light the candles on the cake.

• Travel to the original location.

 2. Wait until party is over.

• Remove dishes from cake table.

• Travel back to original location.

These are short descriptions of tasks. Each task can be further broken down into a series of steps or

subroutines. “Lighting candles” is a composite state that is broken down into other substates:

• Locating wick

 • Igniting wick

Actually, “Remove dishes from cake table” and “Travel back to original location” should also be

broken down into subroutines. Removing dishes from the cake table requires the positioning of the

robot arm to remove each plate and cup subroutines, and traveling requires the rotating of motors

subroutines.

Figure 3.11 shows the flowcharting for LightingCandles and its subroutines LocatingWick and

IgnitingWick.

A subroutine symbol is the same as a process symbol, but it contains the name of the subroutine

with a vertical line on each side of the name of the subroutine. The name of a subroutine can be a

phrase that describes the purpose of the subroutine.

Flowcharts are then developed for those subroutines. What’s great about using subroutines is the

details don’t have to be figured out immediately. Figuring out how the robot will perform a task can

be put off for a while. The highest level processes can be worked out and then later actions/tasks

can be broken down.

A subroutine can be identified and generalized from similar steps used at different place, in the

robot’s process. Instead of repeating a series of steps or developing different subroutines, the pro-

cess can be generalized and placed in one subroutine that is called when needed. For example, the

traveling procedure started out as a series of steps for BR-1 to travel to the cake table (TableTravel)

and then a series of steps to travel back to its original location (OriginTravel). These are the same

tasks with different starting and ending locations. Instead of subroutines that use the starting and

ending locations, a Travel subroutine requires both the current and final locations of the robot to be

used.

RSVP: Robot Scenario Visual Planning66

3

C
H

A
PT

ER

Statecharts for Robots and Objects
A statechart is one way to visualize a state machine.

For example , a “change of state” can be as simple as a change

of location. When the robot travels from its initial location to the

location next to the table, this is a change of the robot’s state.

Another example is that the birthday candles change from an

unlit state to a lit state. The state machine captures the events,

transformations, and responses. A statechart is a diagram of

these activities. The statechart is used to capture the possible

Singing
?

Yes

No

Lighting
Candles

LocatingWick

STOP

STOP

IgnitingWick

Lighter
lit
?

Yes

No

Ignite candle
wick at Pos

LocatingWick

Candles
= 0
?

LocatingWick

Candles
> 0
?

Yes

No

Position Robot
Arm at location

Get next
candle
location

IgnitingWick

STOP

Yes

No

FLOWCHARTING USING SUBROUTINES

Figure 3.11
Flowcharting for LightingCandles
and its subroutines LocatingWick and
IgnitingWick

note
A state machine models the
behavior of a single robot
or object in an environment.
The states are the transfor-
mations the robot or object
goes through when some-
thing happens.

67Statecharts for Robots and Objects

3

C
H

A
PTER

situations for that object in that scenario. As you recall from Chapter 2, a situation is a snapshot of

an event in the scenario. Possible situations for the BR-1 are

• Situation 1: BR-1 waiting for signal to move to new location

 • Situation 2: BR-1 traveling to cake table

 • Situation 3: BR-1 next to cake on a table with candles that have not yet been lit

 • Situation 4: BR-1 positioning the lighter over the candles, and so on

All these situations represent changes in the state of the robot. Changes in the state of the robot or

object take place when something happens, an event. That event can be a signal, the result of an

operation, or just the passing of time. When an event happens, some activity happens, depending

on the current state of the object. The current state determines what is possible.

The event works as a trigger or stimulus causing a condition in which a change of state can occur.

This change from one state to another is called a transition. The object is transitioning from stateA,

the source state, to stateB, the target state. Figure 3.12 shows a simple state machine for BR-1.

SIMPLE BR-1 STATE MACHINE

Signal

Target
Reached

Check at
Target

IDLE

TRAVELING

Figure 3.12
State machine for BR-1

Figure 3.12 shows two states for BR-1: Idle or Traveling. When BR-1 is in an Idle state, it is waiting

for an event to occur. This event is a signal that contains the new location for the robot. Once the

robot receives this signal, it transitions from Idle to Traveling state. BR-1 continues to travel until it

reaches its target location. Once reached, the robot transitions from the Traveling state back to an

Idle state. Signals, actions, and activities may be performed or controlled by the object or by outside

forces. For example, the new location will not be generated by BR-1 but by another agent. BR-1 does

have the capability to check its location while traveling.

RSVP: Robot Scenario Visual Planning68

3

C
H

A
PT

ER

Developing a Statechart
As discussed earlier, a state is condition or situation of an object

that represents a transformation during the life of the object.

A state machine shows states and transitions between states.

There are many ways to represent a state machine. In this

book, we represent a state machine as a UML (Unified Modeling

Language) statechart. Statecharts have additional notations for

events, actions, conditions, parts of transitions, and types and

parts of states.

There are three types of states:

• Initial: The default starting point for the state machine. It

is a solid black dot with a transition to the first state of the

machine.

• Final: The ending state, meaning the object has reached the end of its lifetime. It is represented

as a solid dot inside a circle.

• Composite state and substate: A state contained inside another state. That state is called a

superstate or composite state.

States have different parts. Table 3.5 lists the parts of states with a brief description. A state node

displaying its name can also display the parts listed in this table. These parts can be used to repre-

sent processing that occurs when the object transitions to the new state. There may be actions to

take as soon as the object enters and leaves the state. There may be actions that have to be taken

while the object is in a particular state. All this can be noted in the statechart.

Table 3.5 Parts of a State

Part Description

Name The unique name of the state distinguishes it from other states.

Entry/exit actions Actions executed when entering the state (entry actions) or executed
when exiting the state (exit actions).

Composite/substates A nested state; the substates are the states that are activated inside
the composite state.

Internal transitions Transitions that occur within the state are handled without causing
a change in the state but do not cause the entry and exit actions to
execute.

Self-transitions Transitions that occur within the state that are handled without caus-
ing a change in the state. They cause the exit and entry actions to
execute when exiting and then reentering the state.

Figure 3.13 shows a state node and format for actions, activities, and internal transition statements.

note
In a statechart, the nodes
are states and the arcs are
transitions. The states are
represented as circles or as
rounded-corner rectangles in
which the name of the state
is displayed. The transitions
are arcs that connect the
source and the target state
with an arrow pointing to the
target state.

69Statecharts for Robots and Objects

3

C
H

A
PTER

STATE NODE STATEMENT FORMATS

STATE NODE
entry / action
exit / action
event / function or action
event / function or action

entry action
exit action
internal transition
self-transition

Figure 3.13
A state node and the format
of statements

The entry and exit action statements have this format:

• Entry/action or activity

 • Exit/action or activity

This is an example of an entry and exit action statement for a state called Validating :

 • entry action: entry / validate(data)

 • exit action: exit / send(data)

Upon entering the Validating state, the validate(data) function is called. Upon exiting this state, the

exit action send(data) is called.

Internal transitions occur inside the state. They are events that take place after entry actions and

before exit actions if there are any. Self-transitions are different from internal transitions. With a self-

transition, the entry and exit actions are performed. The state is left; the exit action is performed.

Then the same state is reentered and the entry action is performed. The action of the self-transition

is performed after the exit action and before the entry action. Self-transitions are represented as a

directed line that loops and points back to the same state.

An internal or self-transition statement has this format:

 • Name/action or function

For example:

 • do / createChart(data)

“do” is the label for the activity, the function “createChart(data)” is executed.

There are several parts of a transition, the relationship between two states. We know that triggers

cause transitions to occur, and actions can be coupled with triggers. A met condition can also cause

a transition. Table 3.6 lists the parts of a transition.

RSVP: Robot Scenario Visual Planning70

3

C
H

A
PT

ER

Table 3.6 Parts of a Transition

Part Description

Source state The original state of the object; when a transition occurs the object
leaves the source state.

Target state The state the object enters after the transition.

Event trigger The event that causes the transition to occur. A transition may be trig-
gerless, which means the transition occurs as soon as the object com-
pletes all activities in the source state.

Guard condition A boolean expression associated with an event trigger, which when
evaluated to TRUE, causes the transition to take place.

Action An action executed by the object that takes place during a transition;
may be associated with an event trigger or guard condition .

An event trigger has a similar format as a state action statement:

 • Name/action or function

 • name [Guard] / action or function

For example, for the internal transition statement, a guarded con-

dition can be added:

 • do [Validated] / createChart(data)

Figure 3.14 is the statechart for BR-1.

There are four states: Idle, Traveling, Lighting candles, Waiting

and Removing dishes. When transitioning from Idle to Traveling,

BR-1 gets the new location and knows its mission:

 • do [GetPosition] / setMission()

There are two transitions from the Traveling state:

 • Traveling to Lighting candles

 • Traveling to Removing dishes

Traveling transitions to LightingCandles when its target is reached and its Mission is candles.

Traveling transitions to Removing dishes when its target is reached and its Mission is dishes.

To transition from LightingCandles, “candles” mission must be complete. To transition from

RemovingDishes to the final state, all missions must be completed.

LightingCandles is a composite state that contains two substates: LocatingWick and IgnitingWick.

Upon entering the Lighting candles state, the boolean value Singing is evaluated. If there is singing,

then the candles are to be lit. First the wick has to be located, then the arm is moved to that loca-

tion, and finally the wick can be lit. In the LocatingWick state, the entry action evaluates the expres-

sion:

 • Candles > 0

note
A guard condition is a bool-
ean value or expression that
evaluates to True or False. It
is enclosed in square brackets.
The guard condition has to
be met for the function to
execute. It can be used in a
state or transition statement.

note
Validated is a boolean value.
It is a condition that has to
be met for createChart() to
execute.

71Statecharts for Robots and Objects

3

C
H

A
PTER

do[GetPosition] /
setMission()

TargetReached
mission(Candles)

TargetReached
mission(Dishes)

AllMissions
Completed

NoMoreCandles

PartyNotOver

PartyOver

Lighting
Candles

GotPosition

MoreCandles

Igniting Wick

Locating Wick

entry/singing
exit/Candles = 0

entry/Candles > 0
exit/getNextCandlePos()
 moveArm(Pos)

entry/LighterLit
do/IgniteCandle(Pos)
exit/moreCandles()

Idle
Traveling

Removing
Dishes

Waiting
do / wait5mins()

Figure 3.14
Statechart for BR-1

If True, the state exits when the position of the first or next candle is retrieved and then the robot

arm is moved to the position (Pos).

The position of the wick is retrieved, so BR-1 transitions to “IgnitingWick.” Upon entry, the lighter

is checked to see if it is lit. If lit the candle wick is lit, (an internal state). To exit this state, Candles

> 0, then “LocatingWick” state is reentered. If Candles = 0, then BR-1 transitions to “Waiting” state.

BR-1 waits until the party is over. Then BR-1 can remove all the dishes. In the “Waiting” state, there

is a self-transition “PartyNotOver.” Remember, with a self-transition, the exit and entry actions are

performed as the state is exited and reentered. In this case, there are no exit actions, but there is an

entry action “wait 5 minutes”. The guard condition is checked, “PartyNotOver.” If the party is not

over, then the state is reentered and the entry action is executed; BR-1 waits for 5 minutes. Once

the party is over, then BR-1 transitions to “RemovingDishes.” This is the last state. If boolean value

RSVP: Robot Scenario Visual Planning72

3

C
H

A
PT

ER

AllMissionsCompleted is True, BR-1 transitions to the final state. But some objects may not have a

final state and work continuously. Statecharts are good for working out the changing aspect of an

object during the lifetime of the object. It shows the flow of control from one state of the object to

another state.

What’s Ahead?
In Chapter 4, “Checking the Actual Capabilities of Your Robot,” we discuss what your robot is capa-

ble of doing. This means checking the capabilities and limits of the microcontroller, sensors, motors,

and end-effectors of the robots.

A
accelerometers, 94

accessibility

environments, 52

fully accessible environments, 53

partially accessible environments, 53

accuracy (sensors), 107-109

actions

programmable actions and behaviors (seven
criterion of defining a robot), 11

transitions, 70

Actions section (softbot frame), unit1 robot
scenario, 224, 232-235

Active mode (ultrasonic sensors), 140

active sensors, 101-103

actuators

arms, programming, 208-216

defining, 17

error rates, 74

linear actuators, 161

motors

characteristics of, 160-161

current, 161

DC motors, 162-167, 183-184

direct/indirect drivetrains, 177-178

duty cycles, 165

encoders, 175-176

gears, 167-172

programming, 184-191, 194-200

R.E.Q.U.I.R.E., 183

resistance, 161

servos, 172-174, 183-184

speed, 161, 165, 182-183

terrain challenges, 178-181

torque, 161, 165-167, 182-183, 203-204

voltage, 160

output transducers, actuators as, 159-160

performance, 74

programming, 208-216

reality check, 84-87

robot effectiveness, 18

INDEX

actuators358

rotational actuators, 161

weight restrictions, 74

A/D (Analog-to-Digital) converters, 97-98

aerial robots, 15

Agent Technology from a Formal
Perspective, 343

ambient light and color sensors, 118-119

analog sensors, 95-96

A/D converters, 97-98

output of, 99-100

reading, 97-98

storing readings, 100

voltage resolution, 99-100

Arduino

Arbotix controller, 297

Arduino Uno microcontrollers, 76-78

ArduoCopter, 337

OpenRov, 337

programming and Arduino compatibility,
337-338

Arkin, Ronald, 343

ARM microcontrollers, 36

ARM7 microcontrollers, 79

ARM9 microcontrollers, 79

arms

DOF, 84-85, 182, 200, 212-216

configuration space, 201

end-effectors, 205-207

torque, 203-204

end-effectors, 182, 205-207

kinematics, 203, 212-216

PhantomX Pincher Robot Arm (Trossen
Robotics), 85-87, 204, 207, 220, 297-299

programming, 208-216

RS media, 207

speed, 182-183

Tetrix arms, 297

torque, 182-183, 203-204

types of, 201

assembly language, 26, 36

asynchronous data transfers

UART, 104-106

unit1 robot scenario, 235

ATmega microcontrollers, 79

AUAV (Autonomous Unmanned Aerial
Vehicles), 15

autonomous operations (seven criterion of
defining a robot), 12-13

autonomous robots, 13, 25

anatomy of, 268-269

hybrid autonomous robots, 221-222

Midamba Facility Scenario #1, 338-339

proactive autonomous robots, 221-222

programming, 266, 322

reactive autonomous robots, 221-222

scenario layouts, 242-244

softbots, 221

unit1 robot scenario, 239-241

autonomy, five essential ingredients of, 222

B
Beginner’s Guide to Programming Robots,

The, 31

Behavior Based Robotics, 343

behaviors and programmable actions (seven
criterion of defining a robot), 11

bevel gears, 170

bipedal mobility and terrain challenges, 180

birthday party robot scenario, 24-25, 266-267

floorplans, 49-50

flowcharts, 58, 61, 65

cameras (digital) 359

READ sets, 54-56

statecharts, 66-67, 70-72

subroutines, 64-65

blocking. See synchronous data transfers

Braun, Thomas, 343

budgets, 344-345

build examples

unit1 robot scenario

autonomous design, 239-241

five essential ingredients of, 222-223

pseudocode, 231

sensors, 222

softbot frame, 223-239

SPACES, 242-263

unit2 robot scenario, 317-319

capability matrix, 308-309

STORIES, 325-337

Burns, Ken, 337-338

BURT (Basic Universal Robot Translator), 21,
35, 36

arms, 208-216

Facility Scenario #1, STORIES, 325-337

initialization preconditions/postconditions,
249-261

intentions, programming, 282-299, 304

Java translation, unit1 robot scenario,
227-239

kinematics, 214-216

motors

basic operations, 186-191

paths to specific locations, 191, 194-197

programming arms, 208-216

programming via Arduino, 198-200

programming

basic movements, 186-191

motors via Arduino, 198-200

paths to specific locations, 191, 194-197

sensors

color sensors, 120-124

compass sensors, 154-157

tracking colored objects, RS Media,
124-128

tracking colored objects, Pixy vision
sensors, 130-134

ultrasonic sensors, 143-153

softbots, frame BURT translation example,
223, 227-239

unit1 robot scenario

decisions robots make/rules robots
follow, 280-281

initialization preconditions/
postconditions, 249-261

Java translation, 227-239

ontologies, 274-281

programming intentions, 282-299, 304

softbot frame BURT translation example,
223, 227-239

STORIES, 325-337

unit2 robot scenario, STORIES, 325-337

wheeled robots, 186-191, 194-200

C
calibrating sensors, 110-111

color sensors, 119-120

end user calibration process, 112

one point calibration, 113

thresholding method, 120

two point calibration, 113

ultrasonic sensors, 113, 141-142

Calibration Minimum and Maximum mode
(color sensors), 118

cameras (digital), 116

active mode, 102

passive mode, 102

cameras (digital)360

tracking colored objects

Pixy vision sensors, 128-134

RS Media, 124-129

capability matrixes, 37-39, 87, 308-309

Charmed Labs sensors, 113

CHIMP (CMU Highly Intelligent Mobile
Platform), 80, 181

closed-loop control and servos, 173-174

color sensors, 80, 116

Ambient Light Level mode, 118

calibrating, 118-120

Color ID mode, 118

Component RGB mode, 118

detection range, 119

FOV, 117-119

LED, 116-119

lighting, 119

Normalized RGB mode, 118

programming, 120-124

Red mode, 118

Reflected Intensity Level mode, 118

reflective color sensing, 116

shielding, 119

similarity matching, 120

unit1 robot scenario, 222

compass sensors, 94, 153

comparing, 107

HiTechnic compass sensors, 154-157

programming, 154-157

compilers, 27, 33

Component RGB mode (color sensors), 118

composite state/substate (statecharts), 68

configuration space, arms and DOF, 201

contact sensors, 94

Continuous mode (ultrasonic sensors),
139-140

control (flow of), 60-61

controllers

defining, 19, 33

microcontrollers

A/D converters, 97

Arduino Uno microcontrollers, 76-78

ARM microcontrollers, 36

ARM7 microcontrollers, 79

ARM9 microcontrollers, 79

AT microcontrollers, 79

commonly used microcontrollers, 23

components of, 20

defining, 19, 33

end effectors, 22

EV3 microcontrollers (Mindstorm), 78-79,
103

I2C serial communication, 105-106

languages, 25-26, 36

layout of, 74-75

processors, 21

reality check, 76-79

RS Media microcontrollers (WowWee),
78

sensor interfaces, 103-104

serial ports, 103

UART serial communication, 104-106

multiple controllers, 74

performance, 74

processors, 20

sensors, 20-21

costs of building robots, 344-345

criterion of defining a robot, 10

autonomous operations, 12-13

instructions, 12

interacting with environments, 11

DOF (Degree of Freedom) 361

nonliving machines, 13

power sources, 11

programmable actions and behaviors, 11

reprogramming data/instructions, 12

sensing the environment, 11

current (electrical) and motors, 161

D
DARPA Disaster and Recovery Challenge,

180-181

DARPA Robotic Challenge Finals 2015, 80

DC (Direct Current) motors, 162

advantages/disadvantages of, 183-184

duty cycles, 165

encoders, 175-176

gears

benefits of, 167

bevel gears, 170

changing rotational direction, 171

gearboxes, 171-172

gearhead motors, 171-172

gearing down, 167

gear sets, 170

idlers, 169

pinion gears, 167-168

ratio of, 167, 170

spur gears, 170

total gear efficiency, 171

wheel gears, 167-168

worm gears, 170

pros and cons of, 163-165

R.E.Q.U.I.R.E., 183

servos, 172

advantages/disadvantages of, 183-184

closed-loop control, 173-174

EA, 173

NXT LEGO servos, 176

PWM signals, 173

speed, 165, 182-183

Tetrix motors (Pitsco), 186-191

torque, 165-167, 182-183

Decision symbol

flowcharts, 57, 61

pseudocode, 57

decisions robots make/rules robots follow,
280-281

deliberative programming, 323

detection range (color sensors), 119

deterministic environments, 52-53

diaphragms (sound sensors), 93

differential steering, 186

digital cameras, 116

active mode, 102

passive mode, 102

tracking colored objects

Pixy vision sensors, 128-134

RS Media, 124-129

digital sensors, 95-96

A/D converters, 97-98

output of, 99

reading, 97-98

storing readings, 100

dimension/weight (sensors), 108

direct/indirect drivetrains, 177-178

DOF (Degree of Freedom), 84-85

arms, 182, 200

configuration space, 201

end-effectors, 205-207

torque, 203-204

kinematics, 203, 212-216

DRC HUBO362

DRC HUBO, 80, 181

duty cycles and motor speed, 165

E
EA (Error Amplifiers) and servos, 173

economics of robot builds, 344-345

EEPROM (Electrically Erasable
Programmable Read-Only Memory) chips,
74

effectiveness, measuring, 17, 87-89, 245-246

Embedded Robotics: Mobile Robot Design
and Applications with Embedded Systems,
343

encoders

motors, 175

optical encoders, 96

Tetrix encoders (Pitsco), 176

Encyclopedia Britannica, defining robots, 10

end effectors

arms, 182

defining, 18-19, 37

microcontrollers, 22

reality check, 84-87

types of, 205-207

endoskeletons, 220

entry/exit actions (statecharts), 68

entry-level robots, 344, 345

environmental sensors, 94

environments

accessibility, 52

defining, 52

deterministic environments, 52-53

fully accessible environments, 53

interacting with (seven criterion of defining
a robot), 11

internal state, 94

nondeterministic environments, 52-53

partially accessible environments, 53

READ sets

birthday party robot scenario, 54-56

defining, 53

Test Pad (NXT Mindstorms), 53-54

RSVP, 52

sensing (seven criterion of defining a
robot), 11

SPACES

checks, 262-263

preconditions/postconditions, 247-261

R.E.Q.U.I.R.E. checklists, 245-246

RSVP state diagrams, 262-263

scenario layouts, 242-244

terrain challenges, 178-179

DARPA Disaster and Recovery
Challenge, 180-181

mobility concerns, 179

visual programming environments, 30

episodes, 267

error rates, 74

EV3 microcontrollers (Mindstorm), 78-79, 103,
113

event triggers (transitions), 70

expectation driven programming, 267

exteroceptive sensors, 94

F
Facility Scenario #1, 310

autonomous robots, 338-339

POV diagrams, 315-316, 319

programming languages, 342

ROLL model, 312-313

gyroscopes 363

RSVP, 313-314

flowcharts, 317-319

state diagrams, 324

situations, 311-312

SPACES, 322-323

STORIES, 325-337

vocabulary, 311-313

final state (statecharts), 68

first generation language. See machine
language

floorplans (RSVP), 47

birthday party robot scenario, 49-50

creating, 49-51

flowcharts

Facility Scenario #1, 317-319

RSVP, 47, 56

birthday robot scenario, 58, 61, 65

common symbols of, 57

Decision symbol, 57, 61

flow of control, 60-61

Input symbol, 58

loops, 63

Output symbol, 58

Process symbol, 57-58

pseudocode, 56-58

Start symbol, 57

Stop symbol, 57

subroutines, 64-65

forward kinematics, 203, 213

FOV (Field of Vision)

color sensors, 117-119

Pixy vision sensors, 134

ultrasonic sensors, 135, 141

frames (softbot)

Actions section, 224, 232-234

asynchronous instructions, 235

BURT translation example, 223, 227-239

Parts section, 224, 231-232

ROLL model, 225-239

Scenarios/Situations section, 224, 236-239

synchronous instructions, 235

Tasks section, 224, 234-235

frequencies, pH measurement scale, 82-84

full loads (torque), 166

fully accessible environments, 53

fully automated robots, 52

G
gears

benefits of, 167

bevel gears, 170

gearboxes, 171-172

gearhead motors, 171-172

gearing down, 167

gear sets, 170

idlers, 169

pinion gears, 167-168

ratio of, 167, 170

rotational direction, changing, 171

spur gears, 170

total gear efficiency, 171

wheel gears, 167-168

worm gears, 170

Granat, Kyle, 220

graphical language programming, 29

guard condition (transitions), 70

gyroscopes, 94

HC-SR04 ultrasonic sensors364

H
HC-SR04 ultrasonic sensors, 148

hexapods, PhantomX AX Metal Hexapod
(Trossen Robotics), 220

HiTechnic sensors, 113, 154-157

How to Program Autonomous Robots, 308

HR-OS1 Humanoid Endoskeleton (Trossen
Robotics), 220

Hughes, Cameron, 31, 308

Hughes, Tracey, 31, 308

human senses/sensor comparisons, 91

hybrid autonomous robots, 221-222

I
I2C (Inter Integrated, I2 part, Circuit)

synchronous serial communication, 105-106

idlers and gears, 169

image sensors, 124

indirect/direct drivetrains, 177-178

indoor/outdoor terrain challenges, 178

DARPA Disaster and Recovery Challenge,
180-181

mobility concerns, 179

initial state (statecharts), 68

initialization preconditions/postconditions

BURT translation, 249-261

coding preconditions/postconditions,
252-261

power up preconditions/postconditions, 251

Input and Output symbol (pseudocode), 57

input devices, sensors as, 93

Input symbol (flowcharts), 58

instructions

Arduino compatibility, 337-338

arms, 208-216

autonomous robots, 13, 322

basic movements, 186-191

deliberative programming, 323

differential steering, 186

episodes, 267

expectation driven programming, 267

Facility Scenario #1, 310

autonomous robots, 338-339

POV diagrams, 315-319

programming languages, 342

ROLL model, 312-313

RSVP, 313-314

RSVP flowcharts, 317-319

RSVP state diagrams, 324

situations, 311-312

SPACES, 322-323

STORIES, 325-337

vocabulary, 311-313

instruction vocabulary, 224

intentions, 282-299, 304

languages, 342

motors

Arduino, 198-200

basic operations, 186-191

paths to specific locations, 191, 194-197

wheeled robots, 184-191, 194-200

object-oriented programming, 266

efficiency, 304-305

STORIES, 272-273

PASS, 323

paths to specific locations, 191, 194-197

processors, 20

Java 365

programming languages, 25

assembly language, 26, 36

BURT, 35-36

capability matrices, 37-39

compilers, 27, 33

graphical language programming, 29

interpreters, 27, 33

machine language, 26

Midamba programming scenario, 30,
42-44

puppet mode, 29

robot vocabulary, 37-38, 47

ROLL model, 39-44

taxonomies of, 27

visual programming environments, 30

pseudocode and RSVP, 56-58

reactive programming, 323

recommendations for first time
programmers, 348-349

responsibility, 345

RSVP, 349

environments, 52-53

floorplans, 47-51

flowcharts, 47, 56-65

mapping scenarios, 48

pseudocode, 56-58

READ sets, 53-56

statecharts, 47, 66-72

Test Pad (NXT Mindstorms), 48

scenarios

defining, 267

scenario-based programming and safety,
345

scripts, 267

sensors

color sensors, 120-124

compass sensors, 154-157

Pixy vision sensors, 130-134

ultrasonic sensors, 143-153

seven criterion of defining a robot, 12

situations, 267

STORIES, 349

object-oriented programming, 304-305

object-oriented programming, 272-273

overview of, 268

unit1 robot scenario, 269-271, 274-299,
304-305, 325-337

unit2 robot scenario, 325-337

telerobots, 13

unit1 robot scenario, 269, 319

capability matrix, 308-309

equipment list, 320-321

STORIES, 269-271, 274-299, 304-305,
325-337

unit2 robot scenario, 317-319

capability matrix, 308-309

STORIES, 325-337

intentions, programming, 282-299, 304

interacting with environments (seven
criterion of defining a robot), 11

internal state, 94

internal transitions (statecharts), 68-70

interpreters, 27, 33

inverse kinematics, 203

IR (infrared) sensors, 116

J-L
Java

BURT translation, unit1 robot scenario,
227-239

STORIES, 305

kinematics366

kinematics

calculating, 212-216

defining, 203

forward kinematics, 203, 213

inverse kinematics, 203

planar kinematics, 213

languages (programming), 25, 342

assembly language, 26, 36

BURT, 35-36

capability matrices, 37-39

compilers, 27, 33

graphical language programming, 29

interpreters, 27, 33

machine language, 26

Midamba programming scenario, 30

scenario vocabulary (ROLL model), 44

situation vocabulary (ROLL model), 42

task vocabulary (ROLL model), 43

pseudocode and flowcharts, 56-58

puppet mode, 29

robot vocabulary, 47

capability matrices, 37-39

ROLL model, 39-44

ROLL model, 39

robot capabilities, 41

scenario vocabularies, 44

situation vocabularies, 42

task vocabularies, 43

taxonomies of, 27

tool-chains, 27

visual programming environments, 30

layouts, POV diagrams and Facility Scenario
#1, 315-316, 319

LED

color sensors, 116-119

Pixy vision sensors, 129

reflective color sensing, 116

light sensors, 116

lighting, 119

linear actuators, 161

linearity (sensors), 107-110

loops

closed-loop control and servos, 173-174

flowcharts, 63

M
machine language, 26

mapping scenarios and RSVP

environments, 52-53

floorplans, 49-51

READ sets, 53-56

Test Pad (NXT Mindstorms), 48

MaxBotix EZ1 ultrasonic sensors, 152-153

Merriam-Websters Dictionary, defining
robots, 10

microcontrollers

A/D converters, 97

Arduino Uno microcontrollers, 76-78

ARM microcontrollers, 36

ARM7 microcontrollers, 79

ARM9 microcontrollers, 79

ATmega microcontrollers, 79

commonly used microcontrollers, 23

components of, 20

defining, 19, 33

end effectors, 22

EV3 microcontrollers (Mindstorm), 78-79

languages, 25

assembly language, 26, 36

machine language, 26

layout of, 74-75

processors, 21

motors 367

reality check, 76-79

RS Media microcontrollers (WowWee), 78

sensor interfaces, 103-104

sensors, 21

serial ports, 103

I2C serial communication, 105-106

UART serial communication, 104-106

V3 microcontrollers, 103

Midamba

Facility Scenario #1, 310

autonomous robots, 338-339

POV diagrams, 315-316, 319

programming languages, 342

ROLL model, 312-313

RSVP, 313-314

RSVP flowcharts, 317-319

RSVP state diagrams, 324

situations, 311-312

SPACES, 322-323

STORIES, 325-337

vocabulary, 311-313

scenarios, 349

programming scenario, 30, 42-44

unit1 robot scenario, 308-309, 319-321,
325-337

unit2 robot scenario, 308-309, 317-319,
325-337

sensors, 84

Mindstorm EV3 microcontrollers, 78-79

mobility

differential steering, 186

terrain challenges, 179

motors

arms, programming, 208-216

characteristics of, 160-161

commonly-used motors, 255

current, 161

DC motors, 162-163

advantages/disadvantages of, 183-184

duty cycles, 165

encoders, 175-176

gears, 167-172

pros and cons of, 163-165

R.E.Q.U.I.R.E., 183

servos, 172-174, 183-184

speed, 165, 182-183

Tetrix DC motors (Pitsco), 186-191

torque, 165-167, 182-183

direct/indirect drivetrains, 177-178

duty cycles, 165

encoders, 175-176

gears

benefits of, 167

bevel gears, 170

changing rotational direction, 171

gearboxes, 171-172

gearhead motors, 171-172

gearing down, 167

gear sets, 170

idlers, 169

pinion gears, 167-168

ratio of, 167, 170

spur gears, 170

total gear efficiency, 171

wheel gears, 167-168

worm gears, 170

programming

Arduino, 198-200

arms, 208-216

basic operations, 186-191

paths to specific locations, 191, 194-197

wheeled robots, 184-191, 194-200

R.E.Q.U.I.R.E., 183

resistance, 161

motors368

servos, 172

advantages/disadvantages of, 183-184

closed-loop control, 173-174

EA, 173

NXT LEGO servos, 176

PWM signals, 173

speed, 161, 165, 182-183

terrain challenges, 178

DARPA Disaster and Recovery
Challenge, 180-181

mobility concerns, 179

torque, 161, 165-167, 182-183, 203-204

voltage, 160

N
names (statecharts), 68

no load torque, 166-167

nominal torque, 166-167

nondeterministic environments, 52-53

nonliving machines, robots as (seven
criterion of defining a robot), 13

Normalized RGB mode (color sensors), 118

NXT LEGO servos, 176

NXT Mindstorms, Test Pad

READ sets, 53-54

RSVP, 48

O
object-oriented programming, 266

efficiency, 304-305

STORIES, 272-273

Ohm’s Law, 161

one point calibration method and sensors,
113

ontologies, unit1 robot scenario, 271

OpenRov (Arduino), 337

open-source robots, 220, 344-345

optical encoders, 96

optical sensors, 94

OS (Operating Systems), ROS, 221

outdoor/indoor terrain challenges, 178

DARPA Disaster and Recovery Challenge,
180-181

mobility concerns, 179

Output symbol (flowcharts), 58

output transducers, actuators as, 159-160

P
Parallax Ping))) ultrasonic sensors, 150

partially accessible environments, 53

Parts section (softbot frame), unit1 robot
scenario, 224, 231-232

PASS (Propositions and Sensor States), 323

Passive mode (ultrasonic sensors), 140

passive sensors

examples of, 103

PIR sensors, 101

performance, 74

PhantomX AX Metal Hexapod (Trossen
Robotics), 220

PhantomX Pincher Robot Arm (Trossen
Robotics), 85-87, 204, 207, 220, 297-299

pH measurement scale, 82-84

Ping mode (ultrasonic sensors), 139-140

pinion gears, 167

PIR (Passive Infrared) sensors, 101

programming 369

Pixy vision sensors

attributes of, 134

FOV, 134

programming, 130-134

tracking colored objects, 128-129

planar kinematics, 213

planning and RSVP

environments, 52-53

floorplans, 47-51

flowcharts, 47, 56-65

mapping scenarios, 48

READ sets, 53-56

statecharts, 47, 66-72

Test Pad (NXT Mindstorms), 48

postconditions/preconditions (SPACES), 247

action choices for unmet conditions, 248

robot initialization, 249

coding preconditions/postconditions,
252-257

power up preconditions/postconditions,
251

where preconditions/postconditions
come from, 257-261

unmet conditions, 248

pot (potentiometers) and servos, 172

potential, measuring, 17, 87-89, 245-246

POV (Point of View) diagrams, Facility
Scenario #1, 315-316, 319

power sources (seven criterion of defining a
robot), 11

precision (sensors), 108-109

preconditions/postconditions (SPACES), 247

action choices for unmet conditions, 248

robot initialization, 249

coding preconditions/postconditions,
252-257

power up preconditions/postconditions,
251

where preconditions/postconditions
come from, 257-261

unmet conditions, 248

proactive autonomous robots, 221-222

proactive softbots, 221-222

processors

controllers, 20

instructions, 20

microcontrollers, 21

Process symbol

flowcharts, 57-58

pseudocode, 57

programmable actions and behaviors (seven
criterion of defining a robot), 11

programming

Arduino compatibility, 337-338

arms, 208-216

autonomous robots, 266, 322

basic movements, 186-191

BURT, 21

deliberative programming, 323

differential steering, 186

EEPROM chips, 74

episodes, 267

expectation driven programming, 267

Facility Scenario #1, 310

autonomous robots, 338-339

POV diagrams, 315-316, 319

programming languages, 342

ROLL model, 312-313

RSVP, 313-314

RSVP flowcharts, 317-319

RSVP state diagrams, 324

situations, 311-312

SPACES, 322-323

STORIES, 325-337

vocabulary, 311-313

programming370

instruction vocabulary, 224

intentions, 282-299, 304

languages, 25, 342

assembly language, 26, 36

BURT, 35-36

capability matrices, 37-39

compilers, 27, 33

graphical language programming, 29

interpreters, 27, 33

machine language, 26

Midamba programming scenario, 30,
42-44

pseudocode, 56-58

puppet mode, 29

robot vocabulary, 37-38, 47

ROLL model, 39-44

taxonomies of, 27

tool-chains, 27

visual programming environments, 30

motors

Arduino, 198-200

basic operations, 186-191

paths to specific locations, 191, 194-197

wheeled robots, 184-191, 194-200

object-oriented programming, 266

efficiency, 304-305

STORIES, 272-273

PASS, 323

paths to specific locations, 191, 194-197

reactive programming, 323

recommendations for first time
programmers, 348-349

responsibility, 345

RSVP, 349

environments, 52-53

floorplans, 47-51

flowcharts, 47, 56-65

mapping scenarios, 48

READ sets, 53-56

statecharts, 47, 66-72

Test Pad (NXT Mindstorms), 48

scenario-based programming and safety,
345

scenarios

defining, 267

determining, 23-25

scenario-based programming and safety,
345

scripts, 267

sensors, 16

color sensors, 120-124

compass sensors, 154-157

Pixy vision sensors, 130-134

ultrasonic sensors, 143-153

situations, 267

speed, 17

STORIES, 349

object-oriented programming, 304-305

object-oriented programming, 272-273

overview of, 268

unit1 robot scenario, 269-271, 274-299,
304-305

strength, 17

unit1 robot scenario, 269, 319

capability matrix, 308-309

equipment list, 320-321

STORIES, 269-271, 274-299, 304-305,
325-337

unit2 robot scenario, 317-319

capability matrix, 308-309

STORIES, 325-337

proprioceptive sensors, 94

proximity sensors, 94, 116

robots 371

pseudocode

common symbols, 57

flowcharts, 56-58

Input and Output symbol, 57

Process symbol, 57

Start and Stop symbol, 57

Start Decision symbol, 57

unit1 robot scenario, 231

puppet mode, 29

PWM (Pulse Width Modulated) signals and
servos, 173

Q-R
range (sensors), 94, 107-108

ratio of gears, 167, 170

reactive autonomous robots, 221-222

reactive programming, 323

reactive softbots, 221-222

READ (Robot Environmental Attribute
Description) sets

birthday party robot scenario, 54-56

defining, 53

Test Pad (NXT Mindstorms), 53-54

reality checks

actuators, 84-87

end effectors, 84-87

microcontrollers, 76-79

R.E.Q.U.I.R.E., 87-89, 245-246

sensors, 80-81, 84, 88-89

recommendations for first time programmers,
348-349

Red mode (color sensors), 118

Reflected Intensity Level mode (color
sensors), 118

reflective color sensing, 116

refresh rate (sensors), 107

reliability (sensors), 108

repeatability (sensors), 108

reprogramming data/instructions (seven
criterion of defining a robot), 12

R.E.Q.U.I.R.E. (Robot Effectiveness Quotient
Used in Real Environments), 17, 87-89

motors, 183

unit1 robot scenario, 245-246

resistance, motors, 161

resolution (sensors), 107-108

response time (sensors), 107

responsibility programming, 345

Robosapien (RS Media), tracking colored
objects, 124-128

robots. See also softbots

aerial robots, 15

AUAV, 15

autonomous robots, 12-13, 25

anatomy of, 268-269

hybrid autonomous robots, 221-222

Midamba Facility Scenario #1, 338-339

proactive autonomous robots, 221-222

programming, 266, 322

reactive autonomous robots, 221-222

scenario layouts, 242-244

softbots, 221

unit1 robot scenario, 239-241

birthday party robot, 24-25, 266-267

floorplans, 49-50

flowcharts, 58, 61, 65

READ sets, 54-56

statecharts, 66-67, 70-72

subroutines, 64-65

budgets, 344-345

categories of, 13-15

robots372

costs, 344-345

defining, 9-10

entry-level robots, 344-345

environments

interacting with, 11

sensing, 11

fully automated robots, 52

instructions, 12

Midamba, 84

nonliving machines, robots as, 13

open-source robots, 220, 344-345

power sources, 11

programmable actions and behaviors, 11

reprogramming data/instructions, 12

ROV, 15

safety, 220, 345

SARAA robots, 346-348

seven criterion of defining a robot, 10-13

skeleton of, 22

speed, 17

strength, 17

true robots, defining, 13, 16

UAV, 15

underwater robots, 15

vocabulary, 47

capability matrices, 37-39

ROLL model, 39-44, 225-239

ROLL (Robot Ontology Language Level)
model, 39

Facility Scenario #1, 312-313

robot capabilities, 41

scenario vocabularies, 44

situation vocabularies, 42

softbot frame, unit1 robot scenario, 225-239

task vocabularies, 43

ROS (Robot Operating System), 221

rotational actuators, 161

rotational speed, 161

Rouff, Christopher A., 343

ROV (Remotely Operated Vehicles), 15

RS Media

arms, 207

microcontrollers, 78

Robosapien, 124-128

tracking colored objects, 124-129

RSVP (Robot Scenario Visual Planning), 349

environments, 52-53

Facility Scenario #1, 313-319, 324

floorplans, 47-51

flowcharts, 47

birthday robot scenario, 58, 61

common symbols of, 57

Decision symbol, 57, 61

flow of control, 60-61

Input symbol, 58

loops, 63

Output symbol, 58

Process symbol, 57-58

pseudocode, 56-58

Start symbol, 57

Stop symbol, 57

subroutines, 64-65

mapping scenarios, 48

READ sets, 53-56

state diagrams, 262-263

statecharts, 47, 66-72

Test Pad (NXT Mindstorms), 48

rules robots follow/decisions robots make,
280-281

running current, 161

Running Man, 80

sensors 373

S
safety

Open Source Robots, 220

scenario-based programming, 345

SARAA (Safe Autonomous Robot Application
Architecture) robots, 346-348

scenarios

autonomous robot design, 242-244

birthday party robot scenario, 266-267

defining, 267

Facility Scenario #1, 310

autonomous robots, 338-339

POV diagrams, 315-316, 319

programming languages, 342

ROLL model, 312-313

RSVP, 313-314

RSVP flowcharts, 317-319

RSVP state diagrams, 324

situations, 311-312

SPACES, 322-323

STORIES, 325-337

vocabulary, 311-313

mapping via RSVP, 48

environments, 52-53

floorplans, 49-51

READ sets, 53-56

Test Pad (NXT Mindstorms), 48

programming scenarios, determining, 23-25

safety and scenario-based programming,
345

STORIES

object-oriented programming, 272-273

object-oriented programming, 304-305

overview of, 268

unit1 robot scenario, 269-271, 274-299,
304-305

unit1 robot scenario, 269, 319

capability matrix, 308-309

equipment list, 320-321

STORIES, 269-271, 274-299, 304-305,
325-337

unit2 robot scenario, 317-319

capability matrix, 308-309

STORIES, 325-337

vocabularies (ROLL model), 44

warehouse scenarios, 310-339, 342

Scenarios/Situations section (softbot frame),
unit1 robot scenario, 224, 236-239

scripts, 267

second generation language. See assembly
language

self-transitions (statecharts), 68-69

sensing environments (seven criterion of
defining a robot), 11

sensitivity (sensors), 108

sensors

accelerometers, 94

accuracy, 107-109

active sensors, 101-103

analog sensors, 95-96

A/D converters, 97-98

output of, 99-100

reading, 97-98

storing readings, 100

voltage resolution, 99-100

attributes of, 107-110

calibrating, 110-111

end user calibration process, 112

one point calibration, 113

two point calibration, 113

Charmed Labs sensors, 113

sensors374

color sensors, 80

Ambient Light Level mode, 118

calibrating, 119-120

Calibration Minimum and Maximum
mode, 118

Color ID mode, 118

Component RGB mode, 118

detection range, 119

FOV, 117-119

LED, 116-119

lighting, 119

Normalized RGB mode, 118

programming, 120-124

Red mode, 118

Reflected Intensity Level mode, 118

reflective color sensing, 116

shielding, 119

similarity matching, 120

unit1 robot scenario, 222

compass sensors, 94, 153

comparing, 107

HiTechnic compass sensors, 154-157

programming, 154-157

contact sensors, 94

controllers, 20

defining, 16, 37, 91

digital cameras, 116, 124

digital sensors, 95-96

A/D converters, 97-98

output of, 99-100

reading, 97-98

storing readings, 100

dimension/weight, 108

environmental sensors, 94

error rates, 74

EV3 Mindstorms sensors, 113

exteroceptive sensors, 94

frequencies, ph measurement scale, 82-84

gyroscopes, 94

HiTechnic sensors, 113

human senses/sensor comparisons, 91

I2C serial communication, 105-106

image sensors, 124

input devices, sensors as, 93

IR sensors, 116

light sensors, 116

limitations of, 81, 84

linearity, 107-110

low-end versus high-end sensors, 16

microcontrollers, 21, 103-104

optical sensors, 94

passive sensors, 101-103

performance, 74

PIR sensors, 101

Pixy vision sensors, 128-129

attributes of, 134

FOV, 134

programming, 130-134

training Pixy to detect objects, 129

precision, 108-109

problems with, 111

programming, 16

proprioceptive sensors, 94

proximity sensors, 94, 116

range, 107-108

ranging sensors, 94

reality checks, 80-81, 88-89, 84

refresh rate, 107

reliability, 108

repeatability, 108

R.E.Q.U.I.R.E., 88-89

resolution, 107-108

response time, 107

robot effectiveness, 17

softbots 375

sensitivity, 108

sensor states. See PASS

serial ports, 103

sound sensors, 93

SPACES, 242

checks, 262-263

preconditions/postconditions, 247-261

R.E.Q.U.I.R.E. checklists, 245-246

RSVP state diagrams, 262-263

scenario layouts, 242-244

transducers, 92, 95

troubleshooting, 111

types of, 16

UART serial communication, 104-106

ultrasonic sensors, 80, 88, 94, 116

accuracy of, 135-138

Active mode, 140

calibrating, 113, 141-142

Continuous mode, 139-140

FOV, 135, 141

HC-SR04, 148

infrared sensors, 103

limitations of, 135-138

MaxBotix EZ1, 152-153

modes of, 139-140

Parallax Ping))), 150

Passive mode, 140

Ping mode, 139-140

programming, 143-153

reading data types, 141

sample readings, 140

storing readings, 100

unit1 robot scenario, 222

voltage resolution, 108

unit1 robot scenario, 222

Vernier sensors, 113

vision, 115

WowWee sensors, 113

serial ports

asynchronous data transfers, 104-106

sensor/microcontroller interfaces, 103

synchronous data transfers, 105-106

servos, 172

advantages/disadvantages of, 183-184

closed-loop control, 173-174

commonly-used servos, 255

EA, 173

NXT LEGO servos, 176

PWM signals, 173

seven criterion of defining a robot, 10

autonomous operations, 12-13

instructions, 12

interacting with environments, 11

nonliving machines, 13

power sources, 11

programmable actions and behaviors, 11

reprogramming data/instructions, 12

sensing the environment, 11

shielding (lighting), 119

sight and sensors, 115

similarity matching, color sensors, 120

situations

defining, 267

Facility Scenario #1, 311-312

situation vocabularies (ROLL model), 42

skeleton, 22

softbots. See also robots

autonomous robots, 221

defining, 219-221

frames

Actions section, 224, 232-234

asynchronous instructions, 235

softbots376

BURT translation example, 223, 227-239

Parts section, 224, 231-232

ROLL model, 225-239

Scenarios/Situations section, 224,
236-239

synchronous instructions, 235

Tasks section, 224, 234-235

proactive softbots, 221-222

reactive softbots, 221-222

unit1 robot scenario, 222-239

sound sensors, 93

source state (transitions), 70

SPACES (Sensor Precondition/Postcondition
Assertion Check of Environmental
Situations)

checks, 262-263

Facility Scenario #1, 322-323

preconditions/postconditions, 247

action choices for unmet conditions, 248

robot initialization, 249-261

unmet conditions, 248

R.E.Q.U.I.R.E. checklists, 245-246

RSVP state diagrams, 262-263

scenario layouts, 242-244

speed

arms, 182-183

motors, 161, 165

pinion gears, 168

programming, 17

rotational speed, 161

wheel gears, 168

spur gears, 170

stall current, 161

stall torque, 166-167

Start symbol (flowcharts), 57

Start and Stop symbol (pseudocode), 57

startup torque, 166, 182

state diagrams

Facility Scenario #1, 324

RSVP, 262-263

statecharts (RSVP), 47

birthday robot scenario, 66-67, 70-72

composite state/substate, 68

composite/substates, 68

entry/exit actions, 68

final state, 68

initial state, 68

names, 68

parts of, 68

transitions, 68-70

validation statements, 69

Stop symbol (flowcharts), 57

STORIES (Scenarios Translated into
Ontologies Reasoning Intentions and
Epistemological Situations), 349

object-oriented programming, 272-273,
304-305

overview of, 268

unit1 robot scenario, 269, 325-337

decisions robots make/rules robots
follow, 280-281

object-oriented programming and
efficiency, 304-305

ontology of, 271, 274-281

programming intentions, 282-299, 304

unit2 robot scenario, 325-337

storing sensor readings, 100

strength, programming, 17

subroutines, 64-65

switches, 96

synchronous data transfers

I2C serial communication, 105-106

unit1 robot scenario, 235

ultrasonic sensors 377

T
target state (transitions), 70

task vocabularies (ROLL model), 43

Tasks section (softbot frame), unit1 robot
scenario, 224

telerobots, 13

terrain challenges, 178

DARPA Disaster and Recovery Challenge,
180-181

mobility concerns, 179

Test Pad (NXT Mindstorms)

READ sets, 53-54

RSVP, 48

Tetrix arms (Pitsco), 297

Tetrix DC motors (Pitsco), programming,
186-191

Tetrix encoders (Pitsco), 176

thresholding method, 120

Tiny Circuits, 337-338

tool-chains, 27

torque

arms, 182-183, 203-204

full loads, 166

motors, 161, 165-167, 203-204

no load torque, 166-167

nominal torque, 166-167

pinion gears, 168

stall torque, 166-167

startup torque, 166, 182

wheel gears, 168

total gear efficiency, 171

tracking colored objects

Pixy vision sensors, 128

attributes of, 134

FOV, 134

programming, 130-134

training Pixy to detect objects, 129

RS Media, 124-129

transducers, 92, 95, 159-160

transitions (statecharts)

actions, 70

event triggers, 70

guard condition, 70

internal transitions, 68-70

parts of, 70

self-transitions, 68-69

source state, 70

target state, 70

treads/tracks, terrain challenges, 179

Trossen Robotics, 85-87, 220

true robots, defining, 13, 16

two point calibration method, sensors, 113

U
UART (Universal Asynchronous Receiver-

Transmitter) serial communication, 104-106

UAV (Unmanned Aerial Vehicles), 15

ultrasonic sensors, 80, 88, 94, 116

accuracy of, 135-138

Active mode, 140

calibrating, 113, 141-142

Continuous mode, 139-140

FOV, 135, 141

HC-SR04, 148

infrared sensors, 103

limitations of, 135-138

MaxBotix EZ1, 152-153

modes of, 139-140

Parallax Ping))), 150

Passive mode, 140

ultrasonic sensors378

Ping mode, 139-140

programming, 143-153

readings

data types, 141

sample readings, 140

storing, 100

unit1 robot scenario, 222

voltage resolution, 108

underwater robots, 15

unit1 robot scenario, 269, 319

autonomous design, 239-241

capability matrix, 308-309

equipment list, 320-321

five essential ingredients of, 222-223

pseudocode, 231

sensors, 222

softbot frame, 223

Actions section, 224, 232-234

asynchronous instructions, 235

Parts section, 224, 231-232

ROLL model, 225-239

Scenarios/Situations section, 224,
236-239

synchronous instructions, 235

Tasks section, 224, 234-235

SPACES

checks, 262-263

preconditions/postconditions, 247-261

R.E.Q.U.I.R.E. checklists, 245-246

RSVP state diagrams, 262-263

scenario layouts, 242-244

STORIES, 269, 325-337

decisions robots make/rules robots
follow, 280-281

object-oriented programming and
efficiency, 304-305

ontology of, 271, 274-281

programming intentions, 282-299, 304

unit2 robot scenario, 317-319

capability matrix, 308-309

STORIES, 325-337

Urban Dictionary, defining robots, 10

V
validation statements (statecharts), 69

Vernier sensors, 113

vision and sensors, 115

visual planning. See RSVP

visual programming environments, 30

vocabulary

capability matrices, 37-39

defining, 37, 47

Facility Scenario #1, 311-313

ROLL model, 39

robot capabilities, 41

scenario vocabularies, 44

situation vocabularies, 42

softbot frame, unit1 robot scenario,
225-239

task vocabularies, 43

voltage

motors, 160

voltage resolution

A/D converters, 97

analog sensor, 99-100

ultrasonic sensors, 108

WowWee 379

W-X-Y-Z
warehouse scenarios, 310

autonomous robots, 338-339

POV diagrams, 315-316, 319

programming languages, 342

ROLL model, 312-313

RSVP, 313-314

RSVP flowcharts, 317-319

RSVP state diagrams, 324

situations, 311-312

SPACES, 322-323

STORIES, 325-337

vocabulary, 311-313

weight/dimension (sensors), 108

weight restrictions, actuators, 74

wheeled robots, 180, 184-191, 194-200

wheel gears, 167-168

Wikipedia, defining robots, 10

worm gears, 170

WowWee

RS Media microcontrollers, 78

sensors, 113

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Robot Programming Boot Camp
	Ready, Set, Go! No Wires or Strings Attached
	Boot Camp Fundamentals
	Core Robot Programming Skills Introduced in This Book
	BURT—Basic Universal Robot Translator
	BRON—Bluetooth Robot Oriented Network

	Assumptions About the Reader’s Robot(s)
	How Midamba Learned to Program a Robot

	3 RSVP: Robot Scenario Visual Planning
	Mapping the Scenario
	Creating a Floorplan
	The Robot’s World
	RSVP READ SET

	Pseudocode and Flowcharting RSVP
	Flow of Control and Control Structures
	Subroutines

	Statecharts for Robots and Objects
	Developing a Statechart
	What’s Ahead?

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

