MrExcel
LIBRARY

VBA AND MACROS:

Microsoft Excel 2010

oue

FREE SAMPLE CHAPTER

SHARE WITH OTHERS
fF 9 8 A W

http://www.facebook.com/share.php?u=http://www.quepublishing.com/title/9780789743145
http://twitter.com/?status=RT: download a free sample chapter http://www.quepublishing.com/title/9780789743145
https://plusone.google.com/share?url=http://www.quepublishing.com/title/9780789743145
http://www.linkedin.com/shareArticle?mini=true&url=http://www.quepublishing.com/title/9780789743145
http://www.stumbleupon.com/submit?url=http://www.quepublishing.com/title/9780789743145/Free-Sample-Chapter

MrExcel
LIBRARY

VBA and Macros:
Microsoft®
Excel® 2010

Bill Felen

Tracy Syrstad

oue

800 E. 96th Street
Indianapolis, Indiana 46240

Introduction 1
Unleash the Power of Excel with VBA 7
This Sounds Like BASIC, So Why Doesn’t It Look Familiar?............. 33
Referring to Ranges 65
User-Defined Functions 79
Looping and Flow Control 107
R1C1-Style Formulas 127
What Is New in Excel 2010 and What Has Changed................ 139
(reate and Manipulate Names in VBAcccoomerrvvvevnnsnnnnns 147
Event Programming 159
Userforms—An Introduction 183
(reating Charts 203
Data Mining with Advanced Filter 249
Using VBA to Create Pivot Tables 287
Excel Power 329
Data Visualizations and Conditional Formatting..................... 367
Reading from and Writing to the Web...........ccoevvvuremrrevrrennens 391
Dashboarding with Sparklines in Excel 2010..........ccoeevveerneees 41
Automating Word 433
Arrays 453
Text File Processing 463
Using Access as a Back End to Enhance Multiuser Access to Data 475
(reating Classes, Records, and Collectionscoovvveeerreeenne 493
Advanced Userform Techniques 511
Windows API 535
Handling Errors 549
Customizing the Ribbon to Run Macros................coeeveeererreeenne 563
(reating Add-Ins 587
Index 597

VBA and Macros: Microsoft® Excel® 2010
Copyright © 2010 by Que Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained
herein.

ISBN-13: 978-0-7897-4314-5
ISBN-10: 0-7897-4314-0

Library of Congress Cataloging-in-Publication Data:
Jelen, Bill.
VBA and macros : Microsoft Excel 2010 / Bill Jelen, Tracy Syrstad.
p. cm.
Includes index.
ISBN-13: 978-0-7897-4314-5
ISBN-10: 0-7897-4314-0
1. Microsoft Excel (Computer file) 2. Microsoft Visual Basic for applications. 3.

Business—Computer programs. 4. Electronic spreadsheets. I. Syrstad, Tracy. II.
Title.

HF5548.4.M523J46 2010
005.54—dc22
2010018831
Printed in the United States of America

Eighth Printing: August 2014

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Que Publishing cannot attest to the

accuracy of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Microsoft and Excel are a registered trademarks of Microsoft Corporation.
Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as pos-
sible, but no warranty or fitness is implied. The information provided is on an “as
is” basis. The authors and the publisher shall have neither liability nor responsibil-
ity to any person or entity with respect to any loss or damages arising from the
information contained in this book.

Bulk Sales

Que Publishing offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales
international@pearson.com

Associate Publisher
Greg Wiegand

Acquisitions Editor
Loretta Yates

Development Editor
Sondra Scott

Managing Editor
Sandra Schroeder

Senior Project Editor
Tonya Simpson

Copy Editor
Keith Kline

Indexer
Erika Millen

Proofreader
Language Logistics

Technical Editor
Bob Umlas

Publishing Coordinator
Cindy Teeters

Book Designer
Anne Jones

Compositor
Bronkella Publishing

Contents

Introduction 1
Getting Results with VBA 1
What Is in This Book? 1

Reduce the Learning Curve 1
Excel VBA Power 2
Techie Stuff Needed to Produce Applications 2
Does This Book Teach Excel? 2
The Future of VBA and Windows Versions of Excel 4
Versions of Excel 4
Special Elements and Typographical Conventions 5
Code Files 6
Next Steps 6
Unleash the Power of Excel with VBA 7
The Power of Excel 7
Barriers to Entry 7
The Macro Recorder Doesn’t Work! 7
Visual Basic Is Not Like BASIC 8
Good News: Climbing the Learning Curve Is Easy 8
Great News: Excel with VBA Is Worth the Effort 8
Knowing Your Tools: The Developer Tab 9
Macro Security 10
Adding a Trusted Location 10
Using Macro Settings to Enable Macros in Workbooks Outside of Trusted Locations N
Using Disable All Macros with Notification 12
Overview of Recording, Storing, and Running a Macro 12
Filling Out the Record Macro Dialog 13
Running a Macro 14
(reating a Macro Button on the Ribbon 14
(reating a Macro Button on the Quick Access Toolbar 15
Assigning a Macro to a Form Control, Text Box, or Shape 16
Using New File Types in Excel 2010 18
Understanding the VB Editor 19
VB Editor Settings 19
The Project Explorer 20
The Properties Window 21
Understanding Shortcomings of the Macro Recorder 21
Examining Code in the Programming Window 23
Running the Macro on Another Day Produces Undesired Results 25

iv VBA and Macros: Microsoft Excel 2010

Possible Solution: Use Relative References When Recording 26
Never Use the AutoSum Button While Recording a Macro 30
Three Tips When Using the Macro Recorder 31
Next Steps 32
This Sounds Like BASIC, So Why Doesn’t It Look Familiar? 33
| Can’t Understand This Code 33
Understanding the Parts of VBA “Speech” 34
VBA Is Not Really Hard 37
VBA Help Files: Using F1 to Find Anything 37
Using Help Topics 39
Examining Recorded Macro Code: Using the VB Editor and Help 39
Optional Parameters 41
Defined Constants 41
Properties Can Return Objects 46
Using Debugging Tools to Figure Out Recorded Code 46
Stepping Through Code 46
More Debugging Options: Breakpoints 49
Backing Up or Moving Forward in Code 49
Not Stepping Through Each Line of Code 50
Querying Anything While Stepping Through Code 50
Using a Watch to Set a Breakpoint 55
Using a Watch on an Object 55
Object Browser: The Ultimate Reference 56
Seven Tips for Cleaning Up Recorded Code 58
Tip 1: Don’t Select Anything 58
Tip 2: Cells(2,5) Is More Convenient Than Range(“E2") 59
Tip 3: Ride the Range from the Bottom to Find Last Row 59
Tip 4: Use Variables to Avoid Hard-Coding Rows and Formulas 60
Tip 5: R1C1 Formulas That Make Your Life Easier 61
Tip 6: Learn to Copy and Paste in a Single Statement. 61
Tip 7: Use With...End With to Perform Multiple Actions 61
Next Steps 64
Referring to Ranges 65
The Range Object 65
Syntax to Specify a Range 66
Named Ranges 66
Shortcut for Referencing Ranges 66
Referencing Ranges in Other Sheets 67
Referencing a Range Relative to Another Range 68

Contents | v
Use the Ce11s Property to Select a Range 68
Using the Ce11s Property in the Range Property 69
Use the Of fset Property to Refer to a Range 69
Use the Resize Property to Change the Size of a Range 71
Using the Columns and Rows Properties to Specify a Range 72
Use the Union Method to Join Multiple Ranges 72
Use the Intersect Method to Create a New Range from Overlapping Ranges 73
Use the ISEMPTY Function to Check Whether a Cell Is Empty 73
Use the CurrentRegion Property to Select a Data Range 74
Use the Areas Collection to Return a Noncontiguous Range 77
Referencing Tables 77
Next Steps 78
User-Defined Functions 79
(reating User-Defined Functions 79
Sharing UDFs 81
Useful Custom Excel Functions 82
Set the Current Workbook’s Name in a Cell 82
Set the Current Workbook’s Name and File Path in a Cell 82
Check Whether a Workbook Is Open 83
Check Whether a Sheet in an Open Workbook Exists 83
Count the Number of Workbooks in a Directory 84
Retrieve USERID 85
Retrieve Date and Time of Last Save 86
Retrieve Permanent Date and Time 87
Validate an E-mail Address 88
Sum Cells Based on Interior Color 89
Count Unique Values 90
Remove Duplicates from a Range 91
Find the First Nonzero-Length Cell in a Range 923
Substitute Multiple Characters 9
Retrieve Numbers from Mixed Text 95
Convert Week Number into Date 96
Separate Delimited String 96
Sort and Concatenate 97
Sort Numeric and Alpha Characters 99
Search for a String Within Text 100
Reverse the Contents of a Cell 101
Multiple Max 101
Return Hyperlink Address 102
Return the Column Letter of a Cell Address 103

vi VBAand Macros: Microsoft Excel 2010

Static Random 103
Using Select Case ona Worksheet 104
Next Steps 105
Looping and Flow Control 107
For..Next Loops 107
Using Variables in the For Statement 110
Variations on the For. . . Next Loop 110
Exiting a Loop Early After a Condition Is Met m
Nesting One Loop Inside Another Loop 112
Do Loops 13
Using theWhile or Until Clause in Do Loops 15
While. ..Wend Loops n7
VBA Loop: For Each 17
Object Variables 17
Flow Control: Using If...Then...Elseand Select Case 120
Basic Flow Control: If...Then...Else 121
Conditions 121
If...Then...End If 121
Either/Or Decisions: If...Then...Else...End If 122
Using If...Else If...End If for Multiple Conditions 122
Using Select Case...End Select for Multiple Conditions 123
Complex Expressions in Case Statements 124
Nesting If Statements 124
Next Steps 126
R1C1-Style Formulas 127
Referring to Cells: A1 Versus R1C1 References 127
Switching Excel to Display R1C1-Style References 128
The Miracle of Excel Formulas 129
Enter a Formula Once and Copy 1,000 Times 129
The Secret: It's Not That Amazing 130
Explanation of R1C1 Reference Style 132
Using R1C1 with Relative References 132
Using R1C1 with Absolute References 133
Using R1C1 with Mixed References 133
Referring to Entire Columns or Rows with R1C1 Style 134
Replacing Many A1 Formulas with a Single R1C1 Formula 134
Remembering Column Numbers Associated with Column Letters 136
Array Formulas Require R1C1 Formulas 137
Next Steps 138

Contents | vii

7 What Is New in Excel 2010 and What Has Changed 139
If It Has Changed in the Front End, It Has Changed in VBA 139
The Ribbon 139
Charts 139
Pivot Tables 140
Slicers 140
Conditional Formatting 140
Tables 141
Sorting 141
SmartArt 142
Learning the New Objects and Methods 143
Compatibility Mode 144
Version 144
Excel8CompatibilityMode 145
Next Steps 146
8 (reate and Manipulate Names in VBA 147
Excel Names 147
Global Versus Local Names 147
Adding Names 148
Deleting Names 149
Adding Comments 150
Types of Names 150
Formulas 151
Strings 151
Numbers 152
Tables 153
Using Arrays in Names 153
Reserved Names 154
Hiding Names 155
Checking for the Existence of a Name 155
Next Steps 158
9 Event Programming 159
Levels of Events 159
Using Events 160
Event Parameters 160
Enabling Events 161
Workbook Events 161
Workbook Level Sheet and Chart Events 166

Worksheet Events 168

vili VBA and Macros: Microsoft Excel 2010

Chart Sheet Events 172
Embedded Charts 172
Application-Level Events 176
Next Steps 182
10 Userforms: An Introduction 183
User Interaction Methods 183
Input Boxes 183
Message Boxes 184
(reating a Userform 184
(alling and Hiding a Userform 186
Programming the Userform 186
Userform Events 186
Programming Controls 188
Using Basic Form Controls 189
Using Labels, Text Boxes, and Command Buttons 189
Deciding Whether to Use List Boxes or Combo Boxes in Forms 191
Adding Option Buttons to a Userform 194
Adding Graphics to a Userform 195
Using a Spin Button on a Userform 196
Using the MultiPage Control to Combine Forms 198
Verifying Field Entry 200
lllegal Window Closing 200
Getting a Filename 201
Next Steps 202
11 Creating Charts 203
Charting in Excel 2010 203
Referencing Charts and Chart Objects in VBA Code 203
Creating a Chart 204
Specifying the Size and Location of a Chart 204
Later Referring to a Specific Chart 206
Recording Commands from the Layout or Design Tabs 208
Specifying a Built-in Chart Type 208
Specifying a Template Chart Type 210
Changing a Chart’s Layout or Style 21
Using SetElement to Emulate Changes on the Layout Tab 213
Changing a Chart Title Using VBA 218
Emulating Changes on the Format Tab 218
Using the Format Method to Access Formatting Options 218
Creating Advanced Charts 234

Creating True Open-High-Low-Close Stock Charts 235

Contents | ix

(reating Bins for a Frequency Chart 236
(reating a Stacked Area Chart 239
Exporting a Chart as a Graphic 244
(reating a Dynamic Chart in a Userform 244
(reating Pivot Charts 246
Next Steps 248
12 Data Mining with Advanced Filter 249
Replacing a Loop with AutoFilter 249
Using New AutoFilter Techniques 251
Selecting Visible Cells Only 255
Advanced Filter Is Easier in VBA Than in Excel 257
Using the Excel Interface to Build an Advanced Filter 258
Using Advanced Filter to Extract a Unique List of Values 258
Extracting a Unique List of Values with the User Interface 259
Extracting a Unique List of Values with VBA Code 260
Getting Unique Combinations of Two or More Fields 263
Using Advanced Filter with Criteria Ranges 265
Joining Multiple Criteria with a Logical OR 267
Joining Two Criteria with a Logical AND 267
Other Slightly Complex Criteria Ranges 267
The Most Complex Criteria: Replacing the List of Values with a Condition Created as the Result of a Formula............... 268
Using Filter in Place in Advanced Filter 275
(atching No Records When Using Filter in Place 276
Showing All Records After Filter in Place 276
The Real Workhorse: x 1IFilterCopy with All Records Rather Than Unique Records Only 276
Copying All Columns 277
Copying a Subset of Columns and Reordering 278
Using Filter in Place with Unique Records Only 283
Excel in Practice: Turning Off a Few Drop-Downs in the AutoFilter 285
Next Steps 285
13 Using VBA to Create Pivot Tables 287
Introducing Pivot Tables 287
Understanding Versions 287
New in Excel 2010 288
New Beginning with Excel 2007 288
(reating a Vanilla Pivot Table in the Excel Interface 290
Understanding Compact Layout 293
Building a Pivot Table in Excel VBA 294
Defining the Pivot Cache 295
(reating and Configuring the Pivot Table 295

Adding Fields to the Data Area 296

X VBAand Macros: Microsoft Excel 2010

Learning Why You Cannot Move or Change Part of a Pivot Report 299
Determining Size of a Finished Pivot Table to Convert the Pivot Table to Values 299
Using Advanced Pivot Table Features 302
Using Multiple Value Fields 302
Counting the Number of Records 303
Grouping Daily Dates to Months, Quarters, or Years 303
Changing the Calculation to Show Percentages 305
Eliminating Blank Cells in the Values Area 308
Controlling the Sort Order with AutoSort 308
Replicating the Report for Every Product 309
Filtering a Data Set 312
Manually Filtering Two or More Items in a Pivot Field 312
Using the Conceptual Filters 313
Using the Search Filter 316
Setting Up Slicers to Filter a Pivot Table 319
Filtering an OLAP Pivot Table Using Named Sets 321
Using Other Pivot Table Features 324
(alculated Data Fields 324
(alculated Items 325
Using ShowDetail to Filter a Recordset 325
Changing the Layout from the Design Tab 325
Suppressing Subtotals for Multiple Row Fields 326
Next Steps 327
14 Excel Power 329
File Operations 329
List Files in a Directory 329
Import SV 331
Read Entire TXT to Memory and Parse 332
Combining and Separating Workbooks 333
Separate Worksheets into Workbooks 333
Combine Workbooks 334
Filter and Copy Data to Separate Worksheets 335
Export Data to Word 336
Working with Cell Comments 337
List Comments 337
Resize Comments 339
Resize Comments with Centering 340
Place a Chart in a Comment 341
Utilities to Wow Your Clients 342
Using Conditional Formatting to Highlight Selected Cell 342
Highlight Selected Cell Without Using Conditional Formatting 344
Custom Transpose Data 345

Select/Deselect Noncontiguous Cells 347

Contents | Xi

Techniques for VBA Pros 349
Pivot Table Drill-Down 349
Speedy Page Setup 350
(alculating Time to Execute Code 353
Custom Sort Order 354
Cell Progress Indicator 355
Protected Password Box 356
Change Case 359
Selecting with SpecialCells 360
ActiveX Right-Click Menu 360

Cool Applications 362
Historical Stock/Fund Quotes 362
Using VBA Extensibility to Add Code to New Workbooks 363

Next Steps 365

15 Data Visualizations and Conditional Formatting 367

Introduction to Data Visualizations 367

VBA Methods and Properties for Data Visualizations 368

Adding Data Bars to a Range 369

Adding Color Scales to a Range 374

Adding Icon Sets to a Range 375
Specifying an Icon Set 376
Specifying Ranges for Each Icon 377

Using Visualization Tricks 378
(reating an Icon Set for a Subset of a Range 378
Using Two Colors of Data Bars in a Range 380

Using Other Conditional Formatting Methods 382
Formatting Cells That Are Above or Below Average 383
Formatting Cells in the Top 10 or Bottom 5 383
Formatting Unique or Duplicate Cells 384
Formatting Cells Based on Their Value 385
Formatting Cells That Contain Text 386
Formatting Cells That Contain Dates 386
Formatting Cells That Contain Blanks or Errors 387
Using a Formula to Determine Which Cells to Format 387
Using the New NumberFormat Property 388

Next Steps 389

16 Reading from and Writing to the Web 391

Getting Data from the Web 391
Manually Creating a Web Query and Refreshing with VBA 392
Using VBA to Update an Existing Web Query 395

Building Many Web Queries with VBA 396

Xii VBA and Macros: Microsoft Excel 2010

Using Application.OnTime to Periodically Analyze Data 399
Scheduled Procedures Require Ready Mode 400
Specifying a Window of Time for an Update 400
(anceling a Previously Scheduled Macro 400
Closing Excel Cancels All Pending Scheduled Macros 401
Scheduling a Macro to Run x Minutes in the Future 401
Scheduling a Verbal Reminder 402
Scheduling a Macro to Run Every 2 Minutes 403

Publishing Data to a Web Page 404
Using VBA to Create Custom Web Pages 406
Using Excel as a Content Management System 407
Bonus: FTP from Excel 409

Next Steps 410

17 Dashboarding with Sparklines in Excel 2010 4an

Creating Sparklines 412

Scaling the Sparklines 414

Formatting Sparklines 418
Using Theme Colors 418
Using RGB Colors a1
Formatting Sparkline Elements 423
Formatting Win/Loss Charts 426

(reating a Dashboard 427
Observations About Sparklines 428
Creating 100’s of Individual Sparklines in a Dashboard 428

Next Steps 432

18 Automating Word 433

Early Binding 433
Compile Error: Can't Find Object or Library 435

Late Binding 436

(reating and Referencing Objects 437
The New Keyword 437
CreateObject Function 438
GetObject Function 438

Using Constant Values 439
Using the Watch Window to Retrieve the Real Value of a Constant 440
Using the Object Browser to Retrieve the Real Value of a Constant 440

Understanding Word’s Objects 441
Document Object 442
Selection Object 443
Range Object 444
Bookmarks 448

Contents | Xiii

Controlling Form Fields in Word 450
Next Steps 452

19 Arrays 453
Declare an Array 453
Multidimensional Arrays 454

Fill an Array 455
Empty an Array 456
Arrays Make It Easier to Manipulate Data, but Is That All? 457
Dynamic Arrays 459
Passing an Array 460
Next Steps 461

20 Text File Processing 463
Importing from Text Files 463
Importing Text Files with Fewer Than 1,048,576 Rows 463
Reading Text Files with More Than 1,048,576 Rows 470
Writing Text Files 473
Next Steps 474

21 Using Access as a Back End to Enhance Multiuser Access to Data 475
ADO Versus DAO 476
The Tools of ADO 478
Adding a Record to the Database 480
Retrieving Records from the Database 481
Updating an Existing Record 483
Deleting Records via ADO 485
Summarizing Records via ADO 485
Other Utilities via ADO 487
Checking for the Existence of Tables 487
Checking for the Existence of a Field 488
Adding a Table On the Fly 489

Adding a Field On the Fly 489

SQL Server Examples 490
Next Steps 491

22 Creating Classes, Records, and Collections 493
Inserting a Class Module 493
Trapping Application and Embedded Chart Events 494
Application Events 494
Embedded Chart Events 495
(reating a Custom Object 497

Xiv VBA and Macros: Microsoft Excel 2010

Using a Custom Object 498
Using Property LetandProperty Get to Control How Users Utilize Custom Objects 499
Collections 501
Creating a Collection in a Standard Module 501
Creating a Collection in a Class Module 502
User-Defined Types 506
Next Steps 509
23 Advanced Userform Techniques 51
Using the UserForm Toolbar in the Design of Controls on Userforms 511
More Userform Controls 51
Check Boxes 512
Tab Strips 513
RefEdit 515
Toggle Buttons 517
Using a Scrollbar As a Slider to Select Values 517
Controls and Collections 519
Modeless Userforms 521
Using Hyperlinks in Userforms 522
Adding Controls at Runtime 523
Resizing the Userform On-the-fly 524
Adding a Control On-the-fly 525
Sizing On-the-fly 525
Adding Other Controls 525
Adding an Image On-the-fly 526
Putting It All Together 527
Adding Help to the Userform 529
Showing Accelerator Keys 529
Adding Control Tip Text 530
Creating the Tab Order 530
Coloring the Active Control 530
Transparent Forms 533
Next Steps 534
24 Windows API 535
What Is the Windows API? 535
Understanding an API Declaration 536
Using an API Declaration 537
API Examples 537
Retrieve the Computer Name 538
Check Whether an Excel File Is Open on a Network 539
Retrieve Display-Resolution Information 540

Contents XV

Custom About Dialog 541
Disable the X for Closing a Userform 541
Running Timer 542
Playing Sounds 543
Retrieving a File Path 543
Finding More API Declarations 547
Next Steps 547
25 Handling Errors 549
What Happens When an Error Occurs? 549
Debug Error Inside Userform Code Is Misleading 551
Basic Error Handling with the On Error GoTo Syntax 552
Generic Error Handlers 554
Handling Errors by Choosing to Ignore Them 554
Suppressing Excel Warnings 556
Encountering Errors on Purpose 556
Train Your Clients 557
Errors While Developing Versus Errors Months Later 557
Runtime Error 9: Subscript Out of Range 557
RunTime Error 1004: Method Range of Object Global Failed 558
The Ills of Protecting Code 559
More Problems with Passwords 560
Errors Caused by Different Versions 561
Next Steps 562
26 Customizing the Ribbon to Run Macros 563
Out with the Old, In with the New 563
Where to Add Your Code: customui Folder and File 564
(reating the Tab and Group 565
Adding a Control to Your Ribbon 566
Accessing the File Structure 571
Understanding the RELS File 571
Renaming the Excel File and Opening the Workbook 572
Custom Ul Editor Tool 572
Using Images on Buttons 572
Microsoft Office Icons 573
Custom Icon Images 574
Troubleshooting Error Messages 577
The Attribute “Attribute Name” on the Element “customui Ribbon” Is Not Defined in the DTD/Schema.........c..ccvceeunnee. 577

llegal Qualified Name Character 578

Xvi VBA and Macros: Microsoft Excel 2010

Element “customui Tag Name” Is Unexpected According to Content Model of Parent Element “customui

Tag Name” 578

Excel Found Unreadable Content 579
Wrong Number of Arguments or Invalid Property Assignment 580
Nothing Happens 580
Other Ways to Run a Macro 580
Keyboard Shortcut 580
Attach a Macro to a Command Button 581
Attach a Macro to a Shape 582
Attach a Macro to an ActiveX Control 583
Running a Macro from a Hyperlink 584
Next Steps 585
27 Creating Add-Ins 587
Characteristics of Standard Add-Ins 587
Converting an Excel Workbook to an Add-In 588
Using Save As to Convert a File to an Add-In 589
Using the VB Editor to Convert a File to an Add-In 590
Having Your Client Install the Add-In 591
Standard Add-Ins Are Not Secure 592
Closing Add-Ins 593
Removing Add-Ins 593
Using a Hidden Workbook as an Alternative to an Add-In 593
Next Steps 595

Index 597

Contents | Xvii

About the Authors

Bill Jelen, Excel MVP and the host of MrExcel.com, has been using spreadsheets since
1985, and he launched the MrExcel.com website in 1998. Bill was a regular guest on Call
for Help with Leo Laporte and has produced more than 1,200 episodes of his daily video
podcast, Learn Excel from MrExcel. He is the author of 30 books about Microsoft Excel
and writes the monthly Excel column for Strategic Finance magazine. You will most fre-
quently find Bill taking his show on the road, doing half-day Power Excel seminars wher-
ever he can find a room full of accountants or Excellers. Before founding MrExcel.com,
Jelen spent 12 years in the trenches—working as a financial analyst for finance, marketing,
accounting, and operations departments of a $500 million public company. He lives near
Akron, Ohio, with his wife, Mary Ellen, and his sons, Josh and Zeke.

Tracy Syrstad is the project manager for the MrExcel consulting team. She was introduced
to Excel VBA by a co-worker who encouraged her to learn VBA by recording steps and
then modifying the code as needed. Her first macro was a simple lookup and highlight for

a parts index, although it hardly seemed simple then. But she was encouraged by this suc-
cess and others to follow. She’ll never forget the day when it all clicked. She hopes this
book will bring that click to its readers sooner and with less frustration. She lives near Sioux

Falls, South Dakota, with her husband, John.

Dedication

To everyone in the MrExcel.com message board community.

—Bill Felen

To Fohn, who would only accept perfection, even if it took four coats of paint.
—Tracy Syrstad

xviii VBA and Macros: Microsoft Excel 2010

Acknowledgments

Thanks to Tracy Syrstad for being a great co-author and for doing a great job of managing
all the consulting projects at MrExcel.com.

Bob Umlas is the smartest Excel guy I know and is an awesome technical editor. At
Pearson, Loretta Yates is an excellent acquisitions editor.

Along the way, I've learned a lot about VBA programming from the awesome community
at the MrExcel.com message board. VoG and Richard Schollar and Jon von der Heyden all
stand out as having contributed posts that lead to ideas in this book. Thanks to Pam Gensel
for Excel macro lesson #1. Mala Singh taught me about creating charts in VBA, and Oliver
Holloway brought me up to speed with accessing SQL Server.

At MrExcel.com, thanks to Barb Jelen, Wei Jiang, Tracy Syrstad, Schar Oswald, and Scott
Pierson. Thanks also to Josh and Zeke Jelen, who have been picking up hours after school
learning how to edit and produce the MrExcel podcast.

Finishing five Excel books for Excel 2010 simultaneously has been a monumental task. My
family was incredibly supportive during this time. Thanks for Josh, Zeke, and Mary Ellen
Jelen.

—Bill

Thanks to Bill Jelen, whose trust in me to run the consulting side of his business has done
so much in building my self-confidence. And to LKH, whose blog I've learned so much
from about writing and balancing working in the home and still having a personal life.

Richard Schollar and Joe Miskey: You’ve both been invaluable managing member issues at
the forum and I feel I don’t say thank you often enough. Thank you! And thanks to all the
moderators who keep the board organized, despite the best efforts of the spammers.

There have been so many MrExcel.com clients whose projects have shown myriad ways
that Excel can be used. Your excitement and appreciation over the solution we provide you
has brightened my day as often as your unique projects have kept this job interesting.

—T'racy

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what areas
you’d like to see us publish in, and any other words of wisdom you’re willing to pass our
way.

As an associate publisher for Que Publishing, I welcome your comments. You can email
or write me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do

bave a User Services group, however, where I will forward specific technical questions related to the
book.

When you write, please be sure to include this book’s title and author as well as your name,
email address, and phone number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: feedback@quepublishing.com

Mail: Greg Wiegand
Associate Publisher
Que Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at quepublishing.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Getting Results with VBA

As corporate I'T departments have found themselves
with long backlogs of requests, Excel users have dis-
covered they can produce the reports needed to run
their business themselves using the macro language
Visual Basic for Applications (VBA). VBA enables you
to achieve tremendous efficiencies in your day-to-
day use of Excel. This is both a good and bad thing.
On the good side, without waiting for resources
from I'T, VBA helps you figure out how to import
data and produce reports in Excel. On the bad side,
you are now stuck importing data and producing
reports in Excel.

What Is in This Book?

You have taken the right step by purchasing this
book. I can help you reduce the learning curve so
that you can write your own VBA macros and put
an end to the burden of generating reports manu-
ally.

Reduce the Learning Curve

This Introduction provides a brief history of
spreadsheets. Chapter 1 introduces the tools and
confirms what you probably already know: The
macro recorder does not work. Chapter 2 helps
you understand the crazy syntax of VBA. Chapter

3 breaks the code on how to work efficiently with
ranges and cells. By the time you get to Chapter 4,
you will know enough to begin using the 25 sample
user-defined functions in that chapter.

Chapter 5 covers the power of looping using VBA.
The case study in this chapter creates a program to
produce a department report, and then wraps that
report routine in a loop to produce 46 reports.

INTRODUCTION

Getting Results with VBA

What Is in This Book?ccceeuererenruruenenenenes 1

The Future of VBA and Windows Versions of

Special Elements and Typographical
Conventions

Code Files

2 Introduction

Chapter 6 covers R1Cl1-style formulas. Chapter 7 looks at what changed in Excel VBA
from Excel 2003 to Excel 2010. In the past, it was fairly straightforward to create VBA code
that would run on any of the recent versions of Excel. Unfortunately, with the sweeping
changes in Excel 2007 and Excel 2010, it became significantly more difficult to create this
VBA code. Chapter 8 covers names. Chapter 9 includes some great tricks that use event
programming. Chapter 10 introduces custom dialog boxes that you can use to collect infor-
mation from the human using Excel.

Excel VBA Power

Chapters 11 through 13 provide an in-depth look at charting, Advanced Filter, and pivot
tables. Any report automation tool will rely heavily on these concepts. Chapter 14 includes
25 code samples designed to exhibit the power of Excel VBA.

Chapters 15 through 18 handle data visualizations, web queries, sparklines, and automating
another Office program such as Word.

Techie Stuff Needed to Produce Applications

Chapter 19 shows how to use arrays to build fast applications. Chapters 20 and 21 handle
reading and writing to text files and Access databases. The techniques for using Access data-
bases enable you to build an application with the multi-user features of Access while keep-
ing the friendly front end of Excel.

Chapter 22, as it examines classes and collections, covers VBA from a Visual Basic program-
mer’s point of view. Chapter 23 discusses advanced userform topics. Chapter 24 teaches
some tricky ways to achieve tasks using the Windows application programming interface.
Chapters 25 through 27 deal with error handling, custom menus, and add-ins.

Does This Book Teach Excel?

Microsoft believes the average Office user touches only 10 percent of the features in Office.
I realize everyone reading this book is above average, and I have a pretty smart audience at

MrExcel.com. Even so, a poll of 8,000 MrExcel.com readers shows that only 42 percent of

smarter-than-average users are using any one of the top 10 power features in Excel.

I regularly present a Power Excel seminar for accountants. These are hard-core Excelers
who use Excel 30 to 40 hours every week. Even so, two things come out in every seminar.
First, half the audience gasps when they see how quickly you can do tasks with a particular
feature such as automatic subtotals or pivot tables. Second, someone in the audience rou-
tinely trumps me. For example, someone asks a question, I answer, and someone in the sec-
ond row raises a hand to give a better answer.

The point? You and I both know a lot about Excel. However, I will assume that in any
given chapter, maybe 58 percent of the people have not used pivot tables before and maybe
even fewer have used the “Top 10 Filter” feature of pivot tables. With this in mind, before
I show how to automate something in VBA, I briefly cover how to do the same task in the

What Is in This Book? 3

Excel interface. This book does not teach you how to do pivot tables, but it does alert you
when you might need to explore a topic and learn more about it elsewhere.

STUDY:MONTHLY ACCOUNTING REPORTS

This is a true story. Valerie is a business analyst in the accounting department of a medium-size corporation. Her company
recently installed an overbudget $16 million ERP system. As the project ground to a close, there were no resources left in
the IT budget to produce the monthly report that this corporation used to summarize each department.

However, Valerie had been close enough to the implementation process to think of a way to produce the report herself.
She understood that she could export General Ledger data from the ERP system to a text file with comma-separated val-
ues. Using Excel, Valerie was able to import the G/L data from the ERP system into Excel.

(reating the report was not easy. Like many companies, there were exceptions in the data. Valerie knew that certain
accounts in one particular cost center needed to be reclassed as an expense. She knew that other accounts needed to

be excluded from the report entirely. Working carefully in Excel, Valerie made these adjustments. She created one pivot
table to produce the first summary section of the report. She cut the pivot table results and pasted them into a blank
worksheet.Then she created a new pivot table report for the second section of the summary. After about 3 hours, she had
imported the data, produced five pivot tables, arranged them in a summary, and neatly formatted the report in color.

Becoming the Hero

Valerie handed the report to her manager. The manager had just heard from the IT department that it would be months
before they could get around to producing “that convoluted report.”When Valerie created the Excel report, she became
the instant hero of the day. In 3 hours, Valerie had managed to do the impossible. Valerie was on cloud nine after a well-
deserved “atta-girl.”

More Cheers

The next day, Valerie's manager attended the monthly department meeting. When the department managers started
complaining that they could not get the report from the ERP system, this manager pulled out his department report and
placed it on the table.The other managers were amazed. How was he able to produce this report? Everyone was relieved
to hear that someone had cracked the code. The company president asked Valerie's manager if he could have the report
produced for each department.

Cheers Turn to Dread

You can probably see this coming. This particular company had 46 departments. That means 46 one-page summaries had
to be produced once a month. Each report required importing data from the ERP system, backing out certain accounts,
producing five pivot tables, and then formatting the reports in color. Even though it had taken Valerie 3 hours to produce
the first report, after she got into the swing of things, she could produce the 46 reports in 40 hours. This is horrible. Valerie
had a job to do before she became responsible of spending 40 hours a month producing these reports in Excel.

4 Introduction

VBA to the Rescue

Valerie found my company, MrExcel Consulting, and explained her situation. In the course of about a week, | was able to
produce a series of macros in Visual Basic that did all the mundane tasks. For example, it imported the data, backed out
certain accounts, did five pivot tables, and applied the color formatting. From start to finish, the entire 40-hour manual
process was reduced to two button clicks and about 4 minutes.

Right now, either you or someone in your company is probably stuck doing manual tasks in Excel that can be automated
with VBA.| am confident that | can walk into any company with 20 or more Excel users and find a case equally amazing as
Valerie’s.

The Future of VBA and Windows Versions of Excel

Seven years ago, there were many rumblings that Microsoft might stop supporting VBA.
There is now plenty of evidence to indicate that VBA will be around in Windows versions
of Excel through 2025. When VBA was removed from the Mac version of Excel 2008, a
huge outery from customers led to it being included in the next Mac version of Excel.

Microsoft has stated that in Excel 15, which is the next version of Excel, it will stop pro-
viding support for XLM macros. These macros were replaced by VBA in 1993, and 17
years later, they are still supported. There is a chance that Microsoft will introduce a new
programming language for the macro recorder in Excel 15. Assuming Microsoft continues
to support VBA for 17 years after Excel 2012, you should be good through the mid-to-late
2020s.

However, you can see Microsoft’s lack of commitment to VBA. Office 2003 offered a few
features, such as the Research Pane and SmartTags, which could only be automated with
Visual Basic.Net. The charting macro recorder, which was not finished in time to ship with
Excel 2007, is included in Excel 2010.

The tools that you learn today will be good for the next 15 years. Even if Microsoft decides
to scrap VBA in favor of another language, your coding skills will most likely transfer to the
new platform.

Versions of Excel

"This Third Edition of VBA and Macros is designed to work with Excel 2010. The previous
editions of this book covered code for Excel 97 through Excel 2007. In 80 percent of the
chapters, the code for Excel 2010 will be identical to code in previous versions. However,
there are exceptions. For example, Microsoft offers new sorting logic, and charts have
changed completely. In addition, the conditional formatting and data visualization tools in
Chapter 15 are brand new. With Excel 2010, pivot tables offer new calculation options and
slicers. The XML examples in Chapter 17 will work only with Excel 2003 or newer.

Introduction 5

Differences for Mac Users

Although Excel for Windows and Excel for the Mac are similar in their user interface, there
are a number of differences when you compare the VBA environment. Certainly, nothing
in Chapter 24 that uses the Windows API will work on the Mac. The overall concepts dis-
cussed in the book apply to the Mac, but differences will exist. You can find a general list of
differences as they apply to the Mac at http://www.mrexcel.com/macvba.html.

Special Elements and Typographical Conventions

The following typographical conventions are used in this book:
B [rali—Indicates new terms when they are defined, special emphasis, non-English
words or phrases, and letters or words used as words

B wmonospace—Indicates parts of VBA code such as object or method names, and file-
names

B Italic monospace—Indicates placeholder text in code syntax

B Bold monospace—Indicates user input

In addition to these typographical conventions, there are several special elements. Each
chapter has at least one case study that presents a real-world solution to common problems.
The case study also demonstrates practical applications of topics discussed in the chapter.

In addition to the case studies, you will see New icons, Notes, Tips, and Cautions.

Notes provide additional information outside the main thread of the chapter discussion that might be
useful for you to know.

rNOTE

Tips provide quick workarounds and time-saving techniques to help you work more efficiently.

~TIP -

CAUTION

(autions warn about potential pitfalls you might encounter. Pay attention to the Cautions; they alert
you to problems that may otherwise cause you hours of frustration.

http://www.mrexcel.com/macvba.html

6 Introduction

Code Files

As a thank you for buying this book, the authors have put together a set of 50 Excel work-
books that demonstrate the concepts included in this book. This set of files includes all

the code from the book, sample data, additional notes from the authors, and 25 additional
bonus macros. To download the code files, visit this book’s web page at http://www.quepub-
lishing.com or http://www.mrexcel.com/getcode2010.html.

Next Steps

Chapter 1 introduces the editing tools of the Visual Basic environment and shows why
using the macro recorder is not an effective way to write VBA macro code.

http://www.quepublishing.com
http://www.quepublishing.com
http://www.mrexcel.com/getcode2010.html

Unleash the Power of Excel

with VBA

The Power of Excel

Visual Basic for Applications (VBA) combined with
Microsoft Excel is probably the most powerful tool
available to you. VBA is sitting on the desktops of
500 million users of Microsoft Office, and most
have never figured out how to harness the power

of VBA in Excel. Using VBA, you can speed the
production of any task in Excel. If you regularly use
Excel to produce a series of monthly charts, you can
have VBA do the same task for you in a matter of
seconds.

Barriers to Entry

There are two barriers to learning successful VBA
programming. First, Excel’s macro recorder is
flawed and does not produce workable code for you
to use as a model. Second, for many who learned a
programming language such as BASIC, the syntax
of VBA is horribly frustrating.

The Macro Recorder Doesn’t Work!

Microsoft began to dominate the spreadsheet mar-
ket in the mid-1990s. Although it was wildly suc-
cessful in building a powerful spreadsheet program
to which any Lotus 1-2-3 user could easily transi-
tion, the macro language was just too different.
Anyone proficient in recording Lotus 1-2-3 macros
who tried recording a few macros in Excel most
likely failed. Although the Microsoft VBA program-
ming language is much more powerful than the
Lotus 1-2-3 macro language, the fundamental flaw
is that the macro recorder does not work.

With Lotus 1-2-3, you could record a macro today,
play it back tomorrow, and it would faithfully work.

The Power of Excel

Barriers to Entry

Knowing Your Tools: The Developer Tab
Macro Security ..

Overview of Recording, Storing, and Running
a Macro

Running a Macro
Using New File Types in Excel 2010
Understanding the VB Editor

Understanding Shortcomings of the Macro
Recorder

8 Chapter1 Unleash the Power of Excel with VBA

When you attempt the same feat in Microsoft Excel, the macro might work today but not

tomorrow. In 1995, when I tried to record my first Excel macro, I was horribly frustrated
by this.

Visual Basic Is Not Like BASIC

The code generated by the macro recorder was unlike anything I had ever seen. It said this
was “Visual Basic” (VB). I had the pleasure of learning half a dozen programming languages
at various times; this bizarre-looking language was horribly unintuitive and did not resem-
ble the BASIC language I had learned in high school.

To make matters worse, even in 1995 I was the spreadsheet wizard in my office. My com-
pany had forced everyone to convert from Lotus 1-2-3 to Excel, which meant I was faced
with a macro recorder that didn’t work and a language that I couldn’t understand. This was
not a good combination of events.

My assumption in writing this book is that you are pretty talented with a spreadsheet.

You probably know more than 90 percent of the people in your office. I also assume that
even though you are not a programmer, you might have taken a class in BASIC at some
point. However, knowing BASIC is not a requirement—it actually is a barrier to entry into
the ranks of being a successful VBA programmer. There is a good chance that you have
recorded a macro in Excel and a similar chance that you were not happy with the results.

Good News: Climbing the Learning Curve Is Easy

Even if you’ve been frustrated with the macro recorder, it is really just a small speed bump
on your road to writing powerful programs in Excel. This book will not only teach you why
the macro recorder fails, but also how to change the recorded code into something useful.
For all the former BASIC programmers in the audience, I will decode VBA so that you can
easily pick through recorded macro code and understand what is happening.

Great News: Excel with VBA Is Worth the Effort

Although you probably have been frustrated with Microsoft over the inability to record
macros in Excel, the great news is that Excel VBA is powerful. Absolutely anything you
can do in the Excel interface can be duplicated with stunning speed in Excel VBA. If you
find yourself routinely creating the same reports manually day after day or week after week,
Excel VBA will greatly streamline those tasks.

The authors of this book work for MrExcel Consulting. In this role, we have automated
reports for hundreds of clients. The stories are often similar: The MIS department has a
several-month backlog of requests. Someone in accounting or engineering discovers that he
or she can import some data into Excel and get the reports necessary to run the business.
"This is a liberating event—you no longer need to wait months for the I'T' department to
write a program. However, the problem is that after you import the data into Excel and win
accolades from your manager for producing the report, you will likely be asked to produce
the same report every month or every week. This becomes very tedious.

Knowing Your Tools: The DeveloperTab | 9

Again, the great news is that with a few hours of VBA programming, you can automate the
reporting process and turn it into a few button clicks. The reward is great. So, hang with
me as we cover a few of the basics.

"This chapter exposes why the macro recorder does not work. It also walks through an
example of recorded code and demonstrates why it will work today but fail tomorrow. I
realize that the code you see in this chapter might not be familiar to you, but that’s okay.
The point of this chapter is to demonstrate the fundamental problem with the macro
recorder. You also learn the fundamentals of the Visual Basic environment.

Knowing Your Tools: The Developer Tab

Let’s start with a basic overview of the tools needed to use VBA. By default, Microsoft
hides the VBA tools. You need to complete the following steps to change a setting in Excel
options to access the Developer tab.

1.
2.
3.
4.

5.

Open the File menu to get to the new Backstage view.
Along the left navigation bar, select Options under Excel.
In the Excel Options dialog, select Customize Ribbon from the left navigation.

In the Right list box, the Developer tab is third from the bottom. Select the check box
next to this item.

Click OK to return to Excel.

Excel displays the Developer tab shown in Figure 1.1.

Figure 1,1 Home Insert Page Layout Formulas Data Review View Developer
The Developer tab m = P Recard Macro l-%i@}’ * & Properties @ T Map Properties [FdImport }
N) S =3 . =] - A Expo =
provides an interface for Vi Macre JE e Rt | e o | e Bl epansion facs B ot ||l
A . Basic 3 Macro Security CH d Run Dialag } Refresh Data Panel
running and recording Code Contrals XL Modity

macros.

The Code group on the Developer tab contains the icons used for recording and playing
back VBA macros, as listed here:

Visual Basic icon—Opens the Visual Basic Editor.

Macros icon—Displays the Macro dialog, where you can choose to run or edit a
macro from the list of macros.

Record Macro icon—Begins the process of recording a macro.

Use Relative Reference icon—Toggles between using relative or absolute recording.
With relative recording, Excel will record that you move down three cells. With abso-
lute recording, Excel will record that you selected cell A4.

Macro Security icon—Accesses the Trust Center, where you can choose to allow or
disallow macros to run on this computer.

10 Chapter1 Unleash the Power of Excel with VBA

The Controls group of the Developer tab contains an Insert menu where you can access

a variety of programming controls that can be placed on the worksheet. See “Assigning a
Macro to a Form Control, Text Box, or Shape,” later in this chapter. Other icons in this
group enable you to work with the on-sheet controls. The Run Dialog button enables you
to display a custom dialog box or userform that you designed in VBA. For more on user-
forms, see Chapter 10, “Userforms: An Introduction.”

The XML group of the Developer ribbon contains tools for importing and exporting XML documents.

—NOTE

Macro Security

After VBA macros were used as the delivery method for some high-profile viruses,
Microsoft changed the default security settings to prevent macros from running. Therefore,
before we can begin discussing the recording of a macro, we need to show you how to
adjust the default settings.

In Excel 2010, you can either globally adjust the security settings or control macro settings
for certain workbooks by saving the workbooks in a trusted location. Any workbooks stored
in a folder that is marked as a trusted location will automatically have its macros enabled.

You can find the macro security settings under the Macro Security icon on the Developer
tab. When you click this icon, the Macro Settings category of the Trust Center is displayed.
You can use the left navigation bar in the dialog to access the Trusted Locations list.

Adding a Trusted Location

You can choose to store your macro workbooks in a folder that is marked as a trusted loca-
tion. Any workbook stored in a trusted folder will have its macros enabled. Microsoft sug-
gests that a trusted location should be on your hard drive. The default setting is that you
cannot trust a location on a network drive.

"To specify a trusted location, follow these steps:

1. Click Macro Security in the Developer tab.
2. Click Trusted Locations in the left navigation pane of the Trust Center.

3. If you want to trust a location on a network drive, select Allow Trusted Locations on
My Network.

4. Click the Add New Location button. Excel displays the Microsoft Office Trusted
Locations dialog (see Figure 1.2).
5. Click the Browse button. Excel displays the Browse dialog.

6. Browse to the parent folder of the folder you want to be a trusted location. Click the
trusted folder. Although the folder name does not appear in the Folder Name box,
click OK. The correct folder name will appear in the Browse dialog.

F|9ure 1‘2 Microsoft Office Trusted Location @Iﬁ
Manage trusted fOId_erS Warning: This location will be treated as a trusted source for opening files. If you

on the Trusted Locations change or add a location, make sure that the new location is secure,

category of the Trust ":“E’ e S

Center. :\Users\Owner\Documen celMacros

Macro Security | 11

7. If you want to trust subfolders of the selected folder, select Subfolders of This Location
Will Be Trusted.

8. Click OK to add the folder to the Trusted Locations list.

CAUTION
Use care when selecting a trusted location. When you double-click an Excel attachment in an e-mail,
Outlook stores the file in a temporary folder on your C: drive. You will not want to globally add C:\ and
all subfolders to the Trusted Locations list.

[] subfolders of this Iocation are also trusted
Description:

Date and Time Created: 10/7/2009 3:21PM

J

Although trusted locations are not new in Excel 2010, Microsoft has made the process of
adding trusted locations more discoverable in Excel 2010.

Using Macro Settings to Enable Macros in Workbooks Outside of Trusted Locations

For all macros not stored in a trusted location, Excel relies on the macro settings. The
Low, Medium, High, and Very High settings that were familiar in Excel 2003 have been

renamed.

To access the macro settings, click Macro Security in the Developer tab. Excel displays the
Macro Settings category of the Trust Center dialog. Select the second option, Disable All
Macros with Notification. A description of each option follows:

B Disable All Macros Without Notification—This setting prevents all macros from
running. This setting is for people who never intend to run macros. Because you are
currently holding a book that teaches you how to use macros, it is assumed that this
setting is not you. This setting is roughly equivalent to the old Very High Security set-
ting in Excel 2003. With this setting, only macros in the Trusted Locations folders can
run.

B Disable All Macros with Notification—This setting is similar to Medium security in
Excel 2003 and is the recommended setting. In Excel 2003, a Medium setting caused
a box to be displayed when you opened a file containing macros. This box forced the

12 C(hapter1 Unleash the Power of Excel with VBA

person to choose either Enable or Disable. Many novice Excel users randomly choose
from this box. In Excel 2010, the message is displayed in the Message Area that macros
have been disabled. You can choose to enable the content by clicking that option, as
shown in Figure 1.3.

B Disable All Macros Except Digitally Signed Macros—This setting requires you to
obtain a digital signing tool from VeriSign or another provider. This might be appro-
priate if you are going to be selling add-ins to others, but a bit of a hassle if you just
want to write macros for your own use.

B Enable All Macros (Not Recommended: Potentially Dangerous Code Can
Run)—This setting is similar to Low macro security in Excel 2003. Although it
requires the least amount of hassle, it also opens your computer up to attacks from
malicious Melissa-like viruses. Microsoft suggests that you do not use this setting.

Figure 1.3

Open a macro workbook
using the Disable All
Macros with Notification A | B | ¢© | o | E | F | 6
setting to enable the

macros.

Using Disable All Macros with Notification

It is recommended that you set your macro settings to Disable All Content with
Notification. If you use this setting and open a workbook that contains macros, you will see
a Security Warning in the area just above the formula bar. Assuming you were expecting
macros in this workbook, click Enable Content.

If you do not want to enable macros for the current workbook, dismiss the Security
Warning by clicking the X at the far right of the message bar.

If you forget to enable the macros and attempt to run a macro, Excel indicates that you
cannot run the macro because all macros have been disabled. If this occurs, close the work-
book and reopen it to access the message bar again.

CAUTION

After you enable macros in a workbook stored on a local hard drive and then save the workbook, Excel
will remember that you previously enabled macros in this workbook. The next time you open this
workbook, macros will be automatically enabled.

Overview of Recording, Storing, and Running a Macro

Recording a macro is useful when you do not have experience in writing lines of code in a
macro. As you gain more knowledge and experience, you will begin to record lines of code
less frequently.

Overview of Recording, Storing, and Running a Macro | 13

To begin recording a macro, select Record Macro from the Developer tab. Before record-
ing begins, Excel displays the Record Macro dialog box, as shown in Figure 1.4.

Figure 1 .4 Record Macro @Iﬁw
Use the Record Macro dia- —
log box to assign a name I
and a shortcut key to the eyt
macro being recorded. col+
Store macro in:
This Workbook |Z|

Description:

J

Filling Out the Record Macro Dialog

In the Macro Name field, type a name for the macro. Be sure to type continuous charac-
ters. For example, type Macro1 without a space, not Macro 1 with a space. Assuming you
will soon be creating many macros, use a meaningful name for the macro. A name such as
FormatReport is more useful than Macrol.

The second field in the Record Macro dialog box is a shortcut key. If you type J in this
field, and then press Ctrl+], this macro runs. Note that most of the lowercase shortcuts
from Ctrl+a through Ctrl+z already have a use in Excel. Rather than being limited to the
unassigned Ctrl+j, you can hold down the Shift key and type Shift+A through Shift+Z in
the shortcut box. This will assign the macro to Ctrl+Shift+A.

CAUTION
You can reuse a shortcut key for a macro. If you assign a macro to Ctrl+-, Excel will run your macro
instead of doing the normal action of copy.

In the Record Macro dialog box, choose where you want to save a macro when it is
recorded: Personal Macro Workbook, New Workbook, This Workbook. It is recommended
that you store macros related to a particular workbook in This Workbook.

The Personal Macro Workbook (Personal.x1sb) is not a visible workbook; it is created if
you choose to save the recording in the Personal Macro Workbook. This workbook is used
to save a macro in a workbook that will open automatically when you start Excel, thereby
enabling you to use the macro. After Excel is started, the workbook is hidden. If you want
to display it, select Unhide from the View tab.

14 Chapter1 Unleash the Power of Excel with VBA

I
2 Itis not recommended you use the personal workbook for every macro you save. Save only those mac-
ros that assist you in general tasks—not in tasks that are performed in a specific sheet or workbook.

— T

The fourth box in the Record Macro dialog is for a description. This description is added
as a comment to the beginning of your macro. Note that legacy versions of Excel automati-
cally noted the date and username of the person recording the macro. Excel 2010 no longer
automatically inserts this information in the Description field.

After you select the location where you want to store the macro, click OK. Record your
macro. When you are finished recording the macro, click the Stop Recording icon in the
Developer tab.

You can also access a Stop Recording icon in the lower-left corner of the Excel window. Look for a small
blue square to the right of the word Ready in the status bar. Using this Stop button might be more
convenient than returning to the Developer tab. After you record your first macro, this area will usually
have a Record Macro icon, which is a small red dot on an Excel worksheet.

TIP+

Running a Macro

If you assigned a shortcut key to your macro, you can play it by pressing the key combina-
tion. Macros can also be assigned to toolbar buttons, forms controls, drawing objects, or
you can run them from the Visual Basic toolbar.

Creating a Macro Button on the Ribbon

You can add an icon to a new group on the Ribbon to run your macro. This is appropriate
for macros stored in the Personal Macro Workbook. Follow these steps to add a macro but-
ton to the Ribbon:

1. Click the File menu and select Excel Options to open the Excel Options dialog.
2. In the Excel Options dialog, select the Customize Ribbon category from the left-side

navigation.

Note that a shortcut to replace steps 1and 2 is to right-click the Ribbon and select Customize Ribbon.

— TIP+

3. In the list box on the right, choose the tab name where you want to add an icon.

4. Click the New Group button below the right list box. Excel adds a new entry called
New Group (Custom) to the end of the groups in that ribbon tab.

10.

RunningaMacro | 15

"To move the group to the left in the ribbon tab, click the up-arrow icon on the right
side of the dialog several times.

To rename the group, click the Rename button. Type a new name, such as Report
Macros. Click OK. Excel will show the group in the list box as Report Macros
(Custom). Note that the word Custom will not appear in the Ribbon.

Open the upper-left drop-down and choose Macros from the list. The Macros category
is fourth in the list. Excel displays a list of available macros in the left list box.

Choose a macro from the left list box. Click the Add button in the center of the dialog.
Excel moves the macro to the right list box in the selected group. Excel uses a generic
VBA icon for all macros. You can change the icon by following steps 9 and 10.

Click the macro in the right list box. Click the Rename button at the bottom of the
right list box. Excel displays a list of 180 possible icons. Choose an icon. Alternatively,
type a friendly label for the icon, such as Format Report.

Click OK to close Excel options. The new button appears on the selected Ribbon tab.

Creating a Macro Button on the Quick Access Toolbar

You can add an icon to the Quick Access toolbar to run your macro. If your macro is stored
in the Personal Macro Workbook, you can have the button permanently displayed in the
Quick Access toolbar. If the macro is stored in the current workbook, you can specify that
the icon should appear only when the workbook is open. Follow these steps to add a macro
button to the Quick Access toolbar:

1.
2.

Click the File menu and select Options to open the Excel Options dialog.
In the Excel Options dialog select the Quick Access Toolbar category from the left-side

navigation.

£ Note that a shortcut to replace steps 1and 2 is to right-click the Quick Access toolbar and select
" Customize Quick Access Toolbar.

If your macro should be available only when the current workbook is open, open the
upper-right drop-down and change For All Documents (Default) to For <FileName.
xlsm>. Any icons associated with the current workbook are displayed at the end of the
Quick Access toolbar.

Open the upper-left drop-down and select Macros from the list. The Macros category
is fourth in the list. Excel displays a list of available macros in the left list box.

Choose a macro from the left list box. Click the Add button in the center of the dialog.
Excel moves the macro to the right list box. Excel uses a generic VBA icon for all mac-
ros. You can change the icon by following steps 6 through 8.

Click the macro in the right list box. Click the Modify button at the bottom of the
right list box. Excel displays a list of 180 possible icons (see Figure 1.5).

16 Chapter1 Unleash the Power of Excel with VBA

Considering Excel 2003 offered 4,096 possible icons and an icon editor, the list of 180 is a major disap-
pointment.

r NOTE

.
Figure 1.5 i T — oS
Attach a macro to a but- 1) customize the uick Access Toolr
1 Customiz: ick Ac
ton on the Quick Access N —
toolbar. " oty e ===
ortinvoi Symbol:
& ImportinvoiceFixed #0001 ! YO HUBD -
. importinvoicesRelative DEBaSaNAGoeR e
% PagezsMacro tTI2O©IDIRAAQY
& Pagezshiacro TRRDL D8 OHSD |
[R X
.
<< Remove 2 PIRSVINnIAVIa -
Display name: mat Report
=
cotomstons
1 Show Quick Acess Tolar e the
Cana |

Enter the ToolTip Here

7. Choose an icon from the list. In the Display Name box, replace the macro name with a
short name that will appear in the ToolTip for the icon.

8. Click OK to close the Modify Button dialog.

9. Click OK to close Excel options. The new button appears on the Quick Access toolbar.

Assigning a Macro to a Form Control, Text Box, or Shape
If you want to create a macro specific to a workbook, store the macro in the workbook and
attach it to a form control or any object on the sheet.

Follow these steps to attach a macro to a form control on the sheet:

1. On the Developer tab, click the Insert button to open its drop-down list. Excel offers
12 form controls and 12 ActiveX controls. Many icons look similar in this drop-down.
Click the Button Form Control icon at the upper-left icon in the drop-down.

2. Move your cursor over the worksheet; the cursor changes to a plus sign.

3. Draw a button on the sheet by clicking and holding the left mouse button while draw-
ing a box shape. Release the button when you have finished.

4. Choose a macro from the Assign Macro dialog box and click OK. The button is cre-
ated with generic text such as Button 1. To customize the text or the button appear-
ance, follow steps 5 through 7.

RunningaMacro | 17

5. Type a new label for the button. Note that while you are typing, the selection border
around the button changes from dots to diagonal lines to indicate that you are in Text
Edit mode. You cannot change the button color while in Text Edit mode. To exit Text
Edit mode, either click the diagonal lines to change them to dots or Ctrl-click the
button again. Note that if you accidentally click away from the button, you should
Ctrl+click the button to select it. Then drag the cursor over the text on the button to
select the text.

6. Right-click the dots surrounding the button and select Format Control. Excel displays
the Format Control dialog with seven tabs across the top. If your Format Control dia-
log has only a Font tab, you failed to exit Text Edit mode. If this occurred, close the
dialog, Ctrl-click the button, and repeat this step.

7. Use the settings in the Format Control dialog to change the font size, font color, mar-
gins, and similar settings for the control. Click OK to close the Format Control dialog
when you have finished. Click on a cell to unselect the button.

8. Click the button to run the macro.

Macros can be assigned to any worksheet object such as clip art, a shape, SmartArt graph-
ics, or text box. In Figure 1.6, the top button is a traditional button form control. The other
images are clip art, a shape with WordArt, and a SmartArt graphic. To assign a macro to
any object, right-click the object, and select Assign Macro.

By By 55| Connections

Figure 1.6 —— ~— Ribbon Customization
Assiani = Ce CH O - =1 & properties

ssigning a macro to a Formet | From From From From Other | Existing freh z)

. Report Access Web Text Sources~ ' Connections A - s h

form control or an object o et External Data o
appropriate for macros FEECEETYC QAT Customization
stored in the same work- Diagram 2 ~ @ &
book as the control. You 2 8 N - -
can assign a macro to any S Button Form Control

of these objects.

Clip Art

Assign Macro [=) S

Macro name:

| Importtnveice =T
HelloWorld Al .
| Record... |
ImportinvoiceFixed h
ImportinvoicesRelative
Page23Maco

Page2iMado

EEEEEEEEE

=

[~}

o

=

&

&

=

3

=

prREREE
B|R (B8 2B

[
=

18 Chapter1 Unleash the Power of Excel with VBA

Using New File Types in Excel 2010

Excel 2010 offers support for four file types. Macros are not allowed to be stored in the
default file type. You have to use the Save As setting for all of your macro workbooks, or
you can change the default file type used by Excel 2010.

The available files types are as follows:

B Excel Workbook (.xIsx)—Files are stored as a series of XML objects and then zipped
into a single file. This new file-saving paradigm in Excel 2010 allows for significantly
smaller file sizes. It also allows other applications (even Notepad!) to edit or create
Excel workbooks. Unfortunately, macros cannot be stored in files with an .xlsx exten-
sion.

B Excel Macro-Enabled Workbook (.xIsm)—This is similar to the default .xIsx format,
except macros are allowed. The basic concept is that if someone has an .xlsx file, he or
she will not need to worry about malicious macros. However, if they see an .xIsm file,
they should be concerned that there might be macros attached.

B Excel Binary Workbook (.xIsb)—This is a binary format designed to handle the
larger 1.1-million-row grid size in Excel 2010. Legacy versions of Excel stored their
files in a proprietary binary format. Although binary formats might load quicker, they
are more prone to corruption, and a few lost bits can destroy the whole file. Macros are
allowed in this format.

B Excel 97-2003 Workbook (.xIs)—This format produces files that can be read by any-
one using legacy versions of Excel. Macros are allowed in this binary format; however,
when you save in this format, you lose access to any cells outside of A1:IV65536. In
addition, if someone opens the file in Excel 2003, he or she will lose access to anything
that used features introduced in Excel 2007 or later.

"To avoid having to choose a macro-enabled workbook in the Save As dialog, you can cus-
tomize your copy of Excel to always save new files in the .xlsm format by following these
steps:

1. Click the File menu and select Excel Options.

2. In the Excel Options dialog, select the Save category from the left navigation pane.

3. The first drop-down is Save Files in This Format. Open the drop-down and select
Excel Macro-Enabled Workbook (*.xlsm). Click OK.

Although you and | are not afraid to use macros, | have encountered some people who seem to freak
out when they see the .xIsm file type.They actually seem angry that | sent them an .xIsm file that did
not have any macros. Their reaction seemed reminiscent of King Arthur’s“You got me all worked up!”
line in Monty Python and the Holy Grail.

NOTE-

Understanding the VB Editor | 19

If you encounter someone who seems to have a fear of the .xlsm file type, remind them of these points:

B Every workbook created in the past 20 years could have had macros, but in fact, most
did not.

W If someone is trying to avoid macros, they should use the security settings to prevent
macros from running anyway (refer to Figure 1.3). They can still open the .xlsm file to
get the data in the spreadsheet.

With these arguments, | hope you can overcome any fears of the .xlsm file type so that it can be your
default file type.

Understanding the VB Editor

Figure 1.7 shows an example of the typical VB Editor screen. You can see three windows:
Project Explorer, the Properties window, and the Programming window. Don’t worry if
your window doesn’t look exactly like this because you will see how to display the windows
you need in this review of the editor.

Fi ure 1 7 ‘di Microsoft Visual Basic - ProjectfilesChapter012010.dsm - [Module? (Code)]

g .. . i# Fle Edit View Inset Format Debug Run Tools Addlns Window Help

The VB Editor window. IHE-E % Lad9c s 1 E K EY %@L, B
[Project - VBAProject X[Tigeneran =] [Pagezamiacre
B=EIE

[pub Pagez3M 0

=& VBAProject (ProjectfilesChapter0120 d
-5 Miaosoft Excel Objects

Sheet1 (Discussion)

Sheet2 (InvoicesMonday)

Sheet3 (InvoicesTuesday)

Sheat4 (InvoicesWednesday)

Sheet5 (InvoicesTuesday (2))

BB} Shests (Fgwe 1.5) Selection.End (x1Down) .Select
) sheet7 (InvoicesThursday) Range ("A14") .Select
4 Thisworkbook ActiveCell.FormulaRICL = "'Total"
B3 Modules Range ("E14") .Select
¢4 Module1 Selection.FormulaRIC1 = "=SUM(R[-12]C:R[-1]C)"
A Module2 Selection.hutoFill Destination:=Range ("E14:G14"), Type:=xlFillDefault

Range ("E14:G14") . Select
Rows ("1:1") .Font.Bold = True
Rows ("14:14") . Select
Selection.Font.Bold = True
Cells.Select
Selection.Columns.AutoFit

End Sub

Tl ——
IProperties - Module2
Module2 Module

Sub Page2éMacro ()

> -

part of macro

from Page 26. This was recorded with Relative
t! rst part of the macro
Aphabetic | Categorized |

Modulez

Selection.RuteFill Destination:=RetiveCell.Range ("A1:C1"), Type:= _
x1FillDefault

' Turned off relative recording here
ActiveCell.Range ("A1:C1").Select
ActiveCell.Rows ("1:1") .EncireRow.Select
ActiveCell.Activate
Selection.Font.Bold = True
Rows ("1:17) .Select
Selection.Font.Bold = True
Cells.Select
Selection.Columns.RutoFit

VB Editor Settings

Several settings in the VB Editor enable you to customize this editor. The following sub-
section covers the setting that will help with your programming.

20

Chapter 1 Unleash the Power of Excel with VBA

Customizing VB Editor Options Settings

Under Tools, Options, Editor, you will find several useful settings. All settings except for
one are set correctly by default. The remaining setting requires some consideration on your
part. This setting is Require Variable Declaration. By default, Excel does not require you to
declare variables. I prefer this setting because it can save time when you create a program.
My coauthor prefers to change this setting to require variable declaration. This change
forces the compiler to stop if it finds a variable that it does not recognize, which reduces
misspelled variable names. It is a matter of your personal preference if you turn this setting
on or keep it off.

The Project Explorer

The Project Explorer lists any open workbooks and add-ins that are loaded. If you click
the + icon next to the VBA Project, you will see that there is a folder with Microsoft Excel
objects. There can also be folders for forms, class modules, and standard modules. Each
folder includes one or more individual components.

Right-clicking a component and selecting View Code or just double-clicking the compo-
nents brings up any code in the Programming window. The exception is userforms, where
double-clicking displays the userform in Design view.

To display the Project Explorer window, select View, Project Explorer from the menu, and
then press Ctrl+R or click the Project Explorer icon on the toolbar.

Figure 1.8 shows the Project Explorer pane. This pane can show Microsoft Excel objects,
userforms, modules, and class modules.

Figure 1.8

The Project Explorer
window displays different
types of modules.

Project - VBAProject
B33

LEd

£ %4 VBAProject (ProjectFilesChapt
|25 Microsoft Excel Objects
Sheet1 (Discussion)
Sheet2 (InvoicesMonday)
Sheet3 (InvoicesTuesday)
Sheet4 (Invoices\Wednesda
Sheet5 (InvoicesTuesday (.
Sheets (Figure 1.8)
Sheet7 (InvoicesThursday)
36 ThisWorkbook

Modules

Sheet3 (Various)
36 ThisWorkbook
-5 Forms
frm_ViewEmp
-5 Modules

Ly Module1

Understanding Shortcomings of the Macro Recorder | 21

To insert a module, right-click your project, select Insert, and then choose the type of mod-
ule you want. The available modules are as follows:

Microsoft Excel objects—By default, a project consists of sheet modules for each
sheet in the workbook and a single ThisWorkbook module. Code specific to a sheet
such as controls or sheet events is placed on the corresponding sheet. Workbook events
are placed in the ThisWorkbook module. You learn more about events in Chapter 9,
“Event Programming.”

Forms—Excel allows you to design your own forms to interact with the user. You learn
more about these forms in Chapter 10.

Modules—When you record a macro, Excel automatically creates a module in which
to place the code. Most of your code will reside in these types of modules.

Class modules—Class modules are Excel’s way of letting you create your own objects.
They also allow pieces of code to be shared among programmers without the program-
mer needing to understand how it works. You will learn more about class modules in
Chapter 22, “Creating Classes, Records, and Collections.”

The Properties Window

The

Properties window enables you to edit the properties of various components such as

sheets, workbooks, modules, and form controls. The Property list varies according to what
component is selected. To display this window, select View, Properties Window from the
menu, press F4, or click the Project Properties icon on the toolbar.

Understanding Shortcomings of the Macro Recorder

Suppose you work in an accounting department. Each day you receive a text file from

the company system showing all the invoices produced the prior day. This text file has
commas separating each field. The columns in the file are InvoiceDate, InvoiceNumber,
SalesRepNumber, CustomerNumber, ProductRevenue, ServiceRevenue, and ProductCost

(see

Figure 1.9
Invoice.txt file.

Figure 1.9).

*| invoice.bxt - Notepad =)

File Edit Format View Help

InvoiceDate,InvoiceNumber,SalesRepNumber,CustomerNumber,ProductRevenue,ServiceRevenue,ProductCost N
06/06,/2011,123829,521,c8754,538400,0, 299897

06/06,/2011,123830,545,C4056,588600,0, 307563

06/06,/2011,123831,554,C8323,882200,0,521726

06/06/2011,123832,521,C6026,830900,0,494831

06/06,/2011,123833,545,C3025,673600,0,374953

06/06,/2011,123834,554,C8663,966300,0,528575

06/06,/2011,123835,521,C1508,467100,0,257942

06,/06,/2011,123836,545,C7366,658500,10000, 308719

06/06,/2011,123837,554,c4533,191700,0,109534

Each morning, you manually import this file into Excel. You add a total row to the data,
bold the headings, and then print the report for distribution to a few managers.

22 Unleash the Power of Excel with VBA

This seems like a simple process that would be ideally suited to using the macro recorder.
However, due to some problems with the macro recorder, your first few attempts might not
be successful. The following case study explains how to overcome these problems.

STUDY: PREPARING TO RECORD THE MACRO

The task mentioned in the previous section is perfect for a macro. However, before you record a macro, think about the
steps you will use. In this case, the steps you will use are as follows:

Click the File menu and select Open.

Navigate to the folder where Invoice. txt is stored.

Select All Files(*.¥) from the Files of Type drop-down ist.

Select Invoice.txt.

Click Open.

In the Text Import Wizard—Step 1 of 3, select Delimited from the Original Data Type section.

Click Next.

In the Text Import Wizard—Step 2 of 3, clear the Tab key and select Comma in the Delimiters section.
Click Next.

In the Text Import Wizard—Step 3 of 3, select General in the Column Data Format section and change it to Date :
NDY.

11, Click Finish to import the file.
12. Press the End key followed by the down arrow to move to the last row of data.

2O & e P

—
&

13. Press the down arrow one more time to move to the total row.
14. Type the word Total.
15. Press the right-arrow key four times to move to Column E of the total row.

16. Click the Autosum button and press Ctrl-+Enter to add a total to the Product Revenue column while remaining in
that cell.

17. (lick the AutoFill handle and drag it from Column E to Column G to copy the total formula to Columns F and G.
18. Highlight Row 1and click the Bold icon on the Home tab to set the headings in bold.

19. Highlight the Total row and click the Bold icon on the Home tab to set the totals in bold.

20. Press Ctrl+-A to select all cells.

21. From the Home tab, select Format, AutoFit Column Width.

After you have rehearsed these steps in your head, you are ready to record your first macro. Open a blank workbook and
save it with a name such asmacroToImportInvoices.x1sm.Click the Record Macro button on the Developer tab.

In the Record Macro dialog, the default macro name is Macro1. Change this to something descriptive like
ImportInvoice.Make sure that the macros will be stored in This Workbook. You might want an easy way to run this
macro later, so enter the letter i in the Shortcut Key field. In the Description field, add a little descriptive text to tell what
the macro is doing (see Figure 1.10). Click OK when you are ready.

Understanding Shortcomings of the Macro Recorder

23

Figure 1.10 Record Macro @Iﬂ
Before recording your .
Macro name:
macro, complete the Importinvoice
Record Macro dialog box. S
Ctrl+ i
Store macro in:
This Workbook |Z|
Description:
Imports invoice. tet, adds a total row. Does some formatting. |

Recording the Macro

The macro recorder is now recording your every move, but don't be nervous. For this reason, perform your steps in exact
order without extraneous actions. If you accidentally move to Column F, type a value, clear the value, and then move back
to E to enter the first total, the recorded macro blindly makes that same mistake day after day after day. Recorded macros
move fast, but there is nothing like watching the macro recorder play out your mistakes repeatedly.

Carefully, execute all the actions necessary to produce the report. After you have performed the final step, click the Stop
button in the lower-left corner of the Excel window or click Stop Recording in the Developer tab.

Now it is time to look at your code. Switch to the VB Editor by selecting Visual Basic from the Developer tab or pressing
Alt+F11.

Examining Code in the Programming Window

Let’s look at the code you just recorded from the case study. Don’t worry if it doesn’t make
sense yet.

"To open the VB Editor, press Alt+F11. In your VBA Project (MacroToImportInvoices.x1s),
find the component Modulel, right-click the module, and select View Code. Notice that
some lines start with an apostrophe—these are comments and are ignored by the program.
The macro recorder starts your macros with a few comments, using the description you
entered in the Record Macro dialog. The comment for the Keyboard Shortcut is there to
remind you of the shortcut.

The comment does not assign the shortcut. If you change the comment to be Ctrl-+J, it does not change
the shortcut. You must change the setting in the Macro dialog box in Excel or run this line of code:

NOTE-

Application.MacroOptions Macro:="ImportInvoice", _
Description:="", ShortcutKey:="j"

24 Chapter] Unleash the Power of Excel with VBA

Recorded macro code is usually pretty neat (see Figure 1.11). Each noncomment line of
code is indented four characters. If a line is longer than 100 characters, the recorder breaks
it into multiple lines and indents the lines an additional four characters. To continue a line
of code, type a space and an underscore at the end of the line.

|
= Note that the physical limitations of this book do not allow 100 characters on a single line. Therefore,
g the lines will be broken at 80 characters so that they fit on a page. For this reason, your recorded macro
might look slightly different from the ones that appear in this book.
Figure 1.11 (General) =] [importinvaice
The recorded macro is Sup Imperclavaice()
neat looking and nicely " ImportInvoice Maczo

' Imports invoice.txt, adds a total row. Does some formatting.

indented.

' Keyboard Shortcut: Ctrl+i

Workbooks.OpenText Filename:="C:\Users\Owner\Documents\invoice.txt", Origin _
:=437, StartRow:=1, DataType:=xlDelimited, TextQualifier:=x1DoubleQuote _
, ConsecutiveDelimiter:=False, Tab:=False, Semicolon:=False, Comma:= _
True, Space:=False, Other:=False, FieldInfo:=Array(Array(l, 3), Arrav(2, 1), _
Array(3, 1), Rrray(4, 1), Array(S, 1), Array(6, 1), Array(7, 1)), TrailingMinusNumbers _
i=Trus

Selection.End (x1Down) . Select

Range ("A11") .Select

ActiveCell.FormulaRIC1 = "Total"

Range ("E11") .Select

Selection.FormulaRiC1 = "=SUM(R[-9]C:R[-1]C)"

Selection.AutoFill Destination:=Range ("E11:G11"), Type:=x1FillDefault

Range ("E11:G11") .Select

Rows ("1:1") . Select

Selection.Font.Bold = True

Rows ("11:11") .Select

Selection.Font.Bold = True

Cells.Select

Selection.Columns.AutoFit

End Sub

Consider that the following seven lines of recorded code is actually only one line of code
that has been broken into seven lines for readability:

Workbooks.OpenText Filename:= _
"C:\invoice.txt", Origin:=437, StartRow:=1, DataType:=x1lDelimited, _
TextQualifier:=x1DoubleQuote, ConsecutiveDelimiter:=False,

Tab:=True, Semicolon:=False, Comma:=True, Space:=False, _
Other:=False, FieldInfo:=Array(Array(1, 3), Array(2, 1), Array(3, 1), _
Array(4, 1), Array(5, 1), Array(6, 1), Array(7, 1)), _
TrailingMinusNumbers:=True

Counting this as one line, the macro recorder was able to record our 21-step process in 14

lines of code, which is pretty impressive.

Each action you perform in the Excel user interface might equate to one or more lines of recorded code.
Some actions might generate a dozen lines of code.

r NOTE

Understanding Shortcomings of the Macro Recorder | 25

Test Each Macro

It is always a good idea to test macros. To test your new macro, return to the regular
Excel interface by pressing Alt+F11. Close Invoice.txt without saving any changes.
MacroToImportInvoices.x1ls is still open.

Press Ctrl+] to run the recorded macro. It should work beautifully if you completed the
steps correctly. The data is imported, totals are added, bold formatting is applied, and the
columns are made wider. This seems like a perfect solution (see Figure 1.12).

Figure 1.12 I : c 5 E F s
1 iceDate i b C Product| i ost

The macro formats the 2| 6/6/2011 123829 521 c8754 538400 0 299897

data in the sheet. 3| 6/6/2011 123830 $45 4056 588600 0 307563
4| 6/s/2011 123831 S54 8323 882200 0 521726
5| 6/6/2011 123832 521 6026 830900 0 494831
6| 6/6/2011 123833 545 3025 673600 0 374953
7| 6/6/2011 123834 $54 8663 966300 0 528575
8| 6/6/2011 123835 521 c1508 467100 0 257942
9| 6/6/2011 123836 545 C7366 658500 10000 308719
10| 6/6/2011 123837 $54 4533 191700 0 109534
11/ Total 5797300 10000 3203740
12

Running the Macro on Another Day Produces Undesired Results

After testing the macro, be sure to save your macro file to use on another day. The next day,
after receiving a new Invoice.txt file from the system, you open the macro, press Ctrl+I to
run it, and disaster strikes. The data for June 6 happened to have 9 invoices, while the data
for the June 7 has 17 invoices. However, the recorded macro blindly added the totals in
Row 12 because this was where you put the totals when the macro was recorded (see Figure

1.13).

Figure 1.13 A [s c D E F s
. 1 iceDate i b I Cust ber Product] i ProductCost
The intent of the recorded 2| &/7/2011 123813 S82 8754 716100 12000 423986
macro was to add a total z 6/7/2011 123814 c4894 224200 0 131243
at the end of the data, la| e/7720m1 123815 543 c7278 277000 i 139208
5| e/7/2011 123816 S54 6425 745100 15000 350683
but the recorder made a 6| 6/7/2011 123817 543 6291 928300 i 488988
macro that always adds 7| sf7/2011 123818 543 1000 723200 0 383069
8| sf7/20m1 123819 s82 6025 982600 i 544025
totals at Row 11. lo| sf7r2011 123820 $17 8026 490100 45000 243808
l10| &/7/2011 123821 543 ca244 515800 i 300579
| 11 |Total 123822 545 c1007 5703400 72000 3005589
l12| &/7/2011 123823 S87 C1878 338100 i 165666
13| &/7/2011 123824 543 3068 567900 i 265775
l12]| &/7/2011 123825 543 c7571 123456 i 55555
l15| &/7/2011 123826 $55 c7181 37900 i 19811
l16| 6/7/2011 123827 543 c7570 582700 i 292000
17| &/7/2011 123828 S87 5302 495000 i 241504
l18| &/7/2011 123828 S87 5302 495000 i 241504

19

This problem arises because the macro recorder is recording all your actions in absolute
mode by default. Instead of using the default state of the macro recorder, the next section
discusses relative recording and how this might get you closer to a final solution.

26 Chapter] Unleash the Power of Excel with VBA

Possible Solution: Use Relative References When Recording

By default, the macro recorder records all actions as absolute actions. If you navigate to Row
11 when you record the macro on Monday, the macro will always go to Row 11 when the
macro is run. This is rarely appropriate when dealing with variable numbers of rows of
data. The better option is to use relative references when recording.

Macros recorded with absolute references note the actual address of the cell pointer, such as
Al1. Macros recorded with relative references note that the cell pointer should move a cer-
tain number of rows and columns from its current position. For example, if the cell pointer
starts in cell Al, the code ActiveCell.Offset (16, 1).Select would move the cell pointer
to B17, which is the cell 16 rows down and 1 column to the right.

Let’s try the same case study again, this time using relative references. The solution will be
much closer to working correctly.

STUDY: RECORDING THE MACRO WITH RELATIVE REFERENCES

Let's try to record the macro again, but this time you will use relative references. Close Invoice. txt without saving
changes. In the workbook MacroToImportInvoices.x1s,record a new macro by selecting Record Macro from the
Developer tab. Give the new macro a name of ImportInvoicesRelative and assign a different shortcut key such as
Ctrl-+Shift-+J (see Figure 1.14).

Figure 1.14 Record Macro @ﬁ1
Getting ready to record a
second try.

Macro name:
ImportinvoicesRelative
Shorteut key:
Ctrl+5hift+ |1
Store macro in:
This Workbook |Z|
Description:

Use relative references for some of the steps of the macro to
format the invoice. txt file,

J

As you start to record the macro, go through the process of opening the Invoice. txt file. Before navigating to the last
row of data by pressing the End key + then the down-arrow key, click the Use Relative Reference button on the Developer
tab (refer to Figure 1.1).

Continue through the actions in the script from the case study:

1. Press the End key followed by the down-arrow key to move to the last row of data.
2. Press the down arrow one more time to move to the total row.
3. Type the word Total.

Understanding Shortcomings of the Macro Recorder | 27

Press the right-arrow key four times to move to Column E of the Total row.

. Click the Autosum button, and then press Ctrl+Enter to add a total to the Product Revenue column while remaining

in that cell.

Click the AutoFill handle and drag from Column E to Column G to copy the total formula to Columns F and G.

7. Press Shift+spacebar to select the entire row. Type Ctrl+b to apply bold formatting to it. At this point, you need to

8.
10.
1.
12.

move to Cell A1 to apply bold to the headings. You do not want the macro recorder to record the movement from
Row 11 to Row 1 because it would record this as moving 10 rows up, which might not be correct tomorrow. Before
moving to A1, toggle the Use Relative Recording button off, and then continue recording the rest of the macro.

Highlight Row 1 and click the Bold icon to set the headings in bold.
Press Ctrl+-A to select all cells.

From the Home tab, select Format, AutoFit Column Width.

Select cell A1.

Stop recording.

Press Alt+F11 to go to the VB Editor to review your code. The new macro appears in Module1 below the previous macro.

If you close Excel between recording the first and second macro, Excel inserts a new module called Module2 for the newly
recorded macro.

The following code has been edited with two comments that will help you remember where you turned the relative
recording on and then off:

Sub ImportInvoicesRelative()
' ImportInvoicesRelative Macro

Use relative references for some of the steps of the macro
to format the invoice.txt file

Workbooks.OpenText Filename:= _
"C:\invoice.txt", Origin:=437, StartRow:=1, DataType:=xlDelimited, _
TextQualifier:=x1DoubleQuote, ConsecutiveDelimiter:=False,
Tab:=True, Semicolon:=False, Comma:=True, Space:=False, _
Other:=False, FieldInfo:=Array(Array(1, 3), Array(2, 1), Array(3, 1),
Array (4, 1), Array(5, 1), Array(6, 1), Array(7, 1)), _
TrailingMinusNumbers:=True

Turned on relative recording here
Selection.End(x1Down) .Select
ActiveCell.Offset (1, @).Range("A1").Select

ActiveCell.FormulaR1C1 = "'Total"
ActiveCell.Offset (@, 4).Range("A1").Select
Selection.FormulaR1C1 = "=SUM(R[-16]C:R[-1]C)"

Selection.AutoFill Destination:=ActiveCell.Range("A1:C1"), Type:=
x1FillDefault

28 Chapter 1

Unleash the Power of Excel with VBA

" Turned off relative recording here
ActiveCell.Range("A1:C1").Select
ActiveCell.Rows("1:1").EntireRow.Select
ActiveCell.Activate

Selection.Font.Bold

True

Rows ("1:1").Select
Selection.Font.Bold = True
Cells.Select
Selection.Columns.AutoFit
Range ("A1") .Select

End Sub

To test the macro, close Invoice. txt without saving,and then run the macro with Ctrl+J. Everything should look good,
and you should get the same results.

The next test is to see whether the program works on the next day when you might have more rows. Figure 1.15 shows

the data for June 7.

Figure 1.15

Will the macro with rela-
tive references work with
this data?

7] invoice2.txt - Notepad E=T= |

File Edit Format View Help

InvoiceDate,InvoiceNumber,SalesRepNumber ,CustomerNumber ,ProductRevenue,Servicerevenue,ProductCost
6/7/2011,123813,582,C8754,716100,12000,423986
6/7/2011,123814,,C4894,224200,0,131243
6/7/2011,123815,543,C7278,277000,0,139208
6/7/2011,123816,554,€6425,746100,15000,350683
6/7/2011,123817,543,C6291,928300,0,488988
6/7/2011,123818,543,€1000,723200,0,383069
6/7,/2011,123819,582,C6025,982600,0, 544025
6/7/2011,123820,517,€8026,490100,45000,243808
6/7,/2011,123821,543,C4244 ,615800,0,300579
6/7/2011,123822,545,€1007,271300,0,153253
6/7/2011,123823,587,C1878,338100,0,165666
6/7/2011,123824,543,€3068,567900,0,265775
6/7/2011,123825,543,C7571,123456,0, 55555
6/7/2011,123826,555,C7181,37900,0,19811
6/7,/2011,123827,543,C7570,582700,0,292000
6/7/2011,123828,587,€5302,495000,0,241504
6/7/2011,123828,587,C5302,495000,0,241504

Open MacroToImportInvoices.x1ls and run the new macro with Ctrl+]. This time, every-

thing should look good with the totals in the correct places. Look at Figure 1.16—see any-

thing out of the ordinary?

Figure 1.16
The result of running the
Relative macro.

A] B c D E F G

1 Date] i b I pl CustomerNumber ProductRevenue ServiceRevenue ProductCost
|2 e/7/2011 123813 582 8754 716100 12000 423985
2] e/7/20m 123814 cag9a 224200 0 131243
4] &/7/20m 123815 543 c7278 277000 0 139208
5] e/7/20m 123816 554 6425 746100 15000 350683
6] 6/7/20m 123817 543 6291 928300 0 488988
| 7] e/7/20m 123818 543 c1000 723200 0 383069
8] &/7/20m 123819 582 6025 982600 0 544025
9] e/7/20m 123820 517 8026 490100 45000 243808
[10] &/7/2011 123821 543 cazan 615800 0 300579
[11] &/7/20m1 123822 545 c1007 271300 0 153253
[12] &/7/20m1 123823 587 c1a78 338100 0 165666
[13] &/7/20m1 123824 543 3058 567900 0 265775
[12] &/7/20m1 123825 543 c7571 123456 0 55555
[15] &/7/20m1 123826 555 c7181 37900 0 19811
[16] 6/7/2011 123827 543 c7570 582700 0 292000
[17] &/7/20m1 123828 587 5302 495000 0 241504
[18] 6/7/2011 123828 587 5302 495000 0 241504
19 | Total i 3527156 o 1735647

Understanding Shortcomings of the Macro Recorder | 29

If you aren’t careful, you might print these reports for your manager. If you did, you would
be in trouble. When you look in cell E19, Excel has inserted a green triangle to tell you to
look at the cell. If you happened to try this back in Excel 95 or Excel 97 before SmartTags,

there would not have been an indicator that anything was wrong.

When you move the cell pointer to E19, an alert indicator pops up near the cell. This indi-
cator tells you the formula fails to include adjacent cells. If you look in the formula bar, you
will see that the macro totaled only from Row 10 to Row 18. Neither the relative recording
nor the nonrelative recording is smart enough to replicate the logic of the AutoSum button.

At this point, some people would give up. However, imagine that you might have had fewer
invoice records on this particular day. Excel would have rewarded you with the illogical for-
mula of =SUM(E6:E1048574) and a circular reference, as shown in Figure 1.17.

Figure 1.17 &7 -0 | =SUM(EG:E1048574)
The result of running a o _J__& [__G & ; :
. . | 1 /InvoiceDate i by I p CustomerNumber ProductRevenue ServiceRevenue ProductCost
the Relatlve macro Wlth 12| 6/9/2011 123850 C1654 161000 o 30761
fewer invoice records. |2 | 6/9/2011 123851 C6460 275500 10000 146341
14| 6/9/2011 123852 C5143 925400 o 473515
15| 6/9/2011 123853 C7868 148200 o 75700
1 6| 6/9/2011 123854 C3310 830200 o 468333
LTDIM I 0! o o

If you have tried using the macro recorder, most likely you would run into similar problems
as the ones produced in the last two case studies. Although this is frustrating, you should be
happy to know that the macro recorder actually gets you 95 percent of the way to a useful
macro.

Your job is to recognize where the macro recorder is likely to fail and then to be able to
dive into the VBA code to fix the one or two lines that require adjusting to have a perfect
macro. With some added human intelligence, you can produce awesome macros to speed
up your daily work.

If you are like me, you are cursing Microsoft about now. We have wasted a good deal of time over a couple of days, and
neither macro works. What makes it worse is that this sort of procedure would have been handled perfectly by the old
Lotus 1-2-3 macro recorder introduced in 1983. Mitch Kapor solved this problem 24 years ago, and Microsoft still can't

get it right.

Did you know that up through Excel 97, Microsoft Excel secretly ran Lotus command-line macros? | found this out right
after Microsoft quit supporting Excel 97. At that time, a number of companies upgraded to Excel XP, which no longer sup-
ported the Lotus 1-2-3 macros. Many of these companies hired us to convert the old Lotus 1-2-3 macros to Excel VBA. It
is interesting that from Excel 5, Excel 95, and Excel 97, Microsoft offered an interpreter that could handle the Lotus mac-
ros that solved this problem correctly, yet their own macro recorder couldn’t (and still can’t!) solve the problem.

30 Chapter 1 Unleash the Power of Excel with VBA

Never Use the AutoSum Button While Recording a Macro

There actually is a macro-recorder solution to the current problem. It is important to rec-
ognize that the macro recorder will never correctly record the intent of the AutoSum but-
ton.

If you are in cell E99 and click the AutoSum button, Excel starts scanning from cell E98
upward until it locates a text cell, a blank cell, or a formula. It then proposes a formula that
sums everything between the current cell and the found cell.

However, the macro recorder records the particular result of that search on the day that
the macro was recorded. Rather than record something along the lines of “do the normal
AutoSum logic,” the macro recorder inserts a single line of code to add up the previous 98
cells.

The somewhat bizarre workaround is to type a SUM function that uses a mix of relative and
absolute row references. If you type =sumM(E$2:E10) while the macro recorder is running,
Excel correctly adds code that will always sum from a fixed row two down to the relative
reference that is just above the current cell.

Here is the resulting code with a few comments:

Sub FormatInvoice3()
' FormatInvoice2 Macro
' Third try. Use relative. Don't touch AutoSum

' Keyboard Shortcut: Ctrl+Shift+K

Workbooks.OpenText Filename:="C:\Users\Owner\Documents\invoice.txt", Ori-
gin _

:=437, StartRow:=1, DataType:=x1Delimited,
TextQualifier:=x1lDoubleQuote _

, ConsecutiveDelimiter:=False, Tab:=False, Semicolon:=False, Comma:= _
True, Space:=False, Other:=False, FieldInfo:=Array(Array(1, 3), Ar-

ray(2, 1), _
Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), Array(7, 1)),
TrailingMinusNumbers _

:=True
' Relative turned on here
Selection.End(x1Down) .Select
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = "Total"
ActiveCell.Offset (@, 4).Range("A1").Select
' Don't use AutoSum. Type this formula:

Selection.FormulaR1C1 = "=SUM(R2C:R[-1]C)"
Selection.AutoFill Destination:=ActiveCell.Range("A1:C1"), Type:= _
x1FillDefault

ActiveCell.Range("A1:C1").Select

' Relative turned off here
ActiveCell.Rows("1:1").EntireRow.Select
ActiveCell.Activate

Understanding Shortcomings of the Macro Recorder | 31

Selection.Font.Bold = True
Cells.Select
Selection.Columns.AutoFit
Range("A1").Select

End Sub

"This third macro will consistently work with any size dataset.

(W) To see a demo of recording this macro, search for Excel VBA 1 at YouTube.

Three Tips When Using the Macro Recorder

You will rarely be able to record 100 percent of your macros and have them work. However,
you will get much closer by using these three tips demonstrated in the following subsec-
tions.

Tip 1: Use Relative References Setting Usually Needs to Be On

Microsoft should have made this setting be the default. Unless you specifically need to
move to Row 1 from the bottom of a dataset, you should usually leave the Use Relative
References button in the Developer tab turned on.

Tip 2: Use Special Navigation Keys to Move to Bottom of a Dataset

If you are at the top of a dataset and need to move to the last cell with data, you can press
Ctrl+down arrow or press the End key and then the down-arrow key.

Similarly, to move to the last column in the current row of the dataset, press Ctrl+right
arrow or press End and then press the right-arrow key.

By using these navigation keys, you can jump to the end of the dataset, no matter how
many rows or columns you have today.

Tip 3: Never Touch the AutoSum Icon While Recording a Macro

The macro recorder will not record the “essence” of the AutoSum button. Instead, it will
hard-code the formula that resulted from pressing the AutoSum button. This formula does
not work any time you have more or fewer records in the dataset.

Instead, type a formula with a single dollar sign, such as =sum(E$2:E10). When this is done,
the macro recorder records the first E$2 as a fixed reference and starts the SuM range directly
below the Row 1 headings. Provided the active cell is E11, the macro recorder recognizes
E10 as a relative reference pointing directly above the current cell.

32 Chapter1 ‘ Unleash the Power of Excel with VBA

Next Steps

Chapter 2, “This Sounds Like BASIC, So Why Doesn’t It Look Familiar?” examines the
three macros you recorded in this chapter to make more sense out of them. After you know
how to decode the VBA code, it will feel natural to either correct the recorded code or
simply write code from scratch. Hang on through one more chapter. You’ll soon learn that
VBA is the solution, and you’ll be writing useful code that works consistently.

This page intentionally left blank

Index

Symbols

3-D format, changing, 230-234
3-D rotation settings, 224-229

32-bit API declarations, changing to
64-bit, 538

64-bit API declarations, changing 32-bit
declarations to, 538

A

A1-style references, 127-128

About dialog, customizing, 541
AboutMrExcel() procedure, 541

above/below average cells, formatting,
383

absolute mode, 25
absolute references, 133
accelerator keys, displaying, 529
Access databases. See databases
Activate event, 187
active control, coloring, 530-532
ActiveFilters property, 289
ActiveX controls
attaching macros to, 583-584
right-click menu for, 360-362
ActiveX data objects. See ADO
Add method, 148-149, 442
Add3ColorScale() procedure, 375
AddAboveAverage method, 383
AddChart method, 203
AddControl event, 187, 195, 199
AddCrazylcons() procedure, 382

AddGlowToTitle() procedure

AddGlowToTitle() procedure, 223
add-ins
Add-Ins dialog, 588
characteristics of, 587-588
closing, 593
converting workbooks to, 588-590

hidden workbooks as alternative to
add-ins, 593-594

installing, 591

removing, 593

security, 592
Add-Ins dialog, 588
Addition procedure, 81
AddTransfer() procedure, 480-481
AddTwoDataBars() procedure, 381
ADO (ActiveX data objects)

compared to DOA (data access
objects), 477

connections, 478
cursors, 478
fields
adding on-the-fly, 489-490
checking existence of, 488
lock type, 479
overview, 478-480
records
adding, 480-481
deleting, 485
retrieving, 481-483
summarizing, 485-486
updating, 483-485
recordsets, 478
tables
adding on-the-fly, 489
checking existence of, 487-488
ADOAddField() procedure, 489-490
ADOCreateReplenish() procedure, 489

ADOWipeOutAttribute() procedure, 485
Advanced Filter
building with Excel interface, 258

case study: creating reports for each
customer, 280-283

criteria ranges
case study, 268
explained, 265-266
formula-based conditions, 268-275
logical AND criteria, 267
logical OR criteria, 267

extracting unique list of values,

258-264

getting unique combinations of
two or more fields, 263-264

with user interface, 259

with VBA code, 260-263
Filter in Place, 275-276, 283-285
overview, 257

xlFilterCopy with all records,
276-280

copying all columns, 277

copying a subset of columns and
reordering, 278-280

AdvancedFilter method, 260
AfterUpdate event, 190, 193-197
ahtAddFilterltem API function, 546

aht_apiGetOpenFileName API function,
544-546

aht_apiGetSaveFileName API function,
544-546

AllColumnsOneCustomer() procedure, 277

AllowMultipleFilters property, 289

API declarations
32-bit versus 64-bit, 538
ahtAddFilterItem, 546
aht_apiGetOpenFileName, 544-546
aht_apiGetSaveFileName, 544-546

calling, 537

DisplaySize, 540

explained, 535-536

finding, 547

FindWindow, 541-543

GetComputerName, 538-539

GetSystemMenu, 541-542

KillTimer, 542-543

10pen, 539

PlayWavSound, 543

SetTimer, 542-543

ShellAbout, 541
AppEvent_AfterCalculate() event, 176
AppEvent_NewWorkbook() event, 177

AppEvent_
ProtectedViewWindowActivate() event,
177

AppEvent_
ProtectedViewWindowBeforeClose()
event, 177

AppEvent_
ProtectedViewWindowDeactivate()
event, 177

AppEvent_ProtectedViewWindowOpen()
event, 177

AppEvent_ProtectedViewWindowResize()
event, 177

AppEvent_SheetActivate() event, 177

AppEvent_SheetBeforeDoubleClick()
event, 178

AppEvent_SheetBeforeRightClick() event,
178

AppEvent_SheetCalculate() event, 178
AppEvent_SheetChange() event, 178
AppEvent_SheetDeactivate() event, 178

AppEvent_SheetFollowHyperlink() event,
178

AppEvent_SheetPivotTableUpdate()
event, 178

application-level events 599

AppEvent_SheetSelectionChange() event,
178

AppEvent_WindowActivate() event, 179
AppEvent_WindowDeactivate() event, 179
AppEvent_WindowResize() event, 179
AppEvent_WorkbookActivate() event, 179

AppEvent_WorkbookAddininstall() event,
179

AppEvent_WorkbookAddinUninstall()
event, 179

AppEvent_WorkbookAfterXmlExport()
event, 181

AppEvent_WorkbookAfterXmlimport()
event, 181

AppEvent_WorkbookBeforeClose() event,
179

AppEvent_WorkbookBeforePrint() event,
180

AppEvent_WorkbookBeforeSave() event,
180

AppEvent_WorkbookBeforeXmlExport()
event, 181

AppEvent_WorkbookBeforeXmlimport()
event, 181

AppEvent_WorkbookNewSheet() event,
180

AppEvent_WorkbookOpen() event, 180

AppEvent_
WorkbookPivotTableCloseConnection()
event, 180

AppEvent_
WorkbookPivotTableOpenConnection()
event, 180

AppEvent_WorkbookRowsetComplete()
event, 181

AppEvent_WorkbookSync() event, 181
application-level events, 176-181
trapping, 494-495

600 Application.OnTime

Application.OnTime, 399-400 asymmetric pivot tables, named sets for,
322-323

attaching macros

scheduling

macros to run every two minutes,

403-404 to ActiveX controls, 583-584
macros to run x minutes in the to command buttons, 581-582
future, 401-402 to shapes, 582-583
scheduled procedures with ready The Attribute “Attribute Name” on the
mode, 400 Element “customui Ribbon” Is Not
verbal reminders, 402 Defined in the DTD/Schema (error
specifying a window of time for message), 577
updates, 400 AutoFilter
applications filtering by color, 253
checking version of, 144-145 filtering by icon, 254
compatibility issues replacing loops with, 249-251
Compatibility mode, 145 selecting dynamic data range with,

explained, 144 254-255

historical stock/fund quotes, 362-363 selecting multiple items, 252

ApplyLayout method, 203 selecting visible cells only, 255-256

ApplyTexture() procedure, 220 selecting with Search box, 252-255

ApplyThemeColor() procedure, 220 turning off drop-downs in, 285

Areas collection, 77 AutoFilterCustom() procedure, 285

automation (Word)

arrays
advantages of, 457-458 bookmarks, 448-449
array formulas, 137-138 constant values, 439-441
declaring, 453-454 controlling form fields, 450-452
defined, 453 creating and referencing objects,
437-439

dynamic arrays, 459-460
emptying, 456-457

filling, 455-456
multidimensional arrays, 454
names, 153-154
one-dimensional arrays, 454

Document object, 442-443
early binding, 433-436
explained, 433
late binding, 436-437
macro recorder, 441
Range object, 444-447
Selection object, 443-444
AutoSort, 308
AutoSum button, 30-31

passing, 460
art, SmartArt, 142-144
Assign3DPreset() procedure, 224
AssignBevel() procedure, 230
asterisks (¥), 356-358

BASIC, 8
BeforeDragOver event, 187, 190, 193-199

BeforeDropOrPaste event, 187, 190,
193-199

BeforeUpdate event, 190, 193-197

below/above average cells, formatting,
383

bevel format, changing, 230-234
binding

early binding, 433-436

late binding, 436-437

bins, creating for frequency charts,
236-239

blank cells
eliminating from pivot tables, 308

formatting cells that contain blanks or

errors, 387
bookmarks, 448-449
BookOpen() function, 83
Bottom 5 cells, formatting, 383-384
breakpoints, 49, 55
btnClose_Click() procedure, 512
BubbleSort() procedure, 98
built-in chart types, 208-210
buttons. See also specific buttons
attaching macros to, 581-582
custom icon images, 574-575
help buttons, 505-506
Microsoft Office icons, 573-574

C

.Calculation options, 306-307
calculations
calculated data fields, 324-325
calculated items, 325

case studies

changing to show percentages,
305-308

elapsed time, 353-354
calling

API declarations, 537

userforms, 186

Can't find object or library (error mes-
sage), 435-436

case of text, changing, 359-360
Case statements, 124
case studies
cleaning up recorded code, 62-64

converting Excel 2003 custom toolbar
to Excel 2010, 575-577

criteria ranges, 268
custom functions, 80
data visualization, 327

entering Al versus R1C1 references,
131

entering military time into cell, 171
filtering to top five or top 10, 319
formula-based conditions, 270

Go To Special instead of looping,
256-257

help buttons, 505-506

hidden workbook to hold macros and
forms, 594

looping through directory files,
119-120

multicolumn list boxes, 532

named ranges for VLOOKUP,
156-157

page setup errors, 555
password cracking, 560
recording macros, 22-23

relative references, 26-28

601

cells

cells
Al-style references, 127-128

blank cells, eliminating from pivot
tables, 308

checking for empty cells, 73-74
comments

charts in, 341-342

listing, 337-339

resizing, 339-341

conditional formatting. See condi-
tional formatting

entering military time into, 171

noncontiguous cells, selecting/
deselecting, 347-349

progress indicators, creating, 355-356
R1Cl-style references

absolute references, 133

array formulas, 137-138

case study: entering Al versus
R1CI references, 131

explained, 127-128
formulas, 129-132
mixed references, 133

multiplication table example,
134-135

referring to entire columns/rows,

134
relative references, 132-133

remembering column numbers
associated with column letters,

136
switching to, 128

returning column letter of cell
address, 103

reversing contents of, 101

selected cells, highlighting, 342-344,
344-345

selecting with SpecialCells, 360

setting workbook name in, 82

summing based on interior color,

89-90

Cells(), 59
Cells property

as parameters in Range property, 69

selecting ranges with, 68-69
centering cell comments, 340-341
Change event, 190, 193-199
ChangeFormat() procedure, 446
ChangeStyle() procedure, 447
ChangeTheChartLater() procedure, 207
changing

range size, 71-72

text case, 359-360
Chart_Activate() event, 173
Chart_BeforeDoubleClick() event, 173
Chart_BeforeRightClick() event, 173
Chart_Calculate() event, 173
Chart_Deactivate() event, 173
Chart_DragOver() event, 175
Chart_DragPlot() event, 175
chart events, 166-167, 172-175, 495-497
ChartFormat method, 203
ChartFormat object, 218
Chart Layout gallery, 211-213
Chart_MouseDown() event, 174
Chart_MouseMove() event, 174
Chart_MouseUp() event, 174
Chart_Resize() event, 174
charts

built-in chart types, 208-210

in cell comments, 341-342

chart events, 166-167, 172-175,
495-497

trapping, 495-497
creating, 204-207

dynamic charts, creating in userforms,

244-245
embedded charts, 172
exporting as graphics, 244-245
formatting
3-D rotation settings, 224-229
bevel and 3D format, 230-234
chart elements to which format-
ting applies, 218-234
Format method, 218-234
glow settings, 222-223
line settings, 222
object fill, 219-222
reflection settings, 223
shadow settings, 223
soft edges, 223-224
frequency charts, 236-239
Layout tab, 213-218
layouts, 211-213
new features (Excel 2010), 139-140

Open-High-Low-Close (OHLC)
charts, 235-236

overview, 203

pivot charts, 246-247

referencing, 203-207

SetElement method, 213-218

sparklines. See sparklines

specifying size and location of,

204-205

stacked area charts, 239-243

styles, 211-213

template chart types, 210-211

Win/Loss charts, 426-427
Chart_Select() event, 174-175
Chart_SeriesChange() event, 175
ChartStyle property, 213
ChartType property, 208

ColName() function

CheckBox control, 512-513
check boxes, 512-513
CheckDisplayRes() procedure, 540
CheckForSheet() procedure, 84
checking

existence of names, 155-156

for open files, 539

whether workbook is open, 83
CheckUserRights() procedure, 86
class modules

creating collections in, 502-504

inserting, 493
cleaning up recorded code

case study, 62-64

tips for, 58-61
ClearAllFilters method, 289
ClearTable method, 289
Click event, 187, 190, 193-196, 200
clients, training about error handling, 557
Close method, 443
closing

add-ins, 593

documents, 443

Excel, 401

userform windows, 200-201
code protection, 559
collections

Areas, 77

creating

in class modules, 502-504
in standard module, 501-502

defined, 501

explained, 35

grouping controls into, 519-521
ColName() function, 103

603

604

color

color
color scales
adding to ranges, 374-375
explained, 367
coloring active control, 530-532
filtering by, 253
RGB colors in sparklines, 421-423

summing cells based on interior
color, 89-90

theme colors for sparklines, 418-421

using two colors of data bars in range,
380-382

ColorFord() procedure, 251
ColorFruitRedBold() procedure, 121-122
ColumnExists() procedure, 488
ColumnHeaders() procedure, 455
columns

copying all columns, 277

remembering column numbers asso-
ciated with column letters, 136

subset of columns, copying, 278-280
Columns property, 72

combining worksheets into workbooks,
334-335

combo boxes, 191-193
command buttons
attaching macros to, 581-582
events for, 189
CommandButton event, 191
comments
adding to names, 150
in cells
charts in, 341-342
listing, 337-339
resizing, 339-341
compact layout, 293-294

CompactLayoutColumnHeader property,
289

CompactLayoutRowHeader property, 289
CompactRowIndent property, 290
compatibility issues
checking application version with
Version property, 144-145
Compatibility mode, 145
explained, 144
Compatibility mode, 145
complex expressions, 124
ComplexIf() procedure, 124-126
computer names, retrieving, 538-539
concatenation, 97-98
conceptual filters (pivot tables), 313-316
conditional formatting
color scales
adding to ranges, 374-375
explained, 367
data bars
adding to ranges, 369-374
explained, 367

determining which cells to format,
387-388

formatting cells based on value, 385

formatting cells in top 10 or bottom

5,383-384

formatting cells that are above/below
average, 383

formatting cells that contain blanks or
errors, 387

formatting cells that contain dates,
386

formatting cells that contain text, 386

formatting unique or duplicate cells,
384-385

highlighting selected cell, 342-344
icon sets
adding to ranges, 375-378
explained, 368

new features (Excel 2010), 140-141
NumberFormat property, 388-389

VBA methods and properties,
368-369

conditions (If statement), 121
configuring pivot tables, 295-296
connections (ADO), 478
constant values
defined constants, 41-45
explained, 439

retrieving with Object Browser,
440-441

retrieving with Watch window, 440
ContainsText() function, 100-101
content management system, 407-409
controls. See also userforms

active control, coloring, 530-532

ActiveX controls

attaching macros to, 583-584
right-click menu for, 360-362

adding at runtime, 523-529

adding on-the-fly, 525

CheckBox, 512-513

grouping into collections, 519-521

programming, 188

RefEdit, 515

renaming, 188

Ribbon control arguments, 569-571

Ribbon control attributes, 566

running macros from, 16-17

ScrollBar, 517-519

TabStrip, 513-515

tip text, adding to userforms, 530

ToggleButton, 517

troubleshooting, 189

criteria ranges

converting

FExcel 2003 custom toolbar to Excel
2010, 575-577

pivot tables to values, 299-301

week numbers into dates, 96

workbooks to add-ins, 588-590
ConvertToFormulas method, 289
CopyFromRecordSet method, 481
copying

data into worksheets, 335-336

formulas, 129-130

macros into workbooks, 363-365

ranges, 61

subset of columns, 278-280
CopyToNewFolder() procedure, 120
counting

records, 303

unique values, 90-91

workbooks in directory, 84-85
CountMyWkbks() procedure, 85
cracking passwords, 560

CreatedStackedChart() procedure,
242-243

CreateFrequencyChart() procedure,
238-239

CreateMemo() procedure, 448-449
CreateObject() function, 438
CreateOHCLChart() procedure, 236
CreatePivot() procedure, 298-299
CreatePivotTable method, 295

CreateSummaryReportUsingPivot() proce-
dure, 246-247, 300-301

criteria ranges
case study, 268
explained, 265-266
formula-based conditions, 268-275

605

606

criteria ranges

logical AND criteria, 267
logical OR criteria, 267
Criteria reserved name, 155
CSV files, importing, 331-332
CurrentRegion property, 74-76
cursors, 478
custom About dialog, 541

custom functions. See UDFs (user-defined
functions)

Custom Ul Editor, 572

CustomerByProductReport() procedure,
309-312

customizing
data transposition, 345-347
icon images, 574-575
objects
creating custom objects, 497-498

Property Let/Property Get proce-
dures, 499-501

referencing, 498-499

Ribbon to run macros
control arguments, 569-571
control attributes, 566
custom icon images, 574-575
Custom UI Editor tool, 572
customui folder, 564-565
error messages, 577-580
explained, 563-565
file structure, accessing, 571
Microsoft Office icons, 573-574
RELS file, 571-572
tab and group, 565-566

sort orders, 354-355

web pages, 406

customui folder, 564-565

D

dashboards
creating, 427-432
sparklines
creating, 412-413

creating 100’s of individual spar-

klines in a dashboard, 428-432
formatting, 418-421
observations about, 428
scaling, 414-418
types of sparklines, 411

data
getting from the Web, 391-392
publishing to web pages, 404-406
data access objects (DAO), 477
data bars
adding to ranges, 369-374
explained, 367

using two colors of data bars in range,
380-382

data transposition, customizing, 345-347
data visualizations
applying, 327
color scales, adding to ranges,
374-375
conditional formatting

determining which cells to format,
387-388

formatting cells based on value,

385

formatting cells in top 10 or bot-
tom 5, 383-384

formatting cells that are above/
below average, 383

formatting cells that contain
blanks or errors, 387

formatting cells that contain dates,
386

formatting cells that contain text,
386

formatting unique or duplicate
cells, 384-385

NumberFormat property, 388-389
data bars
adding to ranges, 369-374

using two colors of data bars in
range, 380-382

explained, 368
icon sets
adding to ranges, 375-378

creating for subset of range,
378-380

VBA methods and properties for,
368-369

DataBar2() procedure, 372-373
DataBar3() procedure, 373
Database reserved name, 155
databases
ADO
connections, 478
cursors, 478
lock type, 479
overview, 478-480
recordsets, 478
fields
adding on-the-fly, 489-490
checking existence of, 488

Multidimensional Database (MDB)
format, 475

records
adding, 480-481
deleting, 485
retrieving, 481-483
summarizing, 485-486
updating, 483-485

Delete method 607

shared access databases, creating,
477-478

SQL Server, 490-491
tables
adding on-the-fly, 489
checking existence of, 487-488
DataExtract() procedure, 490-491
DataSets variable, 473
dates
converting week numbers into, 96

formatting cells that contain dates,

386

grouping to months, quarters, or
years, 303-305

retrieving permanent date/time, 87
retrieving saved date/time, 86-87
DateTime() function, 87
DblIClick event, 187, 190, 193-197, 200
Deactivate event, 187
Debug button, 551
Debug errors, 551-552
debugging tools
breakpoints, 49

jumping forward/backward in code,
49-50

querying variable values, 50-54
Run to Cursor, 50
stepping through code, 46-48
watches, 55
declaring
arrays, 453-454
variables, 20
defined constants, 41-45
defining
pivot cache, 295
ranges, 444-446
Delete method, 149-150

608

DeleteFord() procedure

DeleteFord() procedure, 251
deleting

names, 149-150

records, 485

selections from recorded code, 58
delimited files, opening, 467-470
delimited strings, separating, 96-97
deselecting noncontiguous cells, 347-349

Design tab, changing layout from,
325-326

Developer tab, viewing, 9-10
directories
counting workbooks in, 84-85
listing files in, 329-331

looping through directory files,
119-120

Disable All Macros Except Digitally Signed
Macros setting, 12

Disable All Macros with Notification set-
ting, 11-12

Disable All Macros Without Notification
setting, 11

disabling X button for closing userforms,
541-542

DisplayAllMember method, 289
DisplayContextTooltips property, 290
DisplayFieldCaptions property, 290
displaying R1C1-style references, 128

DisplayMemberPropertyTooltips property,
290

display-resolution information, retrieving,
540

DisplaySize API function, 540
dll (dynamic link libraries), 535
Do loops

explained, 113-115

Until clause, 115-117

While clause, 115-117

DOA (data access objects), 477
Document object

closing documents, 443

explained, 442

opening documents, 442

printing documents, 443

saving documents, 442-443
documents

closing, 443

creating, 442

exporting to, 336-337

opening, 442

printing, 443

saving, 442-443
drilling down pivot tables, 349-350
DropButtonClick event, 190, 193
duplicate cells, formatting, 384-385
duplicates, removing from ranges, 91-92
dynamic arrays, 459-460

dynamic charts, creating in userforms,
244-245

dynamic data ranges, selecting with
AutoFilter, 254-255

dynamic link libraries (dll), 535
DynamicAutoFilter() procedure, 255

E

early binding, 433-436
elapsed time, calculating, 353-354

Element “customui Tag Name” Is
Unexpected (error message), 578

e-mail addresses, validating, 88-89

embedded chart events, trapping,
495-497

embedded charts, 172
EmpAddCollection() procedure, 504
EmpPayCollection() procedure, 501-502

empty cells, checking for, 73-74
emptying arrays, 456-457

Enable All Macros (Not Recommended:
Potentially Dangerous Code Can Run)
setting, 12

enable/disable macro settings, 11-12

enabling
events, 161
macros, 12

encountering errors on purpose, 556
EndKey method, 443

Enter event, 190, 193-197, 200

Err object, 554

Error event, 187, 190, 193-197, 200
error handling

debug errors inside userform code,
551-552

encountering errors on purpose, 556
Err object, 554
error messages

The Attribute “Attribute Name”
on the Element “customui
Ribbon” Is Not Defined in the
DTD/Schema, 577

Can’t find object or library,
435-436

Element “customui Tag Name” Is
Unexpected, 578

Excel Found Unreadable Content,
579

Illegal Qualified Name Character,
578

runtime error 9: Subscript Out of
Range, 557

runtime error 1004: Method
Range of Object Global Failed,
558-559

Wrong Number of Arguments or
Invalid Property Assignment, 580

events 609

errors caused by different versions,
561

errors while developing versus errors
months later, 557

explained, 549-552

formatting cells that contain blanks or
errors, 387

generic error handlers, 554
ignoring errors, 554
On Error GoTo syntax, 552-554

On Error Resume Next statement,

554-555
page setup errors, 555
problems with passwords, 560-561
protecting code, 559
suppressing Excel warnings, 556
training clients, 557
error messages

The Attribute “Attribute Name” on
the Element “customui Ribbon” Is
Not Defined in the D'TD/Schema,
577

Can’t find object or library, 435-436

Element “customui Tag Name” Is
Unexpected, 578

Excel Found Unreadable Content,
579

Illegal Qualified Name Character,
578

runtime error 9: Subscript Out of
Range, 557

runtime error 1004: Method Range
of Object Global Failed, 558-559

Wrong Number of Arguments or
Invalid Property Assignment, 580

Evaluate method, 153
events. See also specific events

application-level events, 176-181,
494-495

chart events, 172-175

events

CheckBox control events, 513
for combo boxes, 191-193
for command buttons, 189

embedded chart events, trapping,
495-497

enabling, 161

explained, 160

for graphics, 195-202

for labels, 189

levels of events, 159-160

for list boxes, 191-193

for MultiPage control, 198-200

for option buttons, 194-195

parameters, 160

RefEdit control events, 516

Scrollbar control events, 519

for spin buttons, 196-202

TabStrip control events, 515

for text boxes, 189

ToggleButton control events, 517

userform events, 186-187

workbook events, 161-167

worksheet events, 168-172
EveryOtherRow() procedure, 455
Excel 97-2003 Workbook file type, 18

Excel 2003 custom toolbar, converting to
Excel 2010, 575-577

Excel 2007 pivot table features, 288-290
Excel 2010

file types, 18-19

pivot table features, 288
Excel Binary Workbook file type, 18

Excel Found Unreadable Content (error
message), 579

Excel Macro-Enabled Workbook file type,
18

Excel Workbook file type, 18

Excel8CompatibilityMode property, 145
Execute method, 485
Exit event, 191-197, 200

exiting For...Next loop after condition is
met, 111-112

ExportChart() procedure, 244
exporting

charts as graphics, 244-245

to Word document, 336-337
expressions in Case statements, 124
Extract reserved name, 155

F

FieldListSortAscending property, 290
fields
adding on-the-fly, 489-490
adding to pivot tables, 296-299
calculated data fields, 324-325
checking existence of, 488

field entry in userforms, verifying,
200

form fields, controlling in Word,
450-452

multiple value fields (pivot tables),
302-303

File menu, Save As command, 589

files
checking for open files, 539
CSV files, importing, 331-332
file structure, accessing, 571
file types in Excel 2010, 18-19
filenames, retrieving, 201-202
listing, 329-331

looping through directory files,
119-120

paths, retrieving, 543-546
RELS file, 571-572

text files
fixed-width files, 463-467

importing files with fewer than
1,048,576 rows, 463-470

importing files with more than
1,048,576 rows, 470-473

reading and parsing, 332-333
writing, 473-474
filling arrays, 455-456
FillOutWordForm() procedure, 451-452
Filter in Place, 275-276, 283-285
FilterByFontColor() procedure, 253
FilterBylcon() procedure, 254
filtering
data into worksheets, 335-336
pivot tables
conceptual filters, 313-316
filtering to top five or top 10, 319
manual filters, 312-313
with named sets, 321-323
Search filter, 316-317
slicers, 319-321
FilterNoFontColor() procedure, 253
filters
Advanced Filter
building with Excel interface, 258

case study: creating reports for
each customer, 280-283

extracting unique list of values,

258-264
Filter in Place, 275-276
overview, 257

xlFilterCopy with all records,
276-280

AutoFilter
filtering by color, 253
filtering by icon, 254
replacing loops with, 249-251

Format tab

selecting dynamic data range with,
254-255

selecting multiple items, 252
selecting visible cells only, 255-256
selecting with Search box, 252-255
turning off drop-downs in, 285
finding
API declarations, 547
first nonzero-length cell, 93

FindJPGFilesIinAFolder() procedure,
119-120

FindWindow API function, 541-543

first nonzero-length cell, finding in range,
93

FirstNonZeroLength() function, 93
fixed-width files, opening, 463-467
flow control

complex expressions in Case state-
ments, 124

If statement
conditions, 115, 121-124
If... Then...Else, 121
If... Then...Else...End If, 122-123
If...Then...End If, 121-122
nested If statements, 124-126

Select Case...End Select statement,
123

folders, customui, 564-565
For...Next loops

exiting early after condition is met,
111-112

explained, 107-109
nesting, 112
Step clause, 110-111
variables, 110
Format method, 218-234
Format Shape dialog, 230
Format tab. See formatting

611

612

FormatAboveAverage() procedure

FormatAboveAverage() procedure, 383
FormatBelowAverage() procedure, 383
FormatBetween10And20() procedure, 386
FormatBorder() method, 222

FormatBottom5Items() procedure,
383-384

FormatConditions object, 368
FormatContainsA() procedure, 386
FormatDatesLastWeek() procedure, 386
FormatDuplicate() procedure, 385
FormatLessThan15() procedure, 386
FormatLineOrBorders() procedure, 222
FormatShadow() procedure, 223

FormatSoftEdgesWithLoop() procedure,
224

formatting
charts

3-D rotation settings, 224-229

bevel and 3D format, 230-234

chart elements to which format-
ting applies, 218-234

Format method, 218-234

glow settings, 222-223

line settings, 222

object fill, 219-222

reflection settings, 223

shadow settings, 223

soft edges, 223-224

conditional. See conditional format-
ting

ranges, 446-447
sparklines
RGB colors, 421-423
sparkline elements, 423-426
theme colors, 418-421
Win/Loss charts, 426-427
FormatTop10Iltems() procedure, 383

FormatTop12Percent() procedure, 384
FormatUnique() procedure, 385
FormatWithPicture() procedure, 221
forms. See userforms
formulas

array formulas, 137-138

determining which cells to format,
387-388

entering once and copying down the
column, 129-130

formula-based conditions, 268-275
names, 151
R1CI1 formulas, 61
frequency charts, 236-239
FruitRedVegGreen() procedure, 122
FTP, 409-410
functions. See specific functions

G

generic error handlers, 554
GetAddress() function, 102-103
GetComputerName API function, 538-539
GetFileName() function, 546
GetObject() function, 438-439
GetSettings() procedure, 558
GetSystemMenu API function, 541-542
GetUniqueCustomers() procedure, 260
GetUnsentTransfers() procedure, 481-482
global names, 147-148
glow settings, 222-223
Go To Special dialog, 256-257
graphics. See also icons
adding on-the-fly, 526-527
events for, 195-202
exporting charts as, 244-245
SmartArt, 142-144
groups, creating for Ribbon, 565-566

H

IncrementRotationZ property 613

HandleAnError() procedure, 553
handling errors. See error handling
hard-coding, 60-61
help
adding to userforms, 529-532
accelerator keys, 529
coloring active control, 530-532
control tip text, 530
help buttons, 505-506
help files, 143
installing, 37-38
selecting libraries in, 45
help topics, 39
hidden workbooks
as alternative to add-ins, 593-594

case study: hidden workbook to hold
macros and forms, 594

Hide method, 186
hiding
hidden workbooks
as alternative to add-ins, 593-594

case study: hidden workbook to
hold macros and forms, 594

names, 155

userforms, 186
HighlightFirstUnique() procedure, 385-388
highlighting selected cells, 342-345
HighlightWholeRow() procedure, 388

historical stock/fund quotes application,
362-363

HomeKey method, 443
hovering, 53
hyperlink addresses, returning, 102-103
hyperlinks
in userforms, 522

running macros from, 584

icons
custom icon images, 574-575
filtering by, 254
icon sets
adding to ranges, 375-378

creating for subset of range,
378-380

explained, 368

Microsoft Office icons, 573-574
If statements

conditions, 121

If... Then...Else, 121

If... Then...Else...End If, 122-123

If... Then...End If, 121-122

nesting, 124-126
ignoring errors, 554

lllegal Qualified Name Character (error
message), 578

images. See graphics; icons
Immediate window, 50-53
Import10() procedure, 470
ImportAll() procedure, 470-471
ImportData function, 156-157
importing

CSV files, 331-332

text files

files with fewer than 1,048,576
rows, 463-470

files with more than 1,048,576
rows, 470-473

IncrementRotationHorizontal property,
229

IncrementRotationVertical property, 229
IncrementRotationX property, 229
IncrementRotationY property, 229
IncrementRotationZ property, 229

614

InGridDropZones property

InGridDropZones property, 290
Initialize event, 187
input boxes, 183-184
InputBox function, 183-184
inserting class modules, 493
InsertText() procedure, 444
installing

add-ins, 591

help files, 37-38
Intersect method, 73
IsEmailValid() function, 88-89
ISEMPTY function, 73-74
IsWordOpen() procedure, 438

J

jetengine, 476
joining multiple ranges, 72-73
jumping forward/backward in code, 49-50

K

keyboard shortcuts, running macros with,
580-581

KeyDown event, 187, 191-197, 200
KeyPress event, 187, 191-197, 200
KeyUp event, 187, 191-200
keywords, New, 437

KillTimer API function, 542-543

L

Label event, 191, 194-195
labels, 189

last row, determining, 59-60
LastSaved() function, 86-87
late binding, 436-437
Layout event, 187, 195
Layout tab, 213-218

LayoutRowDefault property, 290
layouts
charts, 211-213
compact layout, 293-294
pivot table layout, 325-327
Ibl_Email_Click() procedure, 522
Ibl_SelectAll_Click() procedure, 520
Ibl_unSelectAll_Click() procedure, 520
Ibl_Website_Click() procedure, 522
learning curve for VBA, 8
levels of events, 159-160
libraries
dynamic link libraries (dll), 535
selecting in help files, 45
lighting, VBA constants for, 233-234
Line Input method, 472
line settings, 222
LineFormat object, 222
list boxes
combo boxes versus, 191-193
multicolumn list boxes, 532
listing
cell comments, 337-339
files in directories, 329-331
lists, sorting, 354-355
Load method, 186
local names, 147-148
location of charts, specifying, 204-205
lock type (ADO), 479
logical AND criteria, 267
logical OR criteria, 267
loops
Do
explained, 113-115
Until clause, 115-117
While clause, 115-117
For Each, 117-119

For...Next

exiting early after condition is met,
111-112

explained, 107-109
nesting, 112

Step clause, 110-111
variables, 110

Go To Special instead of looping,
256-257

looping through directory files,
119-120

replacing with AutoFilter, 249-251
While...Wend, 117

I0pen API function, 539

Lotus 1-2-3 macros, 29

M

macro recorder, 441

cleaning up recorded code
case study, 62-64
tips for, 58-61

examining code from, 39-46

flaws in, 7-8, 21-31
absolute mode, 25
AutoSum button, 30-31

examining code in Programming
window, 23-25

recording macros case study, 22-23
relative references, 26-29

relative references case study,
26-28

tips for, 31
Macro Security icon (Developer tab), 9
macros. See also specific procedures
attaching
to ActiveX controls, 583-584
to command buttons, 581-582
to shapes, 582-583

military time, entering into cells 615

canceling previously scheduled,
400-401

closing, 401
copying into workbooks, 363-365
holding in hidden workbooks, 594
recording, 12-14, 22-23
running, 14-17
from form controls, 16-17
from hyperlinks, 584
with keyboard shortcuts, 580-581
from Quick Access toolbar, 15-16
from Ribbon. See Ribbon
scheduling
to run every two minutes, 403-404

to run x minutes in the future,
401-402

security, 10-12

Disable All Macros with
Notification setting, 12

enable/disable settings, 11-12
trusted locations, 10-11
testing, 25
Macros icon (Developer tab), 9
manual filters (pivot tables), 312-313
manually creating web queries, 392-395
material types, 232

maximum values in range, returning
addresses of, 101-102

MaxPoint property, 371

MDB (Multidimensional Database) format,
475

Me keyword, 186
message boxes, 184
methods. See specific methods

Microsoft Office icons, adding to buttons,
573-574

military time, entering into cells, 171

616

MinPoint property

MinPoint property, 371
mixed references, 133
mixed text
retrieving numbers from, 95

sorting numeric and alpha characters,
99-100

modeless userforms, 521

Modify method, 371

modules, 21

MouseDown event, 187, 191-196, 200
MouseMove event, 187, 191, 194-196, 200
MouseUp event, 187, 191, 194-196, 200
MoveAfterTheFact() procedure, 205
MoveAndFormatSlicer() procedure, 321
MsgBox function, 184

MSubstitute() function, 94-95
multicolumn list boxes, 532
multidimensional arrays, 454

Multidimensional Database (MDB) format,
475

MultiPage control, 198-200

multiple actions in With...End With
blocks, 61

multiple characters, substituting, 94-95
multiple items, selecting, 252

multiple row fields, suppressing subtotals
for, 326-327

multiple value fields (pivot tables),
302-303

Multiplelf() procedure, 122

multiplication table, building with R1C1-
style references, 134-135

MultiSelect property, 192-193
MyFullName() function, 82-83
MyName() function, 82

N

Name property, 149
named ranges, 66
named sets, 321-323
NameExists function, 155-157
names
adding comments about, 150
array names, 153-154
checking existence of, 155-156
computer names, retrieving, 538-539
creating, 148-149
deleting, 149-150
explained, 147
formula names, 151
global versus local names, 147-148
hiding, 155
named ranges for VLOOKUP,
156-157
number names, 152-153
reserved names, 154-155
storing values in, 152
string names, 151-152
table names, 153
workbook names, setting in cell, 82
NASDAQMacro() procedure, 416-418
navigation keys, 31
nesting
If statements, 124-126
loops, 112
NetTransfers() procedure, 486
new features (Excel 2010)
charts, 139-140
conditional formatting, 140-141
objects/methods, 143
pivot tables, 140
Ribbon, 139

slicers, 140

SmartArt, 142

sorting, 141-142

tables, 141
New keyword, 437
NewDocument() procedure, 442

noncontiguous cells, selecting/
deselecting, 347-349

noncontiguous ranges, returning, 77
NumberFormat() procedure, 388-389
NumberFormat property, 388-389
numbers

names, 152-153

retrieving from mixed text, 95

static random numbers, generating,

103

week numbers, converting into dates,

96
NumFilesInCurDir() function, 84-85
NumUniqueValues() function, 90-91

@)

Object Browser, 56-57, 440-441
object-oriented languages, 33-34
object variables, 117-119
objects. See also specific objects
ActiveX data objects. See ADO
bookmarks, 448-449
in collections, 35
creating and referencing
CreateObject() function, 438
GetObject() function, 438-439
New keyword, 437
custom objects
creating, 497-498

Property Let/Property Get proce-
dures, 499-501

referencing, 498-499

overlapping ranges, creating new ranges from

explained, 34

fill, 219-222

new features (Excel 2010), 143

properties, 36, 37

returned by properties, 46

watches on, 55
ObjectThemeColor property, 219
objForm_LostFocus() procedure, 532
Offset property, 69-70, 251

OHLC (Open-High-Low-Close) charts,
235-236

OldLoop() procedure, 250
OldLoopToDelete() procedure, 250
OneColorGradient method, 221, 222
one-dimensional arrays, 454

On Error GoTo syntax, 552-554

On Error Resume Next statement, 554-555
open files, checking for, 539

Open-High-Low-Close (OHLC) charts,
235-236

Open method, 442
opening
delimited files, 467-470
documents, 442
fixed-width files, 463-467
OpenSchema method, 487
OpenText method, 40, 42, 463
optimizing
calculating elapsed time, 353-354
Page Setup, 350-353
option buttons, 194-195
optional parameters, 41
Origin parameter, 41

overlapping ranges, creating new ranges
from, 73

617

618

Page Setup

P

Page Setup, 350-353, 555
parameters
event parameters, 160
explained, 35-36
optional parameters, 41
parsing text files, 332-333
PassAnArray() procedure, 460
passing arrays, 460
passwords
cracking, 560
password box protection, 356-358
problems with, 560-561
pasting ranges, 61
.Patterned method, 221
Peltier, Jon, 243
percentages, showing, 305-308
permanent date/time, retrieving, 87
Personal Macro Workbook, 13
pivot cache, 295
pivot charts, 246-247
pivot tables
building in Excel interface, 290-294
building in VBA, 294-301
adding fields to data area, 296-299

creating and configuring pivot
table, 295-296

defining pivot cache, 295
calculated data fields, 324-325
calculated items, 325

changing calulations to show percent-
ages, 305-308

changing layout of, 325-327
compact layout, 293-294

controlling sort order with AutoSort,
308

counting number of records, 303

data visualization, applying, 327

determining size of and converting
pivot table to values, 299-301

drilling down, 349-350

eliminating blank cells in values area,

308

Excel 2007 new features, 288-290
Excel 2010 new features, 288
explained, 287
filtering data sets

conceptual filters, 313-316

filtering to top five or top 10, 319

manual filters, 312-313

Search filter, 316-317

slicers, 319-321

with named sets, 321-323

with ShowDetail, 325

grouping daily dates to months, quar-
ters, or years, 303-305

limitations, 299
multiple value fields, 302-303
new features (Excel 2010), 140

replicating reports for every product,
309-312

supressing subtotals for multiple row
fields, 326-327

PivotColumnAxis property, 290
PivotRowAXxis property, 290
playing sounds, 543
PlayWavSound API function, 543
Pope, Andy, 243

PresetGradient method, 222
PresetTextured method, 220
Print_Area reserved name, 155
Print_Titles reserved name, 155
PrintDrillindicators property, 290
printing documents, 443
PrintOut method, 443

Priority property, 369

private properties, 497

procedural languages, 33-34
procedures. See specific procedures

Programming window, examining macro
recorder code in, 23-25

progress indicators, 355-356
Project Explorer, 20-21
properties. See also specific properties
explained, 36-37
return values, 46
Properties window, 21
Property Get procedure, 499-501
Property Let procedure, 499-501
protecting
code, 559
password boxes, 356-358
public properties, 497
publishing data to web pages, 404-406

Q

queries, 391-395

QueryClose event, 187, 201
querying variable values, 50-54
Quick Access toolbar, 15-16
QuickFillMax() procedure, 456
QuickSort() procedure, 99-100

R

R1C1-style references, 61
absolute references, 133
array formulas, 137-138

case study: entering Al versus R1C1
references, 131

explained, 127-128
formulas, 129-132
mixed references, 133

ranges

multiplication table example, 134-135
referring to entire columns/rows, 134
relative references, 132-133

remembering column numbers asso-
ciated with column letters, 136

switching to, 128
random numbers, generating, 103
Range object, 65-66, 444-447
defining ranges, 444-446
formatting ranges, 446-447
Range property, 69
ranges
color scales, adding, 374-375
copying/pasting in one statement, 61
creating from overlapping ranges, 73
criteria ranges
case study, 268
explained, 265-266
formula-based conditions, 268-275
logical AND criteria, 267
data bars, adding, 369-374
defining, 444-446
first nonzero-length cell, finding, 93
formatting, 446-447
icon sets, adding, 375-378
specifying icon set, 376

specifying ranges for each icon,
377-378

joining multiple ranges, 72-73
named ranges, 66, 156-157
names
adding comments about, 150
creating, 148-149
deleting, 149-150
Range object, 65-66, 444-447

619

ranges

referencing, 59
with Offset property, 69-70
in other sheets, 67
relative to another range, 68
shortcuts, 66-67
removing duplicates from, 91-92
resizing, 71-72
returning addresses of maximum val-
ues in range, 101-102

returning noncontiguous ranges, 77
selecting
with AutoFilter, 254-255
with Cells property, 68-69
with CurrentRegion property,
74-76
specifying
syntax, 66
with Columns/Rows properties, 72
Ranges(), 59
RangeText() procedure, 444
reading text files, 332-333

files with fewer than 1,048,576 rows,
463-470

importing files with more than
1,048,576 rows, 470-473

ReadLargeFile() procedure, 472-473
Record Macro dialog box, 13

Record Macro icon (Developer tab), 9
recorded code, cleaning up, 58-64

recording macros, 12-14, 22-23. See
also macro recorder

records
adding to databases, 480-481
counting number of, 303
deleting, 485
retrieving from databases, 481-483
showing after Filter in Place, 276

summarizing, 485-486
updating, 483-485
recordsets, 325, 478
RefEdit control, 515
references
Al-style references, 127-128

case study: entering Al versus R1Cl
references, 131

R1Cl1-style references
absolute references, 133
array formulas, 137-138
explained, 127-128
formulas, 129-132
mixed references, 133

multiplication table example,
134-135

referring to entire columns/rows,
134

relative references, 132-133

remembering column numbers
associated with column letters,

136
switching to, 128
referencing
charts, 203-207
custom objects, 498-499
objects
CreateObject() function, 438
GetObject() function, 438-439
New keyword, 437
ranges, 59
with Offset property, 69-70
in other sheets, 67
relative to another range, 68
shortcuts, 66-67
tables, 77-78
reflection settings, 223

refreshing web queries, 392-395
relative references, 26-31

case study, 26-28

R1Cl1-style references, 132-133
RELS file, 571-572
RememberTheName() procedure, 206
Remove Duplicates command, 384-385
RemoveControl event, 187, 195, 200
removing

add-ins, 593

duplicates from ranges, 91-92
renaming controls, 188
replacing loops with AutoFilter, 249-251

replicating reports for every product,
309-312

reports

creating with Advanced Filter,
280-283

replicating for every product, 309-312
reserved names, 154-155
Reset button, 549-550
ResetRotation method, 229
Resize event, 187
Resize property, 71-72
resizing
cell comments, 339-341
ranges, 71-72
userforms, 524
resolution, 540
RetrieveNumbers() function, 95
retrieving
file paths, 543-546
filenames, 201-202
records, 481-483
return values of properties, 46
ReturnsMaxs() function, 101-102

RunReportForEachCustomer() procedure 621

RevenueByCustomers() procedure, 261
ReverseContents() function, 101
reversing cell contents, 101
RGB colors, 421-423
Ribbon
changes in Excel 2010, 139
customizing to run macros
control arguments, 569-571
control attributes, 566
custom icon images, 574-575
Custom UI Editor tool, 572
customui folder, 564-565
error messages, 577-580
explained, 563-565
file structure, accessing, 571
Microsoft Office icons, 573-574
RELS file, 571-572
tab and group, 565-566
macro buttons, creating, 14-15
rotation, 224-229
RotationX property, 228
RotationY property, 229
RotationZ property, 229
RowAxisLayout method, 289
rows, determining last row, 59-60
Rows property, 72
Run to Cursor debugging tool, 50
RunCustReport() procedure, 278-279
running
macros, 14-17
from form controls, 16-17
from Quick Access toolbar, 15-16
from Ribbon, 14-15
timers, 542-543

RunReportForEachCustomer() procedure,
281-283

622 runtime

runtime
adding controls at, 523-529
errors

runtime error 9: Subscript Out of
Range, 557

runtime error 1004: Method
Range of Object Global Failed,
558-559

S

Save As command (File menu), 589
Save method, 442
saved date/time, retrieving, 86-87
saving documents, 442-443
sbX_Change() procedure, 245
sbY_Change() procedure, 245
scaling sparklines, 414-418
scheduling

macros

to run every two minutes, 403-404

to run x minutes in the future,
401-402

verbal reminders, 402
Scroll event, 187, 195, 200
ScrollBar control, 517-519
Search box, 252-255
Search filter (pivot tables), 316-317
searching for strings within text, 100-101
security

add-ins, 592

macro security

Disable All Macros with
Notification setting, 12

enable/disable settings, 11-12
trusted locations, 10-11
password box protection, 356-358
Select Case...End Select statement, 123

Select...Case statement, 104
Select statements, 123
SelectCase() procedure, 123
selected cells, highlighting, 342-345
selecting

cells, 360

libraries, 45

multiple items, 252

noncontiguous cells, 347-349

ranges

with Cells property, 68-69

with CurrentRegion property,
74-76

Selection object, 443-444
SelectSentence() procedure, 445
separating
delimited strings, 96-97
worksheets into workbooks, 333-334
SetElement method, 203, 213-218
SetPresetCamera values, 225-229
SetReportinltalics() procedure, 559
SetTimer API function, 542-543
SetValuesToTabStrip() procedure, 514
shadow settings, 223
shapes, attaching macros to, 582-583

shared access databases, creating,
477-478

sharing UDFs (user-defined functions),
81-82

sheet events (workbook level), 166-167
SheetExists() function, 83-84

sheets, verifying existence of, 83-84
ShellAbout API function, 541

Show method, 186

ShowAllData method, 276
ShowCustForm() procedure, 263
ShowDetail, 325

ShowDrillindicators property, 290

ShowTableStyleColumnHeaders property,
290

ShowTableStyleColumnStripes property,
290

ShowTableStyleLastColumn property, 290

ShowTableStyleRowHeaders property,
290

ShowTableStyleRowsStripes property, 290
SimpleFilter() procedure, 285
size
of charts, 204-205
of pivot tables, 299-301
slicers, 319-321
SmartArt, 142
soft edges, formatting, 223-224
SortConcat() function, 97-98
sorter() function, 99-100
sorting
AutoSort, 308
with custom sort orders, 354-355
new features (Excel 2010), 141-142
numeric and alpha characters, 99-100
with SortConcat() function, 97-98
SortUsingCustomLists property, 290
sounds, playing, 543
sparklines
creating, 412-413, 428-432
formatting
RGB colors, 421-423
sparkline elements, 423-426
theme colors, 418-421
Win/Loss charts, 426-427
observations about, 428
scaling, 414-418
types of sparklines, 411

StringElement() function 623

SpecialCells method, 276, 360
SpecifyExactLocation() procedure, 205
SpecifyLocation() procedure, 205
speed testing, 350-353

spin button events, 196-202
SpinDown event, 198

SpinUp event, 198

SQL Server, 490-491

stacked area charts, 239-243

standard modules, creating collections in,
501-502

StartRow parameter, 41
statements. See also loops
Case, 124
If
conditions, 115, 121-124
If... Then...Else, 121
If... Then...Else...End If, 122-123
If... Then...End If, 121-122
nesting, 124-126
On Error GoTo, 552-554
On Error Resume Next, 554-555
Select...Case, 104
Select Case...End Select, 123
Type..End Type, 506
state_period() function, 103
static random numbers, generating, 103
StaticRAND() function, 103
Step clause (For statement), 110-111
stepping through code, 46-48

stock quotes, historical stock/fund quotes
application, 362-363

StoplfTrue property, 369
StoreDashboard() procedure, 430-431
StoreTheName() procedure, 207
storing values in names, 152
StringElement() function, 96-97

624

strings

strings
delimited strings, separating, 96-97
finding within text, 100-101
names, 151-152

Styles gallery, 212-213

Sub cbConfirm_Click() procedure, 484-485

subsets of ranges, creating icon sets for,
378-380

substituting multiple characters, 94-95
SubtotalLocation method, 289

subtotals, suppressing for multiple row
fields, 326-327

SumColor() function, 89-90
summarizing records, 485-486

summing cells based on interior color,
89-90

suppressing
Excel warnings, 556

subtotals for multiple row fields,
326-327

SwapElements() procedure, 100
switching to R1C1-style references, 128

T

tab strips, 513-515
TableExists() procedure, 487-488
tables
adding on-the-fly, 489
checking existence of, 487-488
exporting to, 336-337
names, 153
new features (Excel 2010), 141
pivot tables. See pivot tables
referencing, 77-78
TableStyle2 property, 290

tabs
creating for Ribbon, 565-566
tab order for userforms, 530
TabStrip control, 513-515
template chart types, 210-211
Terminate event, 187
testing
macros, 25
speed testing, 350-353
text
case, changing, 359-360
control tip text, 530
formatting cells that contain text, 386

mixed text, sorting numeric and alpha
characters, 99-100

retrieving numbers from mixed text,

95

searching for strings within, 100-101

text boxes, 189

text files
delimited files, opening, 467-470
fixed-width files, opening, 463-467
importing, 463-473
reading and parsing, 332-333
writing, 473-474

text files

delimited files, opening, 467-470

fixed-width files, opening, 463-467

importing
files with fewer than 1,048,576

rows, 463-470

files with more than 1,048,576
rows, 470-473

reading and parsing, 332-333
writing, 473-474
Text Import Wizard, 42, 464-467
Text to Columns Wizard, 43

TextBox event, 191, 195

TextToColumns method, 471

theme colors for sparklines, 418-421

time
elapsed time, calculating, 353-354
military time, entering into cells, 171
permanent date/time, retrieving, 87
saved date/time, retrieving, 86-87

timers, 542-543

ToggleButton control, 517

toolbars

converting Excel 2003 custom toolbar
to Excel 2010, 575-577

UserForm toolbar, 511
ToolTips, 53
Top 10 cells

filtering to, 319

formatting, 383-384
Top5Customers() procedure, 317-319
Top10Filter() procedure, 252
Top/Bottom Rules, 383-384
TrailingMinusNumbers parameter, 42, 561
training clients about error handling, 557
transparent forms, 533-534
TransposeArray() procedure, 458
transposing data, 345-347
TrapChartEvent() procedure, 497
trapping

application events, 494-495

embedded chart events, 495-497
TrickyFormatting() procedure, 380

troubleshooting. See error handling; error
messages

trusted locations, 10-11
TwoColorGradient() procedure, 221

UDTs (user-defined types)

Type..End Type statement, 506
types, user-defined types (UDTs), 506-509
TypeText method, 444

U

UDFs (user-defined functions)
BookOpen(), 83
case study, 80
ColName(), 103
ContainsText(), 100-101
creating, 79-81
DateTime(), 87
FirstNonZeroLength(), 93
GetAddress(), 102-103
IsEmailValid(), 88-89
LastSaved(), 86-87
MSubstitute(), 94-95
MyFullName(), 82-83
MyName(), 82
NumFilesInCurDir(), 84-85
NumUniqueValues(), 90-91
RetrieveNumbers(), 95
ReturnsMaxs(), 101-102
ReverseContents(), 101
sharing, 81-82
SheetExists(), 83-84
SortConcat(), 97-98
sorter(), 99-100
state_period(), 103
StaticRAND(), 103
StringElement(), 96-97
SumColor(), 89-90
UniqueValues(), 91-92
Weekday(), 96
WinUserName(), 85-86

UDTs (user-defined types), 506-509

626

Union method

Union method, 72-73
unique cells, formatting, 384-385
Unique Records Only, 283-285
unique values

counting, 90-91

extracting with Advanced Filter,
258-264

getting unique combinations of
two or more fields, 263-264

with user interface, 259
with VBA code, 260-263

UniqueCustomerProduct() procedure,
263-264

UniqueCustomerRedux() procedure, 261

UniqueProductsOneCustomer() proce-
dure, 266

UniqueValues() function, 91-92
Unload method, 186
Until clause (Do loops), 115-117
updating

records, 483-485

web queries, 395

Use Relative Reference icon (Developer
tab), 9

UseBookmarks() procedure, 448
UseGetObject() procedure, 438
user-defined functions. See UDFs
user-defined types (UDTs), 506-509
UserForm toolbar, 511
UserForm_lInitialize() procedure, 527-528
UserForm_QueryClose() procedure, 532
userforms, 183-202
calling, 186
command buttons, 189
controls
adding at runtime, 523-529
adding on-the-fly, 525
CheckBox, 512-513

grouping into collections, 519-521
programming, 188
RefEdit, 515
ScrollBar, 517-519
TabStrip, 513-515
ToggleButton, 517
troubleshooting, 189
creating, 184-185

Debug errors inside userform code,

551-552

disabling X button for closing user-
forms, 541-542

dynamic charts, creating, 244-245

field entry, verifying, 200

filenames, retrieving, 201-202

help, adding, 529-532
accelerator keys, 529
coloring active control, 530-532
control tp text, 530

hiding, 186

hyperlinks in, 522

images
adding on-the-fly, 526-527
graphics events, 195-202

input boxes, 183-184

labels, 189

list boxes, 191-193

message boxes, 184

modeless userforms, 521

MultiPage control, 198-200

option buttons, 194-195

resizing on-the-fly, 524

spin buttons, 196-202

tab order, 530

text boxes, 189

transparent forms, 533-534

UserForm toolbar, 511

viewing code, 186

windows, closing, 200-201
USERID function, 85-86
UserlDs, retrieving, 85-86

\Y

validating e-mail addresses, 88-89
values
constant values
explained, 439

retrieving with Object Browser,
440-441

retrieving with Watch window,
440

converting pivot tables to, 299-301

duplicates, removing from ranges,
91-92

formatting cells based on, 385

maximum values in range, returning
addresses of, 101-102

storing in names, 152
unique values
counting, 90-91

extracting with Advanced Filter,
258-264

variables
DataSets, 473
hard-coding versus, 60-61
in For statements, 110
object variables, 117-119
querying values of, 50-54
requiring declaration, 20
wdApp, 435
wdDoc, 435

VLOOKUP function

VB Editor, 19-21
converting files to add-ins, 590-591
debugging tools
breakpoints, 49

jumping forward/backward in
code, 49-50

querying variable values, 50-54
Run to Cursor, 50
stepping through code, 46-48
watches, 55
Object Browser, 56-57
Programming window, 23-25
Project Explorer, 20-21
Properties window, 21
settings, 19-20
VBA (Visual Basic for Applications)
advantages of, 8-9
learning curve, 8
syntax, 34-37
VBA Extensibility, 363-365
verbal reminders, scheduling, 402
verifying field entry, 200
Version property, 144-145

versions, errors caused by different ver-
sions, 561

viewing
Developer tab, 9-10
Project Explorer, 20
Properties window, 21
userform code, 186

visible cells, selecting with AutoFilter,
255-256

Visual Basic for Applications. See VBA
(Visual Basic for Applications)

Visual Basic icon (Developer tab), 9
visualizations. See data visualizations
VLOOKUP function, 156-157

627

628

warnings, suppressing

W

warnings, suppressing, 556
Watch window, 440
watches
querying variable values with, 53-54
setting breakpoints, 55
wdApp variable, 435
wdDoc variable, 435
web pages
creating custom, 406
publishing data to, 404-406
web queries, 391-392
building, 396-399

creating manually and refreshing with

VBA, 392-395
scraping, 399
updating, 395
week numbers, converting into dates, 96
Weekday() function, 96
While clause (Do loops), 115-117
While...Wend loops, 117
Window API declarations
Windows API declarations
32-bit versus 64-bit, 538
ahtAddFilterItem, 546
aht_apiGetOpenFileName, 544-546
aht_apiGetSaveFileName, 544-546
calling, 537
DisplaySize, 540
explained, 535-536
finding, 547
FindWindow, 541-543
GetComputerName, 538-539
GetSystemMenu, 541-542
KillTimer, 542-543
10pen, 539

PlayWavSound, 543

SetTimer, 542-543

ShellAbout, 541
windows for userforms, closing, 200-201
Win/Loss charts, 426-427
WinUserName() function, 85-86
With...End With blocks, 61
wizards, Text Import Wizard, 464-467
Word automation

bookmarks, 448-449

constant values

explained, 439

retrieving with Watch window,
440

controlling form fields, 450-452
creating and referencing objects
CreateObject() function, 438
GetObject() function, 438-439
New keyword, 437
Document object
closing documents, 443
creating documents, 442
explained, 442
opening documents, 442
printing documents, 443
saving documents, 442-443
early binding, 433-436
explained, 433
late binding, 436-437
macro recorder, 441
Range object, 444-447
defining ranges, 444-446
formatting ranges, 446-447
Selection object, 443-444
Word documents, exporting to, 336-337
WordEarlyBinding() procedure, 435
WordLateBinding() procedure, 437

Workbook_Activate() event, 161
Workbook_AddIininstall() event, 165
Workbook_AddInUninstall event, 165
Workbook_AfterXmlExport() event, 166
Workbook_AfterXmlimport() event, 166
Workbook_BeforeClose() event, 163-164
Workbook_BeforePrint() event, 163, 494
Workbook_BeforeSave() event, 162
Workbook_BeforeXmlExport() event, 166
Workbook_BeforeXmlimport() event, 166
Workbook_Deactivate() event, 161
Workbook_NewSheet() event, 164
Workbook_Open() event, 161
Workbook_Open() procedure, 594

Workbook_PivotTableCloseConnection()
event, 165

Workbook_PivotTableOpenConnection()
event, 165

Workbook_RowsetComplete() event, 165
Workbook_SheetActivate() event, 166

Workbook_SheetBeforeDoubleClick()
event, 167

Workbook_SheetBeforeRightClick() event,
167

Workbook_SheetCalculate() event, 167
Workbook_SheetChange () event, 167
Workbook_SheetDeactivate() event, 167

Workbook_SheetFollowHyperlink() event,
167

Workbook_SheetPivotTableUpdate()
event, 167

Workbook_SheetSelectionChange() event,
167

Workbook_Sync() event, 165
Workbook_WindowActivate() event, 165

Workbook_WindowDeactivate() event,
165

Workbook_WindowResize() event, 164

workbooks

workbooks
checking whether open, 83
combining worksheets into, 334-335
converting to add-ins, 588-590
copying macros into, 363-365

counting number of workbooks in

directory, 84-85
events
Workbook_Activate(), 161
Workbook_AddInInstall(), 165
Workbook_AddInUninstall, 165
Workbook_AfterXmlExport(), 166
Workbook_AfterXmlImport(), 166

Workbook_BeforeClose(), 163-
164

Workbook_BeforePrint(), 163
Workbook_BeforeSave(), 162

Workbook_BeforeXmlExport(),
166

Workbook_BeforeXmlImport(),
166

Workbook_Deactivate(), 161
Workbook_NewSheet(), 164
Workbook_Open(), 161

Workbook_
PivotTableCloseConnection(),
165

Workbook_
PivotTableOpenConnection(),
165

Workbook_RowsetComplete(),
165

Workbook_Sync(), 165

Workbook_WindowActivate(),
165

Workbook_WindowDeactivate(),
165

Workbook_WindowResize(), 164

629

630 workbooks

hidden workbooks X-Y-Z

as alternative to add-ins, 593-594

case study: hidden workbook to
hold macros and forms, 594

X button, disabling, 541-542
xlIApp_NewWorkbook() procedure, 495

. .. XLFilterInPlace constant, 275
permanent date/time, retrieving, 87

. .. Xxls fil , 1
saved date/time, retrieving, 86-87 xls file type, 18

separating worksheets into, 333-334 Xlsb file type, 18
Workbooks object, 40
Worksheet_Activate() event, 168

Worksheet_BeforeDoubleClick() event,
168 Zoom event, 187, 195, 200

XxIsm file type, 18
Xlsx file type, 18

Worksheet_BeforeRightClick() event, 169

Worksheet_BeforeRightClick() procedure,
160

Worksheet_Calculate() event, 169
Worksheet_Change() event, 170
Worksheet_Change() procedure, 161
Worksheet_Deactivate() event, 168
Worksheet_FollowHyperlink() event, 171
Worksheet_PivotTableUpdate() event, 172
Worksheet_SelectionChange() event, 170
worksheets
combining into workbooks, 334-335
events, 168-172
filtering/copying data into, 335-336
referencing ranges in other sheets, 67
Select...Case statements on, 104
separating into workbooks, 333-334
WriteFile() procedure, 474
WriteHTML() procedure, 554
writing text files, 473-474

Wrong Number of Arguments or Invalid
Property Assignment (error message),
580

	Contents
	Introduction
	Getting Results with VBA
	What Is in This Book?
	Reduce the Learning Curve
	Excel VBA Power
	Techie Stuff Needed to Produce Applications
	Does This Book Teach Excel?

	The Future of VBA and Windows Versions of Excel
	Versions of Excel

	Special Elements and Typographical Conventions
	Code Files
	Next Steps

	1 Unleash the Power of Excel with VBA
	The Power of Excel
	Barriers to Entry
	The Macro Recorder Doesn’t Work!
	Visual Basic Is Not Like BASIC
	Good News: Climbing the Learning Curve Is Easy
	Great News: Excel with VBA Is Worth the Effort

	Knowing Your Tools: The Developer Tab
	Macro Security
	Adding a Trusted Location
	Using Macro Settings to Enable Macros in Workbooks Outside of Trusted Locations
	Using Disable All Macros with Notification

	Overview of Recording, Storing, and Running a Macro
	Filling Out the Record Macro Dialog

	Running a Macro
	Creating a Macro Button on the Ribbon
	Creating a Macro Button on the Quick Access Toolbar
	Assigning a Macro to a Form Control, Text Box, or Shape

	Using New File Types in Excel 2010
	Understanding the VB Editor
	VB Editor Settings
	The Project Explorer
	The Properties Window

	Understanding Shortcomings of the Macro Recorder
	Examining Code in the Programming Window
	Running the Macro on Another Day Produces Undesired Results
	Possible Solution: Use Relative References When Recording
	Never Use the AutoSum Button While Recording a Macro
	Three Tips When Using the Macro Recorder

	Next Steps

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

