The old 80/20 rule for software—that 80% of a program’s users use only 20% of a program’s features—doesn’t apply to Microsoft Excel. Instead, this program probably operates under what could be called the 95/5 rule: Ninety-five percent of Excel users use a mere 5% of the program’s power. On the other hand, most people know that they could be getting more out of Excel if they could only get a leg up on building formulas and using functions. Unfortunately, this side of Excel appears complex and intimidating to the uninitiated, shrouded as it is in the mysteries of mathematics, finance, and impenetrable spreadsheet jargon.

If this sounds like the situation you find yourself in, and if you’re a businessperson who needs to use Excel as an everyday part of your job, you’ve come to the right book. In *Formulas and Functions with Microsoft Excel 2010*, I demystify the building of worksheet formulas and present the most useful of Excel’s many functions in an accessible, jargon-free way. This book not only takes you through Excel’s intermediate and advanced formula-building features, but it also tells you why these features are useful to you and shows you how to use them in everyday situations and real-world models. This book does all this with no-nonsense, step-by-step tutorials and lots of practical, useful examples aimed directly at business users.

Even if you’ve never been able to get Excel to do much beyond storing data and adding a couple of numbers, you’ll find this book to your liking. I show you how to build useful, powerful formulas from the ground up, so no experience with Excel formulas and functions is necessary.
What’s in the Book

This book isn’t meant to be read from cover to cover, although you’re certainly free to do just that if the mood strikes you. Instead, most of the chapters are set up as self-contained units that you can dip into at will to extract whatever nuggets of information you need. However, if you’re a relatively new Excel user, I suggest starting with Chapters 1, “Getting the Most Out of Ranges”; Chapter 2, “Using Range Names”; Chapter 3, Building Basic Formulas”; and Chapter 6, “Using Functions”—to ensure that you have a thorough grounding in the fundamentals of Excel ranges, formulas, and functions.

The book is divided into four main parts. To give you the big picture before diving in, here’s a summary of what you’ll find in each part:

■ Part I, “Mastering Excel Ranges and Formulas”—The five chapters in Part I tell you just about everything you need to know about building formulas in Excel. Starting with a thorough look at ranges (crucial for mastering formulas), this part also discusses operators, expressions, advanced formula features, and formula-troubleshooting techniques.

■ Part II, “Harnessing the Power of Functions”—Functions take your formulas to the next level, and you’ll learn all about them in Part II. After you see how to use functions in your formulas, you examine the eight main function categories—text, logical, information, lookup, date, time, math, and statistical. In each case, I tell you how to use the functions and give you lots of practical examples that show you how you can use the functions in everyday business situations.

■ Part III, “Building Business Models”—The five chapters in Part III are all business as they examine various facets of building useful and robust business models. You learn how to analyze data with Excel tables and pivot tables, how to use what-if analysis and Excel’s Goal Seek and scenarios features, how to use powerful regression-analysis techniques to track trends and make forecasts, and how to use the amazing Solver feature to solve complex problems.

This Book’s Special Features

Formulas and Functions with Microsoft Excel 2010 is designed to give you the information you need without making you wade through ponderous explanations and interminable technical background. To make your life easier, this book includes various features and conventions that help you get the most out of the book and Excel itself:

■ Steps—Throughout the book, each Excel task is summarized in step-by-step procedures.
■ **Things you type**—Whenever I suggest that you type something, what you type appears in a **bold** font.

■ **Commands**—I use the following style for Excel menu commands: *File, Open*. This means that you pull down the *File* menu and select the *Open* command.

■ **Dialog box controls**—Dialog box controls have underlined accelerator keys: *Close*.

■ **Functions**—Excel worksheet functions appear in capital letters and are followed by parentheses: *SUM()*). When I list the arguments you can use with a function, optional arguments appear surrounded by square brackets: *CELL(info_type [, reference])*).

■ **Code-continuation character (➥)**—When a formula is too long to fit on one line of this book, it’s broken at a convenient place, and the code-continuation character appears at the beginning of the next line.

This book also uses the following boxes to draw your attention to important (or merely interesting) information.

NOTE
The Note box presents asides that give you more information about the topic under discussion. These tidbits provide extra insights that give you a better understanding of the task at hand.

TIP
The Tip box tells you about Excel methods that are easier, faster, or more efficient than the standard methods.

CAUTION
The all-important Caution box tells you about potential accidents waiting to happen. There are always ways to mess things up when you’re working with computers. These boxes help you avoid at least some of the pitfalls.

→ These cross-reference elements point you to related material elsewhere in the book.

You’ll find these case studies throughout the book, and they’re designed to take what you’ve learned and apply it to projects and real-world examples.
Building Basic Formulas

A worksheet is merely a lifeless collection of numbers and text until you define some kind of relationship among the various entries. You do this by creating formulas that perform calculations and produce results. This chapter takes you through some formula basics, including constructing simple arithmetic and text formulas, understanding the all-important topic of operator precedence, copying and moving worksheet formulas, and making formulas easier to build and read by taking advantage of range names.

Understanding Formula Basics

Most worksheets are created to provide answers to specific questions: What is the company’s profit? Are expenses over or under budget, and by how much? What is the future value of an investment? How big will an employee bonus be this year? You can answer these questions, and an infinite variety of others, by using Excel formulas.

All Excel formulas have the same general structure: an equal sign (=) followed by one or more operands, which can be values, cell references, ranges, range names, or function names. The operands are separated by one or more operators, which are the symbols that combine the operands in some way such as the plus sign (+) and the greater-than sign (>).

Excel does not object if you use spaces between operators and operands in formulas. This is actually a good practice to get into since separating elements of a formula in this way can make them easier to read. In addition, note that Excel also accepts line breaks in formulas. This is handy if you have a long formula because it allows you to “break up” the formula so it appears on multiple lines. To create a line break within a formula, press Alt+Enter.
Formula Limits in Excel 2007 and Excel 2010

It’s a good idea to know the limits Excel sets on various aspects of formulas and worksheet models, even though it’s unlikely that you’ll ever bump up against these limits. Formula limits that were expanded in Excel 2007 remain the same in Excel 2010. Therefore, if you’re coming to Excel 2010 from Excel 2003 or earlier, Table 3.1 shows you the updated limits.

Table 3.1 Formula-Related Limits in Excel 2007 and Excel 2010

<table>
<thead>
<tr>
<th>Object</th>
<th>New Maximum</th>
<th>Old Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>16,384</td>
<td>1,024</td>
</tr>
<tr>
<td>Rows</td>
<td>16,777,216</td>
<td>65,536</td>
</tr>
<tr>
<td>Formula length (characters)</td>
<td>8,192</td>
<td>1,024</td>
</tr>
<tr>
<td>Function arguments</td>
<td>255</td>
<td>30</td>
</tr>
<tr>
<td>Formula nesting levels</td>
<td>64</td>
<td>7</td>
</tr>
<tr>
<td>Array references (rows or columns)</td>
<td>Unlimited</td>
<td>65,335</td>
</tr>
<tr>
<td>PivotTable columns</td>
<td>16,384</td>
<td>255</td>
</tr>
<tr>
<td>PivotTable rows</td>
<td>1,048,576</td>
<td>65,536</td>
</tr>
<tr>
<td>PivotTable fields</td>
<td>16,384</td>
<td>255</td>
</tr>
<tr>
<td>Unique PivotField items</td>
<td>1,048,576</td>
<td>32,768</td>
</tr>
</tbody>
</table>

Formulas nesting levels refers to the number of expressions that are nested within other expressions that use parentheses.

For more information, see “Controlling the Order of Precedence,” later in this chapter.

Entering and Editing Formulas

Entering a new formula into a worksheet appears to be a straightforward process:

1. Select the cell in which you want to enter the formula.
2. Type an equal sign (=) to tell Excel that you’re entering a formula.
3. Type the formula’s operands and operators.
4. Press Enter to confirm the formula.

However, Excel has three different input modes that determine how Excel interprets certain keystrokes and mouse actions:

- When you type the equal sign to begin the formula, Excel goes into Enter mode, which is the mode you use to enter text such as the formula’s operands and operators.
If you press any keyboard navigation key such as Page Up, Page Down, or any arrow key, or if you click any other cell in the worksheet, Excel enters Point mode. This is the mode you use to select a cell or range as a formula operand. When you’re in Point mode, you can use any of the standard range-selection techniques. Note that Excel returns to Enter mode as soon as you type an operator or any character.

If you press F2, Excel enters Edit mode, which is the mode you use to make changes to the formula. For example, when you’re in Edit mode, you can use the left- and right-arrow keys to move the cursor to another part of the formula for deleting or inserting characters. You can also enter Edit mode by clicking anywhere within the formula. Press F2 to return to Enter mode.

You can tell which mode Excel is currently in by looking at the status bar. Notice that on the left side, you see one of the following: Enter, Point, or Edit.

After entering a formula, you might need to return to it to make changes. Excel gives you three ways to enter Edit mode and make changes to a formula in the selected cell:

- Press F2.
- Double-click the cell.
- Use the formula bar to click anywhere inside the formula text.

Excel divides formulas into four groups: arithmetic, comparison, text, and reference. Each group has its own set of operators, and you use each group in different ways. The next few sections show you how to use each type of formula.

Using Arithmetic Formulas

Arithmetic formulas are by far the most common type of formula. These formulas combine numbers, cell addresses, and function results with mathematical operators to perform calculations. Table 3.2 summarizes the mathematical operators used in arithmetic formulas.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Name</th>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Addition</td>
<td>=10+5</td>
<td>15</td>
</tr>
<tr>
<td>-</td>
<td>Subtraction</td>
<td>=10-5</td>
<td>5</td>
</tr>
<tr>
<td>-</td>
<td>Negation</td>
<td>=-10</td>
<td>-10</td>
</tr>
<tr>
<td>*</td>
<td>Multiplication</td>
<td>=10*5</td>
<td>50</td>
</tr>
<tr>
<td>/</td>
<td>Division</td>
<td>=10/5</td>
<td>2</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
<td>=10%</td>
<td>0.1</td>
</tr>
<tr>
<td>^</td>
<td>Exponentiation</td>
<td>=10^5</td>
<td>100000</td>
</tr>
</tbody>
</table>
Most of these operators are straightforward, but the exponentiation operator might require further explanation. The formula \(\text{x}^\text{y} \) means that the value \(\text{x} \) is raised to the power \(\text{y} \). For example, the formula \(3^2 \) produces the result 9 (that is, \(3 \times 3 = 9 \)). Similarly, the formula \(2^4 \) produces 16 (that is, \(2 \times 2 \times 2 \times 2 = 16 \)).

Using Comparison Formulas

A *comparison formula* is a statement that compares two or more numbers, text strings, cell contents, or function results. If the statement is true, the result of the formula is given the logical value **TRUE**, which is equivalent to any nonzero value. If the statement is false, the formula returns the logical value **FALSE**, which is equivalent to zero. Table 3.3 summarizes the operators you can use in comparison formulas.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Name</th>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>Equal to</td>
<td>=10=5</td>
<td>FALSE</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
<td>=10>5</td>
<td>TRUE</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
<td>=10<5</td>
<td>FALSE</td>
</tr>
<tr>
<td>>=</td>
<td>Greater than or equal to</td>
<td>="a">="b"</td>
<td>FALSE</td>
</tr>
<tr>
<td><=</td>
<td>Less than or equal to</td>
<td>="a"<="b"</td>
<td>TRUE</td>
</tr>
<tr>
<td><></td>
<td>Not equal to</td>
<td>="a"<>"b"</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

Comparison formulas have many uses. For example, you can determine whether to pay a salesperson a bonus by using a comparison formula to compare actual sales with a predetermined quota. If the sales are greater than the quota, the rep is awarded the bonus. You also can monitor credit collection. For example, if the amount a customer owes is more than 150 days past due, you might send the invoice to a collection agency.

Comparison formulas also make use of Excel’s logical functions, as discussed in “Adding Intelligence with Logical Functions,” p. 159.

Using Text Formulas

The two types of formulas that I discussed in the previous sections, arithmetic formulas and comparison formulas, calculate or make comparisons and return values. However, a *text formula* is a formula that returns text. Text formulas use the ampersand (\&) operator to work with text cells, text strings enclosed in quotation marks, and text function results.

One way to use text formulas is to concatenate text strings. For example, if you enter the formula ="soft"&"ware" into a cell, Excel displays software. Note that the quotation marks
and the ampersand aren’t shown in the result. You also can use & to combine cells that contain text. For example, if A1 contains the text Ben and A2 contains Jerry, entering the formula =A1&" and " &A2 returns Ben and Jerry.

→ For other uses of text formulas, see Chapter 7, “Working with Text Functions.”

Using Reference Formulas
The reference operators combine two cell references or ranges to create a single joint reference. Table 3.4 summarizes the operators you can use in reference formulas.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>: (colon)</td>
<td>Range</td>
<td>Produces a range from two cell references such as A1:C5</td>
</tr>
<tr>
<td>(space)</td>
<td>Intersection</td>
<td>Produces a range that is the intersection of two ranges such as A1:C5 B2:E8</td>
</tr>
<tr>
<td>, (comma)</td>
<td>Union</td>
<td>Produces a range that is the union of two ranges such as A1:C5,B2:E8</td>
</tr>
</tbody>
</table>

Understanding Operator Precedence
You’ll often use simple formulas that contain just two values and a single operator. However, in practice most formulas you use will have a number of values and operators. In these more complex expressions, the order in which the calculations are performed becomes crucial. For example, consider the formula =3+5^2. If you calculate from left to right, the answer you get is 64 (3+5 equals 8, and 8^2 equals 64). However, if you perform the exponentiation first and then the addition, the result is 28 (5^2 equals 25, and 3+25 equals 28). As this example shows, a single formula can produce multiple answers, depending on the order in which you perform the calculations.

To control this problem, Excel evaluates a formula according to a predefined order of precedence. This order of precedence enables Excel to calculate a formula unambiguously by determining which part of the formula it calculates first, which part second, and so on.

The Order of Precedence
Excel’s order of precedence is determined by the various formula operators outlined earlier. Table 3.5 summarizes the complete order of precedence used by Excel.
Table 3.5 The Excel Order of Precedence

<table>
<thead>
<tr>
<th>Operator</th>
<th>Operation</th>
<th>Order of Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>Range</td>
<td>1st</td>
</tr>
<tr>
<td><space></td>
<td>Intersection</td>
<td>2nd</td>
</tr>
<tr>
<td>,</td>
<td>Union</td>
<td>3rd</td>
</tr>
<tr>
<td>−</td>
<td>Negation</td>
<td>4th</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
<td>5th</td>
</tr>
<tr>
<td>^</td>
<td>Exponentiation</td>
<td>6th</td>
</tr>
<tr>
<td>* and /</td>
<td>Multiplication and division</td>
<td>7th</td>
</tr>
<tr>
<td>+ and –</td>
<td>Addition and subtraction</td>
<td>8th</td>
</tr>
<tr>
<td>&</td>
<td>Concatenation</td>
<td>9th</td>
</tr>
<tr>
<td>= < > <= >= <></td>
<td>Comparison</td>
<td>10th</td>
</tr>
</tbody>
</table>

From this table, you can see that Excel performs exponentiation before addition. Therefore, the correct answer for the formula \(=3+5^2\), given previously, is 28. Notice also that some operators in Table 3.4 have the same order of precedence such as multiplication and division. This means that it usually doesn’t matter in which order these operators are evaluated. For example, consider the formula \(=5*10/3\). If you perform the multiplication first, the answer you get is 25 (5*10 equals 50, and 50/2 equals 25). If you perform the division first, you also get an answer of 25 (10/2 equals 5, and 5*5 equals 25). By convention, Excel evaluates operators with the same order of precedence from left to right. Therefore, you should assume that’s how your formulas will be evaluated.

Controlling the Order of Precedence

Sometimes, you want to override the order of precedence. For example, suppose that you want to create a formula that calculates the pre-tax cost of an item. If you bought something for $10.65, including 7 percent sales tax, and you want to find the cost of the item minus the tax, you use the formula \(=10.65/1.07\), which gives you the correct answer of $9.95. In general, the formula is the total cost divided by 1 plus the tax rate, as shown in Figure 3.1.

Figure 3.1
The general formula to calculate the pre-tax cost of an item.

\[
\text{Pre-tax Cost} = \frac{\text{Total Cost}}{1 + \text{Tax Rate}}
\]
Figure 3.2 shows how you might implement such a formula. Cell B5 displays the Total Cost variable, and cell B6 displays the Tax Rate variable. Given these parameters, your first instinct might be to use the formula \(=B5/1+B6\) to calculate the original cost. This formula is shown as text in cell E9 and the result is given in cell D9. As you can see, this answer is incorrect. What happened? According to the rules of precedence, Excel performs division before addition. This means that the value in B5 first is divided by 1 and then is added to the value in B6. To get the correct answer, you must override the order of precedence so the addition 1+B6 is performed first. You do this by surrounding that part of the formula with parentheses, as shown in cell E10, which produces the correct answer in cell D10.

In general, you can use parentheses to control the order that Excel uses to calculate formulas. Terms inside parentheses are always calculated first, while terms outside parentheses are calculated sequentially according to the order of precedence.

Another good use for parentheses is raising a number to a fractional power. For example, if you want to take the \(n\)th root of a number, use the following general formula:

\[=number^{(1/n)}\]

\[=A1^{(1/3)}\]
To gain even more control over your formulas, you can place parentheses inside one another, which is called nesting parentheses. Excel always evaluates the innermost set of parentheses first. Here are a few sample formulas:

<table>
<thead>
<tr>
<th>Formula</th>
<th>First Step</th>
<th>Second Step</th>
<th>Third Step</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3^\left(\frac{15}{5}\right)\times2-5$</td>
<td>$3^3\times2-5$</td>
<td>$27\times2-5$</td>
<td>$54-5$</td>
<td>49</td>
</tr>
<tr>
<td>$3^\left(\frac{15}{5}\right)\times\frac{2}{5}$</td>
<td>$3^\left(3\times2-5\right)$</td>
<td>$3^\left(6-5\right)$</td>
<td>3^1</td>
<td>3</td>
</tr>
<tr>
<td>$3^\left(\frac{15}{\left(5\times2-5\right)}\right)$</td>
<td>$3^\left(\frac{15}{10-5}\right)$</td>
<td>$3^\left(\frac{15}{5}\right)$</td>
<td>3^3</td>
<td>27</td>
</tr>
</tbody>
</table>

Notice that the order of precedence rules also hold within parentheses. For example, in the expression $(5\times2-5)$, the term 5×2 is calculated before 5 is subtracted.

Using parentheses to determine the order of calculations enables you to gain full control over your Excel formulas. This way, you can make sure that the answer given by a formula is the one you want.

One of the most common mistakes when using parentheses in formulas is to forget to close a parenthetic term with a right parenthesis. If you do this, Excel generates an error message and offers a solution to the problem. To make sure that you’ve closed each parenthetic term, count all the left and right parentheses. If these totals don’t match, you know you’ve left out a parenthesis.

Controlling Worksheet Calculation

Excel always calculates a formula when you confirm its entry. In addition, the program normally recalculates existing formulas automatically when the data changes. This behavior works fine for small worksheets, but it can slow you down if you have a complex model that takes several seconds or even several minutes to recalculate. To turn off this automatic recalculation, Excel gives you two ways to get started:

- Select Formulas, Calculation Options.
- Select File, Options and then click Formulas.

No matter which of these two options you use, you’re presented with three calculation options:

Automatic—This is the default calculation mode, and it means that Excel recalculates formulas as soon as you enter them and as soon as the data for a formula changes.

Automatic Except for Data Tables—In this calculation mode, Excel recalculates all formulas automatically, except for those associated with data tables. This is a good choice if your worksheet includes one or more massive data tables that are slowing down the recalculation.
To learn how to set up data tables, see “Using What-If Analysis,” p. 341.

Manual—Choose this mode to force Excel not to recalculate any formulas either until you manually recalculate or until you save the workbook. If you’re in the Excel Options dialog box, you can tell Excel not to recalculate when you save the workbook by clearing the **Recalculate Workbook Before Saving** check box.

With manual calculation turned on, you see *Calculate* in the status bar whenever your worksheet data changes and your formula results need to be updated. When you want to recalculate, first display the Formulas tab. In the Calculation group, you have two choices:

- Click **Calculate Now** or press F9 to recalculate every open worksheet.
- Click **Calculate Sheet** or press Shift+F9 to recalculate only the active worksheet.

If you want Excel to recalculate every formula—even those that are unchanged—in all open worksheets, press Ctrl+Alt+Shift+F9.

Tip

If you want Excel to recalculate every formula—even those that are unchanged—in all open worksheets, press Ctrl+Alt+Shift+F9.

If you want to recalculate only part of your worksheet while manual calculation is turned on, you have two options:

- To recalculate a single formula, select the cell containing the formula, select the formula bar, and then confirm the cell by either pressing Enter or clicking the Enter button.
- To recalculate a range, select the range; select Home, Find & Select, Replace or press Ctrl+H. Enter an equal sign (=) in both the Find What and Replace With boxes. Click Replace All. Excel “replaces” the equal sign in each formula with another equal sign. Even though this doesn’t change anything, it forces Excel to recalculate each formula.

Tip

Excel 2010 supports multithreaded calculation on computers with either multiple processors or processors with multiple cores. For each processor or core, Excel sets up a thread, which is a separate process of execution. Excel can then use each available thread to process multiple calculations concurrently. For a worksheet with multiple, independent formulas, this can dramatically speed up calculations. To make sure multithreaded calculation is turned on, select File, Options, and click Advanced. In the Formulas section, ensure that the Enable Multi-Threaded Calculation check box is selected.

Copying and Moving Formulas

You copy and move ranges that contain formulas the same way that you copy and move regular ranges, but the results aren’t always straightforward.
For an example, Figure 3.3 shows a list of expense data for a company. The formula in cell C11 uses the \texttt{SUM()} function to total the January expenses in range C6:C10. The idea behind this worksheet is to calculate a new expense budget number for 2011 as a percentage increase of the actual 2010 total. Cell C3 displays the INCREASE variable. In this case, the increase being used is 3 percent. The formula that calculates the 2011 BUDGET number, which is in cell C13 for the month of January, multiplies the 2010 TOTAL by the INCREASE, which is \texttt{=C11*C3}.

The next step is to calculate the 2010 TOTAL expenses and the 2011 BUDGET figure for February. You could just type each new formula, but you can copy a cell much more quickly. Figure 3.4 shows the results when you copy the contents of cell C11 into cell D11. As you can see, Excel adjusts the range in the formula’s \texttt{SUM()} function so that only the February expenses in cells D6:D10 are totaled. How did Excel know to do this? To answer this question, you need to know about Excel’s relative reference format, which is I discuss in the next section.

\section*{Understanding Relative Reference Format}

When you use a cell reference in a formula, Excel looks at the cell address relative to the location of the formula. For example, suppose that you have the formula \texttt{=A1*2} in cell A3. To Excel, this formula says, “Multiply the contents of the cell two rows above this one by two.” This is called the \textit{relative reference format}, which is the default format for Excel. This means that if you copy this formula to cell A4, the relative reference is still “Multiply the contents of the cell two rows above this one by two.” However, the formula changes to \texttt{=A2*2} because A2 is two rows above A4.
Figure 3.4 shows why this format is useful. You only had to copy the formula in cell C11 to cell D11. Thanks to relative referencing, everything came out perfectly. To get the expense total for March, you need to paste the same formula into cell E11. You'll find that this way of handling copy operations will save you incredible amounts of time when you’re building your worksheet models.

However, you need to exercise care when copying or moving formulas. Let’s see what happens if you return to the budget expense worksheet and try copying the 2011 BUDGET formula in cell C13 to cell D13. Figure 3.5 shows that the result is 0!
What happened? The formula bar shows the problem: The new formula is =D11*D3. Cell D11 is the February 2010 TOTAL, which is fine. However, instead of the INCREASE cell in C3, the formula refers to a blank cell in D3. Because Excel treats blank cells as 0, the formula result is 0. The problem is the relative reference format. When the formula was copied, Excel assumed that the new formula should refer to cell D3. To see how you can correct this problem, you need to learn about another format—the absolute reference format—that I discuss in the next section.

The relative reference format problem does not occur when you move a formula. Instead, when you move a formula, Excel assumes that you want to keep the same cell references.

Understanding Absolute Reference Format

When you refer to a cell in a formula using the absolute reference format, Excel uses the physical address of the cell. You tell the program that you want to use an absolute reference by placing dollar signs ($) before the row and column of the cell address. To return to the example in the preceding section, Excel interprets the formula =A1*2 as “Multiply the contents of cell A1 by two.” No matter where you copy or move this formula, the cell reference doesn’t change. When this occurs, the cell address is said to be anchored.

To fix the budget expense worksheet, you need to anchor the INCREASE variable. To do this, you first change the January 2011 BUDGET formula in cell C13 to read =C11*C3. After making this change, copying the formula to the February 2011 BUDGET column gives the new formula =D11*C3, which produces the correct result.

You also should know that you can enter a cell reference using a mixed-reference format. In this format, you anchor either the cell’s row by placing the dollar sign in front of the row address only such as B$6 or its column by placing the dollar sign in front of the column address only such as $B6.

Most range names refer to absolute cell references. This means that when you copy a formula that uses a range name, the copied formula will use the same range name as the original. This might produce errors in your worksheet.

You can quickly change the reference format of a cell address by using the F4 key. When editing a formula, place the cursor either to the left of the cell address or between the row and column values, and keep pressing F4. Excel cycles through the various formats. If you want to apply the new reference format to multiple cell addresses, highlight the addresses and then press F4 until you get the format you want.
Copy a Formula Without Adjusting Relative References

If you need to copy a formula but don’t want the formula’s relative references to change, follow these steps:

1. Select the cell that contains the formula you want to copy.
2. Click inside the formula bar to select it.
3. Use the mouse or keyboard to highlight the entire formula.
4. Copy the highlighted formula.
5. Press Esc to deselect the formula bar.
6. Select the cell in which you want the copy of the formula to appear.
7. Paste the formula.

Here are two other methods you can use to copy a formula without adjusting its relative cell references:

To copy a formula from the cell above, select the lower cell and press Ctrl+’ (apostrophe).

To convert the formula to text, select the formula bar and type an apostrophe (’) at the beginning of the formula, which is to the left of the equal sign. Press Enter to confirm the edit, copy the cell, and then paste it in the desired location. Now, delete the apostrophe from both the source and destination cells to convert the text back to a formula.

Displaying Worksheet Formulas

By default, Excel displays in a cell the results of the cell’s formula rather than the formula itself. If you need to see a formula, select the appropriate cell and look at the formula bar. However, sometimes you want to see all the formulas in a worksheet such as when you’re troubleshooting your work. To display your worksheet’s formulas, select Formulas, Show Formulas.

→ For more information about solving formula problems, see Chapter 5, “Troubleshooting Formulas.”

You can also press Ctrl+` (backquote) to toggle a worksheet between values and formulas.

Converting a Formula to a Value

If a cell contains a formula whose value will never change, you can convert the formula to that value. This not only speeds up large worksheet recalculations, but it also frees up memory for your worksheet because values use less memory than formulas. For example, you might have formulas in part of your worksheet that use values from a previous fiscal year. Because these numbers aren’t likely to change, you can safely convert the formulas to their values. To do this, follow these steps:
1. Select the cell containing the formula you want to convert.
2. Double-click the cell or press F2 to select in-cell editing.
3. Press F9. The formula changes to its value.
4. Press Enter or click the Enter button. Excel changes the cell to the value.

You’ll often need to use the result of a formula in several places. For example, if a formula is in cell C5, you can display its result in other cells by entering =C5 in each of the cells. This is the best method if you think the formula result might change because, if it does, Excel updates the other cells automatically. However, if you’re sure that the result won’t change, you can copy only the value of the formula into the other cells. Use the following procedure to do this:

CAUTION

If your worksheet is set to manual calculation, make sure that you update your formulas by pressing F9 before copying the values of your formulas.

1. Select the cell that contains the formula.
2. Copy the cell.
3. Select the cell or cells to which you want to copy the value.
4. Select Home, display the Paste list, and then select Paste Values. Excel pastes the cell’s value to each cell you selected.

Another method that has been available since Excel 2003 is to copy the cell, paste it into the destination, click the Paste Options drop-down list, and then select Values Only.

Working with Range Names in Formulas

Chapter 2, “Using Range Names,” showed you how to define and use range names in your worksheets. You probably use range names often in your formulas. After all, a cell that contains the formula =Sales - Expenses is much more comprehensible than one that contains the more cryptic formula =F12 - F3. The next few sections show you some techniques that make it easier for you to use range names in formulas.

Pasting a Name into a Formula

One way to enter a range name in a formula is to type the name in the formula bar. However, what if you can’t remember the name or what if the name is long and you have a deadline looming? For these kinds of situations, Excel has several features that enable you to select the name you want from a list and paste it right into the formula. Start your formula, and when you get to the spot where you want the name to appear, use any of the following techniques:
Select Formulas, Use in Formula, and then click the name in the list that appears (see Figure 3.6).

Figure 3.6
Click the Use in Formula drop-down list and then click the range name you want to insert into the formula.

Select Formulas, Use in Formula, Paste Names, or press F3, to display the Paste Name dialog box, click the range name you want to use, and then click OK.

Type the first letter or two of the range name to display a list of names and functions that start with those letters, select the name you want, and then press Tab.

Applying Names to Formulas

If you’ve been using ranges in your formulas and you name those ranges later, Excel doesn’t automatically apply the new names to the formulas. Instead of substituting the appropriate names by hand, you can get Excel to do the hard work for you. Follow these steps to apply the new range names to your existing formulas:

1. Select the range in which you want to apply the names, or select a single cell if you want to apply the names to the entire worksheet.
2. Select Formulas, Define Name, Apply Names. Excel displays the Apply Names dialog box, as shown in Figure 3.7.
3. From the Apply Names list, choose the name or names you want applied.
4. Select the Ignore Relative/Absolute check box to ignore relative and absolute references when applying names. (The next section discusses the Ignore Relative/Absolute option in more detail.)
5. The *Use Row and Column Names* check box tells Excel whether to use the worksheet’s row and column names when applying names. If you select this check box, you can also click the *Options* button to see more choices. (The “Using Row and Column Names When Applying Names” section, later in this chapter, discusses the *Use Row and Column Names* option in more detail.)

6. Click OK to apply the names.

Ignoring Relative and Absolute References When Applying Names

If you clear the *Ignore Relative/Absolute* option in the Apply Names dialog box, Excel replaces relative range references only with names that refer to relative references. It also replaces absolute range references with only names that refer to absolute references. If you leave this option selected, Excel ignores relative and absolute reference formats when applying names to a formula.

For example, suppose that you have a formula such as \(=\text{SUM}(A1:A10)\) and a range named *Sales* that refers to \A1:A10. With the *Ignore Relative/Absolute* option turned off, Excel won’t apply the name *Sales* to the range in the formula; *Sales* refers to an absolute range, and the formula contains a relative range. Unless you expect to move formulas around, you should leave the *Ignore Relative/Absolute* option selected.

Using Row and Column Names When Applying Names

For extra clarity in your formulas, leave the *Use Row and Column Names* check box selected in the Apply Names dialog box. This option tells Excel to rename all cell references that can be described as the intersection of a named row and a named column. For example, in Figure 3.8, the range C6:C10 is named *January*, and the range C7:E7 is named *Rent*. This means that cell C7—the intersection of these two ranges—can be referenced as *January Rent*.
As shown in Figure 3.8, the Total for the Rent row, which is cell F7, currently contains the formula =C7+D7+E7. If you applied range names to this worksheet and selected the Use Row and Column Names option, you expect this formula to be changed to the following:

=January Rent + February Rent + March Rent

Figure 3.8
Before applying range names to the formulas, Cell F7, which is the Total Rent row, contains the formula =C7+D7+E7.

However, if you try this, you’ll get a slightly different formula, as shown in Figure 3.9.

Figure 3.9
After applying range names, the Total Rent cell contains the formula =January+February+March.
The reason for this is that when Excel is applying names, it omits the row name if the formula is in the same row. It also omits the column name if the formula is in the same column. In cell F7, for example, Excel omits Rent in each term because F7 is in the Rent row.

Omitting row headings isn’t a problem in a small model, but it can be confusing in a large worksheet, where you might not be able to see the names of the rows. Therefore, if you’re applying names to a large worksheet, you’ll probably prefer to include the row names when applying names.

Selecting the Options button in the Apply Names dialog box displays the expanded dialog box shown in Figure 3.10. This includes extra options that enable you to include column and row headings:

- **Omit Column Name If Same Column**—Clear this check box to include column names when applying names.
- **Omit Row Name If Same Row**—Clear this check box to include row names.
- **Name Order**—Use these options to choose the order of names in the reference such as Row Column or Column Row.

Figure 3.10
The expanded Apply Names dialog box.

Naming Formulas

In Chapter 2, you learned how to set up names for often-used constants. You can apply a similar naming concept for frequently used formulas. As with the constants, the formula doesn’t physically have to appear in a cell. This not only saves memory, but it often makes your worksheets easier to read as well. Follow these steps to name a formula:
1. Select Formulas, Define Name to display the New Name dialog box.
2. Enter the name you want to use for the formula in the Name text box.
3. In the Refers To box, enter the formula exactly as you would if you were entering it in a worksheet.
4. Click OK.

Now you can enter the formula name in your worksheet cells instead of the formula itself. For example, the following is the formula for the volume of a sphere. where r is the radius of the sphere:

$$
4\pi r^3/3
$$

Assuming you have a cell named Radius somewhere in the workbook, you could create a formula named SphereVolume. Then you could make the following entry in the Refers To box of the New Name dialog box, where PI() is the Excel worksheet function that returns the value of Pi:

$$
=(4 * \text{PI()} * \text{Radius} ^ 3) / 3
$$

Working with Links in Formulas

If you have data in one workbook that you want to use in another, you can set up a link between them. This action enables your formulas to use references to cells or ranges in the other workbook. Excel updates the link automatically when the other data changes.

For example, Figure 3.11 shows two linked workbooks. The Budget Summary sheet in the 2011 Budget—Summary workbook includes data from the Details worksheet in the 2011 Budget workbook. Specifically, the formula shown for cell B2 in 2011 Budget—Summary contains an external reference to cell R7 in the Details worksheet of 2011 Budget. If the value in R7 changes, Excel immediately updates the 2011 Budget—Summary workbook.

NOTE

The workbook that contains the external reference is called either the dependent workbook or the client workbook. The workbook that contains the original data is called either the source workbook or the server workbook.

Understanding External References

There’s no big mystery behind these external reference links. You set up links by including an external reference to a cell or range in another workbook or in another worksheet from the same workbook. As shown in the example in Figure 3.11, enter an equal sign in cell B2 of the Budget Summary worksheet, and then click cell R7 in the Details worksheet.

However, you need to be comfortable with the structure of an external reference. Here’s the syntax:

```
'path[workbookname]sheetname'!reference
```
path

The drive and directory in which the workbook is located, which can be a local path, network path, or even an Internet address. You need to include the path only when the workbook is closed.

workbookname

The name of the workbook including an extension. Always enclose the workbook name in square brackets ([]). You can omit workbookname if you’re referencing a cell or range in another sheet of the same workbook.

sheetname

The name of the worksheet’s tab. You can omit sheetname if reference is a defined name in the same workbook.

reference

A cell or range reference or a defined name.

For example, if you close the 2011 Budget workbook, Excel automatically changes the external reference shown in Figure 3.11 to the following, depending on the actual path of the file:

`='C:\Users\Paul\Documents\[2011 Budget.xlsx]Details'!R7`

NOTE

You need to use single quotation marks around the path, workbook name, and sheet name only if the workbook is closed or if the path, workbook, or sheet name contains spaces. If in doubt, include the single quotation mark anyway since Excel will ignore them if they’re not required.
Updating Links

The purpose of a link is to avoid duplicating formulas and data in multiple worksheets. If one workbook contains the information you need, you can use a link to reference the data without recreating it in another workbook.

However, to be useful, the data in the dependent workbook should always reflect what actually is in the source workbook. You can make sure of this by updating the link as follows:

- If both the source and the dependent workbooks are open, Excel automatically updates the link whenever the data in the source file changes.
- If the source workbook is open when you open the dependent workbook, Excel automatically updates the links again.
- If the source workbook is closed when you open the dependent workbook, Excel displays a Security Warning in the message bar, which tells you that automatic updating of links has been disabled. In this case, click Options, click the Enable this Content option, and then click OK.

If you never deal with third-party workbooks or any other workbooks from sources you don’t trust completely, then you should always be able to trust the links in your workbooks. In this case, you can configure Excel to always update links automatically. To begin, select File, Options, click Trust Center, and then click Trust Center Settings. In the Trust Center dialog box, click External Content and then click to select the Enable Automatic Update for All Workbook Links option. Click OK and then click OK again.

If you did not update a link when you opened the dependent document, you can update it any time by choosing Data, Edit Links. In the Edit Links dialog box that appears (see Figure 3.12), click the link and then click Update Values.

Figure 3.12
Use the Edit Links dialog box to update the linked data in the source workbook.
Changing the Link Source

If the name of the source document changes, you’ll need to edit the link to keep the data up-to-date. You can edit the external reference directly or you can change the source by following these steps:

1. With the dependent workbook active, select Data, Edit Links to display the Edit Links dialog box.
2. Click the link you want to work with.
3. Click Change Source. Excel displays the Change Source dialog box.
4. Find and then select the new source document, and then click OK to return to the Edit Links dialog box.
5. Click Close to return to the workbook.

Formatting Numbers, Dates, and Times

One of the best ways to improve the readability of your worksheets is to display your data in a format that is logical, consistent, and straightforward. Formatting currency amounts with leading dollar signs, percentages with trailing percent signs, and large numbers with commas are a few of the ways you can improve your spreadsheet style.

This section shows you how to format numbers, dates, and times using Excel’s built-in formatting options. You’ll also learn how to create your own formats to gain maximum control over the appearance of your data.

Numeric Display Formats

When you enter numbers in a worksheet, Excel removes any leading or trailing zeros. For example, if you enter 0123.4500, Excel displays 123.45. The exception to this rule occurs when you enter a number that is wider than the cell. In this case, Excel usually expands the width of the column to fit the number. However, in some cases, Excel tailors the number to fit the cell by rounding off some decimal places. For example, a number such as 123.45678 is displayed as 123.4568. Note that, in this case, the number is changed for display purposes only since Excel retains the original number internally.

By default, when you create a worksheet, each cell uses this format, known as the General number format. If you want your numbers to appear differently, you can choose from among Excel’s seven categories of numeric formats: Number, Currency, Accounting, Percentage, Fraction, Scientific, and Special:

- **Number formats**—The number formats have three components: the number of decimal places (0–30), whether the thousands separator (,) is used, and how negative numbers are displayed. For negative numbers, you can display the number with a leading red minus sign surrounded by parentheses or in red surrounded by parentheses.
- **Currency formats**—The currency formats are similar to the number formats, except that the thousands separator is always used. You have the option to display the numbers with a leading dollar sign ($) or some other currency symbol.

- **Accounting formats**—With the accounting formats, you can select the number of decimal places and if to display a leading dollar sign or other currency symbol. If you use a dollar sign, Excel displays it flush left in the cell. All negative entries are displayed surrounded by parentheses.

- **Percentage formats**—The percentage formats display the number multiplied by 100 with a percent sign (%) to the right of the number. For example, .506 is displayed as 50.6%. You can display 0 to 30 decimal places.

- **Fraction formats**—The fraction formats enable you to express decimal quantities as fractions. There are nine fraction formats including displaying the number as halves, quarters, eighths, sixteenths, tenths, and hundredths.

- **Scientific formats**—The scientific formats display the most significant number to the left of the decimal, 2 to 30 decimal places to the right of the decimal, and then the exponent. Therefore, 123000 is displayed as 1.23E+05.

- **Special formats**—The special formats are a collection designed to take care of special cases. Here’s a list of the special formats, with some examples:

<table>
<thead>
<tr>
<th>Format</th>
<th>Enter This</th>
<th>It Displays as This</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIP code</td>
<td>1234</td>
<td>01234</td>
</tr>
<tr>
<td>ZIP code + 4</td>
<td>123456789</td>
<td>12345-6789</td>
</tr>
<tr>
<td>Phone number</td>
<td>1234567890</td>
<td>(123) 456-7890</td>
</tr>
<tr>
<td>Social Security number</td>
<td>123456789</td>
<td>123-45-6789</td>
</tr>
</tbody>
</table>

Changing Numeric Formats

The quickest way to format numbers is to specify the format as you enter your data. For example, if you begin a dollar amount with a dollar sign ($), Excel automatically formats the number as currency. Similarly, if you type a percent sign (%) after a number, Excel automatically formats the number as a percentage. Here are a few more examples of this technique. Note that you can enter a negative value using either the negative sign (–) or parentheses.

<table>
<thead>
<tr>
<th>Number Entered</th>
<th>Number Displayed</th>
<th>Format Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1234.567</td>
<td>$1,234.57</td>
<td>Currency</td>
</tr>
<tr>
<td>($1234.5)</td>
<td>($1,234.50)</td>
<td>Currency</td>
</tr>
<tr>
<td>10%</td>
<td>10%</td>
<td>Percentage</td>
</tr>
<tr>
<td>123E+02</td>
<td>1.23E+04</td>
<td>Scientific</td>
</tr>
<tr>
<td>5 3/4</td>
<td>5 3/4</td>
<td>Fraction</td>
</tr>
<tr>
<td>0 3/4</td>
<td>3/4</td>
<td>Fraction</td>
</tr>
<tr>
<td>3/4</td>
<td>4–Mar</td>
<td>Date</td>
</tr>
</tbody>
</table>
Specifying the numeric format as you enter a number is fast and efficient because Excel guesses the format you want to use. Unfortunately, Excel sometimes guesses wrong such as when it interprets a simple fraction as a date. In any case, you don’t have access to all the available formats such as displaying negative dollar amounts in red. Instead, to overcome these limitations, you can select your numeric formats from a list. Here are the steps to follow:

1. Select the cell or range of cells to which you want to apply the new format.
2. Select the Home tab.
3. Click the Number Format drop-down list. Excel displays its built-in formats, as shown in Figure 3.13. Under the name of each format, Excel shows you how the current cell will be displayed if you choose that format.
4. Click the format you want to use.

For more numeric formatting options, use the Number tab of the Format Cells dialog box. Select the cell or range and then select Home, Number Format, More Number Formats. Alternatively, you can click the Number group’s dialog box launcher or press Ctrl+1. As you can see in Figure 3.14, when you click a numeric format in the Category list, Excel displays more formatting options, such as the Decimal Places spin box. The options you see depend
on the category you choose. The Sample information box shows a sample of the format applied to the current cell’s contents.

Figure 3.14
When you choose a format in the Category list, Excel displays the format’s options.

As an alternative to the Format Cells dialog box, Excel offers several keyboard shortcuts for setting the numeric format. Select the cell or range you want to format, and use one of the key combinations listed in Table 3.6.

<table>
<thead>
<tr>
<th>Shortcut Key</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+~</td>
<td>General</td>
</tr>
<tr>
<td>Ctrl+!</td>
<td>Number (two decimal places; using thousands separator)</td>
</tr>
<tr>
<td>Ctrl+$</td>
<td>Currency (two decimal places; using dollar sign; negative numbers surrounded by parentheses)</td>
</tr>
<tr>
<td>Ctrl+%</td>
<td>Percentage (zero decimal places)</td>
</tr>
<tr>
<td>Ctrl+^</td>
<td>Scientific (two decimal places)</td>
</tr>
</tbody>
</table>
You can use the controls in the Home tab’s Number group as another method of selecting numeric formats. The Number Format list (see Figure 3.13) lists all the formats. Here are the other controls that appear in this group:

<table>
<thead>
<tr>
<th>Button</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting Style</td>
<td>Accounting (two decimal places; using dollar sign)</td>
</tr>
<tr>
<td>Percent Style</td>
<td>Percentage (zero decimal places)</td>
</tr>
<tr>
<td>Comma Style</td>
<td>Number (two decimal places; using thousands separator)</td>
</tr>
<tr>
<td>Increase Decimal</td>
<td>Increases the number of decimal places in the current format</td>
</tr>
<tr>
<td>Decrease Decimal</td>
<td>Decreases the number of decimal places in the current format</td>
</tr>
</tbody>
</table>

Customizing Numeric Formats

Excel numeric formats give you a lot of control over how numbers are displayed, but they have limitations. For example, no built-in format enables you to display a number such as 0.5 without the leading zero or display temperatures using the degree symbol.

To overcome these and other limitations, you need to create custom numeric formats. You can do this either by editing an existing format or by entering your own format from scratch. The formatting syntax and symbols are explained in detail later in this section.

Every Excel numeric format, whether built-in or customized, has the following syntax:

```
positive format;negative format;zero format;text format
```

The four parts, separated by semicolons, determine how various numbers are presented. The first part defines how a positive number is displayed, the second part defines how a negative number is displayed, the third part defines how zero is displayed, and the fourth part defines how text is displayed. If you leave out one or more of these parts, numbers are controlled as shown here:

<table>
<thead>
<tr>
<th>Number of Parts</th>
<th>Format Syntax Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three</td>
<td><code>positive format;negative format;zero format</code></td>
</tr>
<tr>
<td>Two</td>
<td><code>positive and zero format; negative format</code></td>
</tr>
<tr>
<td>One</td>
<td><code>positive, negative, and zero format</code></td>
</tr>
</tbody>
</table>

Table 3.7 lists the special symbols you use to define each of these parts.
Table 3.7 Numeric Formatting Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Displays the number with the General format.</td>
</tr>
<tr>
<td>#</td>
<td>Holds a place for a digit and displays the digit exactly as typed. Displays nothing if no number is entered.</td>
</tr>
<tr>
<td>0</td>
<td>Holds a place for a digit and displays the digit exactly as typed. Displays 0 if no number is entered.</td>
</tr>
<tr>
<td>?</td>
<td>Holds a place for a digit and displays the digit exactly as typed. Displays a space if no number is entered.</td>
</tr>
<tr>
<td>. (period)</td>
<td>Sets the location of the decimal point.</td>
</tr>
<tr>
<td>, (comma)</td>
<td>Sets the location of the thousands separator. Marks only the location of the first thousand.</td>
</tr>
<tr>
<td>%</td>
<td>Multiplies the number by 100 (for display only) and adds the percent (%) character.</td>
</tr>
<tr>
<td>E+ e+ E– e–</td>
<td>Displays the number in scientific format. E– and e– place a minus sign in the exponent; E+ and e+.</td>
</tr>
<tr>
<td>/ (slash)</td>
<td>Sets the location of the fraction separator.</td>
</tr>
<tr>
<td>$ () : – + <space></td>
<td>Displays the character.</td>
</tr>
<tr>
<td>*</td>
<td>Repeats whatever character immediately follows the asterisk until the cell is full. Does not replace other symbols or numbers.</td>
</tr>
<tr>
<td>_ (underscore)</td>
<td>Inserts a blank space the width of whatever character follows the underscore.</td>
</tr>
<tr>
<td>\ (backslash)</td>
<td>Inserts the character that follows the backslash.</td>
</tr>
<tr>
<td>“text”</td>
<td>Inserts the text that appears within the quotation marks.</td>
</tr>
<tr>
<td>@</td>
<td>Holds a place for text.</td>
</tr>
<tr>
<td>[COLOR]</td>
<td>Displays the cell contents in the specified color.</td>
</tr>
<tr>
<td>[condition value]</td>
<td>Uses conditional statements to specify when the format is to be used</td>
</tr>
</tbody>
</table>

Before looking at some examples, let’s run through the basic procedure. To customize a numeric format, select the cell or range you want to format and then follow these steps:

1. Select Home, Number Format, More Number Formats or press Ctrl+1 and select the Number tab, if it’s not already displayed.
2. In the Category list, click Custom.
3. If you’re editing an existing format, choose it in the Type list box.
4. Edit or enter your format code.
5. Click OK. Excel returns you to the worksheet with the custom format applied.

Excel stores each new format definition in the Custom category. If you edited an existing format, the original format is left intact and the new format is added to the list. You can select the custom formats the same way you select the built-in formats. To use your custom format in other workbooks, you copy a cell containing the format to that workbook. Figure 3.15 shows a dozen examples of custom formats.
Here’s an explanation for each example included in Figure 3.15:

- **Example 1**—These formats show how you can reduce a large number to a smaller, more readable one by using the thousands separator. For example, a format such as 0,000.0 will display 12300 as 12,300.0. If you remove the three zeros between the comma and the decimal to get the format 0,.0, Excel displays the number as 12.3, although it still uses the original number in calculations. In essence, you’ve told Excel to express the number in thousands. To express a larger number in millions, you just add a second thousands separator.

- **Example 2**—Use this format when you don’t want to display any leading or trailing zeros.

- **Example 3**—These are examples of four-part formats. The first three parts define how Excel should display positive numbers, negative numbers, and zero. The fourth part displays the message ‘Enter a number’ if the user enters text in the cell.

- **Example 4**—In this example, the cents sign (¢) is used after the value. To enter the cents sign, press Alt+0162 on your keyboard’s numeric keypad. Keep in mind that this won’t work if you use the numbers along the top of the keyboard. Table 3.8 shows some common ANSI characters you can use.
Table 3.8 ANSI Character Key Combinations

<table>
<thead>
<tr>
<th>Key Combination</th>
<th>ANSI Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt+0162</td>
<td>¢</td>
</tr>
<tr>
<td>Alt+0163</td>
<td>£</td>
</tr>
<tr>
<td>Alt+0165</td>
<td>¥</td>
</tr>
<tr>
<td>Alt+0169</td>
<td>©</td>
</tr>
<tr>
<td>Alt+0174</td>
<td>®</td>
</tr>
<tr>
<td>Alt+0176</td>
<td>°</td>
</tr>
</tbody>
</table>

- **Example 5**—This example adds the text string “Dollars” to the format.
- **Example 12**—This example shows a format that’s useful for entering stock quotations.

Hiding Zeros

Worksheets look less cluttered and are easier to read if you hide unnecessary zeros. Excel enables you to hide zeros either throughout the entire worksheet or only in selected cells.

To hide all zeros, select File, Options, click the Advanced tab in the Excel Options dialog box, and scroll down to the Display Options for this Worksheet section. Clear the Show a Zero In Cells That Have Zero Value check box, and then click OK.

To hide zeros in selected cells, create a custom format that uses the following format syntax:

```
positive format;negative format;
```

The extra semicolon at the end acts as a placeholder for the zero format. Because there’s no definition for a zero value, nothing is displayed. For example, the format `$#,##0.00_;($#,##0.00);` displays standard dollar values, but it leaves the cell blank if it contains zero.

If your worksheet contains only integers, which means it cannot include fractions or decimal places, you can use the format #,### to hide zeros.

Using Condition Values

The action of the formats you’ve seen so far have depended on whether the cell contents were positive, negative, zero, or text. Although this is fine for most applications, sometimes you need to format a cell based on different conditions. For example, you might want only specific numbers, or numbers within a certain range, to take on a particular format. You can achieve this effect by using the [condition value] format symbol. With this symbol, you set up conditional statements using the logical operators =, <, >, <=, >=, and <>, and the appropriate numbers. You then assign these conditions to each part of your format definition.
For example, suppose you have a worksheet for which the data must be within the range –1,000 and 1,000. To flag numbers outside this range, you set up the following format:

\[
[>=1000] \text{"Error: Value >= 1,000"};[<=-1000] \text{"Error: Value <= -1,000"};0.00
\]

The first part defines the format for numbers greater than or equal to 1,000, which is an error message. The second part defines the format for numbers less than or equal to –1,000, which is also an error message. The third part defines the format for all other numbers (0.00).

You’re better off using Excel’s extensive conditional formatting features; see “Applying Conditional Formatting to a Range,” p. 22.

Date and Time Display Formats

If you include dates or times in your worksheets, be sure they’re presented in a readable, unambiguous format. For example, most people would interpret the date 8/5/10 as August 5, 2010. However, in some countries, this date would mean May 8, 2010. Similarly, if you use the time 2:45, do you mean a.m. or p.m.? To avoid these kinds of problems, you can use Excel’s built-in date and time formats, listed in Table 3.9.

<table>
<thead>
<tr>
<th>Table 3.9 Excel’s Date and Time Formats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
</tr>
<tr>
<td>m/d</td>
</tr>
<tr>
<td>m/d/yy</td>
</tr>
<tr>
<td>mm/dd/yy</td>
</tr>
<tr>
<td>d-mmm</td>
</tr>
<tr>
<td>d-mmm-yy</td>
</tr>
<tr>
<td>dd-mmm-yy</td>
</tr>
<tr>
<td>mmm-yy</td>
</tr>
<tr>
<td>mmmm-yy</td>
</tr>
<tr>
<td>mmmm d, yyyy</td>
</tr>
<tr>
<td>h:mm AM/PM</td>
</tr>
<tr>
<td>h:mm:ss AM/PM</td>
</tr>
<tr>
<td>h:mm</td>
</tr>
<tr>
<td>h:mm:ss</td>
</tr>
<tr>
<td>mm:ss.0</td>
</tr>
<tr>
<td>[h]:[mm]:[ss]</td>
</tr>
<tr>
<td>m/d/yy h:mm AM/PM</td>
</tr>
<tr>
<td>m/d/yy h:mm</td>
</tr>
</tbody>
</table>
The [h]:[mm]:[ss] format requires a bit more explanation. You use this format when you want to display hours greater than 24 or minutes and seconds greater than 60. For example, suppose you have an application in which you need to sum several time values such as the time you spent working on a project. If you add, say, 10:00 and 15:00, Excel normally shows the total as 1:00 because, by default, Excel restarts time at 0 when it hits 24:00. To display the result properly such as 25:00, use the format [h]:00.

You use the same methods you used for numeric formats to select date and time formats. In particular, you can specify the date and time format as you input your data. For example, entering Jan-07 automatically formats the cell with the mmm-yy format. In addition, you can use the following shortcut keys:

<table>
<thead>
<tr>
<th>Shortcut Key</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+#</td>
<td>d—mmm—yy</td>
</tr>
<tr>
<td>Ctrl+@</td>
<td>h:mm AM/PM</td>
</tr>
<tr>
<td>Ctrl+;</td>
<td>Current date (m/d/yy)</td>
</tr>
<tr>
<td>Ctrl+:</td>
<td>Current time (h:mm AM/PM)</td>
</tr>
</tbody>
</table>

Excel for the Macintosh uses a different date system than Excel for Windows uses. If you share files between these environments, you need to use Macintosh dates in your Excel for Windows worksheets to maintain the correct dates when you move from one system to another. To do this, select File, Options, click Advanced, scroll down to the When Calculating This Workbook section, and then select the Use 1904 Date System check box.

Customizing Date and Time Formats

Although the built-in date and time formats are fine for most applications, you might need to create your own custom formats. For example, you might want to display the day of the week (for example, Friday). Custom date and time formats generally are simpler to create than custom numeric formats. There are fewer formatting symbols, and you usually don’t need to specify different formats for different conditions. Table 3.10 lists the date and time formatting symbols.
Table 3.10 The Date and Time Formatting Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Formats</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Day number without a leading zero (1–31)</td>
</tr>
<tr>
<td>dd</td>
<td>Day number with a leading zero (01–31)</td>
</tr>
<tr>
<td>ddd</td>
<td>Three-letter day abbreviation, such as Mon</td>
</tr>
<tr>
<td>dddd</td>
<td>Full day name, such as Monday</td>
</tr>
<tr>
<td>m</td>
<td>Month number without a leading zero, such as 1–12</td>
</tr>
<tr>
<td>mm</td>
<td>Month number with a leading zero, such as 01–12</td>
</tr>
<tr>
<td>mmm</td>
<td>Three-letter month abbreviation, such as Aug</td>
</tr>
<tr>
<td>mmmm</td>
<td>Full month name, such as August</td>
</tr>
<tr>
<td>yy</td>
<td>Two-digit year, such as 00–99</td>
</tr>
<tr>
<td>yyyy</td>
<td>Full year, such as 1900–2078</td>
</tr>
<tr>
<td>Time Formats</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Hour without a leading zero, such as 0–24</td>
</tr>
<tr>
<td>hh</td>
<td>Hour with a leading zero, such as 00–24</td>
</tr>
<tr>
<td>m</td>
<td>Minute without a leading zero, such as 0–59</td>
</tr>
<tr>
<td>mm</td>
<td>Minute with a leading zero, such as 00–59</td>
</tr>
<tr>
<td>s</td>
<td>Second without a leading zero, such as 0–59</td>
</tr>
<tr>
<td>ss</td>
<td>Second with a leading zero, such as 00–59</td>
</tr>
<tr>
<td>AM/PM, am/pm, A/P</td>
<td>Displays the time using a 12-hour clock</td>
</tr>
<tr>
<td>/ : –</td>
<td>Symbols used to separate parts of dates or times</td>
</tr>
<tr>
<td>[COLOR]</td>
<td>Displays the date or time in the color specified</td>
</tr>
<tr>
<td>[condition value]</td>
<td>Uses conditional statements to specify when the format is to be used</td>
</tr>
</tbody>
</table>

Figure 3.16 shows some examples of custom date and time formats.
Deleting Custom Formats

The best way to become familiar with custom formats is to try your own experiments. However, remember that Excel stores each format you try. If you find that your list of custom formats is getting a bit unwieldy or that it’s cluttered with unused formats, you can delete formats by following the steps outlined here:

1. Select Home, Number Format, More Number Formats.
2. Click the Custom category.
3. Click the format in the Type list box.

 TIP Note that you can delete only the formats you’ve created yourself.

4. Click Delete. Excel removes the format from the list.
5. To delete other formats, repeat steps 2 through 4.
6. Click OK. Excel returns you to the spreadsheet.

From Here

- To learn about conditional formatting, see the section “Applying Conditional Formatting to a Range,” p. 22.
- To learn how to solve formula problems, see Chapter 5, “Troubleshooting Formulas,” p. 109.
- To get the details on text formulas and functions, see Chapter 7, “Working with Text Functions,” p. 137.
- If you want to use logical worksheet functions in your comparison formulas, see the section “Adding Intelligence with Logical Functions,” p. 159.
- To learn how to create and use data tables, see the section “Using What-If Analysis,” p. 341.
Symbols & Numerics

#DIV/0! error, troubleshooting, 110–111
#N/A error, troubleshooting, 111
#NAME? error value, troubleshooting, 111–113
#NULL! error value, troubleshooting, 113
#NUM! error value, troubleshooting, 113–114
#REF! error value, troubleshooting, 114
#VALUE! error value, troubleshooting, 114
() [parentheses], controlling order of precedence, 56–58
3D ranges, 7–8

A

absolute reference format, 62
account numbers, generating, 152
accounting formats, 73
accounts receivable aging worksheet, building, 173–174
adding
 constraints to Solver, 406–408
 dialog box controls to worksheets, 101–102
 scenarios to worksheets, 355–357
adjacent cells, selecting, 10
advertising versus sales trend, analyzing, 371–372
aging invoices, 175
algebraic equations, solving, 352–353
Analysis ToolPak
 loading, 134–135
 statistical tools, 267–281
 correlation coefficient, calculating, 272–273
 Descriptive Statistics tool, 270–272
 Histogram tool, 274–276
 Random Number Generator tool, 276–278
 Rank and Percentile tool, 279–281
AND() function, 164–165
ANSI characters, displaying, 137–141
Answer report (Solver), 417–418
applying names to formulas, ignoring relative and absolute references, 65–66
arguments, 129–130
arithmetic formulas, 53
arrays, 85–87
 combining with logical functions, 168–175
 constants, 89–90
 functions requiring, 90
 multiple range operation, 88
 selecting, 87
auditing worksheets
 cell dependents, tracing, 124
 cell precedents, tracing, 123–124
auditing worksheets, 122–126
AutoComplete feature, 43
AutoFill, creating custom lists, 16–17
Automatic calculation mode, 58
Automatic Except for Data Tables calculation mode, 58
automatic recalculation, turning off, 58–59
AVERAGE() function, 253–254
AVERAGEIF() function, 306
AVERAGEIFS() function, 309
avoiding division by zero, 162–163

B
balloon loans, 424
basic table operations, 286–287
best-fit lines, simple regression, 365–372
billable time, rounding, 238
blanks, counting in ranges, 182
book publishing case study, cash flow analysis, 469–472
operating costs and sales, 470–471
per-unit constants, 469–470
break-even analysis, 352–352
building
accounts receivable aging worksheet, 173–174
employee time sheets, 224–227
investment schedules, 449–451
PivotTables from external database, 322
text charts, 148–149
business forecasting, regression analysis, 363–364
buying versus leasing, 457
calculated fields, creating in PivotTables, 334–335
calculated items, creating in PivotTables, 335–338
calculating
correlation coefficient, 272–273
cumulative principal, 426–427
cumulative totals, 239–240
difference between two times, 224
due dates, 174–175
Easter dates, 235–236
extreme values, 256–258
forecast trends, 379–380
interest costs, 424–426
leap years, 242
loan interest rates, 433–434
loan payment, 422–427
normal trends, 378–379
reseasoned monthly trend, 383
seasonal trend, 380–381
tiered bonuses, 163–164
time differences, 241
weighted mean, 254
weighted questionnaire results, 189
calculation errors, preventing, 237
cash flow analysis, book publishing case study, 469–472
operating costs and sales, 470–471
per-unit constants, 469–470
cash flows, discounting, 458–459
CEILING() function, 234–236
cell attributes, copying, 19–20
cell dependents, tracing, 124
CELL() function, 176–179
cell precedents, tracing, 123–124
cell ranges. See also arrays
arrays, operating on multiple ranges, 88
blanks, counting, 182
clearing, 22
conditions, applying, 168–170
filling, 14
with Autofill, 14–17
with Series command, 17–19
navigating, 13–14
range names, 33–34
AutoComplete feature, 43
defining, 34–41
Name Box, 34–35
pasing in worksheets, 44
referring to, 41–43
selecting, 5–13
3D ranges, 7–8
with Go To command, 8–9
with Go To Special dialog box, 9–13
with mouse, 6
cell references
absolute reference format, 62
relative reference format, 60–62
cell values, watching, 125–126
cells
 data-validation rules, applying, 98–101
 padding, 147–148
changing numeric formats, 73–76
 range names, 47
CHAR() function, 137–141
characters
 removing from strings, 156–158
 repeating, 147
check boxes, 104–105
CHOOSE() function, 187–189
circular references, 91–92
 troubleshooting, 116–117
CLEAN() function, 147
CODE() function, 141–142
color scales, applying to ranges, 28–30
column letter, determining, 154–155
column lookups, creating, 198–199
columns, selecting as lookup column, 197–198
combo boxes, 105–106
comparison formulas, 53–54
compound criteria, filtering tables, 299–300
compound interest, 440
condition values, 79–80
conditional formatting
 applying to ranges, 22–32
 applying with formulas, 167–168
 color scales, applying to ranges, 28–30
 highlight cell rules, applying to ranges, 22–24
 icon sets, applying to ranges, 31–32
 top/bottom rules, applying to ranges, 24–26
conditions, applying to ranges, 168–170
consolidating multisheet data, 93–98
 by category, 93–98
 by position, 93–96
constants, 39–41, 89–90
constraints, adding to Solver, 406–408
controlling order of precedence, 56–58
convergence, 91
converting
data formats, 151–152
 formulas to a value, 63–64
 ranges to tables, 285
 text, 142–143
 text to sentence case, 150–151
coordinates of range names
 adjusting automatically, 45–46
 editing, 45
data bars, applying to ranges, 26–28
data field summary calculation, 325–332
data-validation rules, applying, 98–101
data bars, applying to ranges, 26–28
data field summary calculation, 325–332
data-validation rules, applying, 98–101
 padding, 147–148
changing numeric formats, 73–76
 range names, 47
CHAR() function, 137–141
characters
 removing from strings, 156–158
 repeating, 147
check boxes, 104–105
CHOOSE() function, 187–189
circular references, 91–92
 troubleshooting, 116–117
CLEAN() function, 147
CODE() function, 141–142
color scales, applying to ranges, 28–30
column letter, determining, 154–155
column lookups, creating, 198–199
columns, selecting as lookup column, 197–198
combo boxes, 105–106
comparison formulas, 53–54
compound criteria, filtering tables, 299–300
compound interest, 440
condition values, 79–80
conditional formatting
 applying to ranges, 22–32
 applying with formulas, 167–168
 color scales, applying to ranges, 28–30
 highlight cell rules, applying to ranges, 22–24
 icon sets, applying to ranges, 31–32
 top/bottom rules, applying to ranges, 24–26
conditions, applying to ranges, 168–170
consolidating multisheet data, 93–98
 by category, 93–98
 by position, 93–96
constants, 39–41, 89–90
constraints, adding to Solver, 406–408
controlling order of precedence, 56–58
convergence, 91
converting
data formats, 151–152
 formulas to a value, 63–64
 ranges to tables, 285
 text, 142–143
 text to sentence case, 150–151
coordinates of range names
 adjusting automatically, 45–46
 editing, 45
data bars, applying to ranges, 26–28
data field summary calculation, 325–332
data-validation rules, applying, 98–101
data bars, applying to ranges, 26–28
data field summary calculation, 325–332
data-validation rules, applying, 98–101
 padding, 147–148
changing numeric formats, 73–76
 range names, 47
CHAR() function, 137–141
characters
 removing from strings, 156–158
 repeating, 147
check boxes, 104–105
CHOOSE() function, 187–189
circular references, 91–92
 troubleshooting, 116–117
CLEAN() function, 147
CODE() function, 141–142
color scales, applying to ranges, 28–30
column letter, determining, 154–155
column lookups, creating, 198–199
columns, selecting as lookup column, 197–198
combo boxes, 105–106
comparison formulas, 53–54
compound criteria, filtering tables, 299–300
compound interest, 440
condition values, 79–80
conditional formatting
 applying to ranges, 22–32
 applying with formulas, 167–168
 color scales, applying to ranges, 28–30
 highlight cell rules, applying to ranges, 22–24
 icon sets, applying to ranges, 31–32
 top/bottom rules, applying to ranges, 24–26
conditions, applying to ranges, 168–170
consolidating multisheet data, 93–98
 by category, 93–98
 by position, 93–96
constants, 39–41, 89–90
constraints, adding to Solver, 406–408
controlling order of precedence, 56–58
convergence, 91
converting
data formats, 151–152
 formulas to a value, 63–64
 ranges to tables, 285
 text, 142–143
 text to sentence case, 150–151
coordinates of range names
 adjusting automatically, 45–46
 editing, 45
data bars, applying to ranges, 26–28
data field summary calculation, 325–332
data-validation rules, applying, 98–101
data bars, applying to ranges, 26–28
data field summary calculation, 325–332
data-validation rules, applying, 98–101
 padding, 147–148
changing numeric formats, 73–76
 range names, 47
CHAR() function, 137–141
characters
 removing from strings, 156–158
 repeating, 147
check boxes, 104–105
CHOOSE() function, 187–189
circular references, 91–92
 troubleshooting, 116–117
CLEAN() function, 147
CODE() function, 141–142
color scales, applying to ranges, 28–30
column letter, determining, 154–155
column lookups, creating, 198–199
columns, selecting as lookup column, 197–198
combo boxes, 105–106
comparison formulas, 53–54
compound criteria, filtering tables, 299–300
compound interest, 440
condition values, 79–80
conditional formatting
 applying to ranges, 22–32
 applying with formulas, 167–168
 color scales, applying to ranges, 28–30
 highlight cell rules, applying to ranges, 22–24
 icon sets, applying to ranges, 31–32
 top/bottom rules, applying to ranges, 24–26
conditions, applying to ranges, 168–170
consolidating multisheet data, 93–98
 by category, 93–98
 by position, 93–96
constants, 39–41, 89–90
constraints, adding to Solver, 406–408
controlling order of precedence, 56–58
convergence, 91
converting
data formats, 151–152
 formulas to a value, 63–64
 ranges to tables, 285
 text, 142–143
 text to sentence case, 150–151
coordinates of range names
 adjusting automatically, 45–46
 editing, 45
data bars, applying to ranges, 26–28
data field summary calculation, 325–332
correlation coefficient, calculating, 272–273
COUNT() function, 252–253
COUNTIF() function, 305–306
COUNTIFS() function, 307–308
counting
 blanks in ranges, 182
 occurrences in ranges, 171–172
cumulative totals, calculating, 239–240
currency formats, 73
custom formats, deleting, 83
custom lists, creating with AutoFill, 16–17
customizing
date and time display formats, 81–82
 numeric formats, 76–79
 PivotTables, 323
D
data bars, applying to ranges, 26–28
data field summary calculation, 325–332
difference summary calculation, 326–327
index summary calculation, 331–332
percentage summary calculation, 327–330
running total summary calculation, 330–331

How can we make this index more useful? Email us at indexes@quepublishing.com
data tables, editing, 346–347

data validation rules, applying to cells, 98–101

date and time display formats, 80–83
 customizing, 81–82

date and time functions, 201–204
 two-digit years, 203–204

date formats, converting, 151–152

DATE() function, 206

date functions, 204–219
 DATE(), 206
 DATEDIF(), 217–218
 DATEVALUE(), 206–207
 DAYS360(), 219
 EDATE(), 210
 EOMONTH(), 210–211
 TODAY(), 205–206
 WEEKDAY(), 208
 WEEKNUM(), 208–210
 YEAR(), 207–208
 YEARFRAC(), 219–220

DATEDIF() function, 217–218

dates
 entering, 202–203
 returning, 205–207

DATEVALUE() function, 206–207

DAVERAGE() function, 311

day of the week, determining name of, 187–188

DAYS360() function, 219

defects database, applying table functions, 313

defining range names, 34–41
 constants, 39–41
 with Name Box, 34–35
 with New Name dialog box, 35–37
 scope of, 37
 with worksheet text, 37–40

deleting
 custom formats, 83
 range names, 47
 scenarios, 360–361

dependent workbooks, 70

dependents, tracing, 124

descriptive statistics, 249–252

Descriptive Statistics tool, 270–272

deseasoned monthly values, calculating, 381–382

Developer tab, displaying, 101

DGET() function, 311–312

dialog box controls, 101–107
 adding to worksheets, 101–102
 check boxes, 104–105
 combo boxes, 105–106
 group boxes, 103
 linking to cell values, 102–103
 list boxes, 105–106
 option buttons, 103–104
 scrollbars, 107
 spin boxes, 107

difference between two dates, determining, 216–217

difference, between two times, calculating, 224

difference summary calculation, 326–327

discount formulas, 453–473
 buying versus leasing, 457
 cash flows, discounting, 458–459
 investing versus purchasing rental property, 456–457
 net present value
 with nonperiodic cash flows, calculating, 463
 with varying cash flows, calculating, 462
 net present value, calculating, 459–463
 payback period
 calculating, 464–473
 discounted payback period, calculating, 466
 exact undiscounted payback point, calculating, 465–466
 internal rate of return, calculating, 466–469
 undiscounted payback period, calculating, 464
 present value, calculating, 454–463

discounted payback period, calculating, 466

displaying
 ANSI character, 137–141
 Developer tab, 101
 Name Manager feature, 44–45
 scenarios in worksheets, 357–358
 time of last workbook update, 145
 worksheets, formulas, 63
division by zero, avoiding, 162–163
DOLLAR() function, 144
due dates, calculating, 174–175
dynamic loan amortization schedule, building, 429–431
error values, 110
 #DIV/0! error, troubleshooting, 110–111
 #N/A error, troubleshooting, 111
 #NAME?, troubleshooting, 111–113
 #NULL!, troubleshooting, 113
 #NUM!, troubleshooting, 113–114
 #REF!, troubleshooting, 114
 #VALUE!, troubleshooting, 114
external references, 69–71
extracting
 first names, 153–154
 last names, 153–154
 middle initial, 154
 substrings, 149–152
extreme values, calculating, 256–258
false reports, handling, 161–162
fill handle
 Autofill, 14–17
 cell ranges, clearing, 22
filling cell ranges, 14
 with Series command, 17–19
filter lists, 292–295
filtering
 names, 44–45
 tables, 292–301
 with complex criteria, 296–298
 with compound criteria, 299–300
 filter lists, 292–295
 quick filters, 294–295
FIND() function, 151–155
finds, performing (regression analysis), 363–364
first names, extracting, 153–154
fiscal year, determining month of, 188–189
Easter dates, calculating, 235–236
EDATE() function, 210
Edit mode, 53
editing
 data tables, 346–347
 range name coordinates, 45
 scenarios in worksheets, 358
EFFECT() function, 441–447
effective interest rate
 calculating, 440–441
 converting to nominal rate, 441–447
employee time sheets, building, 224–227
Enter mode, 52
entering
 dates and times, 202–203
 formulas, 52–53
EOMONTH() function, 210–211
erroneous formula results, troubleshooting, 115–116
errors
 counting in ranges, 183
 ignoring within ranges, 183
 tracing, 124
ERROR.TYPE() function, 179–180
Evaluate Formula feature, 124–125
evaluating formulas, 124–125
every nth row, summing, 241–242
Evolutionary solving method (Solver), 409
exact undiscounted payback point, calculating, 465–466
exponential trending, 384–389
 with GROWTH() function, 386–387
 with LOGEST() function, 388
external databases, building PivotTables, 322
external references, 69–71
fiscal year, determining month of, 188–189

How can we make this index more useful? Email us at indexes@quepublishing.com
FIXED() function, 144

fixed-rate amortization schedule, building, 428–429

FLOOR() function, 234–236

forecasting, 372–384
 with LINEST() function, 376
 seasonal forecast, calculating, 383
 with TREND() function, 375–376

Form Controls, displaying dialog box controls, 101

formula error checker feature, 118–122
 error action, selecting, 119
 options, selecting, 119–122

formulas. See also arrays
 absolute reference format, 62
 arithmetic, 53
 automatic recalculation, turning off, 58–59
 basic structure, 51
 circular references, 91–92
 troubleshooting, 116–117
 comparison, 53–54
 conditional formatting, applying, 167–168
 converting to a value, 63–64
 copying
 and moving, 59–63
 without adjusting relative references, 63–63
 discount formulas, 453–473
 buying versus leasing, 457
 cash flows, discounting, 458–459
 investing versus purchasing rental property, 456–457
 interest costs, calculating, 424–426
 interest rates, calculating, 433–434
 loan amortization schedule, building, 428–431
 loan payment, calculating, 422–427
 maximum loan amount, calculating, 434–438
 principal, calculating, 425
 term of loan, calculating, 431–433
 time value of money, 421–422
 multithreaded calculation, 59
 names, applying, 65–69
 nesting levels, 52
 order of precedence, 55–56
 controlling, 56–58
 range names, pasting, 64–65
 reference formulas, 55
 relative reference format, 62
 arithmetic, 53
 automatic recalculation, turning off, 58–59
 basic structure, 51
 circular references, 91–92
 troubleshooting, 116–117
 comparison, 53–54
 conditional formatting, applying, 167–168
 converting to a value, 63–64
 copying
 and moving, 59–63
 without adjusting relative references, 63–63
 discount formulas, 453–473
 buying versus leasing, 457
 cash flows, discounting, 458–459
 investment formulas, 439–451
 compound interest, 440
 effective interest rate, 440–441
 future value, calculating, 442–445, 448
 nominal interest rate, 440
 period requirements, calculating, 445–446
 required initial deposit, calculating, 447
 required interest rate, calculating, 444–445
 required regular deposits, calculating, 446–447
 iterative calculations, 91–92
 limits, 52
 links, 69–72
 loan formulas, 421–438
 cumulative principal, calculating, 426–427
 net present value, calculating, 459–463
 payback period, calculating, 464–473
 present value, calculating, 454–463
 displaying, 63
 entering, 52–53
 erroneous results, troubleshooting, 115–116
 error values, 110–114
 errors, troubleshooting, 114–117
 with IFERROR(), 117–118
 evaluating, 124–125
 fraction formats, 73
 frequency distributions, normal distribution, 263–264
 FREQUENCY() function, 262–263
 functions
 arguments, 129–130
 date and time functions, 201–204
 date functions, 204–219
 DATE(), 206
 DATEDIF(), 217–218
DATEVALUE(), 206–207
days360(), 219
EDATE(), 210
eomonth(), 210–211
today(), 205–206
week(), 208
week(), 208–210
year(), 207–208
yearfrac(), 219–220
information functions, 176–183
Cell(), 176–179
error.type(), 179–180
info(), 180–181
is(), 181–183
logical functions, 159–175
and(), 164–165
combining with arrays, 168–175
if(), 160–164
or(), 165–168
lookup functions, 185–186
choose(), 187–189
hlookup(), 191–194
index(), 195–199
match(), 195–199
vlookup(), 190–191
math functions, 229–247
count(), 252–253
mod(), 240–244
rand(), 244–246
randbetween(), 246–247
statistical functions, 249–281
sum(), 238–240
placeholders, 129–130
statistical functions
average(), 253–254
frequency(), 262–263
kurt(), 265–267
large(), 256–258
max(), 256
measures of variation, calculating, 258–261
median(), 254
min(), 256
mode(), 254
normdist(), 263–264
skew(), 264–265
small(), 256–258
standard deviations, 261–267
structure, 128–130
syntax, 129–130
table functions
applying to defects database, 313
averageif(), 306
averageifs(), 309
countif(), 305–306
countifs(), 307–308
daverage(), 311
dget(), 311–312
sumif(), 306
sumifs(), 308–309
text functions, 137–138
char() function, 137–141
clean(), 147
code() function, 141–142
dollar(), 144
find(), 151–155
fixed(), 144
left(), 149–150
lower(), 142–143
mid(), 150
proper(), 143
replace(), 155–156
rept(), 147
right(), 150–155
search(), 151–155
substitute(), 156–158
text(), 145
trim(), 146
upper(), 143
time functions
hour(), 222
minute(), 222
now(), 220–221
second(), 222
time(), 221
timevalue(), 221
typing, 130–132
insert function feature, 131–132
functions argument dialog box, 133
future value of investments, calculating, 442–445
fv() function, 442–443
generating
account numbers, 152
random numbers, 244–247
summary reports, 359–360
getpivotdata() function, 333–340
go to command, selecting cell ranges, 8–9
Go to special dialog box
Cell ranges, selecting, 9–13
adjacent cells, 10
by differences, 10–11
by reference, 12
by type, 9–10
options, 9–13
shortcut keys, 13
Goal seek, 347–353
algebraic equations, solving, 352–353
approximations, 351
false reports, handling, 161–162
multiple logical tests, performing, 163–168
nesting, 163
IFERROR() function, troubleshooting formulas, 117–118
ignoring errors within ranges, 183
INDEX() function, 195–199
index summary calculation, 331–332
INFO() function, 180–181
information functions, 176–183
CELL(), 176–179
ERROR.TYPE(), 179–180
INFO(), 180–181
IS(), 181–183
Insert Function feature, 131–134
INT() function, 236
interest rates, calculating, 433–434
internal rate of return, calculating
 IRR() function, 467
 for multiple internal rates of return, 468
 for nonperiod cash flows, 468
intersector operator, 47–49
investment formulas, 439–451
 compound interest, 440
 effective interest rate, 440–447
 future value, calculating, 442–445, 448
nominal interest rate, 440
 converting to effective interest, 441–447
 period requirements, calculating, 445–446
 required initial deposit, calculating, 447
 required interest rate, calculating, 444–445
 required regular deposits, calculating, 446–447
investment schedules, building, 449–451
invoices, aging, 175
IRR() function, 467
IS() function, 181–183
iterative calculations, 91–92

H

handling false reports, 161–162
hiding
 grand totals in PivotTables, 324
 subtotals in PivotTables, 324
 zeros, 79
highlight cell rules, applying to ranges, 22–24
Histogram tool, 274–276
HLOOKUP() function, 191–194
holiday dates, determining, 214–216
HOUR() function, 222

J–K

Julian dates, determining, 216–216
keyboard, selecting cell range, 7
KURT() function, 265–267

L

LARGE() function, 256–258
last day of the month, returning, 211
last names, extracting, 153–154
leap years, calculating, 242
ledger shading, creating, 242–244
LEFT() function, 149–150
limits of formulas, 52
Limits report (Solver), 420
line feeds, removing, 158
linear data, simple regression analysis, 364–384
LINEST() function, 368–371
forecasting, 376
linking dialog box controls to cell values, 102–103
links
source of, changing, 72
updating, 71
list boxes, 105–106
loading
Analysis ToolPak, 134–135
Solver, 403
loan amortization schedule
dynamic, building, 429–431
fixed-rate, building, 428–429
loan formulas, 421–438
cumulative principal, calculating, 426–427
interest costs, calculating, 424–426
interest rates, calculating, 433–434
loan amortization schedule
dynamic, building, 429–431
fixed-rate, building, 428–429
loan payment, calculating, 422–427
maximum loan amount, calculating, 434–438
principal, calculating, 425
term of loan, calculating, 431–433
logarithmic trending, 388–391
LOGEST() function, exponential trending, 388
logical functions, 159–175
AND(), 164–165
combining with arrays, 168–175
IF(), 160–164
division by zero, avoiding, 162–163
false reports, handling, 161–162
multiple logical tests, performing, 163–168
nesting, 163
OR(), 165–168
lookup functions, 185–186
CHOOSE(), 187–189
HLOOKUP(), 191–194
INDEX(), 195–199
MATCH(), 195–199
VLOOKUP(), 190–191
lookup tables, 186–187
multiple-column lookups, 199
values, looking up, 190–199
LOWER() function, 142–143
M
Manual calculation mode, 59
MATCH() function, 195–199
math functions, 229–247.
See also statistical functions
COUNT(), 252–253
ledger shading, creating, 242–244
MOD(), 240–244
RAND(), 244–246
RANDBETWEEN(), 246–247
random numbers, generating, 244–247
rounding functions, 232–238
billable time, rounding, 238
CEILING(), 234–236
EVEN(), 236
FLOOR(), 234–236
INT(), 236
MROUND(), 233
ODD(), 236
price points, setting, 237–238
ROUNDDOWN(), 233–234
ROUNDUP(), 233–234
TRUNC(), 236
MAX() function, 256
measures of variation, calculating, 258–261
range, calculating, 258–259
standard deviation, calculating, 260–261
variance, calculating, 259–260
MEDIAN() function, 254
merging scenarios in worksheets, 358–357
messages (Solver)
for successful solutions, 414
for unsuccessful solutions, 414
MID() function, 150
middle initial, extracting from names, 154
MIN() function, 256
MINUTE() function, 222
MIRR() function, 469
mismatched parentheses, troubleshooting, 114–115
MODE function, 240–244
MODE() function, 254
models (Solver), 412–413
month of fiscal year, determining, 188–189
monthly seasonal indexes, computing, 381–382
mortgages, 435–438
principal paydowns, allowing for, 437–438
variable-rate mortgage amortization schedule, building, 435–437
mouse, selecting ranges, 6
moving formulas, 59–63
MROUND() function, 233
multiple logical tests, performing, 163–168
multiple regression, 364
multiple regression analysis, 396–399
multiple-column lookups, 199–199
multisheet data
consolidating, 93–98
by category, 93–98
by position, 93–96
multithreaded calculation, 59
N
Name Box, defining range names, 34–35
Name Manager feature, displaying, 44–45
name of day of the week, determining, 187–188
names, filtering, 44–45
naming formulas, 65–69
navigating cell ranges, 13–14
with range names, 43–43
negative values in a range, summing, 240–240
nesting, IF() function, 163
net present value, calculating, 459–463
with nonperiodic cash flows, 463
with varying cash flows, 462
New Name dialog box, defining range names, 35–37
nominal interest rate, 440
converting to effective interest, 441–447
nonlinear data, regression analysis, 384–396
normal distribution, 263–264
normal trends, calculating, 378–379
NORMDIST() function, 263–264
NOW() function, 220–221
NPV() function, 431
Number formats, 72
numeric formats, 72–80
changing, 73–76
condition values, 79–80
customizing, 76–79
zeros, hiding, 79–79
numeric series, creating with Autofill, 14–16
occurrences, counting in ranges, 171–172
ODD() function, 165–168
one-input data tables, 342–345
option buttons, 103–104
options
selecting for formula error checker, 119–122
for Solver, 409–411
OR() function, 165–168
order of precedence, 55–56
controlling, 56–58
padding cells, 147–148
parentheses
mismatched, troubleshooting, 114–115
order of precedence, controlling, 56–58
parts of a date, returning, 207–216

parts of time, returning, 221–224

Paste Special command
cell attributes, copying, 19–20
rows and columns, transposing, 21
source and destination, combining arithmetically, 20–21

pasting range names
in worksheets, 44
into formulas, 64–65

percentage formats, 73

percentage summary calculation, 327–330

performing multiple logical tests, 163–168

person’s age, determining, 216–217

PivotTables, 315–318
building
from external database, 322
from ranges, 318–322
from tables, 318–322
calculated fields, creating, 334–335
calculated items, creating, 335–338
custom calculations, 332–338
customizing, 323
data field summary calculation, 325–332
difference summary calculation, 326–327
index summary calculation, 331–332
percentage summary calculation, 327–330
running total summary calculation, 330–331
GETPIVOTDATA() function, 333–340
grand totals, hiding, 324
subtotals, hiding, 324

placeholders, 129–130

plotting polynomial trendlines, 394–395

Point mode, 53

polynomial regression, 364, 394–396
polynomial trendlines, plotting, 394–395

positive/negative values in a range, summing, 240–240

power trending, 391–394

precedents, tracing, 123–124

preventing, calculation errors, 237

preventing typing errors with data-validation feature, 98–101

price points, setting, 237–238

principal, calculating, 425

product margin, optimizing, 349–350

PROPER() function, 143

PV() function, 455–456

Q–R

quick filters, 294–295

RAND() function, 244–246

RANDBETWEEN() function, 246–247

Random Number Generator tool, 276–278

random numbers, generating, 244–247

range lookups, 190–247

range names, 33–34
AutoComplete feature, 43
cell ranges, navigating, 43
changing, 47
constants, defining, 39–41
depth
coordinates
adjusting automatically, 45–46
editing, 45
defining, 34–41
with New Name dialog box, 35–37
with worksheet text, 37–40
deleting, 47
intersect operator, 47–49
Name Box, 34–35
Name Manager feature, displaying, 44–45
names, filtering, 44–45
pasting
in worksheets, 44
into formulas, 64–65
referring to, 41–43
scope of, defining, 37

ranges. See also arrays
calculating, 258–259
clearing, 22

How can we make this index more useful? Email us at indexes@quepublishing.com
converting to tables, 285
occurrences, counting, 171–172
PivotTables, building, 318–322
typing, 5

Rank and Percentile tool, 279–281

RATE() function, 433–434

reference formulas, 55
structured referencing, 301–304

referencing tables in formulas, 301–304

referring to range names, 41–43

regression analysis
deseasoned monthly trend, calculating, 382–383
fuzzy, performing, 363–364
forecasting, 372–384
with LINEST() function, 376
with TREND() function, 375–376
monthly seasonal indexes, computing, 381–382
multiple regression, 396–399
on nonlinear data, 384–396
normal trends, calculating, 378–379
polynomial regression, 394–396
regression method, selecting, 364
reseasoned monthly trend, calculating, 383
seasonal forecast, calculating, 383

simple regression
best-fit lines, 365–372
exponential trending, 384–389
logarithmic trending, 388–391
power trending, 391–394
using linear data, 364–384
trend analysis
- case study, 377–383
- forecast trends, calculating, 379–380
relative reference format, 60–62

removing
characters from strings, 156–158
line feeds, 158
tracer arrows, 124
unwanted characters from strings, 146–149

rental properties, purchasing versus investing, 456–457

REPLACE() function, 155–156

REPORTS (Solver)
Answer report, 417–418
Limits report, 420
Sensitivity report, 418–419

REPT() function, 147

reseasoned monthly trend, calculating, 383

resolving circular references, 116–117

returning
dates, 205–207
parts of time, 221–224

RIGHT() function, 150–155

ROUND() function, 232–233

ROUNDDOWN() function, 233–234

rounding functions, 232–238
billable time, rounding, 238
calculation errors, preventing, 237
CEILING(), 234–236
EVEN(), 236
FLOOR(), 234–236
INT(), 236
MROUND(), 233
ODD(), 236
price points, setting, 237–238
ROUND(), 232–233
ROUNDDOWN(), 233–234
ROUNDUP(), 233–234
TRUNC(), 236

RÓNDUP() function, 233–234

row lookups, creating, 198–199

rows and columns, transposing, 21

running total summary calculation, 330–331

sales versus advertising
trend, analyzing, 371–372

saving solutions as scenario, 408
Scenario Manager, 354–361
 scenarios
 adding, 355–357
 deleting, 360–361
 displaying, 357–358
 editing, 358
 merging, 358–357
 summary reports, generating, 359–360
scenarios, saving as solutions, 408
scientific formats, 73
scope of range names, defining, 37
scrollbars, 107
SEARCH() function, 151–155
searching for substrings, 151–155
seasonal forecast, calculating, 383
seasonal trend, calculating, 380–381
SECOND() function, 222
selecting
 arrays, 87
 cell ranges, 5–14
 3D ranges, 7–8
 with Go To command, 8–9
 with Go To Special dialog box, 9–13
 with keyboard, 7
 with mouse, 6
 error action for formula error checker, 119
 regression analysis method, 364
 solver method (Solver), 409
Sensitivity report (Solver), 418–419
sentence case, converting text to, 150–151
series, creating with Autofill, 14–17
Series command, 17–19
server workbooks, 70
shortcut keys, Go To Special dialog box, 13
Simple LP solving method (Solver), 409
 simple regression, 364
 best-fit lines, 365–372
 exponential trending, 384–389
 with GROWTH() function, 386–387
 with LOGEST() function, 388
 logarithmic trending, 388–391
 on nonlinear data, 384–396
 power trending, 391–394
 using linear data, 364–384
SKEW() function, 264–265
SMALL() function, 256–258
solutions, saving as scenario, 408
Solver, 401–406
 constraints, adding, 406–408
 loading, 403
 messages
 for successful solutions, 414
 for unsuccessful solutions, 414
 models, 412–413
 options, 409–411
 reports, Answer report, 417–418
 reports (Solver)
 Limits report, 420
 Sensitivity report, 418–419
 solutions, saving as scenario, 408
 solving method, selecting, 409
 transportation problem example, 415–418
 when to use, 402–403
solving algebraic equations, 352–353
sorting tables, 287–292
source and destination, combining arithmetically, 20–21
source of links, changing, 72
special formats, 73
spin boxes, 107
standard deviations, 261–267
 calculating, 260–261
statistical functions, 249–281
 AVERAGE(), 253–254
 descriptive statistics, 249–252
 FREQUENCY(), 262–263
 KURT(), 265–267
 LARGE(), 256–258
 MAX(), 256
 measures of variation, calculating, 258–261
 MEDIAN(), 254
 MIN(), 256
 MODE(), 254
 NORMDIST(), 263–264
 SKEW(), 264–265
 SKEW() function, 264–265
 SMALL() function, 256–258
 solutions, saving as scenario, 408
 scientific formats, 73
 scope of range names, defining, 37
 scrollbars, 107
 SEARCH() function, 151–155
 searching for substrings, 151–155
 seasonal forecast, calculating, 383
 seasonal trend, calculating, 380–381
 SECOND() function, 222
 selecting
 arrays, 87
 cell ranges, 5–14
 3D ranges, 7–8
 with Go To command, 8–9
 with Go To Special dialog box, 9–13
 with keyboard, 7
 with mouse, 6
 error action for formula error checker, 119
 regression analysis method, 364
 solver method (Solver), 409
 Sensitivity report (Solver), 418–419
 sentence case, converting text to, 150–151
 series, creating with Autofill, 14–17
 Series command, 17–19
 server workbooks, 70
 shortcut keys, Go To Special dialog box, 13
 Simple LP solving method (Solver), 409
 simple regression, 364
 best-fit lines, 365–372
 exponential trending, 384–389
 with GROWTH() function, 386–387
 with LOGEST() function, 388
 logarithmic trending, 388–391
 on nonlinear data, 384–396
 power trending, 391–394
 using linear data, 364–384
 SKEW() function, 264–265
 solving algebraic equations, 352–353
 sorting tables, 287–292
 source and destination, combining arithmetically, 20–21
 source of links, changing, 72
 special formats, 73
 spin boxes, 107
 standard deviations, 261–267
 calculating, 260–261
 statistical functions, 249–281
 AVERAGE(), 253–254
 descriptive statistics, 249–252
 FREQUENCY(), 262–263
 KURT(), 265–267
 LARGE(), 256–258
 MAX(), 256
 measures of variation, calculating, 258–261
 MEDIAN(), 254
 MIN(), 256
 MODE(), 254
 NORMDIST(), 263–264
 SKEW(), 264–265
 SKEW() function, 264–265
 SMALL() function, 256–258
 solutions, saving as scenario, 408
 scientific formats, 73
 scope of range names, defining, 37
 scrollbars, 107
 SEARCH() function, 151–155
 searching for substrings, 151–155
 seasonal forecast, calculating, 383
 seasonal trend, calculating, 380–381
 SECOND() function, 222
 selecting
 arrays, 87
 cell ranges, 5–14
 3D ranges, 7–8
 with Go To command, 8–9
 with Go To Special dialog box, 9–13
 with keyboard, 7
 with mouse, 6
 error action for formula error checker, 119
 regression analysis method, 364
 solver method (Solver), 409
 Sensitivity report (Solver), 418–419
 sentence case, converting text to, 150–151
 series, creating with Autofill, 14–17
 Series command, 17–19
 server workbooks, 70
 shortcut keys, Go To Special dialog box, 13
 Simple LP solving method (Solver), 409
 simple regression, 364
 best-fit lines, 365–372
 exponential trending, 384–389
 with GROWTH() function, 386–387
 with LOGEST() function, 388
 logarithmic trending, 388–391
 on nonlinear data, 384–396
 power trending, 391–394
 using linear data, 364–384
 SKEW() function, 264–265
 solving algebraic equations, 352–353
 sorting tables, 287–292
 source and destination, combining arithmetically, 20–21
 source of links, changing, 72
 special formats, 73
 spin boxes, 107
 standard deviations, 261–267
 calculating, 260–261
 statistical functions, 249–281
 AVERAGE(), 253–254
 descriptive statistics, 249–252
 FREQUENCY(), 262–263
 KURT(), 265–267
 LARGE(), 256–258
 MAX(), 256
 measures of variation, calculating, 258–261
 MEDIAN(), 254
 MIN(), 256
 MODE(), 254
 NORMDIST(), 263–264
 SKEW(), 264–265

How can we make this index more useful? Email us at indexes@quepublishing.com
Index: statistical functions

- SMALL, 256–258
- standard deviations, 261–267
- weighted mean, calculating, 254

Statistical tools (Analysis ToolPak), 267–281
- Descriptive Statistics tool, 270–272
- Histogram tool, 274–276
- Random Number Generator tool, 276–278
- Rank and Percentile tool, 279–281

Strings
- characters, removing, 156–158
- substrings
 - extracting, 149–152
 - substituting, 155–158
- unwanted characters, removing, 146–149

Structure of functions, 128–130

Structured referencing, 301–304

SUBSTITUTE() function, 156–158

Substituting substrings, 155–158

Substrings
- extracting, 149–152
- searching for, 151–155
- substituting, 155–158

Subtotals, hiding in PivotTables, 324

SUM() function, 238–240

SUMIFS() function, 308–309

Summary reports, generating, 359–360

Summing
- every nth row, 241–242
- positive/negative values in a range, 240–240
- time values, 223

Table specifiers, 301–303

Tables, 283–284
- basic operations, 286–287
- filtering, 292–301
 - with complex criteria, 296–298
 - with compound criteria, 299–300
- filter lists, 292–295
- quick filters, 294–295
- PivotTables, building, 318–322
- ranges, converting to, 285
- referencing in formulas, 301–304
- sorting, 287–292

Term of loans, calculating, 431–433

Text, converting, 142–143

Text charts, building, 148–149

Text formulas, 54–55

TEXT() function, 145

Text functions, 137–138
- CHAR(), 137–141
- CLEAN(), 147
- CODE(), 141–142
- DOLLAR(), 144–144
- FIND(), 151–155
- FIXED(), 144
- LEFT(), 149–150
- LOWER(), 142–143
- MID(), 150
- PROPER(), 143
- REPLACE(), 155–156
- REPT(), 147
- RIGHT(), 150–155
- SEARCH(), 151–155
- SUBSTITUTE(), 156–158
- TEXT(), 145
- TRIM(), 146
- UPPER(), 143

Time differences, calculating, 241

Time display formats, 80–83

TIME() function, 221

Time functions
- HOUR(), 222
- MINUTE(), 222
- NOW(), 220–221
- SECOND(), 222
- TIME(), 221
- TIMEVALUE(), 221
time sheets, building, 224–227

time value of money, 421–422

time values, summing, 223

TIMEVALUE() function, 221

TODAY() function, 205–206

top/bottom rules, applying to ranges, 24–26

tracers, 123
 removing, 124

tracing
 cell dependents, tracing, 124
 cell precedents, 123–124

transportation problem example (Solver), 415–418

transposing rows and columns, 21

trend analysis
 case study, 377–383
 forecast trends, calculating, 379–380
 reseasoned monthly trend, calculating, 383
 seasonal trend, calculating, 380–381

TREND() function, 368–369
 forecasting, 375–376

trendlines, plotting best-fit, 365–372

TRIM() function, 146

troubleshooting
 error values
 #DIV/0! error, 110–111
 #N/A error, 111
 #NAME?, 111–113

 #NULL!, 113
 #NUM!, 113–114
 #REF!, 114
 #VALUE!, 114

 formulas, 109–110
 circular references, 116–117
 erroneous results, 115–116
 errors, 114–117
 formula error checker feature, 118–122
 with IFERROR(), 117–118
 mismatched parentheses, 114–115

TRUNC() function, 236

turning off automatic recalculation, 58–59

two-digit years, 203–204

two-input data tables, 345–346

typing
 functions
 Insert Function feature, 131–134
 into formulas, 130–132
 ranges, 5

typing errors, preventing with data-validation feature, 98–101

U-V

undiscounted payback period, calculating, 464

unwanted characters, removing from strings, 146–149

uppercasing text, 143

values in tables, looking up, 190–199

variable-rate mortgage amortization schedule, building, 435–437

variance, calculating, 259–260

VLOOKUP() function, 190–191

Watch Window feature, 125–126

WEEKDAY() function, 208

WEEKNUM() function, 208–210

weighted mean, calculating, 254

weighted questionnaire results, calculating, 189

what-if analysis, 341–347
 data tables, editing, 346–347
 one-input data tables, 342–345
 two-input data tables, 345–346

workbooks
 linking, 69–72
 with external references, 69–71
 time of last update, displaying, 145
worksheet text, defining range names, 37–40

worksheets
auditing, 122–126
cell dependents, tracing, 124
dialog box controls, 101–107
adding, 101–102
check boxes, 104–105
combo boxes, 105–106
group boxes, 103
list boxes, 105–106
option buttons, 103–104
scrollbars, 107
spin boxes, 107
formulas, displaying, 63
scenarios
adding, 355–357
deleting, 360–361
displaying, 357–358
editing, 358
merging, 358–357

X-Y-Z

XNPV() function, 463

YEAR() function, 207–208
YEARFRAC() function, 219–220

zeros, hiding, 79–79