

Windows 7 and Vista: Guide to Scripting, Automation,
and Command Line Tools
Copyright © 2011 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmit-
ted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written per-
mission from the publisher. No patent liability is assumed with respect to the use of the information
contained herein.Although every precaution has been taken in the preparation of this book, the pub-
lisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-7897-3728-1
ISBN-10: 0-7897-3728-0

Library of Congress Cataloging-in-Publication data is on file.

Printed in the United States of America

First Printing: December 2010

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been appro-
priately capitalized. Que Publishing cannot attest to the accuracy of this information. Use of a term in
this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no war-
ranty or fitness is implied.The information provided is on an “as is” basis.The author and the pub-
lisher shall have neither liability nor responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this book.

Bulk Sales
Que Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the United States, please contact

International Sales
international@pearson.com

Associate Publisher
Greg Wiegand

Acquisitions Editor
Rick Kughen

Development Editor
Todd Brakke

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Megan Wade

Indexer
Tim Wright

Proofreader
Jovana Shirley

Technical Editor
Ron Barrett

Publishing Coordinator
Cindy Teeters

Designer
Anne Jones

Compositor
Studio Galou, LLC

Contents at a Glance

Introduction 1

I Scripting with Windows Script Host
1 Windows Script Host 9

2 VBScript Tutorial 49

3 Scripting and Objects 93

4 File and Registry Access 123

5 Network and Printer Objects 207

6 Messaging and Faxing Objects 231

7 Windows Management Interface 279

8 Active Directory Scripting Interface 319

9 Deploying Scripts for Computer and Network Management 375

II The Command Line Environment
10 The CMD Command-Line Shell 433

11 Batch Files for Fun and Profit 491

12 The MS-DOS Environment Under Windows 521

13 Command-Line Utilities 543

III Introduction to Windows PowerShell
14 Windows PowerShell 593

15 PowerShell Programming 621

16 Using PowerShell 683

IV Appendices
A VBScript Reference 713

B CMD and Batch File Language Reference 725

C Command Line Program Reference 735

D Index of Patterns and Sample Programs 747

Index 753

Online Content:

E Automation Object Reference

F WSF and WSC File Format Reference

G Creating Your Own Scriptable Objects

iv

Table of Contents

Introduction 1

I Scripting with Windows Script Host

1 Windows Script Host 9
What Is a Windows Script? 9

The “Script” Part 9
The “Windows” Part 10
The “Host” Part 11
How Is This Different from Writing Batch Files? 13

Scripting Languages 13
VBScript 14
JScript 14
Perl 15
Python 15
Open Object REXX 15
Ruby 15
Choosing a Language 16

A Simple Script 16
Types of Script Files 19

JSE and VBE: Encoded Scripts 20
Windows Script Files (WSF) 21
Windows Script Components (WSC) 23
WSH Settings 23

Creating Your First Script File 24
Making and Securing a Script Folder 24
Creating a Script 26
Script Editing Tools 27

How Windows Runs Scripts 28
Wscript and Cscript 28
Ways to Run a Script 29
Passing Information to Scripts 31
Saving the Results from Scripts 32
Wscript and Cscript Command Options 33

v

Running Your Own Scripts 36
Adding Scripts to the Path 37
Running Scripts with a Shortcut Icon 38
Making a Script Shortcut 39
Running Scripts from Batch Files 39
Running Scripts Automatically 40

Security Concerns 40
Trust Policy and Script Signing 42

Debugging Scripts 42
Where to Get More Information 47

2 VBScript Tutorial 49
Introduction to VBScript 49

Variables 50
Constants 51
Named Constants 52
Operators and Expressions 53
Automatic Conversion 57

Flow Control 57
The If…Then Statement 58
The Select Case Statement 61
The Do While Loop 63
Terminating a Loop with Exit Do 65
Counting with the For…Next Statement 66
Processing Collections and Arrays with For…Each 67

VBScript Functions 68
Calling Functions and Subroutines 69
Documentation and Syntax 70
String-Manipulation Functions 71
Date and Time Functions 74

Interacting with the User 79
The MsgBox() Function 79
The InputBox() Function 82
Printing Simple Text Messages with Wscript.Echo 84

Advanced VBScript Topics 85
Error Handling 86
Procedures: Functions and Subroutines 87

vi

Arrays 89
Variable Scope 91

Where to Go from Here 92

3 Scripting and Objects 93
Introduction to Objects 93

Classes and Instances 94
Containers and Collections 95
Object Naming 97

Using Objects with VBScript 98
Automation and Document Files 99
The Difference Between Properties and Methods 100
Nested Objects 101
Releasing Objects 102
Working with Collections 102

Using Objects with JScript 104
Case Sensitivity 104
Working with Collections 104

Using Objects with ActivePerl 106
Running Perl Scripts in WSH 106
The Perl Object Interface 107
Working with Collections 108

Using Objects with ActivePython 109
Working with Collections 110

Using the WScript Object 111
Retrieving Command-Line Arguments 113

Locating and Using Unusual Objects 115

4 File and Registry Access 123
Getting Real Work Done 123
Manipulating Files and Folders 124

Scripting.FileSystemObject 124
Working with File and Pathnames 130
The Scripting.Drive Object 135
The Scripting.Folder Object 139
The Scripting.File Object 144

vii

Reading and Writing Files 149
The TextStream Object 150
Reading Text from Files 152
Writing Text to Files 154
Working with Stdin and Stdout 159
Reading Binary Files 163

Reading and Writing XML 167
Some XML Basics 168
Reading an XML File 176
Creating an XML or HTML File 179

Manipulating Programs and Shortcuts 181
The WScript.Shell Object 182
Running Programs 186
Creating and Modifying Shortcuts 193

Working with the Environment 196
Extracting Environment Information 198
Managing Environment Settings 199

Working with the Registry 201
Examining Registry Keys and Values 202
Saving Information in the Registry 203

5 Network and Printer Objects 207
Managing Network and Printer Connections 207
Retrieving Network User Information 212
Managing Drive Mappings 214

Listing Drive Mappings with EnumNetworkDrives 214
Adding Drive Mappings 218
Deleting Drive Mappings 219
Setting Up Mappings in a Script 220

Managing Network Printer Connections 221
Displaying Printer Information 222
Connecting to Network Printers 223
Redirecting DOS Session Printers 225
Deleting Printer Connections 226
Setting the Default Printer 228

Printing from Scripts 229

viii

6 Messaging and Faxing Objects 231
Sending Email from Scripts with CDO 231
The CDO Object Model 232

The CDO.Message Object 235
Working with Fields 242
Fields for the CDO.Message Object 244
The CDO BodyParts Collection 246
The CDO BodyPart Object 247
The ADO Stream Object 250
The CDO.Configuration Object 250

Sending a Message with CDO 256
Constructing the Message 257
Adding Attachments 261
Including Images with an HTML Message 262
Specifying the Recipients and Subject 263
Specifying the Delivery Server 263
Sending the Message 265
Putting It All Together 265

Faxing from Scripts 271
Sending a Fax with a Script 274
Getting More Information About Faxing 277

7 Windows Management Instrumentation 279
Introduction to Windows Management Instrumentation 279

WMI Functions 280
Namespaces 281
Managing Windows Remotely 283

Making WMI Connections 287
WMI Object Hierarchy 288
Connecting with the WbemScripting.SWbemLocator Object 291
Connecting with a Moniker 292
Connecting to the Local Computer 294
Security and Authentication 294
Specifying Security Options 299

WMI Collections and Queries 301
SWbemServices 302
WQL Queries 303
SWbemObjectSet 305

ix

SWbemObject 306
SWbemMethodSet and SWbemPropertySet 307

Scriptomatic 310
WMI Examples 312

Collecting System Information 312
Managing Printers 313
Monitoring Windows Service Packs and Hotfixes 313
Managing Services and Tasks 315

For More Information 317

8 Active Directory Scripting Interface 319
Managing the User Directory 319

Uses of the Active Directory Scripting Interface 320
Limitations of ADSI with Windows Script Host 321

ADSI Concepts 322
Multiple Inheritance 324
Creating ADSI Objects 325
Directory Security 328
Determining the Difference Between Containers and Leaves 330

ADSI Objects for the WinNT: Provider 332
IADs 333
IADsCollection and IADsContainer 336
Working with ADSI Collections 339
IADsComputer and IADsComputerOperations 340
IADsDomain 342
IADsFileService and IADsFileServiceOperations 345
IADsFileShare 347
IADsGroup 349
IADsMembers 350
IADsNamespaces 351
IADsPrintJob and IADsPrintJobOperations 351
IADsPrintQueue and IADsPrintQueueOperations 354
IADsService and IADsServiceOperations 357
IADsSession 361
IADsUser 362

IIS and Exchange 364
Managing Active Directory 364

X.500 and LDAP Terminology 364

x

Active Directory Objects 368
RootDSE 368
IADsO and IADsOU 369

Developing ADSI Scripts 370
EzAD Scriptomatic 372
For More Information 373

9 Deploying Scripts for Computer and Network Management
375
Using Scripts in the Real World 375

Designing Scripts for Other Users 376
Using WSF Files 377

WSF File Format Reference 379
Providing Online Help with WSF Files 384
Processing Command-Line Arguments 386
Enclosing More Than One Script 390
Putting It All Together 390

Deploying Scripts on a Network 394
Creating Simple Installation Programs with IExpress 395

Creating IExpress Install Scripts or Batch Files 398
Dealing with User Account Control 400
Providing an Uninstall Option 402

Writing Scripts to Manage Other Computers 403
Remote Scripting 405
Replicating Scripts to Multiple Computers 406

Scripting Security Issues 408
Script Signing 409
The Script Encoder 415

Setting Up Logon Scripts 416
User Profile Logon Scripts 416
Scripts for Logon, Logoff, and Other Events on Windows 7 and
Vista 418
Group Policy Logon, Logoff, Startup, and Shutdown Scripts 418

Scheduling Scripts to Run Automatically 421
Writing Unattended Scripts 421
Sending Messages to the Event Log 423
Scheduling Scripts with the Task Scheduler 428

xi

II The Command Line Environment

10 The CMD Command-Line 433
The Command Prompt 433

CMD Versus COMMAND 434
Running CMD 435

Opening a Command Prompt Window with Administrator
Privileges 436
CMD Options 437
Disabling Command Extensions 439

Command-Line Processing 439
Stopping Runaway Programs 440
Console Program Input and Output 441
Using the Console Window 442
I/O Redirection and Pipes 443
Copy and Paste in Command Prompt Windows 447
Command Editing and the History List 448
Name Completion 450
Enabling Directory Name Completion 451
Multiple Commands on One Line 452
Grouping Commands with Parentheses 453
Arguments, Commas, and Quotes 454
Escaping Special Characters 454

Configuring the CMD Program 455
AutoRun 455
Environment Variable Substitution 456
The Search Path 456
Predefined and Virtual Environment Variables 459
Setting Default Environment Variables 461

Built-in Commands 462
Extended Commands 475
Listing Files with the Dir Command 476
Setting Variables with the Set Command 480
Conditional Processing with the if Command 482
Scanning for Files with the for Command 483

Getting More Information 488

xii

11 Batch Files for Fun and Profit 491
Why Batch Files? 491
Creating and Using Batch Files 492
Batch File Programming 494
Displaying Information in Batch Files 495
Argument Substitution 496
Argument Editing 498
Conditional Processing with If 499

The Basic If Command 499
Checking for Files and Folders 500
Checking the Success of a Program 500
Performing Several Commands After If 501
Extended Testing 503

Processing Multiple Arguments 503
Working with Environment Variables 506

Environment Variable Editing 507
Processing Multiple Items with the for Command 508

Using Multiple Commands in a for Loop 510
Delayed Expansion 511

Using Batch File Subroutines 513
Prompting for Input 514
Useful Batch File Techniques 515

Processing Command-Line Options 515
Managing Network Mappings 518
Checking for Correct Arguments 519
Keeping Log Files 519

12 The MS-DOS Environment Under Windows 521
MS-DOS Programs on Windows 521

The Virtual DOS Machine 522
MS-DOS and COMMAND.COM 524

Configuring the MS-DOS Environment 525
Window and Memory Options 526
CONFIG.NT 532
AUTOEXEC.NT 535
MS-DOS Environment Variables 536

MS-DOS and Networking 536

xiii

Printing from MS-DOS 537
Print Redirection 538
Print Screen 538

Configuring Serial Communications with MS-DOS 539
Using Special-Purpose Devices for MS-DOS 539
Managing MS-DOS Programs 540

When Things Go Awry 540

13 Command-Line Utilities 543
Windows Command-Line Programs 543
The Essential Command Line 544
GUI Shortcuts 545
General-Purpose Shell Programs 547

findstr 547
more 552
tree 553
xcopy 554

File-Management Tools 557
attrib 557
cacls 559

Management Power Tools 563
driverquery 564
runas 565
tasklist 565
taskkill 568
sc 569

Networking Utilities 571
ipconfig 571
net 574
netstat 584
nslookup 586
ping 589
tracert 591

Getting More Utilities 592

xiv

III Introduction to Windows PowerShell

14 Windows PowerShell 593
Introduction to Windows PowerShell 593

An Object-Oriented Command Shell 593
Based on the .NET Framework 596
An Extensible Environment 597

Obtaining Windows PowerShell 598
The PowerShell Environment 600
The PowerShell Command Prompt 601

Command-Line Editing 602
Copying and Pasting 603
Pausing Output and Stopping a Runaway Program 604
Command-Line Syntax 604

Cmdlets and Objects and Scripts, Oh My! 607
Getting Help 610
Prompting to Complete Commands 612
Aliases 612

How to Get a Listing of Aliases 612
How to Define a New Alias 613

Navigating Directories and Other Locations 613
PowerShell Security 615

PowerShell Scripts and User Account Control 615
Script Execution Policy 616

PowerShell Profiles 617

15 PowerShell Programming 621
The Windows PowerShell Programming Language 621
Windows PowerShell Syntax 622
Comments 622
Variables and Types 623

Literal Values 625
Object Methods and Properties 626
Object Constructors 627
String Interpolation 628
Special Characters 629
Here-Strings 629

xv

Releasing Variables 630
Predefined Variables 630
Arrays 632
Constants 637

Expressions 638
Comparisons with Arrays 640
String Operators 643
The & (Execute) Operator 646
Operator Precedence 646
Assignment Operators 647
Statement Values 648
Casts 649
Passing by Reference 650
Hash Tables 650

Flow of Control 653
if 653
while 654
do…while and do…until 654
for 655
foreach 656
switch 657
break 660
continue 661
Program Blocks 661

Exception Handling 662
trap 662
try/catch/finally 663
throw 664

Defining Functions 664
Function Parameters 665
Function Scope 668
The Dot-Source Operator 668
Variable Scope 669
Pipeline Functions and Filters 671
Splatting 672

xvi

Using the .NET API 673
Calling Static Member Functions 673
Working with Strings 674
Working with Dates and Times 676
Converting Values 680
Mathematical Functions 680

16 Using PowerShell 683
Real-World PowerShell 683
Command-Line Techniques 685

Generating Objects 685
Filtering 686
Taking Actions 689

Formatting Cmdlet Output 690
The -f Operator 690

Working with Files and Folders 691
Seeing Whether a File Exists 697
Reading Text from Files 697
Writing Text to Files 698
Identifying Files by Size 698

Creating Useful Scripts 699
Comment Your Work! 700
Command-Line Processing 700
Writing Modules 701
Exception Handling as an Exit Strategy 702

Using Hash Tables 703
The PowerShell Integrated Scripting Environment 704

Starting the PowerShell ISE 705
Configuring the ISE 706
Creating and Editing Scripts 707
Running Scripts in the ISE 708
Setting Breakpoints and Single-Stepping 709
Interactively Examining and Changing Variables 710
Conditional Breakpoints 711

Remote and Background PowerShell 712
Where to Go from Here 712

xvii

IV Appendices

A VBScript Reference 713
VBScript 5.6 Language Features 713
Syntax 714
General Structure of a VBScript Program 714
Data Types and Variables 714

Note on Dates and Times 716
Variable Scope 716

Expressions and Operators 716
Arithmetic Operators 717
Comparison Operators 717
Logical Operators 718

Program Statements 718
Functions 720

Date Function Intervals 722
Predefined Special Values 722
VBA Features Omitted from VBScript 723

B CMD and Batch File Language Reference 725
Batch File Argument and for Variable Replacement 726
Environment Variable Expansion 727
Predefined Environment Variables 727
Command Formatting 729
Built-in Commands 730

For Command Modifiers 733
set /a Expression Operators 734

C Command Line Program Reference 735
Administrative Tools 736
Built-in and Batch File Commands 738
DOS Commands 739
File-Management Commands 740
Handy Programs 741
Networking Tools 741
Software Development Aids 742
TCP/IP Utilities 743
Windows GUI Programs 744

xviii

D Index of Patterns and Sample Scripts 747
Index of Patterns 747
Index of Sample Scripts and Batch Files 748

Index 753

E Automation Object Reference 1 (Online)
Collection and Dictionary Objects 1
Script Management and Utility Objects 2
File Access Objects 3
XML/HTML Processing Objects 6
Program Environment Objects 8
Network and Printer Objects 9
Messaging Objects 9
Windows Management Interface (WMI) Objects 11
Active Directory Scripting Interface Objects 13

F WSF and WSC File Format Reference 1 (Online)
XML Conformance 1
Structure of a WSF 2
Structure of a WSC File 3
Tag Syntax 3

G Creating Your Own Scriptable Objects 1 (Online)
Why Create Your Own Objects? 1
Programming Language Options 2

Visual Basic 3
C++ and C 3
VBScript and JScript 4

Creating Objects with Windows Script Component Files 4
WSC File Format 5
XML Basics 7
Understanding the Example 8

WSC File Format Reference 10
Creating a WSC 17

Using the Windows Script Component Wizard 17
Defining Properties and Methods 19
Using Other Objects and Type Libraries 22

xix

Defining Resources 22
Registering the Component 23
Testing 24
Using Scripted Objects from Other Programs 25
Deploying the Object to Other Computers 25

Creating a Practical Object 26

Introduction

Although this book has a brand new title, it is really an updated and revised second
edition to Windows XP: Under The Hood.The first edition’s automotive-themed title
came about because of a certain nostalgia that I felt and I know many people share:
Don’t you long for the good-old days when you could pop the hood of your car and
recognize what was underneath? When you could take a wrench and fix just about
anything yourself? Cars aren’t like that anymore; they’ve gotten so complex and intim-
idating that it’s hard to imagine digging into one now.

Many of us have come to feel the same way about Windows.Windows has grown into
a huge operating system with thousands of complex parts masked behind a slick but
seemingly impenetrable graphical user interface (GUI).

This book is an attempt to reclaim those days when we could dig into our machines
with confidence and satisfaction.Windows comes with powerful tools and interfaces
that let you take control of every detail, if you’re willing to roll up your sleeves and
dive in.

Whether you’re a Windows system administrator or a “power user” who’s always on
the lookout for more effective ways to use your computer, you’re probably familiar
with batch files, scripts, and command-line programs.Although they might seem
unglamorous, they’ve been around longer than the PC itself, and sooner or later every-
one who uses a computer for serious work runs into them.They might seem like
something out of the past, but they’ve continued to evolve along with Windows.The
automation tools provided with Windows are incredibly powerful and useful.

2 Introduction

For most people, though, they remain mysterious and are seldom used. I wrote this
book to help dispel the mystery. I have five aims in mind:

n To teach how to use the batch file and scripting languages provided with
Windows.

n To show how to use command-line utilities and scripting objects as everyday
tools.

n To provide an introduction to and reference for the hundreds of command-line
programs and scripting objects provided with Windows.

n To provide an introduction to Windows PowerShell, Microsoft’s newest
command-line automation tool.

n To show you, above all, how you can learn to use these tools. No one book is
going to solve all your Windows problems.This book teaches you how all these
tools work and how to organize your scripting efforts, so you can go beyond
canned solutions and create your own.

Although several books on the market are devoted to Windows Script Host,Windows
PowerShell,Windows automation tools, and one or two cover Windows command-
line utilities, this is the only book I know that combines all four in one volume.

In this book, I explicitly cover Windows 7,Vista, and XP. You can also use the tech-
niques I show you with Windows Server operating systems and Windows 2000
Professional, if you still have that floating around.

Why Learn About This Stuff?
In the age of the GUI, you might wonder why you should spend time learning about
scripts, batch files, and command-line programs.Aren’t they part of the past, something
we can leave behind with a big sigh of relief?

Well, obviously, I don’t think so, or I wouldn’t have spent months and months slaving
away over a hot keyboard, in the dark, just for you.And in case guilt alone isn’t
enough to make you buy this book, I have some actual good reasons for you.

To begin, here are some important points about scripts and batch files:

n They let you make quick work of repetitive tasks.When you have a large num-
ber of files or items to process, or when you perform the same tasks day after
day, automation can save you an amazing amount of time. Sure, you can point-
and-click your way through running a file through several different programs or
adding a user to your network, but when you have to do this job a few hundred
times, the graphical approach is a nightmare.

3How This Book Is Organized

n They encapsulate knowledge and serve as a form of documentation because
they record in precise terms how to perform a job. If you write a script or batch
file to perform some management function, years from now it can remind you
or your successors what the job entails.This makes good business sense.

n They let you use the “insides” of application programs, such as Word and Excel,
as tools to write your own programs.

n They let you write procedures that can manipulate files and settings not only on
your own computer, but on others in your organization, over your network.
Whether you have dozens or thousands of computers to manage, scripting func-
tions can “push” changes to computers without requiring you to physically visit
each one.

n They let you write procedures to “reset” a computer’s environment to a stan-
dard, known configuration. Logon scripts, especially, can set up printers, mapped
network drives, and Control Panel settings the same way every time a user logs
on, thus eliminating support headaches and user confusion.

If that’s the case for learning about scripting and batch files, then how about command-
line utilities? Hear ye:

n Many Windows administration, maintenance, and repair functions don’t appear
anywhere in the Windows GUI.They’re found in command-line programs only.

n Sometimes it’s faster to type a few letters than to poke around the screen with a
mouse!

n Because most command-line utilities are designed to act on data or text files in
some particular useful way, you can often use command-line programs as build-
ing blocks to perform complex tasks such as sorting, extracting, and formatting
information. Instead of writing a custom program, you sometimes use a series
of command-line programs to get the job done with little effort.Think of
command-line programs as the scissors and staplers on your computer desktop.

Although the Windows GUI has all the flash and gets all the attention, you can see
that these behind-the-scenes tools are the real “meat” of the Windows operating system.

How This Book Is Organized
Although this book advances logically from beginning to end, it’s written so you can
jump in at any location, get the information you need quickly, and get out.You don’t
have to read it from start to finish, nor do you need to work through complex tutori-
als. (Even if you’re familiar with the material, though, you should at least skim through
the references because the batch file language and Windows Script Host program have
evolved considerably over the years.)

4 Introduction

This book is broken into four major parts. Here’s the skinny on each one:

n Part I,“Scripting with Windows Script Host,” covers the Windows Script Host
tool, introduces the VBScript programming language, discusses the use of
objects, and describes the process of writing and debugging scripts. It also pro-
vides a detailed reference for many of the scripting objects provided with
Windows.

n Part II,“The Command-Line Environment,” describes the Windows command
language used to write batch files.The batch language has been enhanced con-
siderably since its origin in MS-DOS, and it has become a much more useful
way to automate the manipulation of files and directories. Part II also discusses
the command-line environment, MS-DOS emulation, and the ways to alter the
command environment through administrative tools. Finally, there is a guided
tour of the 20 or so most important command-line programs provided with
Windows, covering text file management, networking utilities, GUI shortcuts,
and more.

n Part III,“Introduction to Windows PowerShell,” introduces Windows
PowerShell, Microsoft’s newest and most peculiar command-line scripting envi-
ronment. PowerShell is a powerful, and somewhat unusual, programming language.
You can use it to perform general-purpose computing, to munch on files and all
sorts of data, and to manage Windows workstations, servers and applications.You’ll
definitely find it worth investigating.

n Finally, Part IV,“Appendices,” gives you concise references and indexes to the
tools discussed in this book.Where appropriate, items include page references to
the sections of the book where you can find information that is more detailed.
There is also an index of sample scripts and batch files you can use as a starting
point for your own projects.You can download these scripts and files from
www.helpwin7.com/scripting.There you can also download some additional
bonus appendixes we love but couldn’t fit into this printed edition.

Within these sections, each chapter follows a common pattern.An introduction
explains a particular type of tool or programming scheme, a reference section describes
the tool in exhausting detail, and finally, a discussion shows how to use the tool to
apply to real-world programs. I chose this structure because I want this book to serve
both as a tutorial for readers who are new to these techniques and as a reference for
readers who are familiar with the techniques, but just need a quick refresher.

I also want the material to be somewhat challenging.The early chapters on Windows
Script Host and objects take more of a “tutorial” approach, but then the pace picks
up. I hope I leave you with some questions unanswered and a few puzzles unsolved;
because in your own pursuit of the answers, you learn more than you ever could from
reading any book.

www.helpwin7.com/scripting

5Conventions Used in This Book

Conventions Used in This Book
To help you get the most from this book, special conventions and elements are used
throughout.

Text Conventions
Various text conventions in this book identify terms and other special objects.These
special conventions include the following:

Convention Meaning

Italic New terms or phrases when initially defined.

Monospace Information that appears in code or onscreen or
information you type.

Command sequences All Windows book publishers struggle with how
to represent command sequences when menus
and dialog boxes are involved. In this book, we
separate commands using a comma.Yeah, we
know it’s confusing, but this is traditionally how
Que does it, and traditions die hard. For example,
the instruction “choose Edit, Cut” means that you
should open the Edit menu and choose Cut.

Key combinations Key combinations are represented with a plus
sign. For example, if the text calls for you to press
Ctrl+Alt+Delete, you would press the Ctrl,Alt,
and Delete keys at the same time.

In this book’s reference lists, which describe the syntax and use of programming state-
ments and objects, the following conventions are used:

Convention Meaning

boldface() Text and symbols in boldface are to be typed
literally.

italic Italics indicate names and values to be replaced by
your own data.

[options] Square brackets indicate optional items that are
not required.The brackets are not to be typed in.

{choice A | choice B} Curly brackets and the vertical bar (|) indicate
items from which you make a choice of one
alternative.

item [, item…] Ellipses (…) indicate items that might be repeated
as many times as desired.

6 Introduction

Special Elements
Throughout this book, you find reference lists, patterns, tips, notes, cautions, cross-
references, and sidebars.These items stand out from the rest of the text so you know
they’re of special interest.

Reference Lists
Reference Lists

Describe the syntax and usage of programming statements, object properties and
methods, and command-line programs.

Patterns

Pattern
Patterns show how to solve a particular programming problem in a way that you can use in many sit-

uations. They provide a general-purpose way of going about some computing task.

Tips

Tip
Tips give you down-and-dirty advice on getting things done the quickest, safest, or most reliable way.

Tips give you the expert’s advantage.

Notes

Note
Notes are visual “heads-up” elements. Sometimes they just give you background information on a topic,

but more often they point out special circumstances and potential pitfalls in some Windows features.

Cautions

Caution
Pay attention to cautions! They could save you precious hours in lost work.

7Conventions Used in This Book

Cross-References

Cross-references point you to other locations in this book (or other books in the Que
family) that provide supplemental or supporting information. Cross-references appear
as follows:

➔ For more information on Hollerith cards, see Chapter 1, “Windows Script Host,” p. 9

Sidebars

Sidebar
Sidebars provide information that is ancillary to the topic being discussed. Read this information if you

want to learn more details about an application or task.

This page intentionally left blank

• This chapter introduces the
concepts of objects, methods,
and properties. It provides the
background you need for the
following seven chapters.

• Read this chapter to see how
to use the objects provided
with Windows Script Host with
different scripting languages.

• To get the most out of this
chapter, you should be familiar
with at least one script pro-
gramming language.

• The last section of the chapter
shows how you can learn
about the many undocumented
objects provided with
Windows.

IN
 T

H
IS

 C
H

A
P

TE
R

Scripting and Objects
3

Introduction to Objects
All the Windows Scripting languages that I discussed in Chapter 1,“Windows Script
Host,” provide the basic tools to control a script’s execution and to manipulate strings,
numbers, dates, and so on, but they don’t necessarily provide a way of interacting with
Windows, files, or application software.These functions are provided by objects—add-on
components that extend a programming language’s intrinsic capabilities. In this section,
I discuss what objects are and introduce the terms you run into as you work with them.
In the following sections, I discuss how objects are actually used in several programming
languages.

In the most general sense, objects are little program packages that manipulate and com-
municate information.They’re a software representation of something tangible, such as
a file, a folder, a network connection, an email message, or an Excel document. Objects
have properties and methods. Properties are data values that describe the attributes of
the thing the object represents. Methods are actions—program subroutines—you can
use to alter or manipulate whatever the object represents.

For example, a file on your hard disk has a size, creation date, and name. So, these are
some of the properties you would expect a File object to have.You can rename,
delete, read, and write a file, so a File object should provide methods to perform these
tasks.An important aspect of objects is that they are self-contained and separate from

94 Chapter 3 Scripting and Objects

the program that uses them. How the object stores and manipulates its data internally
is its own business.The object’s author chooses which data and procedures to make
accessible to the outside world. In programming jargon, we say that an object exposes
properties and methods; these items compose its interface. Figure 3.1 shows the inter-
face of a hypothetical File object.

Properties
 size
 creationDate
 name

Methods
 rename
 delete
 read
 write

Script

file object

Real File
on Hard Drive

WScript.echo file.size

file.rename “newname”

Figure 3.1 This hypothetical File object has an interface that can be used by other
programs. How the File object actually stores its information and does its job are hidden.

Objects need a mechanism through which they can exchange property and method
information with a program or script. Because each programming language has a
unique way of storing and transferring data, objects and programs must use some
agreed-upon, common way of exchanging data. For scripting and for most Windows
applications, Microsoft uses what it calls the Component Object Model (COM). COM
objects can be used by any compatible language, including VBScript, JScript, C, C++,
C#,Visual Basic, Perl, and so on. COM objects can also be called ActiveX Objects,
Automation Objects, or OLE objects, if they have certain additional features, but regard-
less of what they’re called, the technology is based on COM.

In the next several chapters, you see objects that represent files, folders, network
connections, user accounts, printers, Registry entries,Windows applications, email
messages, and many more aspects of your computer and network.Windows comes
with software to provide you with a wealth of objects.You can also download, buy,
or create additional objects of your own devising.

Classes and Instances
Two other terms you’re likely to run into while working with objects are class and
instance.The distinction is the same as that between a blueprint for a house and the
house itself.

95Introduction to Objects

The word class refers to the object’s definition: its interface (the properties and meth-
ods it provides) and its implementation (the hidden programming inside that does the
actual work). Hundreds of useful object classes are provided with Windows, and you
can add or create more, as discussed in Appendix G,“Creating Your Own Scriptable
Objects,” which you can download at www.helpwin7.com/scripting.

When you use an object in a program, the class program creates one or more instances
of the object. An instance is a parcel of computer memory set aside to hold the
object’s data.The class program then gives your program a reference to use when
manipulating the object—some identifying value that the class program can use to
determine which particular instance of the object your script or program is using.
Figure 3.2 illustrates this point:Variables file1 and file2 are variables that reference
two instances of a File object.

variables:

VBScript

Name: C:\boot.ini
Size: 130

•
•
•

•
•
•

Name: C:\notes.txt
Size: 1047

•
•
•

instances:

“File” object’s
class program: scrrun.dll

Script
set obj1 = fso.GetFile("c:\boot.ini")
set obj2 = fso.GetFile("c:\notes.txt")

obj1

obj2

Figure 3.2 File1 and File2 refer to objects of the File class.
This illustration shows two instances of the File object.

A reference is treated like any other variable in your program. Just as you can use
functions such as sqrt() and left() to manipulate numeric and string values, you
can use the object’s methods and properties to manipulate an object reference.

Containers and Collections
As mentioned earlier, an object represents some real-world, tangible thing, such as a
document or hard drive, and it has properties that represent the tangible thing’s attrib-
utes. For example, an apple object might have attributes such as color and tartness.
The actual data stored for the color might be a character string such as “red” or
“green”.Tartness might be represented as number from 0 (sugary sweet) to 10 (brings
tears to your eyes).

www.helpwin7.com/scripting

96 Chapter 3 Scripting and Objects

An object describing a file on a hard drive might have properties such as name (a char-
acter string) and size (a number).An object representing a hard drive might have
properties describing the hard drive’s size, volume name, and also the drive’s contents.

Now, the contents of a hard drive could be represented as a list of filenames or an
array of string values. However, it might be more useful if the hard drive could yield a
list of file objects that you could then use to work with the files themselves.This is
actually how many objects work.When appropriate, objects can return references to
other objects.When an object needs to give you several other objects, it will give you
a special object called a collection, which holds within it an arbitrary number of other
objects. For example, a Folder object might represent a folder on your hard drive, and
its Files property might yield a collection of File objects, which represent each of
the files in the folder, as illustrated in Figure 3.3.

Folder object

Name: My Documents
Files:
Subfolders:

Collection object
Length: 2
Item:

Folder object

Name: My Documents
Files:
Subfolders:

0

Folder object

Name: My Pictures
Files:
Subfolders:

1

Collection object
Length: 3
Item:

File object

Name: Plan.doc
Size:
Date created: 02 May 2002

0

File object

Name: Plan.doc
Size:
Date created: 02 May 2002

1

File object

Name: Plan.doc
Size:
Date created: 02 May 2002

2

• • • • • •

Figure 3.3 File and Folder objects can represent the contents of a hard drive.The
contents of a folder can be represented by collections of File and Folder objects.

A collection object can actually hold any type of object inside it, and the collection
object itself has properties and methods that let you count, extract, and work with
these objects.This is a common thing to see in object programming:“container”
objects that contain other objects of any arbitrary type.

Windows ActiveX objects use container objects that have two properties: Item and
Length.The Length property indicates how many items are in the collection.The Item
property retrieves one of the individual items. For some collections, you can extract

97Introduction to Objects

individual objects from the Item collection using Item(0), Item(1), and so on. For
many collections, though, the Item property requires a name or other arcane bit of
identifying information.Therefore, each scripting language provides a more general
way of letting you examine all the objects in a collection. I discuss this in more detail
later in the chapter.

Collections are pervasive in Windows script programming, and some languages have
special means of working with them. I give examples of using collections in each of
the scripting languages discussed later in the chapter.

Object Naming
Because objects are separate program components, scripts and other programs that use
them need a way to locate them and tell Windows to activate them. In this section, I
describe how this is done.

Each programmer who creates an object class gives it a name that, with any luck, is
fairly self-explanatory. For example, Scripting.FileSystemObject is designed to be
used by Windows Script Host (WSH) programs to view and manage hard drives, files,
and folders. Each of the programming languages you can use with WSH has a way of
creating an object instance given just this name. For example, in VBScript, the statement

set fsobj = CreateObject(“Scripting.FileSystemObject”)

does the job, whereas in Open Object REXX, the comparable statement is

fsobj = .OLEObject~New(“Scripting.FileSystemObject”)

In either case, the statement causes the WSH interpreter to ask Windows to create an
instance of the specified object. Windows looks up the object name in the Registry,
finds the name of the program file that manages this object class (usually a file whose
name ends in .dll or .ocx), and fires up the add-on program.The class program cre-
ates an instance of the object and gives your script a reference with which it can use
and manipulate the object.

I show you how to do this in each WSH-compatible language later in this chapter. For
almost all cases, this is all you need.

In the remainder of this chapter, I tell you how to use objects in VBScript and other
languages.The next section on VBScript follows the tutorial style of Chapter 2,
“VBScript Tutorial,” whereas the descriptions for other languages assume more experi-
ence with programming.

Finally, at the end of the chapter, I tell you how to find useful objects not discussed in
the later chapters of this book.

98 Chapter 3 Scripting and Objects

Using Objects with VBScript
To use objects in VBScript, you first need to create an instance of an object and store
its reference in a VBScript variable.Then, the methods and properties of the object can
be accessed using variable.propertyname or variable.methodname.This is easier to
demonstrate than explain, so here’s an example.This short script tells you whether
your C: drive has a folder named \windows:

set fso = CreateObject(“Scripting.FileSystemObject”)
if fso.FolderExists(“c:\windows”) then

WScript.echo “There is a folder named c:\windows”
end if

In the first line of the script, we create an instance of a Scripting.FileSystemObject.
This is an object class provided with WSH that has handy properties and methods you
can use when examining and manipulating disks and files.

Except for the word set, this looks just like a typical call to a function with the
returned value being assigned to a variable.That’s just what it is. CreateObject is a
function that creates a new object instance.What’s new is the word set, which
VBScript requires you to use to indicate that an object reference is being stored rather
than a regular value.

In general, the syntax to create an object instance in VBScript is

set variablename = CreateObject(“objectname”)

where variablename is the variable you want to use to hold the object reference and
objectname is the type of object you want to create.

In the second line of the example, we use the FolderExists method to find out
whether a specified folder exists. Remember that methods and properties are just like
regular functions and subroutines; they just happen to “live” in a separate program that
provides the object class.The presence of fso. before FolderExists tells VBScript that
the FolderExists function is part of the object class to which fso refers, which in this
example is Scripting.FileSystemObject.

Some properties and methods take arguments, as you saw with FolderExists.When
they do, you have to use parentheses in the same way you would with any other
VBScript function or subroutine call. If the method or property returns a function
value, you must use parentheses:

variable = object.property(“arguments”, “in”, “parens”)

If a method doesn’t return a value, you can omit the parentheses:

object.method “arguments”, “without”, “parens”

Does this look familiar? We used objects all through the VBScript tutorial in Chapter 2
in statements such as this:

WScript.echo “Today’s date is”, date

99Using Objects with VBScript

Now, you should recognize that WScript is an object reference and that echo is one of
its methods.We never needed to use CreateObject to get WScript set up, though,
because VBScript provides it automatically.The WScript object has several other handy
methods and properties that I discuss later in this chapter.

As mentioned earlier, some properties and methods return another object as their
values. For example, Scripting.FileSystemObject has a GetFile method that returns
a File object.The File object can then be used to examine and manipulate the
file. Here’s a sample script that gives the size and creation date of the program file
\windows\notepad.exe:

set fso = CreateObject(“Scripting.FileSystemObject”)
set file = fso.GetFile(“c:\windows\notepad.exe”)
WScript.echo “Notepad.exe was created on”, file.DateCreated
WScript.echo “and is”, file.Size, “bytes long”

The first line is the same as in the previous script, and it creates an instance of the
helpful Scripting.FileSystemObject.

The second line asks the FileSystemObject to return a File object representing the
file c:\windows\notepad.exe. Because I want to use this object several times, I saved it
in the variable file, using the set keyword. (Although file is a reserved word in
Visual Basic, it’s not in VBScript, so it’s available for use as a variable name.)

The next two lines use the File object’s DateCreated and Size properties. Because
these functions don’t need arguments, there are no parentheses.The returned
date/time and numeric values are printed by the WScript.echo method. On my
computer, this prints the following:

Notepad.exe was created on 2/11/2008 6:56:09 PM
and is 151040 bytes long

Automation and Document Files
The GetObject function might be used to obtain an object that represents some
already existing document file through a process Microsoft calls Automation. The
GetObject function uses the name of the document file to find the appropriate object
class server through the Windows standard file type/application association mechanism.
You can see file type/associations on Windows XP in Windows Explorer by clicking
Tools, Folder Options, File Types. On Windows 7 and Vista, you get there from
Control Panel, Programs, Make a File Type Always Open in a Specific Program.

The following sample script uses the GetObject function to create a Word document
object representing an existing file and print it:

set obj = GetObject(“C:\docs\userlist.doc”) ‘ get object for existing document
obj.Printout ‘ print the document
set obj = Nothing ‘ release the object

100 Chapter 3 Scripting and Objects

GetObject can also obtain a reference to an already existing object that was created by
some other program, through a name called a moniker. Several preexisting objects can
be used to manage networking,Windows, and Active Directory user accounts.We
cover these in Chapter 7,“Windows Management Instrumentation,” and Chapter 8,
“Active Directory Scripting Interface.”

The Difference Between Properties and Methods
I don’t know about you, but for a long time I found the distinction between proper-
ties and methods to be confusing. Now, it’s not crucially important to understand the
difference, but if you’re curious, I tell you how I finally came to an understanding of
sorts.

If you look back in the preceding section, you see I mentioned the FolderExists
method that is part of the object FileSystemObject.Why is FolderExists a method
and not a property? It comes down to these main points:

n Properties relate directly to aspects of the object or, more precisely, of the thing
the object represents.

n Properties act like variables:You just refer to them by their name.
n Every property returns a value of some sort. Retrieving a property’s value

doesn’t change anything about the object or whatever it represents.
n Some properties let you assign new values to them.This changes the attribute of

the object and the underlying thing it represents.
n Methods are the things the object’s program can do for you.
n Methods act like functions and subroutines; they can have arguments passed to

them.
n Methods don’t have to return a value, but some do.
n Invoking a method can change something about the object or the real-world

thing it represents.

Therefore, FolderExists is a method because it takes an argument (the name of the
file it is to look up). Properties don’t need arguments because they are intrinsic attrib-
utes of the object itself.As such, they don’t need any additional information to return
a value.

There is something else I should mention about properties: In many cases, you can
both evaluate them (examine their values) and assign new values to them.They work
just like variables in this regard.The difference is that when you assign a new value to
a property, the object software makes a corresponding change in the actual thing the
object represents. For example, assigning a new value to a File object’s Name property
changes the actual file’s name, as shown here:

101Using Objects with VBScript

WScript.echo file.Name ‘ evaluate the property
file.Name = “newname” ‘ assign a new value to the property

Keep in mind, however, that some objects don’t let you change a property’s value. In
this case, the object’s documentation calls it a read-only property.And, a few specialized
objects are designed so that changing the object’s properties doesn’t immediately
change the underlying thing the object represents, until you use a special method that
“commits” the change.Again, the object’s documentation discusses this, and I point
out a few objects of this sort in later chapters.

Nested Objects
One other thing I want to point out is that you don’t necessarily need to save every
object reference in a variable. In the previous example that displayed information
about Notepad.exe, if I only wanted to see the creation date, I could have skipped the
step of storing the File object in variable file and could have used these statements:

set fso = CreateObject(“Scripting.FileSystemObject”)
WScript.echo “Notepad.exe was created on”,_

fso.GetFile(“c:\windows\notepad.exe”).DateCreated

In this case,VBScript refers to fso to call the GetFile method, and the returned object
is used to fetch the DateCreated property. It’s not unusual to see several levels of
objects this way; this is called a nested object reference.

When you’re working with Microsoft Word objects, this is common. In scripts or
Word macros, you might often see statements like these:

ActiveDocument.PageSetup.Orientation = wdOrientLandscape
ActiveDocument.PageSetup.TopMargin = InchesToPoints(0.5)
ActiveDocument.PageSetup.BottomMargin = InchesToPoints(0.5)
ActiveDocument.PageSetup.PageWidth = InchesToPoints(11)

In this example, the ActiveDocument object returns a PageSetup object, which has
orientation and margin properties you can set.You could save yourself some extra key-
strokes in creating this script by saving a reference to the PageSetup object, as follows:

set ps = ActiveDocument.PageSetup
ps.Orientation = wdOrientLandscape
ps.TopMargin = InchesToPoints(0.5)
ps.BottomMargin = InchesToPoints(0.5)

ps.PageWidth = InchesToPoints(11)

However,VBScript has a special program construct called the With statement that
makes this even easier.The previous example could be rewritten this way:

with ActiveDocument.PageSetup
.Orientation = wdOrientLandscape
.TopMargin = InchesToPoints(0.5)

102 Chapter 3 Scripting and Objects

.BottomMargin = InchesToPoints(0.5)

.PageWidth = InchesToPoints(11)
end with

The With statement lets you specify an object reference that is taken as the “default”
object between With and End With. Inside the With statement, you can refer to the
default object’s methods and properties by preceding them with a period but no vari-
able name. Not only can this save you a lot of typing, but it’s easier to read, and it
lessens the workload on VBScript, thus speeding up your script.

Note
If you need to, you can refer to other objects inside the With statement by using the fully spelled-out

object.method.etc syntax.

Releasing Objects
When you create an object,Windows activates the object’s class server program to
manage the object for you. In the case of Scripting.FileSystemObject, you usually
create one of these objects at the beginning of your script and use it throughout.
When your script completes,Windows releases the object you’ve created.The class
server program takes care of freeing up its memory and other housekeeping chores.
You don’t have to worry about it at all.

However, if you use a script to create multiple objects, you might find that it’s appro-
priate to explicitly release them when you are through using them. For instance, a
script that creates multiple Word documents should tell Word to close each document
when you’re finished with it; then, the script should release the document object, lest
you end up with hundreds of documents open at once.

You can explicitly tell an object you’re finished with it by setting the variable that
holds the object reference to the value Nothing. Later in this book, there are examples
of this in some of the sample scripts.

Working with Collections
If you ask Scripting.FileSystemObject for the files or subfolders contained in a
folder or drive, it might need to return multiple File or Folder objects.To manage
this, it actually returns a single collection object that contains all the File or Folder

objects inside it.You can then examine the contents of the collection to look at the
individual items.

103Using Objects with VBScript

A collection object has a Count property that tells how many items are inside and an
Item method that returns a specific item from the collection.This would lead you to
expect that you could write a script like this to print the names of the files of the root
folder on your hard drive:

set fso = CreateObject(“Scripting.FileSystemObject”)
set files = fso.GetFolder(“c:\”).Files
for i = 1 to files.Count

WScript.echo files.Item(i).Name
next

However, this script doesn’t work.With a folder collection, Item doesn’t allow you to
retrieve items by number. It requires you to specify the name of the particular object
you want, and if you don’t yet know the names, this isn’t very useful.

To scan through collection objects that can’t be referenced by number, each
scripting language provides a way to scan through collections without knowing what
they contain.VBScript, for example, provides a special version of the For loop called
For Each.

Pattern
To scan through a collection object named collection in VBScript, use the For Each loop as

follows:

for each objectvar in collection
�statements using objectvar

next

The For Each loop runs through the statements once for each object in collection,
and the variable objectvar is made to refer to each of the individual objects in turn.
Using For Each, and using a variable named file to hold the individual file objects,
our folder-listing script now works:

set fso = CreateObject(“Scripting.FileSystemObject”)
set files = fso.GetFolder(“c:\”).Files
for each file in files

WScript.echo file.Name
next

You could even use the following shorter version:

set fso = CreateObject(“Scripting.FileSystemObject”)
for each file in fso.GetFolder(“c:\”).Files

WScript.echo file.Name
next

Now, if you don’t plan on writing scripts in any other languages, skip ahead to the
section titled “Using the WScript Object” on p. 111 of this chapter for more informa-
tion about the built-in WScript object.

104 Chapter 3 Scripting and Objects

Using Objects with JScript
JScript, likeVBScript, is a strongly object-oriented language—it’s expected that
programmers will use objects to extend its power. JScript supplies 11 built-in object
types, and programmers can create generic and structured object types in scripts. I
don’t discuss the intrinsic object types here because this book focuses on external
scripting and Windows management objects.

External COM/ActiveX objects are created using the new statement, as follows:

variablename = new ActiveXObject(“objectname”);

Here, variablename is the declared variable that is to receive the new object reference.

After you have an object variable in hand, its methods and properties are accessed
using variable.propertyname or variable.methodname. For example, this is a short
script that tells whether your C: drive has a folder named \windows:

var fso;
fso = new ActiveXObject(“Scripting.FileSystemObject”);
if (fso.FolderExists(“c:\windows”))

WScript.echo(“There is a folder named c:\\windows”);

Parentheses must be used on all method calls, even if the return value is not used—
VBScript tolerates a statement such as

WScript.echo “There is a folder named c:\windows”

but JScript does not.

Case Sensitivity
In the WSH environment, JScript programs have access to a predefined object
named WScript, which provides several useful methods and properties pertaining to
the script’s environment, execution, and debugging. Because JScript is a case-sensitive
language, to use this object you must type WScript with a capital W, exactly as
written here.

However, the method and property names of ActiveX and COM objects are not case
sensitive. For example, JScript permits you to type WScript.echo or WScript.Echo.

Working with Collections
If you are used to using JScript with Internet Explorer in browser or server-side
scripts, you might be familiar with objects that return collections of objects. Many
Internet Explorer objects let you scan through the object collection using JScript’s
for…in statement.

105Using Objects with JScript

However, most other objects’ collections do not work with for…in and you must use
an Enumerator object to work with them.This is true of most objects you encounter
in the WSH environment. JScript’s Enumerator object gives you a way of accessing a
collection by stepping forward or backward through the collection’s list of objects.

To use a collection provided by a scripting or other ActiveX object, you must first
convert it to an enumerator:

enumObject = new Enumerator(collectionObject);

The Enumerator object has no properties (in particular, no Length property; if you
need to know the number of items, you must get it from the original collection’s
Country property). It does have an internal concept of its “position” in the collection
and has methods that let you move the current position forward or back to the begin-
ning. Its four methods are listed in Reference List 3.1.

REFERENCE LIST 3.1 Methods of the JScript Enumerator Object
Item

Returns the current item from the collection.The return value is an object of
whatever type the collection holds. If the collection is empty or the current
position is undefined, it returns undefined.

AtEnd

Returns a Boolean value: True if the current item is the last in the collection, if the
current position is undefined, or if the collection is empty. Otherwise, False is
returned.

moveFirst

Makes the first item in the collection the current item. If the collection is empty,
atEnd is immediately True.

moveNext

Makes the next item in the collection the current item. If the collection is
empty or the current item is already the last in the collection, item
is undefined.

Although a newly created enumerator should be positioned on the first item automat-
ically, it’s a better style to use moveFirst before examining atEnd or item.

Pattern
To scan through a collection object named obj, use an enumerator in this way:

e = new Enumerator(obj);
for (e.moveFirst(); ! e.atEnd(); e.moveNext()) {

x = e.item();
�statements using x

}

106 Chapter 3 Scripting and Objects

Here’s an example.This script lists the names of all the files in the root folder on the
C: drive:

var fso, e, file;

fso = new ActiveXObject(“Scripting.FileSystemObject”);

e = new Enumerator(fso.GetFolder(“c:\\”).files);
for (e.moveFirst(); ! e.atEnd(); e.moveNext()) {

file = e.item();
WScript.echo(file.name);

}

Now, if you plan on writing scripts only in JScript, you can skip ahead to the section
titled “Using the WScript Object” for more information about the built-in WScript
object.

Using Objects with ActivePerl
ActiveState’s ActivePerl lets you run Perl scripts in the WSH environment. Perl’s envi-
ronment is already rich with file-management and network-communication tools, and
if you’re already a skilled Perl programmer, you might wonder what WSH can add. In
other words, why use cscript or wscript to run Perl, when you could just run
perl.exe directly?

The answer is that in the WSH environment, it’s a simple matter to access COM, OLE
(Automation), and ActiveX objects.The helpful $WScript object is predefined in the
WSH environment. COM objects are the key to accessing network configuration,
Active Directory, and Windows Management Instrumentation (WMI).Although you
probably don’t want to bother with the Windows script objects for file and directory
management, the system-management tools make WSH worthwhile.

Running Perl Scripts in WSH
The ActivePerl installer creates two file associations for Perl files: .pl (Perl) is associ-
ated with Perl.exe, and .pls (PerlScriptFile) is associated with WSH.

If you use the familiar .pl filename extension for Perl programs that you want to run
in the WSH environment, you have to use the command

cscript /engine:Perlscript myscript.pl

to fire them up. Because you might want to start scripts with the command line or
from Explorer, your life is much easier if you use the extension .pls for programs
meant to be used with WSH.This way, you can double-click the files in Explorer or
use commands such as

107Using Objects with ActivePerl

start myscript.pls
myscript
cscript myscript.pls

to start script files;WSH knows what to do.You can also use PerlScript inside the
structured .WSF files I discuss in Chapter 9,“Deploying Scripts for Computer and
Network Management.”

Here are some important things to remember when writing Perl scripts for use with
WSH:

n You cannot use familiar Perl command-line switches such as -w.You need to
directly set option values in the script.

n Any command-line arguments specified to cscript or wscript are not placed in
the ARGV array. Instead, you must fetch command-line arguments from the
$WScript->Arguments collection.

The Perl Object Interface
ActivePerl can interact with COM,ActiveX, and OLE (Automation) objects.The
extended syntax for accessing methods is

$objectname->Method [(arguments[, …])];

Here’s an example:

$myobject->SomeMethod
$myobject->Anothermethod(“argument”, 47);

The syntax for accessing Property values is

$objectname->{Propertyname}

Here’s an example:

value = $myobject->{Length};
$myobject->[color] = “Red”;

Because the syntax for accessing methods and properties is different, you must take
care to check the COM object’s documentation carefully to determine whether a
value you want to use is a property or method.

Caution
If you attempt to access an object property or method that does not exist or if you have misspelled the

name, by default Perl does not generate an error. The result is simply undefined (undef). This makes it

difficult for you to debug your script.

To avoid this pitfall, put

$^W = 1;

108 Chapter 3 Scripting and Objects

at the beginning of every script file. This causes Perl to print an error message if you attempt to reference

an undefined method or property. I have found that the error message might not tell you clearly that the

problem is an unrecognized property or method, but at least you get some warning.

To set a read/write property, you can simply assign a value to it, as in the following:

$file->{name} = “newname”;

The standard WScript object, which I discuss in more detail later in the chapter, is pre-
defined by the WSH environment and is available to a Perl script. For example, the
current version of WSH can be printed with this script:

$WScript->Echo(“The version is”, $WScript->Version);

You could use conventional Perl I/O and write

print “The version is “, $WScript->Version;

instead. However, print writes to stdout, which is undefined when the script is run
by WScript (the windowed version of WSH).A script using print works under
Cscript, but not WScript. It’s up to you, of course, but if you want your script to work
equally well within either environment, use the $WScript.Echo method for output.

Note
Perl is a case-sensitive language, and object variable names such as $WScript must be typed exactly as

shown here. However, an object’s method and property names are not case sensitive.

To create an instance of an Automation, OLE, or ActiveX object, you can use either of
two methods.The simplest is to use the CreateObject method provided with the
built-in $WScript object, as in

$myobj = $WScript->CreateObject(“Scripting.FileSystemObject”);

You can also use the ActivePerl Win32::OLE extensions provided with ActivePerl:

use Win32::OLE;
$excel = Win32::OLE->new(‘Excel.Application’)

or die “OLE new failed”;

For information on the OLE extensions, see the ActivePerl help file.

Working with Collections
Some of the COM objects you encounter in this book and elsewhere return collection
objects, which are containers for a list of other objects. For example, the Drive prop-
erty of Scripting.FileSystemObject returns a collection of Drive objects, and the
WScript.Arguments property returns a collection of Argument objects. I discussed the
methods and properties of the collection object earlier in the chapter.

109Using Objects with ActivePython

Because the items of a collection object can’t be obtained by an index value (at least,
not directly), they must be “scanned” using an enumerator object.An enumerator gives
you access to a collection object by maintaining the concept of a current location in
the list, which you can then step through.To scan the list a second time, you must
reset the current location to the beginning of the list and then step through the list
again.

There are three ways to enumerate a collection. First, you can explicitly create an
enumerator object, as in the following example:

$^W = 1;

$fso = $WScript->CreateObject(“Scripting.FileSystemObject”);
$fls = $fso->GetFolder(“C:\\”)->Files; # get collection of files in c:\
$n = $fls->{Count}; # just for kicks say how many there are
print $n, “ files\n”;

$enum = Win32::OLE::Enum->new($fls); # create enumerator object
while (defined($file = $enum->Next)) { # assign $file to each item in turn

print $file->{Name}, “\n”; # print the file names
}

A second way uses the in function to hide the enumerator:The in operator returns
Win32::OLE::Enum->All(obj), which in turn returns a Perl array given a collection
object. Instead of creating $enum and using a while loop in the previous example, I
could have written the following:

foreach $file (in $fls) {
print $file->{Name}, “\n”;

}

Seeing this, you might guess that the third way is to use in to create an array of the
subobjects, which you can then access explicitly:

@file = in($fls);
for ($i = 0; $i < $fls->{Count}; $i++) {

print $file[i]->{Name}, “\n”;
}

Of the three methods, the foreach method is the most straightforward, and it’s the
easiest on the eyes and fingers. Unless you really want to use an array, I recommend
foreach.

Now, you might want to skip ahead to the section titled “Using the WScript Object”
for more information about WSH built-in objects.

Using Objects with ActivePython
Many powerful CGI (Web-based) applications are written in Python, and ActiveState’s
ActivePython does a great job of integrating Python into the ASP scripting environ-
ment.This means it can also be used with WSH. Python, like Perl, has a rich set of

110 Chapter 3 Scripting and Objects

built-in and add-on functions that give you complete access to the Windows API, so
the scripting utility objects described in this book aren’t going to be terribly interest-
ing to the Python programmer. Still, you might want to use the scripting objects in
the interest of increasing your scripts’ language portability, and because COM/ActiveX
objects are the only way to get programmatic access to Automation servers such as
Microsoft Word.

Unlike Perl, Python was designed from the ground up as an object-oriented language.
Objects, properties, and methods are its bread and butter, so to speak. If you’re coming
to Python from a background in other languages, there are a few points of which you
should be aware:

n The WScript object discussed throughout this chapter is predefined. Python is
case sensitive, so the object must be referred to as WScript, exactly.

n Although Python is generally case sensitive, the names of COM object methods
and properties are not.

n Perhaps the easiest way to create ActiveX/COM objects is with the
CreateObject method provided by WScript. Here’s an example:

fso = WScript.CreateObject(“Scripting.FileSystemObject”)
files = fso.GetFolder(“C:\\”).Files

n You cannot directly assign a value to a COM object property.You must use

object.SetValue(“propertyname”, newvalue)

instead.
n Python automatically imports all predefined constants associated with an OLE

object when you create an instance of the object.The constant values are
created as properties of win32com.client.constants. For example, if you should
create a Microsoft Word document, the value win32com.client.constants.
wdWindowStateMinimize will be defined.

For more information about COM integration with Python, see the ActiveState docu-
mentation for the win32com package.

Working with Collections
Python automatically treats COM collection objects as enumerations.The easiest way
to scan through the contents of an enumeration is with the for…in statement, as in this
example:

fso = WScript.CreateObject(“Scripting.FileSystemObject”)
files = fso.GetFolder(“c:\\”).Files

for file in files:
print file.name

111Using the WScript Object

Now, continue with the next section for more information about the built-in WScript
object.

Using the WScript Object
WSH provides a built-in object named WScript for all scripts in all languages.We’ve
used its Echo method in many of the examples in this book. WScript has several other
methods and properties, as listed in Reference List 3.2, that you might find useful in
writing scripts.

REFERENCE LIST 3.2 Properties and Methods of the WScript Object
Properties

Arguments

Returns a collection of WshArguments objects, representing the strings on the com-
mand line used to start WScript or Cscript. For example, if a script is started with
the command

WScript myscript.vbs aaa bbb

or

myscript aaa bbb

then WScript.arguments.item(0) would yield “aaa” and
WScript.arguments.item(1) would yield “bbb”. WScript.arguments.length gives
the number of arguments.

I discuss arguments in more detail in the next section.

BuildVersion

Returns a number identifying the current version of Windows Script Host.This
number might vary between versions of Windows and as WSH is updated through
Windows Update. I have seen WSH on Windows 7 return 0 for this property. I
would not trust it to be usable.

FullName

Returns the full path and filename of the WSH program that is running your script
(for example, c:\Windows\System32\cscript.exe).

Interactive

A Boolean value: True if the script is running in Interactive mode and False
if in Batch mode.You might set this property using the //I or //B switch on
the command line, or you might directly set the value in a script (for example,
WScript.Interactive = False). In Batch mode, message and input boxes do
not appear.

112 Chapter 3 Scripting and Objects

Name

Returns the name of the script host program (for example, “Windows Script
Host”).

Path

Returns the name of the directory containing the script host program (for exam-
ple, “c:\Windows\System32”).

ScriptFullName

Returns the full path and name of your script file (for example,
“c:\test\myscript.vbs”).

ScriptName

Returns the name of your script file (for example, “myscript.vbs”).

StdErr, StdIn, and StdOut

These are file streams that can be used to read from the standard input or write to
the standard output and error files. I discuss these in Chapter 4,“File and Registry
Access.”These properties are available with cscript only, not wscript.

Version

Returns the version of WSH (for example, “Version 5.7”).

Methods

CreateObject(progid [, prefix])
Similar to the built-in CreateObject function.With a prefix argument, it creates
connected objects that can communicate events to the script. (Events are beyond
the scope of this book.)

ConnectObject object, prefix

Connects an existing object to the script using event handler functions whose
names begin with the string prefix.

DisconnectObject object

Disconnects the script from an object’s events.

Echo arg [, arg]…
Displays any number of arguments of any type, formatted as strings and separated
by spaces. Cscript writes them to the standard output, whereas WScript displays
them in a pop-up message box.

GetObject(filename [, progid][, prefix])
Creates an object based on information stored in a file (for example, a document).
If progid is not specified, it is determined from the file type. prefix might be spec-
ified to connect object events to the script.

GetObject can also obtain a reference to a preexisting object by specifying a special
name called a moniker.This is illustrated extensively in Chapters 7 and 8.

113Using the WScript Object

Quit [errorcode]
Terminates the script. If a numeric value is specified, it is returned as the process’s
exit code—this can be useful when running scripts from batch files.

Sleep msec

Causes the script to pause for msec milliseconds. For example, WScript.sleep 1000
pauses for one second.

Of the properties and methods listed, the most useful are the Echo and Arguments

properties. Let’s see how you can use arguments to control what a script does when
you run it.

Retrieving Command-Line Arguments
The use of command-line arguments is a common way of specifying information to a
script at the moment it’s run.The most common use for this is to write scripts that
manipulate files, user accounts, or computers.The script can be written in a generic
way, so that you can specify the particular files, people, or what-have-you at the time
you run the script. For example, a script to process a file could be written like this:

filename = “specialdocument.doc”
‘statements to operate on the file named filename
�

However, if you wanted to use this script to work with a different file, you’d have to
edit the script. If you want a more general-purpose script, write the script to get the
filenames from its command line, so you can simply type something like this:

C:\> myscript some.doc another.doc

Then, the script will operate on the files whose names you typed, rather than on a file
whose name is built in to the script.

Usually, each programming language has its own way of providing command-line
arguments to a program, but in the WSH environment, there is only one way they are
obtained—through the WScript object’s Arguments property.

The WScript.Arguments property returns a collection of objects, one for each item
listed on the script’s command line.You can write a script to use these arguments this
way, more or less:

for each filename in WScript.arguments
‘ statements to operate on the file named filename
�

next

114 Chapter 3 Scripting and Objects

Of course, you have to use whatever method of manipulating objects and collections is
appropriate to the script language you’re using (this example is in VBScript).With
script myscript.vbs, the command line

C:\> myscript some.doc another.doc

sets up the WScript.Arguments collection with two items: some.doc and another.doc.
In VBScript, the for each statement lets your script process them in turn.

If you don’t specify any command-line arguments, though, this script does nothing at
all. It’s best to have a script tell the user how to use it properly in this case. Here’s a
scheme for writing command-line scripts that you might find to be handy.

Pattern
When a script uses command-line arguments to specify what files (or users, computers, or whatever)

to work with, it should explain how to use the script if no arguments are specified:

if WScript.arguments.length = 0 then
‘ no arguments on the command line? Display usage information, then quit
WScript.echo “This script processes the named files”
WScript.echo “by doing etc etc etc to them”.
WScript.echo “Usage: myscript file [file ...]”
WScript.quit

end if
for each filename in WScript.arguments

‘ commands to process filename go here
�

next

Alternatively, you might want your script to operate on a default file if no files are
named on the command line. Such a script should use a subroutine to do the actual
processing of the files, so the subroutine can be called with either the default file or
with specified files. In VBScript, it looks like this:

if WScript.arguments.length = 0 then
‘ no arguments on command line -- process file “default.file”
process “default.file”

else
‘ process each of the files named on the command line
for each filename in WScript.arguments

process filename
next

end if

sub process (filename)
‘ statements to process filename
�

end sub

In Chapter 9, I show you how to use more powerful types of command-line processing.

115Locating and Using Unusual Objects

Locating and Using Unusual Objects
Several powerful, commonly used objects provided with Windows are documented by
Microsoft in the Windows Scripting reference documents, and I discuss most of these
in Chapters 4–9. If you’re new to scripting, these should be enough to get you started,
so you might want to skip ahead to Chapter 4.

In addition to these standard objects, many developers and companies provide add-in
objects for free or for sale.There is, however, a wealth of objects already on your com-
puter; hundreds of COM objects are supplied with Windows, and hundreds more are
added if you install applications such as Word, Excel, and Visio. Many are designed just
for the use of specific application programs and are of no use to script authors. Others
are general-purpose objects for use by scripts and compiled programs. How can you
tell which objects are installed on your computer and of those, which are useful for
scripting? To be honest, identifying useful objects is tricky business, but if you enjoy
detective work, read on.

To get an idea of what I mean by “hundreds of objects,” take a look at the Windows
Registry.

Caution
Improper changes to the Windows Registry can make your computer nonfunctional. There is no undo

command in the Registry Editor, so be very careful not to make any changes while examining the

Registry.

To view the Registry on Windows 7 or Vista , click Start, type regedit into the
search box, and press Enter. On XP, click Start, Run; type regedit; and press Enter.
Expand the entry for HKEY_CLASSES_ROOT and scroll down past the .xxx-format entries
to those that spell out names like “something dot something,” as shown in Figure 3.4.
Most of the entries from here down represent object classes; you can tell which ones
do by the presence of a CLSID or CurrVer key under the object name.

In Figure 3.4, the FaxControl.FaxControl.1 entry has a CLSID entry, so it is an object.
A CLSID (or class ID) is a long, essentially random number that object authors use to
give their object a unique “fingerprint.”A CurrVer entry, such as the one found under
FaxControl.FaxControl, is used when there’s a chance more than one version of the
class program might be installed on your computer.The CurrVer value tells Windows
where to look to find the class information for the most recent version of the object.
Find that entry, and you find the object’s CLSID.

116 Chapter 3 Scripting and Objects

Figure 3.4 COM object classes are listed in the Registry under HKEY_CLASSES_ROOT,
after the .xxx entries. Objects have an associated CLSID entry.

The first step in scouting out new and interesting objects is to peruse the Registry for
names that sound interesting. For this example, I’ll follow up on the
FaxControl.FaxControl.1 object from Figure 3.4.

When you’ve found a CLSID value for a potentially interesting object, locate the
matching value under My Computer\HKEY_CLASSES_ROOT\Clsid, where you find the
information Windows uses to locate and run the program file that actually manages
the object.

Figure 3.5 shows the class information for FaxControl.FaxControl.1.The
InprocServer32 entry shows the actual program module (usually a DLL or OCX file)
that manages the object. In this case, the program is \WINDOWS\system32\Setup\
fxsocm.dll.The name of this object and the location of its DLL make it sound like it
might be used for setting up the Fax service. But how?

Figure 3.5 Class ID information for the FaxControl.FaxControl.1 object.

117Locating and Using Unusual Objects

The first thing you have to check is whether the object is even suitable for use in
script programs; some aren’t.The first test, then, is to see whether you can create an
object in your chosen scripting language. Use the server.object name you found
under HKEY_CLASSES_ROOT. In VBScript, it looks like this:

set obj = CreateObject(“FaxControl.FaxControl.1”)
WScript.echo “CreateObject worked!”

If this script produces an error message, the object can’t be used in scripts. If it runs
without an error message, as it did when I tested FaxControl.FaxControl.1, the object
has passed the first hurdle.

Your next step should be to search the Internet for references to the object name
(for example, search for FaxControl.FaxControl.1 or FaxControl.FaxControl). I’ve
found that Google is a great place to start. If you see references to pages on
msdn.microsoft.com, these might point to complete documentation for the object in
question. Be sure to search Google’s “Groups” section, too. Many programmers haunt
the comp.xxx groups, and if you’re lucky, you might find an archived discussion about
the object. (Unfortunately, if you do a Google search for FaxControl.FaxControl, you
will most likely find only references to this very discussion from this book or from its
first edition titled Windows XP Under the Hood, but no documentation.)

If you can’t find documentation online, Microsoft or the object’s creator might have
supplied a help file describing the object. See whether the Clsid Registry values list a
help file ending in .hlp or .chm. If it does, at a command prompt type

start pathname\helpfile.xxx

where pathname\helpfile.xxx is the full path to the help file listed in the Registry.
This might show you how the object works. In the case of FaxControl.FaxControl.1,
there is no help file.

Note
If the help file has the .hlp extension and you’re using Windows 7, Vista or Windows Server 2008, you

have to install the old Windows Help viewing program before you can open the .hlp file. Go to

www.microsoft.com and search for “download winhlp32.exe”.

If no help file is named, don’t give up. Because COM objects are designed to be used
by many programming languages, they can—if their developer wanted them to—pro-
vide a list of methods, properties, and their arguments to any program that asks. If your
mystery object has this feature, you might be able to burrow into the object’s program
file to find its usage information.

www.microsoft.com

118 Chapter 3 Scripting and Objects

The easiest way to do this is with an object browser, a program that’s designed to do just
this sort of burrowing. Microsoft provides one with many of its applications. If you
have Microsoft Word, Excel, or PowerPoint, the Object Browser is included as part of
the Macro Editor. Start the application and click Tools, Macro,Visual Basic Editor.
Then, click View, Object Browser. If you have the full developer’s version of Visual
Basic installed, run it and click View, Object Browser.

To view information for a questionable class, you need to tell Word (or Visual Basic,
and so on) to look into the class’s program file.To do this, click Tools, References.
Click Browse and locate the DLL or OCX file you found in the Registry. Click
Open, and the library appears as a checked item in the Available References list, as
shown in Figure 3.6.

Figure 3.6 Selecting an object class type library to view in the Object Browser.

When the object type is listed and checked under Available References, click OK.

Then, select the class name from the library list in the upper-left corner of the Object
Browser window, as shown in Figure 3.7. Choose object types in the left panel; the
browser displays the object’s methods, procedures, and predefined constants in the
right panel under Members.You can select the objects in this list one by one, and in
the bottom panel, the browser displays the method or procedure’s arguments, if any,
and any explanatory text it can dig up.

119Locating and Using Unusual Objects

Figure 3.7 Viewing a class’s type information in the Object Browser.

If you don’t have any of the applications I’ve mentioned, another tool, called the
OLE/COM Object Viewer, is provided with the Windows XP and Windows 2000
Resource Kits which you can download from www.microsoft.com.You can also
download this tool directly from www.microsoft.com by searching for “OLE/COM
Object Viewer.”

The OLE/COM Object Viewer is much more difficult to use than the Object
Browser. Here are some tips for using this viewer:

n Try to find the object of interest under Object Classes,All Objects. I’ve found
that not all the objects I’m interested in are listed there. For example,
Scripting.Dictionary is present, whereas Scripting.FileSystemObject is
missing. If you can’t find it there, look under Type Libraries.

n Double-click the library or object to view its class information.This information
is designed for COM object programmers, not end users, so it’s going to be
tough to understand.

n Typedef items list some predefined constant values used by all the objects
provided by the server.

n Coclass items define the objects the class server can create. If you view the
contents of a coclass item, you find the class’s predefined constants, properties,
and methods.

Although either object browser can show you what sorts of values the methods
and properties expect and return, it can’t tell you what these values mean, so you have
to experiment to find out if and how you can use them. In the case of
FaxControl.FaxControl.1, the Object Browser showed two properties and two
methods, as listed in Reference List 3.3.

www.microsoft.com
www.microsoft.com

120 Chapter 3 Scripting and Objects

REFERENCE LIST 3.3 Properties and Methods of the FaxControl.FaxControl
Object

Properties:

IsFaxServiceInstalled

Returns a Boolean value.

IsLocalFaxPrinterInstalled

Returns Boolean value.

Methods:

InstallFaxService

Returns no value and takes no arguments.

InstallLocalFaxPrinter

Returns no value and takes no arguments.

This sounds pretty straightforward.There are no arguments to supply to these meth-
ods, so there’s no detective work required there.Also, the names sound pretty self-
explanatory.This object lets you know whether the Fax service and the Fax Printer
are installed, and it can install them. But does it work?

Here’s a sample script I wrote to check:

set obj = CreateObject(“FaxControl.FaxControl.1”)
WScript.echo “IsFaxServiceInstalled =”, obj.IsFaxServiceInstalled
WScript.echo “IsLocalFaxPrinterInstalled =”, obj.IsLocalFaxPrinterInstalled

The results when I ran it on a Windows XP computer that had a modem but did not
have the fax service set up were

IsFaxServiceInstalled = 0
IsLocalFaxPrinterInstalled = 0

When I ran the script

set obj = CreateObject(“FaxControl.FaxControl.1”)
obj.InstallFaxService

Windows Setup asked for my Windows XP CD disk and installed the Fax service and
printer.The first script’s output became this:

IsFaxServiceInstalled = -1
IsLocalFaxPrinterInstalled = -1

Here, -1 means True (any nonzero value means True), so the object does the job you
expect it to. Here’s a script that can automatically be sure a user’s Windows XP system
has the Fax service as well as a fax and printer installed:

set obj = CreateObject(“FaxControl.FaxControl.1”)

if not obj.IsFaxServiceInstalled then

121Locating and Using Unusual Objects

WScript.echo “Installing Fax Service...”
obj.InstallFaxServic

elseif not obj.IsLocalFaxPrinterInstalled then
WScript.echo “Reinstalling Fax Printer...”
obj.InstallLocalFaxPrinter

else
WScript.echo “Fax printer is ready to go.”

end if

This is a good example of the functionality you can find by digging into the many
objects that come with Windows, and it shows the kinds of scripts you can write to
manage Windows computers so other users don’t have to poke around with the
Control Panel themselves.

(On Windows Vista, this script works only on the Business, Enterprise and Ultimate
editions.The Home editions don’t come with built-in faxing support, but, all versions
of Windows 7 include the Faxing service.)

This page intentionally left blank

Symbols &
Numerics

& character, 54-55, 75
& operators

PowerShell, 646
+ operators, 54-55

64-bit installers, creating with
IExpress, 398

A
AccountDisabled property
(IADsUser object), 362

active connections, listing, 585
Active Directory

LDAP, 364-367
managing, 364
objects, 368

IADsO, 369
IADsO object, 369-370
IADsOU, 369
IADsOU object, 369-370
RootDSE, 368
RootDSE object, 368-369

X.500, 364-367
ActivePerl objects, 106

collections, 108-109
Perl Object Interface, 107-108
running Perl scripts in Windows

Script Host, 106-107
ActivePython objects, 109-110
ActiveState Website, 15
Add method (BodyPart
collections, 247

AddAttachment method
(CDO.Message objects), 238-239

AddBodyPart method (BodyPart
objects), 248

adding
attachments to messages (CDO), 261
drive mappings, 218-219
images to HTML messages (CDO),

262-263
AddPrinterConnection methods
(WSHNetwork objects)

arguments
LocalName arguments, 208
Password arguments, 209
RemoteName arguments, 209
UpdateProfile arguments, 209
UserName arguments, 209

DOS session printers, redirecting,
225-226

scripts, printing from, 229-230
AddRelatedBodyPart method
(CDO.Message objects), 239

constant values, 241
AddWindowsPrinterConnection
methods (WSHNetwork
objects), 209

arguments, PrinterPath arguments,
209, 224

network printers, connecting to, 223-224

administrative tools (Windows
XP), 736-738

Administrator account, ADSI
security, 328

ADO (ActiveX Data Objects),
242, 250

ADSI (Active Directory Scripting
Interface), 319-320

collections, 339-340
common uses for, 320
containers, 330-332
directories, security, 328-330
Exchange (Microsoft), 364
EzAD Scriptomatic tool, 372
IIS (Internet Information

Services), 364
LDAP provider, 364, 366-367

Index

IADsO object, 369-370
IADsOU object, 369-370
RootDSE object, 368-369

limitations of, 321
multiple inheritance, 324
objects, 322-324

creating, 325-328
directory security, 328, 330
IADs object, 333-336
IADsCollection object, 336-338
IADsComputer object, 340
IADsComputerOperations object, 340
IADsContainer object, 336-338
IADsDomain object, 342-344
IADsFileService object, 345-346
IADsFileServiceOperations object,

345-346
IADsFileShare object, 347-348
IADsGroup object, 349-350
IADsMembers object, 350
IADsNamespaces object, 351
IADsPrintJob object, 351-352, 354
IADsPrintJobOperations object,

351-354
IADsPrintQueue object, 354-357
IADsPrintQueueOperations object,

354-357
IADsPrintServiceOperations object,

357, 360
IADsResource object, 346
IADsService object, 357-360
IADsServiceOperations object,

360-361
IADsSession object, 361-362
IADsUser object, 362-363
leaves, 330
Microsoft documentation, 332
multiple inheritance, 324-325
WinNT provider, 332

scripts, developing, 370-371
WSH (Windows Script Host), 321

AdsPath property (IADs
object), 334

aliases, 450, 612
altering script variable values,
Script Debugger (Windows), 45

AppActivate method
(WScript.Shell object), 183-184

appendChild methods
(IXMLDOMNode object), 174

applets, Control Panel, 546-547
argument substitution, 496-497
arguments, 31-32

batch file command-line, 726
delayed expansion, 511-513
editing, 498-499
validating, 519

checking (batch files), 519
CMD command-line processing, 454
CMD shell, separating, 454
command-line arguments

extracting named arguments, 387
Named collection, 386-387
processing, 386
processing named arguments, 386
processing unnamed arguments, 389
retrieving, 113-114
Unnamed collection, 389

Force arguments (WSHNetwork
objects), 210-211

LocalName arguments
(WSHNetwork objects), 208-210

multiple arguments, processing,
503-506

multiple, batch file processing,
503-506

Name arguments (WSHNetwork
objects), 210-211

Named collection (command-line
arguments)

Count method, 386
Exists method, 387
Items property, 386
Length property, 386

Password arguments (WSHNetwork
objects), 209-210

PrinterPath arguments
(WSHNetwork objects), 209, 224

RemoteName arguments
(WSHNetwork objects), 209-210

substituting (batch files), 496
unnamed arguments, processing for

WSF files, 389-390
Unnamed collection (command-line

arguments)
Count method, 389
Items property, 389
Length property, 389

754 ADSI (Active Directory Scripting Interface)

UpdateProfile arguments
(WSHNetwork objects), 209-211

UserName arguments
(WSHNetwork objects), 209-210

Arguments properties
(WshShortcut object), 193

Arguments properties
(WshUrlShortcut object), 193

arithmetic operators (VBScript
variables), 54-55, 717

arithmetic operators (VBScript), 55
arrays, 89-91

PowerShell, 632-636
comparisons, 640-643
values, extracting, 636-637

VBScript, 89-91
assigning

drives, pushd command (CMD), 518
logon scripts with Group Policy,

418-421
paths, 134
random drive letters in batch

files, 518
user profile logon scripts, 416, 418

assignment operators (PowerShell),
648

assoc command (CMD), 462
async properties (DOMDocument
object), 170

AtEndOfLine properties
(TextStream object), 151

AtEndOfStream properties
(TextStream object), 151, 162

attachments, adding to messages
(CDO), 261

Attachments property
(CDO.Message objects), 236

attrib command (file management
tools), 557-558

attributes, setting/clearing, 558-559
finding hidden files, 558

attrib command-line tool, 557-559
attribute names (LDAP), 365
attributes

file attribute values, 141
changing, 143-144

testing, 142
folder attribute values, 141

changing, 143-144
testing, 142

multiple attributes, testing, 143
setting/clearing (attrib command),

558-559
attributes properties
(IXMLDOMNode object), 173,
175

Attributes properties
(Scripting.File object), 145

authentication,WMI, 295-296
impersonation, 297-298
privileges, 298-299

AUTOEXEC.NT file, configuring
NTVDM, 535-536

AutoGenerateTextBody property
(CDO.Message objects), 236

automatic conversion (VBScript),
57

automatic scripting
messages, sending to Event Log,

423-425
messages, printing, 425
results, summarizing, 425-427

unattended scripts, writing, 421-423
scheduling, 421-431
unattended scripts

controlling logged information, 423
creating, 421-423

automatically assigned addresses,
resetting, 573

automatically running scripts, 40
automation (objects), GetObject
function, 99-100

AutoRun settings (CMD), 455
AutoUnlockInterval property
(IADsDomain object), 343

AvailableSpace properties
(Scripting.Drive object), 136

B
backups

creating with xcopy, 555
making (xcopy command-line

programs), 555

755backups

756 backups

UNC pathnames, 518
versus scripting, 13
versus Windows scripts, 13

BCC property (CDO.Message
objects), 236

Big-Endian format, 365
binary files

BMP image data, reading, 164-167
MP3 tag data, reading, 166-167
reading, 163-164

bitwise mathematics, 143
BMP image data, reading, 164-165
BodyPart collections (CDO email
components)

CDO.Message objects, 246
methods

Add method, 247
Delete method, 247
DeleteAll method, 247

properties
Count property, 246
Item property, 246

BodyPart objects (CDO email
components), 232, 247

methods
AddBodyPart method, 248
GetEncodedContentStream()

method, 248
SaveToFile method, 248

properties
BodyPart property, 247
Charset property, 247
ContentMediaType property, 247
ContentTransferEncoding property,

248
Fields property, 248
Filename property, 248
Parent property, 248

BodyPart property (CDO.Message
objects), 236

BodyParts property (BodyPart
objects), 247

Boolean value constants
(VBScripts), 52

break command, PowerShell,
660-661

breakpoints, 45

unattended backups (xcopy
command-line programs), 556

BannerPage property
(IADsPrintQueue object), 354

batch files, 491
argument substitution, 496-497
arguments

checking, 519
editing, 498-499
expressions, 726
substituting, 496
validating, 519

command-line options, processing,
515-517

commands, 494-495, 738-739
conditional processing

extended if command, 501-503
if command, 499-500

creating, 492-494
delayed expansion, 511-513
echoing, 495-496
environment variables, 506-508
exit status, checking, 501
for command, 508-511

delayed expansion, 511-512
for loops, 510

if command (CMD), conditional
processing, 499-501

information, displaying, 495-496
input, prompting for, 514-515
installers, creating with IExpress,

398-400
keeping log files, 519-520
log files, maintaining, 519-520
multiple arguments, processing,

503-506
network mappings, 518

deleting previous mappings, 518
managing, 518
UNC pathnames, 518

numerical calculations, performing,
481

privileges, 493
programming, 494-495
prompting for input, 514
random drive letter, assigning, 518
running scripts from, 39
script files, running, 39
storing, 492
subroutines, 513-514

757CDO (Collaboration Data Objects)

batch files, performing numerical
calculations, 481

setting variables, 480
setlocal command, 472
shift command, 472
start command, 473-474
time command, 474
title command, 474
type command, 474
ver command, 475
verify on/off command, 475
vol command, 475
Windows XP, 738-739

built-in functions (VBScripts), 720
BusinessCategory property
(IADsOU object), 369

C
cacls command (file management
tools), 559-561

file/folder privacy, 563
permissions

checking, 562
granting, 562

cacls command-line tool, 559-563
call command (CMD), 463,
513-514

Call Stack window, viewing, 46-47
case insensitive searching (findstr
command-line program), 549

case sensitivity, Jscript objects, 104
casts, 625, 649-650
CC property (CDO.Message
objects), 236

cd command (CMD), 463
CDO (Collaboration Data
Objects), 232

email
routing through SMTP servers, 264
sending email attachments, 261
sending from scripts, 232-235
specifying delivery servers, 263
specifying subjects/recipients, 263

email components
BodyPart collections, 246-247
BodyPart objects, 232, 247-250
CDO.Configuration, 233

breakpoints, setting in ISE, 709
BuildPath method
(Scripting.FileSystemObject
object), 125, 130

built-in commands (CMD)
@command, 462
assoc command, 462
call command, 463
cd command, 463
chdir command, 463
cls command, 463
command extensions, 475-476
copy command, 463
date command, 465
del command, 465-466
dir command, 466

listing files, 476-480
echo commands, 466
endlocal command, 467, 472
erase command, 467
exit/B command, 467
for command

delayed expansion, 511-512
for loop, 510
numerical for loops, 486
parsing text, 487-488
processing directories, 486
processing multiple items, 508-509
scanning files, 483-484
variables, 485-486

ftype command, 467-468
goto command, 468, 502
if command, 468, 499, 502

conditional processing, 482-483,
499-501

extended testing, 503
md command, 468-469
mkdir command, 469
move command, 469
path command, 470
pause command, 470
popd command, 470
prompt command, 470
pushd command, 470

assigning drives, 518
rd command, 471
rem command, 471
rename command, 471
rmdir command, 471
set commands, 471

758 CDO (Collaboration Data Objects)

Configuration property, 236
DSNOptions property, 236, 240-241
Fields property, 237
From property, 237
HTMLBody property, 237
HTMLBodyPart property, 237
MDNRequested property, 237
MIMEFormatted property, 237
Organization property, 238
ReplyTo property, 238
Sender property, 238
Subject property, 238
TextBody property, 238
TextBodyPart property, 238
To property, 238

cdoConfigSource constants, 253
cdoProtocolsAuthentication
constants, 254

cdoSendUsing constants, 254
cdoTimeZoneId constants, 254-256
certificates, obtaining for code
signing, 410-411

ChangePassword method
(IADsUser object), 363

ChangeStartMode methods
(Win32_Service objects), 316

changing
file/folder attributes, 143-144
folder attribute values, 143-144
PATH, 457-458

Charset property (BodyPart
objects), 247

chdir command (CMD), 463
checking

arguments (batch files), 519
files/folders, if command (CMD),

500
free space (drives), 138-139
permissions (cacls command), 562

child nodes, 169
childNodes properties
(DOMDocument object), 171

childNodes properties
(IXMLDOMNode object), 173

choosing Window script languages,
16

CDO.Message objects, 232-246
Field collections, 243-246, 249-250
Field objects, 233, 243
Fields collections, 242-243

messages
attachments, adding, 261
creating, 257
delivery server, specifying, 263-265
HTML, sending, 259
images, including with HTML

messages, 262-263
multiformat, sending, 260
program output, sending, 258
recipients, specifying, 263
sending, 256, 265-266, 268, 270
sending multiformat messages, 260
sending program output messages,

258
sending text file messages, 258
sending text string messages,

257-258
VBScript constant definitions

Website, 241
Web pages, sending, 259-260

CDO.Configuration (CDO email
components), 233

CDO.Configuration object, 250
LoadFrom method,

cdoConfigSource constant, 253
methods, 251-256
properties, 251

CDO.Message objects (CDO email
components), 232-235

BodyPart collections, 246
Field collection values, 244-246,

249-250
methods

AddAttachment method, 238-239
AddRelatedBodyPart method,

239-241
CreateMHTMLBody method,

240-242
Send method, 240

properties
Attachments property, 236
AutoGenerateTextBody property,

236
BCC property, 236
BodyPart property, 236
CC property, 236

759collection objects

running, 435, 438
special characters, 454

command-line programs, killing, 440
commands

editing, 448-450
extensions, 439, 475-476
multiple, typing on one line,

452-453
configuring, 455

AutoRun, 455
environment variables, 456-461

console programs, 441-442
copying and pasting, 447-448
reading text, 191-193

console window, 442
dir command, 476-480
directory name completion, 451-452
elevated Command Prompt, open-

ing, 436-437
enviroment variable substitution,

456
environment variables

default, setting, 461
PATH, 456-458
system-wide, 459-461

extended commands, 475-476
extensions, disabling, 439
for command, 483-486

text, parsing, 487-488
variables, 485

if command, 482-483
name completion, 450-451
network mappings, deleting,

518-519
options, 437-438
redirection, 443-447
running, 435
set command, 481-482
shortcut, creating, 436
special characters, escaping, 455
versus COMMAND shell, 434

cmdlets, PowerShell, 607, 609-610,
690-691

code signing, 409-410, 412, 415
certificate, obtaining, 410-411
scripts, signing, 412-413
signed scripts, requiring, 414

collaboration data objects. See CDO
collection objects, 96-97

ActivePerl, 108-109

choosing a scripting language, 16
CIM (Common Information
Model), 281-283

class names (ADSI objects), 325
Class property (IADs object), 334
classes, 95
classes (objects), 95
clearing DNS cache, ipconfig
command (Windows XP
networking utilities), 573

Close methods (TextStream
object), 152

cls command (CMD), 463
CMD shell

arguments, 438-439
separating, 454

AutoRun settings, 455
batch files

argument editing, 498-499
arguments, validating, 519
command-line options, processing,

515-517
delayed expansion, 511-513
environment variables, 506-508
input, prompting for, 514-515
log files, maintaining, 519-520
multiple items, processing with for

command, 508-511
random drive letter, assigning, 518
subroutines, 513-514
UNC pathnames, 518

built-in commands, 462-475,
738-739

command-line processing, 439-440
arguments, 454
commas, 454
console program input/output,

441-447
console windows, 442
copying/pasting in command prompt

windows, 447-448
editing commands, 448-449
grouping commands with parentheses,

453-454
History list, 449
multiple commands, 452-453
name completion, 450
quotes, 454
runaway programs, stopping, 440

760 collection objects

environment variables, 506-508
for loops, 510
grouping commands with

parentheses, 453-454
History list, 449
keeping log files, 519-520
managing network mappings, 518
processing command-line options,

515-517
processing multiple items, 503-509
prompting for input, 514
subroutines, 513-514

command shells
configuring, 706-707
scripts, editing, 707-708

objects, generating, 685-686
obtaining, 598-600
profiles, 617-618
running on remote computers, 712
security, 615-617
text, reading from files, 697-698
text, writing to files, 698

PowerShell
aliases, 612
cmdlets, 607, 609-610
command-line syntax, 604-607
command-line editing, 602-603
copying and pasting, 603-604
get-help command, 610-611

command-line arguments
named arguments

extracting, 387
processing, 386
processing for WSF files, 386-388

Named collection
Count method, 386
Exists method, 387
Items property, 386
Length property, 386

processing, 386
retrieving, 113-114
unnamed arguments, processing, 389
Unnamed collection

Count method, 389
Items property, 389
Length property, 389

command-line processing (CMD),
439-440

arguments, 454

ActivePython, 110
Count properties, 103
For Each loops, 103
Item methods, 103
JScript, 104-106
SWbemObjectSet, 305-306

collection system information,
example WMI script, 312-313

collections, 96, 102-103, 339-340
ADSI (Active Directory Scripting

Interface) collections, 339
Environment collection (Windows

Scripting Host)
Count method, 198
extracting information, 198-199
Item properties, 197
Length properties, 197
managing settings, 199
Remove method, 198

for JScript, 104-106
IXMLDOMNamedNodeMap

properties, 176
Perl, 108-109
Python, 110
VBScript, 67

Column properties (TextStream
object), 151

columnar listings, creating, 478
COM (Component Object Model),
94

command extensions (CMD),
475-476

command options (Cscript), 33-36
command options (Wscript), 33, 35
command prompt window

arguments, 454
assigning drives, 518
checking arguments, 519
command-line processing, 435,

438-440
commas, 454
console program input/output

redirection, 443-447
console window, 442
creating, 492-494
delayed expansion, 511-512
deleting network mappings, 518
editing commands, 448-449

761commands

management power tools
driverquery, 564
runas, 565
sc, 569-571
taskkill, 568-569
tasklist, 565-567

networking tools
ipconfig, 571-573
net, 574-583
netstat, 584-586
nslookup, 586-589
ping, 589-590
tracert, 591-592

versus CMD, 434
commands

assoc command (CMD), 462
attrib command (file management

tools), 557-558
finding hidden files, 558
setting/clearing attributes, 558-559

batch file commands, 738-739
built-in, 730-733

for command modifiers, 733-734
set /a command operators, 734

built-in commands (CMD), 462,
465, 469, 473, 475
@command, 462

assoc command, 462
call command, 463
cd command, 463
chdir command, 463
cls command, 463
command extensions, 439, 475-476
copy command, 463
date command, 465
del command, 465-466
dir command, 466, 476-480
echo commands, 466
endlocal command, 467, 472
erase command, 467
exit/B command, 467
for command, 483-488, 508-512
ftype command, 467-468
goto command, 468, 502
if command, 468, 482-483,

499-503
md command, 468-469
mkdir command, 469
move command, 469
path command, 470
pause command, 470

commands
editing, 448-449
grouping with parentheses, 453-454

commas, 454
console programs

copying/pasting in command prompt
windows, 447-448

input/ouput, 441-442
input/ouput redirection, 443-447

console windows, 442
History list, 449
multiple commands, 452-453
name completion, 450
quotes, 454
PowerShell, 700

exception handling, 702-703
hash tables, 703-704
modules, writing, 701

runaway programs, stopping, 440
running, 435, 438
special characters, 454

command-line programs, 543
findstr, 547-548

adding/removing information, 550
case insensitive searching, 549
literal string matching, 549
matching text with wildcards,

550-551
positional searching, 549
searching multiple files, 549

GUI shortcuts, 545
more, 552-553
running, 188-191
tree, 553
xcopy, 554

copying subdirectories, 554
copying updated files, 555-556
making backups, 555
unattended backups, 556

COMMAND.COM shell, 524
file-management tools, 557

attrib, 557-559
cacls, 559-563

general purpose shell programs
findstr, 547-552
more, 552-553
tree, 553-554
xcopy, 554-557

GUI shortcuts, 545
Control Panel, 546-547

762 commands

delayed expansion, 511-512
for loop, 510
numerical for loops, 486
parsing text, 487-488
processing directories, 486
processing multiple items, 508-509
scanning files, 483-484
variables, 485-486

ftype command (CMD), 467-468
goto command (CMD), 468, 502
grouping with parentheses, 453-454
if command (CMD), 468, 499, 502

conditional processing, 482-483,
499-501

extended testing, 503
input/output redirection formats,

729
ipconfig command (networking

utilities), 571
examining/clearing DNS cache, 573
listing IP address information,

571-572
resetting automatically assigned

addresses, 573
md command (CMD), 468-469
mkdir command (CMD), 469
move command (CMD), 469
multiple command formats, 729
net command (networking utilities),

574
net continue command (networking

utilities), 574
net file command (networking

utilities), 574
net help command (networking

utilities), 575
net helpmsg command (networking

utilities), 575
net localgroup command (network-

ing utilities), 575
net pause command (networking

utilities), 575
net print command (networking

utilities), 575-576
net send command (networking

utilities), 576
net session command (networking

utilities), 576-577
net share command (networking

utilities), 577

popd command, 470
prompt command, 470
pushd command, 470, 518
rd command, 471
rem command, 471
rename command, 471
rmdir command, 471
set commands, 471, 480-481
setlocal command, 472
shift command, 472
start command, 473-474
time command, 474
title command, 474
type command, 474
ver command, 475
verify on/off command, 475
vol command, 475

cacls command (file management
tools), 559-561

checking permissions, 562
file/folder privacy, 563
granting permissions, 562

call command (CMD), 463
cd command (CMD), 463
chdir command (CMD), 463
cls command (CMD), 463
CMD shell

dir, 476-480
for, 483-488
if, 482-483
set, 481-482

copy command (CMD), 463
date command (CMD), 465
del command (CMD), 465-466
dir command (CMD), 466

listing files, 476-480
DOS commands (Windows XP),

739-740
driverquery command (management

power tools), 564
echo commands (CMD), 466
editing, 448-449
editing in CMD shell, 448-450
endlocal command (CMD), 467,

472
erase command (CMD), 467
exit/B command (CMD), 467
extended (CMD shell), 475-476
file management commands, 740-741
for command (CMD)

763ComputerPath property (IADsSession object)

taskkill command (management
power tools)

killing processes by program name,
569

killing processes with PID numbers,
568

killing user processes, 568
tasklist command (console

programs), 441
tasklist command (management

power tools), 565-567
TCP/IP, 743
time command (CMD), 474
title command (CMD), 474
tracert command (networking

utilities), 591-592
type command (CMD), 474
VBScriptm,Wscript.Echo, 84-85
ver command (CMD), 475
verify on/off command (CMD), 475
vol command (CMD), 475

commas, CMD command-line
processing, 454

comments, PowerShell, 622, 700
comparing

CMD shell and COMMAND shell,
434

properties and methods, 100-101
scripting and batch files, 13
scripting and compiled languages, 13

comparison operators (VBScript),
55-56, 717

comparisons, performing with
arrays (PowerShell), 640-643

Compatibility tab (Properties
dialog box), 532

compiled languages versus
scripting languages, 13

completing PowerShell
commands, 612

complex text files, creating,
157-159

Computer property (IADsSession
object), 361

ComputerName properties
(WSHNetwork objects), 208

ComputerPath property
(IADsSession object), 361

net start command (networking
utilities), 578

net statistics command (networking
utilities), 578

net stop command (networking
utilities), 578

net use command (networking
utilities), 579-581

net user command (networking
utilities), 581, 583

net view command (networking
utilities), 583-584

netstat command (networking
utilities), 584

constant monitoring, 586
listing active connections, 585
listing open ports, 586
listing statistics, 586

nslookup command (networking
utilities), 586

finding hostname IP addresses,
587-589

testing DNS servers, 589
path command (CMD), 470
pause command (CMD), 470
ping command (networking

utilities), 589-590
popd command (CMD), 470
prompt command (CMD), 470
pushd command (CMD), 470
rd command (CMD), 471
rem command (CMD), 471
rename command (CMD), 471
rmdir command (CMD), 471
sc command (management power

tools), 569
sc queryex command, 569-570
starting/stopping services, 570

sc queryex command (management
power tools)

listing installed services, 569-570
set commands (CMD), 471

batch files, performing numerical
calculations, 481

setting variables, 480
set/a commands, expression

operators, 734
setlocal command (CMD), 472
shift command (CMD), 472
start command (CMD), 473-474

764 conditional breakpoints, setting in ISE

Screen tab, 530
serial communications, 539

confirming
drives existence, 137-138
target drives, 137-138

connecting to network printers,
223-225

ConnectServer method, parame-
ters, 291-292

console programs, 441-442
command prompt windows,

copying/pasting in, 447-448
copying and pasting, 447-448
filters, 445
full-screen mode, 442
I/O redirection, 443-447
input/output, 441-442
input/output redirection, 443-447
standard error, 445
tasklist command, 441
text, reading, 191-193

console windows, 442
constant values

AddRelatedBodyPart method
constant values, 241

CreateMHTMLBody method
constant values, 242

DSNOptions property constant
values, 240-241

constants
cdoConfigSource, 253
cdoProtocolsAuthentication

constants, 254
cdoSendUsing constants, 254
cdoTimeZoneId constants, 254-256
PowerShell, 637
VBScript, 51-52, 722

constructors, PowerShell, 627
container objects, 96
containers, 96, 330-332
ContentMediaType property
(BodyPart objects), 247

ContentTransferEncoding property
(BodyPart objects), 248

continue command, PowerShell,
661

conditional breakpoints, setting in
ISE, 711

conditional processing
if command, 482-483
if command (CMD), 482-483, 499

checking for files and folders, 500
checking program success, 500-501

conditional processing (batch files)
extended if command, 501-503
if command, 499-500

exist option, 500
conditional statements (VBScript),
57

If-Then statements, 58-59
variations, 59
variations, If-End if statements, 59
variations, If-Then-Else statements,

59-60
Select Case statements, 61-62

ConenctTime property
(IADsSession object), 361

CONFIG.NT (NTVDM), 532-535
Configuration property
(CDO.Message objects), 236

configuring
AUTOEXEC.NT (NTVDM), 535
CMD, 455

AutoRun, 455
environment variable substitution,

456-458
environment variables, 459-461

drive mappings, 220-221
environment variables (NTVDM),

536
Font tab (NTVDM), 528
ISE, 706-707
Memory tab (NTVDM), 528-529
Miscellaneous Settings tab

(NTVDM), 530-532
NTVDM, 525-526

AUTOEXEC.NT file, 535-536
Compatibility tab, 532
CONFIG.NT file, 532-535
environment variables, 536
Font tab, 528
Memory tab, 528
Miscellaneous Settings tab, 530-531
Properties tab, 526-528

765Cscript

createProcessingInstruction meth-
ods (DOMDocument object), 171

CreateShortcut method
(WScript.Shell object), 184

CreateTextFile method
(Scripting.FileSystemObject
object), 126

createTextNode methods
(DOMDocument object), 172

CreatFolder method
(Scripting.FileSystemObject
object), 125, 132-134

CreatFullPath method
(Scripting.FileSystemObject
object), 133-134

creating
ADSI objects, 325-328
batch files, 492-494
columnar listings, 478
complex text files, 157-159
folders, 132-135
fully qualified pathnames, 130-131
functions, 87
HTML (Hypertext Markup

Language), 179-181
installation programs with IExpress,

395-398
batch files, 398-400
UAC, 400-401
uninstall option, providing, 402

messages, CDO (Collaboration Data
Objects), 257

script files, 24-25
script shortcuts, 39
scripts to manage other computers,

404-405
shortcuts, 183-186, 193-196
text files, 157, 159

inserting tabs, 157
Unix-compatible, 159

unattended scripts, 421-423
user-friendly scripts, 376-377
WSF files, 377-378, 390, 394
XML files, 179-181

Cscript, 28-29
command options, 33-36
script files

running, 30
running from batch files, 40

Continue method
(IADsServiceOperations object),
360

ContinueService methods
(Win32_Service objects), 316

Control Panel, running with
COMMAND.COM shell, 546-547

Control panel (Windows XP),
applets, 546-547

controlling logged information
(unattended scripts), 423

converting strings to other types
(VBScript), 74

copy command (CMD), 463
Copy method (Scripting.Folder
object), 141, 145

CopyFile method
(Scripting.FileSystemObject
object), 125

CopyFolder method
(Scripting.FileSystemObject
object), 125, 135

CopyHere method
(IADsCollection object), 337

copying
folders, 135
scripts to multiple computers,

406-408
subdirectories (xcopy command-line

programs), 554
updated files (xcopy command-line

programs), 555-556
CPL files, 546
Create method (IADsCollection
object), 337-338

createCDataSection methods
(DOMDocument object), 171

createComment methods
(DOMDocument object), 171

createDocumentType methods
(DOMDocument object), 171

createElement methods
(DOMDocument object), 171

CreateMHTMLBody method
(CDO.Message objects), 240

constant values, 242

766 Cscript

Wscript.Echo command, 84
VBScript, 42

default environment variables,
727-728

default printer, setting with
WScript.Network object, 228

DefaultContainer property
(IADsNamespaces object), 351

DefaultJobPriority property
(IADsPrintQueue object), 354

defaultNamingContext property
(RootDSE object), 368

defining
JavaScripts, 14
JScripts, 14
methods, 93, 100
objects, 10-11, 93
Perl, 15
properties, 93, 100
Python, 15
Ruby, 15
scripts, 10
VBScripts, 14
Windows Script Host, 11-12

del command (CMD), 465-466
delayed expansion, 511-513
Delete method (BodyPart
collections), 247

Delete method (IADsCollection
object), 338

Delete method (IADsContainer
object), 338

Delete method (Scripting.Folder
object), 141

Delete method (SWbemServices
objects), 302, 307

Delete methods (Scripting.File
object), 146

DeleteAll method (BodyPart
collections), 247

DeleteFile method
(Scripting.FileSystemObject
object), 126, 132

DeleteFolder method
(Scripting.FileSystemObject
object), 126

saving, output redirection, 33
viewing, pipe mechanisms, 33

security, 41
CSLID (objects), 116
CurrentDirectory properties
(WScript.Shell object), 182

currentTime property (RootDSE
object), 368

CurrentUserCount property
(IADsFileShare object), 347

D
Datatype property
(IADsPrintQueue object), 354

date and time functions
(VBScript), 75-78

date command (CMD), 465
Date value constants (VBScripts),
52

Date() functions (VBScript), 75-77,
79, 722

Date/Time constants (VBScript),
52

DateAdd functions (VBScripts), 75
DateAdd() function, 75-76
DateCreated properties
(Scripting.File object), 145

DateCreated properties
(Scripting.Folder object), 140

DateDiff() function, 76
DateDiff() functions (VBScripts),
76

DateLastAccessed properties
(Scripting.File object), 140, 145

DCOM (Distributed COM)
security,WMI (Windows

Management Interface), 294-300
Windows remote management, 283

on domain networks, 283-284
on workgroup networks, 284-287

debugging
scripts, 42-45

Call Stack windows, viewing, 46-47
Script Debugger (Windows), 43-45
tracing, 43

767domain networks

user directories
managing, 319-321
security, 328, 330

directory name completion (CMD
shell), 451-452

disabling
batch file echoing, 495
CMD extensions, 439
command extensions (CMD), 439
unsigned scripts, 408

displaying
information in batch files, 495-496
network user information,

Wscript.Network objects, 212-214
printer information, 222-223
script function values, Script

Debugger (Windows), 45
script properties, 23
text,Wscript.Echo command, 84

DisplayName properties
(Win32_Service objects), 315

DisplayName property
(IADsService object), 358

distinguishing containers from
leaves, 331-332

Division property (IADsComputer
object), 340

DN (distinguished name), 364
DNS cache, examining/clearing,
573

DNS servers, testing, 589
dnsHostName property (RootDSE
object), 368

Do While statement, 63-65
documentation, ADSI (Active
Directory Scripting Interface),
332

documentElement properties
(DOMDocument object), 171

documenting functions
(VBScripts), 70

domain networks
logon scripts, assigning through

Group Policy, 418-421
remote management with WMI,

283-284

deleting
drive mappings, 219-220
files, 132
network mappings with batch files,

518-519
network printer connections,

226-228
printer connections, 226-228

delivery server, specifying in
messages (CDO), 263, 265

Dependencies property
(IADsService object), 358

deploying scripts on network, 394
Description properties

ADsUser object, 362
IADsFileShare object, 348
IADsGroup object, 349
IADsO object, 369
IADsOU object, 369
IADsPrintJob object, 352
IADsPrintQueue object, 354
WshShortcut object, 194
WshUrlShortcut object, 194

DesktopInteract properties
(Win32_Service objects), 315

developing ADSI (Active Directory
Scripting Interface) scripts,
370-371

dir command (CMD), 466, 476-480
files, listing, 476-477

creating columnar listings, 478
listing hidden files, 480
paginating lists, 477
printing directory listings, 478
retrieving filename listings, 479
searching files, 477
sorting listings, 479

directories
Active Directory

LDAP, 364-367
managing, 364
objects, 368
X.500, 364-367

containers versus leaves, 330-331
PowerShell, 692-696
printing, 478
processing, for command (CMD),

486

768 DOMDocument object (Windows Scripting Host)

drives
assigning, 518
confirming, 137-138
existence, confirming, 137-138
free space, checking, 138-139
locating, 138

Drives property
(Scripting.FileSystemObject
object), 125

DriveType properties
(Scripting.Drive object), 136

DSNOptions property
(CDO.Message objects), 236

constant values, 240-241
DTD (document type definition),
168

DTMF (Distributed Management
Task Force), 281

dynamic environment variables,
728

dynamic methods, 306
dynamic properties, 306

E
echo commands (CMD), 466
echoing, 495-496
editing

arguments (batch files), 498-499
batch file arguments, 498-499
CMD commands, 448-450
commands, 448-449
environment variables, 507-508

editing tools, 27
elements (XML), 168
elevated command prompt, open-
ing, 436-437

email
CDO (Collaboation Data Objects)

email components
BodyPart collections, 246-247
BodyPart objects, 232, 247-250
CDO.Configuration, 233
CDO.Message objects, 232-246
Field collections, 243-246, 249-250
Field objects, 233, 243
Fields collections, 242-243

DOMDocument object (Windows
Scripting Host), 169

methods
createCDataSection methods, 171
createComment methods, 171
createDocumentType method, 171
createElement method, 171
createProcessingInstruction method,

171
createTextNode method, 172
getElementsByTagName method,

172
load method, 172
loadXML method, 172
Save method, 172
selectNodes method, 172
selectSingleNode method, 172

properties
async properties, 170
childNodes properties, 171
documentElement properties, 171
parseError properties, 171
xml properties, 171

DOS commands (Windows XP),
739-740

DOS printer sessions, redirecting,
225-226

dot-sourcing, PowerShell, 668
downloading

pvk2pvc.exe, 410
Scriptomatic, 310
signtool.exe, 410

drive mappings
adding, 218-219
configuring, 220-221
deleting, 219-220
listing, 214-218
managing, 214
scripts, 220-221

Drive properties (Scripting.Folder
object), 140

DriveExists method
(Scripting.FileSystemObject
object), 126

DriveLetter properties
(Scripting.Drive object), 136

driverquery command (manage-
ment power tools), 564

769example scripts

properties
Item properties, 197
Length properties, 197

Environment properties
(WScript.Shell object), 182-183,
196-197

environment variable substitution
(CMD), 456

PATH
changing, 457-458
search paths, 456-457

environment variables, 506-507,
536, 727

batch files, 506-508
default, 461, 727-728
delayed expansion, 511-513
dynamic, 728
editing, 507-508
expressions, 727
for batch files
managing, 199
NTVDM, configuring, 536
PATH, 456-457

changing, 457-461
managing, 200-201

predefined, 727-728
retrieving, 198-199
system-wide, 459-461

erase command (CMD), 467
error handling,VBScript, 86-87
error status of batch files,
verifying, 501

ErrorControl property
(IADsService object), 358-359

escaping special characters (CMD
shell), 454-455

Event Log messages, sending,
423-424

printing messages, 425
results, summarizing, 425, 427

examining DNS cache, ipconfig
command (Windows XP net-
working utilities), 573

example scripts
WMI

printers, managing, 313
system information, collecting,

312-313

messages
attachments, adding, 261
delivery server, specifying, 263, 265
HTML, sending, 259
images, including, 262-263
multiformat, sending, 260
program output, sending, 258
recipients, specifying, 263
sending, 265, 267-268, 270
subject, specifying, 263
text strings, sending, 257-258
web pages, sending, 259-260

messaging objects, CDO, 232-256
routing through SMTP servers,

CDO (Collaboration Data
Objects), 264

sending
CDO (Collaboration Data Objects),

232-235
from scripts, 231-232
HTML, 234
MIME (Multipart Internet mail

Extensions), 234
enabling directory name comple-
tion (CMD), 451-452

enclosing multiple scripts in WSF
files, 390

encoded scripts, 20
encryption

Script Encoder, 415
WMI, 295-296

endlocal command (CMD), 467,
472

enforcing script signing, 414
Enumerator objects (Jscript), 105
EnumNetworkDrives()
methods(WSHNetwork objects),
209, 214-217

EnumPrinterConnections() meth-
ods(WSHNetwork objects), 209,
222-223

Environment collection (Windows
Scripting Host)

extracting information, 198-199
managing settings, 199
methods

Count method, 198
Remove method, 198

770 example scripts

extensions
CMD shell, disabling, 439
for script files, 19-20

extracting
environment variables, 198-199
information, Environment collection

(Windows Scripting Host),
198-199

named arguments (command-line
arguments), 387

EzAD Scriptomatic tool, 372

F
FAXCOMEx.FaxDocument object

methods, 273-274
properties, 271-273

faxes, sending from scripts, 271,
274-277

FaxNumber property (IADsO
object), 369

FaxNumber property (IADsOU
object), 369

Field collections (CDO email
components)

BodyPart objects, 249-250
CDO.Message objects, 244-246
methods

Update method, 243
Field objects (CDO email compo-
nents), 233, 243

Fields collection, 242-246
Fields property (BodyPart
objects), 248

Fields property
(CDO.Configuration objects), 251

nntpauthenticate field,
cdoProtocolAuthentication
constants, 254

sendusing field, cdoSendUsing
constants, 254

smtpauthenticate field,
cdoProtocolAuthentication
constants, 254

timezoneid field, cdoTimeZoneId
constants, 254-256

values, 252-253

tasks, managing, 315-317
Windows service packs, monitoring,

314-315
WSF files, 390-394

exception handling (PowerShell),
702-703

throw command, 664
trap command, 662

Exchange (Microsoft), ADSI
(Active Directory Scripting
Interface), 364

Exec method (WScript.Shell
object), 184

ExecMethod method
(SWbemServices objects), 302

ExecQuery method
(SWbemServices objects),
302-305

exist option (if command), batch
file conditional processing, 500

Exists method (Named collection),
387

Exit Do statement, 65-66
exit do statements (VBScripts),
64-65

Exit For statements (VBScripts),
66

exit status, verifying, 501
exit/B command (CMD), 467
ExitCode properties
(WshScriptExec object), 188

ExpandEnvironmentStrings
method (WScript.Shell object),
184

expressions, 54
automatic conversions, 57
PowerShell, 638-639
VBScript, syntax, 716

extended commands (CMD shell),
475-476

extended if command, 501-503
extending built-in functions, 88
Extensible Markup Language. See
XML

771Files properties (Scripting.Folder object)

processing multiple arguments,
503-506

processing multiple items, 508-509
programming, 494-495
prompting for input, 514
subroutines, 513-514
substituting arguments, 496
versus Windows scripts, 13

binary files, reading, 163-167
checking for, if command (CMD),

500
deleting, 132
hidden files, listing, 558, 480
listing, 476-480

dir command (CMD), 476-480
multiple files, searching (findstr

command-line programs), 549
privacy (cacls command), 563
reading, 149
reading text from, 152-153
renaming, 132, 146
scanning for, 146-149, 483-484
searching, dir command (CMD),

477
stdin files, 159-161
stdout files, 159-162
text files

creating, 157-159
inserting tabs, 157
writing Unix-compatible text files,

159
updated files, copying (xcopy com-

mand-line programs), 555-556
writing text to, 154-157
WSF files

creating, 377-378, 390, 394
extracting named arguments (com-

mand-line arguments), 387
formats, 379-383
processing command-line arguments,

386
processing named arguments

(command-line arguments), 386
processing unnamed arguments

(command-line arguments), 389
providing online help, 384-385
XML tags, 379-383

Files properties (Scripting.Folder
object), 140

Fields property (CDO.Message
objects), 237

file attribute values, 141
changing, 143-144
testing, 142

file management commands,
740-741

file management tools (Windows
XP)

attrib command, 557-558
finding hidden files, 558
setting/clearing attributes, 558-559

cacls command, 559-561
checking permissions, 562
file/folder privacy, 563
granting permissions, 562

file-management tools
running with COMMAND.COM

shell, 557
attrib, 557-559
cacls, 559-563

FileExists method
(Scripting.FileSystemObject
object), 126

filename listings, retrieving, 479
Filename property (BodyPart
objects), 248

files
attribute values, 141-143
attributes, changing, 143-144
batch files

assigning drives, 518
checking arguments, 519
creating, 492-494
delayed expansion, 511-512
deleting network mappings, 518
displaying information, 495-496
editing arguments, 498-499
environment variables, 506-508
for loops, 510
if command (CMD) conditional

processing, 499-501
keeping log files, 519-520
managing network mappings, 518
performing numerical calculations,

481
processing command-line options,

515-517

772 FileSystem properties (Scripting.Drive object)

delayed expansion, 511-512
directories, processing, 486
files, scanning, 483-484
for loop, 510
multiple items, processing, 508-509
numerical for loops, 486
PowerShell, 655-656
text, parsing, 487-488
variables, 485-486

For Each loops (collection
objects), 103

For…Each statement, 68
For…Next statement, 66-67
Force arguments (WSHNetwork
objects), 210-211

forcedos compatibility program
(Windows XP), 524-525

formatting
commands, 729
WQL queries, 304

for…in statements (Jscript), 105
For…Next statements (VBScripts),
66-68

free space (drives), checking,
138-139

FreeSpace properties
(Scripting.Drive object), 137

From property (CDO.Message
objects), 237

fso. See FileSystemObject
ftype command (CMD), 467-468
full-screen mode (console
programs), 442

FullName properties (WshShortcut
object), 194

FullName properties
(WshUrlShortcut object), 194

FullName property (IADsUser
object), 362

fully qualified pathnames, 130
creating, 130-131

functions
built-in functions, extending, 88
creating, 87
GetObject function, 99-100

FileSystem properties
(Scripting.Drive object), 137

FileSystemObject object, 130
Filter property

IADsCollection object, 336
IADsContainer object, 336
IADsDomain object, 343
IADsMembers object, 350
IADsOU object, 369

filters, 161, 445
finding

hidden files, 558
hostname IP addresses, 587-589

findstr (command-line programs),
547-548

adding/removing information, 550
case insensitive searching, 549
literal string matching, 549
multiple files, searching, 549
positional searching, 549
text, matching with wildcards,

550-551
firstChild properties
(IXMLDOMNode object), 173

flow control (VBScript), 57
Do While statement, 63-65
Exit Do statement, 65-66
For…Each statement, 68
For…Next statement, 66-67
If…Then statement, 58-61
PowerShell, 653-661
Select Case statement, 61-63

folder attribute values, 141
changing, 143-144
testing, 142

FolderExists method
(Scripting.FileSystemObject
object), 126

folders
attribute values, 141-144
checking for, 500
copying, 135
creating, 132-135
privacy (cacls command), 563

Font tab (NTVDM), configuring,
528

for command (CMD), 483-484, 486

773GUI programs

GetExtensionName method
(Scripting.FileSystemObject
object), 127

GetFile method
(Scripting.FileSystemObject
object), 127

GetFileName method
(Scripting.FileSystemObject
object), 127

GetFolder method
(Scripting.FileSystemObject
object), 127

GetInfo method (IADs object), 335
GetInfoEx method (IADs object),
335

getNamedItem methods
(IXMLDOMNamedNode object),
176

GetObject function, 99-100
GetObject method
(IADsCollection object), 338

GetParentFolderName method
(Scripting.FileSystemObject
object), 127

GetSpecialFolder method
(Scripting.FileSystemObject
object), 128

GetTempName() method
(Scripting.FileSystemObject
object), 128

global scope, 91
goto command (CMD), 468, 502
granting permissions (cacls
command), 562

graphical user interface, 434
Group Policy logon scripts, assign-
ing on domain networks, 418-421

grouping
CMD commands with parentheses,

453-454
commands with parentheses,

453-454
Groups property (IADsUser
object), 362

GUI programs, 744-745

PowerShell
dot-sourcing, 668
pipeline functions, 671-672

Print Screen function (Windows
XP), 538

VBScript, 720-722
built-in functions, 720
calling, 69
creating, 87-88
date and time, 75-78, 722
documenting, 70
InputBox(), 82-84
MsgBox(), 79-82
string-manipulation functions, 71-74
Time() functions, 75
Ucase functions, 68
syntax, 70

WMI, 281

G
general-purpose shell programs,
running with COMMAND.COM
shell

findstr, 547-552
more, 552-553
tree, 553-554
xcopy, 554-557

Get method (IADs object),
334-335

get-help command, PowerShell,
610-611

GetAbsolutePathName method
(Scripting.FileSystemObject
object), 126

GetBaseName method
(Scripting.FileSystemObject
object), 127, 131-132

GetDrive method
(Scripting.FileSystemObject
object), 127

GetDriveName method
(Scripting.FileSystemObject
object), 127

getElementsByTagName methods
(DOMDocument object), 172

GetEncodedContentStream()
method (BodyPart objects), 248

GetEx method (IADs object), 335

774 GUI shortcuts (command-line programs)

methods
Get method, 334-335
GetEx method, 335
GetInfo method, 335
GetInfoEx method, 335
Put method, 335
PutEx method, 335-336
SetInfo method, 336

properties
AdsPath property, 334
Class property, 334
GUID property, 334
Name property, 334
Parent property, 334
Schema property, 334

IADsCollection object (ADSI),
336-338

methods
CopyHere method, 337
Create method, 337-338
Delete method, 338
GetObject method, 338
MoveHere method, 338

properties
Count property, 336
Filter property, 336
Hints property, 337

IADsComputer object (ADSI),
340-342

properties
Division property, 340
OperatingSystem property, 340
OperatingSystemVersion property,

340
Owner property, 340
Processor property, 340
ProcessorCount property, 340

IADsComputerOperations object
(ADSI), 340-342

IADsContainer object (ADSI),
336-338

collections, 339-340
methods

CopyHere method, 337
Create method, 337-338
Delete method, 338
GetObject method, 338
MoveHere method, 338

properties
Count property, 336

GUI shortcuts (command-line
programs), 545-547

GUID property (IADs object), 334

H
hasChildNodes methods
(IXMLDOMNode object), 174

hash tables, PowerShell, 650-653,
703-704

help, providing for WSF files,
384-385

here-strings, PowerShell, 629
hidden files

finding, attrib command (file man-
agement tools), 558

listing, dir command (CMD), 480
Hints property (IADsCollection
object), 337

History list (CMD), 449
HomeDirectory property
(IADsUser object), 362

host (WSH), 11-12
HostComputer property

IADsFileShare object, 348
IADsPrintQueue object, 354
IADsService object, 358

HostPrintQueue property
(IADsPrintJob object), 352

hotfixes, monitoring, 313-315
Hotkey properties (WshShortcut
object), 194

HTML (Hypertext Markup
Language)

creating, 179-181
email, sending, 234
reading/writing, 167, 172, 176-177

HTMLBody property
(CDO.Message objects), 237

HTMLBodyPart property
(CDO.Message objects), 237

I
I/O redirection, 443-447
IADs object (ADSI), 333-336

775IADsPrintQueue object (ADSI)

IADsNamespaces object (ADSI),
351

IADsO object (Active Directory),
properties

Count property, 369
Description property, 369
FaxNumber property, 369
Filter property, 369
LocalityName property, 369
Name property, 369
Parent property, 369
PostalAddress property, 370
SeeAlso property, 370
TelephoneNumber property, 370

IADsOU object (Active
Directory), properties

BusinessCategory property, 369
Count property, 369
Description property, 369
FaxNumber property, 369
Filter property, 369
LocalityName property, 369
Name property, 369
Parent property, 369
PostalAddress property, 370
SeeAlso property, 370
TelephoneNumber property, 370

IADsPrintJob object (ADSI),
351-354

IADsPrintJobOperations object
(ADSI), 351-354

IADsPrintQueue object (ADSI),
354-357

properties
BannerPage property, 354
Datatype property, 354
DefaultJobPriority property, 354
Description property, 354
HostComputer property, 354
Location property, 354
Model property, 354
Name property, 355
PrintDevices property, 355
PrinterPath property, 355
PrintProcessor property, 355
Priority property, 355
Starttime property, 355
UntilTime property, 355

Filter property, 336
Hints property, 337

IADsDomain object (ADSI),
342-344

methods, SetInfo method, 344
properties

AutoUnlockInterval property, 343
Filter property, 343
IsWorkgroup property, 343
LockoutObservationInterval property,

343
MaxBadPasswordsAllowed property,

343
MaxPasswordAge property, 343
MinPasswordAge property, 343
MinPasswordLength property, 343
PasswordAttributes property,

343-344
PasswordHistoryLength property, 344

IADsFileService object (ADSI),
347

properties
MaxUserCount property, 345
Resources property, 345
Sessions property, 346

IADsFileServiceOperations object
(ADSI), 347

properties
MaxUserCount property, 345
Resources property, 345
Sessions property, 346

IADsFileShare object (ADSI),
properties

CurrentUserCount property, 347
Description property, 348
HostComputer property, 348
MaxUserCount property, 348
Name property, 348
Path property, 348

IADsGroup object (ADSI), 349-350
properties

Description property, 349
IsMember() property, 349
Member() property, 349
Methods property, 349
Name property, 349
Remove property, 349

IADsMembers object (ADSI), 350

776 IADsPrintQueueOperations object (ADSI)

IsAccountLocked property, 362
LastLogin property, 363
LastLogoff property, 363
Profile property, 363

IconLocation properties
(WshShortcut object), 194

IdleTime property (IADsSession
object), 361

IExpress, creating installation
programs, 395-398

batch files, 398-400
UAC, 400-401
uninstall option, providing, 402

if command (CMD), 468, 482-483,
499-502

conditional processing, 482-483, 499
checking for files and folders, 500
checking program success, 500-501

extended testing, 503
PowerShell, 653

If…Then statement, 58-61
If…End if statements (VBScripts),
59

IF…Then statements (VBScripts),
58-59

variations, 59
If…End If statements, 59
If…Then…Else statements, 59
If…Then…ElseIf statements, 60

If…Then…Else statements
(VBScripts), 59-60

IIS (Internet Information
Services), ADSI (Active Directory
Scripting Interface), 364, 374

images, adding to HTML messages
(CDO), 262-263

impersonation,WMI options,
295-298

information
extracting, Environment collection

(Windows Scripting Host), 198-
199

saving,Windows Registry, 203-205
InputBox() functions (VBScripts),
82-84

insertBefore methods
(IXMLDOMNode object), 174

IADsPrintQueueOperations object
(ADSI), 354-357

IADsResource object (ADSI), 346
IADsService object (ADSI),
357-361

methods, SetInfo method, 359
properties

Dependencies property, 358
DisplayName property, 358
ErrorControl property, 358-359
HostComputer property, 358
LoadOrderGroup property, 358
Name property, 358
Path property, 358
ServiceAccountName property, 358
ServiceAccountPath property, 358
ServiceType property, 358
StartType property, 359
StartupParameters property, 359
Version property, 359

IADsServiceOperations object
(ADSI), 357-361

methods
Continue method, 360
Pause method, 360
SetPassword method, 360
Start method, 361
Stop method, 361

properties, Status property, 360
IADsSession object (ADSI),
361-362

properties
Computer property, 361
ComputerPath property, 361
ConnectTime property, 361
IdleTime property, 361
User property, 361
UserPath property, 361

IADsUser object (ADSI)
methods

ChangePassword method, 363
SetInfo method, 363
SetPassword method, 363

properties
AccountDisabled property, 362
Description property, 362
FullName property, 362
Groups property, 362
HomeDirectory property, 362

777IXMLDOMNode object (Windows Scripting Host)

IsReady properties
(Scripting.Drive object), 137-138

IsRootFolder properties
(Scripting.Folder object), 140

IsWorkgroup property
(IADsDomain object), 343

Item method (collection objects),
103

item methods
(IXMLDOMNamedNode object),
176

Item properties
Environment collection, 197
BodyPart collections, 246
Fields collections, 243
Named collection, 386
Unnamed collection, 389

IXMLDOCNode object (Windows
Scripting Host), 176

IXMLDOMNamedNode object
(Windows Scripting Host), 176

IXMLDOMNode object (Windows
Scripting Host), 173

methods
appendChild method, 174
hasChildNodes method, 174
insertBefore method, 174
removeChild method, 174
repalceChild method, 174
selectNodes method, 174
selectSingleNode method, 174
setAttribute method, 175

nodeType values, 175
properties

attributes properties, 173, 175
childNodes properties, 173
firstChild properties, 173
lastChild properties, 173
nextSiblings properties, 173
nodeName properties, 173
nodeType properties, 173
nodeTypeString properties, 174
nodeValue properties, 174
ownerDocument properties, 174
previousSibling properties, 174
xml properties, 174

inserting tabs into text files, 157
installation programs

creating with IExpress, 395-398
batch files, 398-400
UAC, 400-401
uninstall option, providing, 402

installed services, listing, 569
installing code-signing certificate,
411

instances (objects), 95
Instances method (SWbemServices
objects), 307

InstancesOf method
(SWbemServices objects), 303

InStr function (VBScript string-
manipulation functions), 71-72

InStr() function, 71-72
InStrRev() function, 71-72
interface, 94
interpreters, 14
InterrogateService methods
(Win32_Service objects), 316

IP addresses
hostname IP addresses, finding,

587-589
listing information, 571-572

ipconfig command (networking
utilities), 571

automatically assigned addresses,
resetting, 573

DNS cache, examining/clearing, 573
IP address, listing information,

571-572
ipconfig command-line tool,
571-573

IsAccountLocked property
(IADsUser object), 362

ISE (Integrated Scripting
Environment), 705

breakpoints, setting, 709
conditional breakpoints, setting, 711
configuring, 706-707
scripts, editing, 707-708

IsMember property (IADsGroup
object), 349

778 JavaScript, defining

VBScripts, debugging, 42
VBScripts, defining, 14
VBScripts, functions, 68-84, 720,

722
VBScripts, interpreters, 14
VBScripts, omitted VBA features,

723-724
VBScripts, procedures, 87-89
VBScripts, program structures, 714
VBScripts, sample scripts, 16-19
VBScripts, statements, 57-59,

61-68, 718
VBScripts, syntax, 714
VBScripts, variables, 50-57, 89-92,

714, 716-718
WScript, 111-114

lastChild properties
(IXMLDOMNode object), 173

LastLogin property (IADsUser
object), 363

LastLogoff property (IADsUser
object), 363

LDAP, 364-370
attribute names, 365
DNs, 365
RDNs, 365
Website, 367

leaves, 330
distinguishing from containers,

331-332
versus containers, 330-331

Left() function, 72-73
Length properties (Environment
collection), 197

length properties
(IXMLDOMNamedNode object),
176

Length property (Named collec-
tion), 386

Length property (Unnamed
collection), 389

limitations of ADSI, 321
Line properties (TextStream
object), 151

listing
active connections, 585
drive mappings, 214-218

J-K
JavaScript, defining, 14
joining strings

& character, 54-55, 75
+ operators, 54-55

JScript, 13
defining, 14
interpreters, 14
objects, 104

collections, 104-106
Enumerator objects, 105
for…in statements, 105
WScript, 104

JSE extensions (script files), 20

keys (Registry), 202
killing

command-line programs, 440
processes, PID numbers (taskkill

command), 568-569
user processes (taskkill command),

568

L
languages

interpreters
JScript language interpreter, 14
VBScript language interpreter, 14

script files
extensions, 19-20
WSC (Windows Script Component)

files, 23
WSF (Windows Script Files), 21-22
WSH (Windows Script Host) set-

tings, 23
script languages

ActivePerl, 106-109
ActivePython, 109-110
choosing, 16
JavaScripts, defining, 14
JScripts, 13-14, 104-106
Perl, 15
Python, defining, 15
Ruby, defining, 15
VBScripts, 13, 49, 98-99, 102,

713
VBScripts, constants, 51-53, 714

779managing

logged information, controlling on
unattended scripts, 423

logical operators (VBScript vari-
ables), 54, 56, 718

logoff program (Windows XP), 741
logon scripts, 213, 416

assigning through Group Policy,
418-421

group policy scripts, 420
user profile logon scripts, 416-418
writing, 214

looping statements, 57
Do While, 63-65
Exit Do, 65-66
For…Each, 68
For…Next, 66-67
If…Then, 58-61

loops
For Each loops (collection objects),

103
numerical for loops, 486

M
macros, 450
management power tools
(Windows XP), 563

driverquery command, 564
running with COMMAND.COM

shell
driverquery, 564
runas, 565
sc, 569-571
taskkill, 568-569
tasklist, 565-567

sc command, 569
sc queryex command, 569-570
starting/stopping services, 570

taskkill command, 568
killing processes by program name,

569
killing processes with PID numbers,

568
killing user processes, 568

tasklist command, 565-567
managing

Active Directory, 364
computers, creating scripts, 404-405

files, 476-480
hidden files, 480
installed services, 569-570
IP address information, 571-572
open ports, 586
statistics, 586

literal strings, matching (findstr
command-line programs), 549

literal values, PowerShell, 625-626
literals, 51
Little-Endian format, 365
Load methods
(CDO.Configuration objects), 251

load methods (DOMDocument
object), 172

LoadFrom method
(CDO.Configuration objects),
cdoConfigSource constants, 253

LoadOrderGroup property
(IADsService object), 358

loadXML methods
(DOMDocument object), 172

local computers, connecting to
with WMI, 294

LocalityName property (IADsO
object), 369

LocalityName property (IADsOU
object), 369

LocalName arguments
(WSHNetwork objects), 208, 210

locating drives, 138
Location property
(IADsPrintQueue object), 354

LockCount property
(IADsResource object), 346

LockoutObservationInterval prop-
erty (IADsDomain object), 343

log files
keeping (batch files), 519-520
maintaining, 519-520
messaging, 425
printing, 425

LogEvent method (WScript.Shell
object), 184

780 managing

MaxUserCount property
(IADsFileShare object), 348

md command (CMD), 468-469
MDNRequested property
(CDO.Message objects), 237

Member() property (IADsGroup
object), 349

members, 626
Memory tab (NTVDM), configur-
ing, 528-529

messages
attachments, adding, 261
CDO, sending, 265-270
creating, 257
delivery server, specifying, 263-265
Event log, sending to, 423-425
HTML

images, including, 262-263
sending, 259

multiformat, sending, 260
program output messages, sending,

258
recipients, specifying, 263
sending, 256, 265-270
subject, specifying, 263
text file messages, sending, 258
text string messages, sending, 257-

258
web pages, sending, 259-260

messaging objects, CDO, 232,
234-235

BodyPart object, 247-250
BodyParts collection, 246-247
CDO.Configuration object, 250-256
CDO.Message object, 236-242
Fields, 242-246

methods, 93
AddPrinterConnection

(WSHNetwork objects), 208
redirecting, 225-226

LocalName arguments, 208
Password arguments, 209
printing from scripts, 229-230
RemoteName arguments, 209
UpdateProfile arguments, 209
UserName arguments, 209

AddWindowsPrinterConnection
(WSHNetwork objects), 209

Environment settings, Environment
collection (Windows Scripting
Host), 199

environment variables, 199
PATH, 200-201

MS-DOS programs, 540
network connections, 207-211

drive mappings, adding, 218-219
drive mappings, configuring, 220-221
drive mappings, deleting, 219-220
drive mappings, listing, 214-218
Windows Script Host, 207-208

network mappings (batch files),
deleting previous mappings, 518

printers
connections, 207-208, 223-228
DOS printer sessions, redirecting,

225-226
example WMI script, 313
information, displaying, 222-223
WMI (Windows Management

Interface), 313
services,WMI (Windows

Management Interface), 315-317
tasks, example WMI script, 315-317
user directories, 319-321

MapNetworkDrive
methods(WSHNetwork objects)

arguments, 210
drive mappings

adding, 218-219
scripts, 220-221

mapping printers in NTVDM, 538
markup tags, XML (Extensible
Markup Language), 168-169

matching
literal strings (findstr command-line

programs), 549
text with wildcards (findstr com-

mand-line programs), 550-551
MaxBadPasswordsAllowed prop-
erty (IADsDomain object), 343

MaxPasswordAge property
(IADsDomain object), 343

MaxUserCount property
(IADsFileService object), 345

MaxUserCount property
(IADsFileServiceOperations
object), 345

781methods

createComment method
(DOMDocument object), 171

createDocumentType method
(DOMDocument object), 171

createElement method
(DOMDocument object), 171

CreateFolder method
(Scripting.FileSystemObject
object), 125, 132-134

CreateFullPath method
(Scripting.FileSystemObject
object), 133-134

createProcessingInstruction method
(DOMDocument object), 171

CreateShortcut method
(WScript.Shell object), 184

CreateTextFile method
(Scripting.FileSystemObject
object), 126

createTextNode method
(DOMDocument object), 172

defining, 93, 100
Delete method

IADsCollection object, 338
IADsContainer object, 338
Scripting.File object, 146

DeleteFile method
(Scripting.FileSystemObject
object), 126, 132

DeleteFolder method
(Scripting.FileSystemObject
object), 126

DriveExists method
(Scripting.FileSystemObject
object), 126

dynamic methods, 306
EnumNetworkDrives()

(WSHNetwork objects), 209
listing drive mappings, 214-217

EnumPrinterConnections()
(WSHNetwork objects), 209

displaying printer information,
222-223

Exec method (WScript.Shell
object), 184

Exists method (Named collection),
387

ExpandEnvironmentStrings method
(WScript.Shell object), 184

connection to network printers,
223-224

PrinterPath arguments, 209, 224
AppActivate method (WScript.Shell

object), 183-184
appendChild methods

(IXMLDOMNode object), 174
BodyPart collections methods, 247
BodyPart object methods

AddBodyPart methods, 248
GetEncodedContentStream()

methods, 248
SaveToFile methods, 248

BuildPath method
(Scripting.FileSystemObject
object), 125, 130

CDO.Message object methods
AddAttachment method, 238-239
AddRelatedBodyPart method,

239-241
CreateMHTMLBody method,

240-242
Send method, 240

ChangePassword method (IADsUser
object), 363

Close method (TextStream object),
152

ConnectServer method, parameters,
291-292

Continue method
(IADsServiceOperations object),
360

Copy
Scripting.Folder object, 141
Scripting.File object, 145

CopyFile method
(Scripting.FileSystemObject
object), 125

CopyFolder method
(Scripting.FileSystemObject
object), 125, 135

CopyHere method (IADsCollection
object), 337

Count method
Environment collection, 198
Named collection, 386

Create method (IADsContainer
object), 337-338

createCDataSection method
(DOMDocument object), 171

782 methods

hasChildNodes methods
(IXMLDOMNode object), 174

insertBefore methods
(IXMLDOMNode object), 174

Item methods (collection objects),
103

item methods
(IXMLDOMNamedNode object),
176

load method (DOMDocument
object), 172

Load methods (CDO.Configuration
objects), 251

LoadFrom method
(CDO.Configuration method),
cdoConfigSource constants, 253

loadXML method (DOMDocument
object), 172

LogEvent method (WScript.Shell
object), 184

MapNetworkDrive (WSHNetwork
objects), 210

adding drive mappings, 218-219
drive mappings, 220-221
LocalName arguments, 210
Password arguments, 210
RemoteName arguments, 210
UpdateProfile arguments, 210
UserName arguments, 210

Move method (Scripting.File
object), 146

MoveFile method
(Scripting.FileSystemObject
object), 129, 132

MoveFolder method
(Scripting.FileSystemObject
object), 129

MoveHere method (IADsCollection
object), 338

OpenAsTextStream method
(Scripting.File object), 146

OpenTextFile method
(Scripting.FileSystemObject
object), 129

Pause method
IADsPrintJobOperations object, 353
IADsPrintQueueOperations object,

356
IADsServiceOperations object, 360

Popup method (WScript.Shell
object), 184-185

FileExists method
(Scripting.FileSystemObject
object), 126

FolderExists method
(Scripting.FileSystemObject
object), 126

Get method (IADs object), 334-335
GetAbsolutePathName method

(Scripting.FileSystemObject
object), 126

GetBaseName method
(Scripting.FileSystemObject
object), 127, 131-132

GetDrive method
(Scripting.FileSystemObject
object), 127

GetDriveName method
(Scripting.FileSystemObject
object), 127

getElementsByTagName method
(DOMDocument object), 172

GetEx method (IADs object), 335
GetExtensionName method

(Scripting.FileSystemObject
object), 127

GetFile method
(Scripting.FileSystemObject
object), 127

GetFileName method
(Scripting.FileSystemObject
object), 127

GetFolder method
(Scripting.FileSystemObject
object), 127

GetInfo method (IADs object), 335
GetInfoEx method (IADs object),

335
getNamedItem methods

(IXMLDOMNamedNode object),
176

GetObject method (IADsContainer
object), 338

GetParentFolderName method
(Scripting.FileSystemObject
object), 127

GetSpecialFolder method
(Scripting.FileSystemObject
object), 128

GetTempName() method
(Scripting.FileSystemObject
object), 128

783Methods property (IADsGroup object)

selectSingleNode method
DOMDocument object, 172
IXMLDOMNode object, 174

SendKeys method (WScript.Shell
object), 186

setAttribute methods
(IXMLDOMNode object), 175

SetDefaultPrinter (WSHNetwork
objects), 211

setting default printers, 228
SetInfo method

IADs object, 336
IADsDomain object, 344
IADsUser object, 363

SetPassword method
IADsServiceOperations object), 360
IADsUser object, 363

Skip method (TextStream object),
152

SkipLine method (TextStream
object), 152

Start method
(IADsServiceOperations object),
361

static methods, 306
Stop method

(IADsServiceOperations object),
361

SWbemObjects objects methods,
307

SWbemServices objects methods
Delete method, 302
ExecMethod method, 302
ExecQuery method, 302-305
InstancesOf method, 303

Terminate method (WshScriptExec
object), 189

versus properties, 100-101
Win32_Service objects methods,

316
Write method (TextStream object),

152
WriteBlankLines method

(TextStream object), 152, 159
WriteLine method (TextStream

object), 152-156, 159
Methods properties
(SWbemServices objects), 306

Methods property (IADsGroup
object), 349

PowerShell, 626-627
Purge method

(IADsPrintQueueOperations
object), 356

Put method (IADs object), 335
PutEx method (IADs object),

335-336
Read method (TextStream object),

152, 163, 166
ReadAll method (TextStream

object), 152
ReadLine method (TextStream

object), 152-153
RegDelete method (WScript.Shell

object), 186
RegRead method (WScript.Shell

object), 186, 202
RegWrite method (WScript.Shell

object), 186, 203
Remove methods (Environment

collection), 198
removeChild methods

(IXMLDOMNode object), 174
RemoveNetworkDrive

(WSHNetwork objects), 210
deleting drive mappings, 219-220
Force arguments, 210
Name arguments, 210
UpdateProfile arguments, 210

RemovePrinterConnection
(WSHNetwork objects), 211

deleting printer connections, 226-228
Force arguments, 211
Name arguments, 211
UpdateProfile arguments, 211

replaceChild methods
(IXMLDOMNode object), 174

Resume method
IADsPrintJobOperations object, 353
IADsPrintQueueOperations object,

356
Run method (WScript.Shell object),

186
Save method

DOMDocument object, 172
WshShortcut object, 194
WshUrlShortcut object, 194

selectNodes method
DOMDocument object, 172
IXMLDOMNode object, 174

784 Microsoft Developer’s Network Website

Move methods (Scripting.File
object), 146

MoveFile method
(Scripting.FileSystemObject
object), 129, 132

MoveFolder method
(Scripting.FileSystemObject
object), 129

MoveHere method
(IADsCollection object), 338

MoveHere method (IADsContainer
object), 338

MP3 tag data, reading, 166-167
MS-DOS

configuring, 525-526
managing programs, 540
NTVDM (Windows NT Virtual

DOS Machine), 522-523
configuring, 525-536
configuring serial communications,

539
hardware support, 539
networking, 536-537
printing, 537
printing redirection, 538

Properties dialog box
Compatibility tab, 532
Font tab, 528
Memory tab, 528
Miscellaneous Settings tab, 530-531
Program tab, 526-528
Screen tab, 530

troubleshooting, 540-541
MsgBox functions (VBScripts),
69-70, 79-82

documenting, 70
MSXML2.DOMDocument object,
169

multidimensional PowerShell
arrays, 634

multiformat messages, sending,
260

multipart internet mail extensions.
See MIME

multiple arguments, processing in
batch files, 503-506

multiple attributes, testing, 143

Microsoft Developer’s Network
Website, 50, 232

Microsoft documentation, ADSI
(Active Directory Scripting
Interface) objects, 332

Microsoft Exchange. See Exchange
(Microsoft)

Microsoft TechNet website, 50
Microsoft Website, 70
Mid() function, 72-73
MIME (Multipart Internet Mail
Extensions), 234

MIMEFormatted property
(CDO.Message objects), 237

MinPasswordAge property
(IADsDomain object), 343

MinPasswordLength property
(IADsDomain object), 343

Miscellaneous Settings tab
(NTVDM), configuring, 530-532

Miscellaneous Settings tab
(Properties dialog box), 530-531

mkdir command (CMD), 469
Model property (IADsPrintQueue
object), 354

modifiers, for command, 733-734
modifying shortcuts, 193-196
modules (PowerShell), writing, 701
monikers, 100

security options, specifying, 300-301
WMI (Windows Management

Interface), connecting with, 292-293
monitoring

Hotfixes,WMI (Windows
Management Interface), 313-314

Windows service packs
example WMI script, 314-315
WMI (Windows Management

Interface), 313-314
more (command-line programs),
552-553

more command, 552-553
more program (Windows XP), 741
move command (CMD), 469

785network management

dates and times, 677-679
mathematical functions, 680
static member functions, calling, 673
strings, 674-676

net help command (networking
utilities), 575

net helpmsg command (network-
ing utilities), 575

net localgroup command (net-
working utilities), 575

net pause command (networking
utilities), 575

net print command (networking
utilities), 575-576

net send command (networking
utilities), 576

net session command (networking
utilities), 576-577

net share command (networking
utilities), 577

net start command (networking
utilities), 578

net statistics command (network-
ing utilities), 578

net stop command (networking
utilities), 578

net use command (networking
utilities), 579-581

net user command (networking
utilities), 581, 583

net view command (networking
utilities), 583-584

netstat command (networking
utilities), 584

active connections, listing, 585
constant monitoring, 586
open ports, listing, 586
statistics, listing, 586

network management, 207-211
domain networks

logon scripts, assigning through
Group Policy, 418-421

remote management with WMI,
283-284

drive mappings
adding, 218-219

multiple commands (CMD shell),
typing on one line, 452-453

multiple files, searching (findstr
command-line programs), 549

multiple inheritance, 324-325
multiple scripts, enclosing in WSF
files, 390

multiple workstations, replicating
scripts to, 406-408

N
Name arguments (WSHNetwork
objects), 210-211

name completion (CMD shell),
450-451

Name properties
Scripting.File object, 145-146
Scripting.Folder object, 140
Win32_Service objects, 315
IADs object, 334
IADsFileShare object, 348
IADsGroup object, 349
IADsOU object, 369
IADsPrintQueue object, 355
IADsResource object, 346
IADsService object, 358

named arguments (command-line
arguments)

extracting, 387
processing, 386-388

Named collection (command-line
arguments), 386-387

named constants, 52-53
namespaces, 281-283
namingContext property
(RootDSE object), 368

nested objects, 101-102
net command (networking
utilities), 574

net command-line tool, 574-583
net continue command (network-
ing utilities), 574

net file command (networking
utilities), 574

.NET framework, PowerShell,
596-597

786 network management

newsgroups,VBScript newsgroup
Websites, 92

nextSiblings properties
(IXMLDOMNode object), 173

nntpauthenticate fields (CDO.con-
figuration objects),
cdoProtocolAuthentication
constants, 254

node types, IXMLDOMNode
object, 175

nodeName properties
(IXMLDOMNode object), 173

nodes, 169
nodeType properties
(IXMLDOMNode object), 173

nodeType values (IXMLDOMNode
object), 175

nodeTypeString properties
(IXMLDOMNode object), 174

NodeValue properties
(IXMLDOCNode object), 176

nodeValue properties
(IXMLDOMNode object), 174

non-standard objects, 115-120
Notify property (IADsPrintJob
object), 352

NotifyPath property (IADsPrintJob
object), 352

Now() functions (VBScript), 75
nslookup command (networking
utilities), 586

DNS servers, testing, 589
hostname IP addresses, finding,

587-589
nslookup command-line tool,
586-589

NTVDM (Windows NT Virtual
DOS Machine), 522-523

applications, terminating, 540
AUTOEXEC.NT file, 535-536
CONFIG.NT file, 532-535
configuring, 525-526

AUTOEXEC.NT, 535
CONFIG.NT, 532-535
environment variables, 536
Font tab, 528

configuring, 220-221
deleting, 219-220
listing, 214-218

multiple computers, replicating
scripts to, 406-408

workgroup networks, remote man-
agement with WMI, 284-287

network mappings (batch files)
deleting, 518
managing, 518

network user information, retriev-
ing, 212-214

networking utilities (Windows
XP), 741-742

ipconfig command, 571
examining/clearing DNS cache, 573
listing IP address information,

571-572
resetting automatically assigned

addresses, 573
net command, 574
net continue command, 574
net file command, 574
net help command, 575
net helpmsg command, 575
net localgroup command, 575
net pause command, 575
net print command, 575-576
net send command, 576
net session command, 576-577
net share command, 577
net start command, 578
net statistics command, 578
net stop command, 578
net use command, 579-581
net user command, 581-583
net view command, 583-584
netstat command, 584

constant monitoring, 586
listing active connections, 585
listing open ports, 586
listing statistics, 586

nslookup command, 586
finding hostname IP addresses,

587-589
testing DNS servers, 589

ping command, 589-590
tracert command, 591-592

networks, deploying scripts on, 394

787objects

multiple inheritance, 324
RootDSE, 368-369

automation, GetObject function,
99-100

CDO, messaging objects, 232-250
classes, 95-96
CLSID, 116
collection objects, 96-97

ActivePerl, 108-109
ActivePython, 110
Count properties, 103
For Each loops, 103
Item methods, 103
JScript, 104-106

collections, 96
Com (Common Object Model)

objects, 94
containers, 96
defining, 10-11, 93
DOMDocument objects (Windows

Scripting Host), 169-170
async properties, 170
childNodes properties, 171
createCDataSection methods, 171
createComment methods, 171
createDocumentType method, 171
createElement method, 171
createProcessingInstruction method,

171
createTextNode method, 172
documentElement properties, 171
getElementsByTagName method,

172
load method, 172
loadXML method, 172
parseError properties, 171
Save method, 172
selectNodes method, 172
selectSingleNode method, 172
xml properties, 171

fax objects,
FAXCOMEx.FaxDocument
object, 271-274

IADs object (ADSI), 333
AdsPath property, 334
Class property, 334
Get method, 334-335
GetEx method, 335
GetInfo method, 335
GetInfoEx method, 335
GUID property, 334

Memory tab, 528-529
Miscellaneous Settings tab, 530-532
Program tab, 526-528
Screen Settings tab, 530

drive letters, mapping, 537
environment variables, 536
MS-DOS hardware support, 539
networking, 536-537
printing, 537
printing redirection, 538
Properties dialog box

Compatibility tab, 532
Font tab, 528
Memory tab, 528
Miscellaneous Settings tab, 530-531
Program tab, 526-528
Screen tab, 530

serial communications, configuring,
539

numeric constants (VBScripts), 51
numerical calculations, performing
for batch files, 481

numerical for loops, 486

O
object browsers, 118

classes, viewing, 118
OLE/COM Object Viewer, 119

objects, 10, 93-94
IXMLDOMNode

methods, 174-175
node types, 175
properties, 173-174

Active Directory objects, 368
IADsO object, 369-370
IADsOU object, 369-370
RootDSE object, 368-369

ActivePerl, 106
collections, 108-109
Perl Object Interface, 107-108
running Perl scripts in Windows

Script Host, 106-107
ActivePython, 109-110

collections, 110
ADO, Stream object, 250
ADSI, 322, 324

class names, 325
creating, 325-328
leaves, 330

788 objects

IADsFileShare object (ADSI)
CurrentUserCount property, 347
Description property, 348
HostComputer property, 348
MaxUserCount property, 348
Name property, 348
Path property, 348

IADsGroup object (ADSI), 349-350
IADsMembers object (ADSI), 350
IADsNamespaces object (ADSI),

351
IADsO object (Active Directory)

Count property, 369
Description property, 369
FaxNumber property, 369
Filter property, 369
LocalityName property, 369
Name property, 369
Parent property, 369
PostalAddress property, 370
SeeAlso property, 370
TelephoneNumber property, 370

IADsOU object (Active Directory)
BusinessCategory property, 369
Count property, 369
Description property, 369
FaxNumber property, 369
Filter property, 369
LocalityName property, 369
Name property, 369
Parent property, 369
PostalAddress property, 370
SeeAlso property, 370
TelephoneNumber property, 370

IADsPrintJob object (ADSI),
351-354

IADsPrintJobOperations object
(ADSI), 351-352, 354

IADsPrintQueue object (ADSI),
356-357

BannerPage property, 354
Datatype property, 354
DefaultJobPriority property, 354
Description property, 354
HostComputer property, 354
Location property, 354
Model property, 354
Name property, 355
PrintDevices property, 355
PrinterPath property, 355
PrintProcessor property, 355

Name property, 334
Parent property, 334
Put method, 335
PutEx method, 335-336
Schema property, 334
SetInfo method, 336

IADsCollection object (ADSI)
CopyHere method, 337
Count property, 336
Create method, 337-338
Delete method, 338
Filter property, 336
GetObject method, 338
Hints property, 337
MoveHere method, 338

IADsComputer object (ADSI), 340
IADsComputerOperations object

(ADSI), 340
IADsContainer object (ADSI), 336

CopyHere method, 337
Count property, 336
Create method, 337-338
Delete method, 338
Filter property, 336
GetObject method, 338
Hints property, 337
MoveHere method, 338

IADsDomain object (ADSI), 342
AutoUnlockInterval property, 343
Filter property, 343
IsWorkgroup property, 343
LockoutObservationInterval property,

343
MaxBadPasswordsAllowed property,

343
MaxPasswordAge property, 343
MinPasswordAge property, 343
MinPasswordLength property, 343
PasswordAttributes property,

343-344
PasswordHistoryLength property, 344
SetInfo method, 344

IADsFileService object (ADSI)
MaxUserCount property, 345
Resources property, 345
Sessions property, 346

IADsFileServiceOperations object
(ADSI), 345

MaxUserCount property, 345
Resources property, 345
Sessions property, 346

789objects

IXMLDOMNode objects
(Windows Scripting Host)

appendChild method, 174
attributes properties, 173, 175
childNodes properties, 173
firstChild properties, 173
hasChildNodes method, 174
insertBefore method, 174
lastChild properties, 173
nextSiblings properties, 173
nodeName properties, 173
nodeType properties, 173
nodeType values, 175
nodeTypeString properties, 174
nodeValue properties, 174
ownerDocument properties, 174
previousSibling properties, 174
removeChild method, 174
replaceChild method, 174
selectNodes method, 174
selectSingleNode method, 174
setAttribute method, 175
xml properties, 174

JScript
case sensitivity, 104
collections, 104-106
Enumerator objects, 105
WScript, 104

messaging objects,
CDO.Configuration object,
250-256

methods
AddPrinterConnection, 208, 225-

226, 229-230
AddWindowsPrinterConnection,

209, 223-224
defining, 93, 100
EnumNetworkDrives, 209,

214-217
EnumPrinterConnections, 209,

222-223
MapNetworkDrive, 210, 218-221
RemoveNetworkDrive, 210,

219-220
RemovePrinterConnection, 211,

226-228
SetDefaultPrinter, 211, 228
versus properties, 100-101

monikers, 292-293, 300-301
MSXML2.DOMDocument, 169
naming, 97

Priority property, 355
Starttime property, 355
UntilTime property, 355

IADsPrintQueueOperations object
(ADSI), 354-357

IADsResource object (ADSI), 346
IADsService object (ADSI), 357,

360
Dependencies property, 358
DisplayName property, 358
ErrorControl property, 358-359
HostComputer property, 358
LoadOrderGroup property, 358
Name property, 358
Path property, 358
ServiceAccountName property, 358
ServiceAccountPath property, 358
ServiceType property, 358
SetInfo method, 359
StartType property, 359
Startup Parameters property, 359
Version property, 359

IADsServiceOperations object
(ADSI), 357

Continue method, 360
Pause method, 360
SetPassword method, 360
Start method, 361
Status property, 360
Stop method, 361

IADsSession object (ADSI), 361-362
IADsUser object (ADSI)

AccountDisabled property, 362
ChangePassword method, 363
Description property, 362
FullName property, 362
Groups property, 362
HomeDirectory property, 362
IsAccountLocked property, 362
LastLogin property, 363
LastLogoff property, 363
Profile property, 363
SetInfo method, 363
SetPassword method, 363

instances, 95
IXMLDOCNode objects (Windows

Scripting Host), 176
IXMLDOMNamedNode objects

(Windows Scripting Host), 176

790 objects

ShortName properties, 145
ShortPath properties, 145
Type properties, 145

Scripting.FileSystemObject, 124
methods, 125-130

Scripting.FileSystemObject
(Windows Scripting Host), 124

BuildPath method, 125, 130
CopyFile method, 125
CopyFolder method, 125, 135
CreateFolder method, 125, 132-134
CreateFullPath method, 133-134
CreateTextFile method, 126
DeleteFile method, 126, 132
DeleteFolder method, 126
DriveExists method, 126
Drives property, 125
FileExists method, 126
FolderExists method, 126
GetAbsolutePathName method, 126
GetBaseName method, 127,

131-132
GetDrive method, 127
GetDriveName method, 127
GetExtensionName method, 127
GetFile method, 127
GetFileName method, 127
GetFolder method, 127
GetParentFolderName method, 127
GetSpecialFolder method, 128
GetTempName() method, 128
MoveFile method, 129, 132
MoveFolder method, 129
OpenTextFile method, 129

Scripting.Folder object (Windows
Scripting Host), 139

Attributes properties, 140
copy method, 141
DateCreated properties, 140
DateLastAccessed properties, 140
DateLastModified properties, 140
Delete method, 141
Drive properties, 140
file attribute values, 141-144
Files properties, 140
folder attribute values, 141-144
IsRootFolder properties, 140
multiple attributes, 143
Name properties, 140
ParentFolder properties, 140
Path properties, 141

nested objects, 101-102
non-standard, 115-120
object browsers, 118-119
OLE/COM Object Viewer, 119
Perl, 107-109
PowerShell, generating, 685-686
properties

defining, 93, 100
read-only properties, 101

Python, 110
releasing, 102
RootDSE object (Active Directory)

currentTime property, 368
defaultNamingContext property, 368
dnsHostTime property, 368
namingContext property, 368
rootDomainNamingContext

property, 368
serverName property, 368
supportedLDAPVersion property,

369
Scripting.Drive object (Windows

Scripting Host), 135-136
Scripting.Drive objects (Windows

Scripting Host)
AvailableSpace properties, 136
DriveLetter properties, 136
DriveType properties, 136
FileSystem properties, 137
FreeSpace properties, 137
IsReady properties, 137-138
Path properties, 137
RootFolder properties, 137
SerialNumber properties, 137
ShareName properties, 137
TotalSize properties, 137
VolumeName properties, 137

Scripting.File objects (Windows
Scripting Host)

Attributes properties, 145
copy method, 145
DateCreated properties, 145
DateLastAccessed properties, 145
DateLastModified properties, 145
Delete method, 146
Drive properties, 145
Move method, 146
Name properties, 145-146
OpenAsTextStream method, 146
ParentFolder properties, 145
Path properties, 145

791objects

drive mappings, listing, 214,
216-218

network connections, managing, 207
network user information, retrieving,

212, 214
printer information, displaying,

222-223
printers connections, deleting,

226-228
WScript.Shell object (Windows

Scripting Host)
AppActivate method, 183-184
CreateShortcut method, 184
CurrentDirectory properties, 182
Environment properties, 182-183,

196-197
Exec method, 184
ExpandEnvironmentStrings method,

184
LogEvent method, 184
Popup method, 184-185
RegDelete method, 186
RegRead method, 186, 202
RegWrite method, 186, 203
Run method, 186
SendKeys method, 186
SpecialFolders properties, 183

WSH
FileSystemObject, 130
Scripting.Drive, 135-137
Scripting.File, 145-146
Scripting.Folder, 139-141
TextStream, 150-152
WScript.Shell, 182-186

WSHNetwork objects
AddPrinterConnection method, 208,

225-226, 229-230
AddWindowsPrinterConnection

method, 209, 223-224
ComputerName properties, 208
EnumNetworkDrives() method, 209,

214-217
EnumPrinterConnections() method,

209, 222-223
MapNetworkDrive method, 210,

218-221
RemoveNetworkDrive method, 210,

219-220
RemovePrinterConnection method,

211, 226-228
SetDefaultPrinter method, 211, 228

ShortName properties, 141
ShortPath properties, 141
Size properties, 141
SubFolders properties, 141
Type properties, 141

SWbemObjectSet collection object,
305-306

SWbemServices, 300-301
methods, 302-303
properties, 302

TextStream object (Windows
Scripting Host), 150

AtEndOfLine properties, 151
AtEndOfStream properties, 151,

162
Close methods, 152
Column properties, 151
Line properties, 151
Read methods, 152, 163, 166
ReadAll methods, 152
ReadLine methods, 152-153
Skip methods, 152
SkipLine methods, 152
Write methods, 152
WriteBlankLines methods, 152, 159
WriteLine methods, 152-156, 159

VBScript, 98-100
collections, 67, 102-103
nested objects, 101-102
releasing, 102

Win32_Service
methods, 316
properties, 315-316

Windows Registry, viewing, 115
WMI, 288-289, 291

SWbemObject, 306-307
WbemScripting.SWbemLocator

object, 291-292
WScript, 111-112

command-line arguments, retrieving,
113-114

methods, 112-113
properties, 111-112

WScript.Network
default printer, setting, 228
DOS printer sessions, redirecting,

225-226
drive mappings, adding, 218-219
drive mappings, configuring, 220-221
drive mappings, deleting, 219-220

792 objects

OperatingSystem property
(IADsComputer object), 340

OperatingSystemVersion property
(IADsComputer object), 340

operators
& operator (PowerShell), 646
PowerShell

assignment operators, 648
precedence, 646-647
splat operators, 672-673

set /a command, 734
sting operators (PowerShell),

643-646
VBScript, 53-55, 717-718

arithmetic, 55
automatic conversion, 57
comparison, 55
logical, 56
precedence, 54

options for CMD shell, 437-438
Organization property
(CDO.Message objects), 238

output redirection, 33, 445-447
Owner property (IADsComputer
object), 340

ownerDocument properties
(IXMLDOMNode object), 174

P
PagesPrinted property
(IADsPrintJobOperations object),
353

paginating file lists, dir command
(CMD), 477

parameters, passing, 134
Parent property (BodyPart
objects), 248

Parent property (IADs object), 334
Parent property (IADsO object),
369

Parent property (IADsOU object),
369

ParentFolder properties
(Scripting.File object), 145

UserDomain properties, 208
UserName properties, 208

WshScriptExec object (Windows
Scripting Host)

ExitCode properties, 188
ProcessID properties, 189
Status properties, 189
StdErr properties, 189
StdIn properties, 189
StdOut properties, 189
Terminate method, 189

WshShortcut object (Windows
Scripting Host)

Arguments properties, 193
Description properties, 194
FullName properties, 194
Hotkey properties, 194
IconLocation properties, 194
Save methods, 194
TargetPath properties, 194
WindowStyle properties, 194
WorkingDirectory properties, 194

WshUrlShortcut object (Windows
Scripting Host)

Arguments properties, 193
Description properties, 194
FullName properties, 194
Hotkey properties, 194
IconLocation properties, 194
Save methods, 194
TargetPath properties, 194
WindowStyle properties, 194
WorkingDirectory properties, 194

obtaining
code-signing certificate, 410-411
PowerShell, 598-600

OLE/COM Object Viewer, 119
online help, providing for WSF
files, 384-385

Open Object REXX, 15
open ports, listing, 586
OpenAsTextStream methods
(Scripting.File object), 146

opening elevated Command
Prompt, 436-437

OpenTextFile method
(Scripting.FileSystemObject
object), 129

793PowerShell

performing numerical calculations
for batch files, 481

Perl, 15
defining, 15
objects, 107-109
scripts, running, 106-107
website, 15

Perl Object Interface, 107-108
permission control (DCOM secu-
rity),WMI (Windows
Management Interface), 298-299

permissions
checking (cacls command), 562
granting (cacls command), 562
managing with cacls command-line

tool, 562-563
PID numbers, killing processes
(taskkill command), 568

ping command-line tool, 589-590
pipe mechanisms, 33
pipeline functions, PowerShell,
671-672

popd command (CMD), 470
Popup method (WScript.Shell
object), 184-185

ports, listing, 586
Position property
(IADsPrintJobOperations object),
353

positional searching (findstr com-
mand-line programs), 549

PostalAddress property (IADsOU
object), 370

PowerShell
& operators, 646
aliases, 612
arrays, 632, 634-636

comparisons, 640-643
values, extracting, 636-637

casts, 649-650
cmdlets, 607, 609-610, 690-691
command-line editing, 602-603
command-line processing, 700
command-line syntax, 604-607
commands, completing, 612
comments, 622, 700
constants, 637

ParentFolder properties
(Scripting.Folder object), 140

parentheses, grouping commands,
453-454

parseError properties
(DOMDocument object), 171

parsing text, 487-488
passing information to scripts,
31-32

passing parameters, 134
Password arguments
(WSHNetwork objects), 209-210

PasswordAttributes property
(IADsDomain object), 343-344

PasswordHistoryLength property
(IADsDomain object), 344

PATH, 456-457
adding scripts to, 37
changing, 457-458
for all users, adding scripts to, 37-38
for single user, adding scripts to,

37-38
search paths, 456-457
special handling, 200-201

path command (CMD), 470
Path properties

Scripting.Drive object, 137
Scripting.File object, 145
Scripting.Folder object, 141
SWbemServices objects, 307
IADsFileShare object, 348
IADsResource object, 346
IADsService object, 358

PathName properties
(Win32_Service objects), 315

pathnames, 130, 518
paths, assigning, 134
pause command (CMD), 470
Pause method

IADsPrintJobOperations object, 353
IADsPrintQueueOperations object,

356
IADsServiceOperations object, 360

PauseService methods
(Win32_Service objects), 316

794 PowerShell

strings, 628
variables, 623-624

predefined, 630-632
releasing, 630
scope, 665-669

precedence (VBScript variable
operators), 54

predefined environment variables,
459-461, 727-728

predefined PowerShell variables,
630-632

previousSibling properties
(IXMLDOMNode object), 174

print redirection (NTVDM), 538
Print Screen function (Windows
XP), 538

PrintDevices property
(IADsPrintQueue object), 355

PrinterPath arguments
(WSHNetwork objects), 209, 224

PrinterPath property
(IADsPrintQueue object), 355

printers
connecting to, 223-225
connections, deleting, 226-228
default printer, setting, 228
DOS printer sessions, redirecting,

225-226
information, displaying, 222-223
managing

example WMI script, 313
WMI (Windows Management

Interface), 313
network connections, deleting,

226-228
network printers, connecting to,

223-224
printing, 229-230

directory listings, 478
Event Log results, 425
log files, 425
NTVDM, 537-538
with Wscript.Echo command, 84-85

PrintJobs property
(IADsPrintQueueOperations
object), 356

constructors, 627
copying and pasting, 603-604
directories, 613-615, 692-696
exception handling, 702-703

throw command, 664
trap command, 662

expressions, 638-639
files

text, reading, 697-698
text, writing, 698

filtering, 686-689
flow-of-control commands

break, 660-661
continue, 661
do, 654
for, 655-656
foreach, 656-657
if, 653
switch, 657-660
while, 654

functions
dot-sourcing, 668
parameters, 665
scope, 668

get-help command, 610-611
hash tables, 650, 652-653, 703-704
here-strings, 629
ISE, 705

breakpoints, setting, 709
conditional breakpoints, 711
configuring, 706-707
scripts, editing, 707-708

literal values, 625-626
methods, 626-627
modules, writing, 701
.Net platform, 596-597

dates and times, 677-679
mathematical functions, 680
static member functions, calling, 673
strings, 674-676

objects, generating, 685-686
obtaining, 598-600
operators

assignment operators, 648
precedence, 646-647
splat operators, 672-673

pipeline functions, 671-672
profiles, 617-618
running on remote computers, 712
security, 615-617
string operators, 643-646

795properties

programming, batch files, 494-495
programs

command-line, running, 188-191
running, 183-186
Windows programs, running,

187-188
prompt command (CMD), 470
prompting user input, 162, 514-515
properties, 93

AccountDisabled property
(IADsUser object), 362

AdsPath property (IADs object), 334
Arguments property (WshShortcut

object), 193
Arguments property

(WshUrlShortcut object), 193
AtEndOfLine property (TextStream

object), 151
AtEndOfStream property

(TextStream object), 151, 162
Attributes (Scripting.Folder object),

140
attributes property

(IXMLDOMNode object), 173,
175

Attributes property (Scripting.File
object), 145

AutoUnlockInterval property
(IADsDomain object), 343

AvailableSpace (Scripting.Drive
object), 136

BannerPage property
(IADsPrintQueue object), 354

BodyPart collections properties
Count property, 246
Item property, 246

BodyPart object properties
BodyPart property, 247
Charset property, 247
ContentMediaType property, 247
ContentTransferEncoding property,

248
Fields property, 248
Filename property, 248
Parent property, 248

BusinessCategory property
(IADsOU object), 369

CDO.Message object properties
Attachments property, 236
AutoGenerateTextBody property, 236

PrintProcessor property
(IADsPrintQueue object), 355

Priority property (IADsPrintJob
object), 352

Priority property
(IADsPrintQueue object), 355

private folders, creating, 563
private scope, 91
privileges

for batch files, 493
WMI options, 298-299

procedures (VBScripts), 87
functions

creating, 87
extending built-in functions, 88

subroutines, 89
process environment, 197
processes, killing with taskkill,
568-569

ProcessID properties
(WshScriptExec object), 189

processing
batch files, command-line options,

515-517
command-line arguments, 386
conditional processing, if command

(CMD), 482-483, 499-501
directories, 486
multiple arguments, batch files,

503-506
named arguments (command-line

arguments), 386
unnamed arguments (command-line

arguments), 389
Processor property
(IADsComputer object), 340

ProcessorCount property
(IADsComputer object), 340

Profile property (IADsUser
object), 363

profiles, PowerShell, 617-618
program output, sending, 258
program statements,VBScript,
718-719

Program tab (NTVDM), configur-
ing, 526-528

796 properties

currentTime property (RootDSE
object), 368

CurrentUserCount property
(IADsFileShare object), 347

Datatype property (IADsPrintQueue
object), 354

DateCreated (Scripting.Folder
object), 140

DateCreated property (Scripting.File
object), 145

DateLastAccessed (Scripting.Folder
object), 140

DateLastAccessed property
(Scripting.File object), 145

DateLastModified (Scripting.Folder
object), 140

DateLastModified property
(Scripting.File object), 145

DefaultContainer property
(IADsNamespaces object), 351

DefaultJobPriority property
(IADsPrintQueue object), 354

defaultNamingContext property
(RootDSE object), 368

defining, 93, 100
Dependencies property

(IADsService object), 358
Description property (IADsFileShare

object), 348
Description property (IADsGroup

object), 349
Description property (IADsO

object), 369
Description property (IADsOU

object), 369
Description property (IADsPrintJob

object), 352
Description property

(IADsPrintQueue object), 354
Description property (IADsUser

object), 362
Description property (WshShortcut

object), 194
Description property

(WshUrlShortcut object), 194
DisplayName property (IADsService

object), 358
Division property (IADsComputer

object), 340
dnsHostTime property (RootDSE

object), 368

BCC property, 236
BodyPart property, 236
CC property, 236
Configuration property, 236
DSNOptions property, 236,

240-241
Fields property, 237
From property, 237
HTMLBody property, 237
HTMLBodyPart property, 237
MDNRequested property, 237
MIMEFormatted property, 237
Organization property, 238
ReplyTo property, 238
Sender property, 238
Subject property, 238
TextBody property, 238
TextBodyPart property, 238
To property, 238

childNodes property
(DOMDocument object), 171

childNodes property
(IXMLDOMNode object), 173

Class property (IADs object), 334
Column property (TextStream

object), 151
Computer property (IADsSession

object), 361
ComputerName properties

(WSHNetwork objects), 208
ComputerPath property

(IADsSession object), 361
ConnectTime property

(IADsSession object), 361
Count method (Unnamed collec-

tion), 389
Count properties (collection

objects), 103
Count property (IADsCollection

object), 336
Count property (IADsContainer

object), 336
Count property (IADsMembers

object), 350
Count property (IADsO object),

369
Count property (IADsOU object),

369
CurrentDirectory property

(WScript.Shell object), 182

797properties

FullName property (IADsUser
object), 362

FullName property (WshShortcut
object), 194

FullName property
(WshUrlShortcut object), 194

Groups property (IADsUser object),
362

GUID property (IADs object), 334
Hints property (IADsCollection

object), 337
Hints property (IADsContainer

object), 337
HomeDirectory property (IADsUser

object), 362
HostComputer property

(IADsFileShare object), 348
HostComputer property

(IADsPrintQueue object), 354
HostComputer property

(IADsService object), 358
HostPrintQueue property

(IADsPrintJob object), 352
Hotkey property (WshShortcut

object), 194
Hotkey property (WshUrlShortcut

object), 194
IconLocation property

(WshShortcut object), 194
IconLocation property

(WshUrlShortcut object), 194
IdleTime property (IADsSession

object), 361
IsAccountLocked property

(IADsUser object), 362
IsMember() property (IADsGroup

object), 349
IsReady (Scripting.Drive object),

137-138
IsRootFolder (Scripting.Folder

object), 140
IsWorkgroup property

(IADsDomain object), 343
Item property (Environment collec-

tion), 197
Items property (Named collection),

386
Items property (Unnamed collec-

tion), 389
lastChild property

(IXMLDOMNode object), 173

documentElement property
(DOMDocument object), 171

Drive (Scripting.Folder object), 140
Drive property (Scripting.File

object), 145
DriveLetter (Scripting.Drive object),

136
Drives property

(Scripting.FileSystemObject
object), 125

DriveType (Scripting.Drive object),
136

dynamic properties, 306
Environment property

(WScript.Shell object), 182-183,
196-197

ErrorControl property (IADsService
object), 358-359

ExitCode property (WshScriptExec
object), 188

FaxNumber property (IADsO
object), 369

FaxNumber property (IADsOU
object), 369

Fields collections properties, Item
property, 243

Fields property (CDO.Configuration
objects), 251

nntpauthenticate field, 254
sendusing field, 254
smtpauthenticate field, 254
timezoneid field, 254-256
values, 252-253

Files (Scripting.Folder object), 140
FileSystem (Scripting.Drive object),

137
Filter property (IADsCollection

object), 336
Filter property (IADsContainer

object), 336
Filter property (IADsDomain

object), 343
Filter property (IADsMembers

object), 350
Filter property (IADsO object), 369
Filter property (IADsOU object),

369
firstChild property

(IXMLDOMNode object), 173
FreeSpace (Scripting.Drive object),

137

798 properties

Name property (IADsFileShare
object), 348

Name property (IADsGroup object),
349

Name property (IADsO object), 369
Name property (IADsOU object),

369
Name property (IADsPrintQueue

object), 355
Name property (IADsResource

object), 346
Name property (IADsService

object), 358
Name property (Scripting.File

object), 145-146
namingContext property (RootDSE

object), 368
nextSiblings property

(IXMLDOMNode object), 173
NodeName property

(IXMLDOCNode object), 176
nodeName property

(IXMLDOMNode object), 173
nodeType property

(IXMLDOMNode object), 173
nodeTypeString property

(IXMLDOMNode object), 174
NodeValue property

(IXMLDOCNode object), 176
nodeValue property

(IXMLDOMNode object), 174
Notify property (IADsPrintJob

object), 352
NotifyPath property (IADsPrintJob

object), 352
of DOMdocument object, 170-171
OperatingSystem property

(IADsComputer object), 340
OperatingSystemVersion property

(IADsComputer object), 340
Owner property (IADsComputer

object), 340
ownerDocument property

(IXMLDOMNode object), 174
PagesPrinted property

(IADsPrintJobOperations object),
353

Parent property (IADs object), 334
Parent property (IADsO object), 369
Parent property (IADsOU object),

369

LastLogin property (IADsUser
object), 363

LastLogoff property (IADsUser
object), 363

Length property (Environment col-
lection), 197

length property
(IXMLDOMNamedNode object),
176

Length property (Named collec-
tion), 386

Length property (Unnamed collec-
tion), 389

Line property (TextStream object),
151

LoadOrderGroup property
(IADsService object), 358

LocalityName property (IADsO
object), 369

LocalityName property (IADsOU
object), 369

Location property (IADsPrintQueue
object), 354

LockCount property
(IADsResource object), 346

LockoutObservationInterval prop-
erty (IADsDomain object), 343

MaxBadPasswordsAllowed property
(IADsDomain object), 343

MaxPasswordAge property
(IADsDomain object), 343

MaxUserCount property
(IADsFileService object), 345

MaxUserCount property
(IADsFileServiceOperations
object), 345

MaxUserCount property
(IADsFileShare object), 348

Member() property (IADsGroup
object), 349

Methods property (IADsGroup
object), 349

MinPasswordAge property
(IADsDomain object), 343

MinPasswordLength property
(IADsDomain object), 343

Model property (IADsPrintQueue
object), 354

Name (Scripting.Folder object), 140
Name property (IADs object), 334

799properties

Remove property (IADsGroup
object), 349

Resources property
(IADsFileService object), 345

Resources property
(IADsFileServiceOperations
object), 345

rootDomainNamingContext prop-
erty (RootDSE object), 368

RootFolder (Scripting.Drive
object), 137

Schema property (IADs object), 334
SeeAlso property (IADsOU object),

370
SerialNumber (Scripting.Drive

object), 137
serverName property (RootDSE

object), 368
ServiceAccountName property

(IADsService object), 358
ServiceAccountPath property

(IADsService object), 358
ServiceType property (IADsService

object), 358
Sessions property (IADsFileService

object), 346
Sessions property

(IADsFileServiceOperations
object), 346

ShareName (Scripting.Drive object),
137

ShortName property (Scripting.File
object), 145

ShortPath (Scripting.Folder object),
141

ShortPath property (Scripting.File
object), 145

Size (Scripting.Folder object), 141
Size property (IADsPrintJob object),

352
SpecialFolders property

(WScript.Shell object), 183
specified property

(IXMLDOCNode object), 176
StartTime property (IADsPrintJob

object), 352
Starttime property

(IADsPrintQueue object), 355
StartType property (IADsService

object), 359

ParentFolder (Scripting.Folder
object), 140

ParentFolder property (Scripting.File
object), 145

parseError property
(DOMDocument object), 171

PasswordAttributes property
(IADsDomain object), 343-344

PasswordHistoryLength property
(IADsDomain object), 344

Path (Scripting.Drive object), 137
Path (Scripting.Folder object), 141
Path property (IADsFileShare

object), 348
Path property (IADsResource

object), 346
Path property (IADsService object),

358
Path property (Scripting.File object),

145
Position property

(IADsPrintJobOperations object),
353

PostalAddress property (IADsO
object), 370

PostalAddress property (IADsOU
object), 370

previousSibling property
(IXMLDOMNode object), 174

PrintDevices property
(IADsPrintQueue object), 355

PrinterPath property
(IADsPrintQueue object), 355

PrintJobs property
(IADsPrintQueueOperations
object), 356

PrintProcessor property
(IADsPrintQueue object), 355

Priority property (IADsPrintJob
object), 352

Priority property (IADsPrintQueue
object), 355

ProcessID property (WshScriptExec
object), 189

Processor property (IADsComputer
object), 340

ProcessorCount property
(IADsComputer object), 340

Profile property (IADsUser object),
363

read-only properties, 101

800 properties

UntilTime property (IADsPrintJob
object), 352

UntilTime property
(IADsPrintQueue object), 355

User property (IADsPrintJob
object), 352

User property (IADsResource
object), 346

User property (IADsSession object),
361

UserDomain properties
(WSHNetwork objects), 208

UserName properties
(WSHNetwork objects), 208

UserPath property (IADsPrintJob
object), 352

UserPath property (IADsResource
object), 346

UserPath property (IADsSession
object), 361

Version property (IADsService
object), 359

versus methods, 100-101
VolumeName (Scripting.Drive

object), 137
Win32_Service objects properties

DesktopInteract properties, 315
DisplayName properties, 315
Name properties, 315
PathName properties, 315
Started properties, 315
StartMode properties, 316
StartName properties, 316
State properties, 316
Status properties, 316

WindowStyle property
(WshShortcut object), 194

WindowStyle property
(WshUrlShortcut object), 194

WorkingDirectory property
(WshShortcut object), 194

WorkingDirectory property
(WshUrlShortcut object), 194

xml property (DOMDocument
object), 171

xml property (IXMLDOMNode
object), 174

Property properties
(SWbemServices objects), 307

Startup Parameters property
(IADsService object), 359

static properties, 306
Status property

(IADsPrintJobOperations object),
353

Status property
(IADsPrintQueueOperations
object), 356

Status property
(IADsServiceOperations object),
360

Status property (WshScriptExec
object), 189

StdErr property (WshScriptExec
object), 189

StdIn property (WshScriptExec
object), 189

StdOut property (WshScriptExec
object), 189

SubFolders (Scripting.Folder object),
141

supportLDAPVersion property
(RootDSE object), 369

SWbemObjects objects properties
Methods properties, 306
Path properties, 307
Property properties, 307

SWbemServices objects properties,
Security property, 302

TargetPath property (WshShortcut
object), 194

TargetPath property
(WshUrlShortcut object), 194

TelephoneNumber property
(IADsO object), 370

TelephoneNumber property
(IADsOU object), 370

TimeElapsed property
(IADsPrintJobOperations object),
353

TimeSubmitted property
(IADsPrintJob object), 352

TotalPages property (IADsPrintJob
object), 352

TotalSize (Scripting.Drive object),
137

Type (Scripting.Folder object), 141
Type property (Scripting.File

object), 145

801Registry

Q-R
queries,WQL, 303, 305
quotes, CMD command-line
processing, 454

rd command (CMD), 471
RDNs (relative distinguished
names), 365

Read methods (TextStream
object), 152, 163, 166

read-only properties, 101
ReadAll methods (TextStream
object), 152

reading
binary files, 163

BMP image data, 164-167
MP3 tag data, 166-167

files, 149
Registry values, 202-203
text

from console programs, 191-193
from files, 152-153

XML files, 176-178
ReadLine methods (TextStream
object), 152-153

recipients, specifying in messages
(CDO), 263

recording information to Event
Log, 423

messages, printing, 425
results, summarizing, 425-427

recursion, 134-135
redirecting DOS session printers,
225-226

redirection, 443-447, 729
references, 95
RegDelete method (WScript.Shell
object), 186

Registry, 201
keys, 202
saving information in, 203-205
unsigned scripts, disabling, 408-409
values, reading, 202-203
viewing, 115

providers (ADSI)
LDAP, 364, 366-367

IADsO object, 369-370
IADsOU object, 369-370
RootDSE object, 368-369

supported objects, 327-328
WinNT, 332-333

IADs object, 333-336
IADsCollection object, 336-338
IADsComputer object, 340-342
IADsComputerOperations object,

340-342
IADsContainter object, 336-338
IADsDomain object, 342-344
IADsFileService object, 345-347
IADsFileServiceOperations object,

345-347
IADsFileShare object, 347-348
IADsGroup object, 349-350
IADsMembers object, 350
IADsNamespaces object, 351
IADsPrintJob object, 351-354
IADsPrintJobOperations object,

351-354
IADsPrintQueue object, 354-357
IADsPrintQueueOperations object,

354-357
IADsService object, 357-361
IADsServiceOperations object,

357-361
IADsSession object, 361-362
IADsUser object, 362-363

providing WSF file online help,
384-385

Purge method
(IADsPrintQueueOperations
object), 356

pushd command (CMD), 470, 518
Put method

IADs object, 335
SWbemServices objects, 307

PutEx method (IADs object),
335-336

pvk2pvc.exe, downloading, 410
Python, 15

defining, 15
objects, 110

802 RegRead method (WScript.Shell object)

Resources property
(IADsFileService object), 345

results from scripts, saving, 32-33
Resume method
(IADsPrintJobOperations object),
353

Resume method
(IADsPrintQueueOperations
object), 356

retrieving
filename listings, 479
network user information, 212-214

retrieving
command-line arguments, 113-114
environment variables, 198-199

REXX, 15
Right() function, 72-73
rmdir command (CMD), 471
rootDomainNamingContext
property (RootDSE object), 368

RootDSE object (ADSI), 368-369
RootFolder properties
(Scripting.Drive object), 137

routing email through SMTP
servers, 264

Ruby, 15-16
Run method (WScript.Shell
object), 186

runas command-line tool, 565
runaway command-line programs,
stopping, 440

running
CMD shell, 435
command-line programs, 188-191
Perl scripts in Windows Script Host,

106-107
programs, 183-186
script files, 29-30
scripts

automatically, 40
from batch files, 39
Perl, 106-107
with shortcut icon, 38-39

Windows programs, 187-188

RegRead method (WScript.Shell
object), 186, 202

regular expressions, 552
RegWrite method (WScript.Shell
object), 186, 203

releasing
objects, 102
PowerShell variables, 630

releasing objects, 102
rem command (CMD), 471
remote management with WMI,
283

on domain networks, 283-284
on workgroup networks, 284-287

remote-management scripts, writ-
ing, 403-405

RemoteName arguments
(WSHNetwork objects), 209-210

Remove methods (Environment
collection), 198

Remove property (IADsGroup
object), 349

removeChild methods
(IXMLDOMNode object), 174

RemoveNetworkDrive
methods(WSHNetwork objects)

arguments, 210
drive mappings, deleting, 219-220

RemovePrinterConnection meth-
ods(WSHNetwork objects)

arguments, 211
printer connections, deleting,

226-228
rename command (CMD), 471
renaming files, 132, 146
replaceChild methods
(IXMLDOMNode object), 174

replicating scripts to multiple
computers, 406-408

ReplyTo property (CDO.Message
objects), 238

requiring signed scripts, 414
resetting automatically assigned
addresses, 573

803Scripting.Drive object (Windows Scripting Host)

Windows Script Component files,
23

Windows Script files, 21-22
WSF (Windows Script Files), 21-23
WSH (Windows Script Host)

settings, 23
scripting, 10-11

example script, 16-19
versus batch files, 13

scripting languages, 13
encoding tools, 20
JScript, 14, 104-106
Perl, 15

collections, 108-109
objects, 107-108
scripts, running in WSH, 106-107

Python, 15, 110
REXX, 15
Ruby, 15-16
selecting, 16
VBScript, 14, 49-50

arrays, 89-91
automatic conversion, 57
constants, 51-53
error handling, 86-87
flow control, 57-68
functions, 69-84
objects, 98-103
operators, 53-56
procedures, 87-89
variable scope, 91-92
variables, 50-51
Wscript.Echo command, 84-85

versus compiled languages, 13
Scripting.Drive object (Windows
Scripting Host), 135

properties
AvailableSpace properties, 136
DriveLetter properties, 136
DriveType properties, 136
FileSystem properties, 137
FreeSpace properties, 137
IsReady properties, 137-138
Path properties, 137
RootFolder properties, 137
SerialNumber properties, 137
ShareName properties, 137
TotalSize properties, 137
VolumeName properties, 137

S
sample scripts, 748-752
sample scripts (VBScripts), 16-19

Websites, 50
Save methods (DOMDocument
object), 172

Save methods (WshShortcut
object), 194

Save methods (WshUrlShortcut
object), 194

SaveToFile method (BodyPart
objects), 248

saving
information in Registry, 203-205
script files, output redirection, 33
script results, 32-33

sc command (management power
tools)

sc queryex command, listing
installed services, 569-570

services, starting/stopping, 570
scanning for files, 146-149
Scheduled Task Wizard, 430
scheduling

automatic scripts, 421-431
scripts with Task Scheduler, 428-430

Schema property (IADs object),
334

Screen Settings tab (NTVDM),
configuring, 530

Screen tab (Properties dialog box),
530

Script Debugger (Windows), 43
function keys, 44
script function values, displaying, 45

script editing tools, 27
Script Encoder, 21, 415
script files

creating, 24-25
extensions, 19-20

JSE, 20
VBE, 20

running, 29-30
Script Encoder, 21

804 Scripting.File object (Windows Scripting Host)

Scripting.Folder object (Windows
Scripting Host), 139, 144

file attribute values, 141
changing, 143-144
testing, 142

folder attribute values, 141
changing, 143-144
testing, 142

methods, 141
multiple attributes, testing, 143
properties

Attributes properties, 140
DateCreated properties, 140
DateLastAccessed properties, 140
DateLastModified properties, 140
Drive properties, 140
Files properties, 140
IsRootFolder properties, 140
Name properties, 140
ParentFolder properties, 140
Path properties, 141
ShortName properties, 141
ShortPath properties, 141
Size properties, 141
SubFolders properties, 141
Type properties, 141

Scripting.Folder object, 139
Scriptomatic, 310-311
scripts

ActivePerl, 106-109
ActivePython, objects, 109-110
adding to Windows’ PATH list, 37-38
ADSI, developing, 370-371
automatic scripts

creating unattended scripts, 421-423
scheduling, 421-431

breakpoints, 45
creating, 26
debugging, 42-45

Call Stack window, viewing, 46-47
Wscript.Echo command, 84

defining, 10
deploying on network, 394
drives

checking free space, 138
confirming existence, 137-138
mappings, 220-221

encoded, 20
example scripts,WSF, 390-394

Scripting.File object (Windows
Scripting Host)

methods
Copy method, 145
Delete method, 146
Move method, 146
OpenAsTextStream method, 146

properties
Attributes properties, 145
DateCreated properties, 145
DateLastAccessed properties, 145
DateLastModified properties, 145
Drive properties, 145
Name properties, 145-146
ParentFolder properties, 145
Path properties, 145
ShortName properties, 145
ShortPath properties, 145
Type properties, 145

Scripting.FileSystemObject object
(Windows Scripting Host), 124

methods
BuildPath method, 125, 130
CopyFile method, 125
CopyFolder method, 125, 135
CreateFolder method, 125, 132-134
CreateFullPath method, 133-134
CreateTextFile method, 126
DeleteFile method, 126, 132
DeleteFolder method, 126
DriveExists method, 126
FileExists method, 126
FolderExists method, 126
GetAbsolutePathName method, 126
GetBaseName method, 127,

131-132
GetDrive method, 127
GetDriveName method, 127
GetExtensionName method, 127
GetFile method, 127
GetFileName method, 127
GetFolder method, 127
GetParentFolderName method, 127
GetSpecialFolder method, 128
GetTempName method, 128
MoveFile method, 129, 132
MoveFolder method, 129
OpenTextFile method, 129

properties, Drives property, 125

805selectSingleNode methods

user-friendly scripts, creating,
376-377

versus batch files, 13
viewing

Call Stack window (Windows XP),
46

WMI (Windows Management
Interface) scripts, 312

writing for other users, 376-377
Wscript objects, 111-114

searching
case insensitive searching (findstr

command-line program), 549
files, 477
multiple files, 549

security, 40-41, 414
ADSI, 328-330
code signing, 409

certificate, obtaining, 410-411
scripts, signing, 412-413
signed scripts, requiring, 414

DCOM security, 294-300
file/folder privacy (cacls command),

563
permissions, granting (cacls com-

mand), 562
PowerShell, 615-617
Script Encoder, 415
script files, 40-42
Trust Policy control, 42
WMI

impersonation, 297-298
monikers, specifying security options,

300
privileges, 298-299

Security property (SWbemServices
objects), 302

SeeAlso property (IADsOU
object), 370

Select Case statement, 61-63
select queries (WQL), 304
selecting scripting language, 16

selectNodes methods
DOMDocument object, 172
IXMLDOMNode object, 174

selectSingleNode methods
DOMDocument object, 172
IXMLDOMNode object, 174

files
reading, 149
scanning for, 146-149
writing, 149

installers, creating with IExpress,
398-400

interpreters
JScript language interpreters, 14
VBScript language interpreters, 14

logon scripts
group policy scripts, 420
user profile logon scripts, 416-418

multiple computers, copying to,
406-408

multiple scripts, enclosing with WSF
files, 390

networks, deploying on, 394
output redirection, 33
passing information to, 31-32
Perl, running in Windows Script

Host, 106-107
printing from, 229-230
properties, displaying, 23
remote management, writing,

403-405
remote scripts, 405
replicating to multiple computers,

406-408
results, saving, 32-33
running, 29

automatically, 40
from batch files, 39
with shortcut icon, 38-39

scheduling with Task Scheduler,
428-430

Script Encoder, 21
security, 40-41, 408-409

code signing, 409-410, 412
Script Encoder, 415
security policies, 414
Trust Policy control, 42
Trust Policy control, 42

shortcuts
creating, 39, 183-186, 193-195
modifying, 193-195

signing, 412-413
stdin files, 159-161
stdout files, 159-162
unattended scripts

controlling logged information, 423
creating, 421-423

806 Send method (CDO.Message objects)

ServiceType property
(IADsService object), 358

Sessions property (IADsFileService
object), 346

Sessions property
(IADsFileServiceOperations
object), 346

set commands (CMD), 471
batch files, performing numerical

calculations, 481
variables, setting, 480

set/a command expression
operators, 734

setAttribute methods
(IXMLDOMNode object), 175

SetDefaultPrinter
methods(WSHNetwork objects),
211, 228

SetInfo method
IADs object, 336
IADsDomain object, 344
IADsService object, 359
IADsUser object, 363

setlocal command (CMD), 472
SetPassword method
(IADsServiceOperations object),
360

setting
attributes (attrib command),

558-559
default environment variables, 461
default printers, 228
variables, 480

ShareName properties
(Scripting.Drive object), 137

sharing scripts on multiple
computers, 406-408

shells, 434
shift command (CMD), 472
shortcuts

creating, 38-39, 183-186, 193-196
modifying, 193-195
to CMD shell, creating, 436

ShortName properties
Scripting.File object, 145
Scripting.Folder object, 141

Send method (CDO.Message
objects), 240

Sender property (CDO.Message
objects), 238

sending
email

CDO (Collaboration Data Objects),
232-235, 261

HTML, 234
MIME (Multipart Internet Mail

Extensions), 234
faxes from scripts, 271-277
HTML files, 259-260
messages to Event log, 423

printing messages, 425
results, summarizing, 425-427

multiformat messages, 260
output to network printers, 229-230
program output messages, 258
text file messages, 258
text string messages, 257-258
Web pages, 259-260

SendKeys method (WScript.Shell
object), 186

sendusing fields (CDO.configura-
tion objects), cdoSendUsing
constants, 254

separating CMD arguments, 454
serial communications, configur-
ing (NTVDM), 539

SerialNumber properties
(Scripting.Drive object), 137

serverName property (RootDSE
object), 368

servers
DNS server, testing, 589
email delivery servers, specifying,

263
SMTP servers, routing email, 264

service packs, monitoring, 314-315
ServiceAccountName property
(IADsService object), 358

ServiceAccountPath property
(IADsService object), 358

services
managing, 315-317
starting/stopping, 570-571

807StdOut properties (WshScriptExec object)

start command (CMD), 473-474
Start method
(IADsServiceOperations object),
361

Started properties (Win32_Service
objects), 315

starting/stopping services, sc
command (management power
tools), 570

starting/stopping services, 570-571
StartMode properties
(Win32_Service objects), 316

StartName properties
(Win32_Service objects), 316

StartService methods
(Win32_Service objects), 316

StartTime property (IADsPrintJob
object), 352

StartType property (IADsService
object), 359

startup scripts, assigning through
Group Policy, 418-421

StartupParameters property
(IADsService object), 359

State properties (Win32_Service
objects), 316

static member functions, calling
(PowerShell), 673

static methods, 306
statistics, listing, 586
Status properties

Win32_Service objects, 316
WshScriptExec object, 189
IADsPrintJobOperations object, 353
IADsPrintQueueOperations object,

356
IADsServiceOperations object, 360

StdErr properties (WshScriptExec
object), 189

stdin files, 159-161
StdIn properties (WshScriptExec
object), 189

stdout files, 159-162
StdOut properties (WshScriptExec
object), 189

ShortPath properties
Scripting.File object, 145
Scripting.Folder object, 141

shutdown scripts, assigning
through Group Policy, 418-421

siblings, 169
signed scripts

code signing, 409-413
requiring, 414

signtool.exe, downloading, 410
single-stepping, ISE, 709
Size properties (Scripting.Folder
object), 141

Size property (IADsPrintJob
object), 352

Skip methods (TextStream object),
152

SkipLine methods (TextStream
object), 152

SMTP servers, routing email, 264
software development aids, 742
software interrupts, 522
sort program (Windows XP), 741
sorting listings, dir command
(CMD), 479

special characters, CMD com-
mand-line processing, 454

special-purpose devices, running
through NTVDM, 539-540

SpecialFolders properties
(WScript.Shell object), 183

specified properties
(IXMLDOCNode object), 176

specifying
delivery server for messages (CDO),

263-265
email delivery servers, 263
email subjects/recipients, 263
moniker security options, 300-301

splat operators (PowerShell),
672-673

standard error, 445
standard input/output, 160

filters, 161
user input, prompting for, 162

808 Stop method (IADsServiceOperations object)

SWbemMethod objects
(WbemScripting objects), 289,
308-309

SWbemmethodSet objects
(WbemScripting objects), 289,
308

SWbemObject objects
(WbemScripting objects), 289,
306-307

SWbemObjectSet objects
(WbemScripting objects), 289,
305-306

SWbemProperty objects
(WbemScripting objects), 289

SWbemPropertySet objects
(WbemScripting objects), 289,
308-309

SWbemSecurity objects
(WbemScripting objects), 288

SWbemServices objects
(WbemScripting objects), 288

Delete method, 302
ExecMethod method, 302
ExecQuery method, 302-305
InstancesOf method, 303
security property, 302
WMI, specifying security options,

300
switch command, PowerShell,
657-660

switches. See named arguments
syntax for VBScript functions, 70
system information, collecting,
312-313

system-wide environment
variables, 459-461

T
tabs, inserting into text files, 157
tags

WSF files, 379-384
XML tags, 168, 379-383

TargetPath properties
(WshShortcut object), 194

TargetPath properties
(WshUrlShortcut object), 194

Stop method
(IADsServiceOperations object),
361

stopping runaway command-line
programs, 440

StopService methods
(Win32_Service objects), 316

storing batch files, 492
Stream object, 250
string constants (VBScripts), 52
string operators, PowerShell,
643-646

string-manipulation functions
(VBScript), 71, 73-74

extracting parts of strings, 72-73
InStr functions, 71-72
InStrRev functions, 72

strings
joining

& character, 54-55, 75
+ operators, 54-55

literal string matching (findstr
command-line programs), 549

PowerShell, 628
structure of WSF files, 378
subdirectories, copying (xcopy
command-line programs),
554-555

SubFolders properties
(Scripting.Folder object), 141

subject, specifying in messages
(CDO), 263

Subject property (CDO.Message
objects), 238

subroutines, 69, 89, 513-514
substituting arguments (batch
files), 496

summarizing Event Log results,
425-427

supportLDAPVersion property
(RootDSE object), 369

SWbemLocator objects
(WbemScripting objects), 288,
291-292

809TotalSize properties (Scripting.Drive object)

text tags, XML (Extensible Markup
Language), 168-169

TextBody property (CDO.Message
objects), 238

TextBodyPart property
(CDO.Message objects), 238

TextStream object (Windows
Scripting Host), 150

methods
Close method, 152
Read method, 152, 163, 166
ReadAll method, 152
ReadLine method, 152-153
Skip method, 152
SkipLine method, 152
Write method, 152
WriteBlankLines method, 152, 159
WriteLine method, 152, 154, 156,

159
properties

AtEndOfLine properties, 151
AtEndOfStream properties, 151,

162
Column properties, 151
Line properties, 151

third-party script editing tools, 27
throw command, PowerShell, 664
time command (CMD), 474
Time constants (VBScript), 52
Time() function, 75
TimeElapsed property
(IADsPrintJobOperations object),
353

TimeSubmitted property
(IADsPrintJob object), 352

timezoneid fields (CDO.configura-
tion objects), cdoTimeZoneId
constants, 254-256

title command (CMD), 474
To property (CDO.Message
objects), 238

TotalPages property (IADsPrintJob
object), 352

TotalSize properties
(Scripting.Drive object), 137

Task Scheduler, scheduling scripts,
428-431

taskkill command (management
power tools), 568-569

tasklist command (console pro-
grams), 441

tasklist command (management
power tools), 565-567

tasks, managing, 315-317
TCP/IP utilities (Windows XP),
743

TelephoneNumber property
(IADsO object), 370

TelephoneNumber property
(IADsOU object), 370

Terminate method
(WshScriptExec object), 189

terminating
applications in NTVDM, 540
command-line programs, 440
loops, 65-66
taskkill, 568-569

testing
DNS server, 589
file/folder attribute values, 142-143
multiple attributes, 143
scheduled scripts, 430-431

tests, performing with extended if
command, 503

text
displaying, 84
files

reading from, 152-153
writing to, 154-156

parsing, 487-488
reading from console programs,

191-193
text files

creating, 157-159
inserting tabs, 157
writing Unix-compatible text files,

159
wildcards, matching (findstr com-

mand-line programs), 550-551
text string messages, sending,
257-258

810 tracert command (networking utilities)

UpdateProfile arguments
(WSHNetwork objects), 209-211

user directories, 321
managing, 319
security, 328-330

user information (networks),
displaying, 212-214

user input, prompting for, 162
user profile logon scripts, 416-418
User property

IADsPrintJob object, 352
IADsResource object, 346
IADsSession object, 361

user-friendly scripts, creating,
376-377

UserDomain properties
(WSHNetwork objects), 208

UserName arguments
(WSHNetwork objects), 209-210

UserName properties
(WSHNetwork objects), 208

UserPath property
IADsPrintJob object, 352
IADsResource object, 346
IADsSession object, 361

V
validating batch file arguments,
519

values
AddRelatedBodyPart method

constant values, 241
CDO.Configuration object values,

252-256
CreateMHTMLBody method

constant values, 242
DSNOptions property constant

values, 240-241
extracting from PowerShell arrays,

636-637
variables

dynamic environment variables, 728
environment variables

batch files, 506-508
expressions, 727

for command variable (CMD),
485-486, 726

tracert command (networking
utilities), 591-592

tracert command-line tool,
591-592

tracing scripts, 43
trap command, PowerShell, 662
tree command-line tool, 553-554
trees, containers versus leaves,
330-331

troubleshooting MS-DOS pro-
grams, 540-541

Trust Policy control (Windows
XP), 42

type command (CMD), 474
Type properties (Scripting.File
object), 145

Type properties (Scripting.Folder
object), 141

U
UAC (User Account Control), 436

handling during installer script cre-
ation, 400-401

Ucase functions (VBScripts), 68
unattended backups, performing
with xcopy, 556-557

unattended scripts
creating, 421-423
logged information, controlling, 423

UNC pathnames, 518
uninstall option, providing with
installer script, 402

Unix-compatible text files, writ-
ing, 159

unnamed arguments, processing
for WSF files, 389-390

Unnamed collection (command-
line arguments) properties, 389

unsigned scripts, disabling, 408
UntilTime property

IADsPrintJob object, 352
IADsPrintQueue object, 355

updated files, copying (xcopy
command-line programs),
555-556

811Virtual DOS Machine

arithmetic, 55
comparison, 55
logical, 56
precedence, 54

procedures
functions, creating, 87-88
subroutines, 89

program statements, 718-719
variables, 50-51

scope, 91-92
syntax, 714-716

Wscript.Echo command, 84-85
VBScript newsgroup Websites, 92
ver command (CMD), 475
verify on/off command (CMD),
475

verifying exit status of batch files,
501

Version property (IADsService
object), 359

viewing
Call Stack window, 46-47
classes, 118
Registry, 115
script files, pipe mechanisms, 33
script variables, Script Debugger

(Windows), 45
scripts, Call Stack window

(Windows XP), 46
Windows Registry, 115

Virtual DOS Machine, 522-523
AUTOEXEC.NT file, 535-536
CONFIG.NT file, 532-535
configuring, 525-526
drive letters, mapping, 537
environment variables, 536
print redirection, 538
Print Screen function, 538
programs, terminating, 540
Properties dialog box

Compatibility tab, 532
Font tab, 528
Memory tab, 528
Miscellaneous Settings tab, 530-531
Program tab, 526-528
Screen tab, 530

serial communications, 539
special-purpose devices, running,

539-540

PowerShell, 623-624
predefined, 630-632
releasing, 630
scope, 665, 667, 669

predefined environment variables,
727-728

scope, 91-92
Time variables, 716
VBScript, 50-51

arrays, 89-91
automatic conversion, 57
operators, 53-56, 717-718
syntax, 714-716

VBA,VBScript omitted features,
723

VBE extensions (script files), 20
VBScript, 14, 49-50

arrays, 89-91
automatic conversion, 57
collections, 67
constant definitions (CDO) Website,

241
constants, 51-53, 722
error handling, 86-87
expressions, syntax, 716
flow control, 57

Do While statement, 63-65
Exit Do statement, 65-66
For…Each statement, 68
For…Next statement, 66-67
If…Then statement, 58-61
Select Case statement, 61-63

functions, 720-722
built-in functions, 720
calling, 69
date and time, 75-78, 722
InputBox, 82-84
MsgBox, 79-82
named constants, 53
objects, 98-99
omitted VBA features, 723-724
string-manipulation, 71-74
syntax, 70

interpreters, 14
objects, 98-100

collections, 102-103
nested objects, 101-102
releasing, 102

omitted VBA features, 723
operators, 53, 717-718

812 virtual environment variables

StartService methods, 316
State properties, 316
Status properties, 316
StopService methods, 316

WbemScripting.SWbemLocator
object, 291-292

web pages, sending, 259-260
Web-Based Enterprise
Management standard, 282

Web-based enterprise manage-
ment. See WBEM

websites
ActiveState, 15
ADSI, 374
LDAP, 367
Microsoft, 70
Microsoft Developer’s Network, 50
Microsoft Developers Website, 232
Microsoft TechNet, 50
MIME (Multipart Internet Mail

Extensions), 234
Perl, 15
Ruby, 15
Script Debugger (Windows), 43
Script Encoder, 415
VBScript constant definitions

(CDO), 241
VBScript newsgroup Websites, 92
WMI (Windows Management

Interface), 317
X.500, 367

while command, PowerShell, 654
wildcards, matching text (findstr
command-line programs),
550-551

Win32_ComputerSystem object
methods, 308-309
properties, 308-309

Win32_Service objects
(WbemScripting objects), 317

ChangeStartmode methods, 316
ContinueService methods, 316
DesktopInteract properties, 315
DisplayName properties, 315
InterrogateService methods, 316
Name properties, 315
PathName properties, 315
PauseService methods, 316

virtual environment variables,
459-461

vol command (CMD), 475
VolumeName properties
(Scripting.Drive object), 137

W
WBEM (Web-Based Enterprise
Management), 282

WbemScripting objects (WMI),
287-290, 302-309

SWbemLocator objects, 288-289,
308

SWbemLocator objects (Windows
Management Interface), connect-
ing to, 291-292

SWbemMethod objects, 289
SWbemObject objects, 289

Delete method, 307
Instances method, 307
Methods properties, 306
Path properties, 307
Property properties, 307
Put method, 307

SWbemObjectSet objects, 289,
305-306

SWbemProperty objects, 289
SWbemPropertySet objects, 289,

308-309
SWbemSecurity objects, 288
SWbemServices objects, 288

Delete method, 302
ExecMethod method, 302
ExecQuery method, 302-305
InstancesOf method, 303
security property, 302
specifying security options, 300

Win32_Service objects, 317
ChangeStartMode methods, 316
ContinueService methods, 316
DesktopInteract properties, 315
DisplayName properties, 315
InterrogateService methods, 316
Name properties, 315
PathName properties, 315
PauseService methods, 316
Started properties, 315
StartMode properties, 316
StartName properties, 316

813Windows Script Debugger

CSLID, 116
defining, 10-11, 93
instances, 95
JScript

collections, 104-106
Enumerator objects, 105

methods
AddPrinterConnection, 208,

225-226, 229-230
AddWindowsPrinterConnection,

209, 223-224
defining, 93, 100
EnumNetworkDrives()$209,

214-217
EnumPrinterConnections()$209,

222-223
MapNetworkDrive, 210, 218-221
RemoveNetworkDrive, 210,

219-220
RemovePrinterConnection, 211,

226-228
SetDefaultPrinter, 211, 228

naming, 97
nested objects, 101-102
object browsers, 118

OLE/COM Object Viewer, 119
viewing classes, 118

OLE/COM Object Viewer, 119
properties

defining, 93, 100-101
releasing, 102
VBScript, 98-99
Windows Registry, viewing, 115
WScript, 111-114
Wscript.Network objects, managing

printer connections, 221
WSHNetwork objects

ComputerName properties, 208
displaying network user information,

212-214
managing drive mappings, 214
UserDomain properties, 208
UserName properties, 208

Windows Registry, 201-202
information, saving, 203-205
viewing, 115

Windows Script Component files,
23

Windows Script Debugger, 43
altering script variable values, 45

Started properties, 315
StartMode properties, 316
StartName properties, 316
StartService methods, 316
State properties, 316
Status properties, 316
StopService methods, 316

windows
Call Stack window (Windows XP),

viewing scripts, 46
command prompt window, batch files,

513-520
console window, 442

Windows operating systems
programs, running, 187-188
remote management with WMI,

283-287
Windows 2000 Professional,
remote management with WMI,
285

Windows 7
logon scripts, assigning, 418
remote management with WMI,

286-287
scripts, scheduling, 428-429

Windows Explorer, CMD shell, 435
Windows NT, remote management
with WMI, 285

Windows objects, 94
ActivePerl, 106

collections, 108-109
Perl Object Interface, 107-108
running Perl scripts in Windows

Script Host, 106-107
ActivePython, 109-110

collections, 110
automation, GetObject function,

99-100
classes, 95
collection objects, 96-97

ActivePerl, 108-109
ActivePython, 110
Count properties, 103
For Each loops, 103
Item methods, 103
JScript, 104-106

COM (Common Object Model)
objects, 94

container objects, 96

814 Windows Script Debugger

Call Stack window, viewing scripts,
46

command-line programs
findstr, 547-551
GUI shortcuts, 545
more, 552-553
tree, 553
xcopy, 554-556

Control panel applets, 546-547
DOS commands, 739-740
file management tools

attrib command, 557-559
cacls command, 559-563

forcedos compatibility program,
524-525

GUI programs, 744-745
logoff program, 741
management power tools, 563

driverquery command, 564
sc command, 569-570
taskkill command, 568-569
tasklist command, 565-567

more program, 741
networking tools, 571, 741-742

ipconfig command, 571-573
net command, 574
net continue command, 574
net file command, 574
net help command, 575
net helpmsg command, 575
net localgroup command, 575
net pause command, 575
net print command, 575-576
net send command, 576
net session command, 576-577
net share command, 577
net start command, 578
net statistics command, 578
net stop command, 578
net use command, 579-581
net user command, 581-583
net view command, 583-584
netstat command, 584-586
nslookup command, 586-589
ping command, 589-590
tracert command, 591-592

NTVDM (Windows NT Virtual
DOS Machine), 522-523

configuring, 525-536
configuring serial communications,

539

displaying script function values, 45
function keys, 44
viewing script variables, 45

Windows Script files, 21-22
Windows Script Host, 10

ActivePerl, objects, 106-109
ActivePython, objects, 109-110
Cscript, 29

command options, 33-36
running script files, 30
running script files from batch files, 40
saving script files, output redirection,

33
security, 41
viewing script files, pipe mechanisms,

33
defining, 11-12
JScript, objects, 104-106
network connections, managing,

207-208
objects

CSLID, 116
object browsers, 118-119
object browsers, viewing classes, 118
OLE/COM Object Viewer, 119
viewing Windows Registry, 115

Perl scripts, running, 106-107
printer connections, managing,

207-208
script files

creating shortcuts, 39
running, 29
running from batch files, 39
security, 40-42

VBScript, 49, 713. SeeVBScript
Wscript. See Wscript

Windows Scripts
email

sending, 232-235
Windows service packs, monitor-
ing, 313-315

Windows Vista
logon scripts, assigning, 418
remote management with WMI, 286
scripts, scheduling, 428-429

Windows XP
administrative tools, 736-738
batch file commands, 738-739
built-in commands, 738-739

815WMI (Windows Management Interface)

IADsMembers object, 350
IADsNamespaces object, 351
IADsPrintJob object, 351-354
IADsPrintJobOperations object,

351-354
IADsPrintQueue object, 354-357
IADsPrintQueueOperations object,

354-357
IADsService object, 357-361
IADsServiceOperations object,

357-361
IADsSession object, 361-362
IADsUser object, 362-363

With statements (VBScript), 102
Wizards, Schedule Task Wizard,
430

WMI (Windows Management
Interface), 279, 312

authentication, 295-296
DCOM security, 294

authentication, 295-296
encryption, 295-296
impersonation, 295-297
permission control, 298-299
specifying options, 299-300
Windows remote management,

283-287
encryption, 295-296
example scripts

printers, managing, 313
system information, collecting,

312-313
tasks, managing, 315-317
Windows service packs, monitoring,

314-315
functions, 281
hotfixes, monitoring, 313-314
local computers, connecting to, 294
namespaces, 281-283
objects, 288-289, 291

monikers, 292-293
SWbemMethod, 308-309
SWbemObject, 306-307
WbemScripting.SWbemLocator,

291-292
Win32_ComputerSystem, 308-309

Scriptomatic, downloading, 310
security

impersonation, 297-298
monikers, 300-301

MS-DOS hardware support, 539
networking, 536-537
printing, 537
printing redirection, 538

Print Screen function, 538
scripts, scheduling, 430
software development aids, 742
sort program, 741
TCP/IP utilities, 743
WMI (Windows Management

Interface), 279, 312
DCOM security, 294-300
Hotfixes, monitoring, 313-314
local computers, connecting to, 294
monikers, connecting with, 292-293
monikers, specifying security options,

300
namespaces, 281-283
printers, managing, 313
scripts, 312
services, managing, 315-317
tasks, managing, 315-317
WBEM (Web-Based Enterprise

Management), 282, 287-292,
302-309

Windows Service Packs, monitoring,
313-314

Windows XP Home Edition,
remote management with WMI,
285

Windows XP Professional, remote
management with WMI, 285

WindowStyle properties
(WshShortcut object), 194

WindowStyle properties
(WshUrlShortcut object), 194

WinNT provider, 332-333
IADs object, 333-336
IADsCollection object, 336-338
IADsComputer object, 340-342
IADsComputerOperations object,

340-342
IADsContainer object, 336-338
IADsDomain object, 342-344
IADsFileService object, 345-347
IADsFileServiceOperations object,

345-347
IADsFileShare object, 347-348
IADsGroup object, 349-350

816 WMI (Windows Management Interface)

WScript
arguments, 31-32
command options, 33-36
methods, 112-113
objects, 111-114
script files, running from batch files,

40
script security, 41
script shortcuts, creating, 39

Wscript.Echo command
(VBScript), 84-85

WScript.Network object
default printer, setting, 228
DOS printer sessions, redirecting,

225-226
drive mappings, 218-221
network connections, managing, 207
network user information, retriev-

ing, 212-214
printers

connecting to, 223-228
information, displaying, 222-223

Wscript.Shell object
Environment property, 196-197
methods

AppActivate method, 183-184
CreateShortcut method, 184
Exec method, 184
ExpandEnvironmentStrings method,

184
LogEvent method, 184
Popup method, 184-185
RegDelete method, 186
RegRead method, 186, 202
RegWrite method, 186, 203
Run method, 186
SendKeys method, 186

properties
CurrentDirectory properties, 182
Environment properties, 182-183,

196-197
SpecialFolders properties, 183

WSF (Windows Script Files), 21-22
command-line arguments

extracting named arguments, 387
named arguments, processing,

386-388
processing, 386
processing named arguments, 386
processing unnamed arguments, 389

privileges, 298-299
SWbemObjectSet collection object,

305-306
SWbemServices object

methods, 302-303
properties, 302
security options, specifying, 300

WBEM (Web-Based Enterprise
Management), 282

WbemScripting objects, 287-292,
302-309

Win32_Service object
methods, 316
properties, 315-316

Windows Service Packs, monitor-
ing, 313-314

WQL queries, 303-305
workgroup networks, remote
management with WMI, 284-287

WorkingDirectory properties
(WshShortcut object), 194

WorkingDirectory properties
(WshUrlShortcut object), 194

workstations, requiring signed
scripts, 414

WQL queries
WMI (Windows Management

Interface), 303-305
Write methods (TextStream
object), 152

WriteBlankLines methods
(TextStream object), 152, 159

WriteLine methods (TextStream
object), 152-159

writing
files, 149
scripts

ADSI, 370-371
for other users, 376-377
remote-management, 403-405
Scriptomatic, 310-311
unattended scripts, 421, 423
uninstall scripts, 402

text files, Unix-compatible, 159
text to files, 154-156

WSC (Windows Script
Component) files, 23

817xml properties

Hotkey properties, 194
IconLocation properties, 194
TargetPath properties, 194
WindowStyle properties, 194
WorkingDirectory properties, 194

WshUrlShortcut object (Windows
Scripting Host)

methods, Save methods, 194
properties

Arguments properties, 193
Description properties, 194
FullName properties, 194
Hotkey properties, 194
IconLocation properties, 194
TargetPath properties, 194
WindowStyle properties, 194
WorkingDirectory properties, 194

X-Y-Z
X.500, 364-367
xcopy (command-line programs),
554, 557

backups, 555
subdirectories, copying, 554
unattended backups, 556
updated files, copying, 555-556

XML (Extensible Markup
Language), 167

DTD, 168
elements, 168
files

creating, 179-181
reading, 177-178

nodes, 169
siblings, 169
tags, 168-169
WSF files, 377

named arguments, processing,
386-388

online help, providing, 384-385
structure, 378
tags, 379-384
unnamed arguments, processing,

389-390
text/markup tags, 168-169

xml properties
DOMDocument object, 171
IXMLDOMNode object, 174

unnamed arguments, processing,
389-390

creating, 377-378, 390, 394
example script, 390-394
formats, 379-383
multiple scripts, enclosing, 390
named arguments (command-line

arguments)
extracting, 387
processing, 386

online help, providing, 384-385
structure, 378
tags, 379-384
unnamed arguments (command-line

arguments), processing, 389
XML tags, 379-383

WSHNetwork objects
methods

AddPrinterConnection, 208, 225-
226, 229-230

AddWindowsPrinterConnection,
209, 223-224

EnumNetworkDrives, 209,
214-217

EnumPrinterConnections, 209,
222-223

MapNetworkDrive, 210, 218-221
RemoveNetworkDrive, 210, 219-

220
RemovePrinterConnection, 211,

226-228
SetDefaultPrinter, 211, 228

properties, 208
WshScriptExec object (Windows
Scripting Host)

methods,Terminate method, 189
properties

ExitCode properties, 188
ProcessID properties, 189
Status properties, 189
StdErr properties, 189
StdIn properties, 189
StdOut properties, 189

WshShortcut object (Windows
Scripting Host)

methods, Save methods, 194
properties

Arguments properties, 193
Description properties, 194
FullName properties, 194

	Table of Contents
	Introduction
	3 Scripting and Objects
	Introduction to Objects
	Using Objects with VBScript
	Using Objects with JScript
	Using Objects with ActivePerl
	Using Objects with ActivePython
	Using the WScript Object
	Locating and Using Unusual Objects

	Index
	A
	B
	C
	D
	E
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

