
PART 2 BAS I C OPERAT IONS48

Managing System
Resources

C H A P T E R

5

07_0789735857_CH05.qxd 12/6/06 9:38 AM Page 48

THE part of Windows Vista that you see—the Vista desktop—is just part of the operating system. Behind this inter-
face (under the hood, if you will) is the guts of the beast. Vista is more than just a pretty interface; it’s a robust engine
that makes all the components of your computer system run.

The Windows Vista engine works by managing the data flow to all the different pieces of hardware (including
key subsystems) of your PC. Vista manages the instructions that are fed to the central processing unit; the applications
and drivers that are stored in system memory; the external and internal devices that are connected to your computer;
and the disk drives that your computer uses to store your data. Think of Windows as a virtual traffic cop, managing
the flow of data and instructions; it’s all quite complex, yet Windows handles any given operation in the blink of
an eye.

Consider, for example, the simple act of clicking your mouse to open a dialog box. When you press your finger
down on that mouse button, it sends an electric signal from the mouse to your computer. That signal is translated into
a specific instruction in binary code, thanks to a small software program called a device driver, which is part of the
Windows operating system. Windows takes the instruction from the device driver, interprets what it means, and then
forwards the instruction to your computer’s CPU. The CPU processes the instruction, and then feeds the result back to
Windows. Windows then accesses the currently running program, which is temporarily stored in system memory,
and tells it to open the dialog box. The program does as it’s told, and feeds back to Windows the necessary informa-
tion about what dialog box to open, and where. Windows takes that instruction, processes it as necessary, and then
feeds the graphic information about the dialog box to a different device driver—this one for your PC’s video card.
The video device driver translates Windows’ instruction into the appropriate electronic signal, and the dialog box
appears on your computer monitor screen. This whole process occurs in the blink of an eye.

Although this sounds rather complicated, it’s actually an example of a very simple—and very common—opera-
tion. Windows manages dozens, if not hundreds, of these operations every hour, all in the background, all without
you knowing what’s going on behind the scenes. The operating system just does its thing, routing the proper instruc-
tions to the proper devices and systems, making sure that no one operation gets in the way of any other one. There’s
a lot of interrupting and pausing and restarting, but that’s the nature of the game—and it all happens behind the
scenes, without troubling you, the user.

It’s all in a days work, as far as Windows Vista is concerned.

CHAPTER 5 MANAGING SYSTEM RESOURCES 49

07_0789735857_CH05.qxd 12/6/06 9:38 AM Page 49

How Windows Manages
the CPU

PART 2 BAS I C OPERAT IONS50

All operations that your computer undertakes are broken
down into processes that perform some individual action. In
the case of an application, such as Microsoft Word or Internet
Explorer, several processes are typically involved. The appli-
cation itself may contain one or more processes, but also
cause several other processes to begin—typically for related
tasks, such as accessing the modem, activating the printer,
and so on. Your system’s central processing unit (CPU) man-
ages these processes. At any given time, Windows is running
dozens of background processes to handle your system’s
memory management, disk management, networking, virus
checking, and so on.

Windows is a multitasking operating system. This
means that multiple processes are run at virtually
the same time; this is how you can simultaneously
surf the Web, listen to digital music, and print a
document. Windows’ job is to arrange the execu-
tion of all these processes so that they seem to be
running concurrently—when in fact, they’re being
processed sequentially.

2

When multiple processes are running at the
same time, Windows assigns each process a
slice of the CPU’s time. It starts by allotting a
certain number of CPU execution cycles to the
first process and sends that process to the CPU.

3

1

07_0789735857_CH05.qxd 12/6/06 9:38 AM Page 50

CHAPTER 5 MANAGING SYSTEM RESOURCES 51

After the specified number of cycles is up, Windows
pauses the execution of the first process. It saves whatever
the processor was doing to memory, and notes the point in
which the process was paused.

4

After the specified number of cycles
is up, Windows now pauses the
second process. It saves whatever
the processor was doing to mem-
ory and notes the point that the
process was paused.

6

Windows then moves to the second
process in line. It allots a certain
number of CPU cycles to the sec-
ond process and sends that
process to the CPU.

5

Windows now returns to the first process and
reads the saved information from memory. It
uses this information to resume the process from
the point at which it was stopped, and re-sends
the process to the CPU. This “process-swapping”
procedure is then repeated over and over until
both processes end.

7

07_0789735857_CH05.qxd 12/6/06 9:38 AM Page 51

How Windows Manages
Memory with SuperFetch

PART 2 BAS I C OPERAT IONS52

When Windows first starts up, the Windows kernel (that part of the operating sys-
tem responsible for securely managing running programs) is the first item loaded
into system memory. The kernel loads at the very top of the available system mem-
ory, “backing up” far enough to meet the needs of the operating system. This
area of memory is called the system space or kernel space.

After loading the kernel, Windows now moves to the
bottom of the pool of system memory and starts load-
ing the various device drivers needed to control your
computer’s hardware subsystems.

2

The remaining memory between the device drivers and the Windows kernel is free
for the loading of software applications. In Windows Vista, SuperFetch technology
automatically loads your most-used applications into memory when Windows first
launches—instead of waiting for you to open the program manually. By pre-loading
a program into a memory, it starts up much quicker when you later open the pro-
gram. SuperFetch uses an intelligent prioritization scheme to understand which
programs you use most often, and it can even differentiate which programs you’re
likely to use at different times.

3

1

Kernel
space

Loaded device
drives

07_0789735857_CH05.qxd 12/6/06 9:38 AM Page 52

CHAPTER 5 MANAGING SYSTEM RESOURCES 53

Each application is subdivided into smaller blocks of memory, each about 2 kilobytes in
size; each block is loaded separately, into an individual location. The blocks are sepa-
rated by small (4 or 8 byte) boundaries, which ensure that the applications won’t be
loaded on top of each other by mistake.

4

The blocks for application memory are loaded into random addresses in
memory, using Address Space Layout Randomization (ASLR). This helps
prevent most remote execution attacks from malicious programs, as the
programs have no advance knowledge of which memory addresses con-
tain a specific program.

5

The location of each memory block is detailed in a page table. The Windows memory manager function and
your computer’s CPU use the page table to map the location of memory blocks. After the memory manager
finds a specific page table entry, it can then locate and access that memory block in physical memory.

6

Memory
block

07_0789735857_CH05.qxd 12/6/06 9:38 AM Page 53

How Windows Manages
System Devices

PART 2 BAS I C OPERAT IONS54

To manage all the hardware not on your PC’s motherboard, Windows uses a special soft-
ware program, called a device driver. The driver functions as a translator between the
instructions issued by Windows (and Windows’ applications) and the electrical signals that
run the hardware subsystems. Without device drivers, all the instructions for managing
every possible hardware device would have to be hard-coded into the Windows operating
system. Because of the driver architecture, you only need to load those drivers necessary
for the hardware on your specific computer system.

1

When a new device is added to your computer
system, Windows installs a device driver for that
item. If it’s a common driver, it may be included with
Windows itself; however, it may instead be included
on the device’s installation CD; or it may have to be
downloaded from the manufacturer’s website.

2

Once installed, each driver is added to the Windows Vista Driver Store. This component, new to Vista, is a repository of
all installed driver packages for your particular installation of Windows. The Driver Store ensures that if you need to repair
or reinstall a particular device driver, you won’t need to locate and use the original installation disk; Windows will auto-
matically access the original driver stored in the Driver Store.

3

07_0789735857_CH05.qxd 12/6/06 9:38 AM Page 54

CHAPTER 5 MANAGING SYSTEM RESOURCES 55

In regular use, all installed device drivers are loaded into system mem-
ory when Windows starts up. Once loaded, the driver passes informa-
tion to Windows on which device it’s talking to and what that device
can do. It then becomes an adjunct to the operating system, sitting
dormant while it waits for a request from Windows.

4

Information about a particular device is
stored in system memory in what is called
a driver object. The driver object supplies
data that completes the Function Dispatch
Table, which is a database that tells
Windows about each driver.

When Windows needs to perform a
particular function, it first examines the
Function Dispatch Table to determine
which device can best do the job.

6

5

After identifying the appro-
priate device, Windows
sends the instruction to the
device driver, in the form of
an Input/Output Request
Packet (IRP).

7

The device driver translates the instructions from
Windows, and then commands the device to perform
the appropriate function.

8

07_0789735857_CH05.qxd 12/6/06 9:38 AM Page 55

How Windows Manages
Interrupts

PART 2 BAS I C OPERAT IONS56

Not all processes are sent to your computer’s CPU with the
same priority. Processes from some devices—such as key-
strokes from your keyboard, clicks from your mouse, and the
like—need an immediate response; to receive immediate atten-
tion, these device drivers generate a special type of signal
called an interrupt.

The presence of an interrupt causes Windows to temporarily halt what it is doing to
divert all attention to the service that issues the interrupt signal. When Windows receives
an interrupt signal, it starts by interrupting the currently running process in the CPU.

2

Information about the current process (including the
address of the current operation) is placed into a
special location in system memory, called a stack.

3

1

07_0789735857_CH05.qxd 12/6/06 9:38 AM Page 56

CHAPTER 5 MANAGING SYSTEM RESOURCES 57

Windows now opens a
path from the device that
issued the interrupt to the
CPU, and then runs the
necessary process.

4
When the new process is completed, Windows
generates an interrupt return (IRET) signal.

5

The IRET instructs the CPU to retrieve
the address of the previous operation from
the stack and then to resume running that
process from where it left off.

6

In many instances, Windows is capable of masking the interrupt so as not to interfere with
already running processes. When the CPU is running an important process, Windows intercepts
the interrupt signal and holds it so that the current process can be finished as quickly as possible.
As soon as the process is done running, Windows then puts through the interrupt request.

7

Non-Maskable Interrupts
Some types of interrupts are so important that they can’t
be ignored. These include interrupts that result from mem-
ory problems or other error conditions. These are called
non-maskable interrupts (NMIs), and Windows deals with
them immediately, regardless of what other tasks await.

07_0789735857_CH05.qxd 12/6/06 9:38 AM Page 57

How Windows Manages Disk
Drives and Data with NTFS

PART 2 BAS I C OPERAT IONS58

Windows Vista, like all operating systems, uses a file system to determine how files are named, stored,
and organized on all physical disks. A file system manages files and folders, as well as the information
needed to locate and access this data. The file system used in Windows Vista is called NTFS.

A hard drive formatted with NTFS is divided into several sectors,
the first of which is the boot sector. The boot sector stores infor-
mation about the layout of the disk and the file system structures,
and also contains the boot code that launches the Windows
operating system on startup.

2

Also included in each partition is the Master File Table
(MFT), which is a type of database that contains all
the information necessary to locate and retrieve files
from the hard disk.

3

Each file is stored on your hard disk in one or more clusters of data. With NTFS, a
cluster can range in size from 512 bytes to 64 kilobytes (KB), depending on the
total size of your hard drive. For example, on a 2GB drive, the default cluster size
is 2KB; on a 200GB drive, the default cluster size is 4KB. Clusters cannot be sub-
divided; even if the file is smaller than 4KB, it still takes up an entire cluster.

4

1

07_0789735857_CH05.qxd 12/6/06 9:39 AM Page 58

CHAPTER 5 MANAGING SYSTEM RESOURCES 59

Large files are broken into multiple clusters. Although Windows tries
to find contiguous storage space that will hold all the clusters for
a file, those clusters may end up scattered in different physical
locations on the hard disk.

5

When a file is stored on your hard disk, a record of that file—and
the location of all its clusters—is created in the Master File Table.

6

When it needs to access a file (to open it within an applica-
tion, copy it, move it, and so on), Windows accesses the MFT
to locate all the clusters associated with that file.

7

NTFS also allows for on-the-fly data compression. Because this compression is implemented within the file system, any
Windows-based application can read and write compressed files just as it would noncompressed files. Compression
is determined by setting a particular bit within the file header; information about the compression is stored in the data
file attribute.

8

When a program opens a compressed file, NTFS automatically
decompresses only the portion of the file being read, and then
copies that data to system memory. Because the application only
accesses the data in memory, which has already been decom-
pressed, speed of data access is just as fast as if the program
were accessing a noncompressed file.

9

NTFS
NTFS originated with the Windows NT
operating system, and stands for NT File
System. Previous versions of Windows used
either the FAT or FAT32 file systems, which
utilized larger cluster sizes.

07_0789735857_CH05.qxd 12/6/06 9:39 AM Page 59

How Windows ReadyBoost
Adds Instant Memory
to Your PC

PART 2 BAS I C OPERAT IONS60

When Windows runs short on memory (also
called Random Access Memory, or RAM), it uses
your PC’s hard disk as virtual memory, writing
temporary code to the hard drive. Unfortunately,
reading and writing to hard disk is much slower
than reading and writing to electronic RAM, so
system performance suffers.

1

Windows Vista lets you add an instant memory upgrade
to your PC via ReadyBoost technology. With
ReadyBoost, you can use a flash memory device to tem-
porarily increase the amount of RAM on your personal
computer. Insert one of these devices into the appropri-
ate slot on your PC, and your system’s memory is auto-
matically increased—and your system’s performance is
automatically improved. Vista supports USB flash mem-
ory drives, as well as CompactFlash (CF) and Secure
Digital (SD) memory cards; it can handle devices that
hold between 256MB and 4GB of RAM.

2

With ReadyBoost, Windows duplicates the
overflow data that is typically sent to your hard
disk by also sending it to the inserted flash
memory device. Windows then uses the data
stored in the flash device’s RAM, instead of
accessing the data on the slower hard disk; a
flash memory device is approximately 10 times
faster than hard disk-based virtual memory.
(Windows continues to write the information to
the hard disk, as a backup.)

3

07_0789735857_CH05.qxd 12/6/06 9:39 AM Page 60

CHAPTER 5 MANAGING SYSTEM RESOURCES 61

The RAM on the flash memory device is added to the available RAM
on your computer’s motherboard, thus providing more memory to
run applications and open documents.

4

You can configure Vista to use all or just part of the
available memory on the USB drive for your system’s
RAM. Just right-click on the USB drive in Windows
Explorer and select Properties; from the Properties
dialog box, select the ReadyBoost tab and adjust the
slider to select how much space to use.

5

When you’re done using the flash memory device, or if you know longer need the speed boost, simply remove the
flash memory device. When the flash memory device is removed, Windows returns to using just the RAM avail-
able on the system motherboard. Any data still in use when the flash memory device was removed is now read
from the hard disk, where it was duplicated during the ReadyBoost process.

6

07_0789735857_CH05.qxd 12/6/06 9:39 AM Page 61

